
Network Security Metrics: Estimating the Resilience of

Networks Against Zero Day Attacks

Mengyuan Zhang

A thesis
in

The Concordia Institute
for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at
Concordia University

Montréal, Québec, Canada

December 2017

c©Mengyuan Zhang, 2017

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Ms. Mengyuan Zhang
Entitled: Network Security Metrics: Estimating the Resilience of Networks

Against Zero Day Attacks
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with re-
spect to originality and quality.

Signed by the final examining commitee:

Dr. E. Shihab
Chair

Dr. M. Zulkernine
External Examiner

Dr. D. Qiu
External to Program

Dr. C. Assi
Examiner

Dr. M. Mannan
Examiner

Dr. L. Wang
Thesis Supervisor

Approved by
Dr. Chadi Assi, Graduate Program Director

February 21, 2018
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract
Network Security Metrics: Estimating the Resilience of Networks Against

Zero Day Attacks

Mengyuan Zhang, Ph.D.

Concordia University, 2017

Computer networks are playing the role of nervous systems in many critical infras-

tructures, governmental and military organizations, and enterprises today. Protecting such

mission critical networks means more than just patching known vulnerabilities and deploy-

ing firewalls or IDSs. Proper metrics are needed in evaluating the security level of networks

and provide security enhanced solutions. However, without considering unknown zero-day

vulnerabilities, security metrics are insufficient to capture the true security level of a net-

work. My doctoral work is aiming to develop a series of novel network security metrics

with a special focus on modeling zero day attacks and study the relationships between

software features and vulnerabilities.

In the first work, we take the first step toward formally modeling network diversity as

a security metric by designing and evaluating a series of diversity metrics. In particular,

we first devise a biodiversity-inspired metric based on the effective number of distinct re-

sources. We then propose two complementary diversity metrics, based on the least and the

average attacking efforts, respectively.

In the second topic, we lift the attack surface concept, which calculates the intrinsic

properties of software applications, to the network level as a security metric for evaluating

the resilience of networks against potential zero day attacks. First, we develop models for

iii

aggregating the attack surface among different resources inside a network. Second, we

design heuristic algorithms to avoid the costly calculation of attack surface.

Predicting and studying the software vulnerability both help administrators to improve

security deployment for their organizations and to choose the right applications among

those with similar functionality, and for the software vendors to estimate the security level

of their software applications. In the third topic, we perform a large-scale empirical study

on datasets from GitHub and different versions of Chrome to study the relationship between

software features and the number of vulnerabilities. This study quantitatively demonstrates

the importance of features in the vulnerability discovery process based on machine learning

techniques, which provides inputs for network level security metrics. Those features could

serve as inputs for future network security metrics.

iv

Acknowledgments

I would like to express my deepest thanks to my supervisor, Dr. Lingyu Wang, for his

heartily guidance, endless support and enduring patience during the whole process of this

research. Without him, this thesis would not have been possible. I have been extremely

lucky to have a supervisor who lightened my research all the time, and who responded to

my questions and queries so promptly.

I also wish to express my appreciation to all the faculty and staff at CIISE department

for having such a cozy and warm working environment.

My deepest thanks to my research collaborators, especially Xavier de Carné de Car-

navalet, who has supported me for my last research topic. I could not have completed this

thesis without his valuable comments and straightforward advice.

Finally, I would like to extend thanks and appreciations to my friends, parents and sister

for listening to me, supporting me, and encouraging me for all the time.

v

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Objective and Contributions . 3

2 Literature Review 5

2.1 Attack Graph . 5

2.2 Security Metrics . 6

2.3 Network Diversity Metric . 8

2.4 Network Attack Surface Metric . 10

2.5 Vulnerability Discovery Model . 12

3 Network Diversity: A Security Metric for Evaluating the Resilience of Net-

works Against Zero-Day Attacks 14

3.1 Introduction . 14

3.2 Use Cases . 15

3.3 Biodiversity-Inspired Network Diversity Metric 18

3.4 Least Attacking Effort-Based Network Diversity Metric 20

vi

3.4.1 The Model . 21

3.5 Probabilistic Network Diversity . 25

3.5.1 Overview . 25

3.5.2 Redesigning d3 Metric . 28

3.6 Applying the Network Diversity Metrics 33

3.6.1 Guidelines for Instantiating the Network Diversity Models 33

3.6.2 Case Study . 36

3.7 Simulation . 39

3.8 Discussion . 51

3.8.1 A Case Study . 51

3.8.2 Potential Solutions . 52

3.9 Conclusion . 55

4 Network Attack Surface: Lifting the Attack Surface Concept to Network Level

for Evaluating the Resilience Against Zero-Day Attacks 56

4.1 Introduction . 56

4.2 The Network Attack Surface Model . 60

4.2.1 CVSS-Based Attack Probability 60

4.2.2 Graph-Based Attack Probability 64

4.2.3 Aggregating Attack Probabilities inside a Network 68

4.3 Heuristic Algorithms for Calculating Network Attack Surface 71

4.3.1 The Heuristic Algorithms . 73

4.4 Instantiating the Network Attack Surface Metric 77

4.4.1 Case Study . 77

4.5 Experimental Results . 82

4.5.1 Correlation Between Attack Surface and Vulnerabilities 83

4.5.2 The Impact of Non-Calculatable Resources 88

vii

4.6 Conclusion . 95

5 Learning-Based Model for Software Vulnerability Prediction 97

5.1 Introduction . 97

5.2 Background . 99

5.2.1 Statistical Analysis of data . 100

5.2.2 Data Visualization . 100

5.2.3 Feature Selection and Evaluation Methods 101

5.3 Dataset Collection and Preparation . 104

5.3.1 Datasets . 104

5.3.2 Data Preparation and Feature Extraction 114

5.4 Feature Selection of Software Vulnerability Model 116

5.4.1 Data Visualization . 116

5.4.2 Feature Selection . 119

5.5 Analysis of Software Vulnerability Model 123

5.5.1 Hypotheses . 123

5.5.2 Statistical Analysis of Data . 125

5.5.3 Learning Based Model . 127

5.6 Analysis Software Vulnerability Model in Multi-Version Software Appli-

cation . 139

5.6.1 Statistical Analysis of Data and Visualization 140

5.6.2 Learning Based Model . 141

5.7 Conclusion . 143

6 Conclusion 145

Bibliography 146

viii

Appendices 162

A Notations 162

B Appendices for Chapter 4 163

C Appendices for Chapter 5 165

ix

List of Figures

1 The Running Example . 16

2 An Example Resource Graph . 22

3 Modeling Network Diversity Using Bayesian Networks 26

4 The Redesigned Model . 27

5 Two Examples of Applying d3 . 31

6 Applying d3 on the Running Example . 33

7 An Example Network [83] . 36

8 Comparison of Metrics (a) and the Effect of Increasing Diversity (b) 41

9 Worm Propagation (10% Initially Satisfied Exploits (a), 50% Initially Sat-

isfied Exploits (b)) . 42

10 Targeted Attack (0% Initially Satisfied Vulnerabilities (a), 50% Initially

Satisfied Vulnerabilities (b)) . 44

11 d3/d2 in the Number of Paths (a) and Nodes (b) 45

12 Success Rate of Attacks in Frequency of Changes (a) and in Time (b) . . . 48

13 d1 in Frequency of Changes, under Less Resource Types (Left) and More

Resource Types (Right) . 49

14 Total Cost in Frequency of Changes . 50

15 Differences at File and Modification Levels between Different Versions of

Chrome . 53

16 The Motivating Example . 58

x

17 Attack Surface Graph for Courier (Left) and Cryus (Right) 66

18 The Network Resource Graph with Attack Probability for the Network in

Figure 1 . 71

19 Mpath-Topo (Left) and Keynode (Right) Heuristic Algorithms 72

20 An Example of Applying Mpath-Topo and Keynode Heuristic Algorithms . 75

21 Correlation between Attack Surface and the Number of Vulnerabilities for

Different Software (a) and Different Versions of OpenSSL (b) 84

22 The Cost vs. Error for Simple Heuristics (a) and for the Heuristic Algo-

rithms (b), and the Processing Time (c) . 87

23 (a) The Error of the Algorithms with α = 50% (b) The Error of the Algo-

rithms with α = 80% . 90

24 (a) The Error of the Algorithms with α = 50% (b) The Error in α and β . . 93

25 The Error vs. α of Algorithms with 50% Non-Calculable Resources (a)

and the Percentage of Non-Calculable Resources vs. Error (b) 95

26 Inaccuracies in NVD Database CVE-2011-3034 111

27 Inaccuracies in NVD Database CVE-2012-5143 112

28 Inaccuracies in NVD Database CVE-2016-5136 113

29 The Data Visualization for GitHub with t-SNE (a)(perplexity = 30, Algo-

rithm = Euclidean),(b)(perplexity = 34, Algorithm = Cosine),(c)(perplexity

= 30, Algorithm = Chebychev),(d)(perplexity = 30, Algorithm = Minkowski)117

30 The Feature Selection from CFS . 119

31 The Feature Selection from MI . 120

32 The Feature Selection from RELIEF with Different k 121

33 The Feature Selection from Decision Tree 122

34 The Feature Selection from Boosted Tree 123

35 The Feature Selection from Random Forest 123

xi

36 The Prediction Results from BT with DT Feature Set 128

37 The Accuracy for Each CVEs from BT with DT Feature Set with Different

Range of Tolerance . 129

38 The Prediction Results from DT with BT Feature Set 130

39 The Accuracy for Each CVEs from DT with BT Feature Set with Different

Range of Tolerance . 131

40 The Prediction Results from LR with DT Feature Set 132

41 The Accuracy for Each CVEs from LR with DT Feature Set with Different

Range of Tolerance . 132

42 Function Fitting Neural Network with Different Parameters 133

43 Generalized Regression Neural Network with Different Parameters 134

44 The Prediction Results from NN with BT Feature Set 134

45 The Accuracy for Each CVEs from NN with BT Feature Set with Different

Range of Tolerance . 135

46 The Prediction Results from NN with BT Feature Set 136

47 The Accuracy for Each CVEs from NN with BT Feature Set with Different

Range of Tolerance . 137

48 The Performance Measures in SVM Classifiers 138

49 The Prediction Results from SVM with CFS Feature Set 138

50 The Accuracy for Each CVEs from SVM with CFS Feature Set with Dif-

ferent Range of Tolerance . 139

51 The Data Visualization for Chrome Dataset Based on the L,M,H Labels

with Euclidean Algorithm . 141

52 The Predicted Results from NN time series 142

53 The MSE (Left) and the Error Distribution (Right) of predicted Results

from NN time series . 143

xii

54 The Regression Model for predicted Results from NN time series 144

xiii

List of Tables

1 Attack Paths . 23

2 Collected Information . 37

3 Mapping Attack Surface to CVSS Base Metrics for Courier IMAP Server

v4.1.0 and Cryus IMAP Server v2.2.10 . 62

4 Method Groups and Their Base Scores for Courier IMAP Server v4.1.0 and

Cyrus IMAP Server v2.2.10 . 63

5 IMAP Daemon’s Channels and Untrusted Data items [67] 67

6 Amanda Channels and Untrusted Data items 78

7 Method Groups and Their Base Scores for Amanda and Firewall Builder . . 79

8 An Example of Confusion Matrix . 103

9 GitHub Features Collection . 105

10 An Example of CVE Interpretation . 111

11 Feature Selection with Different Algorithms 124

12 The Statistical Analysis for GitHub Dataset 126

13 Result of Predictive Power Test for BT and BT-opt Classifier 127

14 Result of Predictive Power Test for DT Regression Classifier 130

15 Result of Predictive Power Test for LR Classifier 131

16 Result of Predictive Power Test for NN Classifiers 133

17 Result of Predictive Power Test for RF Classifiers 136

18 The Statistical Analysis for Chrome Dataset 140

xiv

19 Table of Notations . 162

20 Tested Software . 164

21 Mishandled Versions . 165

22 Chrome Dataset . 166

23 GitHub Project Dataset . 166

24 Meaning of the Features in Table 23 . 167

25 Meaning of the Features in Table 22 . 168

xv

Chapter 1

Introduction

1.1 Motivation

Today’s computer networks are playing the role of nervous systems in many critical in-

frastructures, governmental and military organizations, and enterprises. Protecting such

a mission critical network means more than just patching known vulnerabilities and de-

ploying firewalls and IDSes. The network’s resilience against potential zero day attacks

exploiting unknown vulnerabilities is equally important. The high profile incident of the

Stuxnet botnet [60], which employ four zero day vulnerabilities to target industrial control

systems, has clearly demonstrated the real world significance of evaluating and improving

the security of networks against zero day attacks.

Since you cannot improve what you cannot measure, the lack of effective security met-

rics is the key obstacle toward developing systematic approaches to evaluating and con-

sequently improving the relative effectiveness of security solutions. In well-established

domains, such as physical science, the first essential step in the direction of learning any

subject is to find principles of numerical reckoning and practicable methods for measuring

some quality connected with it. The concept of metric is coined in many different forms

under different contexts; here we quote the definition given by SANS [90]: “Metrics can be

1

an effective tool for security managers to discern the effectiveness of various components

of their security programs; the security of a specific system, product or process. Metrics

can also help identify the level of risk in not taking a given action, and in that way provide

guidance in prioritizing corrective actions.”

In general, security metrics are divided into four categories [1], process security met-

rics, metrics are designed for measuring processes and procedures, network security met-

rics, metrics that evaluate security level on entire networks, software security metrics, met-

rics that measure the possibility to have flaws in software applications, and people security

metrics, metrics that involve human experts:

- Process Security Metrics: This type of metrics are designed for measuring processes

and procedures. It implies high utility of security policies and processes, but the rela-

tionship between metrics and the level of security is not clearly defined, for instance,

the percentage of a system with tested security controls, or the number of identified

risks and their severities.

- Network Security Metrics: Existing metrics in this category are usually dependent

on specific products (e.g., firewalls, IDS, model checker), and are widely used for

network systems. Those metrics are usually illustrated with charts and through in-

terfaces, e.g., for the number of viruses blocked, the number of patches applied, and

traffic analysis.

- Software Security Metrics: This type of metrics usually come with many limitations

(e.g., line number of code (LOC), function points (FPs), high complexity), and are

context-sensitive, environment- and architecture-dependent, e.g., size and complex-

ity, defects (severity, type) over time.

- People Security Metrics: This category includes security metrics that involve human

experts.

2

There exist many research efforts on network security metrics (Chapter 2 will review re-

lated work in more details). Notably, Leversage et al. propose a metric based on the MTTC

(Mean Time-to-Compromise) concept as a measurement of the average effort required for

attackers to compromise a network [63], and Wang et al. aggregate metric scores of individ-

ual vulnerabilities derived from the Common Vulnerability Scoring System (CVSS) [73]

as a metric for the overall security of networks [129].

However, one key limitation of most existing efforts is the lack of consideration for

unknown zero day vulnerabilities. Existing efforts on network security metrics typically

assign numerical scores to vulnerabilities based on known facts about vulnerabilities. Such

a methodology is no longer applicable when we consider zero day attacks. In fact, a pop-

ular criticism of past efforts on security metrics is that they cannot deal with unknown

vulnerabilities, which are generally believed to be unmeasurable [70]. Unfortunately, with-

out considering unknown vulnerabilities, a security metric will only be of a questionable

value at best, as it may determine a network configuration to be more secure than it actu-

ally is. We thus fall into the agnosticism that security is not quantifiable until we can fix all

potential security flaws; although by then, we certainly no longer need security metrics.

1.2 Objective and Contributions

This research aims to provide a series of useful metrics and formal models for evaluating

the risk of zero-day vulnerabilities in computer networks and study the relationships be-

tween software features and vulnerabilities. Throughout this work, we make the following

contributions.

• The main contribution for the first research topic is as follows. To the best of our

knowledge, this is the first effort on systematically modeling network diversity as a

security metric. As we demonstrate an intuitive notion of diversity can usually cause

3

misleading results, whereas our formal model of network diversity enables a better

understanding of the effect of diversity on security. Our work is also among the

first efforts on borrowing the biodiversity concepts from ecology and applying it to

network security, and we believe this initial effort may generate further interest in this

direction. Finally, the guidelines for instantiating the models and related case studies

and simulation results will ease the transition from theoretical results to practical

solutions based on the proposed metrics.

• The main contribution of the second research topic is twofold. First, to the best of our

knowledge, this is the first effort on lifting the attack surface concept to the network

level as a formally defined security metric. We believe such a metric may serve as

the foundation of many useful analyses for quantitatively designing, evaluating, and

improving network security. Second, our simulation results show that the proposed

algorithms can produce relatively accurate results with a significant reduction in the

costly calculation of attack surface, paving the way for practical applications.

• The main contribution for the third research topic is as follows. To the best of our

knowledge, this is one of the first studies that applies machine learning techniques

to study the relationship between features and the number of CVE vulnerabilities

in software applications. This study points out the importance of the features that

affect the discovery of the vulnerabilities, which serves as important inputs to other

network security metrics.

4

Chapter 2

Literature Review

In this chapter, we provide a review of related literature.

2.1 Attack Graph

Today’s security problems in a network system are not only caused by single vulnerabili-

ties, but the combination of multi-vulnerabilities between multi-hosts [104]. Before defin-

ing security metric on a network level, a pre-condition is to understand how vulnerabilities

from hosts may be combined as attack paths. Attack graph is a well established model for

this purpose. Even well administered networks may still face the challenge of defending

against network attacks. Many services are safer when they work alone, however, multiple

services may help each other to execute exploitable vulnerabilities. Examining or scanning

the host individually is insufficient in evaluating the security of networks; relationships be-

tween hosts and vulnerabilities should be considered into measuring security. To this end,

Ritchey et al. [104] propose a method using model checking to analyze the network vulner-

abilities. The model checker is considered as an attack path generating system with input

information from the network environment. Four main descriptions are chosen as inputs to

a model checking to find out whether an attackable path is existent. With the definition of

5

preconditions and goals, model checkers give concrete attack paths of examined network

systems. This is the first work related to attack graphs, which opens a new era of network

security analysis. Observing that finding one attack path in a network system is not enough,

Sheyner et al. propose the idea of finding all attackable paths in an integrated system [110].

This work uses a model checking algorithm to replace the former hand-making attack graph

method. Several algorithms are proposed to help to generate attack graphs more efficiently,

Ammann et al. [6] reduce the complexity of this analysis from exponential to polynomial

by assuming that an attacker never needs to go back to restore a lost privilege.

Tools and model checker information are presented in [30], [93], [139], [118]. Farmer

et al. [30] describe a tool, COPs, which is used to reconfigure sets of programs and shell

scripts to help administrators to check for potential security holes in systems. COPs com-

puterize oracle and password system, which is used to detect potential security problems

and to report to system administrators. Phillips et al. [93] present a graph-based method

to analyze network vulnerabilities. This analysis system identifies highly probable attack

paths, which could be used to test a system when certain changes are applied, e.g., config-

uration changes, deployment of an IDS. Zerkle et al. [139] present a useful model-checker

to help to implement attack graphs and to validate of network security metrics. Swiler et

al. develop a robust attack graph tool with graphical interface for linking vulnerabilities

and configuring attack graphs [118]. Furthermore, Sheyner et al. [111] present toolkit for

generating and analyzing attack graphs.

2.2 Security Metrics

Ortalo et al. [85] model the minimal effort that an attacker needs to exploit vulnerabilities as

a metric to evaluate the security level of systems. Similar to Ortalo et al. ’s work, Balzarotti

et al. [8] propose minimum efforts required for executing each exploit as a metric. To

consider attack path as security metric, Pamula et al. [89] propose a metric to measure the

6

security strength of a network regrading the strength of the weakest attacker (who has the

lowest abilities to compromise this system). With a customized algorithm, this metric com-

putes minimal sets of required initial attributes for the lowest ability attacker to successfully

compromise a system. These metrics are designed from the attackers’ perspective.

Using the lowest ability of the attacker as the measurement for systems cannot represent

the average ability of the attackers. Leversage et al. [63] use the mean time-to-compromise,

which learn from physical security, as a security metric to measure systems. Decision-

maker learns improvement decision by simply calculating the MMTC, which is the longer

the safer. By considering investments and reductions in expected loss, Ryan et al. [105]

design a quantitative risk management metric, which uses the reduction in expected loss to

measure the success of information security investments.

Most of the above metrics are relatively simple and are designed at an early stage of the

research on network security metric. Simple metrics are easy to apply and to understand,

but they may not be suitable for complicated and ever changing network system environ-

ments. Wang et al. [129] define the attack resistance metric for assessing and comparing

the security of different network configurations. Attack resistance metric measures ability

of systems defending against attacks, which could suggest administrators potential better

configurations in network systems.

Wang et al. [125] propose aggregating vulnerability probabilities from the Common

Vulnerability Scoring System (CVSS). The probability of a vulnerability indicates the suc-

cessful exploitation rates for a given vulnerability. However, this work focuses only on

vulnerabilities, which ignores the interdependencies inside attack graph. To address this

limitation, Frigault et al. [31] provide the Bayesian Networks-based model to aggregate

vulnerabilities inside network systems. Bayesian networks are defined with nodes rep-

resenting variables and arcs representing conditional independence among the variables.

However, the formal notion of this metric is not defined in this work. Frigault et al. [32]

7

extend their work from Bayesian-networks to Dynamic Bayesian Networks to cope with

the ever changing network environments. Although the dynamic situation has some lim-

itations, the clear definition in Bayesian-network inspires later work in network security

metrics.

Noel et al. [82] propose a metric, computing minimum required resources to compro-

mise a system for hardening purpose. The previous hardening methods usually break attack

paths to harden a network, however, this work focuses to find the initial necessary set for the

attackers. Therefore, the attack actions would be break easily by disabling the initial condi-

tions. Wang et al. [128] improve this solution by defining a clear notation of minimum-cost

network hardening based on attack graphs.

Security metrics are also developed for specific applications, such as the information-

theoretic metrics for measuring the effectiveness of IDSs [61], [37]. Gu et al. build a formal

framework using information theory for analyzing and quantifying the effectiveness of the

IDS. This work presents a formal IDS model, analyzing the information-theoretic approach.

Similar works in other areas exist, e.g., some of the design principles are proposed

for developing metrics for trust [100], [99]. Authenticating entities in large-scale system

always use authentication, which means each entity is able to authenticate the next path.

This technology has been extended to multiple paths. Reiter et al. propose metrics to eval-

uate the confidence afforded by a set of paths. These two papers illustrate the principles

for designing confidentiality metrics. They proposed a novel metric, which satisfies the

principles.

2.3 Network Diversity Metric

The research on security metrics has attracted much attention lately. Unlike existing work

which aim to measure the amount of network security [43, 130], the network diversity

8

metrics focus on diversity as one particular property of networks which may affect se-

curity. Nonetheless, our work borrows from the popular software security metric, attack

surface [67], the general idea of focusing on interfaces (remotely accessible resources)

rather than internal details (e.g., local applications). Our least attacking effort-based diver-

sity metric is derived from the k-zero day safety metric [127, 126], and our probabilistic

diversity metric is based on the attack likelihood metric [32, 129]. Another notable work

evaluates security metrics against real attacks in a controlled environment [41], which pro-

vides a future direction to better evaluate our work. One limitation of our work lies in the

high complexity of analyzing a resource graph; high level models of resource dependen-

cies [56] may provide coarser but more efficient solutions to modeling diversity.

The idea of using design diversity for fault tolerance has been investigated for a long

time. The N-version programming approach generates N ≥ 2 functionally equivalent pro-

grams and compares their results to determine a faulty version [7], with metrics defined

for measuring the diversity of software and faults [76]. The main limitation of design di-

versity lies in the high complexity of creating different versions, which may not justify the

benefit [64]. The use of design diversity as a security mechanism has also attracted much

attention [68]. The general principles of design diversity is shown to be applicable to se-

curity as well in [65]. The N-Variant system extends the idea of N-version programming

to detect intrusions [20], and the concept of behavioral distance takes it beyond output

voting [34]. Different randomization techniques have been used to automatically generate

diversity [12, 55, 108, 13].

In addition to design diversity and generated diversity, recent work employ opportunis-

tic diversity which already exists among different software systems. The practicality of

employing OS diversity for intrusion tolerance is evaluated and the feasibility of using

opportunistic diversity already existing between different OSes to tolerate intrusions is

demonstrated in [35]. Diversity has also been applied to intrusion tolerant systems which

9

usually implement some kinds of Byzantine Fault Tolerant (BFT) replication as fault toler-

ance solutions [19]. A generic architecture for implementing intrusion-tolerant Web servers

based on redundancy and diversification principles is introduced in [107]. Components-

off-the-shelf (COTS) diversity is employed to provide an implicit reference model, instead

of the explicit model usually required, for anomaly detection in Web servers [121]. Di-

versity could play an important role in addressing various security issues in cloud com-

puting [101], such as using diverse authorities for efficient decryption and revocation in

cloud storage [134] and using diverse access policies for increasing the security of cloud

data [133].

2.4 Network Attack Surface Metric

The concept of attack surface is originally proposed for specific software and requires

domain-specific expertise to formulate and implement [42]. Later on, the concept is gener-

alized using formal models and becomes applicable to all software [87]. Furthermore, it is

refined and applied to large scale software, and its calculation can be assisted by automati-

cally generated call graphs [88, 67]. Attack surface has attracted significant attentions over

the years. It is used as a metric to evaluate Android’s message-passing system [54], in ker-

nel tailing [59], and also serves as a foundation in Moving Target Defense, which basically

aims to change the attack surface over time [49, 48]. Others aim to expand the scope of this

concept in other domains, such as the six-way attack surfaces between users, services, and

cloud systems [36], and the approximation of attack surface for modern automobiles [17].

The study on automating the calculation of attack surface is another interesting domain,

e.g., COPES uses static analysis from bytecode to calculate attack surface and to secure

permission-based software[9]. Stack traces from user crash reports is used to approximate

attack surface automatically [120]. Despite such tremendous interest in the attack surface

concept, to the best of our knowledge, little work exists on formally defining attack surface

10

at the network level. The correlation between attack surface and vulnerabilities has also

been investigated, such as using attack surface entry points and reachability to assess the

risk of vulnerability [138]. A study about the relationship between attack surface and the

vulnerability density is given in [137], although the result is only based on two releases of

Apache HTTP Server, which gives little clue to the general existence of such a correlation.

As to security metrics in general, there exist standardization efforts on vulnerability as-

sessment including the Common Vulnerability Scoring System (CVSS) [73], which mea-

sures vulnerabilities in isolation. The NIST’s efforts on standardizing security metrics are

also given in [79] and more recently in [117]. The research on security metrics has attracted

much attention lately [51]. Earlier work include the a metric in terms of time and efforts

based on a Markov model [22]. More recently, several security metrics are proposed by

combining CVSS scores based on attack graphs [125, 32]. The minimum efforts required

for executing each exploit is used as a metric in [8, 89]. A mean time-to-compromise metric

is proposed based on the predator state-space model (SSM) used in the biological sciences

in [63]. While those metrics are mostly developed for known vulnerabilities, fewer work

are capable of dealing with zero day attacks. A few exceptions include an empirical study

of the total number of zero day vulnerabilities available on a single day based on existing

data [71], an effort on ordering different applications in a system by the seriousness of con-

sequences of having a single zero day vulnerability [44], and more recently the k-zero day

safety model [127, 126] and the network diversity model [131, 140] both attempt to model

the risk of zero day vulnerabilities, but their common limitation is the lack of capability

in distinguishing different resources’ likelihood of having such vulnerabilities. The net-

work attack surface metric distinguish the resources with attack likelihood from the three

dimensions in attack surface concept and aggregate the attack likelihood on the network

level to model the risk of the zero day vulnerabilities, which address the limitations from

the previous works.

11

2.5 Vulnerability Discovery Model

Two major vulnerability discovery models (VDM) have been studied in the literature; one

focuses on studying the features that correlate with the vulnerable components in a soft-

ware application; the other one focuses on using mathematic models to fit the vulnerability

discovery model with the historical data to predict the future number of vulnerability for

one application.

Zimmermann et al. [142] analyze the possibility of predicting vulnerable component in

Windows Vista by using Logistic Regression for five groups of metrics, churn, complex-

ity, coverage, dependency, and organizational structure of the company. The binary results

have been evaluated with tenfold cross-validation, which yields precision below 67% and

recall below 21%. Meneely et al. [74] study the developer-activity metrics and software

vulnerabilities. The precision and recall from the Bayesian network predictive model are

between 12%-29% and 32% to 56%, respectively. Doyle et al. [25] study the relationships

between software metrics and vulnerable components in 14 open-source web applications.

Spearman’s rank correlation is computed between the metrics and security resources in-

dicator (SRI), which is defined by the author and obtained from security scanners. Shin

and Williams [112] perform binary classification using Logistic Regression with tenfold

cross-validation to analyze the relationship between complexity, code-churn and developer-

activity (CCD) metrics and the vulnerabilities. A later work [113] studies the relationship

between 18 complexity metrics, five code churn metrics and fault history metric and the

vulnerable components. The recall and the precision from this study are 83% and 11%

respectively.

Perl et al. [92] analyze the effects of meta data in the code repositories with code met-

rics to predict the vulnerable commits. The precision of VCCFinder is 60% when recall is

24%. Younis et al. [136] study the relationship between software metrics and the vulner-

able function in existing exploits. In total 183 vulnerabilities from National Vulnerability

12

Database for Linux Kernel and Apache HTTP server have been examined in their study.

Stuckman et al. [116] add the token that generated from source code in the study to iden-

tify the vulnerable components. Walden et al. [124] compare the predictive powers between

software metrics and text mining in predicting vulnerable components. Davari et al. [24]

study the Hardly Reproducible Vulnerabilities (HRV) in the code level, and they achieve

the precision of 82% and recall of 84% to classify vulnerable files into HRV-prone or non

HRV-prone files.

Mathematic VDM focuses on modeling the discovery process of software vulnerabil-

ities by evaluating the number of vulnerabilities with time. The existing models are Lin-

ear [77], Exponential [102], Alhazmi Malaiya Logistic (AML) [4], and effort based model.

VDMs are usually mathematic models with parameters in which real vulnerability histo-

ries are required in obtaining the model. Those models are specific to software applications

due to the fact that the real vulnerability history data is needed in the model establishing.

Normally, large history data are needed to obtain better fitted model.

Different than the existing models, our approaches gather the features from five differ-

ent metrics to prediction the number of vulnerabilities in application level (not the vulnera-

ble component). Unlike the fact that mathematic VDMs requires large amount of historical

data, our models study the important features from the metrics to dependent our prediction

from the historical data.

13

Chapter 3

Network Diversity: A Security Metric

for Evaluating the Resilience of

Networks Against Zero-Day Attacks

In this chapter, we describe our efforts on the first proposed research topic, i.e., network

diversity metrics.

3.1 Introduction

Dealing with unknown vulnerabilities is clearly a challenging task. Although we already

have many effective solutions (e.g., IDS/IPS, firewalls, antivirus, software upgrading and

patching) for tackling known attacks, zero day attacks are known to be difficult to mitigate

due to lack of information.

To this end, diversity has long been regarded as a valuable solution because it may

improve the resilience of a software system against both known and unknown vulnerabili-

ties [65]. Security attacks exploiting unknown vulnerabilities may be detected and tolerated

14

as Byzantine faults by comparing either the outputs [20] or behaviors [34] of multiple soft-

ware replicas or variants [19]. Although the earlier diversity-by-design approaches usually

suffer from prohibitive development and deployment cost, recent works show more promis-

ing results on employing either opportunistic diversity [35] or automatically generated di-

versity [12, 55, 13]. More recently, diversity has found new applications in cloud com-

puting security [101], Moving Target Defense (MTD) [49], resisting sensor worms [135],

and network routing [16]. Most of those existing efforts rely on either intuitive notions of

diversity or models mostly designed for a single system running diverse software replicas

or variants.

However, at a higher abstraction level, as a global property of an entire network, the

concept of network diversity and its effect on security has received limited attention. In

this topic, we take the first step towards formally modeling network diversity as a security

metric for the purpose of evaluating the resilience of networks with respect to zero day

attacks.

We describe several use cases in order to motivate our study and illustrate various re-

quirements and challenges in modeling network diversity.

3.2 Use Cases

We describe several use cases in order to motivate our study and illustrate various require-

ments and challenges in modeling network diversity. Some of those use cases will also be

revisited in later sections.

Use Case 1: Stuxnet and SCADA Security Stuxnet is one of the first malware that

employ multiple (four) different zero day attacks [29]. This indicates, in a mission critical

system, such as supervisory control and data acquisition (SCADA) in this case, the risk of

zero day attacks and multiple unknown vulnerabilities is real, and consequently network

15

administrators would need a systematic way for evaluating such a risk. However, this is

a challenging task due to the lack of prior knowledge about vulnerabilities or attacking

methods.

A closer look at Stuxnet’s attack strategies would reveal how network diversity may

help here. Stuxnet targets the programmable logic controllers (PLCs) on control systems

of gas pipelines or power plants [29], which are mostly programmed using Windows ma-

chines not connected to networks. Therefore, Stuxnet adopts a multi-stage approach, by

first infecting Windows machines owned by third parties (e.g., contractors), next spreading

to internal Windows machines through the LAN, and finally covering the last hop through

removable flash drives [29]. Clearly, the degree of software diversity along potential attack

paths leading from the network perimeter to the PLCs can be regarded as a critical metric

of the network’s resilience against a threat likes Stuxnet. Our objective in this chapter is to

provide a rigorous study of such network diversity metrics.

Use Case 2: Worm Propagation To make our discussion more concrete, we will refer

to the running example shown in Figure 1 from now on. In this use case, our main concern

is the potential propagation of worms or bots inside the network. A common belief here is

that we can simply count the number (percentage) of distinct resources in the network as

diversity. Although such a definition is natural and intuitive, it clearly has limitations.

host0

host1

host2

firewall1 firewall2

host3

host4

Figure 1: The Running Example

For example, suppose host 1, 2, and 3 are Web servers running IIS, all of which access

16

files stored on host 4. Clearly, the above count-based metric would indicate a lack of

diversity and suggest replacing IIS with other software to prevent a worm from infecting

all three at once. However, it is easy to see that, even if a worm can only infect one Web

server after such a diversification effort (e.g., it can infect IIS but not Apache), it can still

propagate to all four hosts through the network share on host 4 (e.g., it may infect certain

executable files stored on host 4, which are subsequently accessed by all Web servers). The

reason that this naive approach fails in this case is that it ignores the existence of causal

relationships between resources (due to the network share). Therefore, after we discuss

the count-based metric in Section 3.3, we will address this limitation with a goal oriented

approach in Section 3.4.

Use Case 3: Targeted Attack Suppose that we are more concerned with a targeted attack

on the storage server, host 4. Following above discussions, an intuitive solution is to diver-

sify resources along any path leading to the critical asset (host 4), e.g., between hosts 1 (or

2, 3) and host 4. Although this is a valid observation, realizing it requires a rigorous study

of the causal relationships between different resources, because host 4 is only as secure as

the weakest path (representing the least attacking effort) leading to it. We will propose a

formal metric based on such an intuition in Section 3.4.

On the other hand, the least attacking effort by itself only provides a partial picture.

Suppose now host 1 and 2 are diversified to run IIS and Apache, respectively, and firewall

2 will only allow host 1 and 2 to reach host 4. Although the least attacking effort has not

changed, this diversification effort has actually provided attackers more opportunities to

reach host 4 (by exploiting either IIS or Apache). That is, misplaced diversity may in fact

hurt security. This will be captured by a probabilistic metric in Section 3.5.

17

Use Case 4: MTD Moving Target Defense (MTD) can be considered as a different ap-

proach to applying diversity to security, since it diversifies resources along the time di-

mension [49]. However, most existing work on MTD rely on intuitive notion of diversity

which may lead to misleading results. This next case demonstrates the usefulness of our

proposed metrics particularly for MTD. In this case, suppose host 1 and 2 are Web servers,

host 3 an application server, and host 4 a database server. A MTD will attempt to achieve

better security by varying in time the software components at different tiers. A common

misconception here is that the combination of different components at different tiers will

increase diversity, and the degree of diversity is equal to the product of diversity at those

tiers. However, this is usually not the case. For example, a single flaw in the application

server (host 3) may result in a SQL injection that compromises the database server (host 4)

and consequently leaks the root user’s password. Also, similar to the previous case, more

diversity over time may actually provide attackers more opportunities to find flaws. The

lesson here is again that an intuitive observation may be misleading, and formally modeling

network diversity is necessary.

3.3 Biodiversity-Inspired Network Diversity Metric

Although the notion of network diversity has attracted limited attention, its counterpart in

ecology, biodiversity, and its positive impact on the ecosystem’s stability has been investi-

gated for many decades [27]. While many lessons may potentially be borrowed from the

rich literature of biodiversity, in this chapter we will focus on adapting existing mathemat-

ical models of biodiversity for modeling network diversity.

Specifically, the number of different species in an ecosystem is known as species rich-

ness [94]. Similarly, given a set of distinct resource types R (we will consider similarity

between resources later) in a network, we call the cardinality | R | the richness of resources

in the network. An obvious limitation of this richness metric is that it ignores the relative

18

abundance of each resource type. For example, the two sets {r1,r1,r2,r2} and {r1,r2,r2,r2}

share the same richness of 2 but clearly different levels of diversity.

To address this limitation, the Shannon-Wiener index, which is essentially the Shannon

entropy using natural logarithm, is used as a diversity index to group all systems with the

same level of diversity. The exponential of the diversity index is regarded as the effective

number metric [39]. The effective number basically allows us to always measure diversity

in terms of the number of equally-common species, even if in reality those species may

not be equally common. In the following equation, we borrow this concept to define the

effective resource richness and our first diversity metric.

Definition 1 (Effective Richness and d1-Diversity). In a network G with the set of hosts

H = {h1,h2, . . . ,hn}, set of resource types R = {r1,r2, . . . ,rm}, and the resource mapping

res(.) : H→ 2R (here 2R denotes the power set of R), let t = ∑
n
i=1 | res(hi) | (total number of

resource instances), and let p j =
|{hi:r j∈res(hi)}|

t (1≤ i≤ n,1≤ j≤m) (relative frequency of

each resource). We define the network’s diversity as d1 =
r(G)

t , where r(G) is the network’s

effective richness of resources, defined as

r(G) =
1

∏
n
1 ppi

i

One limitation of the effective number-based metric is that similarity between different

resource types is not taken into account and all resource types are assumed to be entirely

different, which is not realistic (e.g., the same application can be configured to fulfill totally

different roles, such as Nginx as a reverse proxy or a web server, respectively, in which case

these should be regarded as different resources with high similarity). Therefore, we borrow

the similarity-sensitive biodiversity metric recently introduced in [62] to re-define resource

richness. With this new definition, the above diversity metric d1 can now handle similarity

between resources.

19

Definition 2 (Similarity-Sensitive Richness). In Definition 1, suppose a similarity func-

tion is given as z(.) : [1,m]× [1,m]→ [0,1] (a larger value denoting higher similarity and

z(i, i) = 1 for all 1 ≤ i ≤ m), let zpi = ∑
m
j=1 z(i, j)p j. We define the network’s effective

richness of resources, considering the similarity function, as

r(G) =
1

∏
n
1 zppi

i

The effective richness-based network diversity metric d1 is only suitable for cases where

all resources may be treated equally, and causal relationships between resources either do

not exist or may be safely ignored. On the other hand, this metric may also be used as a

building block inside other network diversity metrics, in the sense that we may simply say

“the number of distinct resources” without worrying about uneven distribution of resource

types or similarity between resources, thanks to the effective richness concepts given in

Definition 1 and 2.

The effect of biodiversity on the stability of an ecosystem has been shown to critically

depend on the interaction of different species inside a food Web [69]. Although such inter-

action typically takes the form of a “feed-on” relationship between different species, which

does not directly apply to computer networks, this observation has inspired us to model

diversity based on the structural relationship between resources, which will be detailed in

the coming sections.

3.4 Least Attacking Effort-Based Network Diversity Met-

ric

This section models network diversity based on the least attacking effort.The heuristic al-

gorithm to find d2 are described in [131]. We don’t put detailed algorithm here.

20

3.4.1 The Model

In order to model diversity based on the least attacking effort while considering causal

relationships between different resources, we first need a model of such relationships and

possible zero day attacks. Our model is similar to the attack graph model [110, 6], although

our model focuses on remotely accessible resources (e.g., services or applications that are

reachable from other hosts in the network), which will be regarded as placeholders for

potential zero day vulnerabilities instead of known vulnerabilities as in attack graphs.

To build intuitions, we revisit Figure 1 by making the following assumptions. Accesses

from outside firewall 1 are allowed to host 1 but blocked to host 2; accesses from host 1

or 2 are allowed to host 3 but blocked to host 4 by firewall 2; hosts 1 and 2 provide http

service; host 3 provides ssh service; Host 4 provides both http and rsh services.

Figure 2 depicts a corresponding resource graph, which is syntactically equivalent to

an attack graph, but models zero day attacks rather than known vulnerabilities. Each pair in

plaintext is a self-explanatory security-related condition (e.g., connectivity 〈 source, desti-

nation 〉 or privilege 〈privilege,host〉), and each triple inside a box is a potential exploit of

resource 〈resource, source host,destination host〉; the edges point from the pre-conditions

to a zero day exploit (e.g., from 〈0,1〉 and 〈user,0〉 to 〈htt p,0,1〉), and from that exploit

to its post-conditions (e.g., from 〈htt p,0,1〉 to 〈user,1〉). Exploits or conditions involving

firewall 2 are omitted for simplicity.

We simply regard resources of different types as entirely different (their similarity can

be handled using the effective resource richness given in Definition 2). Also, we take the

conservative approach of considering all resources (services and firewalls) to be potentially

vulnerable to zero day attacks. Definition 3 formally introduces the concept of resource

graph.

Definition 3 (Resource Graph). Given a network with the set of hosts H, set of resources

R with the resource mapping res(.) : H→ 2R, set of zero day exploits E = {〈r,hs,hd〉 | hs ∈

21

<http,0,1>

<0,1> <user,0> <0,F>

<firewall,0,F>

<ssh,1,4> <http,0,2>

<2,4><user,2>

<user,4> <4,5>

<http,1,2>

<user,1><1,4> <0,2><1,2>

<rsh,4,5> <http,4,5>

<ssh,2,4>

<user,5>

Figure 2: An Example Resource Graph

H,hd ∈H,r ∈ res(hd)} and their pre- and post-conditions C, a resource graph is a directed

graph G(E ∪C,Rr∪Ri) where Rr ⊆C×E and Ri ⊆ E×C are the pre- and post-condition

relations, respectively.

Next, we consider how attackers may potentially attack a critical network asset, mod-

eled as a goal condition, with the least effort. In Figure 2, by following the simple rule

that an exploit may be executed if all the pre-conditions are satisfied, and executing that

exploit will cause all the post-conditions to be satisfied, we may observe six attack paths,

as shown in Table 1 (the second and third columns can be ignored for now and will be

explained shortly). Definition 4 formally introduces the concept of attack path.

22

Attack Path # of Steps # of Resources
1. 〈http,0,1〉 → 〈ssh,1,4〉 → 〈rsh,4,5〉 3 3
2. 〈http,0,1〉 → 〈ssh,1,4〉 → 〈http,4,5〉 3 2
3. 〈http,0,1〉 → 〈http,1,2〉 → 〈ssh,2,4〉 → 〈rsh,4,5〉 4 3
4. 〈http,0,1〉 → 〈http,1,2〉 → 〈ssh,2,4〉 → 〈http,4,5〉 4 2
5. 〈firewall,0,F〉 → 〈http,0,2〉 → 〈ssh,2,4〉 → 〈rsh,4,5〉 4 4
6. 〈firewall,0,F〉 → 〈http,0,2〉 → 〈ssh,2,4〉 → 〈http,4,5〉 4 3

Table 1: Attack Paths

Definition 4 (Attack Path). Given a resource graph G(E ∪C,Rr ∪Ri), we call CI = {c :

c ∈C,(@e ∈ E)(〈e,c〉 ∈ Ri)} the set of initial conditions. Any sequence of zero day exploits

e1,e2, . . . ,en is called an attack path in G, if (∀i∈ [1,n])(〈c,ei〉 ∈Rr→ (c∈Ci∨(∃ j∈ [1, i−

1])(〈e j,c〉 ∈Ri))), and for any c∈C, we use seq(c) for the set of attack paths {e1,e2, . . . ,en :

〈en,c〉 ∈ Ri}.

We are now ready to consider how diversity could be defined based on the least attack-

ing effort (the shortest path). There are actually several possible ways for choosing such

shortest paths and for defining the metric, as we will illustrate through our running example

in the following.

• First, as shown in the second column of Table 1, path 1 and 2 are the shortest in

terms of the steps (i.e., the number of zero day exploits). Clearly, those do not reflect

the least attacking effort, since path 4 may actually take less effort than path 1, as

attackers may reuse their exploit code, tools, and skills while exploiting the same

http service on three different hosts.

• Next, as shown in the third column, path 2 and 4 are the shortest in terms of the

number of distinct resources (or effective richness). This seems more reasonable

since it captures the saved effort in reusing exploits. However, although path 2 and 4

have the same number of distinct resources (2), they clearly reflect different diversity.

• Another seemingly valid solution is to base on the minimum ratio # of resources
of steps (which

23

is given by path 4 in this example), since such a ratio reflects the potential improve-

ments in terms of diversity (e.g., the ratio 2
4 of path 4 indicates 50% potential im-

provement in diversity). However, we can easily imagine a very long attack path

minimizing such a ratio but does not reflect the least attacking effort (e.g., an attack

path with 9 steps and 3 distinct resources will yield a ratio of 1
3 , less than 2

4 , but

clearly requires more effort than path 4).

• Finally, yet another option is to choose the shortest path that minimizes both the

number of distinct resources (path 2 and 4) and the above ratio # of resources
of steps (path

4). However, a closer look will reveal that, although path 4 does represent the least

attacking effort, it does not represent the maximum amount of potential improvement

in diversity, because once we start to diversify path 4, the shortest path may change

to be path 1 or 2.

Based on these discussions, we define network diversity by combining the first two op-

tions above. Specifically, the network diversity is defined as the ratio between the minimum

number of distinct resources on a path and the minimum number of steps on a path (note

these can be different paths). Going back to our running example above, we find path 2 and

4 to have the minimum number of distinct resources (two), and also path 1 and 2 to have

the minimum number of steps (three), so the network diversity in this example is equal to

2
3 (note that it is a simple fact that this ratio will never exceed 1). Intuitively, the numerator

2 denotes the network’s current level of robustness against zero day exploits (no more than

2 different attacks), whereas the denominator 3 denotes the network’s maximum potential

of robustness (tolerating no more than 3 different attacks) by increasing the amount of di-

versity (from 2
3 to 1). More formally, we introduce our second network diversity metric in

Definition 5 (note that, for simplicity, we only consider a single goal condition for repre-

senting the given critical asset, which is not a limitation since multiple goal conditions can

be easily handled through adding a few dummy conditions [3]).

24

Definition 5 (d2-Diversity). Given a resource graph G(E∪C,Rr∪Ri) and a goal condition

cg ∈C, for each c∈C and q∈ seq(c), denote R(q) for {r : r∈R,r appears in q}, the network

diversity is defined as (where min(.) returns the minimum value in a set)

d2 =
minq∈seq(cg) | R(q) |
minq′∈seq(cg) | q′ |

3.5 Probabilistic Network Diversity

In this section, we develop a probabilistic metric to capture the effect of diversity based on

average attacking effort by combining all attack paths. The preliminary version of this pa-

per [131] has proposed a probabilistic metric model for this purpose. We will first identify

important limitations in this model, and then provide a redesigned model to address them.

3.5.1 Overview

This section first reviews the probabilistic model of network diversity introduced in [131]

and then points out its limitations. This model defines network diversity as the ratio be-

tween two probabilities, namely, the probability that given critical assets may be com-

promised, and the same probability but with an additional assumption that all resource

instances are distinct (which means attackers cannot reuse any exploit). Both probabilities

represent the attack likelihood with respect to goal conditions, which can be modeled using

a Bayesian network constructed based on the resource graph [32].

For example, Figure 3 demonstrates this model based on our running example (only part

of the example is shown for simplicity). The left-hand side represents the case in which

the effect of reusing an exploit is not considered, that is, the two http service instances

are assumed to be distinct. The right-hand side considers that effect and models it as the

conditional probability that the lower http service may be exploited given that the upper

25

<http,0,1>

0.08

<0,1> <user,0>

<1,2>

<user,2>

<http,1,2>

0.9

<user,1>
0.08

0.072

0.072

<http,1,2>

<http,0,1> <user,1> <1,2> T F

T T T 0.9 0.1

T T F 0 1

T F T 0 1

F T T 0 1

F T F 0 1

F F F 0 1

<http,0,1>

0.08

<0,1> <user,0>

<1,2>

<user,2>

<http,1,2>

0.08

<user,1>
0.08

<http,1,2>

<user,1> <1,2> T F

T T 0.08 0.92

T F 0 1

F T 0 1

F F 0 1

0.0064

0.0064

Figure 3: Modeling Network Diversity Using Bayesian Networks

one is already exploited (represented using a dotted line). The two conditional probability

tables (CPTs) illustrate the effect of reusing the http exploit (e.g., probability 0.9 in the right

CPT), and not reusing it (e.g., probability 0.08 in the left CPT), respectively. The network

diversity in this case will be calculated as the ratio d3 =
0.0064
0.072 .

We realized that the above model has certain limitations when a few invalid results

(larger than 1) were returned during our simulations. More specifically, in the above model,

modeling the effect of reusing exploits as a conditional probability (that a resource may be

exploited given that some other instances of the same type are already exploited) essentially

assumes a total order over different instances of the same resource type in any resource

graph, which comprises a major limitation. For example, in Figure 4 (the dashed line and

box, and the CPT table may be ignored for the time being), although the reused http exploit

26

<http,0,1>

<0,1>
<user,0>

<0,F>

<firewall,0,F>

<http,0,2>

<user,2>

<http,1,2>

<user,1> <0,2><1,2>

<http>

Figure 4: The Redesigned Model

〈http,1,2〉 (after exploiting 〈http,0,1〉) may be handled using the above model by adding

a dotted line pointing to it from its ancestor 〈http,0,1〉, the same method will not work

for the other potentially reused http exploit 〈http,0,2〉, since there does not exist a definite

order between 〈http,0,1〉 and 〈http,0,2〉, which means an attacker may reach 〈http,0,2〉

before, or after, reaching 〈http,0,1〉. Therefore, we cannot easily assume one of them to be

exploited first. Considering that the resource graph model is defined based on a Bayesian

network, which by definition requires acyclic graphs, we cannot add bi-directional dotted

lines between exploits, either.

Another related limitation is that, once exploits are considered to be partially ordered,

the attack likelihood will not necessarily be the lowest when all the resources are assumed

to be distinct. For example, in Figure 4, an attacker may reach condition 〈user,2〉 through

two paths, 〈http,0,1〉 → 〈http,1,2〉 and 〈firewall,0,F〉 → 〈http,0,2〉. Intuitively, the attack

likelihood will actually be higher if the http exploits in the two paths are assumed to be

distinct, since now an attacker would have more choices in reaching the goal condition

〈user,2〉. Those limitations will be addressed in following sections through a redesigned

model.

27

3.5.2 Redesigning d3 Metric

To address the aforementioned limitations of the original d3 metric [131], we redesign the

model of reusing exploits of the same resource type. Intuitively, what allows an attacker to

more likely succeed in exploiting a previously exploited type of resources is the knowledge,

skills, or exploit code he/she has obtained. Therefore, instead of directly modeling the

casual relationship between reused exploits, we explicitly model such advantages of the

attacker as separate events, and model their effect of increasing the likelihood of success in

subsequent exploits as conditional probabilities.

More specifically, a new parent node common to exploits of the same resource type will

be added to the resource graph, as demonstrated in Figure 4 using dashed lines and box.

This common parent node represents the event that an attacker has the capability to exploit

that type of resources. However, unlike nodes representing initial conditions, which will be

treated as evidence for calculating the posterior probability of the goal condition, the event

that an attacker can exploit a type of resources will not be considered observable. Adding

a common parent node to exploits of the same resource type will introduce probabilistic

dependence between the children nodes such that satisfying one child node will increase

the likelihood of others, which models the effect of reusing exploits.

For example, in Figure 4, the dashed line box indicates a new node 〈http〉 representing

the event that an attacker has the capability to exploit http resources. The dashed lines rep-

resent conditional probabilities that an attacker can exploit each http instance, and the CPT

table shows an example of such conditional probability for 〈http,1,2〉. The marginal prob-

ability 0.08 assigned to 〈http〉 represents the likelihood that an attacker has the capability of

exploiting http resources, and the conditional probability 0.9 assigned to 〈http,1,2〉 repre-

sents the likelihood for the same attacker to exploit that particular instance. The existence

of such a common parent will introduce dependence between those http exploits, such that

satisfying one will increase others’ likelihood.

28

Formally, Definition 6 characterizes network diversity using this approach. In the defi-

nition, the second set of conditional probabilities represent the probability that an attacker

is capable of exploiting each type of resources. The third and fourth sets together represent

the semantics of a resource graph. Finally, the fifth set represents the conditional proba-

bility that an exploit may be executed when its pre-conditions are satisfied (including the

condition that represents the corresponding resource type).

Definition 6 (d3 Diversity). Given a resource graph G(E ∪C,Rr ∪ Ri), let R′ ⊆ R be

the set of resource types each of which is shared by at least two exploits in E, and let

Rs = {(r,〈r,hs,hd〉) : r ∈ R′,〈r,hs,hd〉 ∈ E} (that is, edges from resource types to resource

instances). Construct a Bayesian network B = (G′(E ∪C∪R′,Rr ∪Ri∪Rs),θ), where G′

is obtained by injecting R′ and Rs into the resource graph G, and regarding each node as

a discrete random variable with two states T and F, and θ is the set of parameters of the

Bayesian network given as follows.

I. P(c = T) = 1 for all the initial conditions c ∈CI .

II. P(r = T) are given for all the shared resource types r ∈ R′.

III. P(e | ∃c〈c,e〉∈Rr = F) = 0 (that is, an exploit cannot be executed until all of its pre-

conditions are satisfied).

IV. P(c | ∃e〈e,c〉∈Ri = T) = 1 (that is, a post-condition can be satisfied by any exploit

alone).

V. P(e | ∀c〈c,e〉∈Rr∪Rs = T) are given for all e ∈ E (that is, the probability of successfully

executing an exploit when its pre-conditions have all been satisfied).

Given any cg ∈ C, the network diversity d3 is defined as d3 = p′
p where p = P(cg |

∀cc∈CI = T) (that is, the conditional probability of cg being satisfied given that all the initial

conditions are true), and p′ denotes the minimum possible value of p when some edges are

29

deleted from Rs (that is, the lowest attack likelihood by assuming certain resource types are

no longer shared by exploits).

Figure 5 shows two simple examples in which the first depicts a conjunction relation-

ship between the two exploits (in the sense that both upper exploits must be executed be-

fore the lower exploit can be reached), whereas the second a disjunction relationship (any

of the two upper exploits can alone lead to the lower exploit). In both cases, assuming

cg = 〈c3,1〉, the probability p = P(cg | ∀cc∈CI = T) is shown in the figure. We now con-

sider how to calculate the normalizing constant p′. For the left-hand side case, the prob-

ability p = P(cg | ∀cc∈CI = T) would be minimized if we delete both edges from the top

node (v1) to its two children (that is, those two exploits no longer share the same resource

type). It can be calculated that p′ = 0.0064, and hence the diversity d3 = 0.0064
0.0648 in this

case. The right-hand case is more interesting, since it turns out that p is already minimized

because deleting edges from the top node (v1) will only result in a higher value of p (since

an attacker would have two different ways for reaching the lower exploit), which can be

calculated as 0.1536. Therefore, diversity in this case is d3 = 0.0792
0.0792 , that is, improving

diversity will not enhance (in fact it hurts) security in this case. This example also confirms

our earlier observation that assuming all resources to be distinct does not necessarily lead

to the lowest attack likelihood.

The above example also leads to the observation that the normalizing constant p′ may

not always be straightforward to calculate since finding the case in which p is minimized es-

sentially means we need to optimize a network’s diversity for improving its security, which

itself comprises an interesting future direction. Instead, we propose an approximated ver-

sion of normalizing constant p′ based on following observations from the above example.

In Figure 5, we can see that the right-hand side contains two attack paths leading to the

goal condition 〈c3,1〉 (since each of the upper exploits alone is sufficient to lead to the

lower exploit). We have shown previously that deleting dashed lines will only increase the

30

<v1,0,1>

0.9

<c2,1>

<v1,2,1>

0.9

<c1,1>

<v3,1,1>

<v1,0,1> <v1,2,1> T F

T T 1 0

T F 0 1

F T 0 1

F F 0 1

0.072 0.072

0.072 0.072

0.0648

v1
0.08

0.08

<v3,1,1>

1.0

<c3,1>

0.0648

<v1,0,1>

0.9

<v1,2,1>

0.9

<c1,1>

<v3,1,1>

1.0

<v3,1,1>

<v1,0,1> <v1,2,1> T F

T T 1 0

T F 1 0

F T 1 0

F F 0 1

0.072 0.072

0.0792

v1
0.08

0.08

0.0792

<c3,1> 0.0792

Figure 5: Two Examples of Applying d3

probability p (of reaching the goal condition). However, we can easily see that, whether we

delete the dashed lines or not, the probability p would always be minimized if there were

only one path (e.g., by deleting 〈v1,2,1〉 from the figure). Note that, for the left-hand side,

there is already only one path since both upper exploits are required to reach the lower ex-

ploit, so p is minimized when the two upper exploits are assumed to be distinct. Intuitively,

the network’s security can never exceed the case in which only the shortest path (in terms

of the number of steps) remains in the resource graph, with no resource being shared along

the path. This intuition leads to following result.

Proposition 1. The normalizing constant p′ in Definition 6 always satisfies p′ ≥ p′′ where

p′′ is the probability P(cg | ∀cc∈CI = T) calculated on the shortest attack path in terms of

steps (see Section 3.4.1).

Proof (Sketch): We prove the result by mathematical induction on i, the number of steps

in the shortest path. The base case i = 1 is trivial. For the inductive case, suppose the result

31

holds for any resource graph with shortest path no longer than k. Given a resource graph

G whose shortest path has k+ 1 steps, let the set of exploits that are directly adjacent to

the goal condition cg be Ek+1. Clearly, P(cg | ∀cc∈CI = T) ≥ P(e | ∀cc∈CI = T) holds for

all e ∈ Ek+1 since cg can be satisfied by any exploit in Ek+1 (and the probability of the

disjunction of events cannot be smaller than the probability of any event). Without loss of

generality, suppose ek+1 ∈ Ek+1 is the exploit next to cg on the shortest path, and we have

P(cg | ∀cc∈CI = T) ≥ P(ek+1 | ∀cc∈CI = T). Let Ek be the set of exploits closest to ek+1,

E ⊆ Ek be the set of exploits on the shortest path, and ek ∈ E be the exploit next to ek+1.

There cannot be any conjunctive relationships between the exploits in E and any other

exploit in Ek \E with respect to ek+1, because otherwise the shortest path would have more

than k+ 1 steps, contradicting our assumption. Therefore, we have that P(cg | ∀cc∈CI =

T) ≥ P(ek+1 | ∀cc∈CI = T) ≥ P(ek | ∀cc∈CI = T) ·P(ek+1 | ∀c〈c,e〉∈Rr∪Rs = T). Then by

our inductive hypothesis, we have that P(ek | ∀cc∈CI = T) must be no less than the same

probability calculated on the shortest path (of length k), and hence conclude the proof. 2

The above result simplifies the application of d3 since the shortest path can be easily

obtained using the heuristic algorithm mentioned in [131]. We apply the approach to our

running example, as shown in Figure 2. Based on Table 1, the first and second attack paths

have the lowest number of steps. The left-hand side of Figure 6 depicts the first path. The

normalizing constant can be calculated based on this path as p′ = 5.12 ∗ 10−4. The right-

hand side depicts the application of our model for reusing exploits, which adds a common

parent for the same type of resources, represented using dotted lines and boxes. There are

two types of resources that are reused in this resource graph, http and ssh. By applying

the method described above, we obtain the attack likelihood p = 0.0052, and therefore the

network diversity can be calculated as d3 =
p′
p = 5.12∗10−4

0.0052 .

32

<http,0,1>

0.9

<0,1> <user,0> <0,F>

<firewall,0,F>

0.08

<ssh,1,3>

0.9

<http,0,2>

0.9

<2,3>
user(2)

<user,3>

<3,4>

<user,4>

<http,1,2>

0.9

<user,1>

<1,3>

<0,2><1,2>

<rsh,3,4>

0.08

<http,3,4>

0.9

<ssh,2,3>

0.9

0.0052

<http>

<ssh>

<http,0,1>

0.08

<0,1> <user,0>

<ssh,1,3>

0.08

<user,3>

<user,4>

<user,1>

<1,3>

<rsh,3,4>

0.08

0.08

0.0064

0.000512

0.000512

Figure 6: Applying d3 on the Running Example

3.6 Applying the Network Diversity Metrics

The network diversity metrics we have proposed are based on abstract models of networks

and attacks. How to instantiate such models for a given network is equally important. This

section discusses various practical issues in applying the metrics and provides a case study

on instantiating the models.

3.6.1 Guidelines for Instantiating the Network Diversity Models

To apply the proposed network diversity metrics, necessary input information needs to

be collected. We describe how such inputs may be collected from a given network and

discusses the practicality and scalability.

1 The d1 Diversity Metric To instantiate d1, we need to collect information about

33

- hosts (e.g., computers, routers, switches, firewalls),

- resources (e.g., remotely accessible services), and

- similarity between resources.

Information about hosts and resources is typically already available to administrators

in the form of a network map. A network scanning will assist in collecting or veri-

fying information about active services. A close examination of host configurations

(e.g., the status of services and firewall rules) may also be necessary since a network

scanning may not reveal services that are currently disabled or hidden by security

mechanisms (e.g., firewalls) but may be re-enabled once the security mechanisms

are compromised.

Collecting and updating such information for a large network certainly demands sub-

stantial time and efforts. Automated network scanning or host-based tools exist to

help simplify such tasks. Moreover, focusing on remotely accessible resources al-

lows our model to stay relatively manageable and scalable, since most hosts typically

only have a few open ports but tens or even hundreds of local applications. A chal-

lenge is to determine the similarity of different but related resources, which will be

discussed in further details in Section 3.8.

2 The d2-Diversity Metric To instantiate the least attacking effort-based d2 network

diversity metric, we need to collect the following, in addition to what is already

required by d1,

- connectivity between hosts,

- security conditions either required for, or implied by, the resources (e.g., privi-

leges, trust relationships, etc.), and

- critical assets.

34

The connectivity information is typically already available as part of the network

map. A network scanner may help to verify such information. A close examination

of host configurations (e.g., firewall rules) and application settings (e.g., authenti-

cation policies) is usually sufficient to identify the requirements for accessing a re-

source (pre-conditions), and an assessment of privilege levels of applications and the

strength of isolation around such applications will reveal the consequences of com-

promising a resource (post-conditions). Critical assets can be identified based on an

organization’s needs and priority.

The amount of additional information required for applying d2 is comparable to that

required for d1, since a resource typically has a small number of pre- and post-

conditions. Once such information is collected, we can construct a resource graph

using existing tools for constructing traditional attack graphs due to their syntactic

equivalence, and the latter is known to be practical for realistic applications [86, 47].

3 The d3-Diversity Metric

To instantiate the probabilistic network diversity metric d3, we need to collect the

following, in addition to what is already required for d2,

- marginal probabilities of shared resource types, and

- conditional probabilities that resources can be compromised when all the pre-

conditions are satisfied.

Both groups of probabilities represent the likelihood that attackers have the capabil-

ity of compromising certain resources. A different likelihood may be assigned to

each resource type, if this can be estimated based on experiences or reputations (e.g.,

the history of past vulnerabilities found in the same or similar resource). When such

an estimation is not possible or desirable (note that any assumption about attackers’

capabilities may weaken security if the assumption turns to be invalid), we can assign

35

the same nominal value as follows. Since a zero day vulnerability is commonly in-

terpreted as a vulnerability not publicly known or announced, it can be characterized

using the CVSS base metrics [73], as a vulnerability with a remediation level un-

available, a report confidence unconfirmed, and a maximum overall base score (and

hence produce a conservative metric value). We therefore obtain a nominal value of

0.8, converting to a probability of 0.08. For reference purpose, the lowest existing

CVSS score [81] is currently 1.7, so 0.08 is reasonably low for a zero day vulner-

ability. Once the probabilities are determined, applying d3 amounts to constructing

Bayesian networks and making probabilistic inferences based on the networks, which

can be achieved using many existing tools (e.g., we use OpenBayes [33]). Although

it is a well known fact that inference using Bayesian networks is generally intractable,

our simulation results have shown that the particular inference required for applying

the d3 metric can actually be achieved under reasonable computational cost [131].

3.6.2 Case Study

Deep Packet

Inspection

host0

Web Server

host1

Domain

Controller

DMZ

Network

Management

Network

CITRIX

Firewall

Figure 7: An Example Network [83]

36

We present a case study to demonstrate how our models may be instantiated by fol-

lowing the guidelines provided in previous section. The case study is based on a network

configuration from the Penetration Testing Virtual Labs [83]. Despite its relatively small

scale, the network configuration mimics a typical enterprise network, e.g., with DMZ, Web

server behind firewall accessible from public Internet, and a private management network

protected by the same firewall but with deep packet inspection and equipped with a domain

controller and CITRIX server, as shown in Figure 7. The following describes in details

how we collect necessary input information for instantiating each metric, and the collected

information is listed in Table 2.

Hosts Connectivity Ports Resources
Security
Conditions

Fire-
wall

Web Server,
host1

-

Egress traffic
filtered, Deep
content
inspection rules

-

Web
server

firewall,host1 80,43
Http Services,
SQLite1.2.4 ,
Ubuntu 11.04

user, root

Host1
firewall, web
server, domain
controller, citrix

80,3389
File Sharing,
RDP Service,
Windows 7,

domain user,
local
administrator

Citrix
domain
controller, host1

80,3389
Http Services,
Citrix Xen App,
RDP Service

user, local
administrator

Do-
main
Con-
troller

citrix,host1 3389 RDP Service
user,domain
administrator

Table 2: Collected Information

1 The d1 Metric The information we collect for instantiating d1 includes:

- Hosts: The network topological map clearly indicates these are the hosts: Fire-

wall, Web Server, host1, Citrix, and Domain Controller.

37

- Resources: The network configuration description indicates the firewall used

in this network is Symantec Endpoint Protection, which deploys two different

rules, for the DMZ network with egress traffic filtered and for the Management

network with deep content inspection. We use nmap to scan the internal net-

work in order to collect information about opening ports, applications running

on the hosts and operating systems’ information on the hosts, etc. For example,

we determined that the public web server has opening ports 80 and 43, with

SQLite and Appache running on top of Ubuntu 11.04.

- Similarity between resources: We take a simplistic approach of regarding re-

sources in this network as either identical or different so the similarity score is

either 1 or 0 (this can be refined by leveraging existing tools, as discussed in

Section 3.8).

2 The d2 Metric

To instantiate d2, we need to collect the following, in addition to what is already

collected for d1:

- Connectivity: the network topological map clearly provides the connectivity

between hosts.

- Security conditions: we study the applications and their existing vulnerabili-

ties in order to collect corresponding security-related pre- and post- conditions.

For example, SQLiteManager version 1.2.4 runs under user privilege on Web

server, which indicates a post-condition of user privilege on the host, whereas

Ubuntu 11.04 has root privilege as its post-condition due to potential privilege

escalation vulnerabilities (there in fact exist such vulnerabilities [21]).

- Critical assets: in this network we consider the Domain Controller as critical

asset due to its special role (actual system administrators will be in a better

38

position to designate their critical assets).

3 The d3 Metric To instantiate d3, we need to collect the following, in addition to what

is already collected for d2,

- Marginal probabilities of shared resource types and conditional probabilities

that resources can be compromised when all the pre-conditions are satisfied:

we assign 0.08 as a nominal value for both probabilities which may certainly be

refined if additional information is available to administrators (see Section 3.6.1

for details).

3.7 Simulation

In this section, we study the three proposed metrics by applying them to different use

cases through simulations. All simulation results are collected using a computer equipped

with a 3.0 GHz CPU and 8GB RAM in the Python environment under Ubuntu 12.04 LTS.

The Bayesian network-based metric is implemented using OpenBayes [33]. To generate a

large number of resource graphs for simulations, we first construct a small number of seed

graphs based on real networks, and then generate larger graphs from those seed graphs by

injecting new hosts and assigning resources in a random but realistic fashion (e.g., we vary

the number of pre-conditions of each exploit within a small range since real world exploits

usually have a small number of pre-conditions).

We apply the three network diversity metrics to different use cases, as presented in

Section 3.2. Our objective is to evaluate the three metrics through numerical results and to

examine those results together with statistically expected results represented by different

attack scenarios.

The first two simulations compare the results of all three metrics to examine their dif-

ferent trends as graph sizes increase and as diversity increases. First of all, to convert the

39

Bayesian network-based metric d3 to a comparable scale of the other two, we use log0.08(p′)
log0.08(p)

(i.e., the ratio based on equivalent numbers of zero day exploits) instead of d3. In the left-

hand side of Figure 8, the scatter points marked with X in the red color are the individual

values of d2. The blue points marked with Y are the values of d3 (converted as above). Also

shown are their average values, and the average value of the effective richness-based metric

d1. The right figure shows the average value of the three metrics in increasing number of

distinct resources for resource graphs of a fixed size.

Results and Implications: Both simulations show that, while all three metrics follow

a similar trend (in the left figure, diversity will decrease in larger graphs since there will

be more duplicated resources) and capture the same effect of increasing diversity (in the

right figure), the Bayesian network-based metric d3 somehow reflects an intermediate result

between the two other extremes (d1 can be considered as the average over all resources,

whereas d2 only depends on the shortest path). Those results show that applying all three

metrics may yield consistent results and motivates us to compare them through further

simulations.

Next we examine the metric results under different use cases, as described in Sec-

tion 3.2. The first use case considers worms characterized as follows. First, each worm can

only exploit a small number of vulnerabilities. In our implementation, we randomly choose

one to three resource types as the capability of each worm. Second, the goal of a worm is

infecting as many hosts as possible, does not need specific targets. Although some worms

or bots may indeed in reality have a target, it is usually still necessary for them to first com-

promise a large number of machines before the target can be reached (e.g., Stuxnet [29]).

In Figure 9, the X-axis is the ratio of the number of resource types to the number of re-

source instances, which roughly represents the level of diversity in terms of richness (it can

be observed that d1 is close to a straight line). Y -axis shows the results of the three metrics

as well as the ratio of hosts that are not infected by the simulated worms. The four lines

40

0 100 200 300 400 500 600
of nodes

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

Ind=2

d1
d2
d3

d2 scattered

d3 scattered

(a)

0 50 100 150 200 250 300
of services

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
et
ri
cs

Nodes=300

d1
d2

d3

(b)

Figure 8: Comparison of Metrics (a) and the Effect of Increasing Diversity (b)

represent the three metrics (marked with d1, d2, and d3) and the ratio of hosts uninfected by

simulated worms (marked with S1). Figure 8 (a) and (b) correspond to different percentage

of first-level exploits (the exploits that only have initial conditions as their pre-conditions)

among all exploits, which roughly depicts how well the network is safeguarded (e.g., 50%

means a more vulnerable network than 10% since initially attackers can reach half, or five

times more, exploits). For each configuration, we repeat 500 times to obtain the average

41

result of simulated worms.

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s1

(a)

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s1

(b)

Figure 9: Worm Propagation (10% Initially Satisfied Exploits (a), 50% Initially Satisfied
Exploits (b))

Results and Implications: In this simulation, we can make the following observations.

First of all, all three metrics still exhibit similar trends and relationships as discussed above.

The Figure 9 (a) shows that, when the network is better safeguarded (with only 10% of

exploits initially reachable), the effect of increasing diversity on simulated worms shows

a closer relationship with the d2 metric than the other two, both of which indicate that

42

increasing diversity can significantly increase the percentage of hosts uninfected by worms.

In comparison, the Figure 9 (b) shows a less promising result where both three metrics

and the percentage of uninfected hosts all tend to follow a similar trend. Intuitively, in

well guarded networks, many hosts cannot be reached until the worms have infected other

adjacent hosts, so increasing diversity can more effectively mitigate worm propagation. In

less guarded networks where half of the exploits may be reached initially, the effect of

diversity on worms is almost proportional to the richness of resources (d1), and all three

metrics tend to yield similar results.

The second use case is targeted attacks (Section 3.2). We simulate attackers with dif-

ferent capabilities (sets of resources they can compromise) and the level of such capabil-

ities (that is, the number of resources they can compromise) follows the Gamma distri-

bution [72]. Similarly, we also repeat each experiment 500 times and we examine two

different cases corresponding to different percentages of first-level exploits. In Figure 10,

S2 is the result of simulated attacker, which means the percentages of attackers who cannot

reach the randomly selected goal condition.

Results and Implications: From the results we can observe similar results as with the

simulated worms. Specifically, increasing diversity can more effectively mitigate the dam-

age caused by simulated attackers for well guarded networks (the left figure) than for less

guarded networks (the Figure 10 (a)). Also, in the left figure, the simulated attackers’ re-

sults are closer to that of d2 than the other two metrics, whereas it is closer to both d2 and

d3 in the Figure 10 (b). In addition, by comparing the results in Figure 10 (targeted attack)

to that in Figure 9 (worm), we can see that the same level of diversity can more effectively

mitigate worm than it can do to simulated attackers. This can be explained by the fact that

a worm is assumed to have much less capability (set of resources it can compromise) than

a simulated attacker.

43

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s2

(b)

Figure 10: Targeted Attack (0% Initially Satisfied Vulnerabilities (a), 50% Initially Satis-
fied Vulnerabilities (b))

The next set of simulations examines the relationships between d2 and d3 in more de-

tails. Those two metrics both take into account the causal relationships between resources,

but they focus on slightly different perspectives (the least and average efforts needed to

compromise a network). At the same time, the two metrics are closely related. In previous

simulations we already see that the values of d3 are almost always smaller than d2. The

two metrics may also converge to similar values in certain cases (e.g., in an extreme case of

44

1 2 3 4 5 6 7 8 9 10
of Path

0.0

0.2

0.4

0.6

0.8

1.0

d
3/
d
2

10<Nodes<40

40<Nodes<70

70<Nodes<100

(a)

10 20 30 40 50 60 70 80 90 100
of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

d
3
/d

2

6 paths

7 paths

8 paths

9 paths

(b)

Figure 11: d3/d2 in the Number of Paths (a) and Nodes (b)

only one path in the resource graph, d2 and d3 will yield identical value). To see how those

two metrics relate to each other, we simulate resource graphs of various sizes and shapes

and the average results (d3/d2) of 500 simulations are shown in Figure 11 .

Results and Implications: Figure 11 (a) shows that, under fixed sizes of resource graphs,

the difference between d2 and d3 increases (a ratio of 1 means they have identical values)

with the number of paths in the resource graphs. This is expected since d2 only represents

45

diversity in terms of one specific path while d3 accounts all paths so with the number of

paths increasing the ratios becomes smaller (meaning larger differences). The Figure 11 (b)

shows that the differences increase (the ratio decreases) as graph sizes increase (all resource

graphs have between 6 to 9 paths). This can be explained by the fact that the difference

between different paths will become more significant as the size of graphs increases and

with the number of paths fixed, and therefore the difference between the two metrics slowly

increases (the ratio decreases). Both simulations imply that, although the choice of metrics

mostly depends on the desired perspective, both metrics should be considered especially

for larger and less well guarded networks (meaning more attack paths are present) since

their values may be vastly different.

We now study the third use case, the Moving Target Defense (MTD). The MTD ap-

proach attempts to achieve better security by varying in time the configurations of networks,

in which diversity plays a critical role. Our goal here is to study the effect of varying di-

versity on the effectiveness of MTD, and also on evaluating our metric when applied to

MTD. To the best of our knowledge, this is among the first efforts on studying MTD using

simulations (another similar effort by Zhuang et al. [141] also employs simulation results,

but our goal is to evaluate the proposed network diversity metric under MTD applications,

which is different from their study). Our simulations are based on following assumptions.

• We assume attackers do not initially have full details about the network but may

gradually learn about such details as the configuration is changed over time. Specifi-

cally, attackers can learn about the change of a configuration (e.g., either through the

failure of their attacks, or by observing special features of a configuration).

• We assume attackers’ capabilities, which are sets of resources they can compromise,

follow gamma distribution. And each resource has attack window, only those reach

the duration of attack window may be compromised by attackers who have the capa-

bility. Moreover, having the capabilities does not mean the attacker can immediately

46

compromise the resource, since he/she may still need certain amount of time to ac-

tually implement the attack on specific instances of the resource. Therefore, in our

simulations, we assign each resource an attack window, and only a resource whose

duration of appearing inside a configuration is longer than the corresponding attack

window may be compromised by attackers who have the capability.

• We assume the MTD approach employs dynamically changing network configura-

tions. But we use fixed frequency of changes in our simulations. Specifically, the

network topology remains the same but resources of each host may change. Also,

we assume a fixed frequency of changes in our simulations (e.g., in Figure 12, the

left figure shows the frequency of configuration change is 1 configuration/per day).

We leave other ways for changing network configurations, such as using a varying

frequency, as future work.

Figure 12 (a) shows the average success rates of attackers after 40 days of exposure to

the network in the number of days before a configuration changes (e.g., 5 day means there

is one configuration change per five days). The Figure 12 (b) shows the attack success rates

(the left Y -axis represents the success rate of worms and the right for targeted attacks) in

the number of days since the network is exposed, with the frequency of changes set at one

configuration change per day.

Results and Implications: From the Figure 12 (a), we can see that a more frequent

change of network configurations does not necessarily equal to better security (lower suc-

cess ratio), since too fast or too slow changes can both increase the exposure of a resource

and hence increase an attacker’s chance in compromising that resource. In fact, the left

figure indicates no clear trend in the success rate as the number of days for a change in-

creases. The small drops in both lines indicate that the lowest success rates coincident with

the average size of attack windows (in this case we assume 10 or 15 days are required to

compromise a resource), which may not be meaningful in reality since different resources

47

0 5 10 15 20 25 30 35 40
#of Days

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc
es
s
Ra

te
s

Worm Probagation
Targeted Attack

(a)

0 5 10 15 20 25 30 35 40
#of Days

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Worm

0.00

0.02

0.04

0.06

0.08

0.10

Targeted Attack

(b)

Figure 12: Success Rate of Attacks in Frequency of Changes (a) and in Time (b)

may have different attack windows. From Figure 12 (b), we can see that, before 15 days,

there is zero success rate for both worm propagation and targeted attack, due to the assumed

10 to 15 days of attack windows. After 15 days, there is a jump in both lines, which means,

with accumulated efforts, both worms and attackers will be able to compromise more and

more resources, and the success rates do not change much after about 20 days since now

they will depend more on the capability of worms (attackers).

48

0 5 10 15 20 25 30 35 40
of days per configuration change

0.00

0.02

0.04

0.06

0.08

0.10

M
et
ri
cs

d1

0.0

0.1

0.2

0.3

0.4

0.5

S
u
cc
es
s
R
at
e

s1

(a)

0 5 10 15 20 25 30 35 40
of days per configuration change

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

s1

(b)

Figure 13: d1 in Frequency of Changes, under Less Resource Types (Left) and More Re-
source Types (Right)

In Figure 13, we only apply the d1 metric to MTD since all three metrics will show

similar trends as discussed above. In the Figure 13 (a), we can see that if the set of resources

types remains at a relatively small size (e.g., #o f Resources
#o f Days < 20%), then our d1 metric stays

almost flat when the frequency of configuration changes is relatively high, and it then drops

more dramatically when the frequency is lower (around one change per 20 days). This

indicates that, with limited number of resource types, a higher frequency of configuration

49

changes does not provide much security gain, unless if the frequency is too low. Figure 13

(a) also indicates that, when the number of days per change increases over 20, diversity

drops while success rate increases, which means our diversity metric effectively capture

the effectiveness of MTD. Figure 13 (b) shows similar results under larger set of resources

(#o f Resources
#o f Days > 80%). The successful rate and d1 shows corresponding (reversed) trends.

However, now with a large enough set of resources to choose from, less frequent changes

in configurations mean lower diversity and hence less security.

In this last simulation, we study the relationship between cost and security in MTD,

as shown in Figure 14. For worm propagation, we assign monetary values to all hosts,

with critical assets (goal conditions) having higher values, whereas for targeted attack, we

only assign a value to critical assets. The red and green dashed lines on top of the figure

shows the total value for each scenario. Each time when worms or attackers compromise

a resource, its assigned value is considered lost. Such lost value is the first part of overall

cost. The other part is the cost of changing configurations in MTD (e.g., administrative

cost of purchasing new software or performance cost of delaying a client’s request).

0 5 10 15 20 25 30 35 40
of days per configuration change

0

1000

2000

3000

4000

5000

6000

7000

8000

V
al
u
e(
$)

Remaining Value

Remaining Value

Total Value

Total Value

Figure 14: Total Cost in Frequency of Changes

50

Results and Implications: Figure 14 depicts the total cost (lost value due to compro-

mised resources plus cost of configuration changes) in the number of days for a change of

configuration. The results show that the overall cost will first decrease and then increase.

The optimal setting of frequency is about one configuration change per 5 days, which best

balances the cost of changing new configuration with lost values of compromised resources.

Note that, according to our discussions above, the optimal frequency will also depend on

the number of available resources.

3.8 Discussion

The similarity between resources is an important input to our metric models. In Sec-

tion 3.6.2, we have taken a simplistic approach of regarding resources as either identical or

completely different (the similarity score is either 1 or 0). Although such an approach may

be acceptable in many cases, it certainly needs to be refined considering the fact that slight

differences usually exist among different versions of the same software, whereas different

software may share common code or libraries. Measuring such differences or similarity

between resources will lead to more accurate results for the diversity metrics. This section

demonstrates such a need and discusses potential solutions.

3.8.1 A Case Study

To demonstrate the need for studying software similarity, we conduct a case study on dif-

ferent versions of Chrome, and show how such differences when taken into account may

affect the diversity metric results. Specifically, we examine 11 consecutive versions of

the Chrome browser between versions 42.0.2283.5 (published Jan 22 06:24:31 2015) and

41.0.2272.16 (published Jan 21 02:44:41 2015) all of which are published along two de-

velopment branches 41 and 42. The versions are labeled with index numbers between 0 to

51

10, from the latest to the oldest, in Figure 15. We use the latest version 0 (42.0.2283.5) as

the baseline for comparison.

It might be expected that not much difference should exist between those versions with

such small differences in version numbers and publish time. However, our study shows this

is not really the case. Taking versions 0 (42.0.2283.5) and 1 (41.0.2272.28) as an example,

while the total number of source files is quite similar (75136 and 73596, respectively), there

are differences in totally 9338 files (about 12%) between the two versions. Moreover, such

differences include 767,987 insertions and 190,943 deletions, which accounts for about

13% of lines (the total number of lines in those two versions are 14,750,264 and 15,330,677,

respectively). Those numbers clearly indicate a significant difference between the two

versions even though their publish time are only a few minutes apart.

In Figure 15, the two lines depict the number of differences in terms of files and mod-

ifications, respectively, for the ten versions. Clearly, there is a similar trend at those two

different levels of differences, with smaller differences among versions in the same branch

(e.g., 42) and more significant differences between different branches (the numbers can

reach almost 10,000 at file level and 1,000,000 at modification level). Although the version

numbers may seem to provide useful information in this particular case, such information

about the relationships between multiple versions (e.g., development branches) may not

always be provided by a software vendor. Therefore, it is not a reliable approach to rely

on either the version numbers or publish time to determine the similarity between multiple

versions.

3.8.2 Potential Solutions

In addition to slight differences between multiple versions of the same software, there

may also exist similarity between completely different software. Most of today’s complex

52

1 2 3 4 5 6 7 8 9 10
of Index

0

2000

4000

6000

8000

10000

#
 o
f
F
il
es

Files
0

200000

400000

600000

800000

1000000

#
 o
f
M
od

if
ic
at
io
n
s

Modifications

Figure 15: Differences at File and Modification Levels between Different Versions of
Chrome

software are developed under established software engineering principles which encour-

age modularity, software reuse, the use of program generators, iterative development, and

open-source packages. As a result, many software may share common code blocks or em-

ploy common libraries, both of which may result in significant similarity between those

software. For example, Chrome and Opera have both been using Blink as their rendering

engine since 2013 so both include common code blocks. A well known example of sharing

common library functions in different software is the recent Heartbleed bug in which many

popular Web servers, including Apache HTTP Server, IBM HTTP Server, and Nginx, all

employ the common openssl library to establish SSL connections. To measure such sim-

ilarity between different software, we believe existing efforts, such as clone detection at

both source code and binary levels, should be leveraged and extended to develop practical

solutions. Although this is not the main focus of this chapter, we provide a brief overview

of existing approaches which we believe are promising in this regard.

At source code level, there exists a rich literature on clone detection, which attempts to

match code fragments through both syntax and semantic features. For example, text-based

approach extracts signatures of the lines and then match software based on substrings [53].

53

Such a technique provides basic matching results although it has many limitations, e.g., it

cannot handle identifier renaming, since it does not transform source code into interme-

diate formats. Token-based approach parses the source code into a list of tokens [10] so

that it can handle renaming, although it has its own limitations, e.g., it cannot deal with

replacement of control flows. In a tree-based approach [28], an abstract syntax tree is gen-

erated from the source code for matching. Such technique provides more semantic features

but it ignores data flows and therefore cannot deal with reordering statements. Apart from

those matching-based approaches, a similarity distance-based approach [15] calculates a

distance between two code segments and then compare to a given threshold. There exist

many other approaches in this literature, all of which may be leveraged to identify and

quantify similarity between open source software.

As to closed source software, identifying shared code or library functions is more chal-

lenging. Nonetheless, there are many existing efforts on assembly-level clone detection and

library identification. The text-based approach regards the executable part of a binary as a

sequence of bytes or lines of assembly and compares them to find identical sequences [50].

The token-based approach relies on feature vectors consisted of opcodes and operands and

employs metrics to provide function-level clone detection [106]. The structural-based ap-

proach maps the code back to execution schema and compares their structural features [26].

Our recent work combines several existing concepts from classic program analysis, includ-

ing control flow graph, register flow graph, and function call graph, to capture semantic

similarity between two binaries [5]. Finally, the binary search engine provide an easy way

for locating shared libraries inside a software binary [57]. Although more challenging than

it is for open source software, We believe developing practical tools by leveraging such ex-

isting efforts to identify and estimate similarity for closed source software is still possible.

Finally, variations of software may also be caused by configuration differences (e.g.,

different settings of Sophos antivirus software), additional security hardening measures

54

(e.g., SELinux and Grsecurity), add-ons and plugins, etc., which may sometimes offer

even more substantial impact than different versions of a software. Taking into account

such factors in measuring software similarity can be a real challenge and the only tangible

solution may still be relying on administrators’ manual inspection and estimation.

3.9 Conclusion

In this topic, we have taken a first step towards formally modeling network diversity as a se-

curity metric for evaluating networks’ robustness against zero day attacks. We first devised

an effective richness-based metric based on the counterpart in ecology. We then proposed

a least attacking effort-based metric to address causal relationships between resources and

a probabilistic metric to reflect the average attacking effort. We provided guidelines for

instantiating the proposed metrics and discussed how software diversity may be estimated.

Finally, we evaluated our algorithms and metrics through simulations. Our study has shown

that an intuitive notion of diversity could easily cause misleading results, and the proposed

formal models provided better understanding of the effect of diversity on network security.

55

Chapter 4

Network Attack Surface: Lifting the

Attack Surface Concept to Network

Level for Evaluating the Resilience

Against Zero-Day Attacks

In this chapter, we describe our efforts on the second proposed research topic, i.e., network

attack surface metric.

4.1 Introduction

For a mission critical computer network (e.g., those that play the role of a nerve system in

critical infrastructures, governmental or military organizations, and enterprises), the secu-

rity administrators usually look beyond traditional security mechanisms, such as firewalls

and IDSs. Their worry over the prospect of Advanced Persistent Threat (APT) and hidden

malware usually drive them to understand the resilience of their networks against poten-

tial zero day attacks exploiting previously unknown vulnerabilities. However, while there

56

exist many standards and metrics for measuring the relative severity of known vulnerabili-

ties (e.g., CVSS [73]), the task becomes far more challenging for unknown vulnerabilities,

which are sometimes believed to be unmeasurable [70].

To that end, a promising solution is the attack surface concept [67], which is originally

proposed for measuring a software’s degree of security exposure along three dimensions,

namely, entry and exit points (i.e., methods calling I/O functions), channels (e.g., TCP and

UDP), and untrusted data items (e.g., registry entries or configuration files). Since attack

surface relies on such intrinsic properties of a software independent of external factors,

such as the disclosure of vulnerabilities or availability of exploits, it naturally covers both

known and unknown vulnerabilities [67] and becomes a good candidate for understanding

the threat of zero day attacks.

Evidently, in addition to software security, the concept of attack surface has also seen

many applications in other emerging domains, e.g., cloud security [36], mobile device se-

curity [54], automotive security [17], Moving Target Defense (MTD) [49]. However, in

contrast to the original attack surface metric, which is formally and quantitatively defined

for a single software, most of the applications at higher abstraction levels (e.g., the network

level) are limited to an intuitive and qualitative notion. Adopting such an imprecise no-

tion unavoidably loses most of the original concept’s power in formally and quantitatively

reasoning about the likelihood of a system to contain vulnerabilities.

In this chapter, we address this issue by lifting the original attack surface concept to

the network level as a formally defined security metric, namely, network attack surface, for

evaluating the resilience of networks against potential zero day attacks. There are two main

challenges in lifting attack surface to the network level. First, the attack surface model re-

lies on addition for aggregating scores, which is incompatible with the causal relationships

among different resources inside a network. Second, there exists a paradox that the only

way to avoid the costly calculation of attack surface is to perform that calculation. We

57

devise models and heuristic algorithms to address those challenges, and we confirm the

effectiveness of the proposed solutions through experiments (e.g., our algorithms has an

error rate of 0.05 with only 20% of the resources calculated).

The main contribution of this work is twofold. First, to the best of our knowledge, this is

the first effort on lifting the attack surface concept to the network level as a formally defined

security metric. We believe such a metric may serve as the foundation of many useful

analyses for quantitatively designing, evaluating, and improving network security. Second,

our simulation results show that the proposed algorithms can produce relatively accurate

results with a significant reduction in the costly calculation of attack surface, paving the

way for practical applications.

Motivating Example

Classroom Computers (h25)

Attacker (h0)

Internet

Web Server (h1)

Cisco Network Registrar v7.0

Apache HTTP Server v2.4.20

TeamViewer v11.0.56083

MySQL v5.7

ProFTP v1.2.10

Apache MINA SSHD v1.0

Samba v4.4.0

Nginx v1.9.10

TeamViwer v11.0.56083

ProFTP v1.2.10

Amanda v3.3.7p1

External Firewall

IPCop v2.1.5

Internal Firewall

IPCop v2.1.5

Bonjour v2.0

Samba v4.4.0

MySQL v5.7

Firewall Builder v5.1.0.3599

192.168.1.1~192.168.1.25 192.168.2.1

192.168.2.2

PRTG v16.1.22.2657

Courier IMAP v4.0.1

Samba v4.4.0

TeamViwer v11.0.56083

Sendmail SMTP v8.1.5.2

Mail Server (h2) File Server (h3)
192.168.2.3 192.168.2.4

Admin Server (h4)

Figure 16: The Motivating Example

First, we illustrate the main challenges through a motivating example shown in Fig-

ure 16 (the network topology depicts a fictitious campus network [98]). We assume the

External Firewall allows all outbound connection requests but blocks all inbound requests

to the Mail Server (h2) and File Server (h3), including those from the Classroom Comput-

ers (h25); the Internal Firewall allows all outbound requests from h4 but blocks all inbound

requests except those from h2. We also assume our main concern is protecting the Admin

58

Host (h4) containing critical assets. Based on such assumptions, we can easily see that, an

attacker at h0 can potentially follow an attack path, e.g., h1→ h2→ h4, to compromise

h4. Keeping this in mind, we now consider the question: How could we apply the attack

surface concept, which is only defined for each individual resource [67] to such a network

to measure its security (e.g., in terms of h4)?

Two obvious solutions are to directly apply the metric either by regarding the whole

network as a single software system, or by first applying it to each resource separately, and

then adding the results together. Since the addition operation is associative, both solutions

yield the same result, i.e., the total numbers of methods, channels, and untrusted data items,

respectively (more details are given in Section 4.2). The main problem here is that such an

addition operation is incompatible with the causal relationships between network resources,

which can be either conjunctive or disjunctive. For example, in Figure 1, while it makes

sense to add up the attack surface of all the Classroom Computers (i.e., a larger number

of such computers means the network is more exposed to attacks). Applying this along an

attack path, e.g., h1→ h2→ h4, is less meaningful. Because it means a longer attack path

would yield a larger attack surface (less secure), but a longer path usually requires more

effort from attackers (more secure), which is a contradiction. Therefore, our first challenge

is how to aggregate the attack surface of network resources while respecting their causal

relationships, which will be the main topic of Section 4.2.

The second major challenge lies in the calculation of attack surface, which is well

known to be costly since identifying the source code that lies on the attack surface requires

domain expertise and significant manual effort [67, 120]. Therefore, a natural question is

whether we can reduce our effort by avoiding calculating attack surface for those resources

that do not contribute to the final result. For example, in Figure 1, since our main concern is

h4, we only need to calculate attack surface for the path h1→ h2→ h4, which significantly

saves the effort by avoiding the calculation for the 25 Classroom Computers. However, the

59

problem is not so straightforward in general. In the above example, suppose we change

the firewall rules such that requests from both h2 and h3 to h4 are allowed. We now have

a paradox that, in order to know which path, h1→ h2→ h4 or h1→ h3→ h4, should be

calculated (the criteria for selecting the path will be detailed in Section 4.2) such that we can

avoid calculating the other path, we must first calculate and compare the attack surface of

both h2 and h3, which defies the purpose because by then we would have calculated both

attack paths. Therefore, our second challenge is how to reduce the effort of calculating

attack surface for network resources while keeping the final result sufficiently accurate,

which will be the main topic of Section 4.3.

4.2 The Network Attack Surface Model

In this section, we lift the attack surface concept to the network level in two steps. First,

Section 4.2.1 and Section 4.2.2 convert the attack surface of a software application to its

attack probability. Specifically, Section 4.2.1 obtains the attack probability based on the

mapping between attack surface and the common vulnerability scoring system (CVSS),

while Section 4.2.2 captures the relationships among resources and converts them into an

overall attack probability. Second, Section 4.2.3 aggregates the attack probabilities of dif-

ferent network resources into a single measure of network attack surface.

4.2.1 CVSS-Based Attack Probability

This section addresses the challenge that the addition operation used in attack surface is

incompatible with the causal relationships between network resources, as demonstrated

in Section 4.1. Our main idea is to convert the attack surface of each software resource

into an attack probability (the relative likelihood that the software contains at least one

exploitable zero day vulnerability), which can then be aggregated for different resources

60

based on their causal relatinships 1. Since attack surface provides an indication of both the

severity (represented by the weights, i.e., the access rights and privileges) and the likelihood

(represented by the counts, i.e., the total numbers of methods, channels, and untrusted data

items) of potential vulnerabilities [67], the conversion will take two steps as follows.

• First, for each group of methods, we explore a mapping between the attack surface

and the common vulnerability scoring system (CVSS) [73] to convert the access

rights and privileges of attack surface to a CVSS base score.

• Second, at the software level, we aggregate the base scores of different groups of

methods into a single attack probability for the entire software.

Method Group-Level Conversion First, we briefly review the concepts of attack surface

and CVSS. As illustrated in the first column of Table 3, the CVSS defines six base metrics

in two groups, the accessibility group including access vector (AV), access complexity

(AC), and authentication (Au), and the impact group including confidentiality impact (C),

integrity impact (I), and availability impact (A) (the possible values of each metric and their

corresponding numerical scores are also shown in the table) [73]. The second column of

Table 3 shows the different access rights and privileges and their numerical values used as

weights in the attack surface metric (the underlined rows will be discussed later).

Since both the accessibility group of CVSS and the access rights of attack surface repre-

sent the pre-conditions for exploiting a vulnerability, their values may be mapped together.

Similarly, the impact group of CVSS and the privileges of attack surface both represent

the post-conditions of exploiting a vulnerability, and hence are mapped together. The ex-

act mapping for those two IMAP daemons are shown in the last column of Table 3. Each

CVSS vector maps to the corresponding access right or privilege shown in the same row in

1Note the attack probability here is only intended as a relative metric for comparison between different
sofware applications, instead of the actual probability of attacks which is generally infeasible to obtain in
practice.

61

CVSS (Base Metric Group) Attack Surface (Methods) Vectors
AV:[L:0.395,A:0.646,N:1.0]

Access Rights
anoymous 1 [AV:N,AC:L,Au:N]

AC:[H:0.35,M:0.61,L:0.71] unauthenticated 1 [AV:N,AC:L,Au:N]
Au:[M:0.45,S:0.56,N:0.704] authenticated 3 [AV:N,AC:M,Au:S]

admin 4 [AV:A,AC:H,Au:M]
C:[N:0.0,P:0.275,C:0.66]

Privileges
authenticated 3 [C:P,I:P,A:C]

I:[N:0.0,P:0.275,C:0.66] cyrus 4 [C:C,I:C,A:C]
A:[N:0.0,P:0.275,C:0.66] root 5 [C:C,I:C,A:C]

Table 3: Mapping Attack Surface to CVSS Base Metrics for Courier IMAP Server v4.1.0
and Cryus IMAP Server v2.2.10

the second column.

The mapping is established based on understanding the software, including its chan-

nels and untrusted data items (consequently, we will not count those again later when we

convert base scores into attack probabilities). For example, in the third row, the authenti-

cated access right is mapped to network for access vector (i.e., AV:N), because the UNIX

socket in those software has the local authenticated access right, which means attackers

may obtain the local authenticated access right over the network. Also, we assign access

complexity to medium (i.e., AC:M), because the authenticated access right matches the

description of the medium access complexity: “The affected configuration is non-default,

and is not commonly configured (e.g., a vulnerability present when a server performs user

account authentication via a specific scheme, but not present for another authentication

scheme)” [73]. Finally, we assign Authentication to single (i.e., Au:S), because the access

requires a single authenticated session in those software. Similarly, in the fifth row, the

authenticated privilege is mapped to partial confidentiality impact, partial integrity impact,

and complete availability impact (i.e., C:P, I:P, A:C), since the authenticated privilege im-

plies accesses to 13 files in those software, allows modifying some system files or data, and

may render the system unusable by deleting critical files.

Note that, since this mapping is based on the understanding of access rights, privileges,

and the software, different administrators may end up assigning the mappings in different

62

and incomparable ways. However, since metrics are relative, and meant for comparing

different configurations of the same network, the results would still be meaningful as long

as the mapping is consistent across different configurations.

As shown in Table 3, we map all the methods of those two software to correspond-

ing CVSS base metrics, and then calculate the overall base score according to the CVSS

formula [73], as shown in Table 4. The methods are divided into groups (first column) ac-

cording to similar privileges (second column) and access rights (third column). The fourth

and fifth columns show the total numbers of entry and exit points in each group. The next

two columns show the mapped CVSS vector and the calculated base score for each group.

Method Privilege Access Rights DEP DExp Vector Base Score Attack Probability
Courier

M1 root unauthenticated 28 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 10 0.000315
M2 root authenticated 21 10 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66] 8.5 0.000184
M3 authenticated authenticated 113 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,I:0.275,A:0.66] 7.5 0.000809

Cyrus
M1 cyrus unauthenticated 16 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 10 0.000132
M2 cyrus authenticated 12 21 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66] 8.5 0.000112
M3 cyrus admin 13 22 [AV:0.646,AC:0.35,Au:0.45,C:0.66,I:0.66,A:0.66] 6.3 0.0000882
M4 cyrus anonymous 12 21 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 10 0.000132

Table 4: Method Groups and Their Base Scores for Courier IMAP Server v4.1.0 and Cyrus
IMAP Server v2.2.10

Software-Level Conversion Now that we have calculated the base score for each group

of methods, we can convert the attack surface into an attack probability representing the

relative likelihood of the software to be exploitable through at least one zero day vulner-

ability. Suppose there are totally g groups of methods in the attack surface. Let bi and si

(1 ≤ i ≤ g) denote the base score and the number of methods of each group, respectively.

Assume on average there will exist one zero day vulnerability for every n methods, and the

probability for attackers to discover such a vulnerability is p0 (n and p0 are both intended

as normalizing constants; see below for more discussions). In Equation 1, the base score

divided by its range 10 gives the probability that a vulnerability in this group is exploitable;

multiplying this with p0 gives the probability that the method can be both discovered and

exploited; si/n gives the number of vulnerabilities out of those si methods in this group; the

63

equation therefore gives the probability p that the software contains at least one exploitable

zero day vulnerability.

p = 1−
g

∏
i=1

(1− p0
bi

10
)

si
n (1)

Example 1. Assuming n = 30 and p0 = 0.08, we can calculate p for both software as

follows. For Courier, p = 1−(1−0.08∗10/10)45/30∗(1−0.08∗8.5/10)31/30∗(1−0.08∗

7.5/10)141/30 = 0.384, and similarly for Cyrus, p = 0.273.

Note that, the true values of parameters n and p0 are certainly impossible to obtain in

practice, so those are only intended to be normalizing constants chosen to ensure a rea-

sonable value for p. As long as those values stay constant between different software, the

equation will yield a relative value sufficient for comparing the exploitability of different

software based on both the severity (represented by the base scores bi) and counts (repre-

sented by the number of methods si) of potential zero day vulnerabilities.

4.2.2 Graph-Based Attack Probability

In Section 4.2.1, the overall attack probability obtained using Formula 1 does not capture

the relationships among different dimensions of attack surface, e.g. channels and untrusted

data items are considered only as indirect inputs in the mapping process, which maps to

the accessibility and impact of methods, respectively. In this section, we capture the rela-

tionships among different resources through a model that presents possible attacks among

resources and then aggregate the overall attack probability with respect to a critical condi-

tion or asset, molded as a goal condition.

We combine different dimensions of attack surface by taking attackers’ point of view

where attack would typically require communication channels (the channel dimension) to

access the methods and invoke methods to manipulate untrusted data items to fulfill their

64

goal. If a software application is isolated from the network and has no channels associated

with it, attackers would not be able to launch attacks on the software regardless of the

number of methods and untrusted data items. Likewise if the software application does not

have any method, it would be impossible for attackers to access untrusted data items. This

observation shows that a combination of thethree dimensions is usually needed to complete

an attack. The conversion of the attack surface to graph-based attack probability requires

two steps as follows.

• First, for each group of resources in the three dimensions of attack surface, we cal-

culate the probability for the entire group of resources based on Equation 2.

• Second, at the software level, we aggregate the probabilities over each group into a

single attack likelihood based on Bayesian inferences as follows.

Method Group-level Conversion First, we divide methods into groups based on the pair

〈access right, privilege〉, such that the methods in the same group require identical access

right and lead to identical privilege. The first column of Table 4 gives the group name

for each method group and we will simply use M1 in Courier to refer to the group of

methods restricted by unauthenticated access right and lead to root privilege in Courier

in the latter sections. In group M1 of Courier, attackers only need to exploit one method

out of 45 to gain the corresponding privilege; however, without having the knowledge

about the methods in a software application, attackers may exploit multiple methods in

one group. Taking this into consideration, we define the attack likelihood of one group of

methods as the probability of compromising at least one method out of the group. Suppose

we have totally si methods in one group, and let b and p0 denote the base score and the

probability for attackers to discover one method, respectively. In Equation 2, the base score

divided by its range 10 gives the probability of finding a method in a software application

to be exploitable; multiplying this with p0 gives the probability that the method can be

65

both discovered and exploited. As explained earlier, p0 is only intended to be normalizing

constants chosen to ensure a reasonable value for p in Section 4.2.1.

p = 1− (1− p0 ∗
b

10
)si (2)

Example 2. To compare Courier and Cyrus, we take p0 as the ratio of choosing one method

per thousand line of the source code. The number of lines of source code for Courier and

Cyrus are 138,283 and 236,321, respectively [84]. Therefore, it is easy to get p0 = 0.00723

for Courier and p0 = 0.00423 for Cyrus. We can calculate p for M2 for both software

applications as follows. For Courier, p = 1− (1−0.00723∗ 8.5
10)

31 = 0.174, and similarly

M2 in Cyrus, p = 0.112.

TCP

1.0

<remote unauthenticated>

<TCP connection>

SSL

1.0

UNIX socket

1.0

<local authenticated>

<SSL connection>

<UNIX socket connection>

M1

0.279

M2

0.174

M3

0.536

<root>
<authenticated>

F1

F2

F3

<root>

M1 M2 T F

T T 1 0

T F 1 0

F T 1 0

F F 0 1

0.279
0.174 0.536

0.404

TCP

1.0

<remote unauthenticated>

<TCP connection>

SSL

1.0
UNIX socket

1.0

<local authenticated>

<SSL connection>

<UNIX socket connection>

M1

0.131

M2

0.112

M4

0.131

<cyrus>

F1

F2F3

M3

0.089
<root>

<root>

M1 M2 M3 T F

T T T 1 0

T T F 1 0

T F T 1 0

F T T 1 0

T F F 1 0

F T F 1 0

F F T 1 0

F F F 0 1

0.131

0

0.112 0.131

0.329

Figure 17: Attack Surface Graph for Courier (Left) and Cryus (Right)

Software-Level Conversion In order to model attack probability for a software applica-

tion based on attack surface, we first need a model of the relationships among the three

dimensions of attack surface. Our model is syntactically equivalent to an attack graph

[110], [6], although our model focuses on resources inside software applications instead of

known vulnerabilities.

Definition 7 (Attack Surface Graph). Given a set of attack surface resources RA from

66

〈M,C,D〉 , and a set of privileges Con, a required relation Rr ⊆ Con×RA , and an im-

ply relation Ri ⊆ RA×Con. An attack surface graph GA is the directed graph GA(RA ∪

Con,Rr ∪ Ri) (RA ∪Con is the vertex set and Rr ∪ Ri is the edge set). resource.Rr and

resource.Ri denote as the relations request and imply by this resource, respectively.

– Resource C can be accessed by attackers only when C.Rr are obtained by attackers

– Resource M can be invoked by C only when C.Ri �M.Rr

– Resource D can be accessed by M only when M.Ri � D.Rr

Table 5: IMAP Daemon’s Channels and Untrusted Data items [67]

Courier Channels Untrusted Data items
Type Access Rights Group Type Access Rights
TCP remote unauthenticated F1 file root
SSL remote unauthenticated F2 file authenticated

UNIX socket local authenticated F3 file world
Cyrus Channels Untrusted Data Items

TCP remote unauthenticated F1 file root
SSL remote unauthenticated F2 file cyrus

UNIX socket local authenticated F3 file cyrus

Figure 17 depicts corresponding attack surface graph for both Courier and Cryus (note

the figure may look similar to an attack graph but here it indicates the aggregation of the

three dimensions inside attack surface) Each square box in Figure 17 represents a resource

in attack surface (e.g., TCP, SSL, and UNIX socket, which are channels in attack surface,

are represented as the connectivity for the software applications); the edges point from the

pre-conditions to the resources (e.g., 〈TCP connection〉 and 〈remote unauthenticated〉 to

M1) or from the resources to the post-conditions (e.g., M1 to 〈root〉).

Specifically, channels, which are modeled as the resources connected by initial condi-

tions in the attack surface graph, can be directly accessed by attackers since initial condi-

tions are assumed to be already satisfied. Methods can be invoked by attackers only if the

67

corresponding channels are associated with an equivalent or higher privilege. For exam-

ple, we consider that attackers passing from the channel UNIX socket is able to access M1

(UNIX socket has local authenticated privilege which is higher than the required access

right of M1, unauthenticated). Similarly, when sending untrusted date items, the privileges

gained from methods should be equivalent or higher than the access right of untrusted data

items. In Table 5, root is required to send data to F1 in Courier, which means M3 with

authenticated does not have sufficient access right to send data to F1.

In an attack surface graph, since attack paths lead to critical resources or escalated

privileges the attack likelihood of a software application can be represented as the average

attack effort by combining all attack paths. For this purpose, we define the overall attack

surface as the conditional probability for an attacker to compromise a given critical asset in

a software application. The goal condition can be used to model any resources or conditions

in the attack surface graph. In this paper, we assume the highest privilege that attackers are

able to obtain as the goal condition.

With a goal condition given in an attack surface graph, the overall attack probability can

be calculated using Bayesian inference to combine all the possible attack paths. For exam-

ple, the overall attack probability for courier is 0.404 (the conditional probability table is

shown on the side) assuming all initial conditions are satisfied, e.g., remote authenticated

and local authenticated. Similarly, the overall attack probability for Cryus is 0.329. Both

attack probability methods (CVSS-Based and Graph-Based attack probability) show that

courier has more potential attack likelihood compared with Cryus.

4.2.3 Aggregating Attack Probabilities inside a Network

Now that we have converted the attack surface of a resource to its attack probability, we can

easily aggregate the attack surface of all network resources into a single network attack sur-

face value. We consider two different ways for aggregating the attack surface of resources

68

in the network, the shortest path-based approach [126] and the Bayesian network (BN)-

based approach [140], which reflect the worst case scenario (i.e., with respect to attackers

following the easiest attack path) and the average case scenario, respectively.

To illustrate the idea, Figure 18 shows a partial resource graph [126] for our example,

and the dashed line can be ignored for now and will be needed later (note that both the re-

source graph demonstrated here and the attack surface graph discussed in the previous sec-

tion are syntactically equivalent to an attack graph, but the resource graph models zero day

attacks at the network level, whereas the attack surface graph models known vulnerabilities

at the software level). Specifically, each pair in plaintext is a security-related condition,

e.g., connection 〈source,destination〉 or privilege 〈privilege,host〉, and each triple inside

a box is a zero day exploit 〈resource,source,destination〉. The probability inside each box

is the attack probability of the corresponding resource.

Example 3. In Figure 18, for the shortest path-based approach, we can calculate the

attack probability for the shortest path indicated by the dashed line, 〈IPCop,0,F〉 →

〈Courier,0,2〉 → 〈FirewallBuilder,2,4〉, the probability can be calculated as p = 0.48 ∗

0.384∗0.04 = 0.0074 (attack probabilities are obtained by the method in Section 4.2.1, and

Section 4.4 provides more detailed calculation).

Example 4. For the BN-based approach, we can simply regard Figure 18 as a Bayesian

network, with the attack probability of each resource regarded as the conditional proba-

bility that the corresponding resource can be exploited given that its pre-conditions are

all satisfied, and then perform Bayesian inference to calculate the overall attack probabil-

ity [140]. In this example, we can calculate the probability for attackers to reach 〈user,4〉

as pgoal = 0.016.

From above examples, it is clear that our models of attack surface-based attack proba-

bilities can help to address a key limitation of the existing k-zero day safety metric (which

69

also adopts a shortest path-based approach) [126], i.e., it cannot discriminate different re-

sources based on their relative attack probabilities. More formally, the following formally

defines the concept of network attack surface.

Definition 8 (Network Attack Surface). Given a network with the set of resources R, the

attack probability p(r) as defined in Equation 1 or Equation 2 for each r ∈ R, the resource

graph G and a given condition cg ∈ G,

• let AP denote the collection of all attack paths in G ending at cg, and for each

ap ∈ AP, let R(ap) denote the set of resources involved in ap and denote p(ap) =

∏r∈R(ap) p(r). We call max({p(ap) : ap ∈ AP}) (where max(.) returns the maximum

value of a set) the worst case network attack surface w.r.t. cg.

• let B = (G′,θ) be a BN, where G′ is G annotated with the attack probabilities and

θ is the set of parameters of the BN (the BN is more precisely defined in [140] and

details are omitted here), and let CI be the set of conditions without parents in G′, we

call p = P(cg | ∀c∈CI c = True) the average case network attack surface w.r.t. cg.

We note that, although the network attack surface above is defined as probabilities,

those can potentially be converted into other forms for different interpretations. For ex-

ample, given the network attack surface p as a probability, we can easily convert p into

the equivalent number of methods s with a given base score b, by inverting Equation 1 as:

s = n log1−p0
(1− p). We can therefore evaluate the network as a single software system

with an attack surface composed of s methods with the base score b (which can also be

mapped back to access rights and privileges if necessary). Also, we can convert p back

into an equivalent number of zero day vulnerabilities as log0.08 p (here 0.08 is a nominal

probability for zero day vulnerabilities based on CVSS base metrics as described in [140]),

which is a simple count-based metric helpful for interpretation and comparison purposes

(we will use this method in our algorithms and simulations).

70

<Apache,0,1>

0.61

<0,1>
<user,0>

<0,F>

<IPCop,0,F>

0.48

<ProFTP,1,3>

0.39

<3,4>

<user,3>

<user,4>

<Amanda,1,3>

0.36

<user,1>
<0,3>

<1,3>

<Firewall Builder,3,4>

0.04

<0,2>

<Courier,0,2>

0.384

< Firewall Builder,2,4 >

0.04

<user,2>
<2,4>

<IPCop,0,F>

0.48

<Courier,3,2>

0.384

<admin,3>

<ProFTP,0,3>

0.39

Figure 18: The Network Resource Graph with Attack Probability for the Network in Fig-
ure 1

4.3 Heuristic Algorithms for Calculating Network Attack

Surface

In this section, we propose heuristic algorithms to reduce the effort in evaluating the net-

work attack surface. We first state the problem in Section 4.3, and then introduce several

simple heuristics in Section 4.3.1 and design algorithms based on such heuristics.

The Problem statement

The calculation of attack surface is becoming more practical due to ongoing efforts on

automating or approximating the calculation [120]. However, calculating the attack surface

of a software can still be costly [67, 120] mostly due to the manual effort and expertise

71

Procedure Mpath-Topo Heuristic
Input: Resource graph G, parameter M, and budget N
Output: a sequence of resources P
Method:
1. Let P = φ be a sequence of resources
2. Let MS be the sequence of M paths with the least

numbers of exploits in G, with the paths sorted
ascendingly based on such numbers, and the
resources inside each path topologically sorted

3. Let T = G\MS, topologically sorted
4. While N >0
5. If|MS |> 0
6. Append the first resource r in MS to P
7. Remove r from MS
8. Else If | T |> 0
9. Append the first resource r in T to P
10. Remove r from T
11. Let N= N-1
12. Return P

Procedure Keynode Heuristic
Input: Resource graph G, p0, p1 ∈ [0,1], and budget N
Output: a sequence of resources P
Method:
1. Let P = φ be a sequence of resources
2. Let KN = φ be a sequence of resources
3. Let p be the network attack surface calculated based on

assigning p0 to all the resources in G
4. For each resource r in G
5. Calculate p again on G with p1 assigned to r
6. If p changes
7. Add r to KN
8. Sort KN based on topological order
9. While N >0
10. If | KN |> 0
11. Append the first resource r in KN to P
12. Remove r from KN
13. Else If | G\KN |> 0
14. Append the first resource r to P
15. Remove r from G
16. Let N= N-1
17. Return P

Figure 19: Mpath-Topo (Left) and Keynode (Right) Heuristic Algorithms

required for analyzing the source code of the software in order to extract both the counts

(e.g., the total number of methods calling I/O functions) and weights (e.g., the access rights

and privileges). Moreover, even with automated techniques, the calculation will likely

remain a costly process due to the ever increasing size of modern software 2.

Therefore, we investigate the problem of evaluating the network attack surface while

reducing the effort of calculating the attack surface of individual resources. Clearly, there

will be a tradeoff between the cost (i.e., the percentage of network resources whose attack

surface is calculated, with the attack surface of the other resources estimated), and the error

in the calculated network attack surface result. Specifically, given a network with the set

of resources R and suppose the true value of the network attack surface is ptrue and the

calculated value is pcal (we assume all the values described in this section are count-based,

as described at the end of Section 4.2.3), we would like to minimize the error |ptrue−pcal |
ptrue

while calculating the attack surface for no more than a given percentage of resources (the

budget).

2For example, the number of lines of software mentioned in our running example in Figure 1 are
as follows: Nginx (171,567), IPCop (271,645), Apache(1,800,402), MySql (2,731,107), Linux Kernel
(18,766,825), and Google Chrome (14,137,145).

72

Note that, although the above may seem to be a standard optimization problem, this is

not really the case, because the objective function |ptrue−pcal |
ptrue

contains an unknown value

ptrue whose calculation would imply calculating the attack surface for all resources and

defy the very purpose of reducing the cost. Also, since the problem of finding the shortest

path is already NP-hard [126], which is a special case of our problem with unlimited budget,

the latter is also intractable. Therefore, we study heuristic algorithms in the coming section.

4.3.1 The Heuristic Algorithms

The main observation is that, since we can only calculate a certain percentage of resources

under a given budget, what determines the error is the order of calculation among all re-

sources. Therefore, this section first considers a few straightforward heuristics for choosing

the resources in the right order, e.g., by exploring the structural properties of a resource

graph. We will then combine those heuristics into better algorithms in the coming section

and evaluate their performance later in Section 4.5. We will focus on the worst case net-

work attack surface, as given in Definition 8, while leaving the average case network attack

surface to future work.

Random Choose The most obvious solution is probably to simply choose resources in

a completely random fashion, namely, the random choose heuristic. Although the random

choose algorithm is likely far from optimal, it provides a baseline for comparison with

other heuristic algorithms we will propose. For example, in Figure 18, if our budget is to

calculate the attack surface of at most two resources, then among the
(6

2

)
= 15 possible

choices, the worst result is p = 0.46 with an error rate of 0.76, whereas the best result is

p = 1.73 with error rate 0.109. Clearly, this heuristic may lead to a solution that is far from

optimal.

73

Frequency Choose The idea of this heuristic is that, since the same resource may appear

on multiple hosts inside a network, calculating the attack surface for the most frequently

seen resources will provide the most information with the same cost. For example, in

Figure 18, we can see both IPCop, Firewall Builder, Courier and ProFTP appear twice

among totally 10 exploits. Therefore, if our budget is two, then calculating any two of

them will unveil 4/10 of the exploits (the best result is p = 1.73 with an error rate of 0.109,

by choosing to calculate Firewall Builder and Courier. And the worst result is p = 0.60

with an error rate 0.69, by choosing to calculate IPCop and ProFTP).

Topological Order The idea here is that, since the nodes closer to the first and last nodes

of a resource graph (in the sense of a topological sorting) tend to be shared among more

attack paths (e.g., the last two exploits are shared by all paths in Figure 18), it may help to

choose resources based on a topological order among the exploits. We consider both the

topological order and the reversed topological order heuristics, which choose resources in

the same, and opposite order as topological sorting, respectively. For example, in Figure 18,

suppose our budget is two, the topological order heuristic may choose Apache and IPCop

(the result would be p= 0.60 with error rate 0.69) while the reversed topological order may

choose Firewall Builder and Courier (the result would be p = 1.73 with error rate 0.109).

Shortest Path This heuristic starts the calculation with resources on the path with the

least number of exploits (e.g., the path depicted in dashed line in Figure 18), which, al-

though not always the right path in terms of the final result, may serve as a good starting

point. For example, in Figure 18, if our budget is two, then the shortest path heuristic

will choose Courier and Firewall Builder on the dashed line path (the result is p = 1.73

with error rate 0.109). In this particular example, this path happens to be the right path for

calculating the final result, so a larger budget will potentially produce more accurate result.

The above heuristics may not produce good results when each of them is used alone, but

74

<V1>

0.38

<0,1> <user,0> <0,F>

<V2>

0.58

<V3>

0.48

<V3>

0.48

<2,4>
user(2)

<user,4>

<user,5>

<V4>

0.88

<user,1>
<1,4>

<0,2>

<1,2>

<V4>

0.88

<V5>

0.78

Figure 20: An Example of Applying Mpath-Topo and Keynode Heuristic Algorithms

combining them leads to algorithms with good performance, as will be confirmed through

experiments in Section 4.5. The following presents two such algorithms.

Mpath-Topo Heuristic Algorithm This algorithm combines the above topological order

and shortest path heuristics as follows. First, we apply the shortest path heuristic to choose

M (an integer parameter) shortest paths, which are ranked based on the number of unique

exploits, as the starting points. Since there is no order between resources along each such

path, we next apply the topological order heuristic to sort all paths, as well as those not on

such paths. The algorithm is more clearly depicted on the left-hand side of Figure 19. Line

1, Line 2 and Line 3 define the sequence of resources P set, the resource set MS from least

numbers of exploits in G of M paths (the least number of exploit paths can be found through

the heuristic algorithm in [140]) and T the resource set regardless of the resources in MS

with topologically order. The main loop cycle is from line 4 to line 11, which presents the

resource choosing process. Constrained by the budget N, resources are first chosen from

MS set and continue to be chosen from T set. The final resource sequence is presented in

75

P set.

Example 5. In Figure 20, we have three paths with 5 distinct exploits, assuming M = 2, we

have MS = {V 1,V 4,V 3,V 5}. If our budget N = 2, then P = {V 1,V 4}, and the final result

is p = 0.51, with error rate 0.04

Keynode Heuristic Algorithm This heuristic algorithm is based on the idea that a re-

source is more important in determining the final network attack surface value p, if chang-

ing its value may result in significant changes, e.g., a change in the optimal path (the path

selected for calculating the final result), or a change in the currently calculated result of p.

We then combine this heuristic with the topological order heuristic to form the algorithm

depicted on the right-hand side of Figure 19 (here we only show the change in p, which

can be replaced with the change in the optimal path, and we will evaluate both variations

in the coming section).

Example 6. Here we choose p0 = 0.08 and p1 = 1. In Figure 20, we initially calculate

p = 5.12∗10−4. We then calculate p again by assigning p1 to each resource. For example,

with V1 changed from p0 to p1, we have p = 0.0064, so V1 is a key node. Similarly, we

can obtain the key nodes sequence as KN = {V 1,V 4,V 3,V 5}. If our budget N = 2, then

V 1 and V 4 will be chosen and the result p = 0.51 with error rate 0.04.

If we apply all the heuristic algorithms to Figure 20, we can have the error rates with

the corresponding algorithms: Frequency Choose (0.33), Topological Order (0.27), Re-

versed Topological Oder (0.33), Shortest Path (0.29), Mpath-Topo (0.04), Keynode (0.04).

Clearly, the mpath-topo and keynode algorithms are significantly more accurate than other

algorithms. We will evaluate the performance of those heuristics and algorithms, including

both the accuracy and running time, in the coming section.

76

4.4 Instantiating the Network Attack Surface Metric

4.4.1 Case Study

To demonstrate how to apply the guidelines discussed in Section 4.4.1, we now present a

case study using our motivating example shown in Figure 1

The CVSS-Based Attack Probability The information for instantiating the CVSS-Based

attack probability have been listed in Table 7 are collected as follows.

• Attack surface: All the 34 software applications we have tested are based on C or

C++ language. The functions which call I/O methods (from standard C library [46])

are defined as methods (entry/exit points) in attack surface [67]. We have imple-

mented a script to automatically identify methods from the call graphs which are

generated from cflow [96] started from main function. The information about chan-

nels can be gathered from the application documentation and verified. Specifically,

the connection functions and methods sometimes can be found in the developing doc-

umentations. For example, Amanda can be connected to through four different ways,

namely UDP, TCP, RSH and SSH [123]. For simplicity, we only consider one type

of untrusted data item in our case study, which is file, so all the exit points related to

files are captured as the modification to files.

• Access right and privileges: We annotate source code to identify privilege-related

functions. For example, in Amanda, the function access init is used to authenticate

user access right from unauthenticated to authenticated, therefore the methods ap-

pearing before this function has unauthenticated access right and those appearing

afterwards have authenticated. The function set root privs is used to escalate the

privileges, which means the methods invoked afterward has root privilege. Default

privilege-related functions [18], such as setreuid, seteuid, setuid, setfsuid and suid,

77

are also annotated in source code.

• Mapping table: With the information collected from previous steps, it is easy to map

attack surface to CVSS base metrics. A detailed example is already provided in

Section 4.2.1.

Table 6: Amanda Channels and Untrusted Data items

Amanda Channels Untrusted Data items
Type Access Rights Count Type Access Rights Count
TCP remote unauthenticated 2 file root 27
SSL remote unauthenticated 2 file authenticated 6
RSH remote authenticated 1 file unauthenticated 27
SSH remote unauthenticated 1
TCP authenticated 2
UDP authenticated 2

Firewall Builder Channels Untrusted Data Items
TCP remote unauthenticated 2 file authenticated 22
UDP remote unauthenticated 2

IP local authenticated 1

The Graph-Based Attack Probability To instantiate the probabilistic-based attack prob-

ability, we collect the following information.

• p0: Different measurements can be used to measure the size of the software applica-

tions, for example, the lines of source code and the number of files. In our case study,

we take the number of functions to represent the size of software applications. The

total number of functions in a software application can be simply obtained from call

graph. For example, In our study, Firewall Builder has 552 functions and Amanda

has 34768 functions.

• Goal condition: We use root privilege as goal conditions for all our experiments (use

maximum privilege if root can not applicable), in practice, other goals may be defined

78

by administrators based on the most critical resources in a given network. Table 7

lists the attack probabilities for both software applications.

Network Attack Surface Metric To instantiate network attack surface metric, we need

to collect the following additional information to aggregate the attack probability we have

gathered into a network resource graph.

• Connectivity: From the network topology (as shown in Figure 1), it is easy to obtain

the connectivity between hosts.

• Security conditions: The access rights for each applications are used as pre-conditions,

and the privileges are used as post-conditions. For example, Amanda could leads

to root privilege [123], whereas Firewall Builder only lead to authenticated privi-

lege [80]. Studying the existing vulnerabilities of applications leads security-related

conditions. For example, Apache has a vulnerability (CVE-2016-1240) allowing lo-

cal users to gain root privilege.

• Critical assets: In this case, we consider 〈user,4〉 as the critical asset (system admin-

istrators can choose critical asset based on their priority).

Figure 18 shows partial network resource graph for our motivating example.

Method Group Privilege Access Rights Count Vector Base Score Attack Probability
Amanda

M1 unauthenticated unauthenticated 834 [AV:1.0,AC:0.71,Au:0.704,C:0,I:0,A:0] 0 0
M2 root unauthenticated 672 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 10 0.0191
M3 authenticated authenticated 1953 [AV:1.0,AC:0.61,Au:0.56,C:0.275,I:0.275,A:0.66] 7.5 0.0415
M4 root authenticated 297 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66] 8.5 0.00723

Firewall Builder
M1 unauthenticated unauthenticated 46 [AV:1.0,AC:0.71,Au:0.704,C:0,I:0,A:0] 10 0.082
M2 authenticated authenticated 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,I:0.275,A:0.66] 7.5 0.037

Table 7: Method Groups and Their Base Scores for Amanda and Firewall Builder
To instantiate the network attack surface, necessary input information corresponding

to this metric needs to be collected. This section discusses various practical issues in in-

stantiating network attack surface metric and provides a case study based on our running

example.

79

Guidelines for Instantiating the Network Attack Surface Models

The guidelines for instantiate the network attack surface metric The general guide-

lines for collecting necessary inputs for network attack surface from a given network are

described and discussed as follows:

The CVSS-Based Attack Probability To instantiate CVSS-Based attack probability,

we need to collect information about

• attack surface of each dimension(channels, methods, and untrusted data items),

• the access right and privileges for the three dimensions in attack surface, and

• the mapping table between attack surface and CVSS base metrics, e.g. Table 4, and

• the normalizing constants p0 and n,

Calculating the attack surface of a software application is well known to require sig-

nificant manual effort and knowledge from domain experts [67]. Source code analysis is

usually mandatory in enumerating methods for an application. Constructing call graphs to

study the relationships among all the functions in the source code is usually the first step

to analyze attack surface. For example, cflow [96] can be used to generate call graphs for

source code in C language. Methods considered as direct entry/exit points are the functions

that call input/output functions in C library [67]. Channels and untrusted data items can be

observed at runtime from the application [67].

The privileges for the three dimensions can be checked based on a set of uid-setting

system calls [18] which associate with change of privileges. The access right requires the

study of authentication functions in source code, e.g., the methods can be invoked only

after user authentications are considered as authenticated access rights [67].

Establishing the mapping table with CVSS vectors requires domain experts to assign

numeric values based on the relationships between attack surface results and CVSS base

80

metrics. The aggregated attack surface base score can be calculated using the CVSS base

score calculator [78].

Since n, the average number of methods among which there exists one zero day vul-

nerability, and p0, the probability for attackers to discover this vulnerability, are the the

normalizing constants in Equation 1, we only need to choose the values of both parameters

that yield comparable results among software applications. The aggregated attack surface

which represent as CVSS-based attack probability can be calculated using Equation 1 with

the aforementioned inputs.

Graph-Based Attack Probability To instantiate the graph-based attack probability, we

need to collect the following, in addition to what is already required by CVSS-based attack

probability,

• p0, and

• goal condition.

In Equation 2, p0 represents the probability of finding a method in a software appli-

cation. The probability intended as a normalizing factor based on the size of the software

application, this probability can be defined by the users in a way that yields comparable re-

sults among software applications. In our examples and case studies, we use both the thou-

sand lines of source code and the number of functions to represent the size of the software

applications, respectively. It is easy to find such information about open source projects

(e.g., through the Open Hub [84]) We will discuss how to estimate the attack surface of

closed source software applications and the impact of non-calculable software applications

in Section 4.5.

The goal condition represents the most critical assets in the organizations which can

be predefined based on the needs and priority of the users. The attack surface graph can

81

be constructed based on the attack surface and pre- and post-conditions (access rights and

privileges) which are already obtained during CVSS-based attack probability.

Network Attack Surface Metric To instantiate network attack surface metric, we need

to collect the following, in addition to attack probabilities,

• connectivity between hosts,

• security conditions either required for, or implied by, the resources (e.g., privileges),

and

• critical assets.

The connectivity information can be obtained from the network topology or using net-

work scanners (e.g., Nessus [119]). To obtain the security conditions required for accessing

hosts or resources, the configuration of hosts (e.g., the rules for firewalls) and the setting

for applications (e.g., the policies for authentication) may needed to be closely examined.

The security conditions associated with the resources can be derived from the attack

surface which are collected during the instantiating of attack probability for software ap-

plications. Finally, critical assets are able to be assigned based on the needs and priority

for the network.

4.5 Experimental Results

In this section, we first support our model for converting attack surface to attack probabil-

ity with experimental results on the correlation between attack surface and vulnerabilities

based on real software. We then conduct simulations to evaluate the performance of our

heuristic algorithms proposed in Section 4.3.

82

4.5.1 Correlation Between Attack Surface and Vulnerabilities

Since our model for converting attack surface to attack probability (presented in Sec-

tion 4.2.1) is based on the hypothesis that attack surface reflects a software’s likelihood

of having vulnerabilities, we investigate this correlation by conducting experiments with

real software. We examine the correlation both for different software and for different

versions of the same software.

First, we examine 34 popular software and their correlation results are presented in

Figure 21(a). The name of each software can be found in the Appendix based on its index

number. We manually study the source code of each software in order to calculate the

attack surface, and subsequently convert the result into attack probability using the method

mentioned in Section 4.2.1. In Figure 21(a), the left y-axis and the green line show the

attack surface (converted to attack probability) multiplied by the days of exposure of each

software (since vulnerabilities take time to be discovered even though the attack surface

of the software remains the same over time). The right y-axis and the red line show the

number of vulnerabilities found for the same software in NVD [81].

From the results, we can see that there is a positive correlation between the number

of vulnerabilities and attack surface multiplied by exposure days for most of the software

(specifically, 25 out of 34). The correlation is unclear for the last few software (after in-

dex number 25). We believe the reason lies in other related factors affecting vulnerability

discovery, e.g., the market share of a software, popularity of a software among attackers,

and the security expertise level of typical users of a software. For example, the index num-

ber 33 is freetype, a popular software development library used for rendering font-related

operations, which is widely used by modern video games, Opera for Wii, and many other

projects [122]. Such a widely used software is usually more attractive for attackers to dis-

cover vulnerabilities, and hence becomes an outlier in our results. As another example,

83

0 5 10 15 20 25 30 35
of Index

0

1000

2000

3000

4000

5000

A
tt
ac
k
 s
u
rf
ac
e
E
x
p
o
su
re
 D
ay
s

Attack Surface

0

10

20

30

40

50

60

70

80

#
 o
f
v
u
ln
er
ab
il
it
ie
s

Vulnerability

(a)

0 5 10 15 20 25
of Index

0

200

400

600

800

1000

1200

A
tt
ac

k
 s
u
rf
ac

e
E
x
p
os

u
re

 D
ay

s

Attack Surface 1.0.0

Attack Surface 1.0.1

Attack Surface 1.0.2

0

10

20

30

40

50

60

70

80

90

#
 o
f
v
u
ln
er

ab
il
it
ie
s

1.0.0

1.0.1

1.0.2

(b)

Figure 21: Correlation between Attack Surface and the Number of Vulnerabilities for Dif-
ferent Software (a) and Different Versions of OpenSSL (b)

the index number 34 is Amanda, a network-based backup system, which has only one vul-

nerability, even though its attack surface multiplied by exposure days is relative large. We

believe the reason could be that such a backup system is usually hosted in enterprise net-

works and operated by administrators with more security expertise and awareness, which

may make the software less attractive to attackers.

Second, we examine 53 different versions of OpenSSL along 3 version branches, 1.1.0,

1.0.1, and 1.0.2, respectively, and the results are presented in Figure 21(b). The study of

84

different versions of the same software reduces the influence of aforementioned unrelated

factors in discovering the vulnerabilities (e.g., market share). The index indicates the ver-

sion numbers in chronologically order. From the results, we can see that the number of

vulnerabilities has a similar trend with the attack surface multiplied by exposure days for

all three branches. The branch with large value for attack surface multiplied by exposure

days also has more vulnerabilities. The new versions inside each branch always have less

vulnerabilities while attack surface multiplied by exposure days are also smaller. For all

three branches, we can see the maximum number of vulnerabilities always appears some-

where in the middle of the branch, likely because, with a major change of version branch, it

takes time for user adoption and also for attackers to change the focus. The version branch

1.0.2 is newly released since January 2015, so the attack surface multiplied by exposure

days is not sufficient to create visible trends.

The above experiments, although are still of a limited scale, show a promising result

supporting our hypothesis that there is a positive correlation between the attack surface

and the number of vulnerabilities. Our future work will expand the scope and scale of the

experiments.

Performance of Heuristic Algorithms

In this section, we study the performance of our proposed heuristic algorithms via simu-

lations. All simulation results are collected using a computer equipped with a 3.0 GHz

CPU and 8GB RAM in the Python environment under Ubuntu 14.04 LTS. All the resource

graphs are created from small seed graphs based on realistic networks (e.g., the one shown

in Figure 1), by increasing the number of hosts and resources in a random but realistic

fashion.

The objective of the first two simulations is to evaluate the error rate of our heuristics

(presented in Section 4.3.1). The error rate is defined in the same way as in the previous

85

section (|ptrue−pcal |
ptrue

where both ptrue and pcal are count-based values, as described at the end

of Section 4.2.3). The cost is defined as the percentage of resources whose attack surface is

calculated, and denoted as α . The reason we choose the percentage of resources instead of

the absolute numbers, is that evaluating a larger network naturally implies a larger budget

will be required so a relative value will be more meaningful.

Figure 22(a) shows the error vs. the percentage of calculated resources (α) for simple

heuristics and Figure 22(b) shows the same for the heuristic algorithms. The y-axis is

shown in reversed scale in both figures in order to show the increasing accuracy of those

algorithms for a larger α . Figure 22(c) depicts the processing time of the algorithms. In all

simulations, for each configuration, we repeat 500 times to obtain the average results.

Results and Implications: From Figure 22 (a), we have following observations. First of

all, with the increase of α , the error generally decreases, and when α increases to 1, which

means we calculate all the resources in the network, the error of all the heuristics reaches

0 as expected. The green line with round markers is the baseline for comparison, which

represents the results of the random choose heuristic and the error of this heuristic reduces

almost linearly in both simulations. The frequency choose heuristic represented by the red

line with vertical markers has the worst error among all the heuristics. The reason is that,

the repetition of a resource does not necessarily mean the importance of this resource in

determining the final result. The blue line with square and purple line with star represents

the reversed topological order heuristic and the topological order heuristic, respectively.

Both heuristics start worse than the random heuristic, and the reverse topological order

stays worse than the random heuristic, but the topological order heuristic reduces and later

becomes better than random. The reason is that, the reversed topological order tends to

choose resources equally among all the paths, since the paths converge towards the end

of the graph. On the other hand, the topological order heuristic chooses from beginning

nodes, which might converge into one path and give better results. The most accurate one

86

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
rr
o
r

shortest

topo

random

frequency

topoReverse

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
rr
o
r

keynode

mpath topo

mpath frequency

keynode path

random

(a) (b)

0 50 100 150 200
#of Nodes

0.0

0.1

0.2

0.3

0.4

P
ro
ce
ss
in
g
T
im

e(
s)

keynode path

keynode

mpath frequency

0.000

0.005

0.010

0.015

0.020

P
ro
ce
ss
in
g
T
im

e(
s)

mpath topo

random

(c)

Figure 22: The Cost vs. Error for Simple Heuristics (a) and for the Heuristic Algorithms
(b), and the Processing Time (c)

in Figure 22(a) is the shortest path heuristic algorithm, which combines the topological

order and shortest path heuristics together. The error rate of this algorithm becomes flat

when it finishes calculating the shortest path and starts to calculate other resources.

Figure 22(b) depicts the error rate of the heuristic algorithms combining multiple heuris-

tics. We can see that the keynode and the mpath topo algorithms produce very good results,

e.g., less than 0.05 error rate with only 20% of resources calculated. Such results show a

87

promising solution for obtaining relatively accurate network attack surface results without

incurring too much cost for calculation. Here the mpath frequency and mpath topo algo-

rithms are the combination of m-shortest path heuristic with the frequency choose heuristic

and the topological order heuristic, respectively. From the results we can see that the mpath

topo algorithm has less error than mpath frequency. For the keynode heuristic algorithm,

we tested two different variations, one based on the change of shortest path and the other

based on the change of the calculated result. From the results, we can see that those two

have very different error rate, because the result-based keynode algorithm tends to gather

the resources in the shortest path, whereas the path-based algorithm tends to avoid such

resources.

Figure 22 (c) depicts the processing time. From the results, we can see that the keynode

path and keynode result algorithms have almost the same processing time, because the

majority of processing is used to preselect the keynode set. The processing time for mpath

frequency is higher than mpath topo, because each iteration generates new m-shortest paths

and we need to reorder frequency. But for mpah topo, we only gather m-shortest paths

once and order them by the topological order. The random choose heuristic has the lowest

processing time as expected. Overall, we can conclude that the mpath topo algorithm is the

best choice in terms of both error rate and processing time.

4.5.2 The Impact of Non-Calculatable Resources

Instead of calculating attack surface for only a subset of resources, approximately calcu-

lating for all resources is another technique to reduce the total cost. For example, the

Microsoft research team has proposed attack surface approximation method based on stack

trace analysis [120]. In a trial on Windows 8, the authors discover that the approxima-

tion selects 48.6% of software but includes 94.6% of the known vulnerabilities. In this

section, we would like to evaluate the impact of this idea through simulations, and show

88

the relationship between α and approximation rate of attack surface, denoted as β , in our

simulations.

Furthermore to calculate attack surface of applications, we generally need to have direct

access to the source code of the applications. However, some hosts may have closed source

applications. For example, according to the statistical result [115], 84.34% of desktop

operating system is Windows. For these type of hosts, we will not able to calculate attack

surface. On the other hand, it maybe difficult to fully calculate the attack surface for some

open source software applications due to their sheer size. Recall that we use source lines of

code (SLOC) to measure the size of software applications. With the evolution of software

applications, the size of the source code increases dramatically. For example, operating

system Debian’s SLOC increases from 55-59 SLOC million (Debian 2.2 in 2000) to 419

SLOC million (Debian 7.0 in 2012). Therefore, we have divided software applications into

three different categories in terms of the feasibility of calculating attack surface as follows.

• Non-calculable software resources: The resources, provided by software applications

with inaccessible source code, called non-calculable attack surfaces.

• Partially calculable resources: Software applications with large SLOC, e.g., Debian

which is open source but with 419 SLOC million size of source code, may be too

costly to generate call graph and fully calculate the attack surface. A more feasible

solution in such a case may be to calculate attack surface only for some critical com-

ponents of the software applications to balance between accuracy and cost. There-

fore, the resources provide provided by software applications with very large SLOC

are called partially calculable resources.

• Fully calculable resources: For open source software applications with small or

medium SLOC, it is generally feasible to generate call graph and fully calculate

attack surface. The services provide by such software applications with small SLOC

89

are called fully calculable resources.

0.0 0.2 0.4 0.6 0.8 1.0
β

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
or

α = 50%

knode

mpath topo

mpath frenquency

knode path

random

(a)

0.0 0.2 0.4 0.6 0.8 1.0
β

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
rr
or

α = 80%

knode

mpath topo

mpath frenquency

knode path

random

(b)

Figure 23: (a) The Error of the Algorithms with α = 50% (b) The Error of the Algorithms
with α = 80%

The first simulation studies the impact of partially-calculable resources, and the im-

pact of non-calculable resource is also examined through this simulation. The error rate is

90

defined in the same way as in the previous simulations. The budget is defined as the per-

centage of effort spend to calculate attack surface in one network, denoted as α . Partially-

calculable rate is defined as the percentage of attack surface of each resource which is

calculated, and denoted as β . Calculating β percent of a software application may result

in approximated value of the exact attack surface. However, it is impossible to obtain such

an approximated value. Compared to the real attack probability (modeled in Section 4.2)

derived from attack surface, a lower value of attack probability may be obtained because

of the less I/O methods in the chosen percentage of the source code, on the contrast, a

higher value may appear because more I/O methods are included in less size of the source

code. Therefore, in this simulation, we set an estimation range for the approximated attack

probability value. Assuming the true attack probability in a software application is p, the

estimation range is defined as [(1−β) ∗ p,min((2−β) ∗ p,1)], (1−β) ∗ p lower than the

true p value and (1−β)∗ p higher than the exact p (because the probability needs to stay

in the range from 0 to 1, we use min((2−β)∗ p,1) as the upper bound). An approximated

attack probability value is randomly generated from the estimation range.

Unlike in the previous simulation, α only represent the percentage of effort to calculate

attack surface in this simulation. The percentage of resources whose attack surface are

calculated will depend on both α and β . After calculating α percent of the resources in

one network, we are still able to calculate α −α ∗ β percent of attack surface since we

still have budget left. After calculating α −α ∗β percent of the resources, the remaining

budget for attack surface is α−α ∗β − (α−α ∗β)∗β . It is easy to calculate the overall

percentage of calculated resources α

β
, see the detailed calculation as followed. Notice that

when α > β , we have extra budget to calculate attack surface. In this case, we apply the

extra budget to fully calculate the remaining resources according to the algorithms’ order

of calculation.

Assume α is the percent of the budget effort to calculate the attack surface in one

91

network, and β is the percentage to calculate in each resource. Let n be the number of

the resources can be calculated, and N be the total number of resources in one network.

The formula to calculate the percentage of resources for which the attack surface can be

calculated is n
N =∑

i=in f
i=0 α ∗ (1−β)i. This is a geometric series with the constant ratio (1-β),

therefore we have n
N = α

β
.

Results and Implications: In Figure 23a, α = 50%, which means the effort budget is

50% of the overall effort to fully calculate every attack surface in the network. Therefore

when β < 50% (α

β
> 1), we have extra budget to apply back to calculate resources accord-

ing to the algorithms’ order. The smaller value of β , the more extra budget left to apply

fully calculation after first partially calculating every service. Comparing with α = 50% in

Figure 22a and Figure 22b, the error rates are smaller when β is smaller than 30%, mostly

because the effort spent on partially calculating the services provides a rough ranking of the

resources, and the remaining efforts are used to fully calculate the services that contribute

the most to the final result of network attack surface. When β increases to 40%, the error

rates of algorithms become worse than α = 50% in Figure 22a and Figure 22b, mainly be-

cause the remaining efforts are not sufficient to fully calculate the services on the optimal

path.

The error rate is increasing till α = β , which is the worst case in Figure 23a, simply

because when α = β , the attack probability used to calculate the final result are all with

partially calculated values (the attack probability value for each resource falls in the esti-

mation range we mentioned earlier). Similar trend can be observed in Figure 23b when

β ≤ α = 80%. We can see that the error rate is 0.5 when β = 50%, because we set the

approximation range as 50% lower to 50% higher than the exact attack surface (1 is the

maximum value for the upper bound). And the error rate is 0.28 when α = β = 80% which

is still close to our approximation range as 20% lower to 20% higher than the exact attack

surface.

92

Unlike the increasing trend of the error rates when β ≤ 50%, the error rates are de-

creasing when β > α for all the algorithms in both Figure 23a and Figure 23b, mainly

because the approximated attack probability get closer to the true attack probability when

more source code are used in calculating attack surface. When β = 100%, this simulation

becomes the same as the previous simulation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr
or

β = 60%

knode

mpath topo

mpath frenquency

knode path

random

(a)

β
0.10.20.30.40.50.60.70.80.91.0

α

0.10.2
0.30.4

0.50.6
0.70.8

0.91.0

E
rr
or

0.0

0.2

0.4

0.6

0.8

1.0

mpath topo

(b)

Figure 24: (a) The Error of the Algorithms with α = 50% (b) The Error in α and β

Figure 23 presents the relationships of error rate and β with fixed α for the algorithms,

93

whereas Figure 24a presents the relationships of error rate and α with fixed β = 60%.

When α ≤ β , only α percent of the services can be calculated partially, and the error rate

decreases with the percentage of calculated services. When α > β , extra budget can be

applied back to fully calculate services along the algorithms’ choosing sequences, and the

error rate thus distinguishes the different performance of algorithms (knode and mpath topo

have the best choosing sequences). Figure 24b presents relationship among α , β and the

error. The concave upward part from the 3D graph shows the special case when α = β ,

which has been discussed in the previous paragraph.

Finally, this next simulation focuses on the impact of non-calculable resources. The

definition of α is the same as in the first simulation, i.e., the percentage of resources whose

attack surface is calculated. We assign 0.68 as the probability for non-calculable resources

(which is the attack probability from the average value of all CVSS scores in NVD [81]) in

this simulation.

Results and Implications:

Figure 25a presents the impact of our algorithms when 50% of the resources are non-

calculable in a network. The error rate decreases till α = 50%, while error rate remains

the same when α > 50%. Our algorithms help to reduce the error rate and the knode

and mpath topo algorithms give the best performance in all the simulations. Figure 25b

studies the impact of non-calculable resources by using the brute force algorithm (i.e.,

regardless of the budget, calculate 100% for every calculable attack surface). The error rate

increases linearly with the increasing of non-calculable resources in one network. When

non-calculable resources reach 100%, our metric essentially becomes the same as k-zero

day safety metric [126], which still can be considered as a useful measurement even though

the metric no longer distinguishes the resources.

94

0.0 0.2 0.4 0.6 0.8 1.0
α

0.20

0.25

0.30

0.35

0.40

0.45

E
rr
o
r

Non-calculable Attack Surface = 50%
knode

mpath topo

mpath frenquency

knode path

random

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Non-calculable

0.20

0.25

0.30

0.35

0.40

0.45

E
rr
or

brute force

(b)

Figure 25: The Error vs. α of Algorithms with 50% Non-Calculable Resources (a) and the
Percentage of Non-Calculable Resources vs. Error (b)

4.6 Conclusion

An intuitive notion of attack surface at the network level has prevented applications from

inheriting the precise and quantitative reasoning power of the original attack surface met-

ric. In this topic, we have designed methods for lifting this concept to the network level as

a formal security metric for measuring networks’ resilience against zero day attacks. The

95

correlation between attack surface and vulnerabilities was validated through our prelimi-

nary experimental results. We have also shown through algorithm design and simulations

that the cost of calculating attack surface for network resources could be saved without

losing too much accuracy.

96

Chapter 5

Learning-Based Model for Software

Vulnerability Prediction

In this chapter, we describe the efforts we made in the third proposed research topic; the

learning based model for software vulnerability prediction.

5.1 Introduction

Software vulnerabilities are considered a key threat to critical networks, such as power

plants, governmental or military organizations, and data centers. Predicting and studying

software vulnerabilities helps administrators in improving security deployment for their

organizations, as well as aids them in choosing the right applications among those with

similar functionality, and also provides assistance for software vendors in estimating the

security level of their applications. The VDMs we have discussed in Section 2.5 either pre-

dict vulnerable components inside one software application, or establish specific prediction

model for one software application based on large amounts of historical data. Although the

prediction of vulnerable components helps in discovering or fixing security issues, it only

provides this information in one software application. It fails to provide overall security

97

interpretations of the software applications. Although statistical VDMs can predict the fu-

ture number of CVE vulnerabilities, they require large amounts of historical vulnerability

data as the inputs to their models. The prediction capability on newly released software

applications is currently lacking in the literature.

In this topic, we perform a large-scale empirical study to investigate the relationship

between software features and the number of vulnerabilities in the software. Our study

focuses on 780 open-source applications collected from GitHub, and the entire version

history of Google Chrome, which consists of 11,454 releases as of November 2017.

First, we describe three use cases to motivate our study.

Use Case 1: Estimating the Number of Vulnerabilities in Newly Released Applica-

tions. Vulnerabilities in existing software applications are published as CVE entries in

the NVD database, and are often used as an indicator to demonstrate the security level of

an application. However, new applications lack this official information since any vulnera-

bility has yet to be discovered or reported. Estimating the number of vulnerabilities based

on certain intrinsic features, e.g., the size or the number of I/O functions, would help poten-

tial users to compare products, as well as help software vendors to promote their products.

The concept of attack surface fits this purpose, as it captures the intrinsic properties of an

application. However, in reality, a large attack surface is not necessarily equivalent to a

large number of the vulnerabilities, since multiple other facts could have affected the vul-

nerability discovery process. Unknown vulnerabilities may remain unknown for unpopular

software applications. In contrast, popular libraries, e.g., OpenSSL, contain a large number

of vulnerabilities, as they are more widely used in many software applications and therefore

more attracting to attackers.

Therefore, it is insufficient to compare attack surface among software applications. A

comprehensive study about the relationships between vulnerabilities in the software and

98

software features is needed for both software vendors and purchasers. With sufficient in-

formation from software metrics, vendors could assume the popularity of their software to

obtain the future possible number of vulnerabilities. This quantitative result helps to better

position new release software applications in the market in terms of revealing an important

decision factor to potential purchasers.

Use Case 2: Software Deployment Decision Making: As mentioned before, it is insuf-

ficient to only use the attack surface to compare software applications when the adminis-

trators want to deploy one application from applications with similar functionalities. It is

also not always possible to use only the NVD database to make this decision, since some

applications might be newly released (which do not have enough entries in the database

and, some of which are not reported in NVD database). The method mentioned above,

which predicts the number of CVE vulnerabilities based on the features, could be used to

solve this issue, providing fairness comparison among software applications.

Use Case 3: Completing the Existing VDM: The existing VDMs that rely on large

amounts of historical vulnerability data are mainly time-based models. Closest to our study,

Rahimi et al. [97] apply two code metrics, i.e., code quality and code complexity, in their

model to lower the dependency on the historical data. The authors obtain better precision

and less divergence compared to the statistical VDMs by using stochastic model with the

code metrics in their study. Our study provides a more comprehensive look at the relation-

ship between the features and the number of vulnerabilities, which could be used as the

input in improving the statistical VDMs.

5.2 Background

This section provides the background knowledge used in this topic.

99

5.2.1 Statistical Analysis of data

To improve the accuracy of the testing, Min-Max standardization is applied to the features.

zi =
xi−min(x)

max(x)−min(x)
(3)

where x = (x1, . . . ,xn) are the original data set and zi is the ith normalized data correspond-

ing to the original data set. Min-Max standardization function maps the dataset into the

range (0,1).

5.2.2 Data Visualization

Direct Visualization Methods: Matrix of scatter plots displays all the possible pairwise

in selected plane R2 or space R3, which is the most common geometric visualization method

in data visualization. However, with the increasing number of features, it is difficult to

interpret the result of this method.

Parallel coordinates [45] visualizes the features as parallel lines on the graph and map

the values of the features as coordinates on the parallel lines. Feature coordinates for the

same type of observation are connected through parallel lines. This method fails to capture

the data structure when the density of the coordinates is high.

Dimensionality Reduction Methods: In the dimensionality reduction methods, also called

the projection methods, normally the multidimensional datasets are transformed into 2D or

3D data-points. The challenge for these methods is to represent the maximum properties

of datasets into a lower-dimensional space.

Principal component analysis (PCA) [91] was first proposed in 1901, applies linear

transformations on the datasets and keeps the independent combinations of features as

the components. Most of the information in the original dataset has been stored in the

100

first few components, which allows it to map out the multidimensionality data into lower-

dimensional space. A more recent algorithm t-SNE [66] was first introduced in 2008, is a

nonlinear dimensionality reduction technique. We use both PCA and t-SNE in our study:

PCA to combine the features and t-SNE for visualization.

5.2.3 Feature Selection and Evaluation Methods

A commonly known effect in machine learning, curse of dimensionality, points out that

an increasing feature space dimensionality weakens the reliability of trained analysis sys-

tems [95] by overfitting the data. An efficient solution is to apply feature selection to find

feature subsets, with lower-dimensional space, which leads to more reliable learning re-

sults. Feature selection is also known to enhance the classification performance, lower

the computational costs, simplify the classifiers and provides better understanding in the

classification problems [103]. Three types of feature selection methods, namely, the fil-

ter methods, the wrapper methods and the embedded methods, are applied in our study to

achieve feature subsets.

Filter methods evaluate the score of each feature according to certain criteria and the

experts then choose the subsets based on the scores, e.g., correlation-based feature selection

(CFS), and mutual information (MI). However, filter methods only consider the relationship

between the pairs of features; the relationships between multiple features are ignored in this

type of feature selection methodology.

Wrapper methods involve the learning algorithms to evaluate the relevance of the fea-

ture sets, e.g., k-nearest neighbors algorithm (k-NN), which classifies object based on the

k-nearest neighbors. Ideally, wrapper methods test all the possible permutations for the

feature subsets and output the ones with the best results in terms of accuracy. The com-

putation time in searching for the best feature subsets from the possible permutations of

the feature subsets grows exponentially with the number of features; heuristic algorithms,

101

such as sequential forward selection (SFS), are proposed to tackle this search problem. SFS

starts from an empty set and adds the feature in order to obtain the maximal score in the

iteration to the feature set.

Embedded methods build the feature selection process inside the learning algorithm,

e.g., decision trees [75], random forests [14]. The feature selection process is using the

entire dataset as the input to generate the feature.

Evaluation Methods

In our study, we build on GitHub project and Chrome project as regression models, of

which the target variables are the continuous numeric values. We implemented six selected

regression classifiers for the GitHub project: logistic regression (LR), SVM for regression,

Random Forest (RF), Decision Tree (DT), Boosted Tree (BT), Artificial Neural Network

(ANN); Neural Network for time series is applied in Chrome project.

Validation of Regression Models: In the regression model, we use tenfold cross-validation

to separate the data into training set and testing set. The accuracy of the model is described

through mean absolute error (MAE), which measures the difference between two variables,

mean-squared error (MSE) and root mean square (RMS), widely used functions for ana-

lyzing the performance of linear regression. The mean absolute percentage error (MAPE)

is used for the dispersion measure.

MAE =

n
∑

i=1
|yi− xi|

n
(4)

MSE =
1
n

n

∑
i=1

(yi− xi)
2 (5)

102

RMS =
√

MSE (6)

MAPE =

n
∑

i=1

|yi−xi|
yi
∗100

n
(7)

where yi, xi are the predicted value and the actual number of the target, respectively,

and n is the total number of the observations.

Evaluation of Classification Models: To complete the background knowledge, we also

present the evaluation of classification models. Commonly, the confusion matrix is a ta-

ble that displays the performance of the classification algorithm. True positive (TP) is the

number of true observations that classify to the true label, and false positive (FP) is the

number of true observations that classify to the false label; false negative (FN) is the num-

ber of false observations that classify to the true label and true negative (TN) is the false

observations that classify to the false label.

Actual class
True False

Predicted class True True Positive False Positive
False False Negative True Negative

Table 8: An Example of Confusion Matrix

Based on the elements from the confusion matrix, we can further define the indicators

to evaluate the classification models.

Accuracy:

Acc =
T P+T N

T P+T N +FP+FN
(8)

True negative rate:

T NR =
T N

T N +FP
(9)

103

False negative rate:

FNR =
FN

FN +T N
(10)

False positive rate:

FPR =
FP

T P+FP
(11)

Recall: The true positive rate.

Recall =
T P

T P+FN
(12)

Precision:

Precision =
T P

T P+FP
(13)

F1-measure: F1-measure is harmonic mean of Precision and Recall.

F1 = 2∗ Precision∗Recall
Precision+Recall

(14)

5.3 Dataset Collection and Preparation

In this section we present the datasets that we collect in our study and the methodologies

we apply to prepare the datasets.

5.3.1 Datasets

In this study, we obtain two datasets to perform the empirical study about the correla-

tion between the features and the software application vulnerabilities. The first dataset,

which we obtain from GitHub (a version control and source code management hosting ser-

vice), contains features of 780 open source projects and 6498 vulnerabilities from NVD

database1. This dataset provides the most complete mapping from open source projects on
1https://nvd.nist.gov/vuln/data-feeds

104

GitHub to CVEs. In contrast, the closest work to our study, conducts the first large-scale

mapping of CVEs to GitHub commits for only 66 open source applications [92]. The sec-

ond dataset consists of the features and vulnerabilities for 11,454 versions of the Google

browser Chrome from Chromium repository 2. To the best of our knowledge, this is the first

large-scale dataset, spanning over 9 years, that includes multiple features about Chrome and

the corresponding vulnerability information. In contrast, the other related work, Stuckman

et al. [116], collects dataset from three open-source web applications, 100 phpMyAdmin,

95 Moodle, and 23 Drupal 6.0 versions in their experiments.

GitHub Project Dataset

This dataset contains the software metrics, developer metrics, software property metrics,

security metrics, popularity metrics and the number of vulnerabilities for 780 open-source

projects from GitHub. To the best of our knowledge, this dataset contains the most complete

Git repository which contains at least one published vulnerability.

Metrics Features

Software Metrics

size
#files

#program-files
blank

comment
code

Developer Metrics #contributors
#commits

Software Property Metrics

age
#labels

last push date
language distribution

Popularity Metrics
#stars

#watches
#forks

Security Metrics
#issues

#functions
flawfinder outputs

Table 9: GitHub Features Collection

Software Metrics: The software metrics we collected from open-source projects on GitHub

contain 4 different granularities: the size, the number of files, the number of code files and

2https://chromium.googlesource.com/chromium/src.git/

105

the SLOC in order to represent the cyclomatic complexity of the software. To measure

a project’s size, one option is to rely on GitHub API, which provides a size attribute for

each repository. However, the reported size reflects the server-side storage requirement

for all revisions and after some level of storage optimization. Thus, we resort to cloning

all projects locally and we measure only the size of the HEAD tree, i.e., the view of the

latest revision’s files tree. All projects occupy a total 106GB on disk, while the API’s size

attribute reported only 73.5GB. The total size representing all latest revisions is 31GB.

The number of files is obtained through the git-ls. This command is also used in col-

lecting the number of files in Chrome data. Cloc [23] is an open source tool used to count

the blank lines, comment lines, and physical lines of source code in multiple programming

languages. The number of code files is the output from cloc, which only takes the code

files into consideration. SLOC for each repository has been obtained through cloc same as

the way to obtain SLOC for Chrome versions.

Developer Metrics: In this study, we focus on comparing the software level changes

among the software applications. Therefore, the developer metrics we collected are the

number of commits in the entire life of the open source projects, the time-stamps of the

commits and the frequency of the commit for each repository, as well as the number of

contributors. The number of commits represents the number of changes/patches that have

been made in the life cycle of each project. In addition, the frequency of the commit reveals

the update speed of the project. The time stamp of the commit may associate with the error

made by the developers according to Sliwerski et al. [114], e.g., the commits submitted

on Fridays have more chance to contain bugs. Therefore, time stamps for the commits

are also considered in the later cases. The number of contributors reveals the maintenance

or developing speed for each project, which is also obtained through the meta-data from

GitHub repositories.

106

Software Property Metrics: In this study, we collect the intrinsic properties of software,

e.g., the release date, the last push date, the languages distributions and the labels. Each of

the properties correspond with a certain factor that related to the discovery of vulnerabili-

ties. The release date reveals the life span of the open source project that is related to the

exposure period. After the release date of that project, everyone could fork and have access

to the project and discover its bugs. The last push date is related to the active change done

to the project, which is corresponding with the actions made by the developers, e.g., the fix

of the bug, and the addition of new components. It demonstrates the recent maintenance of

the project. The language distributions correlate the project to language specific fixes and

narrow down the comparison scope. Finally, the labels, which are assigned by the owners

of the projects, illustrate the functionalities of the project.

Popularity Metrics: The popularity metrics reveal attack probability for each project;

the higher the popularity, the more attention to the project. In this study, the popularity

metrics are collected from GitHub metadata, e.g., the number of fork, star, and watch. The

number of forks is the number of the copies of the projects. Contributors could work on the

fork and make the fix of the project. Once the requests are pulled from the fork contributors,

the original owners could decide whether to include the fixes from the fork into the original

repository. Therefore, the number of the forks reveals the popularity of the repository

among other developers. The number of stars and watches of a project show the attention

given to the repository among the GitHub registers. Star gives the track of the project to

users. With the star to certain project, it is easier to find the project. Watch enables users to

receive notifications about project. The number of star and watch demonstrates different

level of attentions from Git users.

Security Metrics: The security metrics we consider in this study cover three aspects: the

potential attack likelihood, the existing attack likelihood, and the history attack likelihood.

107

We use the flaws that are discovered by Flawfinder [132] as the potential attack likelihood

for one application. Flawfinder identifies the dangerous functions, such as memcpy, and

present the flaw points with multiple severity levels. Furthermore, in attack surface con-

cept [67], the entry/exit points (the methods which directly/indirectly invoke the I/O func-

tion) of a software application contains the possible explorable points from one software

application. Ideally, the attack surface from one software application would be a better

metric to indicate the potential attack likelihood. However, to obtain the attack surface, we

need to construct the call graph from the main function in one software application, which

does not always exist in the project from GitHub. In this study, we use the number of func-

tions, which is upper bound of the attack surface, as the second potential attack likelihood

metric for one software application. We obtain the number of open security issues that have

been released to each project as the existing attack likelihood. The open issues contain the

software bugs reported from the users and the tasks for the project maintainers. We only

collect the security-related issues and ignore the task-oriented issues. The history attack

likelihood is represented as the number of closed security issues.

Number of Vulnerabilities: The data source for the number of the vulnerabilities is the

NVD database; the same as the one we used for Chrome dataset. We first use the NVD

database [81] in the reverse search to obtain the GitHub project, which contains at least one

vulnerability. Then, with the name of the project, we obtain the number of vulnerabilities

for each repository. In this study, we obtain the total number of vulnerabilities for the

repository, which are not separated by versions. In this way, we don’t have the mislabeling

version issue, which we will explain in the Chrome dataset, however, the mishandling of the

links and the vulnerable products increase the difficulties in obtaining an accurate number

of vulnerabilities for each project. For example, CVE-2017-15041 contains the GitHub link

in it’s 〈vuln : source〉which fits the first reverse search rule we apply in our study. However,

in the CVE entry, no specific product is listed, but only the language is mentioned, which is

108

Go language. 472 CVE entries in 2017 (more than 5%) are not associating with any affected

products in the NVD database. CVE-2017-13570 is the CVE for the product blackcat cms

contains GitHub link in the 〈vuln : re f erences〉, however, the link only points to the page

discuss about this vulnerability not the page for the product. Furthermore, CVE-2017-

9609 corresponds with blackcat cms in 〈vuln : product〉 but connects to different git link

in 〈vuln : re f erence〉 than the CVE-2017-13570. By simply taking the link, it would be

difficult to distinguish the correct repertory for the product.

The Chrome Dataset

This dataset includes the software metrics, code churn, release information, and the vulner-

ability numbers for 12000 versions of Chrome back to 2008. Originally, we try to obtain

the data from Open Hub 3, a website to track and compare open source projects, to obtain

the software metrics and the release for the Chromium project. We discover the list of

vulnerabilities corresponds to various Chrome versions under the security link 4. It seems

trivial to collect the version information corresponding to the number of vulnerabilities,

however, the inconsistency of data has been discovered when we compare the release data

gathered from this website to the release tag from official Chrome repository. The same

inconsistency is discovered when we compare the number of vulnerabilities between Open-

Hub and NVD database. In order to obtain the correct features for our study, we decide to

collect the data from the official websites.

Software Metrics: The software metrics, considered in this study are based on the soft-

ware level, which is different from other studies that are based on predicting the vulnerable

components or files in one software applications. Our study focuses on the trend of vulnera-

bilities among versions. Recall that Chrome is a huge open source project and it is not easy

3https://www.openhub.net/p/chrome
4https://www.openhub.net/p/chrome/security

109

to obtain any of the software metric. Besides, Graylin et al. [52] have shown empirically

that the cyclomatic complexity and line of code is near-linear. Adding files often associates

with introducing new features into one program. Therefore, we choose the line number of

code to represent the complexity, and the number of files to represent the components of

the source code.

We apply cloc to 11,454 versions of Chrome since 2008. Given the increasing code

size, cloc took up to five minutes to complete, resulting in a full week of computation using

multiple parallel instances. The number of files is counted as the result of git -ls, which

shows the number of files under the version checked out, while the number of the code files

is counted by cloc, which only takes the programming files into account.

Release Information: The release time for Chrome versions is tagged on the Chromium

repository by authors; each version associates with one time tag in the repository. How-

ever, Chromium project has migrated from SVN to git in 2014 April, which means the

versions released before April 2014 are all tag only for the migration time and not the re-

lease time. Requesting the time tag from git repository only provides the migration dates

for the versions before 35. The problem for this migration time tags is that we gather the

version release time later than the vulnerability in that version. To solve this in accurate

data, we use the first release vulnerability date as the approximate date for the versions

before 35. However, this method is not compatible with the problem we discovered in the

gathering for the number of vulnerabilities. See the details in the gathering for the number

of vulnerabilities.

In order to get accurate release time for all the versions, we merge the old SVN used by

Chromium project 5, which contains the proper release time for the versions before 35, to

the time tags from new Chromium git repository.

5https://src.chromium.org/viewvc/chrome/releases/

110

CVE Description Affected Versions

CVE-2011-3034
Google Chrome before 17.0.963.56 allows remote attackers to cause a denial of service

(application crash) via an empty X.509 certificate. since version 0.1.38.1

CVE-2012-5143
Integer overflow in Google Chrome before 23.0.1271.97 allows remote attackers to

cause a denial of service or possibly have unspecified other impact ... since 23.0.1271.0

CVE-2016-5136
Use-after-free vulnerability in extensions/renderer/user script injector.cc

in the Extensions subsystem in Google Chrome before 52.0.2743.82... 51.0.2704.106

Table 10: An Example of CVE Interpretation
Number of Vulnerabilities: We download the CVE database from NVD to obtain the

number of vulnerabilities for each version of the Chrome for the later studies. In the

CVE database, the tag, 〈vuln : product〉, which connects the CVE to the affected pro-

grams. For example, in CVE-2016-5136, the vulnerable program is cited as Chrome ver-

sion 51.0.2704.106. However, this citation for the versions has been interpreted in a very

different ways in the history of Chrome vulnerabilities. In early versions, for example

the versions released before 2011, the keyword before has been interpreted as the versions

since the first version of Chrome (which is the first entry in Table 10). The keyword before

in vulnerable version, which was released after 2012 and before 2014 has been interpreted

as the versions since the first version of the vulnerable major version (See the example in

second row of Table 10). And the recent vulnerabilities only cite the exact one version

before the vulnerable version (See the example in last row of Table 10).

Figure 26: Inaccuracies in NVD Database CVE-2011-3034

111

The methods used in interpreting the keyword before, prior to and and earlier in vul-

nerabilities are all inaccurate. Figure 26 shows the detailed information about CVE-2011-

3024, and how the vulnerability introduced in Chrome. The vulnerable code has been fixed

in version 17.0.963.56 by adding if condition as boundary for variable resource buffer

(which caused the empty X.509 certificate in the previous versions). By using the git blame

command on the vulnerable lines, we could know the change dates for the vulnerable lines.

We checkout the one version of the fixed version to git blame the fixed lines to get the date

for the last change of those lines. However, in reality the fixed lines are not equivalent to

the code, which introduced vulnerabilities. For example, in Figure 26, the vulnerability is

caused by the fact that no boundary check is applied on the variable resource buffer in

CVE-2011-3024, but the vulnerability was not introduced by this variable. The vulnerabil-

ity was introduced by the version 17.0.915.0, when they changed the method to generate

this variable, which allows the null value in this variable (the original method does not

generate null value, so no boundary check was needed). The result is different than the first

interpretation of the keyword before in CVE entries.

Figure 27: Inaccuracies in NVD Database CVE-2012-5143

Figure 27 shows that the actual version introduced the vulnerability is in version 14.0.818.0,

which is way earlier than the first version in the same major version 23. And Figure 28

112

demonstrates the git blame result around the fixed lines, line 107 and line 108 in 2016-

07-16, which the entire function was introduced in 2014-06-27. We further check for this

commit and discover that the entire file was introduced in version 37.0.2062.7, which is

significantly earlier than the version 51.0.2704.106 mentioned in NVD database.

Figure 28: Inaccuracies in NVD Database CVE-2016-5136

The labeling for NVD database is not accurate according to the three examples we

mentioned before. The number of vulnerabilities we could have for the Chrome versions

is an imperfect data set. And the inconsistent interpretation of the data introduced more

noise in the data set. To reduce the maximum of the noise in our data set, we reinterpret

the keyword before or prior to in the same way across all the versions. According to the

Google Chrome version history Wikipedia page 6, Google discontinues the versions three

months after their release date. We assume the discovered vulnerability only affects the

versions released within a year. We adjust the affect window to half a year, one year and

one year and half in our study.

6https://en.wikipedia.org/wiki/Google Chrome version history

113

5.3.2 Data Preparation and Feature Extraction

During the data collection procedure, we collect the datasets for Chrome and GitHub

projects. However, the entries in the datasets are not all validated. In this section, we

introduce the data processing techniques we applied before the feature selection and the

learning models.

Incompleteness Data

In the Chrome dataset, the earliest version we could obtain is the version 3.0.195.25. We

obtain the date for the versions before 2014 April 07 from the SVN repository since the

merge to the Git repository loses the release date for those versions, but we were not able

to check out the versions before 3.0.195.25, since these repositories were not applied the

merge to the Git repository. There are 22 versions we could not download since the data

are not available in the repository anymore, which is 0.19% in our Chrome dataset. In

the GitHub dataset, 5 projects are empty after check out; slocs for these projects are 0

that are eliminated from the dataset. Flawfinder crashes in 16 projects during the data

collection. Those projects are eliminated as long as the Flawfinder results are considered

as the selected features in the later study. Since the Flawfinder only works on the project

relates with C/C++ languages, the projects generated with other language is marked as 0 in

the original entries. We adjust the entry to -1 to ensure the difference between the projects

without any discovered flaws and the project without C/C++ language.

Noise Data

In the original Chrome dataset we obtain in this study, we manually analyze the abnormal

data entries. Some versions of Chrome had been mis-committed twice in the updating his-

tory of the Chrome git repository, which lead to the unexpected jump of SLOC among the

rest of the versions. We check all the unusual versions, and verify the mishandling in the

114

repository. See the detailed version numbers in Section . Two versions of the Chrome has

mis-labeled release dates and we discover that release date on the Google blog is different

than the one mentioned on the SVN repository (4.0.249.76 and 6.0.472.47). We also ad-

just the release date to the date listing on the Google blog. In GitHub dataset, the expert

selection contains the noise, which we can not eliminate in this study.

Inconsistency Data

The inconsistency data from the Chrome dataset is the number of CVEs and the way in

which they interpret the keywords. We adjust this issue by assuming the affected windows

for versions as 0.5 year, 1 year and 1.5 year. In GitHub project, we apply expert selection

to reduce the inconsistency link and citations of the projects.

Feature Extraction

Table 22 in Appendix demonstrates the sample data from the Chrome data set; we only

give the number of CVEs based on the 0.5 year model as an example here. Table 25 shows

the meaning for the corresponding features. Formally, we define the mapping function z

from features to numeric values. X is the set of all the features and x ∈ X is one of the

features in the features set X. The function z returns numeric value to be used in the later

feature selection and classification.

z(X) =

x x ∈ numeric f eatures

days x ∈ time f eatures

numbers x ∈ label f eatures

The time features include the release time and the first published CVE date in Chrome

data set. We use the date when we obtained the dataset (15-11-2017) as the current time

to calculate the age for the versions of the Chrome. The age represents the attack period

115

for the attackers for this version. Label feature is the release day for each version. We

create the mapping set [Monday=1,Tuesday=2, Wednesday = 3, Thursday = 4, Friday = 5,

Saturday = 6, Sunday = 7] to create numbers for this feature. The name of CVE has been

deleted in this study since it does not provide any intrinsic information for the software

application. We still show this feature in Table 22 as the completeness of the data set.

In the GitHub project, the time features are the release date and the last push time.

The release date is transformed as the age of the Git project by using the same method as

mentioned in Chrome dataset. The last push time is transformed as the last history active

date by calculating the date between current time to the last push time. We delete two

features: is fork and the number of flaw in severity level 0, which are all 0 for the projects

we collected. The features contain the same value, for all the data entries do not make any

difference to distinct the data.

5.4 Feature Selection of Software Vulnerability Model

In this section we use machine learning technologies to evaluate the effectiveness of the

features we collected to the defined target (the number of CVE vulnerabilities) in GitHub

dataset. Before we continue, we uniform the terms in the latter sections. We refer the target

variable in regression models as response and as class in classification models. The features

in regression models are referred as predictors and as predictive variables in classification

models. The data entries are referred as instances in both models.

5.4.1 Data Visualization

To understand the full picture of our dataset, we choose the t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) [66] technique in order to reduce the dimensions of our datasets

and to visualize the data into 2D graph. t-SNE represents the similarities of high-dimensional

116

-40 -30 -20 -10 0 10 20 30 40 50
-40

-30

-20

-10

0

10

20

30

40
t-SNE: features=All, P=30, dist=euclidean

1
2
3
4
5+

-20 -10 0 10 20 30 40
-20

-15

-10

-5

0

5

10

15

20

25
t-SNE: features=All, P=34, dist=cosine

1
2
3
4
5+

(a) (b)

-50 -40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
t-SNE: features=All, P=30, dist=chebychev

1
2
3
4
5+

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40
t-SNE: features=All, P=30, dist=minkowski

1
2
3
4
5+

(c) (d)

Figure 29: The Data Visualization for GitHub with t-SNE (a)(perplexity = 30, Algorithm
= Euclidean),(b)(perplexity = 34, Algorithm = Cosine),(c)(perplexity = 30, Algorithm =
Chebychev),(d)(perplexity = 30, Algorithm = Minkowski)

data-points as the conditional probabilities which are calculated by the algorithms, e.g., the

default algorithm is Euclidean distance algorithm. Compared to the traditional dimension-

ality reduction techniques, e.g., Principal Components Analysis (PCA) [2], which uses

linear techniques, t-SNE performs better in keeping the similar datapoints close together

with nonlinear dimensionality reduction techniques, which is not easily achieved by a lin-

ear mapping. Compared with other nonlinear dimensionality reduction techniques, such as

Sammon mapping [109], Stochastic Neighbor Embedding (SNE) [40], t-SNE is capable of

capturing both the local structure and the global structure of the datasets.

117

In matlab software, 11 distance algorithms can be chosen in the t-SNE function (the

default the distance algorithm is Euclidean distance). The parameter ”Perplexity” controls

the effective number of local neighbors at each point (the default value is 30). Figure 29

is the visualization of GitHub dataset with the default distance algorithm and the default

perplexity value. t-SNE maps the 34 predictors into 2 dimensional coordinate, then we use

the number of CVEs to color the 2 dimension datapoints. The blue dots are defined as the

instances that correspond to 5 or more CVEs. The other colors correspond with the exact

number of the CVEs. In Figure 29 (a), the datasets are divided into five clusters; two of the

clusters are majority with the lower number of CVEs and three of them are majority with

higher CVEs.

We apply all the distance algorithms with various perplexity values in order to obtain

the best visualization results. Figure 29 (b),(c),(d) are the best visualization results from

GitHub dataset. In the visualization process, we remove the response, the number of the

CVE vulnerabilities, from the dataset; only the predictors are clustered with t-SNE algo-

rithm. After the unsupervised clustering, we use the number of the CVEs to color the data-

points on the lower-dimensional graph. In total, we have 55 distinct numbers of CVEs in

our dataset, which makes it impossible to put them all on the graph. The entire dataset has

been separated into 5 groups based on the number of instances. The group 1,2,3,4 means

the instance contains corresponding number of CVE(s); group 5 contains the instances with

5 or higher number of CVEs.

The shapes of the visualization results change with the distance algorithms and the

”Perplexity” values; the common observation from the visualizations is the instances with

lower number CVEs are different from the instances where higher number of CVEs (the

blue color on the graph).

118

CFS

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on
%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
in

im
um

 c
or

re
la

tio
n

Figure 30: The Feature Selection from CFS

5.4.2 Feature Selection

We apply filter, wrapper and embedded feature selection methods on our GitHub dataset

respectively, in this section.

Filter Methods

In filter method, we choose correlation-based feature selection (CFS) [38], mutual infor-

mation (MI) [11] and RELIEF [58], due to the fact that these methods are wildly used in

the literatures.

Correlation based Feature Selection CFS calculates the correlations between any pair

of features, and uses the lowest correlation in one feature as the weight of this feature. CFS

method selects the features that highly correlate with the response and do not correlate with

other features. Figure 30 is the feature selection scores from CFS. In this study, we first

set 0.01 as the threshold for the CFS method, which means the weight lower than 0.01 is

preselected in this step. Then we joint the results from CFS with the Table 12 correlation

119

column to build the feature set.

MI

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

0

0.05

0.1

0.15

0.2

0.25

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

Figure 31: The Feature Selection from MI

Mutual Information Mutual information (MI) measures the mutual dependences be-

tween the response and the predictors. Same as the correlation, MI only produce pairwise

results. Contrasted with the correlation, MI captures the nonlinear dependency through the

joint probabilities. In this study, we output the MI score as the importance weight for fea-

tures. Figure 31 demonstrates the importance for features with the features as x-axis and

MI score as y-axis. The threshold to select the feature subset is 0.15 in this study.

RELIEF RELIEF algorithm calculates the Euclidean distance from each predictor to

response. k is the number of closest predictors, which is taken into consideration for the

majority vote. Figure 32 shows the feature selection results from different number of k. In

this study, we focus on selecting the features from the k = 15, threshold = 0.02.

120

k=1

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

k=3

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

(a) (b)
k=5

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

k=7

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

(c) (d)
k=15

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

(e)

Figure 32: The Feature Selection from RELIEF with Different k

Wrapper Methods

Multiple heuristic algorithms are available to build the best set in wrapper methods; in this

study we apply the SFS and sequential forward floating selection (SFFS); both are the fam-

ily of greedy search algorithms, with k-NN classifier to select the feature set. Since SFFS

is an extension of the SFS, in our study, both algorithms give the same output feature set.

121

The SFS algorithm starts with an empty set and adds one feature, which gives maximum

accuracy within each iteration. 6 features are selected in the wrapper methods.

Embedded Methods

Three are embedded methods that are applied to our dataset: Decision tree (DT), Boosted

tree (BT), and Random forest (RF). Figure 33 demonstrates the feature selection results

from the DT algorithm; the results are plotted as the importance bars. We select 0.05 as our

threshold to select features from the feature sets.

Decision Tree (regression): predicted features importance

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

0

1

2

3

4

5

6

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

Figure 33: The Feature Selection from Decision Tree

Then we apply the boosted tree with 200, 500 and 1000 trees in our study. The results

are almost identical with the different number of trees, therefore, we only show the result

from 200 trees as an example here. Figure 34 shows the feature selection result from BT.

In this study, we set 0.018 as the threshold to select the feature subset.

Figure 35 shows the feature selection from RF with 200, 500 and 1000 trees. The results

for the important weight are slightly different with the number of trees. In this study, we

select the feature subset based on the result from 1000 trees with 0.1 as the threshold.

Table 11 demonstrates the feature selection results from all the methods we mentioned

in the previous section. In the latter section, the classifiers would be built on the full feature

122

Boosted trees with 200 trees

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

0

0.5

1

1.5

2

2.5

3

3.5

4

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

Figure 34: The Feature Selection from Boosted Tree

Out-of-Bag Permuted Predictor Importance Estimates using 200 trees

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.2

0

0.2

0.4

0.6

0.8

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

Out-of-Bag Permuted Predictor Importance Estimates using 500 trees

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.2

0

0.2

0.4

0.6

0.8

1

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t

Out-of-Bag Permuted Predictor Importance Estimates using 1000 trees

#s
tar

s

#w
atc

he
s
#fo

rks

#is
su

es

#c
on

trib
uto

rs

#c
om

mits ag
e

#la
be

ls

%Ja
va

%Ja
va

Scri
pt

%PHP %C
%C++

%Pyth
on

%Go

%Rub
y
%Perl

%HTML
%C#

%She
ll
siz

e
#fi

les

#fu
nc

tio
ns

#p
rog

ram
-fil

es
bla

nk

co
mmen

t
co

de hit
s
c-s

loc L1 L2 L3 L4 L5

Features

-0.2

0

0.2

0.4

0.6

0.8

1

Fe
at

ur
es

 im
po

rta
nc

e
w

ei
gh

t
Figure 35: The Feature Selection from Random Forest

sets and the selected feature sets from various feature selection methods.

5.5 Analysis of Software Vulnerability Model

In this section, we first describe the hypotheses that we researched on this topic, and then

we analyze the hypotheses with multiple methods.

5.5.1 Hypotheses

A large body of research studied the vulnerability prediction models based on the software

metrics, however, most of the them tried to identify the relationships between software

metrics and the vulnerabilities in the components of one software application. In our study,

besides the software metrics, we gather software property metrics, security metrics and

123

Filter Method Wrapper Method Embedded Method
Correlation CFS MI RELIEF SFS DT BT RF

Popularity Metrics
#stars 0.0816 3 3

#watches 0.1420 3 3 3
#forks 0.1425 3 3 3 3 3 3

Developer Metrics #contributors 0.1307 3 3 3 3 3 3
#commits 0.4360 3 3 3 3 3

Software Property Metrics

age 0.3363 3 3 3 3 3
#labels -0.0054
%Java -0.0358 3

%JavaScript -0.0202
%PHP 0.0499 3 3

%C 0.0553 3 3
%C++ 0.0319 3

%Python -0.0479 3
%Go -0.0204

%Ruby -0.0421
%Perl -0.0047 3

%HTML 0.0072 3
%C# -0.0119

%Shell -0.0279 3

Software Metrics

size 0.1266 3 3 3
#files 0.2600 3 3 3 3

#program-files 0.1620 3 3 3 3
blank 0.1956 3 3 3 3

comment 0.1694 3 3 3 3 3
code 0.2036 3 3 3 3

Security Metrics

#issues 0.0805 3 3 3
#functions 0.2658 3 3 3 3

hits 0.1246 3 3
c-sloc 0.1966 3 3 3

L1 0.1209 3 3
L2 0.1532 3 3 3 3
L3 0.1001 3 3
L4 0.0521 3 3
L5 0.1005 3 3

Table 11: Feature Selection with Different Algorithms

popularity metrics to study the vulnerability discovery model.

It has been accepted that the complexity of the software is the cause of the vulnera-

bilities [112]. However, this argument is not always valid in the vulnerability discovery

process. For example, in our GitHub dataset, project opencms-core7, 780638 line num-

ber of codes, which is considered to have less complexity than the project SiberianCMS8,

1863840 line number of codes, has a higher number of vulnerabilities. This is mainly be-

cause project opencms-core was released 2331 days ago and project SiberianCMS was only

released 601 days ago. The latter project contains lower number of vulnerabilities mainly

due to having less attack windows for the attackers to access. In this case, the complexity

7https://github.com/alkacon/opencms-core
8https://github.com/Xtraball/SiberianCMS

124

is not the key feature, which indicates the number of CVEs in one application. Similar

examples could be listed in comparing the age (the days counted from the release time un-

til now) of the software application and the popularity (the number of stars, watches, and

forks) of the applications. Based on these observations, we set up the following research

hypotheses:

H1: There is one feature that significantly related to the number of vulnerabilities in soft-

ware applications.

H2: There is a combination of features that significantly related to the number of vulnera-

bilities in software applications.

H3: The features can predict the number of vulnerabilities in software applications.

5.5.2 Statistical Analysis of Data

In this section, we apply two statistical methods to evaluate our features against the num-

ber of CVE vulnerabilities. The first one is Spearman’s rank correlation coefficient, which

illustrates the linear relationships between the response and the predictor, e.g., in our case,

it is the number of CVE vulnerabilities and other features. The output result for the cor-

relation coefficient is between -1 to 1, which corresponds to fully opposite, or fully linear

correlations. The value 0 means that two sets of the data have no correlation. The second

method is two-sample Kolmogorov-Smirnov test (K-S test)9, which returns the decision,

and the p-value, whether the response and the predictor are from the same continuous dis-

tribution. Bonferroni correction is used to deal with multiple hypothesis testings, which

means our stricter significance level is 0.00029 (corresponding to a non-corrected p≤ 0.01

for each test).

The top three correlations are the number of the commits, the number of functions and

9This test calculate the distance between the distribution of two samples; the null hypothesis is that the
two samples are from the same distribution

125

CVE

Correlation p-value K-S test

Popularity Metrics
#stars 0.0816 6.0484E-225 Reject

#watches 0.1420 1.251E-157 Reject
#forks 0.1425 1.6426E-187 Reject

Developer Metrics #contributors 0.1307 8.7476E-121 Reject
#commits 0.4360 1.0614E-288 Reject

Software Property Metrics

age 0.3363 0 Reject
#labels -0.0054 5.6425E-132 Reject
%Java -0.0358 2.7586E-282 Reject

%JavaScript -0.0202 2.3643E-122 Reject
%PHP 0.0499 1.9834E-162 Reject

%C 0.0553 8.407E-145 Reject
%C++ 0.0319 1.6595E-207 Reject

%Python -0.0479 4.6039E-194 Reject
%Go -0.0204 0 Reject

%Ruby -0.0421 1.0515E-262 Reject
%Perl -0.0047 8.6337E-266 Reject

%HTML 0.0072 1.2195E-163 Reject
%C# -0.0119 0 Reject

%Shell -0.0279 1.2681E-171 Reject

Software Metrics

size 0.1266 0 Reject
#files 0.2600 1.8791E-270 Reject

#program-files 0.1620 4.3496E-243 Reject
blank 0.1956 0 Reject

comment 0.1694 1.0302E-306 Reject
code 0.2036 0 Reject

Security Metrics

#issues 0.0805 1.2384E-183 Reject
#functions 0.2658 2.3783E-182 Reject

hits 0.1246 3.6434E-117 Reject
c-sloc 0.1966 4.3303E-112 Reject

L1 0.1209 4.0575E-127 Reject
L2 0.1532 7.8988E-122 Reject
L3 0.1001 4.9222E-157 Reject
L4 0.0521 1.0349E-139 Reject
L5 0.1005 2.1061E-239 Reject

Table 12: Results of the Statistical Analysis for GitHub Dataset based on Spearman’s rank
correlation coefficient and K-S test. K-S test significant if p-value≤ 0.00029

the number of files corresponding to the developer metric, software metric and security

metric. However, in K-S test, all the features are not in the same distribution of the number

of CVEs. As the conclusion for the H1, the number of commits is the best feature that

correlates to the number of CVEs, however, none of the collected features are in the same

distribution as the number of CVEs. Software property metrics have the overall lowest

correlation with the response; other categories of features share some correlations with it.

126

5.5.3 Learning Based Model

In this section, we apply multiple classifiers to evaluate the correlation between feature sets

and number of CVEs. To address the H2, we evaluate the performance of the classifiers in

order to assess the predictive power of the features.

The first classifier sets we use in our experiment are BT and BT-opt (B-opt chooses to

calculate parameters with the inbuilt algorithms). MSE, RMS, MAE, and MAPE are calcu-

lated to evaluate the performance of the classifiers. However, the 4 performance evaluators

fail to demonstrate the general picture of the predicted results; correlation has been applied

to indicate the relationships between the predicted values and the original results.

Model Performance All Filter Method Wrapper Method Embedded Method PCAMeasures Features CFS MI RELIEF SFS DT BT RF

BT

MSE 274.63 296.81 274.63 274.63 1006.1 250.5 274.63 967.14 663.85
RMS 16.57 17.23 16.57 16.57 31.72 15.83 16.57 31.1 25.77
MAE 6.57 6.99 6.57 6.57 9.07 6.37 6.57 9.87 9.35

MAPE (%) 206.91 218.71 206.91 206.91 263.69 198.18 206.91 291.24 291.51

BT-opt

MSE 338.48 485.76 419.9 366.65 985.68 387.01 387.3 850.53 801.39
RMS 18.4 22.04 20.49 19.15 31.4 19.67 19.68 29.16 28.31
MAE 6.92 7.76 7.61 6.78 9.19 6.96 6.86 8.47 9.81

MAPE (%) 188.99 219.41 209.62 208.08 280.12 211.17 195.17 219.33 347.25

Table 13: Result of Predictive Power Test for BT and BT-opt Classifier

Although 4 indicators could not reflect the individual prediction results, the values could

compare among the classifiers with various feature sets. Usually, a lower number of the

MSE, RMS, MAE, and MAPE correlate to the better performance of the classifier/feature

set. Table 37 shows that the best result from DT feature set with BT algorithm.

Figure 36 demonstrates the predicted value from this combination. In our dataset, mul-

tiple observations correspond to the same number of CVEs; therefore, we group the ob-

servations based on the number of CVEs. X-axis in the graph gives the unique number of

the real CVEs from our dataset. The red squares in the upper graph plot the real CVEs for

each unique CVE, which are the same as the labels on the x-axis. The green crosses are

the average predicated CVEs for each unique CVE and the blue pluses are the predication

CVEs for each observation.

127

��
�
���
���

�
�

�
�

��
�	

�
���

��
	�

��
�

��
��
�
��
	

��

�

�
��
��

��
��
��

�
��
�

��
��
��
��
	�
�

�	
��
��
�
���

	�
��
	�
�
�

		
��

��
��
�	�

	
�
�

�

���

���

���

	��

��

��
!�
��
�
�$

�!##���%�! ������

��������$
�'�#�����#����%������$
�#����%������$

��
�
���
���

�
�

�
�

��
�	

�
���

��
	�

��
�

��
��
�
��
	

��

�

�
��
��

��
��
��

�
��
�

��
��
��
��
	�
�

�	
��
��
�
���

	�
��
	�
�
�

		
��

��
��
�	�

	
�
�

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

���� ��
� � � ���� � � � � 	����
 � � � � � � � � �

�

� �
 � � � � � � � � � ���� � � � � � � � � �
�

���

�
�

Figure 36: The Prediction Results from BT with DT Feature Set

Results and Implications: The results of Figure 36 are ordered by the relative percent-

age error (|average predicted CV Es−real CV Es|
real CV Es), which means the observation with CVEs equal

to 73 has the smallest relative percentage error and the observation with CVEs equal to 1

has the largest relative percentage error. The correlation value between the real CVE(s)

and the predicted CVE(s) is 0.875 in this experiment, which indicates that predicted values

have similar trend with the real CVEs. This conclusion can be observed in the upper figure

of Figure 36. The predicted values do not show good trend when CVEs equal to 40, 37, 41,

150, 44, 30, 55, 69, 77, 140 (the data-points between the CVEs equal to 23 and CVEs equal

to 4), mainly because we lack of observations in those CVEs (all of them contain only one

observation).

Visually, it is impossible to evaluate the results for CVEs equal to 1, 2, 4 (the last three

values in Figure 36); we generate the accuracy for those CVEs in Figure 37. Relative

percentage error is exaggerated within the small number observations since the small dif-

ference already generates a large percentage error. For example, the relative percentage is

100 when the predicted number is 2 and the real number is 1. To better understand the

128

������� ������� ������� ��	��	� ��
��
�
���������"��� ����

���

���

���

��	

��

���

���

��

���
�

��

��
%

�������
���!����
���!����

���!���	
���!���
�
�$� ���

Figure 37: The Accuracy for Each CVEs from BT with DT Feature Set with Different
Range of Tolerance

small number of CVEs, which are the majority of our dataset, we use the absolute range of

the tolerance to calculate the accuracy. The x-axis of Figure 37 is the range of tolerance,

for example, [-1,1] means that when the absolute difference between the predicted value

and the real CVEs is less or equal to 1, then we consider the prediction could be accepted.

The lines on the figure shows the change of the accuracy with the increase of the tolerance

ranges. When the range of tolerance is [-4,4], accuracy reaches more than 75% except the

line for CVEs higher or equal to 5. Notice that the accuracy calculated in this way is too

strict with the high number of CVEs. For example, the prediction of the observation with

CVEs equal to 310 is 289; this result is 6% away from the real CVEs but it does not fall

into any tolerance range we define in Figure 37. Therefore, it is normal to have relatively

low accuracy within high number of CVEs.

Table 14 demonstrates the performance measures for the DT regression (DTr) classifier

with feature sets. BT feature set from the embedded method has best MSE, RMS, MAE

and MAPE among all the other results. We present the predicted results and the accuracy

129

Model Performance All Filter Method Wrapper Method Embedded Method PCAMeasures Features CFS MI RELIEF SFS DT BT RF

DTr

MSE 426.15 379.83 300.96 295.69 981.9 425.51 284.96 838.25 896.14
RMS 20.64 19.49 17.35 17.2 31.34 20.63 16.88 28.95 29.94
MAE 7.66 7.11 6.38 6.62 10.05 7.65 6.55 9.51 9.49

MAPE (%) 284.32 183.17 182.35 180.72 363.36 303.12 179.28 331.89 239.52

Table 14: Result of Predictive Power Test for DT Regression Classifier

��
�
�

���

��
�
�
��
��
���

��
	

��
	�

��
�

	�
��
�	
��
�
�
���

��
��
��

�
�

��

�
���

�
�	
�

�
��
��
�

�
��
	�
��

��
��
		
��
��
��

�
��
��
	�
�	�

�
	

�

�

���

���

���

	��

��

��
!�
��
�
�$

�!##���%�! �����	

��������$
�'�#�����#����%������$
�#����%������$

��
�
�

���

��
�
�
��
��
���

��
	

��
	�

��
�

	�
��
�	
��
�
�
���

��
��
��

�
�

��

�
���

�
�	
�

�
��
��
�

�
��
	�
��

��
��
		
��
��
��

�
��
��
	�
�	�

�
	

�

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

� � � ����
��� � � � � �
 � � � � � � � � � � � � � � �
 � 	��� � �

���

� � � � � � � � � � ���� � �

����

�
�

Figure 38: The Prediction Results from DT with BT Feature Set

for this combination in Figure 36 and 37.

Results and Implications: The performances for the DTr classifier with the BT feature

set is similar to the BT classifier with the DT feature set. However, the prediction results

vary between Figure 36 and Figure 38. The performance measure from DT classifier has

better MAPE compare with the BT classifier which indicates the classifiers may have bet-

ter prediction results. This conclusion could be verified both in accuracy Figure 39 and

Figure 38. CVEs equal to 2 and CVE equal to 1 already achieve 60% of the accuracy with

tolerance range of [-1,1]. We could also observe that CVEs equal to 2 has better ranking in

relative percentage error from the prediction figure.

Table 15 demonstrates the performance measures for the LR classifier with feature sets.

DT feature set from the embedded method has the best MSE and RMS; SFS feature set

130

������� ������� ������� ��	��	� ��
��
�
���������"��� ����

���

���

���

��	

��

���

���

��

���

�
��

��

% �������
���!����
���!����

���!���	
���!���
�
�$� ���

Figure 39: The Accuracy for Each CVEs from DT with BT Feature Set with Different
Range of Tolerance

Model Performance All Filter Method Wrapper Method Embedded Method PCAMeasures Features CFS MI RELIEF SFS DT BT RF

LR

MSE 966.39 965.53 896.86 951.48 1841.9 798.88 934.43 1007.18 966.39
RMS 28.68 28.91 26.99 28.07 33.21 25.33 28.04 29.66 28.68
MAE 13.34 12.71 12.33 13.07 10.86 11.41 12.35 11.46 13.34

MAPE (%) 489.99 492.33 441.72 491.45 397.57 434.75 450.44 353.89 489.99

Table 15: Result of Predictive Power Test for LR Classifier

from wrapper method has the best MAE and MAPE. The correlations between predicted

values and the real CVE are 0.451 and 0.434, respectively, we only show the predicted

results and the accuracy for DT feature set in Figure 40 and 41.

Results and Implications: Generally speaking, the performance measures from LR clas-

sifier are worse than the previous classifiers; the best MSE is around 800 with DT feature

set. Usually, a large MSE indicates the bad predictions among the large number of CVEs.

This conclusion can be verified visually in Figure 40, where all the high number CVEs are

moved to the middle of the figure, which means the large number of CVEs have a worse

relative percentage error compared with the previous classifiers. The large number of the

MAPE could be due to the bad performance in the small number of CVEs. From Figure 40,

131

�

��
	

��
��
�

��
��
��

��
��
��

�

�
��
�

��
��
��

�
�
	�
	�
��

�

�
�

���
�
�

�	
��
���

		
���

��
	�
�
�

�
��
��
	�
���

��
��
�	
�	�

��
��
��

�
	

�
�
��

�

���

���

���

	��

��

��
!�
��
�
�$

�!##���%�! �����	
�

��������$
�'�#�����#����%������$
�#����%������$

�

��
	

��
��
�

��
��
��

��
��
��

�

�
��
�

��
��
��

�
�
	�
	�
��

�

�
�

���
�
�

�	
��
���

		
���

��
	�
�
�

�
��
��
	�
���

��
��
�	
�	�

��
��
��

�
	

�
�
��

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

���� � � 	 � � � � � �
��� � � � � �
 � �������
� �

���

���

�

�
�

�

Figure 40: The Prediction Results from LR with DT Feature Set

������� ������� ������� ��	��	� ��
��
�
���������"��� ����

���

���

���

��	

��

���

���

��

���

�
��

��

%

�������
���!����
���!����

���!���	
���!���
�
�$� ���

Figure 41: The Accuracy for Each CVEs from LR with DT Feature Set with Different
Range of Tolerance

CVEs equal to 1, 2 ,3, 4 and 5 are in the tail of the figure, which indicates the worst relative

percentage error among all the predication values. Unlike the large increase of accuracy

with the increase of the tolerance range, the accuracies in Figure 41 stay relatively flatter.

The best accuracy, in CVEs equal to 2 with tolerance range [-5,5], is still lower than 50%,

132

which is significantly worse than the previous classifiers.

� ��

���

����

����

����

�����������

��

��

��

��

� ��

���

����

����
���

��

��

��

� ��

���

����

����

��

��

��

��

� �� ��

���

����

����

����

������

��

��

��

��

��� ���
���

���

	��

����

���

��

��

��

��

��

� �

���

���

	��

����

�

��

��

��

��

� ��

���

����

����
��

��

��

��

� �� ��

���

����

����

����

��

��

��

��

��

� ��

���

����

����

����

��

��

��

��

�� ���
�
��

���
�
�

Figure 42: Function Fitting Neural Network with Different Parameters

We use two Neural Network (NN) classifiers in this study, function fitting NN and gen-

eralized regression NN, however, it is difficult to know which value to choose to obtain the

best results from both classifiers. In order to get the best prediction result, we choose multi-

ple values to feed to the parameters in the classifiers. Figure 42 and Figure 43 demonstrate

the MSE, RMSE, MAE and MAPE for different feature sets with function fitting NN and

generalized regression NN, respectively.

Model Performance All Filter Method Wrapper Method Embedded Method PCAMeasures Features CFS MI RELIEF SFS DT BT RF

FFNN

MSE 956.83 1004.36 789.6 890.55 1001.31 836.05 713.99 969.48 845.47
RMS 26.64 28.46 26.14 26.45 27.28 24.85 24.37 27.94 24.7
MAE 9.57 10.58 10.55 11.28 10.05 8.73 10.74 11.08 8.95

MAPE (%) 355.98 325.79 335.8 399.3 393.48 285.45 379.02 416.12 320.29

GRNN

MSE 1009.05 1009.05 1179.78 997.86 987.15 790.01 1009.05 986.01 1479.17
RMS 28.09 28.09 31.48 27.23 27.38 25.94 28.09 26.97 32.79
MAE 9.64 9.64 9.71 10.09 9.81 8.88 9.64 9.41 9.14

MAPE (%) 352.83 352.83 285.15 403.23 345.11 290.43 352.83 341.81 171.48

Table 16: Result of Predictive Power Test for NN Classifiers

Table 16 demonstrates the performance measures (only the best results are chosen)

for the NN classifiers with feature sets. BT feature set from the embedded method has best

133

� ��

���

����

����

����

�����������

��

��

��

��

� ��

���

����

����

����

�

��

��

��

��

� ��

���

����

����

����

��

��

��

��

��

� ��

���

����

����

�����

��

��

��

��

� ��

���

���

����

����

��

��

��

��

� ��

���

����

����
��

��

��

��

� ��

���

����

����

����

	�

��

��

��

��

� ��

���

����

����

�

��

��

��

��

� ��

���

����

����
�
�

��

��

��
���
����

���
���

Figure 43: Generalized Regression Neural Network with Different Parameters

MSE and RMS; DT feature set from the wrapper method has the best MAE and MAPE. The

correlations between predicted values and the real CVE are 0.533 and 0.406, respectively,

we only show the predicted results and the accuracy for BT feature set in Figure 40 and 41.

��
��
��
��
��

��
��
��
��
��
	

�
��
	�
�
��
�

�

��
�	

�
��

�

�
	�

��
		
�

�
�
�
�
�

��
	�
	�
��
���
���
���
���

��
�
�

��
��
��
�	�

�
�	

�
	

��
��
��

�

�
���
���
���
	��

��

��
!�
��
�
�$

�!##���%�! �����
��

��������$
�'�#�����#����%������$
�#����%������$

��
��
��
��
��

��
��
��
��
��
	

�
��
	�
�
��
�

�

��
�	

�
��

�

�
	�

��
		
�

�
�
�
�
�

��
	�
	�
��
���
���
���
���

��
�
�

��
��
��
�	�

�
�	

�
	

��
��
��

�

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

���� � � ���� �
 � ��� �
 � 	 � � � ��
� ���� �

���

�

����� � �

�
�

Figure 44: The Prediction Results from NN with BT Feature Set

Results and Implications: The general trend from NN with a BT feature set is very

134

similar to the result we have from LR DT feature set. Large MSE is due to the fact that

the large number of CVEs are predicted with relatively worse results than the first two

classifiers. The correlation in NN is better than the correlation in LR because CVEs equal

to 2 has smaller relative percentage error. This conclusion could be verified in Figure 45

where the accuracy depicted by black line with the star markers is increasing faster than

the result in Figure 41.

������� ������� ������� ��	��	� ��
��
�
���������"��� ����

���

���

���

��	

��

���

���

��

���

�
��

��

%

�������
���!����
���!����

���!���	
���!���
�
�$� ���

Figure 45: The Accuracy for Each CVEs from NN with BT Feature Set with Different
Range of Tolerance

Table 15 demonstrates the performance measures for the RF classifier with feature sets.

We choose a different number of trees for this classifier, 10, 100, 200, 500, 1000. All the

results have been presented in the table; the best performance is from the DT feature set

with 500 trees. As in the previous result, we show the predicted results and the accuracy in

Figure 46 and 47.

Results and Implications: This classifier yields the prediction value as a 0.783 correla-

tion with the real CVEs. Compared to the results from the DT and BT classifiers, Figure 46

has worse relative percentage error for large number of CVEs, which explains the large

135

Model Performance All Filter Method Wrapper Method Embedded Method PCAMeasures Features CFS MI RELIEF SFS DT BT RF

RF-10

MSE 497.96 535.72 607.58 597.11 988.1 435.33 627 934.21 826.54
RMS 20.32 20.2 22.17 22.62 27.79 18.9 22.6 27.46 25.95
MAE 7.37 7.33 7.97 7.97 9.94 7 7.81 9.31 8.87

MAPE (%) 192.54 192.85 209.6 223.77 302.83 203.85 205.44 245.21 231.19

RF-100

MSE 527.99 533.15 504.36 542.64 969.86 448.33 519.22 876.99 782.34
RMS 20.67 20.7 20.3 20.67 27.37 18.8 20.58 26.87 25
MAE 7.45 7.48 7.45 7.43 9.83 6.93 7.4 9.29 8.81

MAPE (%) 198.93 202.63 211.43 204.7 305.97 200.6 195.35 248.45 258.97

RF-200

MSE 531.61 537.92 523.94 534.16 973.33 442.91 540.11 868.72 791.32
RMS 20.55 20.75 20.5 20.82 27.45 18.81 20.67 26.54 25.09
MAE 7.44 7.48 7.49 7.49 9.93 6.93 7.41 9.14 8.82

MAPE (%) 201.97 199.43 206.57 202.6 312.26 201.8 200.39 247.04 255.83

RF-500

MSE 531.05 534.53 517.4 536.14 974.82 448.64 520.08 872.57 781.68
RMS 20.61 20.5 20.39 20.68 27.45 18.71 20.48 26.71 25.05
MAE 7.43 7.44 7.43 7.38 9.92 6.86 7.42 9.24 8.88

MAPE (%) 200.47 201.53 207.14 200.72 309.44 199.27 199.45 249.21 259.93

RF-1000

MSE 529.92 543.71 511.33 531.86 972.91 440.7 524.93 874.63 781.68
RMS 20.56 20.68 20.23 20.61 27.41 18.67 20.53 26.71 25.05
MAE 7.38 7.47 7.34 7.43 9.93 6.88 7.39 9.26 8.88

MAPE (%) 197.9 201.38 204.11 201.58 311.71 199.01 199.73 248.31 259.93

Table 17: Result of Predictive Power Test for RF Classifiers

�
��
���

��
��
��
��
��
��
��
�

�

�	
��
	

�
��
��
��
�

�
	�
���
�
�

�
��

��
��
��
��

�
�

���
	�

�	

���

��
�

�
	�
�
�

��
		
��
��
��
	�
��
�	�

��
	
�
�
�

�

���

���

���

	��

��

��
!�
��
�
�$

�!##���%�! �������

��������$
�'�#�����#����%������$
�#����%������$

�
��
���

��
��
��
��
��
��
��
�

�

�	
��
	

�
��
��
��
�

�
	�
���
�
�

�
��

��
��
��
��

�
�

���
	�

�	

���

��
�

�
	�
�
�

��
		
��
��
��
	�
��
�	�

��
	
�
�
�

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

��� ���� � � � � � 	 � � � � ��

 � �
 � � � ���� � � � � � � � � � � � � � � ���� � � � � � � ���
�

���

�

�
�

Figure 46: The Prediction Results from NN with BT Feature Set

number of MSE result from this classifier. Relatively low MAE results show the fast in-

crease in accuracy with the increase of the tolerance range in Figure 47.

Figure 48 demonstrates the performance measures from SVM classifiers. In this exper-

iment, we apply our dataset to three different solvers with 3 kernels. In the graph, the x-axis

corresponds to the solvers; index 1-3 are for ISDA solver, index 4-6 are for the L1QP solver,

136

������� ������� ������� ��	��	� ��
��
�
���������"��� ����

���

���

���

��	

��

���

���

��

���

�
��

��

%
�������
���!����
���!����

���!���	
���!���
�
�$� ���

Figure 47: The Accuracy for Each CVEs from NN with BT Feature Set with Different
Range of Tolerance

and index 7-9 are for the SMO solver. Inside the solver, we test it with different kernels. In

the figure, the kernels are ordered as Gaussian, Linear and Polynomial; for example, index

2 is the result that uses ISDA as solver with Linear kernel. In the entire experiments, this

classifier yields the best MAPE, which is 66.61% in the L1QP solver with the polynomial

kernel by using the CFS feature set. We generate the predicted results corresponding to the

accuracy in Figure 49 and Figure 50.

Results and Implications: Figure 49 demonstrates that the classifier predicts the number

of CVEs to the majority of the data, which are the small number of CVEs in our case.

The distribution in the lower part of the figure shows that most of the data, which has a

lower relative percentage error, contains small number of CVEs. Therefore the MAPE

is the lowest among all the experiments. However, we have extremely large MSE, 1021,

which shows that the large number of CVEs are predicted inaccurately. Due to the fact

the majority of our observations are with a low number of CVEs, the MAPE would be

significantly better when the classifiers predict a low value for all the data. However, this

137

� � � � � � � 	

���

���

���

����
������������

��

��

��

� � � � � � � 	

���

���

���

����

��

��

��

��

� � � � � � � 	

���

���

���

����
��

��

��

��

� � � � � � � 	

���

���

���

����
������

��

��

��

� � � � � � � 	

���

���

���

����
���

��

��

��

� � � � � � � 	

���

���

���

	��

��

��

��

��

� � � � � � � 	

���

���

���

����
��

��

��

��

� � � � � � � 	

���

���

���

����
��

��

��

��

� � � � � � � 	

���

���

���

	��

��

��

��

�� ���
����

���
���

Figure 48: The Performance Measures in SVM Classifiers; index 1-3 are the results from
ISDA solver, index 4-6 are the results from L1QP solver, index 7-9 are the results from
SMO solver. In each solver the kernels are ordered as Gaussian, Linear and Polynomial

�
�
	

�
��

�

�
�	

�
��
��
��
�

��
��
��
��
�
��
�

��
��

��
��
��
��
��
	�
�	
	

�

�
	�
	�
��
		
��
��

�

�
��
���

��
�

��
��
�
�
��
���
���
	�
�
�
�	�
���

�

���

���

���

	��

��

��
!�
��
�
�$

�!##���%�! ��������

��������$
�'�#�����#����%������$
�#����%������$

�
�
	

�
��

�

�
�	

�
��
��
��
�

��
��
��
��
�
��
�

��
��

��
��
��
��
��
	�
�	
	

�

�
	�
	�
��
		
��
��

�

�
��
���

��
�

��
��
�
�
��
���
���
	�
�
�
�	�
���

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

���

�����
����

�
�

�������� 	 �
 � �
 � � � �

Figure 49: The Prediction Results from SVM with CFS Feature Set

classifier is not recommended because it does not have the ability to predict other number

of CVEs.

Based on all the classifiers and the feature sets we study in this topic, the conclusion is

138

������� ������� ������� ��	��	� ��
��
�
���������"��� ����

���

���

���

��	

��

���

���

��

���
�

��

��
% �������

���!����
���!����

���!���	
���!���
�
�$� ���

Figure 50: The Accuracy for Each CVEs from SVM with CFS Feature Set with Different
Range of Tolerance

that BT classifier predicts the best CVEs with the DT feature set, and the overall accuracy is

around 75% when tolerance range is [-5,5]. Also, DT and BT feature sets are only ranked

as the best result from the experiments. Since the accuracy and the predicted values are

both acceptable in many classifiers with different feature sets, we also accept H2 and H3.

5.6 Analysis Software Vulnerability Model in Multi-Version

Software Application

In this section we apply machine learning based model to evaluate the prediction with the

features to the future number of CVEs in Chrome within certain time. Section 5.6.1 studies

the H1 in Section 5.5.1 and visualizes the dataset with the all features.

139

5.6.1 Statistical Analysis of Data and Visualization

In this section, we first study the data for the Chrome dataset based on Spearman’s rank

correlation coefficient and K-S test. Then, to have the general idea of our dataset, we also

apply t-SNE to reduce the dimensions of the features and to visualize the data into 2D

graph.

CVE

Correlation K-S test
All Data Data Before 2015

Developer Metrics Release Date -0.0064 0.003101989 Reject
Software Property Metrics age 0.4942 0.537303068 Reject

Software Metrics

number of files -0.3499 -0.673371372 Reject
numberof program files -0.3909 -0.5316 Reject

blank -0.4113 -0.4307 Reject
comment -0.3911 -0.393751313 Reject

code -0.4124 -0.425881847 Reject
Combined Metric code*age 0.6361 0.446157825 Reject

Table 18: Results of the Statistical Analysis for Chrome Dataset based on Spearman’s rank
correlation coefficient and K-S test. K-S test significant if p-value≤ 0.001

Table 18 shows the results from the correlation and the K-S test. It is easy to notice

that only age feature is positively correlated with the number of CVEs; other features are

all negatively correlated. Intuitively, we relate this to the fact that we obtained the recent

releases until 2017 April in our dataset which associate large number of software metrics

and a relatively small number of CVEs. Therefore, the dataset only contains the older

versions (the versions which have released before 2015) is applied to the correlation test.

However, the software metrics are still negatively correlated with number of CVEs. Beside

the correlation, we have tested the K-S test between the features and the number of CVEs.

All the results have been rejected in our test. The studies from both datasets, the GitHub

dataset and the Chrome dataset, have shown that we need to reject H1. In the features we

have obtained in this study, we reject the H1.

As in the dataset in GitHub, we apply the data visualization technique to obtain a the

bigger picture of our dataset. Figure 51 is the individualization for the Chrome dataset.

In all the studies, we use 0.5 year model as the test because 3 models have shown similar

140

-100 -80 -60 -40 -20 0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

100
TSNE, P=38, dist=euclidean

L
M
H

Figure 51: The Data Visualization for Chrome Dataset Based on the L,M,H Labels with
Euclidean Algorithm

trends in the CVEs. To simplify the visualization process, we have labeled the observations

L, M, H based on the number of CVEs. Figure 51 shows that the observations are clustered

with the labels.

5.6.2 Learning Based Model

As opposed to the classifiers we use in Section 5.5, we apply time series, a technique used

to aggregate past data points and extrapolate the relationships into the future in order to

analyze the Chrome dataset. We divide our dataset into training and testing sets manually;

the versions that are released before July 2014 are considered training data, and the versions

that are released before the end of 2014 are considered testing data.

Figure 52 demonstrates the prediction results from the NN time series model. Blue

plus markers are the outputs from training data, and green plus markers are the outputs

from validation data (we set 90% percent of the training data as used for training and 10%

are used for validation). The orange plus markers are the prediction outputs and the black

line is the real CVEs. These results are from the open loop algorithm from the classifier,

which predicts 2 versions continuously based on the history data points.

141

0

20

40

60

80

100

120

140

160

O
ut

pu
t a

nd
 T

ar
ge

t

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors
Response

1000 2000 3000 4000 5000 6000
Time

-40

-20

0

20

40

60

Er
ro

r

Targets - Outputs

Figure 52: The Predicted Results from NN time series

Results and Implications: Figure 52 demonstrates that the predicted CVEs which are

extrapolated from the history data points fits well with the real CVEs. The lower part of

the graph gives the errors between the predicted value and the real CVEs. At the beginning

of the training, large errors could be observed. The error drops with the increase of the

training and validation.

Figure 53 illustrates the MSE and error distributions from the predicted results. The

same conclusions could be verified from the MSE figure. The error in the training drops

with the increase in the training data. Most of the predictions are in the margin of error,

within a 10 to 16 difference with the real CVEs. Figure 54 shows the regression models for

training, validation, testing and overall dataset. With all the R higher than 0.94 (except the

validation model which is 0.89), we consider the NN time series could predict the number

of CVEs for multi-version software applications.

142

0 2 4 6 8 10 12 14 16
17 Epochs

100

101

102

103

104
M

e
a
n

 S
q

u
a
re

d
 E

rr
o

r
 (

m
s
e
)

Best Validation Performance is 24.1859 at epoch 11

Train
Validation
Test
Best

0

500

1000

1500

2000

In
st

an
ce

s

Error Histogram with 20 Bins

-3
0.

64
-2

7.
02

-2
3.

39
-1

9.
77

-1
6.

14
-1

2.
52

-8
.8

97
-5

.2
73

-1
.6

49
1.

97
4

5.
59

8
9.

22
2

12
.8

5
16

.4
7

20
.0

9
23

.7
2

27
.3

4
30

.9
7

34
.5

9
38

.2
1

Errors = Targets - Outputs

Training
Validation
Test
Zero Error

Figure 53: The MSE (Left) and the Error Distribution (Right) of predicted Results from
NN time series

5.7 Conclusion

In this topic, we investigate the possible relationships between the software features and

the number of vulnerabilities. To the best of our knowledge, this is so far the most compre-

hensive study with 780 software applications, including 6498 vulnerabilities in the GitHub

dataset and the Chrome dataset, which includes 11454 versions and the corresponding fea-

tures. Seven feature selection methods are then applied to the dataset to obtain the best

feature sets for the learning models. Finally, nine feature sets (seven from feature selection,

one with full features and one from feature combining algorithm (PCA)) are fed into six

learning models and neural network time series in order to predict the number of CVEs for

GitHub dataset and Chrome dataset, respectively. The predictive power has been evaluated

though 4 performance measures. This study quantitatively demonstrates the importance

of features in the vulnerability discovery process based on machine learning techniques,

which provides inputs for later network level security metrics.

143

50 100 150
Target

20

40

60

80

100

120

140

O
ut

pu
t ~

=
1*

Ta
rg

et
 +

 -1
.2

Training: R=0.98415

Data
Fit
Y = T

50 100 150
Target

20

40

60

80

100

120

140

O
ut

pu
t ~

=
0.

59
*T

ar
ge

t +
 2

4

Validation: R=0.89408

Data
Fit
Y = T

50 100 150
Target

20

40

60

80

100

120

140

O
ut

pu
t ~

=
0.

64
*T

ar
ge

t +
 2

1

Test: R=0.94734

Data
Fit
Y = T

50 100 150
Target

20

40

60

80

100

120

140

O
ut

pu
t ~

=
0.

98
*T

ar
ge

t +
 0

.7
3

All: R=0.97787

Data
Fit
Y = T

Figure 54: The Regression Model for predicted Results from NN time series

144

Chapter 6

Conclusion

Network security metrics are important to improve the security level of a network due to the

fact that “we can not improve what we cannot measure”. My Ph.D research was among

the first efforts on developing a systematic approach to network security metrics, which

encompasses different abstraction levels of a network.

The three components of this thesis are related as follows. The topics are basically

cover different abstraction levels of a network: at the lowest abstraction level, the empirical

study (the last topic) focuses on individual software applications and services; the network

diversity metrics (the first topic) study the inter-dependency between such software ap-

plications and services inside the same network; finally, at the highest abstraction level,

the network attack surface (the second topic) aims to provide an indicator for the overall

security of the network, taking into consideration of both software components and their

diversity. Therefore, the empirical study and the network diversity would provide two com-

plementary inputs, integrating in the network attack surface to quantify the overall network

security.

145

Bibliography

[1] Z. Abbadi. Security metrics what can we measure? In Open Web Application

Security Project (OWASP), Nova Chapter meeting presentation on security metrics,

viewed, volume 2, 2011.

[2] H. Abdi and L. J. Williams. Principal component analysis. Wiley interdisciplinary

reviews: computational statistics, 2(4):433–459, 2010.

[3] M. Albanese, S. Jajodia, and S. Noel. A time-efficient approach to cost-effective

network hardening using attack graphs. In Dependable Systems and Networks

(DSN’12), pages 1–12, 2012.

[4] O. H. Alhazmi and Y. K. Malaiya. Prediction capabilities of vulnerability discovery

models. In Reliability and Maintainability Symposium (RAMS’06), pages 86–91,

2006.

[5] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi. SIGMA: A semantic integrated

graph matching approach for identifying reused functions in binary code. Digital

Investigation, 12:61–71, 2015.

[6] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vul-

nerability analysis. In Computer and Communications Security (CCS’02), pages

217–224, 2002.

146

[7] A. Avizienis and L. Chen. On the implementation of n-version programming for

software fault tolerance during execution. In Computer Software and Applications

Conference (COMPSAC’77), volume 77, pages 149–155, 1977.

[8] D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable

components. In Quality of Protection (QoP’06), pages 65–77, 2006.

[9] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Automatically securing

permission-based software by reducing the attack surface: An application to an-

droid. In IEEE/ACM International Conference on Automated Software Engineering

(ASE’12), pages 274–277, 2012.

[10] H. A. Basit and S. Jarzabek. Efficient token based clone detection with flexible

tokenization. In European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/SIGSOFT’07), pages 513–516, 2007.

[11] R. Battiti. Using mutual information for selecting features in supervised neural net

learning. IEEE Transactions on Neural Networks, 5(4):537–550, 1994.

[12] S. Bhatkar, D. DuVarney, and R. Sekar. Address obfuscation: An efficient approach

to combat a broad range of memory error exploits. In USENIX Security Symposium,

volume 120, 2003.

[13] S. Bhatkar and R. Sekar. Data space randomization. In Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA’08), pages 1–22, 2008.

[14] L. Breiman. Decision tree forest. Machine Learning, 45:5–32, 2001.

[15] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes. Language-independent

clone detection applied to plagiarism detection. In Source Code Analysis and Ma-

nipulation (SCAM’10), pages 77–86, 2010.

147

[16] J. Caballero, T. Kampouris, D. Song, and J. Wang. Would diversity really increase

the robustness of the routing infrastructure against software defects? In Network

and Distributed System Security (NDSS’08), page 40, 2008.

[17] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,

K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive experimen-

tal analyses of automotive attack surfaces. In USENIX Security Symposium, 2011.

[18] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In USENIX Security Sympo-

sium, pages 171–190, 2002.

[19] B. Chun, P. Maniatis, and S. Shenker. Diverse replication for single-machine

byzantine-fault tolerance. In USENIX Annual Technical Conference, pages 287–

292, 2008.

[20] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-

Tuong, and J. Hiser. N-variant systems: A secretless framework for security through

diversity. Defense Technical Information Center, 2006.

[21] CVE Details. CVE for Ubuntu 11.04. http://www.cvedetails.com/

vulnerability-list/vendor_id-4781/product_id-20550/

version_id-104819/Canonical-Ubuntu-Linux-11.04.html.

[22] M. Dacier. Towards quantitative evaluation of computer security. Ph.D. Thesis,

Institut National Polytechnique de Toulouse, 1994.

[23] A. Danial. Count lines of code (cloc). https://github.com/AlDanial/

cloc.

[24] M. Davari and M. Zulkernine. Analysing vulnerability reproducibility for Firefox

browser. In Privacy, Security and Trust (PST’16), pages 674–681, 2016.

148

http://www.cvedetails.com/vulnerability-list/vendor_id-4781/product_id-20550/version_id-104819/Canonical-Ubuntu-Linux-11.04.html
http://www.cvedetails.com/vulnerability-list/vendor_id-4781/product_id-20550/version_id-104819/Canonical-Ubuntu-Linux-11.04.html
http://www.cvedetails.com/vulnerability-list/vendor_id-4781/product_id-20550/version_id-104819/Canonical-Ubuntu-Linux-11.04.html
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

[25] M. Doyle and J. Walden. An empirical study of the evolution of php web application

security. In Security Measurements and Metrics (Metrisec’11), pages 11–20, 2011.

[26] T. Dullien, E. Carrera, S.-M. Eppler, and S. Porst. Automated attacker correlation

for malicious code. Technical report, Ruhr-University Bochum (Germany), 2010.

[27] C. Elton. The ecology of invasion by animals and plants. University Of Chicago

Press, Chicago, 1958.

[28] W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via structural abstraction.

Software Quality Journal, 17(4):309–330, 2009.

[29] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet dossier. Symantec Security

Response, 2011.

[30] D. Farmer and E. H. Spafford. The COPS security checker system. Technical Report

90-993, Purdue University, 1990. Computer Science Technical Reports.

[31] M. Frigault and L. Wang. Measuring network security using bayesian network-based

attack graphs. In Security, Trust, and Privacy for Software Applications (STPSA’08),

pages 698–703, 2008.

[32] M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using

dynamic bayesian network. In Quality of Protection (QoP’08), pages 23–30, 2008.

[33] K. Gaitanis and E. Cohen. Open bayes 0.1.0, 2013. https://pypi.python.

org/pypi/OpenBayes.

[34] D. Gao, M. Reiter, and D. Song. Behavioral distance measurement using hidden

markov models. In Recent Advances in Intrusion Detection (RAID’06), pages 19–

40, 2006.

149

https://pypi.python.org/pypi/OpenBayes
https://pypi.python.org/pypi/OpenBayes

[35] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. OS diversity for intru-

sion tolerance: Myth or reality? In Dependable Systems and Networks (DSN’11),

pages 383–394, 2011.

[36] N. Gruschka and M. Jensen. Attack surfaces: A taxonomy for attacks on cloud

services. In International Conference on Cloud Computing (CLOUD’10), pages

276–279, 2010.

[37] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skoric. Towards an information-theoretic

framework for analyzing intrusion detection systems. In European Symposium on

Research in Computer Security (ESORICS’06), pages 527–546, 2006.

[38] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis,

University of Waikato, Hamilton, New Zealand, Apr. 1999.

[39] M. Hill. Diversity and evenness: a unifying notation and its consequences. Ecology,

54(2):427–432, 1973.

[40] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In Advances in

Neural Information Processing Systems, pages 857–864, 2003.

[41] H. Holm, M. Ekstedt, and D. Andersson. Empirical analysis of system-level vulner-

ability metrics through actual attacks. IEEE Transactions on Dependable and Secure

Computing, 9(6):825–837, Nov. 2012.

[42] M. Howard, J. Pincus, and J. Wing. Measuring relative attack surfaces. In Computer

Security in the 21st Century, pages 109–137, 2003.

[43] N. Idika and B. Bhargava. Extending attack graph-based security metrics and aggre-

gating their application. IEEE Transactions on Dependable and Secure Computing,

9:75–85, 2012.

150

[44] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling modern net-

work attacks and countermeasures using attack graphs. In Annual Computer Security

Applications Conference (ACSAC’09), pages 117–126, 2009.

[45] A. Inselberg. The plane with parallel coordinates. The visual computer, 1(2):69–91,

1985.

[46] ISO/IEC 9899:2011 Programming languages – C. Standard, International Organiza-

tion for Standardization, Geneva, Switzerland, 2011.

[47] S. Jajodia. Topological analysis of network attack vulnerability. In ACM Symposium

on Information, Computer and Communications Security (ASIACCS’07), page 2,

2007.

[48] S. Jajodia, A. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang, and X. Wang.

Moving Target Defense II: Application of Game Theory and Adversarial Modeling.

Springer, 2012.

[49] S. Jajodia, A. Ghosh, V. Swarup, C. Wang, and X. Wang. Moving Target Defense:

Creating Asymmetric Uncertainty for Cyber Threats. Springer, 1st edition, 2011.

[50] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: Fast, scalable malware triage.

Cylab, 22, 2010.

[51] A. Jaquith. Security Merics: Replacing Fear Uncertainity and Doubt. Addison

Wesley, 2007.

[52] G. Jay, J. E. Hale, R. K. Smith, D. P. Hale, N. A. Kraft, and C. Ward. Cyclomatic

complexity and lines of code: Empirical evidence of a stable linear relationship.

JSEA, 2(3):137–143, 2009.

151

[53] J. H. Johnson. Identifying redundancy in source code using fingerprints. In Centre

for Advanced Studies on Collaborative research, volume 1, pages 171–183, 1993.

[54] D. Kantola, E. Chin, W. He, and D. Wagner. Reducing attack surfaces for intra-

application communication in Android. In Security and Privacy in Smartphones

and Mobile Devices (SPSM’12), pages 69–80, 2012.

[55] G. Kc, A. Keromytis, and V. Prevelakis. Countering code-injection attacks

with instruction-set randomization. In Computer and Communications Security

(CCS’03), pages 272–280, 2003.

[56] N. Kheir, N. Cuppens-Boulahia, F. Cuppens, and H. Debar. A service dependency

model for cost-sensitive intrusion response. In European Symposium on Research in

Computer Security (ESORICS’10), pages 626–642, 2010.

[57] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A search engine for

binary code. In Proceedings of the 10th Working Conference on Mining Software

Repositories (MSR’13), pages 329–338, 2013.

[58] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods and

a new algorithm. In Artificial Intelligence (AAAI’92), volume 2, pages 129–134,

1992.

[59] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg, A. Ruprecht,

W. Schröder-Preikschat, D. Lohmann, and R. Kapitza. Attack surface metrics and

automated compile-time os kernel tailoring. In Network and Distributed System Se-

curity Symposium (NDSS’13), 2013.

[60] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy,

9(3):49–51, 2011.

152

[61] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In

IEEE Security & Privacy, pages 130–143, 2001.

[62] T. Leinster and C. Cobbold. Measuring diversity: the importance of species similar-

ity. Ecology, 93(3):477–489, 2012.

[63] D. J. Leversage and E. J. Byres. Estimating a system’s mean time-to-compromise.

IEEE Security & Privacy, 6(1):52–60, 2008.

[64] B. Littlewood, P. Popov, and L. Strigini. Modeling software design diversity: A

review. ACM Computer Survey, 33(2):177–208, jun 2001.

[65] B. Littlewood and L. Strigini. Redundancy and diversity in security. In Euro-

pean Symposium on Research in Computer Security (ESORICS’04), pages 423–438,

2004.

[66] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine

Learning Research, 9(Nov):2579–2605, 2008.

[67] P. Manadhata and J. Wing. An attack surface metric. IEEE Transactions on Software

Engineering, 37(3):371–386, May 2011.

[68] R. Maxion. Use of diversity as a defense mechanism. In New Security Paradigms

(NSPW’05), pages 21–22, 2005.

[69] K. McCann. The diversity-stability debate. Nature, 405:228–233, 2000.

[70] J. McHugh. Quality of protection: Measuring the unmeasurable? In Quality of

Protection (QoP’06), pages 1–2, 2006.

[71] M. McQueen, T. McQueen, W. Boyer, and M. Chaffin. Empirical estimates and

observations of 0day vulnerabilities. Hawaii International Conference on System

Sciences (HICSS’09), 0:1–12, 2009.

153

[72] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel. Time-to-compromise

model for cyber risk reduction estimation. In Quality of Protection (QoP’06), pages

49–64, 2006.

[73] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system.

IEEE Security & Privacy, 4(6):85–89, 2006.

[74] A. Meneely and L. A. Williams. Strengthening the empirical analysis of the relation-

ship between linus’ law and software security. In Empirical Software Engineering

and Measurement (ESEM’10), 2010.

[75] J. Mingers. An empirical comparison of selection measures for decision-tree induc-

tion. Machine learning, 3(4):319–342, 1989.

[76] S. Mitra, N. Saxena, and E. McCluskey. A design diversity metric and analysis of

redundant systems. IEEE Transaction Computer, 51(5):498–510, May 2002.

[77] J. D. Musa and K. Okumoto. A logarithmic poisson execution time model for soft-

ware reliability measurement. In Software Engineering (ICSE’84), pages 230–238,

1984.

[78] National Institute of Standards and Technology. Common Vulnerability Scor-

ing System Version 2 Calculator. https://nvd.nist.gov/cvss/v2-

calculator.

[79] National Institute of Standards and Technology. Technology assessment: Methods

for measuring the level of computer security. NIST Special Publication 500-133,

1985.

[80] NetCitadel, Inc. Firewall builder, 2012. http://www.fwbuilder.org/4.0/

documentation.shtml.

154

https://nvd.nist.gov/cvss/v2-calculator
https://nvd.nist.gov/cvss/v2-calculator
http://www.fwbuilder.org/4.0/documentation.shtml
http://www.fwbuilder.org/4.0/documentation.shtml

[81] NIST. National vulnerability database. https://nvd.nist.gov.

[82] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network

hardening via exploit dependency graphs. In Annual Computer Security Applications

Conference (ACSAC’03), pages 86–95, 2003.

[83] Offensive Security. Penetration testing virtual labs. https://www.

offensive-security.com/offensive-security-solutions/

virtual-penetration-testing-labs/.

[84] Open hub. available at:https://www.openhub.net/, April 19, 2017.

[85] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with quantitative evalu-

ation tools for monitoring operational security. IEEE Transactions Software Engi-

neering, 25(5):633–650, Sep/Oct 1999.

[86] X. Ou, W. Boyer, and M. McQueen. A scalable approach to attack graph generation.

In Computer and communications security (CCS’06), pages 336–345, 2006.

[87] J. W. P. Manadhata. Measuring a system’s attack surface. Technical Report CMU-

CS-04-102, 2004.

[88] J. W. P. Manadhata. An attack surface metric. Technical Report CMU-CS-05-155,

2005.

[89] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary secu-

rity metric for network configuration security analysis. In Quality of Protection

(QoP’06), pages 31–38, 2006.

[90] S. C. Payne. A guide to security metrics. SANS Institute Information Security Read-

ing Room, 2006.

155

https://nvd.nist.gov
https://www.offensive-security.com/offensive-security-solutions/virtual-penetration-testing-labs/
https://www.offensive-security.com/offensive-security-solutions/virtual-penetration-testing-labs/
https://www.offensive-security.com/offensive-security-solutions/virtual-penetration-testing-labs/

[91] K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

2(11):559–572, 1901.

[92] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar.

Vccfinder: Finding potential vulnerabilities in open-source projects to assist code

audits. In Computer and Communications Security (SIGSAC’15), pages 426–437,

2015.

[93] C. Phillips and L. Swiler. A graph-based system for network-vulnerability analysis.

In New Security Paradigms Workshop (NSPW’98), pages 71–79, 1998.

[94] E. Pielou. Ecological diversity. Wiley New York, 1975.

[95] J. Pohjalainen, O. Räsänen, and S. Kadioglu. Feature selection methods and their

combinations in high-dimensional classification of speaker likability, intelligibility

and personality traits. Computer Speech & Language, 29(1):145–171, 2015.

[96] S. Poznyakoff. Gnu cflow, 2011. http://www.gnu.org/software/

cflow/.

[97] S. Rahimi and M. Zargham. Vulnerability scrying method for software vulnerability

discovery prediction without a vulnerability database. IEEE Transactions on Relia-

bility, 62(2):395–407, 2013.

[98] A. Reid, J. Lorenz, and C. A. Schmidt. Introducing Routing And Switching In The

Enterprise, CCNA Discovery Learning Guide. Cisco Press, 2008.

[99] M. K. Reiter and S. G. Stubblebine. Toward acceptable metrics of authentication. In

IEEE Security & Privacy, pages 10–20, 1997.

156

http://www.gnu.org/software/cflow/
http://www.gnu.org/software/cflow/

[100] M. K. Reiter and S. G. Stubblebine. Authentication metric analysis and design. ACM

Transactions on Information and System Security, 2(2):138–158, 5 1999.

[101] K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud. IEEE

Internet Computing, 16(1):69–73, 2012.

[102] E. Rescorla. Is finding security holes a good idea? IEEE Security & Privacy,

3(1):14–19, 2005.

[103] J. Reunanen. Overfitting in making comparisons between variable selection meth-

ods. Journal of Machine Learning Research, 3(Mar):1371–1382, 2003.

[104] R. Ritchey and P. Ammann. Using model checking to analyze network vulnerabili-

ties. In IEEE Security & Privacy, pages 156–165, 2000.

[105] J. J. C. H. Ryan and D. J. Ryan. Performance metrics for information security risk

management. IEEE Security & Privacy, 6(5):38–44, 2008.

[106] A. Sæbjørnsen, J. Willcock, T. Panas, D. J. Quinlan, and Z. Su. Detecting code

clones in binary executables. In International Symposium on Software Testing and

Analysis (ISSTA’09), pages 117–128, 2009.

[107] A. Saı̈dane, V. Nicomette, and Y. Deswarte. The design of a generic intrusion-

tolerant architecture for web servers. IEEE Transactions on Dependable and Secure

Computing, 6(1):45–58, 2009.

[108] P. Samarati. Protecting respondents’ identities in microdata release. In IEEE Trans-

actions on Knowledge and Data Engineering (TKDE’01), pages 1010–1027, 2001.

[109] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions

on Computers, 100(5):401–409, 1969.

157

[110] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated generation and

analysis of attack graphs. In IEEE Security & Privacy, pages 273–284, 2002.

[111] O. Sheyner and J. M. Wing. Tools for generating and analyzing attack graphs. In

Formal Methods for Components and Objects (FMCO’03), pages 344–372, 2003.

[112] Y. Shin and L. Williams. Is complexity really the enemy of software security? In

Quality of protection (QoP’08), pages 47–50, 2008.

[113] Y. Shin and L. Williams. Can traditional fault prediction models be used for vulner-

ability prediction? Empirical Software Engineering, 18(1):25–59, 2013.

[114] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In

ACM SIGSOFT Software Engineering Notes, volume 30, pages 1–5, 2005.

[115] StatCounter. Desktop Operating System Market Share Worldwide. http://gs.

statcounter.com/os-market-share/desktop/worldwide.

[116] J. Stuckman, J. Walden, and R. Scandariato. The effect of dimensionality reduc-

tion on software vulnerability prediction models. IEEE Transactions on Reliability,

66(1):17–37, 2017.

[117] M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security metrics guide for

information technology systems. NIST Special Publication 800-55, 2003.

[118] L. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer attack graph generation

tool. In DARPA Information Survivability Conference & Exposition II (DISCEX’01),

pages 307–321, 2001.

[119] Tenable, Inc. Nessus network security scanner. http://www.tenable.com/

products/nessus-vulnerability-scanner.

158

http://gs.statcounter.com/os-market-share/desktop/worldwide
http://gs.statcounter.com/os-market-share/desktop/worldwide
http://www.tenable.com/products/nessus-vulnerability-scanner
http://www.tenable.com/products/nessus-vulnerability-scanner

[120] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams. Approximating

attack surfaces with stack traces. In Software Engineering-Volume 2 (ICSE(2)’15),

pages 199–208, 2015.

[121] E. Totel, F. Majorczyk, and L. Mé. Cots diversity based intrusion detection and

application to web servers. In Recent Advances in Intrusion Detection (RAID’05),

pages 43–62, 2005.

[122] D. Turner, R. Wilhelm, and W. Lemberg. Freetype. https://www.freetype.

org/.

[123] University of Maryland. Amanda protocol. http://wiki.zmanda.com/

index.php/Developer_documentation.

[124] J. Walden, J. Stuckman, and R. Scandariato. Predicting vulnerable components:

Software metrics vs text mining. In Software Reliability Engineering (ISSRE’14’),

pages 23–33, 2014.

[125] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based

probabilistic security metric. In Conference on Data and Applications Security and

Privacy (DBSec’08), pages 283–296, 2008.

[126] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day safety: A network

security metric for measuring the risk of unknown vulnerabilities. IEEE Transac-

tions on Dependable and Secure Computing, 11(1):30–44, 2013.

[127] L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety: Measuring the secu-

rity risk of networks against unknown attacks. In European Symposium on Research

in Computer Security (ESORICS’10), pages 573–587, 2010.

[128] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using attack

graphs. Computer Communications, 29(18):3812–3824, 11 2006.

159

https://www.freetype.org/
https://www.freetype.org/
http://wiki.zmanda.com/index.php/Developer_documentation
http://wiki.zmanda.com/index.php/Developer_documentation

[129] L. Wang, A. Singhal, and S. Jajodia. Measuring the overall security of network

configurations using attack graphs. In Conference on Data and Applications Security

and Privacy (DBSec’07), pages 98–112, 2007.

[130] L. Wang, A. Singhal, and S. Jajodia. Toward measuring network security using

attack graphs. In Quality of Protection (QoP’07), pages 49–54, 2007.

[131] L. Wang, M. Zhang, S. Jajodia, A. Singhal, and M. Albanese. Modeling network

diversity for evaluating the robustness of networks against zero-day attacks. In Euro-

pean Symposium on Research in Computer Security (ESORICS’14), pages 494–511,

2014.

[132] D. Wheeler. Flawfinder home page. http://www.dwheeler.com/

flawfinder.

[133] K. Yang, X. Jia, K. Ren, R. Xie, and L. Huang. Enabling efficient access control with

dynamic policy updating for big data in the cloud. In IEEE Conference on Computer

Communications (INFOCOM’14), pages 2013–2021, 2014.

[134] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie. Dac-macs: Effective data access

control for multiauthority cloud storage systems. IEEE Transactions on Information

Forensics and Security, 8(11):1790–1801, 2013.

[135] Y. Yang, S. Zhu, and G. Cao. Improving sensor network immunity under worm

attacks: A software diversity approach. Ad Hoc Networks, 47:26–40, 2016.

[136] A. Younis, Y. Malaiya, C. Anderson, and I. Ray. To fear or not to fear that is the

question: Code characteristics of a vulnerable function with an existing exploit. In

ACM Conference on Data and Application Security and Privacy (CODASPY’16),

pages 97–104, 2016.

160

http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder

[137] A. A. Younis and Y. K. Malaiya. Relationship between attack surface and vulnera-

bility density: A case study on apache HTTP server. In International Conference on

Internet Computing (ICOMP’12), pages 197–203, 2012.

[138] A. A. Younis, Y. K. Malaiya, and I. Ray. Using attack surface entry points and

reachability analysis to assess the risk of software vulnerability exploitability. In

High-Assurance Systems Engineering (HASE’14), pages 1–8, 2014.

[139] D. Zerkle and K. Levitt. Netkuang - a multi-host configuration vulnerability checker.

In USENIX Security Symposium (USENIX’96), 1996.

[140] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese. Network diversity:

a security metric for evaluating the resilience of networks against zero-day attacks.

IEEE Transactions on Information Forensics and Security, 11(5):1071–1086, 2016.

[141] R. Zhuang, S. Zhang, S. A. DeLoach, X. Ou, and A. Singhal. Simulation-based

approaches to studying effectiveness of moving-target network defense. In National

Symposium on Moving Target Research, pages 1–12, 2012.

[142] T. Zimmermann, N. Nagappan, and L. A. Williams. Searching for a needle in a

haystack: Predicting security vulnerabilities for windows vista. In Software Testing,

Verification and Validation (ICST’10), pages 421–428, 2010.

161

Appendix A

Notations

Symbol Page Meaning

d1 p.19
Biodiversity-Inspired
Network Diversity Metric

d2 p.20
Least Attacking Effort-based
Network Diversity Metric

d3 p.25 Probabilistic Network Diversity

p p.64
Probability that software contains
at least one explorable zero day
vulnerability from CVSS-based method

p p.66
Probability that software contains
at least one explorable zero-day
vulnerability from Graph-based method

p(ap) p.70 Network Attack Surface

α p.86
Percentage of resources
whose attack surface is calculated

β p.89 Approximation rate of attack surface

Table 19: Table of Notations

162

Appendix B

Appendices for Chapter 4

Proof. Assume α is the percent of the budget effort to calculate the attack surface in one

network, and β is the percentage to calculate in each resource. Let n be the number of the

resources can be calculated, and N be the total number of resources in one network

n
N

= α +α−α ∗β +α−α ∗β − (α−α ∗β)∗β ...

this is a geometric series when the constant ratio as (1-β) therefore we have

n
N

=
α

β

163

Index Software
1 Libfm-1.2.3
2 apcupsd-3.14.13
3 sox-14.4.2
4 w3m-0.5.3
5 squashfs4.3
6 libtirpc-1.0.1
7 ultradefrag
8 fwbuilder-5.1.0.3599
9 dosbox-0.74

10 gnucash-2.6.7
11 tcl8.6.4
12 icinga-1.10.1
13 fuse-2.9.4
14 mcrypt-2.6.8
15 pnp4nagios-0.6.25
16 expat-2.1.0
17 flac-1.3.1
18 lcms2-2.7
19 e2fsprogs-1.42.13
20 libpng-1.6.19
21 unzip610b
22 mpg123-1.22.4
23 ganglia-3.7.2
24 nagios-4.1.1
25 clamav-0.98.7
26 net-snmp-5.4.5.pre1
27 flex-2.6.0
28 vice-2.4
29 gnuplot-5.0.1
30 zabbix-2.4.7
31 optipng-0.7.5
32 pcre2-10.20
33 freetype-2.6
34 amanda-3.3.7p1

Table 20: Tested Software

164

Appendix C

Appendices for Chapter 5

Index Version Index Version
1 5.0.375.1 17 7.0.517.2
2 5.0.375.2 18 7.0.517.4
3 5.0.375.3 19 7.0.517.5
4 5.0.375.4 20 7.0.517.6
5 5.0.375.5 21 7.0.517.7
6 5.0.375.6 22 7.0.517.8
7 5.0.375.7 23 7.0.517.9
8 5.0.375.8 24 7.0.517.10
9 5.0.375.9 25 7.0.517.11

10 5.0.375.10 26 7.0.517.12
11 5.0.375.11 27 7.0.517.13
12 5.0.375.12 28 7.0.517.14
13 5.0.375.13 29 17.0.921.3
14 5.0.375.14 30 24.0.1298.1
15 6.0.495.1 31 31.0.1614.2
16 7.0.517.1

Table 21: Mishandled Versions

165

ve
rs

io
n

nN
C

V
E

n0
.5

Y
C

V
E

nu
F

nu
PF

nu
B

lk
nu

C
m

t
nu

C
1C

V
E

t1
C

V
E

lC
V

E
tL

C
V

E
dR

ls
e

da
yR

ls
e

3.
0.

19
5.

25
45

9
27

36
19

5
82

18
32

90
33

47
11

71
17

40
40

6
C

V
E

-2
01

0-
03

15
1/

14
/2

01
0

11
:3

0
C

V
E

-2
01

0-
12

36
4/

1/
20

10
15

:3
0

10
/8

/2
00

9
16

:0
5

T
hu

rs
da

y
3.

0.
19

5.
27

45
9

27
36

19
5

82
18

32
90

33
47

11
71

17
40

40
6

C
V

E
-2

01
0-

03
15

1/
14

/2
01

0
11

:3
0

C
V

E
-2

01
0-

12
36

4/
1/

20
10

15
:3

0
10

/1
0/

20
09

15
:5

2
Sa

tu
rd

ay
3.

0.
19

5.
33

48
4

38
36

19
8

82
21

32
90

51
47

11
93

17
40

59
3

C
V

E
-2

01
0-

03
15

1/
14

/2
01

0
11

:3
0

C
V

E
-2

01
0-

17
67

9/
24

/2
01

0
12

:0
0

11
/1

1/
20

09
1:

58
W

ed
ne

sd
ay

3.
0.

19
5.

36
45

9
55

36
19

9
82

22
32

90
64

47
11

94
17

40
66

9
C

V
E

-2
01

0-
03

15
1/

14
/2

01
0

11
:3

0
C

V
E

-2
01

0-
17

73
9/

24
/2

01
0

12
:0

0
12

/7
/2

00
9

15
:1

8
M

on
da

y
3.

0.
19

5.
37

45
9

55
36

19
9

82
22

32
90

67
47

11
98

17
40

68
9

C
V

E
-2

01
0-

03
15

1/
14

/2
01

0
11

:3
0

C
V

E
-2

01
0-

17
73

9/
24

/2
01

0
12

:0
0

12
/8

/2
00

9
15

:1
3

Tu
es

da
y

3.
0.

19
5.

38
45

9
55

36
19

9
82

22
32

90
66

47
11

97
17

40
68

7
C

V
E

-2
01

0-
03

15
1/

14
/2

01
0

11
:3

0
C

V
E

-2
01

0-
17

73
9/

24
/2

01
0

12
:0

0
12

/9
/2

00
9

11
:3

1
W

ed
ne

sd
ay

4.
0.

21
2.

1
45

8
27

36
88

2
93

05
35

09
22

50
31

13
18

59
94

1
C

V
E

-2
01

0-
03

15
1/

14
/2

01
0

11
:3

0
C

V
E

-2
01

0-
12

36
4/

1/
20

10
15

:3
0

9/
22

/2
00

9
15

:0
3

Tu
es

da
y

4.
0.

22
1.

8
45

8
27

37
61

7
96

97
36

47
46

51
21

95
19

27
08

1
C

V
E

-2
01

0-
03

15
1/

14
/2

01
0

11
:3

0
C

V
E

-2
01

0-
12

36
4/

1/
20

10
15

:3
0

10
/6

/2
00

9
14

:0
9

Tu
es

da
y

4.
0.

22
2.

0
45

8
27

37
71

2
97

03
36

48
48

51
14

09
19

28
73

8
C

V
E

-2
01

0-
03

15
1/

14
/2

01
0

11
:3

0
C

V
E

-2
01

0-
12

36
4/

1/
20

10
15

:3
0

10
/7

/2
00

9
21

:1
4

W
ed

ne
sd

ay
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

60
.0

.3
07

9.
2

0
0

26
15

54
29

09
57

6
15

13
54

30
22

18
6

16
52

39
93

N
ul

l
N

ul
l

N
ul

l
N

ul
l

4/
23

/2
01

7
22

:0
1

Su
nd

ay
60

.0
.3

07
9.

3
0

0
26

15
54

29
09

57
6

15
13

54
30

22
18

6
16

52
39

93
N

ul
l

N
ul

l
N

ul
l

N
ul

l
4/

24
/2

01
7

16
:0

4
M

on
da

y
60

.0
.3

08
0.

0
0

0
26

16
03

29
10

52
1

15
13

88
30

23
00

9
16

52
89

77
N

ul
l

N
ul

l
N

ul
l

N
ul

l
4/

24
/2

01
7

20
:0

1
M

on
da

y
60

.0
.3

08
0.

1
0

0
26

16
03

29
10

52
1

15
13

88
30

23
00

9
16

52
89

77
N

ul
l

N
ul

l
N

ul
l

N
ul

l
4/

24
/2

01
7

21
:0

2
M

on
da

y
60

.0
.3

08
0.

2
0

0
26

16
03

29
10

52
1

15
13

88
30

23
17

7
16

52
88

09
N

ul
l

N
ul

l
N

ul
l

N
ul

l
4/

24
/2

01
7

22
:0

2
M

on
da

y

Ta
bl

e
22

:C
hr

om
e

D
at

as
et

re
po

C
V

E
#s

ta
rs

#w
at

ch
es

#f
or

ks
#i

ss
ue

s
#c

on
tr

ib
ut

or
s

#c
om

m
its

cr
eD

pu
D

#l
ab

el
s

%
Ja

va
%

Ja
va

Sc
ri

pt
%

PH
P

%
C

%
C

++
%

Py
th

on
%

G
o

%
R

ub
y

M
ic

ro
so

ft
/C

ha
kr

aC
or

e
21

65
23

42
3

82
1

11
71

95
84

54
20

16
-0

1-
05

T
19

:0
5:

31
Z

20
17

-1
1-

14
T

02
:4

3:
29

Z
16

0
53

0
2

38
0

0
0

lo
ta

/p
ha

m
m

1
14

8
19

13
4

60
20

14
-1

2-
06

T
13

:3
4:

34
Z

20
17

-0
7-

30
T

15
:1

1:
32

Z
0

0
1

94
0

0
0

0
0

zu
lip

/z
ul

ip
2

55
26

25
6

16
84

27
98

36
0

22
98

5
20

15
-0

9-
25

T
16

:3
7:

25
Z

20
17

-1
1-

14
T

06
:3

4:
20

Z
1

0
28

0
0

0
50

0
3

re
po

%
Pe

rl
%

H
T

M
L

%
C

#
%

Sh
el

l
si

ze
#fi

le
s

#f
un

ct
io

ns
#p

ro
gr

am
-fi

le
s

bl
an

k
co

m
m

en
t

co
de

hi
ts

c-
sl

oc
L

1
L

2
L

3
L

4
L

5
M

ic
ro

so
ft

/C
ha

kr
aC

or
e

0
0

0
0

15
32

22
31

2
64

93
33

25
9

43
96

21
99

83
17

48
69

22
51

19
2

15
59

72
06

99
46

2
55

5
96

43
9

7
lo

ta
/p

ha
m

m
0

0
0

0
16

19
97

3
14

9
59

60
28

88
36

32
17

20
4

0
0

0
0

0
0

0
zu

lip
/z

ul
ip

5
6

0
1

48
00

34
60

33
27

20
60

23
41

55
98

1
40

96
8

29
05

24
0

0
0

0
0

0
0

Ta
bl

e
23

: G
itH

ub
Pr

oj
ec

tD
at

as
et

166

Features Meaning
repo the name of the GitHub project
CVE the number of CVEs for this project
#stars the number of GitHub registers who liked this project
#watches the number of GitHub registers who receive notification from this project
#forks the number of GitHub registers who code with this project
#issues the number of issues in this project
#contributors The number of contributors in this project
#commits The number of the commits in this project
creD the created date of the project
puD the last push date of the project
#labels the number of labels of the project
%Java the percentage of the Java language of the project
%JavaScript the percentage of the JavaScript language of the project
%PHP the percentage of the PHP language of the project
%C the percentage of the C language of the project
%C++ the percentage of the C++ language of the project
%Python the percentage of the Python language of the project
%Go the percentage of the Go language of the project
%Ruby the percentage of the Ruby language of the project
%Perl the percentage of the Perl language of the project
%HTML the percentage of the HTML language of the project
%C# the percentage of the C# language of the project
%Shell the percentage of the Shell language of the project
size the size of this project
#files the number of the files
#functions the number of the functions
#program-files the number of program files
blank the line number of the blanks
comment the line number of the comments
code the line number of the codes
hits the total number of the flaws found by Flawfinder
c-sloc the line number of C/C++ code
L1 the number of the flaws in severity level 1
L2 the number of the flaws in severity level 2
L3 the number of the flaws in severity level 3
L4 the number of the flaws in severity level 4
L5 the number of the flaws in severity level 5

Table 24: Meaning of the Features in Table 23

167

Features Meaning
version the version number of Chrome
nNCVE the number of CVEs from NVD interpretation
n0.5YCVE the number of CVEs based on 0.5 year model
nuF number of files
nuPF number of program files
nuBlk line number of blanks
nuCmt line number of comments
nuC line number of code
1CVE the first CVE published in this version
t1CVE the published date for the first CVE
lCVE the last CVE published in this version
tLCVE the published date for the last CVE
dRlse the release date
dayRlse the release day

Table 25: Meaning of the Features in Table 22

168

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective and Contributions

	Literature Review
	Attack Graph
	Security Metrics
	Network Diversity Metric
	Network Attack Surface Metric
	Vulnerability Discovery Model

	Network Diversity: A Security Metric for Evaluating the Resilience of Networks Against Zero-Day Attacks
	Introduction
	Use Cases
	Biodiversity-Inspired Network Diversity Metric
	Least Attacking Effort-Based Network Diversity Metric
	The Model

	Probabilistic Network Diversity
	Overview
	Redesigning d3 Metric

	Applying the Network Diversity Metrics
	Guidelines for Instantiating the Network Diversity Models
	Case Study

	Simulation
	Discussion
	A Case Study
	Potential Solutions

	Conclusion

	Network Attack Surface: Lifting the Attack Surface Concept to Network Level for Evaluating the Resilience Against Zero-Day Attacks
	Introduction
	The Network Attack Surface Model
	CVSS-Based Attack Probability
	Graph-Based Attack Probability
	Aggregating Attack Probabilities inside a Network

	Heuristic Algorithms for Calculating Network Attack Surface
	The Heuristic Algorithms

	Instantiating the Network Attack Surface Metric
	Case Study

	Experimental Results
	Correlation Between Attack Surface and Vulnerabilities
	The Impact of Non-Calculatable Resources

	Conclusion

	Learning-Based Model for Software Vulnerability Prediction
	Introduction
	Background
	Statistical Analysis of data
	Data Visualization
	Feature Selection and Evaluation Methods

	Dataset Collection and Preparation
	Datasets
	Data Preparation and Feature Extraction

	Feature Selection of Software Vulnerability Model
	Data Visualization
	Feature Selection

	Analysis of Software Vulnerability Model
	Hypotheses
	Statistical Analysis of Data
	Learning Based Model

	Analysis Software Vulnerability Model in Multi-Version Software Application
	Statistical Analysis of Data and Visualization
	Learning Based Model

	Conclusion

	Conclusion
	Bibliography
	Appendices
	Notations
	Appendices for Chapter 4
	Appendices for Chapter 5

