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Abstract
Optimization of Locomotive Management and Fuel Consumption in Rail

Freight Transport

Huaining Tian, Ph.D.

Concordia University, 2017

For the enormous capital investment and high operation expense of locomotives, the

locomotive management/assignment and fuel consumption are two of the most important

areas for railway industry, especially in freight train transportation.

Several research works have been done for the Locomotive Assignment Problem (LAP),

including exact mathematics models, approximate dynamic programming and heuristics.

These previously published optimization works suffer from either scalability or solution

accuracy issues. In addition, each of the optimization models lacks part of the constraints

that are necessary in real-world locomotive operation, e.g., maintenance/shop constraints

or consist busting avoidance. Furthermore, there are rarely research works for the

reduction of total train energy consumption on the locomotive assignment level.

The thesis is organized around three main contributions. Firstly we propose a consist

travel plan based LAP optimization model, which includes all the required meaningful

constraints and which can efficiently be solved using large scale optimization techniques,

namely column generation (CG) decomposition. Our LAP model uses the number of

consist travel plans to evaluate the occurrence of consist busting.

In addition, a new column generation acceleration architecture is developed, that allows

the subproblem, i.e., column generator to create multiple columns in each iteration, with

each column being an optimal solution for a reduced sub-network. This new CG architecture

greatly reduces the computational time comparing to our original LAP model.

For train fuel consumption, we derive, linearize and integrate a train fuel consumption

model into our LAP model. To avoid potential train collision by train rescheduling that the

new model requires, I establish a conflict-free pre-process to assign each train reasonable

time windows. The new LAP-fuel consumption model works fine for the optimization of the

train energy exhaustion on the locomotive assignment level.

For the optimization models above, the numerical results are conducted on the railway

network infrastructure of Canada Pacific Railway (CPR), with up to 1,750 trains and 9 types

of locomotives over a two-week time period in the entire CPR railway network.
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Chapter 1

Introduction

1.1 Background and Motivation

Railway industry transports goods and/or passengers by trains over tracks. Nowadays

railroad transportation becomes a safe, high energy-efficient, and environment-friendly

means of conveyance, especially for bulk goods [25].

1.1.1 Railway Industry in North America

The railway industry in North America has been developed over almost 200 years [1].

Nowadays, the railway transportation still plays an important role in modern logistic

system and the economy in both United States and Canada, especially for freight train

service. Demand for freight trains will continue to increase significantly in the future: by

year 2045 from 2015, the goods transported by freight rail services is expected to increase

by 24% by weight or 82% by value [7].

In Canada, 75% of ground-transported goods are by railway in tonne-miles [2]. There

are two Class I transcontinental railways: Canadian National Railway (CN) and Canadian

Pacific Railway (CPR), which are also two of the most efficient and profitable railways in

North America. From the annual report 2016 from Transport Canada [8], Class I railway

carriers operate 2,700 locomotives running with 51,600 freight cars over 45,199

route-kilometers (km) of track. Most of the rails and equipments belongs to CN and CPR.

For the railway companies, the energy expense is a tremendous part of the operation.

Based on CPR Annual Report 2016 [6], fuel expense in 2016 is $567 million, which is 15%

of the total annual operation expense for CPR. Suppose the fuel price raises in the future

as it did in the past years, the energy expense would be even more conspicuous, e.g., from

the same document, in 2014, the fuel expense of CPR was almost doubled to $1,048 million
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(24% of the total operation expense).

Depending on the jurisdiction, the railway companies face different challenges, e.g., in

Europe the just-in-time operation is considered to be the most important criterion to manage

passenger trains. On the other hand, for North American railway companies, the scheduling

of freight trains to meet customer demand is considered a more important challenge. In

general, the freight trains have to share the railway network with passenger trains. In North

America, freight trains have priority over passenger trains.

1.1.2 Railway Challenges

Although rail transportation has many advantages and been developed for long time, it

still has some disadvantages. The main drawback for railway industry is that it is

capital-intensive, including not only the construction of rail tracks, but also the investment

on the purchase (or lease) & maintenance of locomotives and cars. For example purchase of

a new locomotive means a substantial amount of capital investment (around $5 Million)

without instant profit. In addition, these train/locomotive fuel consumption listed in

previous section is also a high expense. These disadvantages lead to the main purpose of

this thesis: optimization of locomotive management and fuel consumption in freight train

transportation.

This thesis focuses on freight trains over passenger trains because of their different

characteristics. The configurations of freight trains, which includes multiple, different types

of locomotives with full or empty cars, are more complex than passenger trains. A

passenger train usually has only one or two locomotives of at most two types, with two

types of first-class cars and also two types of second-class cars. For the limited types of

these equipments, usually we can solve the assignment problem of both locomotives and

cars to passenger trains within one problem, but for freight trains they are two separated

assignment problems. Even only considering the configuration and assignment of

locomotives for freight trains, the problem is more complex. A freight train can be led by

from one to six locomotives, with nine different types, that means the potential number of

configurations will be up to 96.

The operation of passenger trains usually is cyclic and more time-sensitive so it prefers

a fixed time schedule, whereas freight trains can be operated with a flexible schedule within

reasonable time windows. That leads to the potential to adjust the speed of trains, so to

reduce the fuel consumption. In Section 1.2 we will provide details of train rescheduling with

time windows.

In addition, in freight transportation the flow of each type of good usually is only one

2



direction. For example, in Canada, the grain or potash is only transported from central area

to the coasts, the imported Asian cars are only from West coast to the East area. Since in

most cases, the freight cars for each type of goods are unique, they have to be transferred

back empty to their original position for being reused. Backward trains of empty cars need

much less locomotive power than the full onward ones. It is obvious that using the same

configuration of locomotives is a waste of locomotive usage. However, the locomotives of

extra unused power can be reassigned to other trains for more efficient utilization, so that

the total number of required locomotives to satisfy the given trains’ requirement will be

reduced. The locomotive assignment will obtain additional benefit if we can reschedule some

trains. For example, for an outbound train A, the locomotives it needs have to be relocated

from other station to guarantee its schedule. Now we can just delay it until inbound train B

comes and re-assign its locomotives to train A. In conclusion, comparing to the time-sensitive

passenger train operation with limited train configurations, the locomotive management for

freight trains has more flexibility (as well as additional complexity), and the optimization

has the potential to gain enormous benefit.

1.2 Problem Statement

1.2.1 Railway Generalities

Before discussing the detail of the locomotive management and fuel consumption problems,

we introduce some generalities that will be used throughout the thesis.

A train is composed of rail cars which are pulled by locomotives. A freight railway

company usually has several types of locomotives with different attributes: horsepower,

tractive effort, brake type, axle number, fuel consumption rate, operation cost, etc. Usually

more than one locomotive is used to pull a train. This group of locomotives, which works

together to pull a train, is called consist.

As a result of the routing and scheduling process, a locomotive can be active (i.e., pulling

a train), deadheading or deadhauling. Deadheading locomotives operate under their own

power but do not pull trains. Deadhauling locomotives are not pulling and their engines are

not operating. We will not distinguish deadheading from deadhauling locomotives. Because

the weight of one locomotive is only around 2% of the total weight of the train, so the

effect whether its engine on or off on the fuel consumption is very small. The deadheading

operation is profitless but is an important method to relocate the locomotives that makes

the usage/arrangement of locomotives more flexible.

In locomotive management, there is a time-consuming process called consist busting.
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Consist busting means disassembling the consist of an inbound train into stand alone

locomotives and reassigning them to several outbound trains. Consist busting means

additional labor & operational cost and time requirements. It also reduces the robustness

of the train schedule because it allows an outbound train to get locomotives from multiple

inbound trains. If any of the source inbound trains is delayed, the outbound train has to be

delayed as well. So consist busting should be avoided as much as possible.

The locomotives should undergo regular maintenance examinations in a shop station,

typically every three months. A locomotive due to maintenance in the planning period

under study is called critical locomotive. In order to follow the US legislation, a locomotive

which misses its regular maintenance has to be turned off and towed to the shop. To balance

the early shopping cost and the risk of late/failed shopping process is another issue for the

locomotive management.

The locomotive consumes fuel in operation for the train schedule. The fuel consumption

rate for a locomotive is affected by the engine type and horsepower output. Since the speed

of train depends on the power of its consist, its characteristics, e.g., weight, number of cars,

etc., and geographical factors, the total fuel consumption of a train on certain segments of

rail is a complex function of all the influential factors.

1.2.2 Locomotive Assignment Problem

The locomotive assignment problem (LAP) deals with the fleet of locomotives and the

assignment of those locomotives to scheduled trains. The optimization of LAP is to

minimize the total number and/or cost of assigning enough locomotives to given trains

while all the technical, industrial and business constraints are satisfied. Typical constraints

are horsepower, locomotive maintenance, minimum number for safety, etc..

Usually for LAP, the given train schedule is fixed and untouchable. Yet it will be beneficial

if we can change some of the train schedule, e.g., delay train A for an acceptable time to

wait train B which will provide its locomotive(s) instead of deadhead extra locomotives from

remote. However, the train schedule is less flexible and more complex than road and air

transportation for its hard constraints, e.g., scheduled trains meeting over given sidings. So

the potential train rescheduling algorithm should not either interfere too much with other

trains operation or change the train meet events.

1.2.3 Locomotive/Train Fuel Consumption

The flexibility of train rescheduling benefits not only locomotive assignment, but also train

energy consumption by speed adjustment. That brings another optimization: train fuel
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consumption problem, i.e., a mathematical model to minimize fuel consumption by

controlling the train schedule and/or speed, which will also interact with the locomotive

assignment problem. The key point is to find a precise and linearizable train fuel

consumption model and integrate it to LAP model.

This thesis targets locomotive/train management in freight train area, including

locomotive assignment problem and the energy consumption for given train schedule. For

LAP we first propose an optimization model (marked as LAP-Orig) with CG

decomposition that works with all needed constraints, e.g., locomotive maintenance

constraint, and with consideration of consist busting avoidance. Furthermore, we develop a

new CG architecture that allows pricing problem to generate multiple potential optimal

results for each iteration, and extend LAP-Orig into multi-column LAP model (marked as

LAP-Multi-CG). Finally we create a collision-free pre-processing algorithm for train

rescheduling so to relax given train schedule, linearize a train fuel consumption model, and

integrate them to LAP model for train/locomotive energy optimization model (marked as

LAP-Fuel).

1.3 State of Art

In this section, we survey the most significant works on LAP, the acceleration for CG

decomposition, LAP with train re-scheduling and fuel consumption model. The full details

of literature review are available in the corresponding literature review section of Chapter

2, 3 and 4.

1.3.1 Locomotive Assignment

For LAP model, Ahuja et al. [9] developed a mixed integer linear program (MILP) model

of LAP in the for CSX Transportation, one of the major freight railway companies in US.

They used similar objective and network structure as Ziarati et al. [55], considering most

of the general constraints, but excluding the locomotive maintenance process. To solve the

scalability issue, a neighborhood search heuristic was proposed for large scale scenarios. In

addition, the consist busting issue was not considered by their model.

The model of Ahuja et al. [9] suffered from high rate of consist busting, so

Vaidyanathan et al. [54] developed a consist based LAP model. The model used a

pre-processing algorithm to generate locomotive consist configurations for the main model.

Their model reduced consist busting rate but did not consider maintenance process. In

addition, it still had potential scalability issue, i.e., larger data set scenarios would need
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much more consist configurations than the pre-processing algorithm can develop (which

would be solved by CG decomposition technique, e.g., in our LAP model).

Cacchiani et al. [17] provided two integer linear programming (ILP) models for a similar

problem: train unit assignment problem. The models combined cars and locomotive for

certain trips, but without the maintenance constraint.

Cordeau et al. [23] proposed an exact model for locomotive and car assignment problem

for passenger trains. The model, which was an extension of their previous work [22], covered

all general constraints, e.g., maintenance constraint, and also considered the consist busting

(they call it switching). This model has the potential to be converted to general locomotive

assignment problem for freight trains, but firstly it has a limited number of train consist

configurations as well as train sequences, secondly it has one maintenance center and assumes

that during the scheduled time each equipment has to be maintained at least once. In freight

trains the situation is more complex (details in Chapter 2).

For CG decomposition technique, there exist some strategies in different stages to

accelerate computational time and/or the convergence rate. Desaulniers et al. [24]

decomposed large problem into small subproblems, and merge the solutions after to reduce

the usage of time and memory. Sadykov et al. [50] prepared a good-enough initial solution

in problem pre-process stage. Chen et al. [19] pre-created the columns pool by

problem-specific knowledge. There are schemes allow a pricing problem model to return

multiple columns with negative reduced cost, e.g., Goffin et al. [30] gained efficiency from

adding multiple cuts central cuts simultaneously.

The general LAP deals with given and fixed train schedules. Obviously if adjustment of

train schedule is allowed, it will have more flexibility and potential efficiency. Fügenschuh

et al. [26] establish a model for locomotive and car cycle scheduling problem with time

window. It allows train delay within given time window but ignore locomotive maintenance.

In addition, there is no explanation for how to determine the time length of window and

why.

1.3.2 Train Energy Consumption

Train fuel consumption problem has been investigated for a long time, and different models

are established (details in Section 4.5). Based on these previous works, we can calculate

the fuel consumption of given train with parameters, e.g., weight, type, speed, distance,

etc.. And the train speed is directly determined by the output power of the locomotives. So

based on the discussion in Section 1.2.2 & 1.2.3, for a freight train, since other parameters

are fixed by the schedule, its fuel consumption can be controlled by the adjustment of
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speed via the adjustment of locomotive power assigned and rescheduling. If a LAP model

can cooperate with a train fuel consumption model, it is possible to optimize the total

train energy consumption through locomotive assignment and speed control. But almost no

research work has been done in this particular area.

1.4 Thesis Contributions

The contributions of this thesis have been published in the following papers, each in one

chapter. Here below is a brief description:

Contribution #1 (published [34] & submitted [37]): we propose a consist travel plan based

LAP model with CG decomposition. The model considers constraints needed in

train/locomotive operation including locomotive maintenance constraint and consist

busting avoidance. The key characteristics of our LAP model are that firstly the

model uses the number of consist travel plans to evaluate consist busting occurrence,

and secondly the flow conservation constraint can change locomotive flow status/type

from critical to regular. The model can solve given 2-week train schedule including

1,750 trains in affordable time.

Contribution #2 (published [33] & submitted [52]): we establish a new Column Generation

scheme to generate more than one consist travel plan configuration in each iteration.

Each column, i.e., consist travel plan configuration is an optimal solution for a reduced

sub-network that extracted in the pre-processing stage. Comparing to our previous

LAP model, the new multi-CG LAP model saves 60-93% of computational time without

reduce the quality of final solution. The new CG scheme has the potential to expand

to some general CG formats of network flow problems.

Contribution #3 (submitted [53]): in this paper, we develop a collision-free algorithm for

train schedule pre-processing, and corresponding constraints in LAP model, to relax

train schedule in the calculated time windows for LAP model. Then the LAP model is

integrated with a linearized trian/locomotive fuel consumption model to optimize the

total locomotive energy consumption in given train schedule.

1.5 Organization of the Thesis

The thesis is organized into five chapters. Chapter 1 provides the basic background

information of railway industry, the statement of the main research problem, some latest
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literature review and a brief list of our contributories. The next three chapters, each of

which contains one major paper we published or submitted: Chapter 2 for LAP model with

maintenance constraints and consist busting avoidance; Chapter 3 for our CG acceleration

algorithm, i.e., Multi-CG architecture; Chapter 4 for the optimization of train/locomotive

energy consumption on LAP and train scheduling level. Finally Chapter 5 draws the

general conclusion of this PhD project and provides suggestions of future research works.
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Chapter 2

A New Model for Locomotive

Assignment under Consist Busting

B. Jaumard, H. Tian, and P. Finnie. submitted for publication, 2017. An extended abstract

of this paper has been published in Joint Rail Conference (JRC), 2014 [34].

2.1 Introduction

Freight train transportation is highly investigated with high energy efficiency and safety

advantage. This paper focuses on one of the key elements of railway operation problems:

the locomotive assignment problem (LAP), which assign adequate power of locomotives to

scheduled freight trains, with the proper constraints and rules. The LAP model optimizes

the number and/or cost of locomotives to given train schedule while all the technical and

business constraints are satisfied.

First, some basic terminologies, rules and constraints used in the description of LAP are

recalled. A freight railway company usually has several types of locomotives with different

attributes. A locomotive can be active (i.e., pulling a train), deadheading or idling.

Deadheading locomotives operate under their own power but do not pull trains. Usually

more than one locomotive are used to pull a train. Those locomotives which are grouped

together to pull a train are called consist. In locomotive management, there is a

time-consuming process called consist busting, i.e., disassembling the consist of an inbound

train into stand alone locomotives and reassigning them to several outbound trains.

Consist-busting means additional labor & operational cost and time requirements. It also

reduces the robustness of the train schedule because it allows an outbound train to get

locomotives from multiple inbound trains. If any of the source inbound trains is delayed,

the outbound train has to be delayed as well. So consist busting should be avoided as much
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as possible.

Several trains, which are pulled by the same consist, build a consist travel plan without

consist busting. The locomotives should undergo regular maintenance examinations in a

shop station. The locomotive due to maintenance in the planning period under study is

called critical. In order to follow the US legislation, a locomotive which misses its regular

maintenance has to be turned off and towed to the shop. The maintenance rule is based

on either calendar days or operation mileage. In this paper we take the time rule that the

locomotive should be maintained in a shop every 90 days, which is the usual constraint in

North America.

Several mathematical models and solution methodologies have been proposed for

locomotive assignment. Most of them based on a multi-commodity network flow

formulation and are either locomotive-based or consist-based. Both compact MILP (mixed

integer linear program) or column generation formulations were investigated for exact

solutions. Some other research studies investigated heuristics and approximate approaches

to overcome the computational complexities. In the next section the details of those

solution algorithms are provided.

After the literature review section, the paper recalls the statement of LAP, and provides

the details of our consist travel plan base model. We next present the solution scheme of

the proposed model, i.e., column generation decomposition algorithm that includes a consist

travel plan generator, and consequently allows the consideration of all possible consist travel

plans through an implicit enumeration. Numerical results are based on CPR’s data sets

spanning several time periods over the entire CPR network, from Vancouver to Montreal,

including the U.S. railway component. Conclusions are drawn in the last section.

2.2 Literature Review

2.2.1 LAP with Exact Model

Ziarati et al. [55], [56]

Ziarati et al. [55] focuses on LAP with different types of locomotives. The LAP problem is

reformulated as an integer multi-commodity time-space network flow problem, with a

Column Generation (CG) decomposition. Each node is associated with a railway station

and a particular time, the arcs represent activities such as waiting periods, train travel

between two stations (usually the origin and the destination) or train maintenance, and

commodities are the locomotives. The model comes with the general constraints including

horsepower/tonnage, locomotive remotely transferring and maintenance constraints, but
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without the consideration of consist busting process and its cost. The model also allows the

outpost process (which is the duty for a locomotive in a branch of railway that perform

local pick-up and delivery process). The objective is to minimize the total cost of the

locomotive assignment to the trains, i.e., the locomotive schedule.

The test infrastructure contains 26 stations, 164 outposts and 18 shops, which comes

from Canadian National North America. The model can handle 1,249 locomotives of 26

types including 171 critical ones, and satisfies 1,988 train-segment requests, 238 outpost

requests and 56 shop requests. The locomotive assignment schedule is non-periodic, solved

as a set of overlapped exact problem as 2 or 3-day length, and finally merged to a 7-day

horizon.

Ziarati et al. [55] improve the previous model by a heuristic branch first, cut second

approach, which reduces 1.1% of locomotive usage and more than 20% of gap.

Rouillon et al. [48]

The authors extend the solution algorithm of Ziarati et al. [55] and [56] with three different

branching methods and search strategies to develop a branch-and-price algorithm for LAP

of a freight railway on operational level. The new extension of previous models saves 10 and

39 locomotives.

Ahuja et al. [9]

The authors develop a MILP for LAP in the planning level of CSX Transportation. They also

formulate LAP as a locomotive flow model, i.e., an integer multi-commodity flow problem.

The objective and network architecture are similar to the one of Ziarati et al. [55]. The

differences are:

• The train schedule and the locomotive assignment plan is assumed to be cyclic every

week, which means that the distribution of locomotives at the end of the schedule time

period should be back to its distribution at the beginning of the planning period.

• Locomotive light travels (locomotive(s) relocation without being attached to a train)

are allowed. This makes the model more general and flexible.

• The locomotive maintenance process is not considered.

Instead of using CG reformulation to solve the MILP model, the authors develop a

neighborhood search algorithm/heuristic to improve the performance for large scale data

instances.
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The model has been validated with CSX data files. Each test scenario has 3,324 trains,

119 stations and 3,316 locomotives, 5 types of locomotives. A heuristic solution was produced

within 30 minutes. The result use at least 40% fewer locomotives than the solution from

CSX current software.

Vaidyanathan et al. [54]

To resolve the issues of these previous locomotive based models, i.e. the high rate of consist

busting (the medium consist busting rate is 50%) and the severe scalability issues,

Vaidyanathan et al. [54] extend the model of Ahuja et al. [9]. To minimize consist busting,

Vaidyanathan et al. [54] focus on a consist-based assignment model. The configurations of

consists are generated by a pre-processing algorithm. Then, instead of assigning

locomotives, the model of Vaidyanathan et al. [54] assigns consists to pull the scheduled

trains with respect to the minimum power and other business constraints.

There are two sets of constraints in the consist-based formulation. The first set of

constraints correspond to the so-called hard constraints, i.e., mandatory constraints in

order to reach a feasible solution, e.g. consist length limit, consist disjoint constraints, et

al.. The soft constraints focus on the avoidance of consist busting, of single locomotive

consist, and of train/consist configuration rebuilding on different days (i.e., always

assigning the same consist to the same train). Other general requirements of the normal

LAP are implicit, hidden in the configuration of consists: those guarantee that the

requirements of each train for the horsepower, tonnage, limit of active axle, consist size,

and of locomotive type for train & terrain.

Their consist-based formulation uses a data set with 382/388 trains, 6 locomotive types,

87 stations, and 3 up to 17 types of consists in the test scenarios. The computational time

for each test scenario is up to 450 seconds on a Pentium IV desktop computer. The quick

convergence rate for consist-based model has several reasons. The first reason is that the

consist-based formulation applies some hard constraints implicitly, e.g., the requirements of

tonnage, power and the limit of 24-active axle. The second reason is that the number of

decision variables is smaller than that of locomotive-based models. The last reason is that

the decision variables for active consist assignment are binary, instead of the general integer

variables in locomotive-based formulation.

The potential issue of the consist-based formulation is: the greater optimization of the

solution requires greater numbers of configuration types of consist. However, the

computational time will grow as well, and even faster (it is true for normal MILP, but can

be solved by CG decomposition as we proposed in next chapter). The other issue is that

Vaidyanathan et al. [54] do not consider the maintance/shopping constraints for
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locomotives, and only assume the locomotive plan is cyclic every week. In addition, their

consist-based model does not take the initial locomotive positioning into account. Instead,

the authors propose a post-processing algorithm which minimizes the locomotive

repositioning (light trains) in order to ensure a smooth transition from the current

locomotive locations to the locomotive location requirements in the solution of the LAP

model. This entails a lot of locomotive reposition issues.

Piu [44]

Piu [44] considers the fueling and maintenance constraints as well as the robustness, in order

to make the final LAP solution easier. A preliminary optimization model is prompted to

initialize the types of consist for the final LAP model. But unfortunately no numerical results

are presented, only a synthesis of the data sets and of the numerical results of the recent

papers.

Cordeau et al. [22], [23]

Cordeau et al. [22] establish a MIP model for locomotive and car assignment problem,

which covers the general constraints except the maintenance constraints. The model allows

deadheading for locomotive relocation, uses a given set of consist types, but does not

consider the extra cost of consist busting. Benders decomposition technique is applied to

solve the MIP model with large scale data set. The largest test case from VIA Rail comes

with 348 train legs, 32,981 sequence variables, 105,327 arc variables and 205,080

constraints.

In [23], the authors extend the previous model, with the consideration of locomotive

maintenance, and the consist busting, which is called switching. A two-phase method is

proposed, in which based on the solution of general model in phase I, an optimization for

the consist switching is processed in phase II. A branch-and-bound solution method with

CG is applied for the model. Six instances of more than 300 VIA Rail passenger trains in

the Quebec-Windsor corridor are solved with good quality solutions within several hours.

Maposa and Swene [41]

Maposa et al. [41] solved the planning locomotive scheduling model (LSM) of National

Railways of Zimbabwe (NRZ) with multiple locomotive types. They regarded LSM as an

integer multi-commodity flow problem that is similar to that of Ahuja [9]. But all (freight)

trains of NRZ started and ended at the station Mpopoma, since it was the only

marshalling yard. Their mixed integer programming models considered the deadheading,
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light traveling and consist busting conditions, and can solved 528 trains (in 3 different

types)with 2 locomotive types.

2.2.2 LAP with Heuristic

Godwin et al. [29]

The authors study the effects on locomotive assignment by locomotive fleet size for freight

trains in Indian railway networks. Their environment is special as the freight trains have

day-to-day schedule, and have lower priority than the passenger trains in the shared

railway network. The authors develop first a Petri-Net model then a heuristic based on it

for locomotive assignment including deadheading. They test the model in a five-division

railway network with 467 stations (78 of them are loading/unload stations) in which 127

trains per day generate locomotive requests. The time duration is 50 days. Their

conclusion is that the efficiency of locomotive assignment is greatly affected by the fleet

size and the holding time of locomotives before deadheading permission.

Ghoseiri et al. [27]

The authors focus on the homogeneous locomotive assignment problem with deadheading

and maintenance processes. They formulate the problem into the well known vehicle routing

problem with time windows (VRPTW). To solve VRPTW with the initial status that the

locomotives are distributed into each depot/station, they develop a cluster-first, route-second

approach. First, they decompose the original multi-depot locomotive assignment into a series

of single depot problems (A depot is a home station of locomotives that serve the neighbor

stations). And then each of such problems is independently solved by a hybrid genetic

algorithm, i.e., using a push forward insertion heuristic to create initial solutions and then

applying the genetic algorithm to improve the solutions. An artificial, randomly generated

test frame of 84 stations and 42 trains per day is used to test their algorithm over a up-

to-7-day time horizon. The test frame has 10 locomotives in only 1 depot. The solutions

of different number of trains shows the empirical complexity of the algorithm is between

O(n2) and O(n log n). For the solution quality of their algorithm, they compare it with a

branch & bound algorithm for a few small and medium sized problems. The results show

their algorithm has zero error and much less computational time.
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Powell et al. [46]

The authors develop the Princeton Locomotive and Shop Management system for Norfolk

Southern Corporation. They point out the scalability issue of the deterministic optimization

models for LAP, especially for long-term locomotive planning, and develop a framework of

an approximate dynamic programming (ADP) approach, for short to long-term LAP. Their

paper considers the shop routing problem, transit time delays, dynamic schedule changes,

and equipment failures.

Using ADP, the authors decompose the large scale deterministic LAP over time. Each

subproblem is to assign locomotives to trains on a short time horizon (e.g., 4-6 hours), and

is formulated as an integer linear problem. The authors attempt to solve each subproblem

exactly and also to consider the impact of solution of each subproblem on the future. The

key idea is that although the exact impact of the solution of subproblem on the future can

not be computed, the approximate value could be learned and calibrated by running the

model iteratively comparing a truly realistic model. The calibration of the model of Powell

et al. [46] has been processed during several years over historical data. Now their system

works properly by Norfolk Southern for fleet sizing studies. However, as soon as the traffic

will change, calibration may need to be updated.

Noori et al. [43]

Noori et al. [43] solve LAP with homogeneous locomotives in several depots, and with

pre-scheduled trains of different priorities. They develop a two-phase approach in which

they decomposed the main problem into multiple single depot subproblems, and solve each

subproblem by a hybrid genetic search algorithm heuristically, with the consideration of

locomotive maintenance. Part of the (medium size) results were compared with

branch-and-bound algorithm to prove its correctness and efficiency. The maximum size of

the LAP problem they solved is 280 trains within one week in a 80 nodes network.

Kasalica et al. [38]

Kasalica et al. [38] allow train delays in the cyclic locomotive assignment on the Serbian

Railways and Montenegrin Railways networks. They propose a 5-stage algorithm/heuristic,

without the maintenance constraint, in order to minimize the total locomotive process and

idle time in the station. Their algorithm are tested by 72 trains with 13 locomotives.
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2.2.3 Related Problem

Cacchiani et al. [16], [18]

Cacchiani et al. [16] focus on the train-unit (TU) assignment problem (TUAP) that to assign

a set of TU to satisfy trips of seats demands. A TU is a self-contained train with an engine

and passenger seats. They allow TU to light travel and consider the maintenance. But the

time and cost to dassemble/reassemble TUs from one trip to another are not considered. A

LP-based heuristic method is proposed to solve the problem. The method is tested by up to

660 trips with 10 TU types.

In [18], they propose a Lagrangian heuristic algorithm to solve TUAP, and can solve

larger realistic instances up to 1190 trips with 18 TU types.

2.3 Problem Statement

The present study provides a consist travel plan based LAP optimization model, with the

technical, industrial and business constraints mentioned above, including maintanance/shop

constants and consist busting avoidance. In addition, in order to guarantee that the model

is always able to output a solution, we allow more locomotives out of given fleet and penalize

the extra requirement.

The proposed model, which will be detailed in the next section, builds an assignment of

locomotives with respect to the given constraints. The input of LAP model is divided into

two parts: train schedules and parameters, and locomotive parameters. Train schedules

include the information of the departure/arrival times and the origin/destination stations

of each scheduled train. Characteristics of the trains such as power requirement are also

given. Locomotive parameters include their horsepower, their initial locations and types.

Maintenance shop capacities are given, i.e., the number of locomotives that can undergo

maintenance in each shop per day. We assume that the train schedule is fixed: the

arrival/departure time in each station is known and cannot be modified. We consider all

possible consists (throughout an implicit enumeration thanks to the column generation

techniques).

The output of the model is the travel plan for each locomotive within a series of consist

assignments, as well as the routes of deadheading (or light traveling) locomotives that connect

the consecutive routes within an active consist in each train.
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2.4 Locomotive Assignment Model

The proposed LAP model relies on a multi-commodity network, which we next describe,

before detailing the variables, the objective and the constraints of the consist-based model.

2.4.1 Multi Commodity Network

The multi commodity network is a time/space network, see Figure 1, where each node v

is associated with two components: location(v), which corresponds to a railway station

location, and, time(v) ∈ Z+, which corresponds to the beginning or the end of an activity,

and which is expressed in minutes. The arcs represent activities such as waiting periods, train

travel between two stations (usually the origin and the destination) or train maintenance,

and commodities are the locomotives. It is sometimes convenient to represent a multi-

commodity network as a layered graph, where each layer is associated with one commodity,

as some nodes and arcs may be specific to a particular commodity. We will assume here the

same network for all types of locomotives.

In order to built the multi-commodity network for a given planning period, one has to

take into account some legacy trains, i.e., trains that departed in the previous planning

period but which arrive in the current planning period. Similarly, there are trains departing

in the planning period under study, which will reach their destinations after the end of the

planning period under study. For instance, in Figure 2, Train 1 departs before the beginning

of the planning period under study.

We now describe in detail the generic multi-commodity network G = (V, L) associated

with the overall set of locomotives. V denotes the set of nodes, indexed by v, where each v

has a space and a time coordinate. L is the set (indexed by �) where

L = LT ∪ Lshop ∪ LW ∪ LD

with the subsets defined below.

- LT is the set of links associated with trains.

- Lshop is the set of links associated with the three month maintenance activity

(regulatory requirement in North America), which takes place in a station with a

yard. For � ∈ Lshop, its time origin is always 8am, and its time destination is 5pm, so

that it corresponds to one working day. In other words,

� = (location, 8 am) → (location, 5 pm) for location being a shop with a yard.
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- Lw is the set of locomotive waiting links, i.e., associated with idle periods for a

locomotive: � = (v, v′), where nodes v and v′ are associated with the same station,

i.e., location(v) = location(v′), if locomotive κ is idle in station location(v)

between time(v) and time(v′). In addition, Lw includes the set of virtual links that

are pointing to the dummy sink node vsink.

- Ld is the set of locomotive deadheading links, i.e., the same time/space parameter of

the corresponding train link but the different activity: a critical locomotive can go

through the deadheading link after the due date.

Among the nodes, we identify the so-called source and destination nodes as follows:

V src: indexed by vsrc, as the set of nodes (stations in the railway system) where some

locomotives are first available in the planning period. It is either a node with time component

equal to the beginning of the planning period if a locomotive is idle in the corresponding

station, or at the departure time of a (legacy) train prior to the beginning of the planning

period, with the arrival time after the beginning of the scheduling time period, see Figure

2. Therein, V src contains 6 nodes, 5 with a time index equal to the origin of the planning

period, and one at an earlier time.

vsink: dummy destination node, where all destination arcs converge. See the links

represented by the long dashed lines in Figure 1 for an illustration.

The set of nodes contains all the endpoints of the links of L. For each � = (v, v′) ∈ Lshop,

there is another link �′ = (v, v′) ∈ LW in order for a locomotive to bypass the maintenance

step if not required or if the shop is full.

2.4.2 Notations

S is the set of consist travel plans, where a consist travel plan s ∈ S defines a sequence of

trains led by the same locomotive consist.

S =
⋃
v∈V

S+
v ,

where S+
v denotes the set of consist travel plans originating at v. Similarly, S−

v denotes the

set of consist travel plans destined to v. K is the set of locomotive types, indexed by k.

When we need to distinguish critical from regular locomotives, we use the index kc (resp.

kr), and decompose K into Kc and Kr. Critical locomotives are those ones whose operation

days will reach the calendar maintenance time limit during the planning time period.

We denote by nk the number of available locomotives of type k throughout the network,

and
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Figure 1: Multi Commodity Network

ns
k the number of locomotives of type k of each consist travel plan s ∈ S, and

nspare

k,v the spare locomotives of type k in each start node v ∈ V src.

dst
s
v = 1 if consist travel plan s ends at node v (final endpoint of a train link), 0 otherwise

ds� = 1 if train link � ∈ LT belongs to consist travel plan s, 0 otherwise

nspare

k,v = number of spare locomotives of type k in source node v ∈ V src

cap(�shop) = upper bound of critical locomotives that can be maintained in shop link

�shop ∈ Lshop.

TimeSrc(t),TimeDst(t) = the start and end time of train t, counted from the start time of

LAP scheduling period.

mk = total number of calendar days for the locomotives of critical type k ∈ Kc since their

last visit to a shop, until the start time of LAP scheduling period. In order to alleviate the

description of the model, we assume that all critical locomotives of a given type have the

same value mk. However, if it is not the case, it is easy to expand the model, by defining as

many sets Kc as the number of different values for the total number of calendar days since

the last visit to a shop for all critical locomotives.

In the multi-commodity graph G = (V, L), we designate by ω(v) (resp. ω(V ′) with

V ′ ⊆ V ) the set of adjacent links to v (resp. to a node of V ′). In addition, ω+(v) (resp.

ω−(v)) denotes the set of adjacent outgoing (resp. incoming) links of v. For a given link �,
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Figure 2: Definition of the V src Source Node Set

δ+(�) denotes the destination endpoint of �, and δ+(L′), L′′ ⊆ L denotes the set of destination

endpoints of the links of L′. Similarly, δ−(�) and δ−(L′), L′′ ⊆ L denote the origin endpoint(s)

of � and of the links of L′, respectively.

2.4.3 Consist Travel Plans and Waiting Links

A consist travel plan is defined as a set of trains that use the same locomotive consist

one train after the other one, without any consist busting. The number of consist busting

therefore can be evaluated by consist travel plans occurrences, for that the end of a consist

travel plan means a breakup of consist. The idea is similar to Cordeau et al. [23], which use

train sequence and switching in passenger trains.

A train link can belong to at most one plan. If a train does not belong to any plan,

then it means there is a lack of available locomotives in order to pull it. Consist travel plans

(and shop links) are separated by waiting links, and must be spaced a minimum time (2

hours in our numerical experiments) in order to allow consists to be busted and reassembled.

Within a consist travel plan, the time difference of two consecutive train links is spaced by

a minimum time period, at least 1 hour in our numerical experiments.

To ensure this time constraints between, e.g., two successive train departures, or for

reassembling a consist, we divide the waiting links into the inbound and the outbound

waiting links: Lw = Lw in ∪ Lw out with Lw in ∩ Lw out = ∅. In addition, such a division will

allow us to identify the consist busting.

A waiting link is defined as a link with its two endpoints associated with the same location

(station) components. An inbound waiting link (�w ∈ Lw in) starts at the destination node
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of a train link or at a source node, and ends at the nearest origin node of another train/shop

link, and no less than certain time interval. Since there are two different time interval requests

for inbound waiting links: the smaller one represents a time duration that is at least the

time required to re-assign a given consist to another train, and the larger one represents

the minimum time to re-assign a locomotive to another consist, for each destination node

of a train link, we have create two inbound waiting links: one to the nearest origin node

of another train/shop link no less than the smaller interval request, the other to satisfy the

larger time interval request. An outbound waiting link (�w ∈ Lw out) starts and ends at

the nearest origin nodes of two different train links, or at an origin node and the dummy

sink node, without any time restriction. Figure 1 illustrates the division of waiting links.

Shop links are considered as train links, with respect to the definition of inbound/outbound

waiting links.

2.4.4 Variables.

We use four sets of variables:

zs = 1 if consist travel plan s is selected, 0 otherwise.

xneed

kv = number of additional required locomotives of type k at source node v ∈ V src in

order to be able to assign adequate locomotives to all trains.

xloco

k� = number of locomotives of type k on link �. Note that:

xloco

kLw = xloco

krLw + xloco

kcLw , xloco

k�D = xloco

kr�D
+ xloco

kc�D
,

xloco

kr�shop = 0, xloco

k�shop = xloco

kc�shop .

2.4.5 Maintenance and Shops

A critical locomotive must stop at a shop for maintenance operations every maintenance

period, here assumed to be a calendar interval, see, e.g., Railway Locomotive Inspection and

Safety Rules [5] for more details on maintenance intervals. Critical locomotives are relabeled

as regular after completing the maintenance process at a shop. This relabeling will be taken

care thanks to special flow conservation constraints at the shop end nodes in the proposed

LAP model.

2.4.6 Optimization Model

The LAP optimization model we propose is under the assumption without the legacy trains.
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2.4.7 Objective

The objective is to minimize the size of the locomotive fleet required as well as to reduce

consist busting, although these two segments seem in the opposite directions. Furthermore,

the consist busting can not be counted implicitly, but since each consist busting brings at

least two additional consist, the number of consist travel plans increase correspondingly. We

therefore propose the following objective with the minimization of: (i) the number of consist

travel plans with weight (penalz); (ii) the number of total locomotives in operation; and

(iii) the number of extra locomotives (details in Section 2.4.8) with penalty (penalk).

min
∑
s∈S

penalz · zs +
∑

�∈ω−(vsink)

∑
k∈K

xloco

k� +
∑

v∈V src

∑
k∈K

penalk · nxneed

kv
k,v (1)

2.4.8 Constraints

Flow Conservation Constraints. In any normal node in the locomotive flow, there

should be equal number for outbound locomotives and inbound ones for each type:

∑
s∈S+

v

ns
k zs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

k�

=
∑
s∈S−

v

ns
k zs +

∑
�w∈ω−(v) ∩ (Lwait∪LD)

xloco

k�

v ∈ V \ (V src ∪ vsink ∪ δ+(Lshop)
)
, k ∈ Kr ∪Kc (2)

Stations

Time

Station/Shop 1

Station 2

Station 3

Day 1 Day 2 Day 3 Day 5Day 4
Sunday

Station/Shop 5

Station 6

Station 4

D 4

Waiting link:
Locomotives  type k:
Normal: 1
Critical:  2

Waiting link:
Normal: 1
Critical: 0

Shop link:
Normal: 0
Critical: 2

Waiting link:
Normal: 3 = 1 + 2
Critical: 0 = 2 + 0 - 2

Relabel

Figure 3: Flow Conservation of Locomotive Type k for Shop Link

The key idea of our proposed LAP model is the critical locomotive re-labeling process,

i.e., at the destination node of a shop link, the critical locomotives after maintenance should
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be re-labeled as regular ones, of the same type, as shown in Figure 3:

∑
s∈S+

v

ns
kr zs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

kr�

=
∑
s∈S−

v

ns
kr zs +

∑
�∈ω−(v) ∩ Lshop

xloco

kc� +
∑

�∈ω−(v) ∩ (Lwait∪LD)

xloco

kr�

v ∈ δ+(Lshop), k = {kr, kc} ∈ K (3)∑
s∈S+

v

ns
kzs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

k� =
∑
s∈S−

v

ns
kzs +

∑
�∈ω−(v) ∩ (Lwait∪LD)

xloco

k�

v ∈ δ+(Lshop), k ∈ Kc. (4)

In addition, the flow conservation constraints above allows that two consist travel plans

are connected directly to reuse (part of) the same locomotives. Constraints (5), (6), (7)

guarantee to avoid this issue, i.e., in any node v that sent out a consist travel plan s, the

locomotives that v assigns to s can only be those from the waiting links or shop links that

end in v, the locomotives brought by the consist travel plans that end in v are not eligible.

∑
s∈S+

v

ns
k zs ≤

∑
�w∈ω−(v) ∩ Lwait

xloco

k�

v ∈ V \ (V src ∪ vsink ∪ δ+(Lshop)
)
, k ∈ Kr ∪Kc (5)∑

s∈S+
v

ns
kr zs ≤

∑
�∈ω−(v) ∩ Lshop

xloco

kc� +
∑

�∈ω−(v) ∩ Lwait

xloco

kr�

v ∈ δ+(Lshop), k = {kr, kc} ∈ K (6)∑
s∈S+

v

ns
kzs ≤

∑
�∈ω−(v) ∩ Lwait

xloco

k�

v ∈ δ+(Lshop), k ∈ Kc. (7)

Spare Locomotive Constraints. The LAP model may get infeasible solution, i.e., in any

station, the total locomotives required by the solution exceed the given spare locomotives at

the start of the planning period. In order to avoid this situation, we introduce the variable

xneed

kv that count the number of extra locomotives in order to accommodate all scheduled

trains, and the flowing constraints (The last set of constraints (10) guarantee that even we

allow the additional locomotive in use, the total locomotives in operation still can not exceed

the maximum number of locomotives in each type. The numbers used in test scenarios are

23



displayed in Table 1):

∑
s∈S+

v

ns
k zs +

∑
�w∈ω+(v)

xloco

kLw +
∑

�w∈ω+(v)

xloco

k�D − xneed

kv ≤ nspare

k,v

k ∈ Kr, v ∈ V src (8)∑
s∈S+

v

ns
k zs +

∑
�w∈ω+(v)

xloco

kLw +
∑

�w∈ω+(v)

xloco

k�D ≤ nspare

k,v

k ∈ Kc, v ∈ V src (9)∑
�∈ω−(vsink)

xloco

k� ≤ nk k ∈ K (10)

Train-Disjoint String Constraints. Each train should belong to exactly one consist

travel plan :

∑
s∈S

ds� · zs = 1 � ∈ LT (11)

Shop Capacity Constraints. For each station with shop, there is a limit for critical

locomotives allowed at the same time for maintenance:

∑
kc∈K

xloco

kc�shop ≤ cap(�shop) �shop ∈ Lshop (12)

Consist-Busting Constraints. For any two consecutive consist travel plans , there is a

minimum dwell time of at least dwell loco, for the time required to break and re-assemble

locomotive consists.

∑
k∈K

xloco

kLw = 0

�w ∈ Lw in \ ω+(V src) : time(�w) < dwell loco. (13)

Deadheading The identification of the deadheading occurrences is done in post-processing

phase, where we identify the deadheading locomotives which are not needed for pulling a

specific train in consist travel plan but should be transferred to remote station to pull anther

train. The data will be analyzed in Section 2.6.5.
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2.5 Solution of the Locomotive Assignment Model

To solve the model developed in the previous section, we need to use column generation

techniques in order to avoid the exhaustive enumeration of the consist travel plans , and

limit their generation to the improving ones. We therefore use a solution scheme that is

summarized in the flowchart of Figure 4, and which is described in next section.

2.5.1 Solution Process

We establish a first model with an initial set of consist travel plans , called Restricted Master

Problem, while the Master Problem corresponds to the model described in the previous

section. The Restricted Master Problem is solved alternately with a consist travel plan

generator. Indeed, the consist travel plan generator corresponds to the so-called pricing

problem in optimization, see, e.g., Chvátal et al. [20], which either generates an improving

consist travel plan, i.e., a consist travel plan whose addition improves the value of the linear

relaxation of the current restricted master problem, or concludes that the current solution

of the RMP is indeed the optimal solution of the linear relaxation of the Master Problem.

It then remains to generate an integer solution, which can be easily done using an iterative

rounding off procedure. We next discuss how to define a generator of a consist travel plan

such that its addition to the incumbent set of consist travel plans guarantee an improvement

of the incumbent value of the linear relaxation of the model developed in the previous section.

We first define the set of variables, then the objective of the consist travel plan generator,

and then its set of constraints. We end this section with a flowchart Figure 4 summarizing

the solution process.

2.5.2 Column Generation and Integer Solution

As illustrated in the flowchart of Figure 4, the solution process consists of two phases: the

optimal solution of the linear relaxation of the master problem with the column generation

technique, and then the derivation of an integer solution thanks to a branch-and-bound

algorithm (CPLEX MILP solver) applied to the constraint matrix associated with the

optimal solution of the linear relaxation of the master problem. While we are not

guaranteed to generate a strict optimal solution, it allows the generation of an ε-optimal

solution, where ε =
z̃ ˜ilp−z�

lp

z�
lp

, with z�
lp

being the optimal value of the linear relaxation of the

Master Problem as described in (1)-(12).

The master problem associated with only a subset of the possible consist travel plans is

called the restricted master problem. z̃ilp is the optimal integer solution of the last restricted
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Figure 4: Flow Chart: Column Generation Process

master problem, i.e., the one with all the zs variables generated until we reach the optimal

solution of the linear relaxation of (1)-(12).

Note that the master problem is not solved optimally by embedding all possible consist

travel plans , but only a very small subset of them. At each iteration of the column generation

algorithm, one more consist travel plan is added, for a given node v ∈ V . Indeed, the column

generation algorithm consists in a set of rounds, where, in each round, the algorithm goes

through each source node of a train link, and check whether a consist travel plan with a

negative reduced cost can be generated thanks to the pricing problem. If, during a round,

the algorithm fails to find at least one consist travel plan with a negative reduced cost, the

algorithm has reached the optimal solution of the linear programming relaxation, z�
lp
.

2.5.3 Pricing Problem: Consist Travel Plan Generator

Consist travel plans are generated by the so-called pricing problem for a given origin node

vo for the consist travel plan under construction. In order to generate an exact solution, the

column generation algorithm must consider all possible origin nodes, i.e., all nodes associated

with the departure time of a train.

Variables

A consist travel plan starts with a train link, and ends at the endpoint of (another or the
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same) train link.

dstv = 1 if consist travel plan s under construction ends at node v, 0 otherwise, for

v ∈ δ+(LT ).

x� = 1 if the link � ∈ L belongs to the path supporting the consist travel plan, 0 otherwise.

Note it is in one to one correspondence with the parameter d� of the master problem

nk = number of locomotives of type k in the consist travel plan under construction

nd
k = 1 if locomotives of type k is selected for the consist travel plan under construction, 0

otherwise

yk,v = nk · dstv. It is used to linearize the product nk · dstv of decision variables.

Objective: Reduced Cost of the zs Variables

The objective of the pricing problem is the so-called reduced cost (if not familiar with

linear programming concepts, the reader is referred to, e.g., Chvátal et al. [20]) of the zs

variables. The s index is omitted in this in order to alleviate the notations.:

cost =
∑
k∈K

nk +

[∑
k∈Kr

u
(8)
kv nk +

∑
k∈Kc

u
(9)
kv nk

]

−
∑

k∈Kr∪kc

⎛
⎝u

(2)
kvo

nk −
∑

v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(2)
kv · yk,v

⎞
⎠

−
∑
k∈Kr

⎛
⎝u

(3)
k,vo

· nk −
∑

v∈δ+(Lshop)

u
(3)
k,v · yk,v

⎞
⎠

−
∑
k∈Kc

⎛
⎝u

(4)
k,vo

· nk −
∑

v∈δ+(Lshop)

u
(4)
k,v · yk,v

⎞
⎠

+
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(5)
kv · yk,v

+
∑

v∈δ+(Lshop)

u
(6)
k,v · yk,v +

∑
v∈δ+(Lshop)

u
(7)
k,v · yk,v −

∑
�∈LT

u
(11)
t · x�. (14)

Note that when the pricing problem is solved for an origin node vo that does not belong

to Vsrc, the term between square bracket in the above expression should be omitted.

Constraints of the Train String Generator

Ensure that there is exactly one destination node and it has to be the endpoint of a train
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link: ∑
v∈δ+(LT )

dstv = 1 (15)

Flow conservation constraints to find a path in the time-space graph:

∑
�∈ω+(v)

x� −
∑

�∈ω−(v)

x� = −dstv v ∈ δ+(LT ) (16)

∑
�∈ω+(v)

x� −
∑

�∈ω−(v)

x� = 0 v ∈ V \ δ+(LT ) ∪ {vo} (17)

∑
�∈ω+(vo)∪LT

x� = 1 (18)

∑
�∈ω−(vo)

x� = 0 (19)

Ensure the path of consist travel plan is not empty:

∑
�∈LT

x� ≥ 1 (20)

Ensure that the consist travel plan contains no critical locomotives after due date, i.e.,

maint time, which was set to 90 calendar days in the numerical experiments (TimeDst(t) is

the days from the start time of LAP plan period, to the arrival time of train t):

nk ≤ M · (1− x�)

� ∈ LT , k ∈ Kc : TimeDst(t) +mkc ≥ maint time (21)

Ensure that each train in the consist travel plan has enough power:

∑
k∈Kr

hpk · nk +
∑
k∈Kc

hpk · nk ≥ max
�(≡t)∈LT

(x� · hpt) (22)

Ensure the lower & upper bounds of consist size:

consist sizemin ≤
∑
k∈Kr

nk +
∑
k∈Kc

nk ≤ consist sizemax (23)
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The next set of constraints correspond to the linearization of objective (14).

yk,v ≤ nk v ∈ V, k ∈ K (24)

yk,v ≤ M · dstv v ∈ V, k ∈ K (25)

yk,v ≥ nk +M · (dstv − 1) v ∈ V, k ∈ K (26)

Note that constraints (25) can be re-enforced as follows:

∑
k∈K

yk,v ≤ M · dstv v ∈ V (27)

hence reducing the number of constraints as well.

The next set of constraints prevent two trains to be connected directly:

∑
�∈ω+(vo)∪LT

x� +
∑

�∈ω−(vo)∪LT

x� ≤ 1 v ∈ V (28)

The master and pricing problems both can be solved by a general-purpose solver, e.g., Ilog

Cplex.

2.5.4 Modified Model for Deadheading Analysis

The modification of LAP model in this section focuses on to reducing the deadheadings.

First we change the MP’s objective to reduce the total deadheading powers:

min
∑
s∈S

∑
t∈s

zs · (hps − hpt). (29)

where (hps−hpt) represents that in each consist travel plan s, the sum of the power difference

of assigned power and actually needed power for every train.

Then, add a new constraint in MP that limit total number of additional locomotives.

∑
v∈V src

∑
k∈K

xneed

kv ≤ UBneed (30)
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According to the MP’s modification, the objective of PP has to be changed as:

cost =
∑
�t∈LT

(∑
k∈K

nk · hpk − hpt

)
· x�t +

[∑
k∈Kr

u
(8)
kv nk +

∑
k∈Kc

u
(9)
kv nk

]

−
∑

k∈Kr∪kc

⎛
⎝u

(2)
kvo

nk −
∑

v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(2)
kv · yk,v

⎞
⎠

−
∑
k∈Kr

⎛
⎝u

(3)
k,vo

· nk −
∑

v∈δ+(Lshop)

u
(3)
k,v · yk,v

⎞
⎠

−
∑
k∈Kc

⎛
⎝u

(4)
k,vo

· nk −
∑

v∈δ+(Lshop)

u
(4)
k,v · yk,v

⎞
⎠

+
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(5)
kv · yk,v

+
∑

v∈δ+(Lshop)

u
(6)
k,v · yk,v +

∑
v∈δ+(Lshop)

u
(7)
k,v · yk,v −

∑
�∈LT

u
(11)
t · x�. (31)

The new objective is non-linear, in order to linearize it, we first add two decision variables:

Dead�t =
∑
k∈K

nk ·hpk −hpt represent the deadheading power for each train link �t ∈ LT .

α� = Dead� · x� It is used to linearize the product Dead� · x� of decision variables.

In addition, we add constraints in pp: first modify PP’s Constraints (22) as

∑
k∈Kr

hpk · nk +
∑
k∈Kc

hpk · nk = x� · hpt +Dead� � ∈ LT (32)

Then, to linearize the objective,

α� ≤ Dead� � ∈ LT (33)

α� ≤ M · x� � ∈ LT (34)

α� ≥ Dead� +M · (x� − 1) � ∈ LT . (35)
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Finally, the objective of PP is modified as:

cost =
∑
�∈LT

α� +

[∑
k∈Kr

u
(8)
kv nk +

∑
k∈Kc

u
(9)
kv nk

]

−
∑

k∈Kr∪kc

⎛
⎝u

(2)
kvo

nk −
∑

v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(2)
kv · yk,v

⎞
⎠

−
∑
k∈Kr

⎛
⎝u

(3)
k,vo

· nk −
∑

v∈δ+(Lshop)

u
(3)
k,v · yk,v

⎞
⎠

−
∑
k∈Kc

⎛
⎝u

(4)
k,vo

· nk −
∑

v∈δ+(Lshop)

u
(4)
k,v · yk,v

⎞
⎠

+
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(5)
kv · yk,v

+
∑

v∈δ+(Lshop)

u
(6)
k,v · yk,v +

∑
v∈δ+(Lshop)

u
(7)
k,v · yk,v −

∑
�∈LT

u
(11)
t · x�. (36)

2.6 Numerical Results

2.6.1 Data Instances

Numerical experiments are generated from given train scheduling data and railway

infrastructure of CPR. The data include train departure times and stations, train arrival

times and stations, and horse-power requirements. And we use CPR’s entire railway

network (from Vancouver to Montreal, covering all of Canada and parts of the United

States, shown in Figure 5), the number of each type of locomotives in operation, and the

location and capacity of maintenance shops.

We use a set of 9 different types of locomotives, limiting our experiments to the most

used locomotives in the CPR fleet of locomotives, as described in Table 1. As requested by

the mathematical model, the number of types was doubled in order to distinguish the critical

(about 20% of the overall number of locomotives) from the non critical locomotives.

We defined 11 test scenarios of increasing scheduled train size, from 113-train to 1,750-

train scenarios. The largest scenario corresponds the typical number of CPR scheduled trains

over a time period up to 2 weeks. The test scenarios are solved by CPlex 12.6.1 in a server

with 40-cores, 1TB memory.

As the data of the locomotive location was not available, we use a heuristic in order to

generate an initial geographical distribution of the locomotive fleet in the railway network.
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Figure 5: CPR Railway Network[3]

2.6.2 Accuracy & Efficiency of the Solutions

In this section we discuss the quality of the LAP solutions. The results of each test scenario

are listed in Table 2, from 113-train to 1,750-train scenarios. The first two columns provide

the trains and time length of the test scenario. The third column shows the number of

consist travel plans (columns) generated by LAP model, excluding those in the original

input. The fourth column provides the number of consist travel plans selected in the final

solution for the final ILP model. The fifth column shows the total number of locomotives

demanded in operation. The sixth column shows the total additional locomotives needed

Model Horsepower units
GP38 3,000 191
GP40 3,000 83
GP40-2 3,000 92
SD40-2 3,000 323
SD60 3,800 251
SD90/4300 4,300 95
ES44AC 4,360 98
AC4400CW 4,400 1,160
AC4400CW-L 4,390 82
TOTAL N/A 2,375

Table 1: Locomotives Types & Quantity
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# Time # Columns # Locomotives GAP CPU Time
Trains Length Generated Selected in Operation Additional (%) (hh:mm:ss)
113 1 day 61 110 250 49 0.45 00:01:20
232 2 days 125 183 470 78 0.93 00:06:22
357 3 days 153 315 619 108 1.07 00:26:47
466 4 days 202 378 735 122 1.34 02:41:35
593 5 days 1,095 445 820 137 1.89 05:42:35
733 6 days 1,237 479 873 131 1.73 12:55:17
862 7 days 2,207 516 962 150 1.24 20:19:36
995 8 days 2,313 732 1,026 173 1.73 25:38:26

1,230 10 days 2,087 983 1,193 217 2.02 31:32:07
1,486 12 days 1,992 1,098 1,225 258 1.80 37:12:25
1,750 14 days 1,835 1,294 1,289 306 1.82 44:41:53

Table 2: Results in Different Number of Trains

for the solution. The seventh column shows the gap between the results from ILP and LP

formats. We can see that the gap for each scenario is no more than 2.1%. The last column

gives the computational times. We can observe that we can solve locomotive assignment

problems with up to about 1,750 trains with all the real-world constraints, e.g. shop and

consist busting in a acceptable time.

We expect that, with the addition of a better heuristic in order to generate an initial set

of consists and locomotive assignments, we can significantly reduce those computing times,

and therefore solve larger instances. This would fully answer their need of an automated tool

for optimizing their locomotive assignment, and tentatively determining the optimal size of

their locomotive fleet.

From the results in Table 2, especially in sixth column for total additional locomotives

needed, we can see that the initial distribution of the locomotives has some issues. For

example, as Figure 6(a) shows for 1,750-train scenario, which is exacted from the train

schedule given by CPR, the LAP result needs some additional locomotives in some stations,

and also leaves some locomotives out of operation. Based on the analysis of solution, we

re-initialize the input, adjust the distribution of the locomotives, and use it as the input

of LAP model. The new result for 1,750-train scenario is shown in Figure 6(b). With

the distribution-modified initial input, we eliminate the additional locomotives, reduce the

number out of operation, without lower the solution quality. So the LAP model can work

also for the locomotive distribution area.
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Figure 6: Locomotive Initial Position for 1,750 Train Scenario

2.6.3 Analysis of In-Consist Waiting Time

In this section we analyze the in-consist waiting time. Figure 7 shows the train

configuration in each consist travel plans, in the result for 1,750-train scenario. The

horizonal axis represents the serial number of consist travel plans (the one-consist travel

plans are dismissed), the vertical axis represents the time in days of the whole LAP

scheduling period. Each vertical bar represents a consist travel plan from the departure

time of its first train to the arrival time of its last train. The read parts of the bar represent

the trains of consist travel plan, and the grey intervals are the in-consist waiting times.

We can see that, in most of the consist travel plans, the consist running time is much

more than the in-consist waiting time, that reflects the efficiency of the solution. The few

exceptions, e.g., consist travel plans #50, contains at least one local train, i.e., the short

distance trains with less than 3 hours running time.

2.6.4 Analysis of the Power Assignment

Here we discuss the unused power and/or deadheading locomotives in each consist travel

plan. Figure 8 shows power assigned of each train in consist travel plan (the one-consist

travel plans are also dismissed), in the result for 1,750-train scenario. First, in Figure 8(a),

we analyze the requested and assigned power. The horizonal axis represents the serial number

of consist travel plans, the vertical axis represents the number of trains in the consist travel

plan. Each vertical bar represents a consist travel plan, and each unit is a train. In each

unit, the red part represents the ratio of requested power of each train in the consist travel

34



0 10 20 30 40 50 60 70
0

5

10

15

Consist Travel Plan #

T
im

e
[d
ay
s]

Consist waiting time
Trains

Figure 7: Consist Waiting Time in 1,750 Train Scenario

plan to the assigned power which is normalized to 1 unit, and the blue part is the unused

power.

We know that the unused power can be the contribution of deadheading locomotive, but

not all for them. For example, train A requires 10,000HP, and is assigned with a consist of 4

locomotives of 4,400HP each. So, we can see that 1 deadheading locomotive is deadheading,

but there is still another 3,200HP assigned but unused left. So, in Figure 8(b), we analyze

the number of deadheading locomotives vs. total consist. The difference from Figure 8(a) is

that the red part represents the ratio of locomotives in operation of each train in the consist

travel plan to the total assigned consist which is normalized to 1 unit, and the blue part

represents the deadheading locomotives. In this figure we can see that most trains do not

have deadheading locomotives for the result.

2.6.5 Results for Modified Model for Deadheading Analysis

The result is shown as the curves in Figure 9. The read curve represents the number of

deadheading locomotives vs. the size of relaxation (additional locomotives). The blue curve

represents the number of consist travel plans vs. the size of relaxation We can see that

as we relax the total number of locomotives in operation, the deadheading locomotives
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reduces, but after the relaxation (additional locomotives) reach 300, we can not decrease the

deadheading much. In the same time, the number of consist travel plans raises concurrently,

until the relaxation reach 300. So we have to make a compromise between minimization of

locomotives, and reducing the waste of deadheading.

2.7 Conclusion

We proposed a new mathematical model for optimizing locomotive assignment to a set of

scheduled trains. It allows the exact solution of larger data instances than reported so far

in the literature in a reasonable amount of time, as a planning tool. In addition, we believe

that the speed of the solution process can be easily reduced with the addition of a more

powerful heuristic in order to generate an initial solution, while preserving the generation of

an exact locomotive assignment.
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Chapter 3

An Enhanced Decomposition Scheme

for Locomotive Assignment Problem

H. Tian and B. Jaumard. submitted for publication, 2017. An extended abstract of this

paper has been published in 16th Workshop on Algorithmic Approaches for Transportation

Modelling, Optimization, and Systems (ATMOS 2016). [33]

3.1 Introduction

Comparing to other transportation methods, e.g., via road truck or cargo airplane, railway

transportation has its advantages of low energy consumption and high safety, so to attract

concentration in academic and industry areas. In those areas locomotive management is one

of the major problems, for that the high capital investment on the equipment purchase and

the operation expense.

The management of locomotive assigns proper locomotives to trains in schedule, in order

to satisfy power and other requirements. The consist is created by a group of locomotives

to tract the train. To match the different request of other train(s), the consist may be

broken to re-assign its locomotives to other trains. This time-consuming process is called

consist busting. The railway industry wants to avoid this procedure as much as possible

for the additional labor & operational cost and time, and also for the loss of robustness

of the train/locomotive schedule. Because consist busting allows an outbound train to get

locomotives from multiple inbound trains, if any of the source inbound trains is delayed, the

outbound train has to be delayed as well.

For locomotive relocation, locomotive(s) can be attached to the consist of a train, and be

driven to another station. This process is called deadheading. A deadheading locomotive

operates under its own power but does not pull the train. The deadheading operation is
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profitless but is an important method for the flexible assignment of locomotive. Another

way of relocating is light traveling, which allows grouping of several locomotives with only

one of them for power pulling. Usually the railway company does not use light travel for

the extra affect on the train schedule. In this paper we only consider deadheading. Another

time consuming but compulsory process is the locomotive maintenance, which require each

locomotive to be maintained in a shop based on a regular time schedule (usually every 90

days). A locomotive due to maintenance is called critical and should not be used to pull a

train after the due date.

Our work concentrates on the optimization of locomotive assignment problem (LAP),

which is to optimize the total expense of locomotive fleet for a given train schedule under

the constraints of the horsepower requests and the other technical and business constraints.

This paper is designed as follows. In Section 3.2, we take a review of the literatures

for LAP modeling and for the acceleration of column generation. Section 3.3 generally

describe the LAP. Section 3.4 gives the details of LAP model. In Section 3.5, the enhanced

solution process (multi-CG) for the model is presented. And in Section 3.6, we provides

the numerical results and analysis.

3.2 Literature Review

3.2.1 Previous LAP Models

There exist some research works for the optimization of locomotive assignment problem,

which can be classified to exact mathematical models and heuristics. Our work focuses on

the exact optimization model so here we lists the review of the works on this area. The

works in heuristics has been reviewed in the survey of Piu et al. [45].

Ziarati et al. [55] reformulated LAP as an integer multi-commodity network flow problem

which has a classical model of mixed integer linear problem (MILP) with the nonlinear part

for maintenance constraints. Then they decomposed the model into a column generation

(CG) format, which is solved by a branch and price algorithm. To avoid the scalability

issue in computational time, Ziarati et al. merged several sub-problems of 2 or 3 days into a

feasible solution for full model of 1-week long. Their model can handle 1,249 locomotives of 26

types including 171 critical ones, and satisfies 1,988 train-segment requests, over the railway

network of Canadian National North America which contains 26 stations, 164 outposts and

18 shops. The authors claim that their decomposition methods have a better locomotive

schedule than the CN’s. This model does not consider consist busting issue.

Rouillon et al. [48] improveed the solution algorithm of Ziarati et al. [55] with different
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branching methods and search strategies to develop a branch-and-price algorithm for LAP

of a freight railway on operational level.

Ahuja et al. [9] developed a MILP model of LAP for CSX Transportation. They also

formulate LAP as a locomotive flow model, i.e., an integer multi-commodity flow problem.

The network is similar to the one of Ziarati et al. [55], but the train schedule and the

locomotive assignment plan is assumed to be cyclic every week. However, the maintenance

process, i.e., forcing the locomotive regularly back to shop site is not considered, neither

for the consist busting issue. The model has been validated with CSX data which contains

3,324 trains, 119 stations and 3,316 locomotives of 5 types. There is no CG reformulation of

the MILP model, instead, the authors develop a neighborhood search heuristic to improve

the performance for large scale data instances, with no information on the accuracy of the

output solutions.

The models of Ziarati et al. [55] and Ahuja et al. [10] have several issues. First, the high

rate of consist busting (the medium rate is 50%) in the solution which means it tends not

to assign the same consist to the same train on different days. The second is that their MIP

models have severe scalability issues when it comes to solve real-life data instances. Even

for generating a first feasible solution, the convergence is slow: for some input data sets for

the model of Ahuja et al. [10], Vaidyanathan et al. [54] said that in several hours there is

still no convergence.

To address the issues of the model of Ahuja et al. [10], Vaidyanathan et al. [54] extended

Ahuja’s model to a consist-based one. The configurations of consists are generated by a pre-

processing algorithm. Then, instead of assigning locomotives, the model assigns consists to

pull the scheduled trains with respect to the minimum power and other business constraints.

Their consist-based formulation uses a data set with 382/388 trains, 6 locomotive types, 87

stations, and 3 up to 17 types of consists in the test scenarios.

The potential issue of the consist-based formulation is: the greater optimization of the

solution requires greater numbers of configuration types of consist. However, the

computational time will grow as well, and even faster (it is true for normal MILP, but can

be solved by CG decomposition as we proposed in next section). The other issue is that

Vaidyanathan et al. [54] do not consider the maintance/shopping constraints for

locomotives, and only assume the locomotive plan is cyclic every week. In addition, their

consist-based model does not take the initial locomotive positioning into account. Instead,

the authors propose a post-processing algorithm which minimizes the locomotive

repositioning (light trains) in order to ensure a smooth transition from the current

locomotive locations to the locomotive location requirements in the solution of the LAP

model. This entails a lot of locomotive reposition issues.
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There are research works to solve the problem different but similar to LAP. Cordeau

et al. [22] solved the locomotive and car assignment in passenger transportation, with an

exact model based on the Benders decomposition approach. The model is tested over a local

part of VIA Rail Canada network including 9 main stations, with 300 trains, 2 types of

locomotives and 4 types of cars. But this mode does not consider maintenance constraint,

neither for consist busting issue.

Fügenschuh et al. [26] focused on locomotive and car cycle scheduling problem with time

window. Their integer linear programming (ILP) model does not consider the maintenance

and consist busting, but allow the train delay within given time window. It has been tested

by 120 trips, 43 locomotives of 4 types on a 1,919-km railway networks. This mode does not

consider maintenance constraint, neither for consist busting issue.

Cacchiani et al. [17] proposed two ILP formulations on the train unit assignment problem

in passenger transportation, in which a set of passenger cars with a supported locomotive

is self-contained and respond for one or some trips, without the maintenance constraint,

neither for consist busting consideration. One ILP model is solved by linear programming

(LP) relaxation based heuristic, the other by Lagrangian relaxation. For the problem up to

660 trips, 75 train units of 10 types, the Lagrangian relaxation based heuristic works better

than the LP relaxation.

Our previous work Jaumard et al. [35] proposed a consist travel plan (previously called

train string) based optimization model with maintenance constraint and consideration of

consist busting. With column generation decomposition, the model solved LAP with up

to 1,394 scheduled trains and 9 types of locomotives in the entire Canada Pacific Railway

network. But computational time for the largest data set takes more than 2 days.

3.2.2 Acceleration Strategies for CG and Similar Algorithms

From the previous section, some models including ours applied Column Generation (CG)

decomposition technique to solve the scalability issue of high time and memory requirements.

But the requirement of time is still enormous, e.g., several days. To solve the computational

time and convergence rate issues, there are strategies in CG’s different stages.

In problem pre-process stage, some heuristics are developed for a better worm start, e.g.,

to reduce the initial network size(e.g., Mingozzi et al. [42]), to generate a good-enough initial

solution (e.g., Sadykov et al. [50]), to decompose a large problem into parts to lower the time

and memory requests, and merge the sub-solutions after (e.g., Desaulniers et al. [24] ).

In the sub-problem stage, Chen et al. [19] use some problem-specific knowledge to

generate a column-pool a priori for the subproblem, and allow it to select solutions from
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the pool.

In column generation practice, some schemes allow a subproblem (usually a heuristic) to

return multiple columns with negative reduced cost (e.g., Goffin et al. [30] ).

Other possible strategies are available in relaxing time/cost interval, node sorting, partial

pricing network, subproblem aggregating, etc..

In master problem stage, Surapholchai et al. [51] develop Eligen-algorithm that applies

column elimination which removes columns with positive reduced cost from the matrix.

Saddoune et al. [49] use dynamic constraint aggregation to reduce number of constraints and

reintroduce them as needed are two general strategies. Sadykov et al. [50] use a diversified

diving heuristic to get feasible and good integer solution.

3.3 Problem Statement

Locomotive assignment problem (LAP) deals with a locomotives fleet and the assignment

of those locomotives to scheduled trains. The optimization of LAP is to minimize the

total expense of the locomotives that satisfy the scheduled trains with given constraints,

e.g., horsepower, minimum locomotive number, and maintenance requirements, etc.. Our

LAP deals with 9 different type of locomotives, each type has two statuses or sub-types

(regular/crytical) for the maintenance. The LAP model regards locomotives of the same

sub-type as the items with no difference.

Maintenance Each locomotive needs to be maintained of a regular time period (here

assumed to be a calendar interval, see, e.g., Railway Locomotive Inspection and Safety

Rules [5] for more details on maintenance intervals.). A locomotive is called critical when it

is due to maintenance. A critical locomotive must stop at a shop for maintenance operations.

After the process it will be regular one.

Consist Travel Plan A consist travel plan is defined as a set of trains that use the same

locomotive consist one train after the other one, without any consist busting. A train in

schedule should be covered by one and only one plan. Consist travel plans (and shop links)

must be spaced a minimum time (2 hours in our numerical experiments) in order to allow

consists to be busted and reassembled. Within a consist travel plan, the time difference of

two consecutive train is spaced by a minimum time period, at least 1 hour in our numerical

experiments.
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Multi Commodity Network Similar to some LAP models, we regards LAP as a multi-

commodity network problem, see Figure 10. The node v is associated with two parameters:

location(v), corresponding to a railway station location, and, time(v), which is the time

of the beginning or the end of an activity, and is expressed in minutes. The arcs represent

locomotive process such as pulling train from station to station, waiting for next assignment,

or maintenance.

Stations

Time

Station 1 
(Shop )

Station 2

Station 3

Day 1 Day 2 Day 3 Day 5Day 4

Station 5 
(Shop )

Station 6

Station 4

D 4
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- Locomotive (regular)
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- Train

Figure 10: Multi commodity network

In the generic multi-commodity network G = (V, L), V represents the set of nodes,

indexed by v:

V src: the set of sources nodes vsrc where at the start of the planning period, some locomotives

are ready for assignment.

vsink: an artificial node for the end of the network flows.

L is the set of arcs �. L = LT ∪Lshop ∪LW ∪LD, which represent train links, shop links,

waiting links and deadheading links respectively.

Waiting Links A waiting link connects two train links together, and is defined as a link

with its two endpoints associated with the same location (station) components. To ensure

the time constraints between, e.g., two successive train departures, or for reassembling a

consist, we divide the waiting links into the inbound and the outbound waiting links: Lw =
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Lw in ∪ Lw out with Lw in ∩ Lw out = ∅. In addition, such a division will allow us to identify

the consist busting. An inbound waiting link (�w ∈ Lw in) starts at the destination node

of a train link or at a source node, and ends at the nearest origin node of another train/shop

link, with a time duration that is at least the time required to re-assign a given consist to

another train. An outbound waiting link (�w ∈ Lw out) starts and ends at the nearest

origin nodes of two different train links, or at an origin node and the dummy sink node,

without any time restriction. Figure 10 illustrates the division of waiting links. Shop links

are considered as train links, with respect to the definition of inbound/outbound waiting

links.

3.4 LAP Model

3.4.1 Notations

s: consist travel plans : a list of trains in LAP solution that can be pulled by the same

locomotive consist.

k: a certain type of locomotive with several parameters, e.g., the horsepower hpk. kr, kc:

the subtype of k for regular/critical.

K: the set of types of locomotives.

ns
k represents the number of locomotives in type k belongs to the consist travel plan s ∈ S.

nspare

k,v represents the number of spare locomotives in type k in start node v ∈ V src.

ds� = 1 if train link � ∈ LT belongs to consist travel plan s, 0 otherwise. Note that ds� is not

a decision variable, but an attribute of consist travel plan s.

cap(�shop) = upper bound of critical locomotives that can be maintained in shop link �shop ∈
Lshop.

TimeSrc(t),TimeDst(t) = the start and end time (in days) of train t, counted from the start

time of LAP scheduling period.

3.4.2 Variables.

We use three sets of variables:

zs = 1 if consist travel plan s is selected, 0 otherwise.

xneed

kv = number of additional required locomotives of type k at source node v ∈ V src in

order to be able to assign adequate locomotives to all trains.

xloco

k� = 1 if locomotive k goes through link � ∈ LW ∪ LD ∪ Lshop, 0 otherwise.
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3.4.3 Objective

The objective of LAP is to minimize the total number of locomotives required, with the

lowest consist busting occurrences. Since the two components are poles apart, we make the

compromise of the objective:

min
∑

�∈ω−(vsink)

∑
k∈K

penalk · xloco

k�

+
∑
�∈LD

∑
k∈K

penalk · xloco

k�

+
∑

v∈V src

∑
k∈K

penalk x
need

kv

+
∑
s∈S

∑
k∈K

ns
k zs (37)

3.4.4 Constraints

∑
s∈S+

v

ns
k zs +

∑
�w∈ω+(v)

xloco

kLw +
∑

�w∈ω+(v)

xloco

k�D − xneed

kv

≤ nspare

k,v k ∈ Kr, v ∈ V src (38)∑
s∈S+

v

ns
k zs +

∑
�w∈ω+(v)

xloco

kLw +
∑

�w∈ω+(v)

xloco

k�D

≤ nspare

k,v k ∈ Kc, v ∈ V src (39)∑
�∈ω−(vsink)

xloco

k� ≤ nk k ∈ K (40)
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∑
s∈S+

v

ns
k zs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

k�

=
∑
s∈S−

v

ns
k zs +

∑
�w∈ω−(v) ∩ (Lwait∪LD)

xloco

k�

v ∈ V \ (V src ∪ vsink ∪ δ+(Lshop)
)
,

k ∈ Kr ∪Kc (41)∑
s∈S+

v

ns
kr zs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

kr�

=
∑
s∈S−

v

ns
kr zs +

∑
�∈ω−(v) ∩ Lshop

xloco

kc�

+
∑

�∈ω−(v) ∩ (Lwait∪LD)

xloco

kr�

v ∈ δ+(Lshop), k = {kr, kc} ∈ K (42)∑
s∈S+

v

ns
kzs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

k�

=
∑
s∈S−

v

ns
kzs +

∑
�∈ω−(v) ∩ (Lwait∪LD)

xloco

k�

v ∈ δ+(Lshop), k ∈ Kc (43)∑
s∈S+

v

ns
k zs ≤

∑
�w∈ω−(v) ∩ Lwait

xloco

k�

v ∈ V \ (V src ∪ vsink ∪ δ+(Lshop)
)
,

k ∈ Kr ∪Kc (44)∑
s∈S+

v

ns
kr zs ≤

∑
�∈ω−(v) ∩ Lshop

xloco

kc� +
∑

�∈ω−(v) ∩ Lwait

xloco

kr�

v ∈ δ+(Lshop), k ∈ K (45)
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∑
s∈S+

v

ns
kzs ≤

∑
�∈ω−(v) ∩ Lwait

xloco

k�

v ∈ δ+(Lshop), k ∈ Kc (46)∑
s∈S

ds� · zs = 1 � ∈ LT (47)

∑
k∈K

xloco

kc�shop ≤ cap(�shop) �shop ∈ Lshop (48)

∑
k∈K

xloco

kLw = 0

�w ∈ Lw in \ ω+(V src) : time(�w) < dwell loco. (49)

Constraints (38), (39), and (40) allows the model to use additional locomotives xneed

kv

for each source node to guarantee the feasible solution. Constraints (41), (42) and(43) are

the flow conservation constraints except for the source and dummy sinking nodes. Note

that critical locomotives are relabelled to regular after the maintanceshop process. This

relabelling will be taken care thanks to special flow conservation constraints at the shop end

nodes in the proposed LAPmodel. In addition, the flow conservation constraints above allows

that two consist travel plans are connected directly to reuse (part of) the same locomotives.

Constraints (44), (45), (46) guarantee to avoid this issue. Constraints (47) limit each train

to be covered by one and only one consist travel plan. Constraints (48) guarantee the limit

of shop capacity. Constraints (49) guarantee the minimum time for locomotives process

between two consecutive consist travel plans.

3.5 Solution Process

3.5.1 CG Decomposition

The model we proposed has a warm start with a limited number of consist travel plans as

a initial solution. The additional improving consist travel plans are generated by a consist

travel plan generator, so-called Pricing Problem (PP) (Chvátal et al. [20]) corresponding

to the Restricted Master Problem (RMP) representing the original model. Each iteration

RMP gets its LP solution, the dual values and a source node are passed to PP, which

generate an optimal consist travel plan (column) with negative reduced cost and add it back

to RMP for next iteration. The CG process continues until PP can not find any column

with negative cost, and then RMP will get the ε-optimal solution of ILP. The details of this

column-generation (CG) decomposition process are available in our previous paper [34].

In the CG decomposition process, we get the optimal solution but the computational
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time is still high with the largest data sets. By the study of the pricing problem, we find out

two potential areas for improvements.

First one is that for each pricing problem, even with a given origin node, it need to check

the whole time-space network. Second and the most important area is, to stop the CG

process with the optimal solution after the last solution with negative reduced cost, we need

to check the whole origin node set to confirm that each choice has no new column generated.

For the two potential improvements we proposed two enhanced processes for LAP model

in next two sections.

3.5.2 Enhanced Pricing Problem: Preprocessing for Conflict

Graph

For the first area described above, we provide two ways for the improvement of reductions:

the first one is to cut off the redundant links from the time-space network architecture for

the pricing problem, and the second one is to add cuts into the pricing problem that un-

connectable trains are mutual exclusive. Both ways need for a key point: the conflict graph

for trains.

Similar to Barber et al. [13], the conflict graph of LAP is the set of trains that can be

connected by the waiting links, i.e., those trains can be assigned to a consist travel plan or

consist travel plan.

Reduce Network Architecture The pricing problem of LAP needs the input of the

whole time-space network and the initial starting node which actually is the source of a

selected train (link). By the given train link, we can find out that not the whole network

transferred from RMP is needed by PP, we can remove part of the links (train links and

waiting links) to reduce the network size so that reduce the size of PP. It is a three-step

process.

Step 1: Restricted Network Architecture for Master and Pricing Problems In

our previous paper, and also in Section 3.3, one of the two types of waiting links, the so-called

An inbound waiting link , has two lower bounds for the time duration in the master and

pricing problem: on one hand, in RMP, it should be no less than 2 hours, with respect to

the time consumption for consisting busting process; the other hand, in PP, the lower bound

is only 1 hour, which is the lowest time duration for the inbound waiting link.

During the processing for LAP, which the input is only the given scheduled trains, we

generate the waiting links for each given train t ∈ T :
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Figure 11: Preprocessing: Reduce Network Architecture
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1. from train t, find the next nearest train t′ in the same station with at least 1 hours

time later, generate a waiting link �′ from t to t′, e.g., in Figure 11(a), the waiting link

connects trains t1 to t3, and t2 to t3.

2. if t′ is at least 2 hours later than t, e.g., waiting link connects trains t1 to t3, stop.

3. otherwise find the next nearest train t” in the same station with at least 1 hours time

later, generate another waiting link �” from t to t”, e.g., the new waiting link connects trains

t2 to t4.

4. connect the nearest pair of source nodes of the two outbound trains, e.g., waiting link

connects trains t3 to t4.

We can see that, if we generate both �′ and �”, e.g., from trains t2 to t3, t2 to t4, and

from t1 to t3, there exist transitive links which means redundancy. And since in RMP, we

only use the inbound waiting links no less than 2 hours, in PP we use the time limit of 1

hour, we can remove the transitive links for different environment to reduce the size of the

network. So in Figure 11(b), we get the reduced network for RMP, and in Figure 11(c), we

get the reduced network for PP.

Step 2: Time Confliction The first step is easy, that the train (links) that has time

conflict with the initial train should be removed. As the Figure 12 shows: in Figure 12(a),

there is the original time-space network, the input train is t2. So the time bound can be

set to the arrival time of t2 plus the inimical connection time for consist process, as the red

vertical dash line shows. In Figure 12(b), the trains that conflict with train t2 are detected:

t1, t3, t4.

Step 3: Connection Confliction The second step is that based on the network from step

1, check the connection of any train links, so we can remove the trains that are un-reachable

from the given initial train. We develop an algorithm to generate the conflict graph, as shows

in the Algorithm 1.

Based on the algorithm, we detect that in the network in Figure 12(c), train t7 is un-

reachable so can be removed. The final reduced time-space network (conflict graph) for PP

which origin is train t2 is showed in Figure 12(d). We also noticed that some conflict graphs

are subset of other one. Those conflict graphs are redundant and will be removed in the

pre-process.

3.5.3 Enhanced PP: Multiple Column Generation

In normal CG process, the pricing problem (PP) uses the same data set of RMP and this

dual value set to get the optimal solution. In our LAP model, it means PP has the flexibility
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Figure 12: Preprocessing: Reduce Network Architecture
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Algorithm 1 Algorithm for Preprocessing: Conflict Graph

Require: time-space network G = (V, L), L = LT ∪ LW

Require: MAP{� : LrightHandConnected
� }

1: MAP{� : LtrainConnectable
� } ← ∅

2: MAP{� ∈ LT : LtrainConnectable
� } ← ∅

3: function getConnectableTrains(�)
4: if � ∈ KEY (MAP{� : LtrainConnectable

� }) then
5: do nothing
6: else if src(�) == DummySinkNode then
7: MAP{� : LtrainConnectable

� } ← [� : ∅]
8: else
9: for all �′ ∈ V alue

(
MAP{� : LrightHandConnected

� }, �
)
do

10: getConnectableTrains(�′)
11: LtrainConnectable

� ←
12: LtrainConnectable

� ∪ {�′} ∪ V alue
(
MAP{� : LtrainConnectable

� }, �′)
13: end for
14: MAP{� : LtrainConnectable

� } ← [
� : LtrainConnectable

�

]
15: end if
16: end function
17: for all � ∈ L do
18: getConnectableTrains(�)
19: if � ∈ LT then
20: MAP{� ∈ LT : LtrainConnectable

� } ←
21:

[
� : V alue

(
MAP{� : LtrainConnectable

� }, �)]
22: end if
23: end for
24: return MAP{� ∈ LT : LtrainConnectable

� }

to choose any train source node as the origin to build the consist travel plan as the column

for RMP. But, it take a very long time for the solution for only one column. So in our

original LAP with CG and the modified version in Section 3.5.2 we choose to fix the origin

node of PP to limit its flexibility so as to speed up the solution time. The following issue

is we have to check the whole round robin order of the origin node set to stop CG process

properly.

Based on the idea of conflict graph we discussed, we have another choice: instead of

fixing the origin node in round robin, we allow PP to select one reduced sub-network, and

create an optimal column from it. So if PP can not generate a new column with negative

reduced cost, the CG process stops.

In addition, we allow PP to consider the whole network with conflict graphs, and generate

a column with reduced cost from each graph. In those generated columns, one is the best

of the total network, and each of the others is locally best in its conflict graph. Although
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it still a long time for PP, the average time for each column is relatively short. So this so-

called Multi-CG model has these new key features. First it creates a set of maximal reduced

networks, that is, the subnetworks cover all the trains, but no subnetwork can be covered by

another. Then it allows the subnetwork to have intersections. Finally, there is at most one

source node, but multiple destination nodes allowed per subnetwork.

Variables

srcv = 1 if a consist travel plan under construction starts at node v, 0 otherwise, for

v ∈ δ−(LT
c ). And same situation is applied to dstv for its end node.

x� = 1 if the link � ∈ LT ∪LW belongs to the path supporting any of the consist travel plans,

0 otherwise.

nk
� : amount of locomotive flow of type k through � ∈ LT ∪LW . Note that in this PP, nk

�t > 0

iff x�t = 1, but no such limit for nk
�w . These decision variables work for consist travel plan

assembly for each maximum clique.

Note that the flow decision variables x� and nk
� have no path indices, for that each path is

source node-disjoint and so independent.

C represents the set of conflict graph c.

Objectives
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cost =
∑

k∈Kr∪Kc

∑
�∈ω−(vsink)∩LW

nk
�

−
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(41)
kv ·

⎛
⎝ ∑

�∈δ−(v)

nk
� −

∑
�∈δ+(v)

nk
�

⎞
⎠

−
∑
k∈Kr

∑
v∈δ+(Lshop)

u
(42)
kv ·

⎛
⎝ ∑

�∈δ−(v)

nk
� −

∑
�∈δ+(v)

nk
�

⎞
⎠

−
∑
k∈Kc

∑
v∈δ+(Lshop)

u
(43)
kv ·

⎛
⎝ ∑

�∈δ−(v)

nk
� −

∑
�∈δ+(v)

nk
�

⎞
⎠

+
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(44)
kv ·

∑
�∈δ+(v)

nk
�

+
∑

v∈δ+(Lshop)

u
(45)
k,v ·

∑
�∈δ+(v)

nk
�

+
∑

v∈δ+(Lshop)

u
(46)
k,v ·

∑
�∈δ+(v)

nk
�

−
∑
�∈LT

u
(47)
� · x�. (50)

Constraints
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∑
v∈δ−(LT∩c)

srcv ≤ 1 c ∈ C (51)

∑
v∈δ+(LT∩c)

dstv =
∑

v∈δ−(LT∩c)
srcv c ∈ C (52)

∑
�∈ω+(v)

x� −
∑

�∈ω−(v)

x� = −dstv

v ∈ δ+(LT ∩ c), c ∈ C (53)∑
�∈ω+(v)

x� −
∑

�∈ω−(v)

x� = srcv v ∈ δ−(LT ) (54)

∑
�∈ω+(v)

x� −
∑

�∈ω−(v)

x� = 0

v ∈ V ∩ c \ (δ+(LT ) ∪ δ−(LT ) ∪ V src ∪ vsink
)

c ∈ C (55)∑
�∈ω−(v)&� �∈LT

x� = 0 v ∈ V src (56)

∑
�∈ω+(vsink)&� �∈LT

x� = 0 (57)

x� ≥ srcδ+(�) � ∈ LT (58)

x� ≥ dstδ−(�) � ∈ LT (59)∑
k∈Kr

hpk · nk
� +

∑
k∈Kc

hpk · nk
� ≥ x� · hpt

�(≡ t) ∈ LT (60)

55



∑
k∈Kr∪Kc

nk
� ≤ M · x�

� ∈ L \ (ω+(V src) ∪ ω−(vsink)
)

(61)∑
k∈Kr∪Kc

∑
�∈ω−(v)∩ω+(v′)∩LW

nk
� ≤ M · srcv

v ∈ V \ V src, v′ ∈ V src (62)∑
k∈Kr∪Kc

∑
�∈ω−(vsink)∩ω+(v)∩LW

nk
� ≤ M · dstv

v ∈ V \ vsink (63)∑
�∈ω−(v)∪LW∪LT

nk
� =

∑
�∈ω+(v)∪LW∪LT

nk
�

v ∈ V \ (V src ∪ vsink) , k ∈ Kr ∪Kc (64)

consist sizemin ≤
∑
k∈Kr

nk
� +

∑
k∈Kc

nk
� ≤ consist sizemax

l ∈ LT . (65)

Constraints (51) guarantee that at most 1 source node can be selected for each conflict

graph. Constraints (52) limit exactly one destination node for each source node.

Constraints (53) , (54) , and (55) are the flow conservation constraints for train source

nodes, train destination nodes, and other nodes (except source nodes and dummy sink

node), respectively. Constraints (56) & (57) avoid the path to start from a waiting link of

the station source node, or reach the dummy sink node, so to prohibit to create a path

without any train link. Constraints (58) guarantee the if a source node is selected, the

train starts from it must be selected, for that train links are node-disjoint. Constraints (59)

work similar to (58), for the destination nodes. This flow conservation set from (53) to (59)

, generate the paths which require for the locomotives assigned for the next step.

Constraints (60) satisfy the power requirement of selected trains. Constraints (61), (62)

and (63) avoid to assigned locomotives to the trains out of the paths selected. Constraints

(64) are normal flow conservation constraints. Constraints (65) set the minimum and

maximum number of locomotives for each consist.
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# Trains Model LP Obj. Total Time ILP Obj.
# Columns

Round Loc. Req. GAP(%)
Generated Selected

7-day
862-train

LAP-SCG
630,182

20h19m36s
637,980 2,207 516 4 962 1.24

LAP-SCG+ 11h03m21s
LAP-MCG 630,898 1h36m02s 635,500 1,543 506 155 961 0.73

+100
trains

LAP-SCG
675,010

23h22m53s
683,280 2,387 534 4 1,014 1.23

LAP-SCG+ 13h32m22s
LAP-MCG 674,918 2h13m05s 681,360 2,027 521 203 1,006 0.95

+200
trains

LAP-SCG
729,404

26h34m12s
737,320 2,507 541 4 1,129 1.09

LAP-SCG+ 14h38m55s
LAP-MCG 730,585 3h08m55s 735,520 2,325 533 233 1,109 0.68

14-day
1,750-
train

LAP-SCG
1,057,813

44h41m53s
1,077,100 1,835 1,294 4 1,289 1.82

LAP-SCG+ 26h29m31s
LAP-MCG 1,057,949 11h18m55s 1,071,300 1,263 1,284 127 1,290 1.26

+100
trains

LAP-SCG
1,113,992

50h58m21s
1,126,780 1,654 1,355 4 1,350 1.15

LAP-SCG+ 28h19m45s
LAP-MCG 1,113,926 12h50m21s 1,129,860 1,544 1,355 155 1,350 1.43

+200
trains

LAP-SCG
1,165,227

56h19m41s
1,178,880 1,853 1,345 4 1,464 1.17

LAP-SCG+ 31h17m56s
LAP-MCG 1,164,679 21h27m17s 1,185,140 1,727 1,317 173 1,481 1.76

Table 3: Computational Comparison of the Different CG Model/Algorithm

3.6 Numerical Results

The primary objective of this study is to provide a new CG process for optimization model

for real world locomotive assignment problem. We apply the train schedule and network

structure from CPR, except for the larger data sets, that with a set of artificial trains.

3.6.1 Data Instances

There are 9 different types of locomotives, which are doubled by the sub-types of regular

and critical ones.

The data set comes from two time period: one week and two weeks which CPR prefers

for that a normal cross-continental train takes more than 5 day, and a round trip within 2

weeks. The artificial 100 and 200 trains are added to the basic data sets of 862-train schedule

in 7 days and 1,750-train schedule in 14 days, so for more and larger data sets for test.

All test scenarios are solved by CPlex 12.6.1 in a computer with 40-cores, 1TB memory.

To get the ε-optimal solution of ILP from optimal LP solution, we apply a simple rounding

off procedure. In the result below, Table 3 shows that the gap between these two values are

very small and our ε-optimal ILP solution has good quality.
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# Trains Model
Train String Size Avg. Loc. Loc. Use In-Consist Idle Time HP Var. Loc. Fleet
Avg. Max. Active Time Rate (%) Average Maximum per Train Size

7-day
862-train

Original 1.65 10 3d05h10m 45.9 9h38m 3d18h00m 199.3 962
Multi-CG 1.70 11 3d04h29m 45.5 9h31m 3d14h53m 191.4 961

+100
tr

Original 1.77 8 3d03h53m 45.2 9h52m 3d16h55m 178.4 1,014
Multi-CG 1.85 10 3d04h34m 45.6 8h58m 3d14h53m 187.2 1,006

+200
tr

Original 1.92 10 3d02h34m 44.4 9h47m 3d20h43m 174.8 1,129
Multi-CG 1.99 11 3d04h38m 45.6 9h22m 3d14h53m 180.6 1,109

14-day
1,750-train

Original 1.35 13 6d10h03m 45.9 18h53m 8d03h19m 106.7 1,289
Multi-CG 1.36 16 6d15h20m 47.4 18h27m 8d03h19m 100.9 1,290

+100
tr

Original 1.37 18 6d12h57m 47.3 16h25m 7d04h10m 92.9 1,350
Multi-CG 1.37 20 6d16h38m 47.8 14h47m 6d16h33m 94.3 1,350

+200
tr

Original 1.45 18 6d12h04m 46.4 18h07m 8d03h19m 93.1 1,464
Multi-CG 1.48 20 6d15h24m 47.7 17h05m 8d03h19m 94.6 1,481

Table 4: Characteristics of LAP Solutions

3.6.2 Computational Comparison of the Different CG Models

Table 3 provides the solution of these scenarios from three LAP models: original (marked

as LAP-SCG in the table), PP with conflict graph (marked as LAP-SCG+), and multiple

column generated (marked as LAP-MCG, 10 columns generated per call of PP).

The columns in Table 3 provides the data set characteristics, the objective value and

total computational time for LP and ILP, the number of consist travel plans columns that

PP generated, and selected by the final solutions. The column ”rounds ” shows how many

cycles to check all the possible origin nodes. The second last column shows the total number

of locomotives needed. The last column provides the solution quality, i.e., the gap between

the optimal solution of LP and the ε-optimal solution of ILP.

Table 3 shows that pre-process the initial network reduce computational time by half.

The multi-CG process reduce the total by another half, without touching the quality of final

solution.

3.6.3 Characteristics of LAP Solutions

Table 4 lists several aspects of results, for original and multi-CG LAP models. LAP with

conflict graph is excluded because its result is the same as the original one. The difference of

the results of two models are basically the default process of LP to ILP solution by CPlex.

The locomotive usage rates are less than 50%, because first, we set 20% of locomotives to

undergo the maintenance shop process, and second, the compromise of locomotive usage and

the locomotive relocation process by deadheading.

58



3.6.4 Analysis of Multi-CG Architecture
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# Columns

Figure 13: Comparison: Converge Rate

The computational time saving comes from two aspects. The first one is the higher

convergence rate per each PP call. Comparing to the original model which fix the source

node to each PP, the PP of Multi-CG model search globally form the original node of entire

network, so to generate the global optimal column to feed back to RMP. Figure 13 shows

the different converge rate of both model, by the curves of objective value over the number

of columns added to RMP. The Multi-CG model uses less columns to reach the optimal

solution for the global optimal columns from PP.

Secondly, the Multi-CG model uses less average time per column showed in Figure 14(b),

for that its PP generate 10 columns, even in Figure 14(a) each PP takes more time.

3.7 Conclusion

We propose in the paper a new CG process with multiple columns generated by each

pricing problem call. Applying the new CG process to the original LAP can save 60-93% of

computational time without reducing the quality of final solution. This new multi-CG

process may be applied to general network flow models which has potential network

decomposition into several overlapped sub-networks.
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Chapter 4

Minimizing Fuel Consumption for

Freight Trains

H. Tian and B. Jaumard. submitted for publication, 2017.

4.1 Introduction

Freight train transportation is more important in logistics, for the energy efficiency by the

low friction over the rail. Today to reduce the energy consumption additionally is a key

topic in railway industry for lower emission for global warming and also fuel cost saving.

The optimization of freight train energy/fuel consumption is basically influenced by two

factors: train running time & speed by railway scheduling and the driving strategy. In

fact, the train fuel is consumed by its consist which is a group of locomotives to tract the

train. This paper focuses on the first part, to optimize freight train fuel consumption by an

optimization model for locomotive assignment with train (re)scheduling.

Based on our previous works Jaumard et al. [33][36][34][32], this paper integrates the

train fuel consumption model to previous LAP model, for reducing the energy usage for

the locomotive fleet on given freight train schedule. Further more, we notice that if some

trains can make adjustment to their scheduling, e.g., late departure, early arrival, or shift

without influencing the goods transportation much, the request of locomotives and the fuel

consumption should be reduced greatly. So we investigate the combination of LAP model,

fuel consumption model, and the train (re)scheduling feature together so as to reduce the

total costfuel consumption in railway operation.

This paper is designed as follows. In Section 4.2, we take a review of the literatures for

LAP model with and without time window, and fuel consumption model to evaluate train

energy consumption. Section 4.3 generally describe the enhanced LAP model. Section 4.4
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gives the details of enhanced LAP model with column generation (CG) decomposition over

relaxation of time window. In Section 4.5, the fuel consumption model is discussed and

integrated to LAP model. and in Section 4.6, we provides the numerical results and their

analysis.

4.2 Literature Review

Here we lists the review of the works on exact mathematical models in locomotive assignment

problem area. The works in heuristics can be checked the survey of Piu et al. [45]. Here we

do not repeat the basic concepts and rule in LAP and railway industry which was described

in our previous papers Jaumard et al. [33][36][34][32].

Ziarati et al. [55] solve LAP as a classical integer multi-commodity network flow problem

with the nonlinear part for maintenance constraints, i.e., maintain the locomotive regularly

in shop site. They use column generation (CG) format to solve the model. Ziarati et

al. decompose the full problem into sub-problems of 2 or 3 days for feasible solution to avoid

the scalability issue. Rouillon et al. [48] improve Ziarati et al. [55] with different branching

methods and search strategies by a branch-and-price algorithm. Ahuja et al. [9] developed

a MILP model of LAP also as a locomotive flow model that similar to the one of Ziarati et

al. [55], but assuming that the train schedule and the locomotive assignment plan is cyclic

every week. However, they do not consider the maintenance process, neither for the consist

busting issue.

The models of Ziarati et al. [55] and Ahuja et al. [10] can solve certain LAP problem but

with the high rate of consist busting (the medium rate is 50%) which means the solution

intends to break the consist and assign the locomotives to different trains. Then their MIP

models have severe scalability issues to solve the problems that the railway industry really

needed. So Vaidyanathan et al. [54] create a consist-based LAP model. A pre-processing

algorithm is used to generate configurations of consists. The model assigns consists instead

of assigning locomotives. The consist-based model requires greater numbers of configuration

types of consist so for longer computational time with larger data instance. In addition

Vaidyanathan et al. [54] do not consider the maintenance constraint.

Other research works are available for problems similar to LAP. Cordeau et al. [22] solved

the locomotive and car assignment in passenger transportation, with an exact model based

on the Benders decomposition approach without maintenance constraint. Fügenschuh et

al. [26] focused on locomotive and car cycle scheduling problem with time window without

maintenance but allow the train delay within given time window. Cacchiani et al. [17]

provide two ILP models on the train unit assignment problem in passenger transportation
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by combination of passenger cars and supported locomotive for certain trips, without the

maintenance constraint. One model is solved by linear programming (LP) relaxation based

heuristic, the other by Lagrangian relaxation.

Our previous work Jaumard et al. [33][36][34][32] propose a consist travel plan

(previously called train string) based optimization model which considers locomotive

maintenance constraint and consist busting issei. Using our multi-column generation

algorithm, the computational time is greatly reduced to several hours to solve the largest

2-week train schedule with 1,750 scheduled trains and 9 types of locomotives over entire

Canada Pacific Railway network.

To calculate train fuel consumption, there are several models available based on the Davis

Formula in 1920s: Radford [47], Ghoseiri et al. [28], Condie [21], Koç et al. [39] [40] and also

in AREMA manual [11]. We provide the details in Section 4.5.

4.3 LAP Model

We next develop the LAP optimization model we propose for the locomotive assignment,

with the consideration of the optimization of total fuel consumption. In order to alleviate

the presentation, we describe it without the legacy trains.

4.3.1 Notations

T is the set of trains t in given schedule.

Ct ∈ C is set of trains other than t ∈ T , that there is a time constraint between t and

t′ ∈ Ct for their departure time. ct,t′ represents the value of this time, usually negative.

Dt ∈ D is set of trains other than t ∈ T , that there is a time constraint between t and

t′ ∈ Dt for their arrival time. dt,t′ represents the value of this time, usually positive.

S is the set of consist travel plans, where a consist travel plan s ∈ S defines a sequence of

trains (original or rescheduled train occurrences) led by the same locomotive consist. Note

that a consist travel plan also store the departure/arrival time of rescheduled train.

S+
v is the set of consist travel plans departing from node v, S−

v is the set of consist travel

plans arrive at node v K is the set of locomotives, indexed by k, which represents a certain

locomotive. Each locomotive k has several parameters, e.g., the horsepower hpk, and the

subtype of regular/critical (kr ∪ kc ∈ k).

ns
k represents number of locomotives of type k assigned to the consist travel plan s ∈ S.

dst = 1 if train t ∈ T belongs to consist travel plan s, 0 otherwise.

SrcT imest the original or rescheduled departure time of t ∈ T belongs to consist travel plan
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s. If train t ∈ T does not belongs to consist travel plan s, SrcT imest = 0.

DstT imest the original or rescheduled arrival time of t ∈ T belongs to consist travel plan s.

If train t ∈ T does not belongs to consist travel plan s, DstT imest = 0.

Note that dst , SrcT imest and DstT imest are not decision variables, but attributes of consist

travel plan s.

Note that the rescheduled consist travel plan r equals to consist travel plan s so all s above

can be replaced by r.

nspare

k,v = number of spare locomotives of type k in source node v ∈ V src

cap(�shop) = upper bound of critical locomotives that can be maintained in shop link

�shop ∈ Lshop.

In the multi-commodity graph G = (V, L), we designate by ω(v) (resp. ω(V ′) with

V ′ ⊆ V ) the set of incident links to v (resp. to a node of V ′). In addition, ω+(v) (resp.

ω−(v)) denotes the set of incident outgoing (resp. incoming) links of v. For a given link �,

δ+(�) denotes the destination endpoint of �, and δ+(L′), L′′ ⊆ L denotes the set of destination

endpoints of the links of L′. Similarly, δ−(�) and δ−(L′), L′′ ⊆ L denote the origin endpoint(s)

of � and of the links of L′, respectively.

4.3.2 Variables.

We use two sets of variables:

zs = 1 if string s is selected, 0 otherwise.

xloco

k� represents the number of locomotive k goes through link � ∈ LW ∪ LD ∪ Lshop.

4.3.3 Objective

The primary objective is to minimize the total fuel consumption of the locomotives in

operation, then for the number of consist busting and the size of the locomotive fleet. So

we modified the previous objective of LAP, converting the cost of consist busting and

locomotive lease to certain fuel requirement that marked as the penalties for each segment.

(i) penalty in fuel requirement of the number of total locomotives in operation; (ii)

penalty in fuel requirement of the number of consist travel plans ; (iii) the fuel consumption

of each consist travel plan.
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min
∑

�∈ω−(vsink)

∑
k∈K

penal
loco · xloco

k� +
∑
s∈S

∑
k∈K

penal
consist bust · ns

k zs

+
∑
s∈S

FuelCosts zs

(On this stage, we do not include of the fuel consumption model yet, so the objective is

simplified as below.)

Obj#1: min
∑

�∈ω−(vsink)

∑
k∈K

xloco

k� +
∑
s∈S

∑
k∈K

zs (66)

penal
loco represents the lease and operation cost of one locomotive in fuel requirement.

penal
consist bust represents the consist busting cost for each locomotive in fuel requirement.
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4.3.4 Constraints

∑
�∈ω−(vsink)

xloco

k� ≤ nk k ∈ K. (67)

∑
s∈S+

v

ns
k zs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

k�

=
∑
s∈S−

v

ns
k zs +

∑
�w∈ω−(v) ∩ (Lwait∪LD)

xloco

k�

v ∈ V \ (V src ∪ {vsink} ∪ δ+(Lshop)
)
, k ∈ Kr ∪Kc (68)∑

s∈S+
v

ns
kr zs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

kr�

=
∑
s∈S−

v

ns
kr zs +

∑
�∈ω−(v) ∩ Lshop

xloco

kc� +
∑

�∈ω−(v) ∩ (Lwait∪LD)

xloco

kr�

v ∈ δ+(Lshop), k = {kr, kc} ∈ K (69)∑
s∈S+

v

ns
kzs +

∑
�∈ω+(v) ∩ (Lwait∪LD)

xloco

k� =
∑
s∈S−

v

ns
kzs +

∑
�∈ω−(v) ∩ (Lwait∪LD)

xloco

k�

v ∈ δ+(Lshop), k ∈ Kc. (70)∑
s∈S

dst · zs = 1 t ∈ T (71)

∑
k∈K

xloco

kc�shop ≤ cap(�shop) �shop ∈ Lshop (72)

∑
s∈S

SrcT imest · zs −
∑
s∈S

SrcT imest′ · zs ≤ ct,t′ t ∈ T, t′ ∈ Ct (73)

∑
s∈S

DstT imest · zs −
∑
s∈S

DstT imest′ · zs ≥ dt,t′ t ∈ T, t′ ∈ Dt (74)

Constraints (67) guarantee that the solution will not exceed the total locomotives available

for each type. Constraints (68), (69) and(70) are the flow conservation constraints for normal

nodes and shop end nodes, excluding the source and dummy sink nodes. Note that critical

locomotives are relabelled as regular after completing the maintenance process at a shop

node. This relabelling will be taken care thanks to special flow conservation constraints at

the shop end nodes in the proposed LAP model. Constraints (71) guarantee that for each

original train, there should be one and exactly one consist travel plan in the locomotive

assignment that covers it or one of its corresponding train occurrences. Constraints (72)

take effective to limit the number of critical locomotives at the same time for maintenance

within the shop capacity. Constraints (73) and (74) are the conflict-free source/dsetination

time constraints, which will be discussed in Section 4.4.2.
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4.4 Pre-processing for Conflict-free Consist Travel

Plans with Rescheduled Trains

RMP deals with a set of consist travel plans, where a consist travel plan is defined by a path,

such that the first and last links are associated with (rescheduled) train links. Difference

with the past (add a ref. later) is that we allow trains to have a different departure/arrival

time. While we limit the number of consist travel plans, we still allow all possible starting

nodes for the consist travel plans, i.e., among the origin nodes of the trains. Note that that

set includes not only the original source nodes of the trains (as originally scheduled), but

also, all the new origin nodes of the rescheduled trains. For each train, only one origin node

will be selected.

We have alternative choice to relax the train schedule for LAP problem to reduce the

energy consumption. For the pricing problem, we allow to reschedule train(s) for better

usage of locomotives. That means to reduce the total number of locomotives, avoid some of

the consist busting and deadheading operations, and to adjust train speed to save the total

fuel/energy consumption within the give time period.

4.4.1 Train Rescheduling Allowed within LAP

We set some limitations for train rescheduling in LAP. Firstly, the time length of a

rescheduled train should not exceed ±20% of the original length. Secondly, the adjustment

of departure/arrival time should not exceed 6 hours.

4.4.2 Avoidance of Train Rescheduling Conflict

For LAP problem, a train schedule is given without conflict. But with train rescheduling

the new model may cause train conflicts with new deaprture/arrival times. We propose an

algorithm to avoid potential train conflict during the pre-processing of the given schedule.

Firstly, for train rescheduling, all existing cross point should not be changed in the time-space

network of train schedule. As Figure 15(a) shows, we plan to reschedule train t0 which meets

train t1 between station 3 & 4. Train t0 can be divided into three parts, and the middle part,

between station 3 & 4, should be kept so that the cross point with t0 is untouched. Then,

as Figure 15(b) shows, from the maximum speed limit of the source station to station 4, we

get the latest departure time allowed for t0 rescheduling. The earliest departure time should

be set as a maximum allow time for a fixed time, e.g., 6 hours, or a ration of the time length

of t0, e.g., 15%. The similar process will be applied to the arrival time rescheduling. If there

are multiple cross points to t0, we take the earliest one for departure time window, and the
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(d) Reschedule train without new cross point

Figure 15: Reschedule Train without Conflict
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latest one for arrival time window. With this pre-process applied to each train, we guarantee

that the train rescheduling will not touch the cross points with the given time windows.

In addition, rescheduled train may cause new crossing with other trains which are not

meet with the original train. So after the first step, there is another procedure to check

within the time windows of train t0, if there are trains depart or arrive without crossing

point but have the potential meet with rescheduled train. Figure 15(c) shows the for the

departure time of train t0, it can not exceed the time of another train that passing through

the same station, e.g., trains t2 and t3. The same condition is applied to the arrival time

window.

There is a more complex situation, as Figure 15(d) shows. The colored areas represent

the possible positions for t0 rescheduling. If another train have a departure/arrival node

inside, or even its possible time window has an overlap, e.g., t1 (and also t2) in the figure, t1

may meet t0 if one or both rescheduled. In order to avoid this kind of potential additional

cross point, a limit on departure/arrival time windows is not enough. A time constraint is

needed to set a minimal time period between the departure/arrival nodes of these two trains,

e.g., t0 and t1, to guarantee that with the maximum speed, t0 can not arrive the same station

before t1’s departure. This set of constraints will be applied to RMP.
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4.4.3 Multiple Consist Travel Plans Generator

Our pricing problem inhabit the multiple consist travel plans generation feature from our

previous work Jaumard et al. [33]. Now each train has its reduced network which includes all

the train links and waiting links it can connected to. And the conflict graph is the reduced

network that can not be a entire subset of any other reduced network. For each conflict

graph the pricing problem can generate at most one consist travel plan.

4.4.4 Notations and Variables

A consist travel plan is defined by a path, such that the first and last links are associated

with (rescheduled) train links.

In order for the PP to output a given number of consist travel plans, i.e., a set P of

paths, the PP must compute |P | train link disjoint paths, with each path being indexed by

p.

αsrc

�,v,p = 1 if train link � ∈ LT is selected by consist travel plan p ∈ P , with a train departure

at node v, 0 otherwise. Note that, if v = δ+(�), then departure of train � is modified wrt.

the original schedule.

αdst

�,v,p = 1 if train link � ∈ LT is selected by consist travel plan p ∈ P , with a train arrive

at node v, 0 otherwise. Note that, if v = δ−(�), then arrival of train � is modified wrt. the

original schedule.

Note that even the train is not rescheduled, it still has αsrc

�,v,p = 1 and αdst

�,v,p = 1 at its

source/destination node. In addition, we do not allow a train to connect directly to the

station source node or the dummy sink node.

p ∈ P represents the serial number assigned to a consist travel plan path.

x�,p = 1 if wait link � ∈ LW belongs to consist travel plan path p ∈ P , 0 otherwise.

srcv,p = 1 if consist travel plan path p under construction starts at node v, 0 otherwise, for

v ∈ δ−(LT
c ).

dstv,p = 1 if consist travel plan path p under construction ends at node v, 0 otherwise, for

v ∈ δ+(LT
c ).

nk,p: amount of locomotive flow of type k through consist travel plan path p ∈ P .

nsrc

k,v,p: amount of locomotive flow of type k from node v which is the source node of a consist

travel plan path p ∈ P .

ndst

k,v,p: amount of locomotive flow of type k to node v which is the destination node of a

consist travel plan path p ∈ P . Note these two decision variables are work for the objective

only.

d� represents the running distance of a train link.
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Each train link � ∈ LT has two set of nodes: V src

� for all available/connectable nodes within

�’s source area, and V dst

� within its destination area.

Correspondingly, Each node v ∈ V has two set of train links LT,src
v for all train links that can

be connected or rescheduled to it as the source node, and LT,dst
v for those by the destination

node.

4.4.5 Objective: Reduced Cost of the zs Variables

The objective of the pricing problem is the so-called reduced cost (if not familiar with linear

programming concepts, the reader is referred to, e.g., Chvátal et al. [20]) of the zs variables.

The s index in the master problem is replaced by consist travel plan path index p.

Firstly we set the reduced cost segment cost0 as the fix part that will not affected by

the objective of master problem:

cost0 =

∑
k∈Kr∪kc

⎛
⎝ ∑

v∈V \(V src∪{vsink}∪δ+(Lshop)))

u
(68)
kv ·

∑
p∈P

(
nsrc

k,v,p − ndst

k,v,p

)
+

∑
v∈δ+(Lshop)

u
(69)
kv ·

∑
p∈P

(
nsrc

k,v,p − ndst

k,v,p

)⎞⎠

+
∑
k∈Kc

∑
v∈δ+(Lshop)

u
(70)
kv ·

∑
p∈P

(
nsrc

k,v,p − ndst

k,v,p

)
+

∑
�∈LT

u
(71)
� ·

⎛
⎝∑

p∈P

∑
v∈V src

�

αsrc

�,v,p

⎞
⎠

−
∑
�∈LT

∑
�′∈C�

(u
(73)
�,�′ · (

∑
p∈P

∑
v∈V src

�

αsrc

�,v,p −
∑
p∈P

∑
v∈V src

�′

αsrc

�′,v,p))

+
∑
�∈LT

∑
�′∈D�

(u
(74)
�,�′ · (

∑
p∈P

∑
v∈V src

�

αsrc

�,v,p −
∑
p∈P

∑
v∈V src

�′

αsrc

�′,v,p)).

And so now the reduced cost, i.e., objective of pricing problem is:

cost1 = size(P )− cost0. (75)

Note the reduced cost is the sum of the multiple consist travel plans generated by the

pricing problem. However, there may be some of them with positive reduced costs. So in the

post process of PP, we calculate the reduced cost for each consist travel plan of the solution

and only add those with negative values. And also the stopping condition takes effect when

no column with negative reduced cost can be found by PP.
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4.4.6 Constraints

∑
p∈P

∑
v∈V src

�

αsrc

�,v,p ≤ 1 � ∈ LT (76)

∑
p∈P

∑
v∈V dst

�

αdst

�,v,p ≤ 1 � ∈ LT (77)

∑
v∈V src

�

αsrc

�,v,p =
∑

v∈V dst

�

αdst

�,v,p p ∈ P, � ∈ LT (78)

∑
p∈P

αsrc

�,v,p =
∑
p∈P

αdst

�,v,p = 0 � ∈ LT , v ∈ V src ∪ {vsink} (79)

∑
p∈P

∑
v∈V \V src

�

αsrc

�,v,p =
∑
p∈P

∑
v∈V \V dst

�

αdst

�,v,p = 0 � ∈ LT , (80)

∑
p∈P

∑
v∈V src

�

∑
�∈LT

αsrc

�,v,p ≥ 1 (81)

∑
p∈P

∑
v∈c

srcv,p ≤ 1 c ∈ C (82)

∑
p∈P

∑
v∈V

srcv,p ≥ 1 (83)

∑
v∈V

dstv,p =
∑
v∈V

srcv,p ≤ 1 p ∈ P (84)

∑
p∈P

srcv,p =
∑
p∈P

dstv,p = 0 v ∈ V src ∪ {vsink} (85)

srcv,p + dstv,p ≤ 1 p ∈ P, v ∈ V (86)

srcv,p ≤
∑
�∈LT

αsrc

�,v,p p ∈ P, v ∈
⋃
�∈LT

V src

� (87)

dstv,p ≤
∑
�∈LT

αdst

�,v,p p ∈ P, v ∈
⋃
�∈LT

V dst

� (88)

∑
�∈LT

αsrc

�,v,p +
∑
�′∈LT

αdst

�′,v,p ≤ 1 p ∈ P, v ∈ V (89)

⎛
⎝ ∑

�∈LT,src
v

αsrc

�,v,p +
∑

�∈ω+(v)∩LW

x�,p

⎞
⎠−

⎛
⎝ ∑

�∈LT,dst
v

αdst

�,v,p +
∑

�∈ω−(v)∩LW

x�,p

⎞
⎠

= srcv − dstv p ∈ P, v ∈ V \ (V src ∪ {vsink}) (90)
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∑
�∈LT,dst

v

αdst

�,v,p +
∑

�∈ω−(v)∩LW

x�,p + srcv ≤ 1

p ∈ P, v ∈ V \ (V src ∪ {vsink}) (91)∑
k∈Kr∪Kc

hpk · nk,p ≥
∑

v∈V src

�

αsrc

�,v,p · hpt p ∈ P, �(≡ t) ∈ LT (92)

∑
k∈Kr∪Kc

nk,p ≥ 2 p ∈ P, �(≡ t) ∈ LT (93)

nsrc

k,v,p ≤ M ∗ srcv,p v ∈ V, k ∈ K, p ∈ P (94)

nsrc

k,v,p ≤ nk,p v ∈ V, k ∈ K, p ∈ P (95)

nsrc

k,v,p ≥ nk,p −M ∗ (1− srcv,p) v ∈ V, k ∈ K, p ∈ P (96)

ndst

k,v,p ≤ M ∗ dstv,p v ∈ V, k ∈ K, p ∈ P (97)

ndst

k,v,p ≤ nk,p v ∈ V, k ∈ K, p ∈ P (98)

ndst

k,v,p ≥ nk,p −M ∗ (1− dstv,p) v ∈ V, k ∈ K, p ∈ P (99)

Constraints (76), (77), and (78) guarantee that for each train, it can be either not selected,

or selected without change, or selected with change of departure andor arrival time.

Constraints (79) prohibit any train start from the schedule plan beginning time or end in

the dummy sink node.

Constraints (80) prohibit train link � to rescheduled to the node out of the given

departure/arrival time window.

Constraints (81) guarantee that at least one train is selected.

Constraints (82) allow no more than 1 source node per conflict graph (the definition in

Section 4.4.3).

Constraints (83) guarantee that at least one consist travel plan should be generated.

Constraints (84) guarantee that for each consist travel plan path, there should be at most

one source node, at most one destination node, and should be in pair.

Constraints (85) prohibit the new consist travel plan start from the station source node, or

end in the dummy sink end. (They take effect for the flow conservation constraints (90) )

Constraints (86) avoid an almost-empty consist travel plan with only one node.

Constraints (87) & (88) guarantee that a consist travel plan starts from train origin and

ends at the train destination only.

Constraints (89) guarantee that for any node there is at most one train connected, inbound

or outbound. This constraints set prohibit at any node two train be directly connected.

Constraints (90) are the general flow conservation constraints.

Constraints (91) guarantee that for each node in the path, at most one link in, one link out.
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Constraints (92) assign enough power to each consist travel plan to satisfy the power

requirement of each train selected.

Constraints (93) guarantee each consist including no less than two locomotives for

operation safety.

Constraints (94) to (99) are the linearlization for the locomotive flow from source node and

to the destination node of each path of consist travel plan generated.

4.5 Fuel Consumption Model & Integration

4.5.1 Fuel Consumption Models

Fuel consumption model calculates for each consist travel plan s ∈ S, the fuel consumption

FuelCosts, depending on the speed and/or traveling time of all the trains in s.

Jaumard et al. [31] establish a freight train fuel consumption model which comes from

AREMA manual [11]. From their model, the rolling resistance (used in Condie [21], Radford

[47], Ghoseiri et al. [28] ), which is affected by train speed (and weight), has been studied

by Davis in 1920s as

R = A+B · V + C · V 2 (100)

whereR represents the train rolling resistance, V represents train speed, and three coefficients

A, B, and C represent the resistance not affected by speed, that affected by speed, and air

turbulence. Note that now we only consider the condition in flat ground and straight track

and constant speed.

Radford [47] calculate the train fuel consumption rate per hour as linearly to the train

horsepower:

F = a+ b · P (101)

where F is the fuel consumption rate in gal/hr, a is the constant fuel consumption for the

base load (Radford [47] uses 6 gallon/hour), P is the horsepower, and b is the proportional

fuel consumption rate to the horsepower.

Based on AREMA manual [11], the relation between the tractive effort R and horsepower

at a certain speed V without acceleration is:

R(lbs.) =
P (hp) · 308
V (mph)

(102)

74



in which 308 is 82% of 375 lb-miles per hour per hp, and 82% is the normal rate for modern

locomotive power for traction.

Since the traveling time equals to distance d divided by speed V , finally we get the fuel

consumption E in gal as

E(gal) =
F.d

V

= a · d
V

+ b · P · d
V

= a · d
V

+ b · R · V
308

· d
V

= a · d
V

+ b(A+BV + CV 2)
d

308
(103)

There is another fuel consumption model for general vehicle types, used by Koç et

al. [39][40], Barth et al. [14], from the origin of An et al. [12].

Eh = λ(khNhV hd/v +Mhγhαd+ βhγhdv2) (104)

In this model, the fuel consumption of vehicle of type h is determined by two variables:

distance d and speed v, others are the coefficients specific to vehicle type h. The first part

of Eh is linear in the running time, the second part is linear directly in the speed s, but the

last part is quadratic in s.

Koç et al. [39] [40] apply this model to calculate the fuel consumption of a vehicle of

certain weight from one departure node to the destination node, and use it as a parameter

in the objective of the optimization model.

This fuel consumption model, comparing to the previous model from Jaumard et al. [31],

does not ignore the segment of linearly on the traveling time, but lack another segment

linearly on the speed. So their fuel consumption curve is not u-shape.

We plan to use the full model of equation (103) with all the four components. The value

of those coefficients can be found in AREMA manual [11] and Radford [47]:

We will use the parameter values suggested in Condie [21], which comes from [11]:

• A = 1.5 ·W + 18 ·N where

– N = number of axles

– W = weight of the train

• B = 0.05 ·W
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Table 5: Case Study’s Parameters

Type Parameter Value

Car Weight 30/90/131.5 tons

Car Canadian Streamlining coeff. 5.0

Loco. Weight 212 tons

Loco. Canadian Streamlining coeff. leading 24.0, trailing 5.5

Loco. Cross-sectional Area (a) 160 ft2

Train Number of Cars 75

Train Number of Locomotives 3

Train Number of axles N 6 for each locomotive

• C =
Ca · a′
10, 000

where

– Ca = Canadian Streamlining coefficient. It differs depending on whether the

equipment is leading or trailing.

– a′ = the cross-sectional area of locomotive or car in square feet

Figure 16 shows the fuel consumption rate calculated by this model, under different speed

for trains with 3 locomotives and 75 cars which has 3 different weights.
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Figure 16: Fuel Consumption Rate Vs. Speed for Train with 3 Locomotives and 75 Cars

Based on the model, we do a calculation using these three types of train, which have
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the total weight of 2,886-ton, 7,386-ton, and 10,498.5-ton, have the fuel consumption from

Montreal to Toronto (335 miles) showed in Figure 17.
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Figure 17: Total Fuel Consumption in Montreal-Toronto (335 miles)

In West Canada, the freight train usually has to travel through mountain area, e.g., the

Rockies. The model needs to consider the energy for a train to climb over 3,500 feet. So we

apply the gravity force and height factors to the model in Equation (103). The new model,

i.e., Equation (105), considers the potential energy which is calculated by WH (W: weight

in lbs, H: height in mile) and converts to the fuel consumption in gallon.

E(gal) = a · d
V

+ b(A+BV + CV 2)
d

308
+

WH

308
(105)

An official document from Canadian National Railway Company (CN) [4] provides this

Figure 18, and indicates that because of the higher altitude, the fuel consumption from

Seattle to Chicago is 104% more than Vancouver to Chicago with similar distance. Using

our fuel consumption model, we can get the same result from the parameters given by CN

with our 10,498.5-ton at speed of 30mph.
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Figure 18: Railway Altitude Variance

4.5.2 LAP with Fuel Consumption Model

For our current model, the fuel consumption model works in the pricing problem, and for

RMP, each consist travel plan s ∈ S will have the attribute FuelCosts for its fuel consumption:

So the objective of RMP now is

∑
s∈S

FuelCosts zs (106)

The RMP objective has an issue that it tend in breakup the consist travel plans in to

single trains, and so bring back the consist busting again, if we do not make any limits on

the model. Based on the model and results on stage 1, we add Constraint (107) to set an

upper bound to the number of consist travel plans allowed in the solution so to keep the

reasonable number of consist busting.

∑
s∈S

zs ≤ UB. (107)
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For the pricing problem, the fuel cost for each consist travel plan it generated, FuelCosts =∑
�∈LT∪s

∑
b∈β

cb� · xb,s
� .

Here we introduce new variables and parameters:

b ∈ β = {1, 2, 3, ..., 14} represents the 14 speed choices from 10 to 70 mph that train selects

for traveling. For each level b, the value of speed is σb.

xb
�,p = 1 represents for consist travel plan path p, the average speed σb is used for the selected

train link �, 0 otherwise.

cb� provides the value of fuel consumption for train link � ∈ LT under the speed level b. It

is calculated via the fuel consumption model in equation (103) or (105) using the train and

track parameters. Note it is not a decision variable set, but a set of parameters.

From Figure 16 we know the fuel consumption rate curves are convex, so when this curve

is applied directly in a MILP optimization model, the objective will be nonlinear for decision

variable of speed v. To linearize it, we apply the method proposed by Bektaş and Laporte

[15] that discretizes the speed variables. We break the continuous speed into several speed

levels β = {1, 2, ..., b, ...}, where in each level b, a value of average speed σb is set instead of

the speed range of current interval, as well as the fuel consumption value cb� for train �.

And so now the reduced cost, i.e., objective of pricing problem is:

cost2 = size(P ) +
∑
p∈P

∑
�∈LT

∑
b∈β

cb� · xb
�,p − cost0. (108)

And also we add these two additional constraints for the traveling speed and fuel

consumption:

(d�/σ
b) · xb

�,p ≤
∑

v∈V dst

�

Time(v) · αdst

�,v,p −
∑

v∈V src

�

Time(v) · αsrc

�,v,p

p ∈ P, � ∈ LT , b ∈ β (109)∑
b∈β

xb
�,p =

∑
v∈V dst

�

αdst

�,v,p p ∈ P, � ∈ LT (110)

Constraints (109) and (110) work combined for the liberalization of speed that

guarantees the running time of a selected train, determined by the average speed of certain

speed level, should be no more than the time length between rescheduled source and

destination nodes. And if train is not selected, the running time and speed should both be

zero, otherwise they both should have a positive value.

The whole model can be solved by a general-purpose solver, e.g., Ilog Cplex.

79



4.6 Numerical Results

Now we have two models for LAP, the first one, original model(marked as LAP-Orig) from

Jaumard et al. [33], focus on the minimization of locomotive fleet size andor the number of

consist busting by given train schedule. The second model, LAP-Fuel, allows to relax the

given trains’ departure/arrival time as well as to integrate with the fuel consumption model,

in order to optimize the fuel consumption of the locomotive fleet.

4.6.1 Data Instances

We use the entire CPR railway network, and the train schedule from CPR real operation.

The test data set comes from different time section from given schedule, from 1-day to 2-week

period. We set the maximum time length to two weeks because that the normal train from

coast to coast takes around 1 week and the round trip is 2 week. For the maximum 2-week

test scenario, there are 1,750 trains. The locomotives fleet contains 9 different types.

Now we have two models for LAP, the first one, original model(marked as LAP-Orig) from

Jaumard et al. [33], focus on the minimization of locomotive fleet size andor the number of

consist busting by given train schedule. The second and current model, LAP-Fuel, allows to

relax the given trains’ departure/arrival time as well as to integrate with the fuel consumption

model, in order to optimize the fuel consumption of the locomotive fleet. We run these two

models with the same six data set.

We use CPlex 12.6.1 as the ILP solver, which runs in a computer with 40-cores, 1TB

memory. For the ε-optimal solution of ILP from optimal LP solution, we apply a simple

rounding off procedure.

4.6.2 Computational Comparison of the Different

Models/Algorithms

Table 6 lists the results of our current model: LAP-Fuel. We provides the commotional

time, number of columns generates by PP, number of columns finally selected (initial and

new generated), total locomotive fleet size required, fuel comsumptionsaving, and the gap

gap of ε-optimal solution of ILP. In addition, we compare the solutions for these two different

models in Table 7, for two scenarios: 1-week and 2-weeks. Our current fuel saving model is

able to save more than 10% of fuel, with extra locomotive requirement.
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# Time
Comp. Time

# Columns GAP Loc. Fuel
Trains Length Generated Selected (%) Req. Consump. Sav.(%)
113 1 day 13m23s 531 93 1.99 256 535,351 3.56
357 3 days 30m59s 733 306 2.78 590 1,617,372 5.13
593 5 days 3h57m43s 1,276 507 2.00 943 2,550,183 7.71
862 7 days 13h45m19s 1,753 716 1.21 1,175 3,462,703 9.92

1,230 10 days 28h44m69s 2,609 1,086 0.32 1,327 5,386,609 10.35
1,750 14 days 32h51m16s 3,522 1,508 0.30 1,484 8,483,472 11.62

Table 6: Computational Results for Different Scenarios

# Trains
LAP

Comp. Time
# Columns

# Rounds
Loc. Fuel Fuel GAP

Model Generated Selected Req. Consump. Saving(%) (%)
7-day
862-train

Orig. 11h03m21s 1,543 506 4 962 3,844,030 N/A 1.24
Fuel 13h45m19s 1,753 716 5 1,175 3,462,703 9.92 1.21

14-day
1,750-train

Orig. 26h29m31s 1,835 1,294 4 1,289 9,598,060 N/A 1.82
Fuel 32h51m16s 3,522 1,508 5 1,484 8,483,472 11.62 0.30

Table 7: Computational Comparison of the Different Models

# Time Avg. Travel Avg. Loc. Loc. In-Consist Fuel
Trains Length Plan Size Active Time Average Idle Time Sav.(%)
113 1 day 1.22 12h03m 7h41m 3.56
357 3 days 1.16 22h25m 7h45m 5.13
593 5 days 1.17 2d07h19m 12h24m 7.71
862 7 days 1.20 3d17h17m 1d07h45m 9.92

1,230 10 days 1.13 5d05h12m 2d00h26m 10.35
1,750 14 days 1.16 7d12h03m 2d12h19m 11.62

Table 8: Characteristics of LAP Solutions for Different Scenarios

# Trains
LAP Consist Travel Plan Size Avg. Loc. Loc. In-Consist Idle Time Fuel
Model Average Maximum Active Time Average Maximum Sav.(%)

7-day
862-train

Orig. 1.65 10 3d05h10m 9h38m 3d18h00m N/A
Fuel 1.20 11 3d17h17m 7h45m 2d04h41m 9.92

14-day
1,750-train

Orig. 1.35 13 6d10h03m 18h53m 8d03h19m N/A
Fuel 1.16 12 7d12h03m 16h19m 6d22h51m 11.62

Table 9: Characteristics of Solutions of Different Models
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4.6.3 Characteristics of LAP Solutions

Table 8 lists several aspects of results from industry view, i.e., the average train number

per consist travel plan, average locomotive running time, and average locomotive idling

time within consist travel plan. Also we compare the solutions quality for these two different

models in Table 9. It shows that to save fuel consumption, we pay not only extra locomotives,

but also more running time per locomotive. For both groups, our fuel consumption model

LAP-Fuel has shorter consist travel plan average size, in 14-day group, the maximum size of

consist travel plan is also shorter for LAP-Fuel. It is because that model LAP-Fuel focuses on

energy saving more than consist busting reduction, its solution prefer to assign exact power

for train requirement, which leads to shorter consist travel plan, whereas model LAP-orig

uses longer consist travel plan to optimize consist busting.

4.6.4 Analysis of Solution

8�;;;;;

8�;;;;;

88;;;;;

9;;;;;;

9�;;;;;

9�;;;;;

9�;;;;;

; �;; ;;; �;; �;;; ��;; �;;; ��;;

MPH

Iteration

Figure 19: Fuel Consumption Convergence: 1,750-Train Scenario

Figure 19 shows the convergence rate curve during the problem solving. In Figure 20

two figures are merged together with the same x-axis which is the train sequence number.

The upper figure compares original and rescheduled speed, the lower figure shows the fuel

consumption comparison before and after rescheduling.
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Figure 20: Train Rescheduling: 1,750-Train Scenario
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In the figure, the first part of trains have unchanged speed, and in the second part most

of the trains have speed adjustment. The reason is that, to draw the figure, we go through

to check the selected column set of the final solution by RMP. By default sequence, that

set contains first the original columns then the new added columns from PP. The original

columns only contains trains unchanged, and the columns from PP have all the rescheduled

trains with some unchanged trains. That’s why the rescheduled trains only located on the

second part of the figure. The fuel consumption comparison part has the same situation.

4.7 Conclusion

We propose an optimization model which integrates fuel consumption model to the

locomotive assignment problem (LAP) model, and allows train scheduling, to reduce fuel

consumption in freight train transportation area. With column generation decomposition,

our new model in reasonable time can solve the given scenario up to 2-week, 1,750 train,

based on the real world freight train operation of Canadian Pacific Railway, and achieves

11% of fuel consumption saving.

There might be a need for revised fuel/energy model taking into account the latest

locomotive with new fuel saving equipments in the market. For cars, now the industry also

optimize the aero dynamic characteristics. It is very challenging to build a very accurate

predictive model matching the new and various parameters of locomotives and cars, but it

demands the huge data support from cooperation with industry, and tie validation is costly.

We hop our next project will do some work in this area.
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Chapter 5

Conclusions and Future Work

In this thesis, we study two areas of train management, the locomotive assignment problem

(LAP) and locomotive/train consumption problem. The results of the thesis have been

published or submitted in [34, 37, 33, 52, 53].

5.1 Thesis Conclusions

Freight train transportation becomes more and more important by its high energy efficiency

and safety advantage. But it also suffers from the high investment and operation cost,

especially for locomotive fleet and the energy consumption of the operation. To optimize the

number of locomotives needs and its operation cost, many research works have been done for

locomotive assignment problem (LAP), including exact optimization model, heuristics, etc.

However, most of the past exact LAP models can not cover all the rules needed in railway

locomotive operation, e.g., locomotive maintenance and/or consist busting avoidance, and

they also have scalability or solution accuracy issues. There are also some models that allow

to adjust the train schedule within a given time window so to make the locomotive assignment

more flexible, but none of them provide how to define the reasonable time length of time

window and whether the rescheduled train will affect other trains to keep the train schedule

feasible. Finally, there are some train fuel consumption model, but no past research tried

to combine this kind of model with LAP model so to optimize the total train/locomotive

energy consumption by locomotive assignment and train rescheduling.

In this thesis, we study the LAP and related problems, and give answer to the main

research question:

How to optimize the locomotive assignment for a given train schedule?

We decompose the main question into four sub-questions. The first question focuses on

the consist busting avoidance.
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1. How to evaluate the consist busting occurrence in LAP ILP model so to optimize it?

In Chapter 2, we propose a consist travel plan based optimization LAP model, which use

the number of total consist travel plans to represent the the consist busting occurrence. The

reason is that when a new consist travel plan is applied, it means that a consist busting has

been executed.

The following question is for the locomotive maintenance constraints.

2. How to allow maintenance process in LAP ILP model?

The propose a consist travel plan based optimization LAP model in Chapter 2 has a

special flow conservation constraints (3) & (4) that allow locomotive change the status from

critical to normal, so we can reuse the maintained locomotive after the maintenance/shop

flow in our model.

With column generation decomposition technique, our LAP model solve the maximum

of data instances over 2-week’s train schedule in affordable time. The solution makes

compromise between the locomotive fleet size and consist busting avoidance, as well as

sends 20% of locomotives which are critical to maintenance shops under maintenance rule.

It reduces the number of consist travel plans from 1,750 to 1,294 which means that in worst

case it saves 26% of consist busting occurrences.

The third question is about the time efficiency of LAP model.

3. Can the computational time of LAP model be accelerated?

To further reduce the computational time, we study various strategies of acceleration for

column generation, and draw the inspiration from one of them that can generate several

columns with negative reduced cost. In Chapter 3 we establish a new column generation

architecture with the generation of multiple columns per pricing problem call, each of which

is the optimal solution in a pre-processed, reduced sub-network from the general time-space

train scheduling network. Keeping almost the same quality of final solution, our new multi-

CG LAP model reduces the computational time at least 60% and the maximum time saving

is 93%. Our new CG architecture could be applied to the general network flow problem

which has potential network decomposition into several overlapped sub-networks and each

for a pricing problem.

Finally, in response to the tendency of energy saving and the needs of railway industry,

we study the fuel consumption problem as the fourth question.

4. How to optimize train/locomotive energy usage in train schedule and locomotive

assignment level?

In Chapter 4, as the pre-requirement of LAP with locomotive fuel consumption model,

we allow train rescheduling in a time window. In order to avoid excessive change of the

given train schedule to keep it still feasible, i.e., the adjustment of one train does not change
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the meeting time/siding with other trains, we develop a conflict-free pre-process algorithm.

During this stage, we consider the train meeting time/position, and the maximum/minimum

speed limit, so to establish a set of reasonable departure/arrival time windows for each

train. Then our LAP model with a linearized fuel consumption optimization can save up to

around 12% of energy consumption comparing to the results from our previous LAP model

in Chapter 2 & 3. The result comes from the semi-artificial initialization data we generates

from train schedule of CPR. Suppose enough details of real train/locomotive parameters

and operation data are available, our model can provides a more precise solution of energy

consumption for analysis.

5.2 Future Work

Our optimization LAP model applies time-based maintenance constraints, which is one of

the general constraint used in the freight train industry. It set a fixed shop time period

(usually three months) for locomotive. On the other hand, there is a more flexible type of

maintenance constraint, which is milage-based, that counts the travel distance of locomotive

and only requires it to go to a shop when the total distance reaches the limit. We can apply

the milage-based maintenance constraint to the LAP model, and analysis the benefit and

efficiency. In addition, the distributed power of consist configuration will also be considered.

Our CG acceleration architecture now works fine in the LAP model. In addition it has

the potential to be applied to the similar format of CG models. The first target is the

network flow models with CG, which has the type of network that can be reformatted to

several overlapped sub-network. We plan to expand the new architecture to those models

and analysis the time efficiency.

For the model of fuel consumption optimization on LAP and train scheduling level, our

algorithm for conflict-free train rescheduling time window now keep the given train meeting

time and siding. The advanced version of conflict-free algorithm should works with more

detail of train schedule and railway network, and has the relaxation to allow train meeting in

different time and siding out of given schedule. With the new, more flexible and reasonable

time windows, our model will get further energy saving.

For the train fuel consumption model part, current models was developed decades ago,

and can not reflect accurately the new design and technologies applied in locomotive/train

fuel consumption rate. Also the advanced train fuel consumption model should consider the

acceleration/dacceleration, and flop of tracks. Finally, the model should be fully validated

by the real word train operation before being applied to the optimization model. In addition,

with the future requirement of new energy, e.g., natural gas or electricity power train, we
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still need to update the current energy consumption model with extra validation as well.
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