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Highlights

• This paper studies a bilevel Hub Interdiction and trilevel Hub Protection Problem.

• We study efficient methods to reduce the bilevel problem to single level.

• We present different closest assignment constraints to enable this reduction.

• We propose a Benders Decomposition method that solves large interdiction problems.

• Hub Protection Problem is solved using an Implicit Enumeration algorithm.
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Abstract

In this paper, we present computationally efficient formulations for the multiple allocation hub
interdiction and hub protection problems, which are bilevel and trilevel mixed integer linear
programs, respectively. In the hub interdiction problem, the aim is to identify a subset of
r critical hubs from an existing set of p hubs that when interdicted results in the maximum
post-interdiction cost of routing flows. We present two alternate ways of reducing the bilevel
hub interdiction model to a single level optimization problem. The first approach uses the
dual formulation of the lower level problem. The second approach exploits the structure of the
lower level problem to replace it by a set of closest assignment constraints (CACs). We present
alternate sets of CACs, study their dominance relationships, and report their computational
performances. Further, we propose refinements to CACs that offer computational advantages
of an order-of-magnitude compared to the one existing in the literature. Further, our proposed
modifications offer structural advantages for Benders decomposition, which lead to substan-
tial computational savings, particularly for large problem instances. Finally, we study and
solve large scale instances of the trilevel hub protection problem exactly by utilizing the ideas
developed for the hub interdiction problem.

Keywords: Location, Hub-and-Spoke network, Interdiction, Protection, Benders

Decomposition.

1. Introduction

Certain infrastructural assets are critical to the functioning of a nation’s economy and so-

cietal well being. The United States’ Department of Homeland Security1 identifies sixteen

infrastructural sectors as critical, such that their incapacitation or destruction can be debili-

tating to the national security, economy, and public health (Brown et al., 2006). Three out

of these sixteen critical infrastructure sectors, namely transportation systems, communications

networks, and energy, employ hub-and-spoke as a dominant network structure because of its

operational advantage. Hub-and-spoke networks exploit the economies of scale arising from

consolidating the traffic from different origins and/or those destined to different demand points,

instead of serving each origin-destination (O-D) pair directly. Flows from the same origin with

different destinations in a hub-and-spoke network are consolidated on their route at the hub

where they are combined with flows that have different origins but the same destination (Camp-

bell, 1996). In multi-hub networks, traffic concentrated at a hub is directed to a second hub,

˚Corresponding Author, Phone: +001-514-848-2424x2990, Fax: +001-514-848-2824
Email addresses: prasanna@iima.ac.in (Prasanna Ramamoorthy), sachin@iim.ac.in (Sachin Jayaswal),
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1https://www.dhs.gov/what-critical-infrastructure
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which distributes it to the final destinations, thereby exploiting the economies of scale on the

inter-hub flows. Another advantage of a a hub-and-spoke network is that it results in fewer

links, which makes the network construction economical and its maintenance easier, compared

to an alternate network with direct connections between all origins and destinations.

Hub-and-spoke networks have been well studied, starting with the seminal paper by O’Kelly

(1986). Campbell (1994) presented integer programming formulations for the p-hub median,

uncapacitated hub location, p-hub center, and hub covering problems. These models are largely

inspired by their facility location counterparts, namely p-median, fixed charge facility location,

p-center, and maximal covering problems. Since then, the following variants of hub location

problems have been studied in the literature: single allocation (i.e. a non-hub is allocated to

only one hub) or multiple allocation (i.e. a non-hub is allocated to one or more than one hub),

uncapacitated (no limit on hub capacity) or capacitated (hubs have a fixed capacity). Ernst and

Krishnamoorthy (1996), Skorin-Kapov et al. (1996), Ebery et al. (2000), Hamacher et al. (2004)

are some of the important works in this area. In recent years, several newer variations of the

hub location problems have appeared in the literature. Notable among those are: hub location

with congestion (Elhedhli and Hu, 2005); hub location with service level constraints (Jayaswal

and Vidyarthi, 2013); cycle hub location problem (Contreras et al., 2016); tree of hubs location

problem (Contreras et al., 2010); hub location with flow dependent economies of scale (O’Kelly

and Bryan, 1998); hub location with stochastic demands (Contreras et al., 2011b); modular

hub location problem (Tanash et al., 2017); and dynamic hub location (Contreras et al., 2011c).

Reviews of the hub location literature can be found in: Alumur and Kara (2008), Campbell and

O’Kelly (2012) and Farahani et al. (2013).

While hub-and-spoke network structure is attractive due to its cost effectiveness, it is prone

to severe disruptions in the event of a failure of any of its hubs due to either random events or de-

liberate attacks (called interdiction). For example, the recent (January 2017) snowstorm, named

Egon, that hit continental Europe caused the international hubs at Heathrow and Frankfurt

to close, severely disrupting airline operations2. O’Kelly (2015) points out that hub-and-spoke

networks exhibit a non-random pattern of node degree, with some hub nodes exhibiting very

high connectivity, while many others connected to very few other nodes. An attack at a node

chosen at random would most likely do little damage due to the preponderance of low degree

nodes, but a deliberate effort to disable (interdict) one of the very high degree nodes (hubs)

could be devastating (Albert et al., 2002). A study states that it is possible to disrupt the entire

United States’ air network by interdicting just 2% of its all airports (Lewis, 2006). Thus, it

becomes necessary to identify such critical hubs in advance so that resources may be deployed

for their protection to minimize disruptions.

In this paper, we present optimization models to identify vulnerability and build resilience

in hub-and-spoke networks to interdiction or extreme incidents. More specifically, the first

model studied is a hub interdiction problem (HIP) that identifies critical hubs in hub-and-spoke

networks. The second model, called the hub protection problem (HPP), allocates protective re-

sources among critical hubs so that they can be fortified against interdiction. Several classes of

HIPs and HPPs may arise depending on the settings of the problem and the underlying assump-

tions of the model. In this paper, we study the r-hub median interdiction problem (r-HMIP) and

u-hub median protection problem (u-HMPP) in a multiple allocation hub-and-spoke network

with p hubs. r-HMIP aims to identify a subset of r critical hubs from an existing set of p hubs

2http://www.dw.com/en/storm-egon-brings-chaotic-winter-weather-to-europe/a-37120809
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in a hub-and-spoke network, which when interdicted leads to maximal disruption to the system.

In u-HMPP, the decision maker seeks to fortify/protect a subset of u hubs from an existing

set of p hubs against interdiction. We present efficient formulations and solution approaches

for the two models. More specifically, we present a bilevel mixed-integer programming (MIP)

model for r-HMIP, followed by two alternate ways of reducing it to a single-level optimization

problem. The first approach uses the dual formulation of the lower level min-cost hub rout-

ing problem to combine it with the upper level. The second approach exploits the fact that in

hub-and-spoke networks satisfying (i) triangular inequality between every pair of nodes, and (ii)

identical economies of scale (represented by a common discount factor) on all inter-hub links,

a path between any origin-destination (O-D) pair can have at most two hubs Campbell and

O’Kelly (2012). Hence, the total number of paths available in the network is polynomial, which

can be enumerated. Therefore, the lower level problem can be replaced by closest assignment

constraints (CACs), which ensure that the flow between any O-D pair happens through the

least cost path among the polynomial number of available paths post-interdiction. We present

alternate sets of CACs and study their dominance relationships. Our proposed refinements to

CACs offer computational advantages of order-of-magnitude compared to the one existing in

the literature. Further, our CACs offer structural advantages that are explored while applying

Benders decomposition to efficiently solve large instances of r-HMIP. Benders decomposition

offers further computational advantage of orders-of-magnitude over the direct solution of the

single-level r-HMIP with CACs. Finally, we present a trilevel MIP formulation of u-HMPP,

and reduce it to bilevel MIP using the proposed CACs. We also present an implicit enumer-

ation algorithm in combination with Benders decomposition for u-HMPP. The computational

advantage gained for r-HMIP by using CACs and Benders decomposition allowed us to further

solve large instances of an otherwise intractable u-HMPP.

The major contributions of the paper are as follows:

• We present alternate ways of reducing the bilevel r-HMIP to single level using different

sets of CACs that are more efficient than the one existing in the literature.

• We further present Benders decomposition for the different single-level formulations to

efficiently solve large instances of r-HMIP.

• Further, using the above contributions, we solve large instances of u-HMPP using a com-

bination of implicit enumeration and benders decomposition procedure.

The remainder of the paper is organized as follows. In Section 2, we present a brief review of

literature on network interdiction and protection problems. Section 3 describes the hub inter-

diction problem (r-HMIP), and presents its bilevel formulation, followed by two alternate ways

of reducing it to single level. Subsection 3.2 presents the single-level reduction by taking dual

of the lower level routing problem, whereas Subsection 3.3 presents the single-level reduction

using three alternative sets of CACs. The dominance relationships between CACs is described

in Subsection 3.4. We further present two reduced formulations of CACs in Subsection 3.5. The

computational comparisons of all the single-level reformulations of r-HMIP are reported in Sec-

tion 4. Section 5 describes Benders decomposition for the different reformulations of r-HMIP. In

Section 6, we present the trilevel model for u-HMPP, followed by a solution methodology using

implicit enumeration algorithm. Conclusions and some future research directions are outlined

in Section 7.
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2. Literature Review

Interdiction refers to the forbidding or halting of an intelligent adversary’s activity through

an intentional attack. Interdiction problems involve two players, namely an attacker (also

called interdictor) and a defender (also called evader). Such problems have been widely studied

with respect to network flows (network interdiction) and facility location-allocation (facility

interdiction) problems. The decision maker in an interdiction problem is interested in identifying

the set of nodes/arcs (in network interdiction) or facilities (in facility interdiction) that when

interdicted causes the maximum disruption/loss to the system. The problem is modeled as a

Stackleberg game in which the attacker is the leader and the defender is the follower. The

literature on interdiction can be broadly categorized into three groups: network interdiction,

facility interdiction, and hub interdiction.

2.1. Network Interdiction

Network interdiction problems identify critical nodes or arcs in a network. The defender op-

erates on the network to optimize her objective such as: (i) to pass through the network as fast

as possible (shortest path network interdiction) (Corley and Sha, 1982; Israeli and Wood, 2002;

Cappanera and Scaparra, 2011); (ii) to move through the network without getting caught (most

reliable path interdiction) (Morton et al., 2007); (iii) to maximize the amount of flow passing

through the network (maximum flow network interdiction) (Wood, 1993; Cormican et al., 1998).

The objectives of the attacker in these models are: (i) to intercept or destroy the arc(s)/node(s)

so as to maximize the length of the shortest path; (ii) to maximize the probability of detection

in the network; (iii) to minimize the maximum flow in the network. These models find ap-

plications in disrupting enemy flows (McMasters and Mustin, 1970), infectious disease control

(Assimakopoulos, 1987), counter-terrorism (Farley, 2003), interception of nuclear material (Pan

and Morton, 2008; Gutfraind et al., 2009), and contraband smuggling (Washburn and Wood,

1995). A review of network interdiction models with applications can be found in Collado and

Papp (2012).

In one of the early papers in this area, Wood (1993) presented a network interdiction prob-

lem in which an enemy attempts to maximize flow through a capacitated network, while an

interdictor tries to minimize this maximum flow by interdicting arcs using limited resources. He

presented integer programming formulations for the discrete interdiction case, and presented

valid inequalities and derived a reformulation to tighten the LP relaxation of some of these

models. Extension of the model to allow for continuous interdiction, multiple origins and des-

tinations, undirected networks, multiple interdiction resources, and multiple commodities are

also described. Smith et al. (2007) presented a three-stage model for designing a survivable

network under several interdiction scenarios. In particular, they examine the case in which an

enemy, subject to some interdiction budget, can destroy any portion of any arc that a designer

constructs on the network. The problem is modeled using a two-player game, in which the de-

signer acts first to construct a network and transmit an initial set of flows through the network.

The enemy acts next to destroy a set of constructed arcs in the designer’s network followed by

the designer who acts last to transmit a final set of flows in the network. They present solution

approaches for three different profiles of enemy action: (i) based on arc capacities, (ii) based on

initial flows, and (iii) interdiction to minimize the network designer’s maximum profit obtained

from transmitting flows. Lim and Smith (2007) studied the multicommodity flow network in-

terdiction problem, in which an attacker disables, subject to an interdiction budget, a set of

network arcs in order to minimize the maximum profit that can be obtained from shipping
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commodities in the network. The authors examine the problem under: (i) discrete interdiction

(i.e., an interdicted arc is completely disabled), and (ii) continuous interdiction (an interdicted

arc is not completely destroyed, but operates with reduced capacity).

2.2. Facility Interdiction and Protection

Facility interdiction problems identify critical facilities in a supply network, which when

destroyed causes maximum disruption. Church et al. (2004) proposed r -interdiction median

problem (r-IMP) and r -interdiction covering problem (r-ICP) to study interdiction of facilities

under different location scenarios. The r-IMP identifies a subset of r facilities to remove from an

existing set of p facilities so as to maximize the overall transportation cost of serving customers

from the remaining facilities post-interdiction. On the other hand, r-ICP identifies a subset of r

facilities from an exisiting set of p facilities that when removed minimizes the total demand that

can be covered within a specific distance or time. Different variants of r-IMP have been studied

in the literature. Church and Scaparra (2007a) studied an extension of the problem where

the success of the attack is uncertain. The authors assumed that the attacks are successful

with a given probability. Losada et al. (2012) studied another type of uncertainty in r-IMP,

which is the uncertainty in the degree of impact from an attack. This problem identifies the

disruption scenario that result in the maximum overall transportation distance for serving all

customers in the system. A key assumption here is that the degree of interdiction impact

on a facility is proportional to the amount of reorigins employed. The problems described

above assume no restrictions on the capacity of the facilities. Aksen et al. (2014) studied a

partial interdiction of capacitated r -IMP, wherein facilities operate with a reduced capacity post-

interdiction. Though various versions of r -IMP are studied (capacitated and uncapacitated,

partial and full interdiction), their r -ICP counterparts have received limited attention in the

literature.

Church and Scaparra (2007b) studied an extension of r -IMP, known as r -interdiction median

problem with fortification (r -IMF), which identifies optimal fortification/protection strategies

against interdiction. The model assumes that a protected/fortified facility becomes completely

immune to attacks. Scaparra and Church (2008a) formulated r -IMF as a bilevel MIP, which

is solved using an implicit enumeration algorithm. Scaparra and Church (2008b) proposed

an alternate method for r -IMF based on its reformulation as a single level maximal covering

problem with precedence constraints. The authors devise an approximate heuristic to identify

the upper and lower bound to the problem, which are used to reduce the size of the original

problem. This reduced problem is then solved to optimality using a commercial MIP solver.

Aksen et al. (2010), Losada et al. (2010), Scaparra and Church (2012), Liberatore et al. (2012),

Aksen and Aras (2012), and Aksen et al. (2013) are other related works in this area.

2.3. Hub Interdiction and Protection

Interdiction of hubs in a hub-and-spoke network has received scarce attention in the litera-

ture, despite its many useful applications, as discussed in Section 1. However, there have been a

few studies in closely related areas. An et al. (2015) and Azizi et al. (2016), for example, studied

the reliable hub-and-spoke network design problem, which includes the possibility of re-routing

flows through backup hubs when the active hubs are disrupted. However, the objective in both

these papers is to minimize the weighted sum of pre-disruption and the expected value (over all

disruption scenarios) of post-disruption transportation cost. Chaharsooghi et al. (2017) stud-

ied the reliable uncapacitated multiple allocation hub location problem under hub disruptions.

Similar to Azizi et al. (2016), they assume that customers originally assigned to a disrupted

6
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hubs are either reassigned to other surviving hubs or they do not receive service, in which case

a penalty should be paid. The problem is modeled as a two-stage stochastic program, and a

metaheuristic algorithm based on the adaptive large neighborhood search is proposed. HIPs by

contrast, study the worst-case loss to the defender.

In terms of the problem studied in this paper, Lei (2013), Parvaresh et al. (2014), Ghaf-

farinasab and Motallebzadeh (2017), and Ghaffarinasab and Atayi (2017) are the closest to our

work. Lei (2013) presented a bilevel and a trilevel formulation for r-HMIP and u-HMPP, re-

spectively. However, due to the complexity of the problem, computational results are presented

only for small instances of r-HMIP, and none for u-HMPP. Parvaresh et al. (2014) presented two

multi-objective metaheuristics based on simulated annealing and tabu search to solve the prob-

lem. More recently, Ghaffarinasab and Motallebzadeh (2017) studied r-HMIP, along with r-hub

interdiction maximal covering and r-hub interdiction center problems, and solved them using

simulated annealing techniques. Ghaffarinasab and Atayi (2017) presented an implicit enumer-

ation algorithm for r-HMIP and a two level implicit enumeration algorithm for u-HMPP (one

level of implicit enumeration for interdiction and another level for protection). Our paper differs

from these papers essentially in terms of the solution method to efficently solve large instances

of r-HMIP and u-HMPP. In contrast to Ghaffarinasab and Atayi (2017), which used implicit

enumeration to solve the bilevel r-HMIP, we present alternate ways to reduce the problem to

single level, and to solve them efficiently using Benders decomposition. Ghaffarinasab and Mo-

tallebzadeh (2017), similar to us, used alternate sets of CACs to reduce the bilevel r-HMIP to

a single level. However, we further study in detail the dominance relations among the various

CACs, and also present their reduced versions, which make the resulting single level formulation

computationally very efficient. We further exploit the structure of the resulting alternate single

level formulations of r-HMIP in Benders decomposition to further reduce the computational

times. Benders decomposition for r-HMIP also allows us to further improve the efficiency of

the implicit enumeration used for solving u-HMPP.

3. Problem Description and Model Formulation for r-HMIP

Consider a multiple allocation hub-and-spoke network with a set H Ď N of p hubs. Suppose

that the follower (defender) has a set of flows (Wij) between every origin node i P N and

destination node j P N , which is routed through one or at most two of the hubs from the set

H. Let dijkm represent the cost per unit flow from the origin i to destination j, through hubs

k and m, in that order. Then, dijkm “ αcik ` δckm ` γcmj , where α, δ, and γ are the discount

factors on collection, transhipment, and distribution links, respectively and cik, ckm, and cmj
represent the cost of traversing from node i to k, k to m, and m to j, respectively. Typically,

δ ă α and δ ă γ due to economies of scale arising from consolidation of flows on inter-hub links.

We model r-HMIP as a Stackleberg game in which the leader (attacker) makes the first

move by interdicting a subset of r hubs from the existing set H of p hubs with the objective

to maximize the follower’s (defender’s) optimal routing/transportation cost through the p ´ r

surviving hubs in the network post-interdiction. We assume r ă p since the attacker usually has

limited resources to interdict the hubs. We also assume that an interdicted hub is completely

disabled, i.e., partial flows through an interdicted hub is not permitted. We formulate this game

as a bilevel MIP. The hierarchical structure of the problem is shown in Figure 1.

3.1. Bilevel Programming Formulation

In this subsection, we provide a mathematical formulation for r-HMIP. To begin with, we

introduce the following notation.
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Constrained
optimization
problem

Objective: Minimize routing cost after interdiction

Objective: Maximize the defender’s routing cost

Decision: Which r hubs to interdict?

Decision: How to route the flows through the remaining hubs?

Variable type: Binary

Variable type: Continuous

Level 1: Attacker’s problem (Hub interdiction)

Level 2: Defender’s problem (Routing problem)

Figure 1: Hub interdiction problem as a bilevel MIP

Indices and Parameters:

N : Set of all nodes

H : Set of all hubs, H Ď N

i : Index for origin nodes, i P N
j : Index for destination nodes, j P N
k : Index for hub which is connected to origin nodes, k P H
m : Index for hub which is connected to destination nodes, m P H
α ; Discount factor for collection (origin to hub), piÑ kq
δ ; Discount factor for transhipment (hub to hub), pk Ñ mq
γ ; Discount factor for distribution (hub to destination), pmÑ jq
Wij : Demand (of flow) from origin i to destination j

cij : Cost of traversing from node i to j

dijkm : Cost of traversing from the origin i to destination j, through hubs k and m;

dijkm “ αcik ` δckm ` γcmj
p : No. of open hubs in the system

r : No. of hubs to interdict.

Decision Variables:

Xijkm : Fraction of flows from origin i to destination j through hubs k and m post-interdiction

zk : 1 if hub k survives interdiction (is not interdicted), 0 otherwise

With the above notation, the bilevel formulation of the multiple allocation r-HMIP can be

mathematically stated as follows:

rr-HMIP2Ls : max
z

T (1)

s.t.
ÿ

kPH
zk “ p´ r (2)

zk P t0, 1u @k P H (3)

8
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T “ min
X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
WijdijkmXijkm (4)

s.t.
ÿ

kPH

ÿ

mPH
Xijkm “ 1 @i, j P N (5)

ÿ

mPH
Xijkm `

ÿ

mPHztku
Xijmk ď zk @i, j P N ; k P H (6)

Xijkm ě 0 @i, j P N ; k,m P H (7)

The leader’s (attacker’s) objective function (1) maximizes the defender’s optimal total trans-

portation cost post-interdiction, which the follower wants to minimize in its objective function

(4). Constraint (2) ensures that p´ r hubs remain open post-interdiction. (4) to (7) form the

follower’s problem at the lower level. Constraint set (5) ensures that the demand between every

O-D pair (i, j) is satisfied using paths containing at most two hubs, while constraint set (6)

ensures that this demand is routed only via surviving hubs post-interdiction. Constraint set (6)

can be alternatively represented by the following two sets of constraints, as done by Lei (2013).

ÿ

kPH
Xijkm ď zm @ i, j P N ;m P H;

ÿ

mPH
Xijkm ď zk @ i, j P N ; k P H.

However, the constraint set of the form (6) has been proven to be facet defining (Hamacher

et al., 2004). Hence, constraint set (6) provides a tighter linear programming (LP) relaxation,

which is effective in solving large instances of r-HMIP. Note that the lower level problem in the

above formulation is a linear program (LP) as a result of multiple allocation of non-hub nodes

to hubs.

Bilevel optimization problems, even with linear programs at both levels, are known to be

NP-hard (Frangioni, 1995; Audet et al., 1997). As such, they are traditionally solved by reducing

the problem to single-level using various reduction techniques (Sinha et al., 2017). In this paper,

we present two alternate ways of reducing the bilevel r-HMIP to a single-level MIP such that

it is tractable. The first approach is based on the dual of the lower level LP, while the second

approach exploits the structure of the solution to the lower level problem so that it can be

replaced by CACs.

3.2. Single-level Reduction using Dual Formulation

In the bilevel formulation r-HMIP2L, the lower level problem given by (4)-(7), is an LP.

Further, since the objective functions at the two levels are the same, while their objectives

are exactly opposite (maximization for the upper level and minimization for the lower level),

r-HMIP2L can be reduced to a single-level MIP by taking the dual of the lower level LP. For

a fixed upper level variable z̄k, associating dual variables φij and δijk with constraint sets (5)

and (6), respectively we get the following dual LP of the lower level problem:

max
φ,δ

ÿ

iPN

ÿ

jPN
φij ´

ÿ

iPN

ÿ

jPN

ÿ

kPH
δijkz̄k

s.t. φij ´ δijk ďWijdijkm @i, j P N ;@k,m P H, k “ m

φij ´ δijk ´ δijm ďWijdijkm @i, j P N ;@k,m P H, k ‰ m

φij unbounded; δijk ě 0 @i, j P N ;@k P H
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Replacing the lower level problem with the above dual gives the following single level nonlinear

MIP reformulation for r-HMIP:

max
z,φ,δ

ÿ

i

ÿ

j

φij ´
ÿ

i

ÿ

j

ÿ

k

δijkzk (8)

s.t.
ÿ

kPH
zk “ p´ r (9)

φij ´ δijk ďWijdijkm @i, j P N ;@k,m P H, k “ m (10)

φij ´ δijk ´ δijm ďWijdijkm @i, j P N ;@k,m P H, k ‰ m (11)

φij unbounded; δijk ě 0; zk P t0, 1u @i, j P N ;@k P H (12)

Model (8)-(12) has bilinear terms
ř
i

ř
j δijkzk in its objective function (8), which can be

linearized by introducing a new variable Vk and the following two constraint sets:

Vk ďMkzk @k P H (13)

Vk ě
ÿ

iPN

ÿ

jPN
δijk ´Mkp1´ zkq @k P H (14)

where Mk is a sufficiently large number. The linearized single-level dual formulation of r-HMIP

is given by:

rr-HMIPDF s : max
z,φ,δ,V

ÿ

iPN

ÿ

jPN
φij ´

ÿ

kPH 1
Vk (15)

s.t. (9)´ (12)

(13), (14)

Vk ě 0 @k P H (16)

The computational efficiency of the above formulation depends on the specific value of Mk

chosen for the problem. A good value of Mk provides a tighter LP relaxation of the model. In

the following proposition, we present a valid value of Mk.

Proposition 1. For a given O-D pair pi, jq, let dijk1m1 “ maxk,mtdijkmu and dijkm2 “
minmtdijkmu. Then, ĎMk “ ř

iPN
ř
jPN Wij pdijk1m1 ´ dijkm2q is a valid value of Mk for r-

HMIPDF .

Proof.

(13)´ (14) ùñ Mk ě
ÿ

iPN

ÿ

jPN
δijk.

Also,

δijk ďWijdijk1m1 ´Wijdijkm2

(since δijk is the shadow price of constraint (6), which is obtained as the maximum possible

change in the objective function (4) corresponding to a change in the right hand side of constraint

(6) by a unit).

Hence, ĎMk “ ř
iPN

ř
jPN δijk “

ř
iPN

ř
jPN Wij pdijk1m1 ´Wijdijkm2q is a valid value of Mk for

the r-HMIPDF formulation.

10
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3.3. Single-level Reduction using CACs

In this subsection, we present an alternate way of reducing the bilevel r-HMIP to a single

level optimization problem by exploiting the structure of the lower level LP. For a given solution

to the upper level problem (i.e., for fixed values of zk), the lower level problem separates into

an independent min-cost routing problem for every O-D pair pi, jq. The minimum cost routing

requirement between every O-D pair pi, jq can also be ensured through additional constraints in

absence of the objective function, which allows the reduction of r-HMIP2L to single level. Such

constraints have been widely used in facility location problems to allocate customers to their

closest facilities, and are popularly called as CACs. Gerrard and Church (1996) and Espejo

et al. (2012) compare different CACs used in location problems, and study their theoretical

properties. These constraints find applications in hazardous facility location problems (Song

et al., 2013), facility location problems under competition (Dobson and Karmarkar, 1987), and

facility interdiction problems (Liberatore et al., 2011), among others.

In hub-and-spoke networks satisfying (i) triangular inequality between every pair of nodes,

and (ii) identical economies of scale (represented by a common discount factor δ) on all inter-

hub links, a path between any O-D pair can have at most two hubs. Hence, the total number

of paths available in the network is polynomial, which can be enumerated in CACs. We present

three different sets of CACs to reduce r-HMIP2L to single level:

1. The first set of CACs is an extension of its counterpart for facility location problems

proposed by Church and Cohon (1976). These CACs are used by Lei (2013) to convert

the bilevel r-HMIP to single level. They are stated as follows:

ÿ

pq,sqPCijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H (CAC1a)

where Cijkm = {pq, sq| dijqs ă dijkm or (dijqs “ dijkm and (q ă k or (q “ k and s ă m)))}.
For a given O-D pair pi, jq, CAC1a ensures that the flow between them is routed only

through a path that is no costlier than the path i Ñ k Ñ m Ñ j as long as hubs k

and m are open. CAC1a arbitrarily breaks any tie between paths having the same cost.

Breaking ties for r-HMIP is not necessary, unlike in facility location problems without

which it becomes infeasible. Hence, we can rewrite CAC1a as follows:

ÿ

pq,sqPĈijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H (CAC1b)

where Ĉijkm = {pq, sq| dijqs ă dijkm or (dijqs “ dijkm and (q ‰ k or (q “ k and s ‰ m)))}.
2. The second set of CACs forbids assignment of flows between any O-D pair (i, j) to a path

costlier than the path iÑ k Ñ mÑ j as long as hubs k and m are open. It is written as

follows:

ÿ

pq,sqPEijkm

Xijqs ď 2´ zk ´ zm @ i, j P N ; k,m P H (CAC2)

where Eijkm = {pq, sq| dijqs ą dijkm}. CAC2 is similar to the constraint proposed by

Wagner and Falkson (1975) for p-center problems.

3. The third set of CACs, like CAC1b, ensures the flows between a given O-D pair (i, j) is

routed only through a path i Ñ q Ñ s Ñ j that is no costlier than the path i Ñ k Ñ

11
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mÑ j as long as the hubs k and m are open. This is given by:

ÿ

qPH

ÿ

sPH
dijqsXijqs ` pM ´ dijkmqpzk ` zm ´ 1q ďM @ i, j P N ; k,m P H (CAC3)

where M “ maxi,jPNtřkPH
ř
mPH dijkmu.

In the above inequality, by fixing zk and zm to 1, the allocations Xijqs will be through

paths shorter than dijkm. CAC3 is an adaptation of the CAC used by Berman et al.

(2009) for facility location problems.

The single-level reformulation of r-HMIP with CACs takes the following form:

rr-HMIPCACs : max
z,X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
WijdijkmXijkm

s.t. p2q, p3q, p5q ´ p7q
CAC1b or CAC2 or CAC3

Note that all the single-level reformulations of r-HMIPCAC that use CAC1 (CAC1b), CAC2,

and CAC3 have the same number of variables as the original bilevel r-HMIP2L. In order to

find the most efficient CACs among the proposed CACs for reduction, we study the dominance

relationships between them in the following subsection.

3.4. Dominance Relationship between CACs

The dominance relationship between CACs has been studied in the context of facility loca-

tion problems (Espejo et al., 2012). A constraint dominates another constraint if the former

yields a tighter LP relaxation than the latter. To prove that one constraint dominates the other,

one needs to show that the LP feasible region of the dominating constraint is a subset of the

LP feasible region of the dominated constraint. For studying the dominance relationship be-

tween CACs, the dominance rules we use are as follows: (i) a constraint dominates the another

constraint if the former implies the latter, but not the other way round; (ii) if both constraints

imply one another, we say that the constraints are equivalent.

Proposition 2. CAC2 is equivalent to CAC1b

Proof. CAC2 can be written as:

1´
ÿ

pq,sq|dijqsďdijkm
Xijqs ď 2´ zk ´ zm @ i, j P N ; k,m P H

or
ÿ

pq,sq|dijqsďdijkm
Xijqs ě zk ` zm ´ 1 @ i, j P N ; k,m P H.

By separating Xijkm term, the above inequality can be rewritten as follows:

ÿ

pq,sqPĈijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H.

Hence, CAC2 ùñ CAC1b. Similarly, one can prove that CAC1b ùñ CAC2.

Therefore, CAC2 is equivalent to CAC1b.

Proposition 3. CAC2 dominates CAC3

12
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Proof. To prove CAC2 dominates CAC3, we show that CAC2 ùñ CAC3 while CAC3 ­ùñ
CAC2.

We first prove CAC2 ùñ CAC3. For this we rewrite CAC2 as:

ÿ

pq,sqPEijkm

Xijqs ` zk ` zm ď 2 @ i, j P N ; k,m P H

Hence, the following is a relaxation of CAC2:

Xijqs ` zk ` zm ď 2 @i, j P N ; k,m P H; pq, sq P Eijkm (CAC2-rel)

It is evident that CAC2 ùñ CAC2-rel, while CAC2-rel ­ùñ CAC2. Therefore, CAC2

dominates CAC2-rel. To show that CAC2 dominates CAC3, we need to prove that CAC2-rel

either dominates or is equivalent to CAC3.

Multiplying both sides of CAC2-rel by dijqs and summing over pq, sq P Eijkm, we get:

ÿ

pq,sqPEijkm

dijqsXijqs `
ÿ

pq,sqPEijkm

dijqszk `
ÿ

pq,sqPEijkm

dijqszm ď 2
ÿ

pq,sqPEijkm

dijqs

@ i, j P N ; k,m P H.

Adding
ř
pq,sq|dijqsďdijkm dijqsXijqs ` pM ´ dijkm ´ ř

pq,sqPEijkm
dijqsqpzk ` zm ´ 1q to both

sides of the above inequality, where M is maxij
ř
k,mWijdijkm, we get

ÿ

qPH

ÿ

sPH
dijqsXijqs ` pM ´ dijkmqpzk ` zm ´ 1q ď

ÿ

pq,sqPEijkm

dijqs `
ÿ

pq,sq|dijqsďdijkm
dijqsXijqs

`pM ´ dijkmqpzk ` zm ´ 1q ´
ÿ

pq,sqPEijkm

dijqspzk ` zm ´ 1q @ i, j P N ; k,m P H.

(CAC2-rel2)

In the above inequality, the maximum value of the RHS (which corresponds to zk, zm = 1) is

always bounded by M since
ř
pq,sq|dijqsďdijkm dijqsXijqs ď dijkm. Therefore, we get the following

inequality:

ÿ

qPH

ÿ

sPH
dijqsXijqs ` pM ´ dijkmqpzk ` zm ´ 1q ďM @ i, j P N ; k,m P H,

which proves that CAC2-rel ùñ CAC3. Since CAC2 dominates CAC2-rel, CAC2 dominates

CAC3.

Next, we prove CAC3 ­ùñ CAC2. This follows immediately from the following relations we

proved above:

CAC2 ùñ CAC2-rel ùñ CAC3

But,

CAC2-rel ­ùñ CAC2

Therefore,

CAC3 ­ùñ CAC2.

13
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3.5. Reduced Formulations of CACs

In the following subsection, we present refinements of CAC1 and CAC2 that lead to fewer

constraints. These reduced formulations of CAC1 and CAC2 are based on constraint dominance

principles.

Proposition 4. For a given O-D pair (i, j) and hubs k and m (m ‰ k) between them,

CAC1bijkm dominates CAC1bijmk when dijkm ă dijmk.

Proof. To prove the above proposition, we show that CAC1bijkm ùñ CAC1bijmk while

CAC1bijmk ­ùñ CAC1bijkm when dijkm ă dijmk.

For this, we rewrite CAC1bijkm and CAC1bijmk as follows:

CAC1bijkm :
ÿ

pq,sqPĈijkmYtpk,mqu
Xijqs ´ zk ´ zm ě ´1

CAC1bijmk :
ÿ

pq,sqPĈijmkYtpm,kqu
Xijqs ´ zk ´ zm ě ´1.

Also, Ĉijkm Y tpk,mqu Ă Ĉijmk Y tpm, kqu when dijkm ă dijmk. Hence, CAC1bijkm ùñ
CAC1bijmk while CAC1bijmk ­ùñ CAC1bijkm when dijmk ă dijmk.

Based on Proposition 4, we propose a new formulation for CAC1, which is given below. For

this, we define a set H 1ij “ tH2ijkm|k,m P H, k ď mu for each O-D pair (i, j), where

H2ijkm “
#
pk,mq if dijkm ď dijmk

pm, kq if dijkm ą dijmk.

The new CAC can then be written as follows:

ÿ

pq,sqPĈijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; pk,mq P H 1ij (rCAC1)

The reduced constraint set rCAC1 has |N |2ppp2 ` pq{2q constraints whereas, CAC1 has

|N |2p2 constraints.

Proposition 5. For a given O-D pair (i, j) and hubs k and m (m ‰ k) between them, CAC2ijkm
dominates CAC2ijmk when dijkm ă dijmk.

Proof. To prove the above proposition, we show that CAC2bijkm ùñ CAC2bijmk while

CAC2bijmk ­ùñ CAC2bijkm when dijkm ă dijmk.

For this, we rewrite CAC2bijkm and CAC2bijmk as follows:

CAC2bijkm :
ÿ

pq,sqPEijkm

Xijqs ` zk ` zm ď 2

CAC2bijmk :
ÿ

pq,sqPEijmk

Xijqs ` zk ` zm ď 2.

Also, Eijkm Ą Eijmk when dijkm ă dijmk. Hence, CAC2bijkm ùñ CAC2bijmk while

CAC2bijmk ­ùñ CAC2bijkm when dijmk ă dijmk.
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Based on Proposition 5, we propose a new formulation for CAC, which is given below:

ÿ

pq,sqPEijkm

Xijqs ď 2´ zk ´ zm @ i, j P N ; pk,mq P H 1ij . (rCAC2)

The reduced constraint set rCAC2 has |N |2ppp2 ` pq{2q constraints whereas, CAC2 has |N |2p2
constraints.

3.6. Advantages of CAC2 over CAC1

We outline the advantages of CAC2 over CAC1 at two stages of the solution process - the

presolve stage and the branch-and-bound stage. CAC2 has certain structural properties that

help in solving the single-level reformulation of HMIP faster than the one with CAC1. These

properties are also valid for rCAC2 since it is a tighter version of CAC2.

Advantages at presolve stage: Presolve procedure is executed by a commercial solver

prior to solving the optimization problem in order to reduce the size of the given problem by

removing the redundant variables and constraints. Probing is a process that is carried out at

the presolve step wherein logical consequences are investigated by setting the binary variables

at their bounds (Savelsbergh, 1994). We show that CAC2 and rCAC2 together with constraint

(6) eliminate a large number variables by probing.

Proposition 6. For a given O-D pair (i,j) and hub k, Xijkm variables that appear common in

(6) and CAC2ijkk can be set to zero.

Proof. For a given O-D pair (i, j) and hub k, consider the following possible two cases:

• zk = 0: variables that appear in both constraint (6) and CAC2ijkk are set to zero by

constraint (6).

• zk = 1: variables that appear in both constraint (6) and CAC2ijkk are set to zero by

CAC2ijkk.

Since the variables that appear in both constraint 6 and CAC2 are set to zero in either case,

they can be eliminated from the model prior to solving.

Thus, CAC2 and rCAC2 eliminate a large number of variables by probing. Despite CAC1

being equivalent to CAC2, probing using the former is not straightforward. However, CAC1

also eliminates some variables at presolve stage, although not as many as CAC2, as evident

later from computational results in Section4.

Advantages at branch-and-bound stage: In a branch-and-bound algorithm, the LP

relaxation of the MIP problem is solved at the root node. Further, branching is done by setting

the integer variables to its bounds that have taken a fractional value in the optimal solution to

the relaxed problem. In our problem, branching is done by setting zk variables to zero and one.

When a zk variable is set to one, some Xijkm variables are set to zero because of the CAC2

formulation. These variables can be eliminated from the model to reduce its size. Similarly,

when zk is set to zero, some Xijkm variables are eliminated because of constraint (6), which

again reduces the model size.
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4. Computational Comparison of Formulations

We present the results of our computational experiments to compare the computational

efficiencies of the different single level reformulations. For our experiments, we use instances

derived from the Civil Aeronautics Board (CAB) dataset containing |N | “ 25 and p P t7, 10u.
The set of p hubs in the existing hub-and-spoke network for each of the instances is obtained

by solving a corresponding uncapacitated p-hub median problem (Ebery et al., 2000). All the

computational experiments are performed on a workstation with a 2.60GHz Intel Xeon - e5

processor and 24 GB RAM, and all the instances are solved using CPLEX 12.6.

In Table 1, we present the results for r P t1, 2, 3, 4, 5, 6, 7, 8u. The discount factors for col-

lection (α) and distribution (γ) are both set at 1.0, while the discount factor for transshipment

(δ) is varied in the set t0.9, 0.5, 0.1u. The first set of columns lists the problem parameters: |N |,
p, r and δ. The second set of columns reports the size (number of constraints and variables)

and the CPU time for the single-level dual reformulation, r-HMIPDF . We also report the size

of the formulation (number of constraints and variables) before and after presolve operation for

the single-level r-HMIP for different variants of CACs. The column “Original Size” reports the

number of constraints and variables in the formulations before the presolve operation, which

is the same for the three unreduced variants of CACs (CAC1, CAC2, CAC3). For example,

for problem instances with N “ 25 and p “ 7, all the three formulations, r-HMIPCAC1, r-

HMIPCAC2 and r-HMIPCAC3, consist of 35,626 constraints and 30,633 variables. Similarly, for

N “ 25 and p “ 10, the number of constraints and variables are 69,376 and 62,511, respectively.

The number of constraints and variables after the presolve operation and the total CPU time

(in seconds) to solve the problem optimally for each of the CAC formulations are reported under

their respective columns “Cons.”, “Vars.” and “CPU(s)”, respectively.
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Table 1: Comparison between different single level reformulations of r-HMIP using CAB dataset

N p r δ
r-HMIPDF Original Size - CACs r-HMIPCAC1 r-HMIPCAC2 r-HMIPCAC3 r-HMIPrCAC1 r-HMIPrCAC2

Cons. Var. CPU(s) Cons Var. Cons. Var. CPU(s) Cons. Var. CPU(s) Cons. Var. CPU(s) Cons. Var. CPU(s) Cons. Var. CPU(s)

25 7 1 0.9 4390 5015 7 35626 30633 9911 8619 4 1329 845 2 34986 30058 43 6611 8619 3 1329 845 2
2 6 27593 23775 15 10383 4655 5 35094 30058 47 18377 23479 8 10365 4655 4
3 7 27593 23775 17 10383 4655 6 35094 30058 69 18377 23479 12 10365 4655 5
4 5 27593 23775 22 10383 4655 5 35094 30058 98 18377 23479 16 10365 4655 5
5 2 27593 23775 13 10383 4655 3 35094 30058 83 18377 23479 10 10365 4655 2

1 0.5 9 19519 17015 7 3713 2405 3 34964 30058 46 12815 17015 5 3713 2405 3
2 10 29809 25835 18 11220 6567 7 35094 30058 48 19645 25529 12 10904 6567 6
3 10 29809 25835 30 11220 6567 7 35094 30058 51 19645 25529 19 10904 6567 8
4 8 29809 25835 28 11220 6567 11 35094 30058 80 19645 25529 19 10904 6567 8
5 5 29809 25835 9 11220 6567 3 35094 30058 88 19645 25529 6 7817 4922 3

1 0.1 12 26581 23197 11 6303 4143 3 34996 30058 47 17061 23197 7 6303 4143 3
2 12 31579 27481 28 13176 8669 12 35094 30058 52 20280 27167 16 12956 8669 9
3 13 31579 27481 43 13176 8669 10 35094 30058 70 20280 27167 25 12956 8669 10
4 10 31579 27481 36 13176 8669 10 35094 30058 73 20280 27167 20 12956 8669 11
5 7 31579 27481 8 13176 8669 3 35094 30058 38 20280 27167 5 12956 8669 3

10 1 0.9 6271 6896 13 69376 62511 28475 25786 14 1743 1102 7 68135 61285 90 17441 25786 9 1743 1102 7
2 14 58805 53083 48 14045 6741 12 68241 61285 163 35957 52397 25 14027 6741 11
3 10 58805 53083 61 14045 6741 13 68241 61285 393 35957 52397 34 14027 6741 12
4 21 58805 53083 74 14045 6741 16 68241 61285 425 35957 52397 45 14027 6741 13
5 22 58805 53083 67 14045 6741 15 68241 61285 520 35957 52397 40 14027 6741 13
6 16 58805 53083 82 14045 6741 12 68241 61285 659 35957 52397 44 14027 6741 12
7 15 58805 53083 96 14045 6741 14 68241 61285 2504 35957 52397 33 14027 6741 11
8 12 58805 53083 49 14045 6741 8 68241 61285 914 35957 52397 40 14027 6741 7

1 0.5 17 45559 41340 22 5301 3430 8 68099 61285 83 27655 41340 14 5301 3430 7
2 29 62389 56487 64 17091 9895 18 68241 61285 150 37917 55765 33 16807 9895 17
3 25 62389 56487 84 17091 9895 22 68241 61285 288 37917 55765 52 16807 9895 19
4 42 62389 56487 115 17091 9895 25 68241 61285 325 37917 55765 58 16807 9895 23
5 32 62389 56487 104 17091 9895 21 68241 61285 572 37917 55765 64 16807 9895 20
6 23 62389 56487 109 17091 9895 19 68241 61285 526 37917 55765 59 16807 9895 20
7 17 62389 56487 115 17091 9895 18 68241 61285 738 37917 55765 60 16807 9895 18
8 15 62389 56487 47 17091 9895 9 68241 61285 1198 37917 55765 28 16807 9895 8

1 0.1 27 56371 51118 36 9639 6468 9 68203 61285 96 34049 51118 20 9639 6468 8
2 50 64741 58721 62 21443 14681 25 68241 61285 137 39119 57964 41 21055 14681 21
3 37 64741 58721 83 21443 14681 26 68241 61285 250 39119 57964 53 21055 14681 27
4 58 64741 58721 178 21443 14681 37 68241 61285 358 39119 57964 93 21055 14681 35
5 42 64741 58721 152 21443 14681 45 68241 61285 526 39119 57964 66 21055 14681 45
6 49 64741 58721 127 21443 14681 39 68241 61285 518 39119 57964 71 21055 14681 39
7 38 64741 58721 99 21443 14681 31 68241 61285 468 39119 57964 53 21055 14681 30
8 15 64741 58721 31 21443 14681 11 68241 61285 299 39119 57964 19 21055 14681 10

α = 1, γ = 1
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From Table 1, we make the following observations:

• The results clearly highlight the computational inefficiency of r-HMIPCAC3, as highlighted

by its relatively higher CPU times compared to the other formulations. This is mainly

due to a weak LP relaxation of r-HMIPCAC3, besides the large problem size post-presolve.

• A comparison of the results between r-HMIPCAC1 and r-HMIPCAC2 shows that the latter

speeds up the computation by a factor of 2 to 4 for instances with p “ 7, and by a factor

of 2 to 7 for instances with p “ 10, as highlighted by their relative CPU times. This gain

comes largely from the elimination of a substantially larger proportion of the variables

and constraints post-presolve in r-HMIPCAC2 compared to r-HMIPCAC1.

• The size of the reduced formulation r-HMIPrCAC1 post-presolve is significantly smaller,

resulting in a reduction in its CPU times by a factor of 1.5 to 2, compared to its original

r-HMIPCAC1 formulation.

• The reduced formulation r-HMIPrCAC2 post-presolve has almost the same size as its

original formulation r-HMIPCAC2, hence yielding only marginal additional savings in CPU

times.

• The dual based formulation r-HMIPDF is computationally more efficient than r-HMIPCAC1

and r-HMIPCAC3, but not as efficient as r-HMIPCAC2 and r-HMIPrCAC2.

• Compared to r-HMIPrCAC1, r-HMIPrCAC2 results in savings in CPU time by a factor of

1.5 to 6.

In summary, the results for small instances in Table 1 show that r-HMIPDF , r-HMIPCAC2

and r-HMIPrCAC2 are computationally more efficient formulations, as highlighted by their sig-

nificantly lower CPU times, compared to the rest. Amongst these three, r-HMIPrCAC2 requires

the lowest CPU times for 35 out of the 39 problem instances, and r-HMIPCAC2 requires the

lowest CPU times for the remaining 4 instances. Although CPU time for r-HMIPDF is not the

lowest for any of these 39 instances, it is not significantly worse than the lowest CPU time for

any of these instances.

In Table 2, we present additional computational results using 12 larger problem instances

derived from the AP dataset with 100 and 200 nodes, for the three most efficient formulations,

namely r-HMIPCAC2, r-HMIPrCAC2, and r-HMIPDF , as highlighted above. The discount fac-

tors for collection (α), transshipment (δ), and distribution (γ) are set to 3, 0.75, and 2, respec-

tively. Like the computational results reported in Table 1, the set of p hubs in the existing

hub-and-spoke network for each of these 12 instances is obtained by solving a corresponding

uncapacitated p-hub median problem (Ebery et al., 2000). CPLEX is able to solve all the 12

instances using the r-HMIPDF formulation. However, CPLEX is able to solve only 4 of them

using the r-HMIPCAC2 and r-HMIPrCAC2 formulations, and using CPU times that are up to

an order-of-magnitude larger compared to r-HMIPDF . The remaining 8 instances, indicated

by “Memory” against their CPU times, cannot be solved due to memory limitations of the

hardware used in the experiments.

In the following section, we further exploit the structure of r-HMIPDF , HMIPCAC2 and r-

HMIPrCAC2 using Benders decomposition. Benders decomposition has been successfully applied

to a variety of problems arising in the context of Facility Location (Vatsa and Jayaswal, 2016)
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Table 2: Comparison between dual based and CAC based single level reformulations of r-HMIP using AP dataset

CPLEX
Parameters r-HMIPDF r-HMIPCAC2 r-HMIPrCAC2

|N | p r Gap CPU(s) Gap CPU(s) Gap CPU(s)

100 10 5 0 1,476 0 8,881 0 8,315
6 0 935 0 6,039 0 5,070
7 0 891 0 4,299 0 3,996
8 0 328 0 3,395 0 3,255

15 5 0 6,328 - Memory - Memory
6 0 8,913 - Memory - Memory
7 0 8,092 - Memory - Memory
8 0 6,035 - Memory - Memory

200 10 5 0 21,948 - Memory - Memory
6 0 22,505 - Memory - Memory
7 0 19,190 - Memory - Memory
8 0 6,787 - Memory - Memory

α = 3, δ = 0.75, γ = 2.
“Memory” denotes insufficient memory to solve the problem

and Hub Location (de Camargo et al., 2008, 2009; Contreras et al., 2011a). Since the single

level reformulations of r-HMIP bear similarity with the hub location models, we expect Benders

decomposition to be successful here as well.

5. Benders Decomposition for HMIP

Benders decomposition is a well-known method of partitioning an MIP into an integer master

problem and a linear sub-problem (Benders, 1962). In this section, we present Benders decompo-

sition for the three efficient HMIP formulations: r-HMIPDF , r-HMIPCAC2 and r-HMIPrCAC2.

We also discuss the computational gain from Benders decomposition of r-HMIPrCAC2 relative

to that from the Benders decomposition of r-HMIPCAC2, which is otherwise not possible when

solving the two formulations directly using CPLEX.

5.1. Benders Decomposition of r-HMIPDF

Let Z “ tzk P t0, 1u|řkPH zk “ p ´ ru. For any fixed binary solution z̄ P Z, the resulting

problem in the space of φ, δ and V variables, which we refer to as the primal sub-problem (PS),

can be stated as:

rPSDF s : max
φ,δ,V

ÿ

iPN

ÿ

jPN
φij ´

ÿ

kPH
Vk (17)

s.t. φij ´ δijk ďWijdijkm @i, j P N ;@k,m P H, k “ m (18)

φij ´ δijk ´ δijm ďWijdijkm @i, j P N ;@k,m P H, k ‰ m (19)

Vk ďMk szk @k P H (20)

Vk ě
ÿ

iPN

ÿ

jPN
δijk ´Mkp1´ szkq @k P H (21)

φij unbounded; δijk ě 0;Vk ě 0; @i, j P N ;@k P H (22)

Let χijkk, χijkm (k ‰ m), τk, and ωk be dual variables associated with constraints (18), (19),
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(20), and (21), respectively. The dual of the sub-problem can be stated as follows:

rDSDF s : min
χ,τ ,ω

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
Wijdijkmχijkm

`
ÿ

kPH
Mk szkτk `

ÿ

kPH
Mkp1´ szkqωk (23)

s.t.
ÿ

kPH

ÿ

mPH
χijkm “ 1 @i, j P N (24)

ÿ

mPH
χijkm `

ÿ

mPHztku
χijmk ď ωk @i, j P N ;@k P H (25)

τk ´ ωk ě ´1 @k P H (26)

χijkm, τk, ωk ě 0 @i, j P N ;@k,m P H (27)

The above dual minimization problem is bounded since all the variables in the problem (χijkm,

τk and ωk) are positive. Denoting the set of all extreme points of DSDF by EPDF , the master

problem for r-HMIPDF is as follows:

rMPDF s : max
z,θ

θ (28)

s.t.
ÿ

kPH
zk “ p´ r (29)

θ ď
ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
Wijdijkmsχijkm `

ÿ

kPH
Mksτkzk`

ÿ

kPH
Mkp1´ zkqsωk @psχijkm, sτk, sωkq P EPDF (30)

θ ě 0, zk P t0, 1u @k P H (31)

Solving the master problem with the addition of Benders cut (30) gives the upper bound, while

the sub-problem gives a lower bound to the original problem. The algorithm terminates when

the difference between upper and the best lower bound falls within a pre-specified tolerance ε.

5.2. Benders Decomposition of r-HMIPCAC2

Let Z “ tzk P t0, 1u|řkPH zk “ p ´ ru. For any fixed binary solution z̄ P Z, the resulting

problem in the space of X variables, which we refer to as the primal sub-problem (PS), can be

stated as:

rPSCAC2s : max
X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
WijdijkmXijkm (32)

s.t.
ÿ

kPH

ÿ

mPH
Xijkm “ 1 @ i, j P N (33)

ÿ

mPH
Xijkm `

ÿ

mPHztku
Xijmk ď szk @ i, j P N, k P H (34)

ÿ

pq,sqPEijkm

Xijqs ď 2´ szk ´ szm @ i, j P N, k,m P H (35)

Xijkm ě 0 @ i, j P N, k,m P H (36)
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Associating φ1ij , δ
1
ijk and β1ijkm for the constraints (33), (34) and (35), respectively, we get the

following dual sub-problem:

rDSCAC2s :

min
φ1,λ1,β1

ÿ

iPN

ÿ

jPN
φ1ij `

ÿ

iPN

ÿ

jPN

ÿ

kPH
λ1ijkszk

`
ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
β1ijkmp2´ szk ´ szmq (37)

s.t.
ÿ

pq,sq|dijqsădijkm
β1ijqs ` λ1ijk ` φ1ij ěWijdijkm @ i, j P N, k,m P H, k “ m

(38)
ÿ

pq,sq|dijqsădijkm
β1ijqs ` λ1ijk ` λ1ijm ` φ1ij ěWijdijkm @ i, j P N, k,m P H, k ‰ m

(39)

φ1ij unbounded;β1ijkm, λ
1
ijk ě 0 @ i, j P N, k,m P H

(40)

The above dual minimization problem is bounded since the variables λ1ijk and β1ijkm are positive,

and the constraints (38) and (39) ensure that the free variable φ1ij has a finite lower bound.

Denoting the set of all extreme points of DSCAC2 by EPCAC2, the master problem for r-

HMIPCAC2 is as follows:

rMPCAC2s : max
z,θ

θ (41)

s.t.
ÿ

kPH
zk “ p´ r (42)

θ ď
ÿ

iPN

ÿ

jPN
Ďφ1ij `

ÿ

iPN

ÿ

jPN

ÿ

kPH
Ďλ1ijkzk`

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
Ďβ1ijkmp2´ zk ´ zmq @pĎφ1ij ,Ďλ1ijk,Ďβ1ijkmq P EPCAC2

(43)

θ ě 0, zk P t0, 1u @k P H (44)

Solving the master problem with the addition of Benders cut (43) gives the upper bound, while

the sub-problem gives a lower bound to the original problem. The algorithm terminates when

the difference between upper and the best lower bound falls within a pre-specified toleranceε.

gap.

5.3. Benders Decomposition of r-HMIPrCAC2

Let Z “ tzk P t0, 1u|řkPH zk “ p ´ ru. For any fixed binary solution z̄ P Z, the primal

sub-problem for r-HMIPrCAC2 can be written as:

rPSrCAC2s : max
X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
WijdijkmXijkm (45)

s.t.
ÿ

kPH

ÿ

mPH
Xijkm “ 1 @ i, j P N (46)

ÿ

mPH
Xijkm `

ÿ

mPHztku
Xijmk ď szk @ i, j P N, k P H (47)
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ÿ

pq,sqPEijkm

Xijqs ď 2´ szk ´ szm @ i, j P N, pk,mq P H 1ij (48)

Xijkm ě 0 @ i, j P N, k,m P H (49)

Associating φ2ij , λ
2
ijk and β2ijkm as the dual variables with the constraints (46), (47) and (48),

respectively, we get the following dual sub-problem:

rDSrCAC2s :

min
φ2,λ2,β2

ÿ

iPN

ÿ

jPN
φ2ij `

ÿ

iPN

ÿ

jPN

ÿ

kPH
λ2ijkszk

`
ÿ

iPN

ÿ

jPN

ÿ

pk,mqPH 1ij
β2ijkmp2´ szk ´ szmq (50)

s.t.
ÿ

pq,sqPB1
ijkm

β2ijqs ` λ2ijk ` φ2ij ěWijdijkm @ i, j P N, k,m P H, k “ m (51)

ÿ

pq,sqPB1
ijkm

β2ijqs ` λ2ijk ` λ2ijm ` φ2ij ěWijdijkm @ i, j P N, k,m P H, k ‰ m (52)

β2ijkm ě 0 @ i, j P N, pk,mq P H 1ij (53)

φ2ij unbounded;λ2ijk ě 0 @ i, j P N, k P H (54)

where B1
ijkm= tpq, sq|dijqs ă dijkm; @pq, sq P H 1iju.

The above dual minimization sub-problem is bounded since the variables λ2ijk and β2ijkm are

positive, and the constraints (51) and (52) ensure that the free variable φ2ij has a finite lower

bound. Denoting the set of all extreme points of DSrCAC2 by EPrCAC2, the master problem

for r-HMIPrCAC2 is as follows:

rMPrCAC2s : max
z,θ

θ (55)

s.t.
ÿ

kPH
zk “ p´ r (56)

θ ď
ÿ

iPN

ÿ

jPN
Ďφ2ij `

ÿ

iPN

ÿ

jPN

ÿ

kPH
Ďλ2ijkzk`

ÿ

iPN

ÿ

jPN

ÿ

pk,mqPB1
ijkm

Ďβ2ijkmp2´ zk ´ zmq @pĎφ2ij ,Ďλ2ijk,Ďβ2ijkmq P EPrCAC2

(57)

θ ě 0, zk P t0, 1u @k P H
(58)

Solving the master problem with the addition of Benders cut (57) gives the upper bound, while

the sub-problem gives a lower bound to the original problem. The algorithm terminates when

the difference between upper and the best lower bound falls within a pre-specified tolerance ε.

Remark: As evident from the computational results in Table 1, rCAC2 does not enjoy

significant computational advantage over CAC2 when solving the resulting single-level r-HMIP

formulations with these CACs directly using CPLEX since both these models are approximately

the same size (exactly the same number of variables and approximately the same number of
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constraints) after the presolve operation. However, when the single level r-HMIP is decomposed

into a master problem consisting of only the binary variables (zk) and a sub-problem consisting

of only the continuous variables (Xijkm), presolve loses its effect. Nonetheless, with Benders

decomposition, the dual sub-problem (50)-(54) resulting from the use of rCAC2 has fewer vari-

ables (βijkm) compared to the dual sub-problem (37)-(40) resulting from the use of CAC2. With

|N | nodes and p hubs, the use of rCAC2 and CAC2 result in |N |2pp2 ` pq{2 and |N |2p2 βijkm
variables, respectively. For example, a problem instance with |N | “ 200 and p “ 10 results

in 2,200,000 βijkm variables with the use of rCAC2, which is otherwise 4,000,000 with the use

of CAC2. Thus, rCAC2 aids in the reduction in the size of the dual sub-problem by a factor

of 0.5 ` p0.5{pq, which tends to 0.5 as p becomes large. We expect Benders decomposition to

benefit from this reduction in the size of the dual sub-problem with rCAC2, and provide a

computational advantage over CAC2.

5.4. Computational Results

We now repeat the computational experiments, using the same 12 instances as in Table 2,

for the Benders decomposition of the three formulations, namely r-HMIPDF , r-HMIPCAC2,

and r-HMIPrCAC2. For ease of comparison of Benders decomposition with the direct solu-

tion using CPLEX, we also present the computational results already reported in Table 2.

Recall that r-HMIPCAC2 and r-HMIPrCAC2 performed significantly worse than r-HMIPDF
when solved directly using CPLEX. In that case, CPLEX was able to solve all the 12 in-

stances using r-HMIPDF . On the other hand, it could solve only 4 of them using r-HMIPCAC2

and r-HMIPrCAC2, while the remaining 8 instances could not be solved due to memory lim-

itations of the hardware used in the experiments. With Benders decomposition, the perfor-

mances of r-HMIPCAC2 and r-HMIPrCAC2 improve drastically, while that of r-HMIPDF be-

comes worse. With Benders decomposition, we are now able to solve all the 12 instances using

the r-HMIPrCAC2 formulation within the 10 hour (36,000 seconds) CPU time limit. On the

other hand, we can now solve only 4 (of the 12) instances using r-HMIPDF , while the remaining

8 instances cannot be solved due to memory limitations of the hardware.

Finally, the results highlight that only two formulations, namely r-HMIPDF and Benders

decomposition of r-HMIPrCAC2, could solve all the 12 large instances of the problem. Further,

for the 100-node instances, r-HMIPDF outperforms (in terms of CPU time) the Benders de-

composition of r-HMIPrCAC2 on 5 out of 8 problem instances. On the remaining 3 instances,

Benders decomposition of r-HMIPrCAC2 performs better. Whereas for the 200-node problem

instances, Benders decomposition outperforms r-HMIPDF by a factor of 4-8. Hence, r-HMIPDF
performance better for smaller instances of the problem, while for larger instances, Benders de-

composition of r-HMIPrCAC2 is clearly better. This observation is consistent with the remarks

made in the previous subsection regarding the computational advantage of Benders decompo-

sition of r-HMIPrCAC2 formulation.

6. Hub Protection Problem

In hub protection problems, the defender seeks to protect/fortify a subset of hubs against

interdiction. In this section, we study a u-hub median protection problem (u-HMPP) in a

multiple allocation hub-and-spoke network with p existing hubs. Figure 2 shows a schematic

representation of u-HMPP studied in this paper. The problem is modeled as a Stackelberg

game between a defender and an attacker. The attacker seeks to interdict a subset of r hubs
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Table 3: Comparison between Benders decomposition of dual based and CAC based single level reformulations
of r-HMIP using AP dataset

CPLEX Benders Decomposition
Parameters r-HMIPDF r-HMIPCAC2 r-HMIPrCAC2 r-HMIPDF r-HMIPCAC2 r-HMIPrCAC2

|N | p r Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s) Gap CPU(s)

100 10 5 0 1,476 0 8,881 0 8,315 0 2,334 0 1,212 0 1,100
6 0 935 0 6,039 0 5,070 0 1,978 0 1,290 0 1,034
7 0 891 0 4,299 0 3,996 0 1,175 0 562 0 444
8 0 328 0 3,395 0 3,255 0 195 0 310 0 233

15 5 0 6,328 - Memory - Memory - Memory 87% 36,000 0 21,080
6 0 8,913 - Memory - Memory - Memory 86% 36,000 0 24,091
7 0 8,092 - Memory - Memory - Memory 94% 36,000 0 20,606
8 0 6,035 - Memory - Memory - Memory 85% 36,000 0 14,956

200 10 5 0 21,948 - Memory - Memory - Memory 42% 36,000 0 5,779
6 0 22,505 - Memory - Memory - Memory 26% 36,000 0 3,328
7 0 19,190 - Memory - Memory - Memory 0 18,572 0 2,274
8 0 6,787 - Memory - Memory - Memory 0 8,109 0 1,180

α = 3, δ = 0.75, γ = 2
“Memory” denotes insufficient memory to solve the problem

from an existing set H of p hubs with the objective to maximize the defender’s optimal rout-

ing/transportation cost through the p´r surviving hubs in the network post-interdiction, which

is modeled as r-HMIP2L, as studied extensively in Section 3 and 4. The defender, in anticipa-

tion of the attacker’s action, seeks to protect a subset of u hubs from the existing set of p hubs

in the network such that its post-interdiction optimal routing cost through the p´ r surviving

hubs, which the attacker intends to maximize, is as small as possible.

While protection problems have been widely studied in the context of facility location

(Church and Scaparra, 2007b; Scaparra and Church, 2008a,b; Aksen et al., 2010; Scaparra

and Church, 2012; Aksen and Aras, 2012; Aksen et al., 2013), they have received little attention

in the context of hub-and-spoke networks, with Lei (2013) and Ghaffarinasab and Atayi (2017),

to the best of our knowledge, being the only two papers in the area. Lei (2013) presented a

trilevel MIP formulation for multiple allocation u-HMPP, which is reduced to a bilevel MIP

using CAC1. However, no solution method or computational results were reported. Ghaffari-

nasab and Atayi (2017) solved large instances of the u-HMPP using an implicit enumeration

procedure. In this section, we study the same trilevel MIP formulation as Lei (2013). However,

we reduce the trilevel formulation to bilevel using rCAC2, which has been shown to perform

the best among the different CACs discussed in Section 3 and Section 4 above. This allows us

to solve large instances of u-HMPP using an efficient algorithm based on implicit enumeration

and Benders decomposition, as described in the following subsection.
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Constrained
optimization
problem

Constrained
optimization
problem

Objective: Minimize routing cost after interdiction

Objective: Maximize the defender’s routing cost

Decision: Which r hubs to interdict out of the remaining p−u unprotected hubs?

Decision: How to route the flow through the remaining hubs?

Variable type: Binary

Objective: Minimize the attacker’s interdiction cost

Variable type: Continuous

Level 2: Attacker’s problem (Hub interdiction)

Decision: Which u hubs to protect? 

Variable type: Binary

Level 1: Defender’s problem (Hub protection)

Level 3: Defender’s problem (Routing problem)

Figure 2: Hub protection problem as a tri-level MIP

6.1. Model Formulation

To formulate u-HMPP, we define yk = 1 if hub k is protected, 0 otherwise. With this new

set of variables, the trilevel formulation of u-HMPP can be stated as follows:

ru-HMPP3Ls : min
y

T1 (59)

s.t.
ÿ

kPH
yk “ u (60)

yk P t0, 1u (61)

T1 “ max
z
T2 (62)

s.t.(2), (3)

yk ď zk @ k P H (63)

T2 “ max
x

WijDijkmXijkm (64)

(5)´ (7)

The defender’s problem of protecting a subset of u out of an existing set of p hubs is given

by (59)-(61) at level 1. He takes this decision in anticipation of the attacker’s decision, which

is modeled as a bilevel r-HMIP, as described in Section 3, with the additional constraint (63)

to ensure that a protected hub cannot be attacked. For feasibility, we ensure that u ` r ď p.

As discussed in Section 3, the lower bilevel r-HMIP can be reduced to single level using CACs.

Using the most efficient set of CACs, namely rCAC2, u-HMPP3L can be restated as the following

bilevel program:

ru-HMPP2Ls : min
y

T1 (65)

s.t.(60), (61)
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T1 “ max
z,X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH
WijdijkmXijkm (66)

s.t.(5)´ (7), (63), r-CAC2

6.2. Implicit Enumeration Algorithm

We present an implicit enumeration algorithm for solving u-HMPP, inspired by the solution

method proposed by Scaparra and Church (2008a) for r-interdiction median problem with

fortification (r-IMF). The algorithm is based on the proposition that the optimal solution to

r-IMF will necessarily contain at least one of the facilities interdicted in r-interdiction median

problem (r-IMP) since any other combination of protected facilities will not prevent the worst

scenario for the defender.

The implicit enumeration algorithm for u-HMPP is described as follows. At the root node

of the search tree, the algorithm solves an r-HMIP, yielding r interdicted hubs. The root node

is then branched into r children nodes, each corresponding to the protection of a hub k (by

setting yk “ 1) out of the r interdicted hubs. At each of these r nodes, it solves a conditional

hub interdiction problem (CHIP), which is an HMIP with the restriction that the protected

hub k cannot be interdicted (imposed using constraint set (63)). The solution to each of these

CHIPs gives r interdicted hubs. Each of these nodes is, in turn, branched into r children nodes,

each corresponding to the protection of a hub k (by setting yk “ 1) out of the r interdicted

hubs, in addition to the hubs protected at its parent node. This procedure is repeated until

the number of protected hubs on the path starting from the root node to the current node is u.

Any node at which u hubs are protected is called a leaf node. When each of the paths from the

root node terminates in a leaf node, then the node with the lowest objective function value to

its corresponding CHIP provides the solution to u-HMPP. If at any stage, the algorithm visits

a node correspondng to a set of protected hubs, which is the same as that corresponding to

some other already visited node, then the algorithm skips that node, since CHIPs at both the

nodes are the same. At each node in the search tree, HMIP/CHIP is reduced to a single level

MIP using rCAC2, which is solved using Benders decomposition.

To summarize the above procedure, we use :y and :z to denote the optimal solution vector to

the protection and interdiction variables, respectively. Further, :θ denotes the optimal objective

function value to u-HMPP. Let r0 denote the root node of the search tree, and S denote the set

of nodes in the tree to be visited. We define the following two sets associated with each node n:

Cn is the set of candidate hubs to be protected in the subsequent nodes on the subpath starting

from node n; Fn is the set of hubs protected on the path from root to node n. We also define a

set F , which stores the set of protected hubs at all the nodes visited by the algorithm.

We use CHIP(Fn) to denote CHIP with the additional restriction that the hubs in Fn cannot

be interdicted. Using the above notations, the implicit enumeration procedure can be outlined

in Algorithm 1.
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Algorithm 1 Implicit Enumeration

1: procedure Implicit Enumeration

2: F Ð φ

3: Fr0 Ð φ

4: :yk Ð 0 @k P H.

5: Solve CHIP(Fr0). ẑ Ð tk| zk “ 0u; θ̂ Ð obj. fun. value of CHIP(Fr0)

6: :θ Ð θ̂; Cr0 = tk| ẑk “ 0u; S = tr0u
7: while S ‰ φ do

8: select n P S
9: while Cn ‰ φ do

10: Select k P Cn
11: Cn Ð Cnztku
12: Generate node n1 with Fn1 = Fn Y tku
13: while Fn1 R F do

14: F “ F Y tFn1u
15: Solve CHIP(Fn1). ẑ Ð tk| zk “ 0u; θ̂ Ð obj. fun. value of CHIP(Fn)

16: if |Fn1 | “ q then

17: if θ̂ ă :θ then

18: :z Ð ẑ; :θ Ð θ̂

19: for k P H do

20: if k P Fn1 then

21: :yk = 1

22: else :yk = 0

23: end if

24: end for

25: end if

26: else Cn1 “ tk| ẑk “ 0u; S “ S Y tn1u
27: end if

28: end while

29: end while

30: end whilereturn :θ, :y, :z
31: end procedure

The proposed implicit enumeration procedure examines r0 ` r1 ` r2 ` .... ` ru = rpu`1q´1
r´1

nodes, as opposed to
`
p
q

˘
CHIPs in complete enumeration of the set of q protected hubs. To speed

up the implicit enumeration algorithm, we next explore ways to solve HIPs/CHIPs efficiently.

Remark: Since the feasible region of the optimization problem at any child node is a strict

subset of the corresponding feasible region of its parent node, the benders cuts generated in

solving the parent node remains valid for its children also. Therefore, in the implicit enumeration

algorithm, we retain those benders cuts of the parent nodes in each of their children nodes

to ensure faster convergence of the corresponding optimization problem. This reduces the

computational time for u-HMPP problem instances significantly.

6.3. Computational Results

Table 4 provides a comparison of the computational performance of the implicit enumeration

algorithm versus complete enumeration for 12 different problem instances derived from AP

dataset by setting the parameters as: N P t50, 100u, p P t10u, r P t5, 6, 7u, u P t1, 2u. The
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discount factors are set to: α “ 3, δ “ 0.75, γ “ 2. The results show that implicit enumeration

algorithm is much faster, providing a reduction of 43% - 85% in CPU times, compared to

complete enumeration.

Table 4: Computational results for hub protection problems with AP datasets

Complete Enumeration Implicit Enumeration % Reduction
|N | p r u CPU(s) CPU(s) in CPU Time

50 10 5 1 845 313 63
5 2 2,922 485 84
6 1 656 312 53
6 2 2,039 689 67
7 1 413 210 50
7 2 1,320 485 64

100 10 5 1 3,820 1,454 61
5 2 13,176 2,063 85
6 1 3,103 1,320 58
6 2 8,908 1,919 79
7 1 1,956 1,119 43
7 2 5,356 1,955 64

Min. 413 210 43
Avg. 3,710 1027 64
Max. 13,176 2063 85

α “ 3, δ “ 0.75, γ “ 2

7. Conclusion

In this paper, we studied multiple allocation r-HMIP and multiple allocation u-HMPP for

hub-and-spoke networks by formulating them as bilevel and trilevel MIP problems, respectively.

For the bilevel r-HMIP, we explored two alternate ways to reduce it to a single-level optimization

problem. The first approach uses the dual formulation of the lower level routing problem to

reduce it to single-level, while the second approach exploits the structure of the solution to the

lower level problem using CACs. We studied alternate forms of CACs, the dominance relation

among them, and their computational performances. The results indicate that the best among

our proposed alternate sets of CACs provides a computational advantage (in terms of reduced

CPU times) by a factor of 7 compared to the set of CACs proposed in the literature. We

further provided reduced versions of the alternate sets of CACs, one of which in conjunction

with Benders decomposition was able to solve all the 12 large instances (with 100 and 200

nodes) of r-HMIP to optimality within the given CPU time limit (of 10 hours), and was also

significantly faster than the dual based formulation for very large instances (with 200 nodes).

The computational efficiency gained for r-HMIP by using CACs and Benders decomposition

allowed us to further solve large instances of an otherwise intractable u-HMPP.

The current work opens up a number of exciting possibilities for future research. One of

the natural extensions of the problems studied in this paper is the single allocation versions

of r-HMIP and u-HMPP, which are more challenging to solve than their multiple allocation

counterparts. The main challenge in solving the single allocation versions arises from the fact

that the lower level problem in r-HMIP is an MIP, which eliminates the possibility of reducing

it to single level using the dual method. Further, the CACs presented for multiple allocation

r-HMIP are not directly applicable to its single allocation counterpart since the flows between
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any O-D pair pi, jq in this case need not necessarily be routed through the least cost avail-

able path due to the restriction that any node should be assigned to a single hub. Another

interesting extension of our study is to consider the possibility of interdiction at the design of

the hub network itself. As discussed in Section 2, Parvaresh et al. (2013, 2014) are the only

two papers to our knowledge to have studied this problem. However, both these papers use

heuristic based solution approaches. We see exact solution approaches for this problem as an

interesting research avenue. Yet another interesting extension is to incorporate uncertainties

in the problem parameters (like demand, etc.). All these problems can further be extended to

their capacitated versions.
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