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Abstract

Towards Skill Transfer via Learning-Based Guidance in Human-Robot

Interaction

Seyed Ehsan Zahedi, Ph.D.

Concordia University, 2017

This thesis presents learning-based guidance (LbG) approaches that aim to transfer

skills from human to robot. The approaches capture the temporal and spatial informa-

tion of human motions and teach robot to assist human in human-robot collaborative

tasks. In such physical human-robot interaction (pHRI) environments, learning from

demonstrations (LfD) enables this transferring skill. Demonstrations can be provided

through kinesthetic teaching and/or teleoperation. In kinesthetic teaching, humans

directly guide robot’s body to perform a task while in teleoperation, demonstrations

can be done through motion/vision-based systems or haptic devices. In this work,

the LbG approaches are developed through kinesthetic teaching and teleoperation in

both virtual and physical environments.

First, this thesis compares and analyzes the capability of two types of statisti-

cal models, generative and discriminative, to generate haptic guidance (HG) forces as

well as segment and recognize gestures for pHRI that can be used in virtual minimally

invasive surgery (MIS) training. In this learning-based approach, the knowledge and

experience of experts are modeled to improve the unpredictable motions of novice

trainees. Two statistical models, hidden Markov model (HMM) and hidden Condi-

tional Random Fields (HCRF), are used to learn gestures from demonstrations in a

virtual MIS related task. The models are developed to automatically recognize and

segment gestures as well as generate guidance forces. In practice phase, the guidance

forces are adaptively calculated in real time regarding gesture similarities among user

motion and the gesture models. Both statistical models can successfully capture the

gestures of the user and provide adaptive HG, however, results show the superiority

of HCRF, as a discriminative method, compared to HMM, as a generative method,

in terms of user performance.

iii



In addition, LbG approaches are developed for kinesthetic HRI simulations that

aim to transfer the skills of expert surgeons to resident trainees. The discriminative

nature of HCRF is incorporated into the approach to produce LbG forces and dis-

criminate the skill levels of users. To experimentally evaluate this kinesthetic-based

approach, a femur bone drilling simulation is developed in which residents are pro-

vided haptic feedback based on real computed tomography (CT) data that enable

them to feel the variable stiffness of bone layers. Orthepaedic surgeons require to

adjust drilling force since bone layers have different stiffness. In the learning phase,

using the simulation, an expert HCRF model is trained from expert surgeons demon-

stration to learn the stiffness variations of different bone layers. A novice HCRF

model is also developed from the demonstration of novice residents to discriminate

the skill levels of a new trainee. During the practice phase, the learning-based ap-

proach, which encoded the stiffness variations, guides the trainees to perform training

tasks similar to experts motions.

Finally, in contrast to other parts of the thesis, an LbG approach is developed

through teleoperation in physical environment. The approach assists operators to

navigate a teleoperated robot through a haptic steering wheel and a haptic gas pedal.

A set of expert operator demonstrations are used to develop maneuvering skill model.

The temporal and spatial variation of demonstrations are learned using HMM as the

skill model. A modified Gaussian Mixture regression (GMR) in combination with the

HMM is also developed to robustly produce the motion during reproduction. The

GMR calculates outcome motions from a joint probability density function of data

rather than directly model the regression function. In addition, the distance between

the robot and obstacles is incorporated into the impedance control to generate guid-

ance forces that also assist operators with avoiding obstacle collisions. Using different

forms of variable impedance control, guidance forces are computed in real time with

respect to the similarities between the maneuver of users and the skill model. This

encourages users to navigate a robot similar to the expert operators. The results show

that user performance is improved in terms of number of collisions, task completion

time, and average closeness to obstacles.
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Chapter 1

Introduction

Human-robot interaction (HRI) is a field of study that aims to design, implement, and

assess robotic systems for interacting with humans [2]. An area of interest in this field

is to develop methods for transferring knowledge or skill from human to robot. The

skilled robots can be used to teach/help other humans to execute dynamic tasks. In

other words, this field may promote the transferring of skills from humans (experts)

to humans (novices).

1.1 Learning from Demonstration (LfD)

Learning from demonstration (LfD) enable humans, particularly non-robotics-experts,

to use demonstration examples for programming robot skills [3]. Traditional robot

control approaches usually require the dynamics model of robots to derive mathemati-

cal control policies. Developing such models needs considerable expertise. In addition,
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linearizing the models decrease the accuracy and performance of the policies. LfD

can address these challenges since typically it does not require expert knowledge of

the dynamics. In the literature, LfD is also reported by other terms, including Pro-

gramming by Demonstration (PbD), Learning by Demonstration (LbD), Assembly

Plan from Observation, Learning from Observation, and Imitation Learning.

In physical human-robot interaction (pHRI), LfD aims to incorporate the knowl-

edge and skills of humans into robots. This may enable robots to assist humans

for performing collaborative tasks, including surgical simulations, driving, lifting ob-

jects, and manufacturing [4]. In such approaches, the skills could be captured from

the collected data of experts movements and/or robot motions during demonstra-

tions. Machine learning-based models are developed to learn expert skills from the

demonstrations. In reproduction/practice phase, relevant information is extracted

from the learning-based skill models to reproduce a taught collaborative task under

unknown conditions [3, 5].

In LfD, demonstrations can be provided through kinesthetic teaching and/or tele-

operation [6–8]. In kinesthetic teaching, humans directly guide the robot’s body

to perform a task while in teleoperation, demonstrations can be done through data

gloves [9], motion/vision-based systems [10], or haptic devices [6]. Kinesthetic in-

formation have been generated and measured due to a physical interaction with a

robot [7, 8, 11] or using haptic devices in teleopration [6]. In the second part of this

thesis, kinesthetic feedback is generated, however, in a surgical virtual simulation
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based on a developed computed-tomography-based (CT-based) bone model. In ad-

dition, virtual fixtures have also been used in haptic-feedback-enabled simulations to

improve the execution of demonstrations [12, 13]. In learning phase, the demonstra-

tions of experts interacting with the simulation, with no virtual fixtures and/or haptic

guidance, can also be used to learn motion stiffness with focus on skill assessment

and residents’ training/practice.

1.2 Haptic Guidance

Haptic guidance (HG) is a shared control algorithm that assists a user to complete

a human-robot collaborative manipulation task [14–16]. This algorithm is typically

used to guide the user along a task-specific path or restrict the motion of a tool to

a range of motions [15, 17, 18]. HG can also be used to improve the performance of

surgical trainees. This encourages the trainees to correct their gestures, i.e. motions or

maneuvers, and improves their performance during virtual/physical training [19,20].

Since a haptic-enabled simulator is a human-in-the-loop system, model-based HG

algorithms are required to control the unpredictable and non-linear behavior of users

in such pHRI [21–23]. In this thesis, proposed HG approaches are considered as a

type of learning-based guidance (LbG) since HG forces are generated with respect to

skill models that are learned from human demonstration in pHRI.

Skill models can be developed and used as references for HG in real time. For

example, in MIS training tasks, the knowledge and experience of expert surgeons
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can be incorporated into the development of HG algorithms. Surgical gestures of

expert surgeons that are simple movements have been combined and sequenced to

create complex skillful motions [24]. These gestures have been used to develop skill

models by learning gestures from observation or by imitation [25]. Statistical models

have been used to automatically segment and recognize surgical gestures. These

models include generative models [26], e.g. hidden Markov models (HMMs) [24],

and discriminative models [26], e.g. Conditional Random Fields (CRF) and their

derivatives [27].

Impedance control proposed by Hogan [28] has been extensively used in physical

pHRI to control the interaction with unknown, unstructured and dynamically chang-

ing environments. In this control method, the dynamics of a robot is described and

regulated by adapting the desired parameters of stiffness, damping, and mass. In

most of previous work [18–20,29,30], HG control gains have been selected as constant

values. Furthermore, in several studies [16, 31], HG forces have adaptively been pro-

duced to assist users to perform dynamic tasks without the use of statistical models.

However, in the present work, the adaptive guidance forces are continuously gener-

ated in real time using statistical models, which are developed for primitive motion

(e.g. gestures) segmentation and recognition as well. Since human behavior imposes

unpredictability and uncertainty in pHRI, the generation of variable guidance control

gains can result in producing more precise and effective guidance force in real-time,

requiring more precise human behavior modeling.
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1.3 Modeling of Primitive Motions/Gestures

Primitive motions/gestures are widely represented by two classes of mathematical

models [32]: dynamical systems and stochastic models. In dynamical modeling ap-

proaches, including nonlinear attractor systems and non-linear oscillators, primitive

gestures are generally described by differential equations in state space. In nonlinear

dynamical systems, stochastic effects such as noise and uncertainty can change the

corresponding deterministic dynamics, impact the dynamics, and even change the

dynamic behavior of the systems. Since the analytical models of human behavior

are rarely available in pHRI applications, the non-linear, non-stationary, and non-

deterministic features of stochastic/statistical models make them powerful tools for

modeling human behaviors [23], including the stochastic and uncertain human behav-

ior in terms of both mental state and resulting actions. Stochastic modeling methods

enable machine learning algorithms to take advantage of a) capturing the spatial and

temporal variation of the movement, b) capturing the change in variance along the

movement, and c) tolerating noise and missing data.

Two types of stochastic dynamical models are usually used to represent primi-

tive gestures: generative and discriminative. Generative models are most commonly

used for both gesture recognition and the generation of a gesture prototype. How-

ever, discriminative models can only be used for gesture recognition/classification. In

addition, discriminative models are unable to detect unknown gestures.

The goal of most machine learning applications is to take a vector x of input
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features and predict the value of a vector y, class label. Discriminative classifiers

directly model the conditional distribution p(y|x) using a set of training data {xn, yn}.

The resulting conditional distribution can be used to predict class label y for new

values of x. On the other hand, generative classifiers learn a parametric model of the

joint probability p(x, y) and then uses this joint distribution to calculate p(y|x) for

selecting the most likely label y.

In order to train the classifiers, supervised machine learning algorithms require

training dataset, which includes a set of initial input features and assigned labels. The

generalization performance of discriminative models outperforms generative models,

when labeled training set is large enough [33]. However, labeling the collected data

can be expensive. Therefore, the use of generative methods is more advantageous

since the training dataset is not large and rich.

1.4 Scope and Objectives

The main goal of this research is to design, develop, and examine learning-based ap-

proaches for HRI by bridging the gap between two fields: control theory and machine

learning. The stochastic and unpredictable human behavior may be estimated for

modeling HRI using machine learning techniques. The generation of real-time guid-

ance forces is achieved by incorporating a motion segmentation scheme into the LbG.

The LbG approaches are able to improve user performance. In these approaches,

robot provides controlled forces to users for guiding them through a dynamic task
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in virtual or physical environments. The scope of this research can be extended to

many applications such as training and assessment, rehabilitation, and sport training

to name a few.

Learning-based (haptic) guidance may be developed and used in virtual or remote

environments. In the first and second parts of this thesis, LbG approaches were

developed for HRI in virtual reality environments using haptic devices. However, in

the final part of the thesis, an LbG were proposed to navigate a remote teleoperation

robot in real world using a haptic steering and a haptic gas pedal.

The main objectives of the thesis are as follows. In the first study of the thesis,

kinematic data as teleoperation demonstrations are used to develop statistical-based

gesture models and accordingly provide LbG forces for improving user performance in

a virtual environment. In the second study, which is a clinical study, the combination

of virtual forces and kinematic data are used as kinesthetic expert surgeon demon-

strations. Using the demonstrations, statistical skill models are developed to both

evaluate the skill levels of users and generate LbG forces in a virtual environment.

Finally, in the third study, expert demonstrations from both kinematic teleopera-

tion data and kinesthetic teaching data are used to develop several skill models for

generating guidance forces in physical environment.

The benefits of the proposed LbG approaches could be extended to other HRI

application areas, including sport training and rehabilitation. The body motions

of trainees are important in most sports, such as tennis, golf, baseball, and ping-

pong [34, 35]. The combination of LbG in virtual environments (VEs) and motion
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capturing systems can provide easier and more effective training for sport trainees,

amateurs, or professionals. The trainees are able to interact with the VE actively

by receiving guidance force via robot manipulators (haptic devices). Furthermore,

LbG can be used to correct the gestures and motions of the trainees based on skill

models, learned from the demonstration of athletes in that field. In other words, such

training system can be used as an intelligent and automatic self-training system in

various locations.

Rehabilitation allows patients, who have suffered from a stroke or different types of

disabilities, to restore their functional capability to normal. In a recovery period, the

activities of patients need to be continuously monitored, and subsequently corrected.

The use of the proposed approaches in VEs can provide the patient with learning

movement patterns [36]. Furthermore, the utilization of a motion capture system

would give the patients the opportunity to compare and assess their rehabilitation

task skills to the skill model of healthy persons. Thus, a healthy virtual model can

be used to reduce face-to-face on-site therapy and recovery time.

1.5 Contribution of the Author

The main outcomes of the present thesis are three journal papers. The first paper has

been published in the IEEE Robotics and Automation Letters. The second paper has

been submitted to IEEE Robotics and Automation Letters with a conference option,

the IEEE International Conference on Robotics and Automation (ICRA) 2018. The
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third paper is almost ready to submit to the Advanced Robotics. The title and main

technical contributions of these papers are as follows.

1. E. Zahedi, J. Dargahi, M. Kia, and M. Zadeh, ”Gesture-based adaptive hap-

tic guidance: A comparison of discriminative and generative model-

ing approaches,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.

10151022, 2017.

The main contributions of this paper are to a) study the discriminative nature of

Conditional Random Fields (CRF) on the improvement of HG, in comparison

with HMM as a generative model, and b) provide precise real-time HG by

incorporating statistical skill-based modeling into variable impedance control.

2. The International Journal of Medical Robotics and Computer Assisted Surgery

Towards Skill Transfer via Learning-Based Guidance in Human-Robot

Interaction: An Application to Orthopaedic Surgical Drilling Skill

The main contributions of this work are to a) develop a kinesthetic-HRI-based

approach using HCRF to both discriminate the skill levels of users and generate

guidance forces in practice phase, and b) use expert demonstrations to learn

motion stiffness variations that are developed based on real CT data.

3. Advanced Robotics

Towards Learning-Based Guidance for Skill Transfer in Human-Robot

Teleoperation

The main contributions of this paper are to a) develop a learning-based guidance
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approach for a teleoperated robot that assist operators through guidance forces

delivered on haptic steering wheel and haptic gas pedal that augment to the

usual force feedback of steering and pedal systems, and b) the demonstrations

of expert operators are used to learn maneuvering skill models to incorporate

into single-gain variable impedance control (SV-VIC) and multiple-gain variable

impedance control (MV-VIC). The capabilities of these two impedance control

methods for generating LbG forces are compared using several performance

metrics.

1.6 Organization of the Thesis

This thesis is presented in manuscript-based format which includes three journal

papers. All chapters, excluding the first and final chapters, are duplicated from the

three papers that have been published in or submitted to scientific journals. The

first chapter details the introduction of the LbG, a review of the literature, and

rationale for the research. The final chapter discuss the conclusive remarks about the

contributions of the thesis and future work.
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Chapter 2

Gesture-based Adaptive Haptic

Guidance: A Comparison of

Discriminative and Generative

Modeling Approaches

This chapter investigates the incorporation of hidden Conditional Random Fields

(HCRF) as a discriminative statistical modeling technique into adaptive haptic guid-

ance (HG) for physical human-robot interaction (pHRI). In this gesture-based HG

approach, the knowledge and experience of experts are modeled to improve the un-

predictable motions of novice trainees in a virtual minimally invasive surgery (MIS)

training task. The HCRF models are developed for automatic gesture recognition

and segmentation as well as generating guidance forces. The forces are adaptively
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calculated in real time with respect to gestural similarities among user motions and

the gesture models. The HCRF-based approach is compared with a hidden Markov

model based (HMM-based) method for capturing the gestures of the user and provid-

ing adaptive HG. The experimental results show that the HCRF, as a discriminative

method, can outperform HMM, as a generative method, in terms of user performance.

2.1 Introduction

Robots may assist humans to cooperatively perform various types of tasks that require

intentional physical interactions, including lifting heavy objects, manufacturing, and

surgical simulations. This aims to reduce fatigue, and increase human performance

in terms of precision and speed [37].

Haptic guidance (HG) is a shared control algorithm that assists a user to complete

a human-robot collaborative manipulation task [14–16]. This algorithm is typically

used to guide the user along a task-specific path or restrict the motion of a tool to

a range of motions [17, 18]. HG can also be used to improve the performance of

minimally invasive surgery (MIS) trainees [19]. Since a haptic-enabled MIS simulator

is a human-in-the-loop system, model-based HG algorithms are required to control

the unpredictable and non-linear behavior of users in such physical Human-Robot

Interaction (pHRI) [21–23]. In most of previous work [18, 19, 29, 30], HG control

gains have been selected as constant values. Furthermore, in several studies [16, 31],

HG forces have adaptively been produced to assist users to perform dynamic tasks
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without the use of statistical models. In the present chapter, the adaptive guidance

forces are continuously generated in real time using statistical models. The generation

of variable guidance control gains can result in producing more precise and effective

guidance forces in real-time, requiring more precise human behavior modeling.

Machine learning algorithms and statistical approaches take the uncertainty of

robots into account to provide sound methodologies in robotics, e.g. path planning,

multi-robot control, and HRI [38]. Furthermore, statistical algorithms require less ac-

curate models compared with many classical approaches [38]. Stochastic (statistical)

models are also highly effective since dynamical system models (analytical models)

are not available for complex tasks [22,39].

Surgical gestures, which are simple atomic movements, have been used to develop

skill models by learning gestures from observation or by imitation [25]. In addition,

statistical models have been used to automatically segment and recognize surgical

gestures. These models include generative models [26], e.g. hidden Markov models

(HMMs) [24] and discriminative models [26], e.g. Conditional Random Fields (CRF)

and their derivatives [27]. To develop precise skill models, MIS tasks can be segmented

into several gestures [24]. Kahol et al. [40] have segmented an MIS task into several

surgical gestures to discriminate MIS skills. Reiley and Hager [24] have developed

HMMs based on surgical gestures (surgemes) to evaluate MIS skills. The developed

HMMs in previous studies have mainly been used in off-line MIS skill assessment,

which are not applicable for real-time haptic rendering.

In this study, HCRF is employed as the discriminative counterpart of HMM. This
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modeling technique is an extension of CRF that incorporates hidden states for mod-

eling the underlying structure of the observations. For classification purposes, dis-

criminative approaches directly build the conditional probability distribution, which

is more related to the classification boundary. The generative approaches learn one

model for each class and model a distribution over observations. HCRFs have suc-

cessfully been used for classification applications, including gesture recognition [41,42]

and speech recognition [43]. Although generative models, e.g. HMM, have been uti-

lized for HG applications, discriminative models, specifically HCRFs, have not been

used to provide HG in pHRI.

This chapter presents a new adaptive statistical gesture-based HG approach, in

which a robot applies controlled forces on the hands of a user to guide him/her through

a virtual task (details in Section 2.3). The aim of the present work is two-fold. In the

first study (presents in Section 2.4), the gesture-based approach is initially examined

for generating real-time adaptive HG and its effects on user performance. Then, in

the second study (describes in 2.5), the efficacy of the HCRF-based HG approach is

investigated by designing a relatively more complex task. The results also compare

with no HG, constant HG, and HMM-based HG. To make the task more complex, it

is created by considering variable sizes and sequence of gestures.

The main contribution of the present study is to incorporate the discriminative

nature of CRF into gesture-based HG in pHRI. The capabilities of discriminative and

generative models for generating HG are compared using several performance metrics.

The conclusive remarks about the contribution and our main goals are presented in
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Section 2.6.

2.2 Haptic Guidance and Modeling of Gestures

HG provides forces to users when they perform a visuo-motor learning task [15]. In

other words, a haptic interface provides the users with physical guidance and gives

them the kinesthetic understanding of the required motion for performing a desired

motion [44]. Several studies have indicated the efficiency of such an approach in

learning movements using virtual training simulators [44–46]. The following section

provides the required information regarding the modeling of gestures that is an es-

sential part of the HG approach.

2.2.1 Modeling of Gestures

Gestures can be represented by mathematical models, including dynamical system

models and stochastic models [32]. The non-linear, non-stationary, and non-deterministic

features of stochastic/statistical models make them useful tools for modeling the

stochastic and uncertain human behaviors [19, 22, 23]. Stochastic modeling methods

enable machine learning algorithms to take advantage of a) capturing the spatial and

temporal variations of the movement, b) capturing the change in the variance along

the movement, and c) tolerating noise and missing data.

Several researchers [19, 24, 40, 47–49] have used HMMs, as generative models, to

develop MIS task models. Two main weakness of using generative models have been
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reported in the literature [33, 41, 50]: 1- For the sake of simplicity, observations are

assumed to be conditionally independent. It is often difficult to accommodate long-

term dependencies among observations or rich overlapping features of the observation

at multiple time steps and 2- Hidden states maximize the likelihood of generating all

the examples of a given gesture class, but the likelihood is not certainly optimal for

the discrimination of gestures. Our focus is on using HCRF for providing HG and

comparing it with HMMs.

2.2.2 Performance Metrics

The evaluation methods used in this study and created virtual environments (VEs)

are based on a peg transfer task, which is a fundamental of laparoscopic surgery

(FLS) task. In this task, the goal is to transfer six blocks using two curved Maryland

graspers in minimum time with minimal errors, from one side to another and back

again. Many MIS objective evaluation metrics have been proposed to measure user

performance [49, 51, 52]. Four quantitative performance metrics are used in this

study:

1- Completion Time (T ): This is the total time required for each task to be

completed.

2- Path Length: It is the length of the path traversed by the end-effector over

time.

3- Normalized Motion Smoothness (N-MS): This metric is a factor related

to the instantaneous jerk defined as j = d3x
dt3

(cm/s3) and represents a change in
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acceleration. N-MS is calculated as follows [52].

N −MS = 1− 1

T

√
1

2

∫ T

0

j2dt. (1)

The acceleration data and MS are normalized in a range of 0 through 1 to ease the

interpretation of this metric [51].

The shorter task completion time, the shorter path length, and the higher motion

smoothness represent a better performance [19, 51, 52]. In addition to these metrics,

we use another evaluation metric to further investigate the effects of the HG:

4- Average Angular Error (AAE): This is the average difference between the

angles of desired and current gestures:

AAE =
1

N

N∑
i=1

|αi| ,−180 ≤ αi < 180, (2)

where αi is the angular error between the tangent vector to the path of user motion

and the direction of desired gesture at i time step, and N is the number of time steps.

AAE represents how well HG encourages users to correct their gestures by evalu-

ating the direction/angle of a performed gesture, regardless of the distance between

end-effector and reference gestures. Lower AAE represents better performance.
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2.3 Gesture-Based Variable Impedance HG

This section presents the details of the approach that uses the gestural differences as

the sources of the disagreements between human and robot to produce adaptive HG.

2.3.1 General Architecture

The proposed approach includes: 1) developing continuous HMM and/or HCRF mod-

els for the kinematic observations associated with each reference gesture which is an

off-line process, and 2) generating variable control gains in real time based on the

similarity between the current gesture of user and a modeled gesture. The dynamics

of the robot is described by

fh + fhg =M ẍ+Dẋ (3)

where x is the position of the end-effector, andM and D are positive-definite matrices

representing inertia and damping, respectively. As shown in Fig. 1, the two inputs to

the mass-damper dynamics are human applied force (fh) and additional virtual force

(fhg), which represents variable guidance force.
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Figure 1: The schematic diagram of the adaptive gesture-based HG approach. Human and
robot collaborate to perform a virtual task. Gesture Recognition block, which is connected
to the trained Statistical Models of Gestures (HMMs/HCRF), recognizes and segments user
motions. Gesture Similarity Estimation generates a variable stiffness gain (KV ) based on
the similarities among current user gestures and trained (reference) models. The Variable
Haptic Guidance calculates forces to guide the user through a reference path. x, ẋ, ẍ are
position, velocity, and acceleration of the robot/human, respectively.

Fig. 1 shows the architecture of the HG approach. During task execution, the

motion of a user is segmented into gestures. Then, gesture similarity estimation block

determines how well the current gesture of the user is similar to the corresponding

gesture model. The result is the value of variable stiffness gain (KV ) in our impedance

control strategy (variable impedance control block) to produce the guidance force. In

this approach, when a user moves the end-effector less similar to a reference gesture

model, greater guidance forces are applied to the end-effector and user’s hand; this

encourages the user to perform the correct gesture.
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2.3.2 Gesture Recognition

HMM-based

We develope continuous HMMs with Gaussian mixture distribution for gestures of an

MIS type training task. A K -state {S1, S2, ..., SK} continuous HMM with a Gaussian

observation, λ = (A,B, π), is defined by three parameters [53]: a state transition

probability distribution A = {aij} = P (St = j | St−1 = i), a set of observation

model probabilities B = P (Ot|St), and a set of prior probabilities π = πi, where

πi = P (S1 = i) and 1 ≤ i, j ≤ K.

Since the actual observation sequence is continuous, generating a continuous out-

put requires estimating the probability density function (pdf) of the state output

(observation model). To model this density, a set of training data is used to estimate

the Gaussian mixture parameters. The M -mixture of observation model is defined as

follows.

P (Ot = o|St = i) =
M∑
m=1

P (Mt = m|St = i)N (o;µm,i,Σm,i) (4)

where N (o;µ,Σ) is the Gaussian density, µi and Σi are the mean and covariance of

the state i, Ot is the observation, St is the state, Mt is a hidden variable that specifies

which mixture component to use, and P (Mt = m|St = i) = c(i,m) is the conditional

coefficient of each mixture component.

In order to train HMMs, the model parameters are optimized to maximize P (O |
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λ), where O is an observation sequence. An expectation maximization (EM) algo-

rithm called Baum-Welch is used to establish maximum likelihood (ML) parameter

estimation for HMMs [53].

HCRF-based

The goal of most machine learning applications is to take a vector o of input features

and predict the value of a vector y, class label [33]. Discriminative classifiers directly

model the conditional distribution p(y|o) using a set of training data {on, yn}. The

resulting conditional distribution can be used to predict class label y for new values

of o. CRFs avoid the independence assumption between observations, and can incor-

porate both long-term dependencies and overlapping features into the model. CRFs

use a probability distribution to model the entire sequence of labels, given the entire

observation sequence.

HCRF models incorporate hidden state variables in a discriminative multi-class

random field model to provide a way to determine a single label for an entire input

sequence, e.g. the gesture of users. An HCRF model is defined by [41]:

P (y|O, θ) =
∑
S

P (y, S|O, θ) =
∑

S e
ψ(y,S,O;θ)∑

y′∈Y,S∈Sm eψ(y
′,S,O;θ)

, (5)

where y ∈ Y is a class label, O is an observation sequence, S is the set of hidden

states, and θ is the model parameters. ψ(y, S,O; θ), parametrized by θ, calculates the

compatibility among a label, a set of observations and hidden states. The following
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objective function is used for estimating the parameters [41]:

L(θ) =
n∑
i=1

logP (yi|oi, θ))−
1

2σ2
∥θ∥2 , (6)

where {yi, oi} is the training set of labeled examples, n is the number of training

sequence data, and σ2 is variance of a Gaussian prior. In this work, a Quasi-Newton

optimization method, L-BFGS [54], is used to find optimal parameter values ( θ∗ =

arg maxθ L(θ)).

2.3.3 Gesture Similarity Estimation

HMM-based

HMM-based similarities are calculated to compare the gestures of users and reference

models in real time. Our method continuously calculates gestural similarity (GS)

according to the maximum log-likelihood of the observation sequence:

GS = arg max
j

log P (O|λj) (7)

where O = {ot−nT , ot−(n−1)T , ..., ot} is the last n observation sequence with the sam-

pling time T, λj is an HMM that models a gesture, 1 ≤ j ≤ l while l is the number

of trained gestures, and the observation ot is a vector of the features (x, ẋ, ẍ) at time

t.
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P (O|λj) is the probability that shows the similarity between the current and

modeled gesture. This similarity determines the impedance control gain, increasing

in the probability leads to decreasing the gain. As a result, smaller gains let the user

to move the end-effector with less guidance.

HCRF-based

In real time, the proposed HCRF-based HG approach recognizes gestures and con-

tinuously generates gestural similarity (GS ) between the user motion and the trained

HCRF:

GS = arg max
y∈Y

log P (y|O, θ∗) (8)

where O is the last n observation sequence of user motion and Y = {y1, y2, ...yl} is

the set of labels (trained gestures).

2.3.4 Variable Impedance Control

A variable impedance control scheme is used to lessen the effects of unmodeled dy-

namics, including unobserved deviations from a motion plan, and natural variability

of human behavior. Forces are calculated using the following equation:

fhg = −KV (x− xd) (9)
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where fhg is the guidance force, KV > 0 is a scalar variable stiffness gain that is a

function of gestural similarity (GS), xd is the desired position on the reference path,

and x is the current position of the end-effector. The desired position, which is closest

to x, is instantaneously found based on computational geometry methods [55].

A linear modulation function is selected for KV that relates each calculated ges-

tural similarity to a stiffness gain:

KV =
Kmax −Kmin

GSmin −GSmax
(GS −GSmax) +Kmin, (10)

where Kmin ≤ KV ≤ Kmax and GSmin ≤ GS ≤ GSmax. In this work, the domain and

range of this function are limited to [GSmin, GSmax]=[−400, 0] and [Kmin, Kmax]=[0, 222N/m],

respectively. GSmin was selected based on the results of a pretest user study, in which

the objective was achieving a minimum gesture recognition error rate. This study

also indicated that in the operation area of the system, the linear modulation is a

fair mapping between GS and KV to encourage users performing correct gestures. As

presented in (7) and (17), the stiffness gains are adaptively determined in real time

according to the gestures of the user’s hand/tool.

A three-point moving average filter of previous stiffness gain data is used to smooth

the stiffness gains and accordingly the guidance forces. The number of points is

experimentally selected to obtain a smooth output signal.
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2.4 Experiment 1: Evaluation of Model-based HG

The goals of the first experiment are to examine the gesture-based approach and

compare user performance for adaptive HG, constant HG and no HG conditions.

The second experiment on the incorporation of HCRF for providing adaptive HG is

presented in Section 2.5.

2.4.1 Experimental Setup

Fig. 2 shows the experimental setup that includes an MIS tool, Phantom Omni haptic

device, male torso mannequin, and virtual environment (VE). The tool is attached

to the haptic device that is set up on a movable and height adjustable table. The

device records the motion of the tool and provides HG to the subjects. It is a 6

degree-of-freedom (DOF) robot manipulator and is capable of exerting force feedback

in 3 DOF translational motions. The sampling frequency for capturing data is 50 Hz

and the variable gain is updated every 20 ms.
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Figure 2: Experimental setup: (a) A user is tracing a predefined path in the VE using
the MIS tool. (b) The tool (grasper) is attached to a haptic device. The device applies the
guidance forces on the user’s hand via the tool.

According to previous studies of stability of haptic interaction [56,57], the coupling

of the Phantom 1.0 haptic device and a VE is locally stable while the designated

stiffness gains keep below 1015 N/m [56]. In our study, although using a different

version of Phantom device, we selected a lower range of stiffness in the range 0 −

222N/m, that was experimentally verified to lead to a stable haptic interaction.

Two MIS related tasks are designed in the VE for experimental evaluation. The

tasks involves moving the end-effector and carrying an object (hollow triangle) in

the VE from a peg to another peg with respect to a predefined sequence. Before

each experiment, the subjects were guided to perform the tasks and instructed to

complete the tasks precisely as quickly as possible. Every subject had five minutes
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to get familiar with the setup.

2.4.2 Training Gestures: Generative Models

HMM models: Four MIS gestures in 3D space, including right, up, left and down,

are selected and an HMM is trained as reference gesture model for each. The four

models are λr, λu, λl, and λd that indicate the end-effector movement is along x-axis,

along y-axis, along the negative x-axis, and along the negative y-axis, respectively.

A data set was gathered from nine users who interacted with the haptic device

and performed each basic gesture ten times using the experimental setup, while no

HG is provided. The users worked with the experimental setup at least 10 hours and

practiced designated gestures many times. Thus, the training data set was collected

from the users who are experts in performing the gestures, compared with new users.

The velocity and acceleration were derived from the position of the end effector.

After the data collection, the data was segmented and sorted into the gesture groups.

The HMMs were developed with 15 states, a mixture of two continuous Gaussian

probability distributions, and a recognition/classification accuracy of 88.5%. The

accuracy was calculated using confusion matrix parameters, including true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN) [50]:

Recognition Accuracy =
TP + TN

TP + FP + FN + TN
(11)
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The length of observation (window size), which was used to compute the gestural

similarity (GS) in real time, was five data points. Bakis (left-to-right) topology [53]

was used for developing the HMMs because this topology efficiently describes the

sequential nature of motions. The number of Gaussian mixtures and hidden states

were determined by minimizing the classification error rate on the training data.

2.4.3 Procedure

Sixteen healthy male and right-handed subjects (aged 20 to 28 with a mean age of

23.2 years) were asked to complete a task, which was tracing a predefined virtual path

above four pegs using the MIS tool. The path was square-shaped and composed of

four same-size gestures. The sequence of gestures was {down, right, up, left}. Every

subject performed the task in the following modes.

HMM-based Haptic Guidance (HMM-HG): Our proposed HG approach

was used to guide subjects through the task. The stiffness gain range is limited to

0−222 N/m for the safety of haptic device. Choosing this range can give the subjects

a good sense of the path they should follow, but they are able to stay outside the

reference path, if necessary.

Haptic Guidance with Constant Stiffness (CS-HG): A constant gain (K =

118 N/m) was selected that showed the best performance during a preliminary ex-

periment among four tested gains (K = 44 N/m, K = 118 N/m, K = 166 N/m, and

K = 222 N/m).

No Haptic Guidance (NHG): No HG was provided.

28



2.4.4 Results and Discussion

The means and standard errors for the completion time, path length, and motion

smoothness across all subjects are presented in Fig. 3. Several trends are evident in

the data. The results show when there is no HG, subjects have smoother movements

with a relatively higher path length and spend more time for completing the task.

However, HG (for both HMM-HG and CS-HG modes) improves user performance

in terms of reducing the completion time and path length, compared with NHG. A

similar trend has also been reported in Li and Okamuras’ study [29] when subjects

performed a curve following task. Safavi et al. [19] have also reported a similar trade-

off between the completion time and motion smoothness for following a sequence of

motions.
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Figure 3: The means and standard errors across all subjects for three modes (HMM-
HG, CS-HG, and NHG). Both HG methods (HMM-HG and CS-HG) decrease the task
completion time and path length at the cost of decreasing the motion smoothness. The
proposed approach (HMM-HG) improves the motion smoothness significantly, compared to
CS-HG. ∗ shows significant differences with P < 0.05.

The results for the gesture-based HG (HMM-HG) shows better performance in

balancing between the completion time and motion smoothness among the three
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methods. Both HG methods decreases the completion time and path length. How-

ever, HMM-HG shows a better motion smoothness in comparison with the CS-HG. As

presented in Table 1, the results of a repeated measures analysis of variance (ANOVA)

significantly supports the trends in the data. There are statistically significant differ-

ences for three metrics among HMM-HG, CS-HG, and NHG modes. Thus, Bonferroni

post-hoc analysis is conducted to examine statistically differences between pairwise

measured performance metrics. In Fig. 3, ∗ indicates significant differences with

P < 0.05.

Table 1: The results of ANOVA for the first experiment. 0.05 is the rejection level.

Completion Time Path Length Motion Smoothness

F(2, 30) 6.69 11.01 11.24

P-value 0.003 0.0002 < 0.0001

2.5 Experiment 2: Evaluation of Discriminative-

based HG Versus Generative-based HG

To our best knowledge, for the first time in this chapter, an HCRF, as a discrimina-

tive model, is used to generate adaptive HG. The results from Section 2.4 indicate

that providing adaptive HG using generative models is a promising approach to im-

prove user performance. However, the approach only improves motion smoothness

in comparison with constant HG method. The second experiment was conducted to
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investigate the approach using an HCRF-based HG with a relatively more complex

task.

2.5.1 Training Gestures: Discriminative Models

HCRF model: A single HCRF, with 15 hidden states and a recognition accuracy

of 92.1%, was trained for six gestures: Y = {right, up, left, down, in, out}. The

training data was the same and the number of states was selected by minimizing the

classification error rate on training data. The accuracy was computed using (11).

2.5.2 Procedure

Eighteen healthy male right-handed students (aged 22 to 31 with a mean age of 25.6

years) participated in this experiment. The subjects were completely different from

the subjects of the first experiment. Fig. 4 shows the MIS-type task with several

pegs that were randomly deployed on the peg board. Subjects were asked to lift a

triangular object with the MIS tool from the top right peg, carry the object, maneuver

above the pegs, and put the object down onto another peg. The task was composed

of several gestures with various sizes. Every subject carried out this task in three

previous modes (HMM-HG, CS-HG, NHG described in Subsection 2.4.3) and:

HCRF-based Haptic Guidance (HCRF-HG): The developed HCRF model

is used to provide adaptive HG.
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Figure 4: The designed MIS virtual task for the second experiment.

2.5.3 Results and Discussion

The means and standard errors across all subjects are shown in Fig. 5 for four

conditions: HMM-HG, CS-HG, NHG, and HCRF-HG. Table 2 shows the repeated

measures ANOVA results, with a rejection level of 0.05. The results of post-hoc

Bonferroni pairwise comparisons, ∗(P < 0.05), are shown in Fig. 5.

There are several trends in the results. HCRF-HG, as a discriminative approach,

shows the best overall performance by encouraging the subjects to perform the most

correct gestures smoothly. Among all the methods, HCRF-HG and CS-HG show

better performance improvement in terms of path length, completion time, and AAE.

HCRF-HG also shows a better motion smoothness compared to CS-HG. NHG only

provides better motion smoothness, which is also observed in the several studies in

the literature [19, 29] and the first experiment.
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Figure 5: The means and standard errors of the performance metrics across the sub-
jects of the second experiment for four modes (HMM-HG, CS-HG, NHG, and HCRF-HG).
HCRF-HG approach provides better performance improvement overall. ∗ marks significant
differences.

Table 2: The ANOVA results for four performance metrics.

Completion Time Path Length Motion Smoothness AAE

F(3,51) 11.29 59.96 5.38 21.89

P-value <0.001 <0.001 0.002 <0.001

The results show that between the generative and discriminative HG approaches,

the latter is further capable of improving the user performance. Path length (a
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metric related to position error) and AAE (angular error), for HCRF-HG are signifi-

cantly better than for HHM-HG. While for completion time and motion smoothness,

the Bonferroni post-hoc test found no significant differences between HCRF-HG and

HMM-HG.

The gesture recognition accuracies of modeling methods have commonly been

used in the literature [27, 41, 58] to compare the performance of the methods. Our

results also indicate the higher accuracy, the higher user performance, however, in a

different scale. For example, as reported in Subsections 2.4.2 and 2.5.1, the recognition

accuracy of the HMM and HCRF models are 88.5% and 92.1%, respectively. Although

the accuracy improvement is about 4%, HCRF-HG results in over 11% and 23%

improvement in path length and AAE, respectively, in comparison to HMM-HG.

It seems from the results that HCRF recognizes the gesture label that better

corresponds to a time slice sequence. In real-time HG, statistical models should be

capable of recognizing and segmenting the motion of users only based on the time slice

of observation sequence. The gestures are usually performed at various timescales and

may show dependencies. HCRF further captures these temporal dependencies among

observations, compared to HMM. The better real-time gesture recognition results in

the more precise calculation of the GS and resulting HG forces. Thus, HCRF-HG is

better suited for a HG task, compared with HMM-HG.

A benefit of adaptive HG over constant HG is also noticed by comparing the

results of motion smoothness of the two experiments. From the first experiment to

the second experiment, motion smoothness considerably decreases from 0.57 to 0.33
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(24%) for CS-HG. However, motion smoothness slightly decreases from 0.81 and 0.73

to 0.76 and 0.65 for NHG and HMM-HG, respectively. It seems that even though

the task of the second experiment is more complex than the first task, adaptive

HG (HMM-based approach) is able to adjust control gains for achieving smoother

motions. Furthermore, the selected constant gain (K) of the first experiment might

not necessarily be optimal for the second experiment. The trial and error method

should be used to tune the constant gain for every new task. However, the gesture

models (HMMs) of the first experiment are precisely used in the second experiment.

These models are readily usable to provide HG for new tasks.

To analyze the performance of our HG approach in regard to task complexity, a

two-way ANOVA is conducted on the data of the two experiments. Table 3 presents

the effects of task complexity (TC) and HG factors on user performance. The TC has

two levels (Low in the first experiment, and Medium in the second one) and HG has

the three common modes between the experiments (HMM-HG, CS-HG, and NHG).

We can independently analyze the effects of TC for completion time and motion

smoothness because there is no statistically significant interaction between the two

factors. However, for path length, we cannot look at the effects of TC, independently,

since there is a significant interaction.
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Table 3: The two-way ANOVA results, the effects of task complexity (TC) and HG modes
on user performance.

Time Path Length Motion Smoothness

F(1,15)-TC

P-value

58.22

<0.0001

583.62

<0.0001

8.83

0.006

F(2,30)-HG modes

P-value

21.09

<0.0001

65.28

<0.0001

14.5

<0.0001

F(2,30)-interaction

P-value

0.34

0.71

33.89

<0.0001

1.15

0.32

Table 4 presents the results of a Tukey-Kramer post-hoc test on the effects of

TC on completion time and motion smoothness for various HG modes. The results

confirm the trend in the graphs that completion time is obviously higher for the

Medium TC than for the Low TC in all HG and NHG modes. In other words,

subjects spent more time to complete the second task because it is composed of more

steps and gestures as well as longer path length. However, the results only show

a statistically significant difference for CS-HG mode, suggesting that it was more

difficult for subjects to smoothly complete the more complex task in CS-HG mode

compared with when they completed the task in HMM-HG.
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Table 4: Results of pairwise comparisons of task complexity levels.

Completion Time Motion Smoothness

Comparison F(1,17) P F(1,17) P

HMM-Med & HMM-Low 93.43 <0.001 2.23 0.14

CS-Med & CS-Low 79.99 <0.001 5.85 0.02

NHG-Med & NHG-Low 62.28 <0.001 1.14 0.29

2.6 Conclusions and Future Work

This chapter proposes an adaptive haptic guidance (HG) approach based on a dis-

criminative model (HCRF) for human-robot interaction. We have segmented a task

into gestures for modeling purposes and provided guidance forces to the user via a

robot manipulator. Due to the human stochastic behavior and the sequential nature

of the tasks, we have developed statistical models (HMMs and HCRF) to generate

variable controlled forces according to the gestural differences. The stiffness gains

have been adjusted in real time when there is a gestural disagreement between the

user and the modeled gestures. The gesture-based variable impedance approach has

enabled subjects to complete a task with better performance while balancing between

completion time, motion smoothness, and average angular error, compared with no

HG and constant HG conditions.

The results fairly confirm that the utilization of discriminative approach com-

pared to generative approach for providing adaptive HG is promising to improve user
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performance for completing dynamic tasks. There is no linear mapping between the

recognition accuracy of the statistical gesture models and the performance outcomes

of the HG approaches. Since human is involved in the HG control loop, extensive

human factor studies are required to discover the parameters that may affect the

outcomes of such haptic-enabled systems in pHRI.

To train statistical models, features should be selected in regard to the charac-

teristics of the gestures. Since in this chapter, the gestures are tool tip movements

in orthogonal direction, the linear position, velocity and acceleration of the tool tip

are chosen as features. To train more complex gestures, including positioning needle,

making C loop, and pulling suture, other kinematic variables, including the rotational

velocity and rotation matrix of the tool tip, as well as video data may be added to

the features. This facilitates the recognition of complexed gestures and consequently

the calculation of effective HG forces.

In our future work, the proposed approach will be investigated by expanding

the reference models with more gestures and adding adaptive damping gains to the

variable stiffness control strategy.
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Chapter 3

Towards Skill Transfer via

Learning-Based Guidance in

Human-Robot Interaction: An

Application to Orthopaedic

Surgical Drilling Skill

This chapter presents a machine learning-based guidance (LbG) approach for kines-

thetic human-robot interaction (HRI) that can be used in virtual training simulations.

Demonstrated positional and force skills are learned to both discriminate the skill lev-

els of users and produce LbG forces. Force information is obtained from virtual forces,

which developed based on real computed tomography (CT) data, rather than force
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sensors. A femur bone drilling simulation is developed to provide a practice environ-

ment for orthopaedic residents. The residents are provided with haptic feedback that

enable them to feel the variable stiffness of bone layers. The X-ray views of the bone

are also presented to them for better tracking of a pre-defined path inside the bone.

The simulation is capable of planning a drill path, generating X-rays based on user

defined orientation, and recording motion data for user assessment and skill modeling.

The knowledge of expert surgeons is also incorporated into the simulation to provide

LbG forces for improving the unpredictable motions of the residents. To discriminate

the skill level of users, machine learning tools are used to develop surgical expert and

resident models. In addition, to improve residents performance, the expert HCRF

is used to generate adaptive LbG forces regarding the similarities between residents

motions and the expert model. Experimental results show that the learning-based

approach is able to assess the skill of users and improve residents performance.

3.1 Introduction

Osteoporosis is one of the most common causes for hip fracture, leading to the increase

of fracture risk [59]. Even in the developed world, 2% to 8% of males and 9% to 38%

of females are diagnosed with osteoporosis [60]. No cure has been developed for

osteoporosis, but with proper treatment, the bone loss can be slowed. Since it shows

next to no symptoms, most patients do no seek medical attention until bone fracture

occurs. Hip fracture is a serious medical issue with a high mortality rate of between
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20% and 35% within one year of fractured femur [61,62].

In osteosynthesis treatment, the surgeons can reposition the dislocated bone frag-

ments into an acceptable position in a non-invasive manner, and apply nails as fix-

tures. These procedures are guided by real-time x-ray images. Since the surgeon has

to determine the depth of the drill by experience, catastrophic results could occur.

Thus, developing the intuition for the operation before the surgery is crucial to the

success of the operation. This requires excessive practice, which is costly.

Surgical simulations provide a safe environment in which a surgeon may repeatedly

practice a procedure without impacting patient safety [63]. The simulations could

steepen the initial learning curve and facilitate the transfer of obtained skill to the

real clinical environment [64]. Virtual reality (VR) training systems also can serve as

safe and effective alternatives to more traditional learning venues, such as the clinical

operating room (OR) [65].

Training simulators are human-robot interaction (HRI) systems in which robots

may assist users to complete a human-robot collaborative manipulation task. Since

such systems are human-in-the-loop systems, skill models can be developed and used

as references for haptic guidance force calculation in real time. This encourages

trainees to correct their motions and improve their performance based on the skill

models [4]. Statistical models, e.g. hidden Markov models (HMMs) and their deriva-

tives, have been used to develop surgical skill models for discriminating and evaluating

the skill levels of users [24, 49, 51, 66]. Using statistical models and machine learning

algorithms, the uncertainty of robots and environments are considered for providing
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sound methodologies in robotics. Statistical models are also highly effective when

analytical models are rarely available for complex tasks [22, 39]. In [4], using statis-

tical models, a kinematic (positional) learning-based approach has been proposed to

generate only guidance forces. However, in the present work a kinesthetic (positional

and force) learning-based approach is developed for generating guidance forces as well

as skill assessment in a virtual surgical simulation.

In HRI, learning from demonstration (LfD) aims to incorporate the knowledge or

skills of humans into robot learning [6]. This may enable robots to assist humans

for performing collaborative tasks, including lifting objects, manufacturing, and sur-

gical simulations [4]. Demonstrations can be provided through kinesthetic teaching

and/or teleoperation [6–8]. In kinesthetic teaching, humans directly guide the robot’s

body to perform a task while in teleoperation, demonstrations can be done through

data gloves [9], motion/vision-based systems [10], or haptic devices [6]. Kinesthetic

information have been generated and measured due to a physical interaction with

a robot [7, 8, 11] or using haptic devices in teleopration [6]. Similarly, we generate

kinesthetic feedback, however, in a surgical virtual simulation based on a developed

computed-tomography-based (CT-based) bone model. In addition, virtual fixtures

have also been used in haptic-feedback-enabled simulations to improve the execution

of demonstrations [12,13]. On the contrary, in our learning phase (detailed in Section

3.3), the demonstrations of experts interacting with the simulation, with no virtual

fixtures and/or haptic guidance, are used to learn motion stiffness with focus on skill

assessment and residents’ training/practice.
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In the literature, both positional and force data have been used to teach a robot

collaborative skills from demonstrations [6, 7, 67, 68]. In orthopedic drilling surgery,

since bone tissues have different stiffness, expert surgeons should apply controlled and

precise force to each layer of the bone in order to avoid damaging bone tissues. In such

applications, the control of interaction force is required to establish an appropriate

relationship between applied force by the human/robot and changes in the kinematic

state of the contact point with the environment. In contrast to previous work which

use expensive force/torque sensors to obtain force skills, we use virtual interaction

force to capture force skills for teaching a robot collaborative skills and controlling

the interaction force.

In this chapter, we propose a learning-based approach in kinesthetic HRI simula-

tion that aims to transfer the skills of expert surgeons to resident trainees (see Fig.

6). During learning phase, the expert demonstrations are used to develop an expert

HCRF model for learning the stiffness variations of different bone layers. In addition

to the expert HCRF, a novice HCRF model is also developed from the demonstration

of novice residents to discriminate the skill levels of a new user. In practice phase, the

learning-based approach, which encoded the stiffness variations, guides the trainees

to perform training tasks similar to the experts motions.

44



Figure 6: Phases of the proposed approach. Learning: use expert and resident demonstra-
tions to develop skill models (HCRFs). Practice: produce real-time learning-based guidance
forces to adapt the motion stiffness of residents according to the interaction provided by
the experts. Discrimination: assess and discriminate the skill level of user.

To investigate our approach, we develop a simulation for femoral bone drilling,

with applications to osteonecrosis and fracture stabilization (presented in Section

3.4). We develop procedures to a) model patient-specific 3D bones from CT scan

data, b) incorporate density and stiffness properties into the models for more realistic

demonstrations, and c) evaluate residents performance. Our approach is evaluated

experimentally, which is detailed in Section 3.5.

The main contributions of the present work are to a) develop a kinesthetic-HRI-

based approach to both discriminate the skill levels of users and generate guidance

forces for a virtual surgical simulator, and b) use virtual haptic rendering forces,

which are developed based on real CT data, to learn motion stiffness variations.
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Figure 7: General architecture of the simulation and the learning-based guidance (LbG)
approach. Expert skill model is used to recognize and segment the drilling motion within the
bone layers. Motion similarity generates adaptive stiffness gains (KLbG) based on the simi-
larities among current drilling motion and the reference skill model. A variable impedance
control strategy calculates forces to guide the user through a reference path. Temporal ob-
servations are position, velocity, and acceleration of the robot/human in addition to haptic
rendering force.

3.2 General Architecture

The general architecture of the simulation and the learning-based approach is shown

in Fig. 7. In LbG, during practice, the expert skill model (HCRF) segments the

drilling motion of users within the bone layers. Then, motion similarity estimation

block determines how well the current drilling motion of the user is similar to the skill
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model. The result is used to adapt the value of variable stiffness gains in our learning-

based control strategy (variable impedance control block) for producing guidance

forces. In this approach, when a user moves the drill less similar to the reference skill

model, greater guidance forces are applied to the end-effector and user’s hand.

The dynamics of the robot is described by

fH + fLbG + fHR =M ẍ+Dẋ (12)

where x is the position of the end-effector (drill bit), and M and D are positive-

definite matrices representing inertia and damping, respectively. As shown in Fig. 7,

the inputs to the robot are human applied force (fH), haptic rendering force (fHR),

and additional virtual guidance force (fLbG), which represents variable guidance force.

The users may feel two types of haptic force as follows. 1) Haptic force feedback

produced to recreate sense of touch for the interaction between drill and the bone

in virtual environment. 2) Guidance force that is only applied in practice mode

for improving user performance. In the learning phase, for developing skill models

(expert and resident models) the guidance force is set to zero to capture the real skill

of users.

The inputs of the simulation system are patient specific CT data of femur bone

and its segmentation. A semi-automatic segmentation method is used to separate the

various layers of the bone: cortical bone, cancellous bone, and bone marrow. The

47



segmented bone data are used to build patient femur model by volume rendering.

The density of voxels is assigned regarding to the intensity of pixels in the segmented

CT data. The original CT matrix is also preserved for further X-ray simulation. The

users are able to rotate the femur model with the mouse and take X-ray from any

desired orientation. This results in simulating the actual process in the operation

room.

The users interact with the model using a haptic device (Phantom Omni, Geo-

magic Touch, USA), a keyboard, and a computer mouse. Virtual drill can be manip-

ulated to touch/drill the femur bone model through the stylus of the haptic device.

In haptic rendering loop (1000 Hz), the current position and orientation of the haptic

stylus are updated for calculating the transformation matrix of the drill as well as

collision detection. If a collision between the drill and the bone is detected, force

feedback are computed using the transformation matrix and the density of the in-

tersected voxel. In the graphic rendering loop (30 Hz), the existence and intensity

of a voxel is updated to generate the view of the bone volume model in the virtual

environment (VE).

3.3 Learning-Based Guidance

This section presents the description of the learning-based approach that uses de-

veloped skill models to generate adaptive guidance forces and discriminate the skill

levels of users. In the proposed approach, an HCRF-based skill model is developed
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regarding the kinematic data of the expert motions associated with different bone

layers. Adaptive guidance forces are generated in real time based on the similarity

between the current motion of users and the skill model. Since bone layers have

different stiffness, experts adjust drilling forces based on their experiences and skills

to operate a smooth drilled path. Similarly, the guidance forces encourage users to

follow the target path within the bone with less position error and more similar to

the expert motions in terms of velocity, acceleration, and drilling temperature.

3.3.1 Learning-Based Skill Model

Since the analytical models of human motions/behavior are rarely available in HRI ap-

plications, the non-linear, non-stationary, and non-deterministic features of stochas-

tic/statistical models make them powerful tools for modeling human behaviors, in-

cluding the stochastic and uncertain human behavior in terms of both mental state

and resulting actions [4, 23]. Stochastic modeling methods (i.e. HCRF) enable ma-

chine learning algorithms to 1) capture the spatial and temporal variation of the

human motions, 2) capture the change in variance along the movement, and 3) tol-

erate noise and missing data.

In order to capture users’ sequential dynamic characteristics and segment the

drilling motion of a user within different bone layers, we develop an HCRF as a

learning-based skill model for the training simulation. Generally the structure of

hand motion sequences is complex and statistical models with hidden structures are

powerful tools for recognition tasks, including human motion or gesture recognition
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[41]. In addition, learning-based guidance (i.e. HCRF-based) has shown better user

performance improvement, compared to constant haptic guidance [4]. HCRF models

incorporate hidden state variables in a discriminative random field model to provide a

way to determine a single label for an entire input sequence, e.g. the drilling motion

of users. To model the motion of experts within bone layers, an HCRF model is

developed by [41]:

P (y|O, θ) =
∑
S

P (y, S|O, θ) =
∑

S e
ψ(y,S,O;θ)∑

y′∈Y,S∈Sm eψ(y
′,S,O;θ)

, (13)

where y ∈ Y = {Cortical bone, Cancellous Bone, Bone Marrow, Necrosis, None}

is the class label of the drill bit motion in and out of the bone, O is an observation

sequence, S is the set of hidden states, and θ is the model parameters. ψ(y, S,O; θ),

parametrized by θ, calculates the compatibility among a label, a set of observations

and hidden states. In order to estimate the parameters, an objective function is

utilized as follows [41]:

L(θ) =
n∑
i=1

logP (yi|oi, θ))−
1

2σ2
∥θ∥2 , (14)

where {yi, oi} is the training set of labeled examples, n is the number of training se-

quence data, and σ2 is the variance of a Gaussian prior. We use a Quasi-Newton op-

timization method, L-BFGS [54], for finding the optimal parameter values of trained

HCRFs ( θ∗ = arg maxθ L(θ)).
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3.3.2 Adaptive Learning-Based Control

In real time, the proposed learning-based approach recognizes drilling motions and

continuously generates motion similarity (MS ) between the user motion and the

trained HCRF:

MS(y,On) = arg max
y∈Y

log P (y|On, θ
∗) (15)

where On is the last n observation sequence of user motion.

P (y|On, θ
∗) is a probability value that shows how much the current drill motion of

the user is similar to the expert motion model. This HCRF-based similarity is used

to determine the impedance control gain. An increase in the probability value leads

to an increase in motion similarity.

An adaptive learning-based control scheme is used to lessen the effects of un-

modeled dynamics, including unobserved deviations from a motion plan, and natural

variability of human behavior. Guidance forces are calculated using the following

equations:

fLbG = −KLbG(MS(y,On))[x− xd] (16)

where fLbG is the guidance force, KLbG > 0 is an adaptive stiffness gain depends on

the motion similarity (MS) that is a typical probability function, xd is the desired
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position on the reference path, and x is the current position of the end-effector. The

desired position, which is closest to x, is instantaneously found based on computa-

tional geometry methods [55].

The guidance force is computed using two terms: variable stiffness gain and the

position error between the current end-effector position and the desired position. The

direction of the guidance force is along with a line, joining the desired position and

the current position.

A linear modulation function is selected for KLbG to map each motion similarity

value to the corresponding stiffness gain:

KLbG(y,On) =
Kmax −Kmin

MSmin −MSmax
(MS(y,On)−MSmax) +Kmin (17)

where Kmin and Kmax are the maximum and minimum stiffness values. The values

are selected in order for the safety of haptic device and giving users a good sense of

the path they should follow, but they are able to stay outside the reference path, if

necessary. MSmin and MSmax, which determine the range of MS, are selected based

on the results of a pretest user study to minimize motion recognition error rate. This

study also indicated that in the operation area of the system, the linear modulation is

a fair mapping between MS and KLbG to encourage residents drilling the bone more

similar to experts. The stiffness gains are adaptively adjusted in real time according

to the end-effector motions.
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A windowing approach, in which the last short segments of real-time drill bit

motion were sampled (n = 5 data points), was used to compute the motion similarity

(MS ) and guidance forces. Short window sizes may reduce the recognition accuracy of

drill motions and accordingly the effectiveness of generated LbG forces. Long window

sizes would result in latency and/or mistake in recognizing drill motions while the

drill bit enters a bone layer from another one. The window size was experimentally

selected to make a balance between these effects. Furthermore, a three-point moving

average filter of previous stiffness gain data is used to smooth the stiffness gains and

accordingly the guidance forces. The number of points is experimentally selected to

obtain a smooth output signal.

According to passivity analysis, which is common for haptic simulations [56, 57],

the coupling of the Phantom 1.0 haptic device and a VE is locally stable while the

designated stiffness gains keep below 1015 N/m [56]. In this study, although using a

different version of Phantom device, we selected a lower range of stiffness in the range

0-222 N/m, that was experimentally verified to lead to a stable haptic interaction.

3.4 Femur Bone Drilling Simulation

This section details the development of the simulation. First, we describe the cre-

ation of the bone model, which rendered based on patient-specific CT data (Section

3.4.1). Then, a voxel-based approach is developed to model the different stiffness of

bone layers (Sections 3.4.2 and 3.4.3). To best of our knowledge, for the first time,
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we use haptic interaction virtual forces generated in the virtual simulation for de-

veloping the skill models, evaluating users’ skill, and producing guidance force in a

kinesthetic learning-based approach. Next, we present our approach for generating

user-defined X-ray views of the bone (Sections 3.4.5 and 3.4.6). Finally, the features

of the developed graphical user interface are presented (Section 3.4.7).

3.4.1 Bone Modeling from CT Images

We use CT data of a patient suffering from femoral head necrosis to build a model

for the simulation training system. Nowadays, CT and magnetic resonance imaging

(MRI) are the two most common modalities that provide 3D medical images. MRI

exceeds most in soft-tissue differentiation while CT, a tomography of X-ray by na-

ture, is suited more for bone pathology diagnosis. Both bone density and strength

information can be extracted from CT data [69]. We used a set of CT images of a

femur bone as the basis of our visual and haptic modeling. The representative sample

slices of different view angles and an initial rendering are shown in Fig. 8.
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Figure 8: CT images as data source for modeling. Upper left: top view; Lower left: left
view; Upper right: rendering display; Lower right: front view.

Intensity values on the CT images represent the attenuation coefficient of the

tissue. The bright part in the slice is the cortical bone layer whose attenuation

coefficient is high, and the dark parts are cancellous bone filled with bone marrow

with low attenuations.

We segment the bone by developing a semi-automatic intensity-based thresholding

method that requires several thresholds. Although an automatic thresholding method

works well in the segmentation of the cortical layer, it often fails to differentiate the

bone marrow part from the necrosis part in the femoral head, since in the latter case

geometrical information also should be considered. This method includes threshold-

ing; simple region growing algorithm using Robust Statistics Segmentation module

in 3D Slicer. After careful adjustment and manual modification, cortical bone layer,

femoral head necrosis, and bone marrow in the rest of the cavity are segmented apart
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and turned into STL (STereoLithography) format surface models (see Fig. 9).

Figure 9: Surface models extracted from CT data. From left to right: Cortical bone
surface, bone marrow, and necrosis.

3.4.2 Voxel-Based Rendering

We develop a volume rendering method with respect to bone drilling application and

algorithm complexity. Since the tissue of interest is a hard bone, where drilling and

tissue removal are the main operations, volume rendering has been preferred since

it stores mechanical information at depth of the bone [70–73]. To address algorithm

complexity, voxel removal is appropriately modeled in the method with respect to the

fact that every voxel has its own density value. When the drilling force is applied

on a set of voxels, their densities are reduced by a certain rate, and a voxel will be

removed once its density becomes zero. Each voxel is associated with color, surface

normal, and density information. The use of voxels also simplifies calculations while

identifying interactions with the tool object.

A second rendering method is also developed to produce a more realistic model.

To prepare the images for voxel rendering, the top view of the CT data is segmented
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to distinguish the bone from the tissue, and remove the tissue from the images. The

bone boundaries are identified with respect to the thresholds and filtered out small

noise boundaries. Using a built-in colormap, the resulting model consists of voxels

which their color values are based on the intensity values from the CT data. In

addition, we use surface rendering for haptic display of the tool.

3.4.3 Stiffness Rendering

We consider the mechanical properties of bone layers for developing the simulation.

The strength of cortical bone is usually larger than ten times of that of cancellous

bone [74]. Brown et al. have studied mechanical property distributions, including

stiffness and yield strength distributions, in femur region through direct mechanical

measurements [75]. We use their results to adjust the stiffness of the bone layers.

The drilling speed and stiffness of voxel-based objects are completely dependent

on the number of voxels that the drill bit is in contact with. However, using a large

number of voxels to achieve low drilling speed could place a heavy burden on the

graphic processor, as the voxel object would then be exponentially harder to render

in the scene. To avoid this conflict, we utilize the color value of each voxel. First,

since the application recognizes which voxel of an object is a part of upon contact, a

transparency decrement is set for each object. The value is higher for high density

bone and lower for low density bone. Upon contact, the transparency values are

extracted from the contacted voxel and decremented by a fix value. Should the

transparency value of a voxel reach zero, it is deleted from the scene. Second, the
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intensity data from the CT scan are used to transfer the different intensity values

of the pixels to the transparency values in each voxel. Similar to the first step,

decreasing these values at various increments produces the same haptic feedback as

drilling through different bone structures.

3.4.4 Drilling Motion

To further enhance the drilling experience, drill vibration is added to the simulation;

whenever the drill bit point is in contact with the voxel object and the drilling button

of the haptic device is pressed. Each bone layer has its own unique vibration amplitude

and frequency. In regard to [73], we set these values so that material with higher

stiffness would cause the drill to vibrate at a lower frequency and higher amplitude.

3.4.5 Virtual X-rays

One purpose of this study is to simulate the challenges of actual bone drilling op-

eration. During the surgical treatment of osteonecrosis in OR, surgeons require to

stop the drilling and change C-arm position for taking X-rays from different point of

views. This assist them to ensure that the drill traverses the correct path within the

bone. Our simulation is capable of illustrating the perspective 3D model of the bone

as well as three X-ray views of the bone, including front, side, and top. As shown in

Fig. 10, these features are simultaneously displayed to users.We use Euler angles to

indicate the orientation of our field of view (FOV). The users can change projection

direction during drilling. With these X-ray images overlaid with the real-time drill
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projection, they can locate the 3D drill position, which is critical in actual surgeries.

Figure 10: To easier perform the drilling task, users are provided with three X-ray views
of the bone, the reference trajectory, and a line which shows the direction of the drill.

3.4.6 Mapping between CT Image and 3D Model

In order to show the right slice of the CT image when moving the plane in space, the

relationship between 2D image and 3D model has to be determined. The mapping is

based on the number of the slices and the size of the model. If the number of the CT

images for front, side, top views are a, b, c ; and the size of the bounding box of the

3D model is x× y × z; the relationship is expressed as:
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i =
l

a
× x, j =

m

b
× y, k =

n

c
× z,

where i, j, k are the 3D coordinate in world frame correspond to the CT images and

l,m, n are the index of the CT images.

3.4.7 Bone Temperature

The simulation also shows the current drill temperature. The bone temperature de-

pends on drilling speed, drilling time or the applied force [76]. For the first time, to

best of our knowledge, we simulate drilling bone temperatures, in which the temper-

ature is generated regarding drilling parameters and the experimental data presented

in the literature [76]. While the tissue is subject to temperatures more than 60◦C,

bone tissue necrosis can be expected [77]. At lower temperatures, injury depends

on the drilling time. The bone tissue can bear the temperatures of 45◦C for more

than 600s, 47◦C for more than 60s and 50◦C fo more than 30s to prevent thermal

necrosis [76].

3.5 Experiment

The goal of this experiment is to investigate the efficacy of the learning-based ap-

proach in combination with the developed simulation to discriminate expert surgeons

from novice residents and generate guidance forces in practice phase for improving
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user performance.

3.5.1 Drill Motion Modeling

We train two HCRFs to model the five motions of drilling, the end-effector movement

of experts/residents out of the bone (None) and within bone layers, including Cortical

Bone, Cancellous Bone, Bone Marrow, and Necrosis. Although expert HCRF is used

for generating guidance forces in addition to skill discrimination, resident HCRF is

only used to discriminate the skill level of users.

Figure 11: An expert surgeon while interacting with the simulation.

To train the expert HCRF, a data set was gathered from the demonstrations of

five expert surgeons who interacted with the simulation through the haptic device

and drilled the pre-planned path three times. Fig. 11 shows a surgeon while per-

forming a demonstration. Seven surgical residents also demonstrated the task to
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collect another data set for training the resident HCRF. Observed features included

the position of the end-effector as well as the velocity and acceleration, which derived

from the position. After the data collection, the data sets were segmented into the

five class labels of the drilling motion. The expert and resident HCRFs were devel-

oped with 9 states and 12 states, respectively. The number of hidden states were set

by minimizing the classification error rate on each training data set. The range of

[MSmin,MSmax] = [−2500, 0] and [Kmin, Kmax] = [0, 250N/m] were selected for this

experiment regarding the results of a pretest user study.

3.5.2 Procedure

Seven surgical residents (aged 28 to 33 with a mean age of 29.9 years) were asked

to complete the task, which was drilling a pre-planed virtual path within the femur

bone. We defined the pre-planned path, in which the residents had to pass through

all the bone layers to get to the target point. A successful drilling task requires

motor skills that improve task performance regarding creating a hole at the correct

location without applying excessive force, over-penetration, heating, or skiving with

the drill [78]. As shown in Fig. 10, during bone drilling, participants could see the

three X-ray views of the bone, the reference trajectory (pre-planned path), and a thin

line along the drill that shows the direction of the drill. The reference trajectory is a

common drilling path in real surgery [79]. Every participant had five minutes to get

familiar with the simulation and then carried out the task three times in the following

LbG mode.
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Learning-based Guidance (LbG): The developed expert HCRF model was

used to provide adaptive stiffness gains and consequently generate guidance forces.

In the process of data collection for drill motion modeling, five experts and another

seven residents had also performed the task, presented in Section 3.5.1, in the following

mode.

No Guidance (NG): No guidance forces was provided to participants. The

expert surgeons whose demonstrations are used to develop the expert HCRF are also

the same who give the performance parameters of the task. The surgeons performed

the task only in NG mode since they were experts in drilling and did not require

guidance.

3.5.3 Results and Discussion

We use leave-one-out cross validation method to evaluate the skill discrimination

performance of the trained models (expert and resident). We leave one trial of a

drill motion out for testing and use the remaining trials for training the drill motion

models. Since the collected datasets is not large enough, leave-one-out cross validation

is selected for validation. Furthermore, this validation method has been used in the

literature to calculate the recognition accuracy of surgical training sub-tasks [80] and

residents’ level of expertise [81]. The average of classification/recognition results for

the two skil models (HCRFs) are presented in Table 5. The average percentage of

expert motions that are correctly recognized by the expert model is 89.1%. This rate

for the resident model is 88.4%. Considering the recognition of three motion labels
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out of five for each drilling trial, the skill discrimination of a user as novice-level or

expert-level results in 100% correct recognition. Taking into account of all the motion

labels during a trial results in the increase of recognition rate to 100%, which is also

observed in [24].

Table 5: Skill Recognition Rates (%) Based on Drill Motions

Cortical Cancellous Marrow Necrosis None

Expert Model 87.1 86.3 94.9 83.6 93.6

Resident Model 86.1 92.8 89.5 79.6 94.0

To investigate the efficacy of the learning-based approach, we compare the per-

formance of three groups: the five experts who performed the drilling task while no

guidance is provided (E-NG), the seven residents who performed the task while LbG

is provided (R-LbG), and the other seven residents with no guidance(R-NG). Three

metrics are used to evaluate user performance: 1) the completion time of the bone

drilling task, 2) the average root mean square error (RMSE) for the position error

between the pre-planned path and the drilled path, and 3) the average variation of

the bone temperature during the drilling task.

The means and standard errors (SE) of the completion time, position error, and

average bone temperature across all participants are presented in Fig. 12. Table 6

shows the between-subject analysis of variance (ANOVA) results, with a rejection

level of 0.05. The results of post-hoc Tukey-Kramer pairwise comparisons, ∗ (P <
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0.05), are shown in Fig. 12. The results show that among the three groups, experts

have significantly better performance in terms of completion time and average bone

temperature. All the three performances for R-LbG are better than for R-NG. This

indicates that providing the guidance forces improves the performance of residents.

Figure 12: Means and standard errors of completion time, average RMSE for position,
and average bone temperature across all participants for the three groups: experts with
no guidance (E-NG), residents with the proposed guidance (R-LbG), and residents with no
guidance (R-NG). The R-LbG group have significantly better time and average temperature
compared to R-NG. * marks significant differences.
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Table 6: ANOVA Results for the Performance Metrics. E-NG: experts with no guidance;
R-LbG: residents with LbG; R-NG: residents with no guidance; SE: standard error

Metric
E-NG

Mean(SE)

R-LbG

Mean(SE)

R-NG

Mean(SE)

F(2,16) P-value

Time 23.29(1.00) 26.50(0.71) 30.21(0.98) 14.92 <0.001

RMSE 5.56(0.54) 6.59(0.35) 7.83(0.42) 6.5 0.003

Temp. 42.41(1.39) 51.91(1.79) 58.45(1.92) 24.35 <0.001

The results show that although our learning-based approach results in the im-

provement of resident performance, residents are not able to perform the task as

skillful as the experts. The position error for the experts are not significantly better

for R-LbG. The position error depend on the initial alignment of the drill in proper

direction while a user starts drilling the bone. While the drill enters the bone, the

user has less ability to maneuver the drill. The simulation provides the users with

the three X-ray views of the bone to assist them in drilling with more appropriate

alignment. This leads to lower RMSE.

Measuring the three metrics enables us not only to assess the skill of users ob-

jectively, but discriminate their skill level. The significant difference between the

performance of experts and R-NG signifies that in addition to the HCRFs, the met-

rics can also be used to discriminate the skill level of users as experts or residents.

One idea behind this chapter is to investigate if we can manage to improve the
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performance of the residents for a considered task using machine leaning-based guid-

ance. To achieve this goal, we considered a femur drilling task and measured user

performance for each method of providing force. The experiment has been conducted

to investigate the performance of the two groups of residents. When force is applied,

the performance of the residents significantly improves. However, as the force is not

present, the second group of residents is not performing the task as well as the first

group provided guidance forces.

One of the contributions of this work is to take the first step in investigating

how machine learning-based guidance (LbG) could be used in surgery training by

a clinical study. The focus of present work is mostly on studying performance not

learning effect. Similarly, many researchers have been evaluated such learning-based

(LfD-based) approaches only by investigating user/task performance [4, 7, 8].

3.6 Conclusion

This chapter presented a learning-based approach that aims to learn robots for trans-

ferring skills from expert to trainees. We developed the approach for both skill dis-

crimination and user performance improvement in a virtual reality (VR) simulation

for femur drilling surgery. Real CT data were used to provide the users with the

feeling of bone stiffness variations in regard to the drilled depth. HCRF-based skill

models (expert HCRF and resident HCRF) were developed from experts and resi-

dents demonstrations to segment the drill motion within different bone layers as well
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as differentiate user’s skill as experts or residents. In practice phase, the expert HCRF

was used to adapt motion stiffness and generate learning-based guidance (LbG) for

assisting residents with applying appropriate forces within different bone layers. A

set of performance metrics was also used to objectively evaluate the skills of users.

The experimental results of our clinical study showed that LbG significantly im-

proves residents performance in terms of completion time and average bone tempera-

ture. However, the residents were not able to perform a drilling task in a similar skill

level of the experts. The results also indicated that in addition to skill models, per-

formance metrics, including task completion time, RMSE for position, and average

bone temperature, can be used to discriminate the skill levels of users.

In future work, the learning effects of the proposed LbG will be studied. In addi-

tion, a 6 DoF haptic devices will be used to provide more realistic virtual simulation.
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Chapter 4

Towards Learning-Based Guidance

for Skill Transfer in Human-Robot

Teleoperation

This chapter presents a learning-based guidance (LbG) approach that assists oper-

ators to complete a task in teleoperated human-robot interactions. In this learning

from demonstration (LfD) approach, teleoperation kinematic demonstrations in com-

bination with kinesthetic demonstrations are used to develop a skill model. The

temporal and spatial variation of demonstrations are learned using hidden Markov

model (HMM) as the skill model. A modified Gaussian Mixture regression (GMR)

in combination with the HMM is also developed to produce a continuous trajectory.

The guidance forces are adaptively generated and provided to trainees based on sim-

ilarities between trainee performance and the skill models in real time. This learning
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based guidance encourages trainees to navigate a robot in a teleoperation system

similar to the expert operators. In addition, we train two sets of skill models to in-

vestigate the effect of the incorporation of two variable impedance control methods

into the LbG approach on the effectiveness of guidance forces. To experimentally

evaluate our approach, a teleoperated robot is navigated through a haptic steering

wheel and a haptic gas pedal. The results show that the performance of the users

specially in terms of avoiding obstacles and task completion time is improved when

guidance forces assist subjects.

4.1 Introduction

Human-robot interaction (HRI) is an extensive and diverse field of study [82]. One

area of HRI applications is teleoperation in which humans perform manipulation and

navigation tasks in remote environments to continuously control robot movements.

Teleoperated robots enable humans to operate in hazardous or inaccessible environ-

ments. Another application area is automotive steering guidance that supports drivers

with safety and driving subtasks, including lane keeping, lane changing, or obstacle

avoidance [83–85].

The lack of time and skill of robot programmers may result in limited robot ca-

pabilities. Learning from demonstration (LfD) is a method for teaching robots that

do not require the skill of expert programmers [3]. In this method, users demonstrate

desired skills to a robot for performing new tasks, without any special knowledge
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about the robot. A set of trajectories, which are the time-series sequences of teachers

demonstration, is usually used to learn policies or skills for a task that may be gener-

alized beyond the provided demonstrations. In robotics, it is a complicated procedure

to explicitly plan a desired trajectory that meets task constraints as well as generalize

movements in novel situations. During the reproduction phase of LfD, robots are able

to optimize and generalize the movements onto similar motion in novel situations [86].

LfD enables robots to learn skills or motion behaviors from demonstrations in

which the robots extract information from the demonstrations and develop learning-

based models. Using these models, robots may assist humans to perform a collab-

orative task. Demonstrations can be provided through kinesthetic teaching and/or

teleoperation [6–8,68,87]. In kinesthetic teaching, humans directly guide the robot’s

body to perform a task while in teleoperation human operates robots remotely and

robot’s sensors record the execution. LfD has widely been used for many robotic

applications, including helicopter maneuvering [88], car parking [89], robot teleoper-

ation [90], surgical training simulation [4], and robotic surgery [91].

Models of human operators (drivers) play an important role in systems that share

control with operators (drivers) since human behavior is stochastic, unpredictable,

and dependent on operation (driving) skills [85]. Using the natural response of

drivers to traffic situations may results in better performance in a guidance-enabled

driving system [92]. Furthermore, in unknown environments, robots face many chal-

lenges that humans are usually more adept in dealing with. As a result, robots

assisting humans rather than replacing them in form of LfD has attracted many
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researchers [23, 93–95]. The controllers can regulate the movements of the user for

assisting and/or guiding purposes, depending on provided demonstrations and human

skill models. They may apply force to guide the robot/human through a predefined

sequence of motions, obstacle avoidance tasks, or to limit it [6, 14, 18, 29]. These

control algorithms allow the robots to function in unstructured environments [96].

To control the interaction with unknown, unstructured and dynamically changing

environments, impedance control proposed by Hogan [28] has been extensively used

in HRI. Impedance control gains can be selected as constant values [18–20,29, 30] or

may adaptively be varied to assist users to perform dynamic tasks [4, 16, 31]. In the

present work, each impedance control gain is adapted in real time based on a skill

model that developed from a specific set of human/robot observations.

To model operator maneuvers, rather than using a time-dependent model of tra-

jectories, the intrinsic dynamics of motions are considered using statistical models.

Thus, the model is independent of explicit time variables and can generate trajec-

tories with similar dynamics that were not covered during demonstration. Hidden

Markov model (HMM) has been used as a statistical model that captures the spatial

and temporal characterization of human/robot motions during demonstrations and

reproduces human motions [97]. In addition, modified Gaussian Mixture regression

(GMR) has been used in combination with HMM to robustly generalize the motion

as the desired robot state to be achieved, in contrast to simple trajectories [6,94,98].

Similarly, we use HMM to learn a dynamic task as a sequence of action and modified

GMR to produce reference robot states. However, we use HMM not only to learn and
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recognize the dynamic model of demonstrated maneuvers of a teleoperation task, but

also to generate adaptive guidance forces to steering wheel and gas pedal for avoiding

collisions and performing smooth teleoperation maneuvers.

There has also been many research on haptic enabled teleoperations. A major

application of mobile robot teleoperation is to explore remote areas like battle fields

or hazardous chemical regions [99]. The robot-obstacle distance for computing the

feedback forces has been used in previous work, where a designated haptic manipu-

lator probe is used to impart the translational velocity and angular velocity to the

robot. The results have suggested that haptic has a significant effect in reducing the

number of collisions, and to decrease the minimum robot-obstacle distance [99–103].

Haptic-enabled systems have also been used to support humans in driving tasks,

including car following [92], navigation [104], and eco-driving [105]. Haptic can be

provided to drivers through steering wheel, gas pedal, seat, or seat belt. An important

objective of the haptic systems is to avoid collisions, evade stationary obstacles, or

pedestrians [104, 106, 107]. Mulder et al. have proposed a few haptic algorithms for

haptic gas pedal feedback for active car-following support [92,106]. Farkhatdinov et al.

[104] have proposed a force feedback rendering strategy for mobile robot teleoperation

with variable feedback gain, where gain is a function of the robot-obstacle distance and

the derivatives of it. They modify the stiffness of a linear impedance control strategy

[28] based on the distance to the obstacle and its derivative. Their results suggest

that this approach reduces the magnitude of the force provided to the teleoperator

and improves the accuracy of the operation. In the present chapter, we propose the
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addition of an LfD method as well as the geometrical distance and velocity relative

to obstacles in order to adjust the adaptive stiffness and damping gains of impedance

control.

In this work, we develop a learning-based guidance approach that can provide

operators with guidance forces to improve safety, keep lane, and avoid obstacle colli-

sion. The forces are delivered on the steering wheel and gas pedal that augment to

the usual force feedback of steering and pedal systems. We use the demonstrations

of expert operators while performing a teleoperation task to capture their navigation

skills. Robot motions are learned from the demonstrations using an HMM, and a

modified GMR is developed to use implicit temporal information from the statis-

tical model, HMM, for generating continuous reference motion during reproduction

phase. In real time, the skill model adapts the gains of several variable impedance

controllers. In addition, the distance between the robot and obstacles is incorporated

into the impedance control to generate guidance forces that also assist operators with

avoiding obstacle collisions. For the evaluation and implementation of our approach,

a haptic enabled setup is developed which the guidance forces are provided to a

teleoperated robot through a gas pedal and a steering wheel.

A main contribution of this chapter is to develop skill models using a combina-

tion of both kinesthetic teaching demonstrations (kinesthetic of pedal and steering)

as well as teleoperation demonstrations (kinematic of the teleoperator). Each skill

model is used a distinct kinematic dataset to learn a specific teleoperating skill re-

garding the characteristics of that skill. In addition, LfD-based skill models are
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incorporated into single-gain variable impedance control (SV-VIC) and multiple-gain

variable impedance control (MV-VIC). The capabilities of these two impedance con-

trol methods for generating LbG forces are compared in terms of the performance

of teleoperation. Finally, to our best knowledge, for the first time in this chapter,

a learning-based approach is developed for the adaptive guidance of a teleoperator

through both haptic steering wheel and haptic gas pedal.

The outline of this chapter comprises as follows. In Section 4.2, the learning-based

guidance and the model of the system is discussed in details. Section 4.3, presents

the experimental studies to evaluate the effectiveness of the proposed approach. In

Section 4.4, the conclusions and future work are presented.

4.2 Learning-Based Guidance

This section presents the description of the learning-based approach that uses devel-

oped skill models to generate adaptive guidance forces.

4.2.1 General Architecture

In the proposed approach, HMM-based skill models are developed regarding the

demonstration of expert operators in which they follow a target path without any

collisions. A combination of HMM with GMR is used to generate continuous ref-

erence paths from the demonstrations [98]. Adaptive guidance forces are generated

in real time based on the similarity between the current maneuver of users and the
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skill model. To avoid collision, experts smoothly adjust the direction and velocity of

the robot based on their experiences and skills. During reproduction, the guidance

forces encourage users to follow the reference path with less obstacle collisions and

less completion time. In this work, we use adaptive guidance forces for teleoperator

navigation since learning-based guidance (i.e. HMM-based) has shown better user

performance improvement, compared to constant haptic guidance [4].

Fig. 13 describes the block diagram representation of the LbG approach. Our

framework consists of a haptic steering wheel and haptic gas pedal, a wireless net-

work, and a teleoperated robot (DaNI robot). The input forces from the human

(user’s) hands and foot are represented as fs−h and fp−h. These forces manipulate

the direction of movement through steering wheel angle θs and the velocity of the

robot through pedal angle θp. Applying LbG forces (fs−LbG and fp−LbG), when a

user moves the steering/pedal less similar to the skill models, more guidance forces

are applied to steering/pedal (the hands/foot of the user) to encourage the user to

perform correct maneuvers.

The robot continuously interacts with the environment and the resulting data is

collected within its sensing range. In this work, the ultra sonic sensor mounted on

the robot gathers the distance (d) and angle (φ) to the obstacle within its range. The

data is communicated to the robot through a wireless network. The network is local

and the issue of latency can be disregarded.
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Figure 13: The block diagram representation of the learning-based guidance (LbG) ap-
proach. The human input forces to the system (fs−h and fp−h) and calculated LbG forces
from the system to the human (fs−LbG and fp−LbG) are applied through the steering wheel
and gas pedal. An expert skill models is used to generate maneuver similarity and resulting
adaptive impedance gains based on the similarities between current angular motion of steer-
ing (θs)/pedal (θp) and the reference skill model. A variable impedance control strategy
calculates forces to guide the user for following desired angles. The distance (d) and angle
(φ) to the obstacle are also incorporated into the impedance control to avoid collision with
obstacles. Temporal observations are angle of steering wheel, angle of gas pedal, as well as
the position and velocity of the teleoperator.

4.2.2 Learning and Generation of Motions

The examples of successful teleoperation demonstrations are used to learn the robot.

To capture the sequential dynamic properties of robot motions, we develop continu-

ous HMMs with Gaussian mixture distribution for a teleoperation task. A K -state
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{S1, S2, ..., SK} continuous HMM with a Gaussian observation, λ = (A,B, π), is de-

fined by three parameters [53]: a state transition probability distribution A = {aij} =

P (St = j | St−1 = i), a set of observation model probabilities B = P (Ot|St), and a

set of prior probabilities π = πi, where πi = P (S1 = i) and 1 ≤ i, j ≤ K.

Since the actual observation sequence is continuous, generating a continuous out-

put requires estimating the probability density function (pdf) of the state output

(observation model). To model this density, the set of demonstrations is used to

estimate the Gaussian mixture parameters. The M -mixture of observation model is

defined as follows.

P (Ot = o|St = i) =
M∑
m=1

P (Mt = m|St = i)N (o;µm,i,Σm,i) (18)

where N (o;µ,Σ) is the Gaussian density, µi and Σi are the mean and covariance of

the state i, Ot is the observation, St is the state, Mt is a hidden variable that specifies

which mixture component to use, and P (Mt = m|St = i) = c(i,m) is the conditional

coefficient of each mixture component. The input and output of each state can be

represented by

µi =

⎡⎢⎢⎣µθi
µθ̇i

⎤⎥⎥⎦ and Σi =

⎡⎢⎢⎣Σθ
i Σθθ̇

i

Σθ̇θ
i Σθ̇

i

⎤⎥⎥⎦ , (19)
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where θ and θ̇ are the angular position and velocity of the steering/pedal, respectively.

In order for generating the reference trajectory and avoiding time scaling, joint

distributions are learned and conditional probabilities are used. To achieve this, the

covariance between the position and velocity is learned using the HMM. We employ

GMR and calculate a likelihood using the HMM representation to capture temporal

and spatial data probabilistically encapsulated in the HMM. In other words, the

original GMR weights are replaced with their HMM’s counterpart as follows [98]:

hi(ot) =
αi,t∑K
k=1 αk,t

(20)

αi,t = (
K∑
k=1

αk,t−1aki) N (ot;µ
θ
i ,Σ

θ
i ),

where hi is the weight factor that is modified HMM forward variable and αi,t is

the probability of being in state i at time t for the sequence of given observation

Ot = {o1, o2, ..., , ot} [53].

In real-time reproduction, the desired angular position and velocity trajectories

are estimated through the GMR at each time step [98]:

θ̂ =
K∑
k=1

hi(ot)[µ
θ
i + Σθθ̇

i (Σθ̇
i )

−1(θ̇ − µθ̇i )] and (21)
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ˆ̇θ =
K∑
k=1

hi(ot)[µ
θ̇
i + Σθ̇θ

i (Σθ
i )

−1(θ − µθi )]. (22)

4.2.3 Variable Learning-Based Impedance Control

In reproduction phase, the proposed learning-based approach continuously generates

maneuver similarity (MS ) between the user motion and the learned skill models,

HMMs:

MSl(y,On) = arg max
y∈Y

log P (On, |λl) (23)

where On is the last n observation sequence of user motion and λl (l ∈ {K,B})

are skill models (HMMs) that adapt the stiffness and damping gains of impedance

control. The features of each skill model is chosen regarding the steering motion,

pedal motion as well as the position and velocity of the teleoperator. The details of

skill model training are presented in Section 4.3.1.

P (On, |λl) is a probability value that shows how much the current pedal/steering

maneuver of a user is similar to the expert skill models. This HMM-based similarity

is used to determine the impedance control gain. An increase in the probability value

leads to an increase in maneuver similarity.

A variable learning-based control scheme is used to lessen the effects of unmodeled
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dynamics, including unobserved deviations from a motion plan, and natural variabil-

ity of human behavior. Generally, LbG forces are calculated using the following

equations:

fLbG = −KLbG(y,On)[θ − θ̂]−BLbG(y,On)[θ̇ − ˆ̇θ] (24)

where fLbG is the guidance force, KLbG(y,On) > 0 and BLbG(y,On) > 0 are adap-

tive stiffness and damping gains depend on the maneuver similarity (MS) that is a

typical probability function. θ̂ is the desired angular position on the desired angular

trajectory, and θ is the current angular position of the steering/pedal.

The skill models are developed such that the variable impedance control follows

the subspace position and velocity of the demonstration of expert operators. λK

and λB are used to adjust learning-based stiffness (KLbG) and and learning-based

damping (BLbG) gains, respectively. An HMM can be considered as a particular form

of finite state machine in which transitions between states are probabilistic rather

than deterministic (see Fig. 14). Therefore, control gains (KLbG and BLbG) are

continuously adapted regarding finite state machines (skill models) in real time.
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Figure 14: A schematic of a K-state hidden Markov model (HMM) that can be considered
as a form of finite state machine for encoding steering/pedal motions.

In addition, we develop two impedance control methods to generate LbG forces.

In the first method, guidance forces are computed based on the adaption of a single

control gain (described in Section 4.2.6). In the second method, two control gains are

simultaneously adapted to generate guidance forces (presented in Section 4.2.7).

Linear modulation functions are selected forKLbG and BLbG to map each maneuver

similarity value to the corresponding impedance control gain:

KLbG(y,On) =
Kmax−Kmin

MSmin−MSmax
(MSK(y,On)−MSmax) +Kmin (25)

BLbG(y,On) =
Bmax−Bmin

MSmin−MSmax
(MSB(y,On)−MSmax) +Bmin (26)

where Kmin ≤ KLbG ≤ Kmax, Bmin ≤ BLbG ≤ Bmax , and MSmin ≤ MSK/B ≤

MSmax. Kmin/Bmin and Kmax/Bmax are the maximum and minimum stiffness/-

damping values. The values are selected in order for the safety of steering/pedal and
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giving users a good sense of the path they should follow, but they are able to stay out-

side the reference path, if necessary. MSmin and MSmax, which determine the range

of MS, are selected based on the results of a pretest user study to minimize motion

recognition error rate. This pretest study also indicated that in the operation area of

the system, the linear modulation is a fair mapping between MS and KLbG/BLbG to

encourage users to navigate more similar to expert operators. The stiffness gains are

adaptively adjusted in real time according to the steering/pedal motions.

In real time, a 0.10s sliding window with step size 0.02s is used for updating

control gains and LbG forces. We restrict the time windows to only use data from

the past to avoid any latency. A five-point moving average filter of previous stiffness

gain data is used to smooth the stiffness gains and accordingly the guidance forces.

The number of points is experimentally selected to obtain a smooth output signal.

4.2.4 Dynamic Model of Gas Pedal

This subsection presents the model of pedals motion. In order to represent the torque

acting on the pivot point in terms of force, the distance between the pivot point and

the perpendicular line to the foot, Dppf , is calculated as:

Dppf =
cos (ψ)√
d1

2 + d3
2

(27)
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Figure 15: Representation of the input force of the user on the gas pedal.

Using (27), the relation between torque at the pivot point and the force is obtained

by:

Tp = Dppf (fp−h + fp−LbG) (28)

where Tp is the torque acting on the pedal and Fp−h is the user’s input force on the

gas pedal.

The equation for the torque acting on the pedal is given by:

Tp = Igθ̈p + Γgθ̇p +Kpθp (29)

where Ig is the moment of inertia of the pedal, Γg is the rotational damping of the

gas pedal, Kp is the linear spring constant, and θp is the angular displacement of the

pedal.
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Similarly for the steering wheel, the mathematical formulations could be repre-

sented as:

Ts = dc(fs−h + fs−LbG) (30)

where Ts is the torque at the steering wheel, dc is the distance from the center to the

edge of the steering wheel, and fs is the tangential force on the steering wheel.

The torque acting on the steering wheel could be calculated using:

Ts = Isθ̈s + Γsθ̇s + Ksθs (31)

where, θs is the angle of the steering wheel, Is is the moment of inertia for the

steering wheel, and Γs is the rotational damping of the steering wheel. This model

was validated using a force transducer that was designed for automotive uses.

4.2.5 Teleoperator Model

The DaNI robot from National Instruments as a skid-steered robot (teleoperator)

is used in this study to implement and evaluate the proposed LbG approach. In

skid-steered robots, the orientation of the robot is controlled by applying the same

torque on the wheels of the same side and a different torque on the other side. To

mathematically describe the dynamics of skid-steered robots, we consider the teleop-

erated robot moving at a constant velocity about an instantaneous center of rotation
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as shown in Fig. 16 [1].

The global and local coordinate frames are denoted by X-Y and x-y, respectively.

The variables v, φ̇, and R are translational velocity, angular velocity, and turning

radius of the robot, respectively. As shown in Fig. 16, the robot is a four-wheeled

skid steered robot, so ICRl and ICRr respectively represent the instantaneous center

of rotation for left and right wheels of the robot.

Figure 16: The kinematics of a skid-steered robot and the corresponding instantaneous
center of rotation [1].

In the x-y frame (local co-ordinates), the coordinates of ICR, ICRl and ICRr are

described as (xICR , yICR ), (xICRl , yICRl ), and (xICRr , yICRr ), respectively. The

robot’s velocity is denoted as u = [vx vy φ̇]
T
, where vx, vy are components of the

velocity along x and y axes. The angular velocities of the left wheel is represented by

ωl, and for the right wheel is denoted by ωr. The parameters b, B, and r are wheel’s

width, robot’s width, and wheel’s radius, respectively.
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The experimental kinematic model of a skid-steered wheeled robot is given by:

⎡⎢⎢⎢⎢⎢⎢⎣
vx

vy

φ̇

⎤⎥⎥⎥⎥⎥⎥⎦ = r
xICRr −xICRl

⎡⎢⎢⎢⎢⎢⎢⎣
−yICR yICR

xICRr −xICRl

−1 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣ ωl

ωr

⎤⎥⎥⎦ (32)

Since skid-steered robot is symmetric about x and y axes, then yICRl = yICRr = 0

and xICRl = −xICRr. Expansion factor α is defined as the ratio of the longitudi-

nal distance between the left and right wheels over the robot’s width and could be

presented as:

α ∼=
xICRr − xICRl

B
(33)

As a result, for a symmetric robot the kinematic model in (32) is represented as:

⎡⎢⎢⎣ vy

φ̇

⎤⎥⎥⎦ =
r

αB

⎡⎢⎢⎣ αB
2

αB
2

−1 1

⎤⎥⎥⎦
⎡⎢⎢⎣ ωl

ωr

⎤⎥⎥⎦ (34)

4.2.6 Single-Gain Variable Impedance Control (SG-VIC)

In this method, only a single gain of the impedance controller is adapted in real

time with regard to variable stiffness gain (KLbG) and geometrical obstacle force.
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The dynamic obstacle force on the steering is based on the assumption of having a

virtual spring between the robot and the obstacle. The spring is positioned along the

horizontal component of the distance vector. This representation is shown in Fig. 17.

Figure 17: Geometry of dynamic obstacle force for collision avoidance. The obstacle force
on steering is a function of the horizontal component of the distance to the obstacle. The
obstacle force on gas pedal depends on the vertical component of the velocity relative to
the obstacle.

Considering (24) and (25), we define a geometry-based guidance force on the

steering wheel as:

fs−LbG = − KLbG

d sin(φ)
(θs − θ̂s) (35)

where 0 ≤ φ < π
2
and stiffness, KLbG is learning-based stiffness gain, θ̂s is the de-

sired steering angle calculated using (21), and dsin(φ) is the horizontal component

of the distance to the obstacle. Using this equation, the magnitude of the stiffness

gain decreases with the distance to the obstacle. Thus, repellent guidance forces are

stronger if the robot approaches the obstacle head on. In addition, there is a less
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chance for false guidance force when the user intends to just pass by an obstacle. In

order to calculate the maneuver similarity between the current operator maneuvers

and the stiffness skill model (λK), we use the current observations of the steering,

pedal and teleoperator, including steering angle, steering velocity, pedal angle, pedal

velocity, distance to the obstacle, angle to the obstacle as well as the position of the

teleoperator.

For gas pedal, the LbG force using a spring model is described similar to (35), as:

fp−LbG = −KLbG ∥v∥ cos(φ) (θp − θ̂p) (36)

where 0 ≤ φ < π
2
, θ̂p is the desired gas pedal angle calculated using (21), v is velocity

relative to the obstacle, and ∥v∥cos(φ) is the vertical component of the velocity. Using

this LbG approach, the magnitude of the stiffness gain and resulting guidance force

increases with the relative velocity and is zero when ∥v∥ is zero.

The next subsection describes another method, in which two learning-based gains

of impedance controller are adaptive.

4.2.7 Multiple-Gain Variable Impedance Control (MG-VIC)

In this method, two gains of the impedance controller is adapted in real time with

regard to learning-based stiffness gain (KLbG), learning-based damping gain (BLbG),

and geometrical obstacle force. Similar to SG-VIC method, the horizontal component
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of the distance corresponds to the steering wheel and the vertical component of the

distance corresponds to the gas pedal.

In this method, the damping impedance gain is varied based on a skill model that

captured the velocity of the teleoperator, the steering, and the pedal. The current

observations of the steering, pedal and teleoperator, including steering angle, steering

velocity, pedal angle, pedal velocity, distance to the obstacle, angle to the obstacle as

well as the velocity of the teleoperator, are used to calculate the maneuver similarity

between the current operator maneuvers and the damping skill model (λB). In this

scenario, the conjunction of the damper with the spring is to render smoother forces

and improve the control of the robot.

Using (24), (26) the guidance force on steering is defined as:

fs−LbG = − KLbG

d sin(φ)
(θs − θ̂s)−

BLbG

d sin(φ)
(θ̇s − ˆ̇θs) , (37)

where ˆ̇θs is the desired angular velocity of the steering computed by (22).

Similarly, the equation for the guidance force on the gas pedal is:

fp−LbG = −KLbG ∥v∥ cos(φ)(θp − θ̂p)−BLbG ∥v∥ cos(φ)(θ̇p − ˆ̇θp), (38)

where ˆ̇θp is the desired angular velocity of the gas pedal calculated by (22).
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4.3 Evaluation

In this section, the implementation of proposed methods for generating the guidance

forces described in Section 4.2 and their experimental evaluation are presented.

4.3.1 Learning Skill Models

Three HMM-based skill models are trained to capture the skill of expert operators

and consequently generate impedance control gains. The models include λK and λB

that adjust the stiffness and damping gains, respectively. Each skill model uses a set

of related observations/features to adapt corresponding control gain. The common

observations are steering angle, steering velocity, pedal angle, pedal velocity, distance

to the obstacle, angle to the obstacle, which used for training all skill models. In

addition, the position and velocity of the teleoperated robot are added to the obser-

vation of λK and λB, respectively. Two other HMMs (λθs , λθp) are also developed

to learn the motions of steering/pedal (θs/θp) from demonstrations and to retrieve a

generalized form of trajectories. These two models are trained using the position and

velocity of steering/pedal for generating desired trajectories as described in Section

4.2.2.

To develop the skill models, a data set was collected from eleven users’ demon-

strations. The users had two hours to practice with the setup and then performed a

predefined teleoperation task three times, while no guidance is provided. The users

can be considered experts in performing maneuverings, compared with new users.
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Successful demonstrations with smooth robot motion and no collision were selected

as observations to train the models. Bakis (left-to-right) topology [53] was used for

developing the HMMs because this topology efficiently describes the sequential nature

of motions. The HMMs were developed with 25 states, a mixture of two continuous

Gaussian probability distributions, and the average recognition/classification accu-

racy of 85.2%.

The number of hidden states in HMMs were set by Bayesian Information Criterion

(BIC) [108] algorithm. A windowing approach, in which short segments of real-time

steering/pedal motion were sampled (n = 5 data points), was used to compute the

maneuver similarity (MS ) and LbG forces.

To learn generalized models of the kinematics and kinesthetic of a teleoperation

task, we model motions as a nonlinear Dynamical System (DS). The DS is modeled

by HMM and GMR; trained with the Stable Estimator of Dynamical Systems (SEDS)

[108] algorithm to guarantee that the system is stable and the motions converge to

desired steering/pedal angle regardless of starting position. Using SEDS, we can

ensure that the motions follow closely the expert demonstrations.

4.3.2 Procedure

Fig. 18 shows a participant who interacts with our experimental setup. The tele-

operated robot, DaNI robot, is connected to the wireless network through the travel

router mounted on it. The robot is controlled wirelessly from the remote computer.

The physical motion of the robot is controlled by a Logitech Driving Force Feedback
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GT steering wheel and a haptic pedal.

Figure 18: A participant while navigating the teleoperated robot using the steering wheel
and the gas pedal.

Twenty participants (aged 18 to 23 with a mean age of 20.9 years) participated

in this study. The participants were asked to run the robot with the steering wheel

and gas pedal for ten minutes to get familiar with use of the setup. All participants

were made aware of the parameters that are monitored during the experiment. They

were to maneuver the robot in a random track and to perform a task with minimum

number of collisions with obstacles. Fig. 19 demonstrates a track.

Using both steering wheel and gas pedal, the discussed impedance control methods

in Section 4.2 are evaluated. The steering wheel was used for controlling the orienta-

tion of the robot, however, the gas pedal was used to control the forward motion of

the robot. Every subject performed the task in the following three modes:
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Figure 19: A track in which the robot is moving.

1. No Guidance: the participants performed the task with no guidance forces on

steering wheel or on the gas pedal.

2. SG-VIC: during the experiment, LbG force is rendered on the steering wheel

and gas pedal based on (35) and (36). Only a single control gain of the

impedance control (KLbG) is adjusted in real time.

3. MG-VIC: For this mode, the magnitude of the LbG force is governed by (37)

and (38). Two control gains of the impedance control (KLbG and BLbG) are

adapted in real time to encourage the users to perform the task similar to

expert operator demonstrations.

4.3.3 Results and Discussion

The means and standard errors across all participants are shown in Figs. 20, 21,

and 22 for the three modes: No Guidance, Single-Gain Variable Impedance Control

(SG-VIC), and Multiple-Gain Variable Impedance Control (MG-VIC). Table 7 shows
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the ANOVA results of this experiment. There are statistically significant differences

for the three metrics among the three modes. Thus, Bonferroni post-hoc analysis is

conducted to examine statistically differences between pairwise measured performance

metrics. In Figs. 20, 21, and 22, ∗ indicates significant differences with P < 0.05.

Fig. 20 shows the comparison of the average number of collisions across all the

methods discussed. The figure suggests that the MG-VIC method has a distinct

advantage over the other methods in terms of decreasing the average number of

collisions. The results also confirm that providing LbG forces (SG-VIC and MG-VIC)

has significantly improved the performance of users. Similarly, Brandt et al. [107]

have shown a decrease in collisions when a haptic system used a combination of a

lane-keeping and a collision-avoidance assistance system.

Figure 20: Graph representing the average number of collisions with standard error for
the considered methods. The results confirm that proving the LbG forces improves the
performance. Furthermore, it seems that the MG-VIC method is more effective than other
methods. ∗ shows significant differences with P < 0.05.

Fig. 21 represents the average time of completion in seconds. Completion time

for MG-VIC is significantly better than for No Guidance. While for completion time,
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the Bonferroni post-hoc test found no significant differences between SG-VIC and No

Guidance. Similar to [104], our approach could decrease the completion time of a

robot teleoperation task using variable guidance forces. However, they have not used

learning-based method for generating guidance forces and also they have not used

statistical analysis to support the effectiveness of their method compared to no guid-

ance mode. Furthermore, using learning-based guidance/reproduction, similar results

(the reduction of task completion time) have been reported in haptic teleoperation

HRI [95], learning-based haptic guidance [4, 23], and LfD-based approaches [8, 68].

Figure 21: The graph represents the time of task completion in seconds for various methods
involving steering wheel and gas pedal. This figure also shows that the MG-VIC approach
is significantly more effective compared to the no guidance method. ∗ marks significant
differences with P < 0.05.
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Figure 22: This graph represents the average closeness to the obstacles. As well as the
other performance measurements, the MG-VIC method has provided better assistance to
the participants. ∗ shows significant differences with P < 0.05.

Fig. 22 represents the average closeness of the robot to the obstacles, indicating

how far the robot is able to travel pass the subjects. The figure demonstrates a

trend among the different methods in terms of the average closeness to the obstacles.

When no guidance is provided, the participants were moving at their discretion. For

the other methods, when the MG-VIC method was used for applying guidance, the

participants were able to pass the obstacles significantly further, compared to No

Guidance.

Overall, it can be concluded that the MG-VIC method for providing LbG force

has increased the performance of the users in maneuvering a teleoperated robot. Al-

though, MG-VIC are not significantly better than SG-VIC for all three performance

metrics, completion time for MG-VIC are significantly better than for No Guidance,

while there is not significant difference between G-VIC and No Guidance. Further-

more, the results confirm that providing guidance force (MG-VIC and SG-VIC modes)
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in general could be an effective way for assisting the users in terms of obstacle avoid-

ance, increasing the speed of performing the task, and average closeness to obstacles.

An advantage of the LbG approach, which is an LfD-based approach, over non-

learning-based guidance methods [16,19,29,31] is the generalization of demonstrated

motions onto similar motion in novel situations. The LbG can generalize the motions

in case of novel start pose without requiring intervention or further adaptation. To

provide guidance for every novel task, adaption procedures (i.e. the trial and error

method) should be used to tune the constant/adaptive gains. However, the available

LbG skill models can be readily used to provide guidance forces for the novel tasks.

Table 7: One-Way ANOVA table for the performance metrics. NC: No. of Collisions, TC:
Time of Completion, AC: Average Closeness, NG: No Guidance, SG: Single-Gain Variable
Impedance Control, MG: Multiple-Gain Variable Impedance Control.

Metric Mean±SE NG Mean±SE SG Mean±SE MG F (2,19) P-Value

NC (%) 55.50±3.24 41.00±2.39 34.00±1.97 17.91 < 0.001

TC (s) 66.09±5.06 57.29±5.83 49.56±2.84 3.02 0.04

AC (m) 0.43±0.014 0.42±0.010 0.38±0.007 6.67 0.002

4.4 Conclusions

In this chapter, a learning-based guidance (LbG) approach was introduced for pro-

viding assistance to the teleoperation of teleoperated robots by learning from expert
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demonstrations. Using HMM, several skill models were developed from both kines-

thetic and teleoperation demonstrations to adjust adaptive impedance control gains

for generating guidance forces on steering and gas pedal. The skill models and a

modified GMR were also incorporated into the LbG approach to produce continuous

steering and pedal trajectories. The approach aim to not only encourage users to

perform navigating tasks similar to experts, in terms of the desired position and ve-

locity of steering and pedal, but also avoid them to collide obstacles. To achieve this

goal, the impedance control gains were adapted based on learning-based stiffness and

damping gains as well as the relative position and velocity of the teleoperated robot

to obstacles.

To evaluate the proposed approach, single-gain variable impedance control (SG-

VIC) and multiple-gain variable impedance control (MG-VIC) methods were devel-

oped for generating LbG forces and their effectiveness on improving the performance

of users were compared to no guidance. The performance metrics included number

of collisions with the obstacles in the task, time of completing a considered task, and

how close to the obstacles could the robot maneuver. The results confirmed that using

different skill model, providing learning-based guidance forces were an effective way

of assisting teleoperator maneuverings in terms of user performance. Furthermore,

among the considered strategies for providing LbG forces, the MG-VIC method had

a lead in improving the performance of the participants, by the incorporation of the

velocity of the steering, pedal, the robot movements into both skill models and the

variable impedance control strategies.
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As future work, a library of skill models can be developed regarding the primitive

motions of steering/pedal or teleoperators. The motions will be segmented using

skill models and resulting LbG forces will be provided based on each corresponding

primitive model. This segmentation would facilitate the generalization of tasks in case

of novel combination of the primitive motions without requiring further adaptation.

By training a library of primitive motions from demonstrations, various combination

of motions would be considered as novel tasks.
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Chapter 5

Conclusion and Future Work

The main objective of this thesis was to develop learning-based approaches for trans-

ferring skill from experts (teachers) to novices (learners) in physical human robot

interaction. To achieve this goal, statistical models (machine learning techniques)

were used to learn primitive motions from the expert demonstrations. The motion of

human/robot were segmented into atomic and simple movements, primitive motions,

to enable the approaches to provide more precise guidance forces. This also facilitates

the generalization of the approaches to various dynamic tasks that include recogniz-

able primitive motions. In this thesis, surgical gesture, motion of surgical drill within

bone layers, and teleoperator maneuvers were considered as primitive motions. In

reproduction phase, by using the learned models, robots assisted novices to perform

dynamic tasks similar to the experts.
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5.1 Conclusions

In the first main part of this thesis, an adaptive haptic guidance (HG) approach, as

an LbG approach, was proposed based on the statistical models of gestures for HRI.

A virtual surgical training task was segmented into gestures for modeling purposes

and providing guidance forces to users via a robot manipulator. Due to the human

stochastic behavior and the sequential nature of the tasks, statistical models (HMMs

and HCRF) were developed to generate variable controlled forces according to the

gestural differences. The stiffness gains were adjusted in real time regarding the ges-

ture similarity between the user gesture and the models. The gesture-based variable

impedance approach was enabled users to complete a task with better performance

while balancing between completion time, motion smoothness, and average angular

error, compared with no HG and constant HG conditions.

The utilization of discriminative approach compared to generative approach for

providing adaptive HG was promising to improve user performance for completing

dynamic tasks. There was no linear mapping between the recognition accuracy of

the statistical gesture models and the performance outcomes of the HG approaches.

Moreover, only statistical modeling methods with a low computationally complexity

are well-suited for real-time haptic rendering. HMM and HCRF were successfully

applicable to generating real-time guidance forces, which can significantly increase

the pace of motor-learning in training systems.

To train statistical models, features can be selected regarding the characteristics
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of the primitive motions. For instance, if the primitive motions are end-effector

movements in orthogonal direction, the linear position, velocity and acceleration of the

tool tip would be chosen as features. To train more complex tasks/motions, including

positioning needle, making C loop, and pulling suture, other kinematic/kinesthetic

variables, including the rotational velocity and rotation matrix of the tool tip, end-

effector force as well as video data, may be added to the features. This facilitates

the recognition of complexed primitive motions and consequently the production of

effective LbG forces.

In the second part of the thesis, to further show the effectiveness of the guidance

approach, it was adapted for a kinesthetic HRI simulation that aims to transfer the

skills of expert surgeons to resident trainees. During the learning phase, the expert

demonstrations were used to develop an expert HCRF model for learning the stiffness

variations of different bone layers. To discriminate the skill levels of an unknown-skill

user, a novice HCRF model was also developed from the demonstration of novice

residents. As a result, the skill levels of a user was determined by comparing user

observations with the both HCRF skill models. In practice phase, using stiffness

variations captured by the expert HCRF, the LbG approach was able to guide the

trainees for performing training tasks similar to the experts.

The approach was used for both skill discrimination and user performance im-

provement in a virtual reality-based (VR-based) simulation of femur drilling surgery.

Real CT data were used to provide the users with the feeling of bone stiffness vari-

ations in regard to the drilled depth. HCRF-based skill models (expert HCRF and
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resident HCRF) were developed to segment the drill motion within different bone lay-

ers, differentiate user’s skill as experts or residents, and assist residents with applying

appropriate drilling forces within different bone layers. A set of performance metrics,

including task completion time, RMSE for position, and average bone temperature,

was also used to objectively evaluate the skills of users.

The results of a clinical study confirmed that providing residents with the LbG

approach resulted in significant performance improvements in terms of drilling task

completion time and average femur temperature. However, the improvements could

not enable the residents to perform the femur drilling in a similar skill level of the

experts. In addition, the results showed that not only the skill models, but also

performance metrics could be used for discriminating the skill level of users.

In the final part of the thesis, in order to teleoperate a robot, a modified learning-

based guidance approach was used to assist operators in HRI. A set of expert operator

demonstrations were used to develop driving skill model. The temporal and spatial

variation of demonstrations were encoded using hidden Markov model (HMM) as the

skill model. A modified GMR in combination with the HMM is also developed to

produce a state of reference motion. Applied forces were adaptively computed in real

time regarding the similarities between the maneuver of users and the skill model.

The learning-based guidance aimed to encourage users to navigate the robot similar

to the expert operators. Using an experimental setup, the teleoperated robot was

navigated through a haptic steering wheel and a haptic gas pedal. The performance

of the users was improved when LbG guidance forces were assisting the users to
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perform a robot teleoperation task.

5.2 Future Work

Overall, discriminative-based approaches, in comparison with generative-based ap-

proaches, provide more effective adaptive guidance forces in terms of user perfor-

mance. However, to take advantages of both models, a combination of generative

and discriminative LbG approaches can be developed using learning from demon-

stration (LfD). Generative-based skill models would enable generation of continuous

reference trajectory from expert demonstrations in the learning phase, while using

discriminative-based skill models will generate more effective LbG forces in reproduc-

tion/practice phase.

The proposed LbG approaches can be investigated by expanding the skill models

with more gestures/motions/maneuvers. Considering more gestures, the approaches

can be investigated in more complex and realistic tasks. Furthermore, extensive

human factor studies can be conducted to analyze the effect of task complexity on the

efficacy of the approaches and discover the parameters that may affect the outcomes

of such LbG-enabled systems in pHRI.

The learning effect of the proposed LbG approach can be studied. The focus

of this work was on providing assistance to users for improving their performance.

However, the effect of the LbG approaches on learning particular skills can be ex-

amined by designing appropriate user studies. A potential experimental study would
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be as follows. This study will employ a quasi-experimental pre/posttest design. At

pretest, both groups will perform a training task without guidance. Participants will

be randomly assigned to either Group one or Group two. The participants of Group

one will perform the task with LbG 15 times, while Group two will only perform the

same trials without guidance. After posttest, Group one will do a new task without

guidance while Group two will be providing by LbG. Finally, a delayed posttest will

be conducted to investigate the effect of skill learning. This design will be able to

reveal that participants will learn any new motor skill or would be getting more and

more specialized in performing a specific task by carrying out the task several trials.

Finally, it will be investigated how well the LbG steepen the learning curve.

In addition to end-effector kinematics, the kinematics of upper limb movements

can be incorporated into statistical skill models for developing more effective LbG

approaches. We developed a VR-based simulation that incorporated upper limbs

movements into measuring user performance and the discrimination of skill levels.

The early results indicated that the motion of upper limb joints can be used to

discriminate an expert user from a novice user [109]. The results also showed that

the dominant hand performance decreased while non-dominant hand was engaged

on a task. As a future work, the kinematics of the end-effector and both upper

limbs will be utilized to develop the skill models and generate LbG through the end-

effector and wearable vibrotactile actuators for encouraging users to perform correct

hand gestures.

Considering the rapid advancement of computing technology in recent years, the
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large collection of features can be processed in real time. This provide an opportunity

to fuse vision and kinesthetic data from many cameras/sensors into the learning-

based approach for improving the recognition accuracy and generating more precise

guidance forces. In addition, the use of larger datasets could possibly improve a) the

training of large skill models in terms of capturing hidden skills and b) the fine-tuning

of the parameters of LbG approaches.

By collecting or accessing large datasets of the primitive motions, deep learning

based guidance (D-LbG) approaches can be developed to better guide, classify, and

segment a user motions in pHRI. Big data analytics and deep learning are two active

research fields in data science and machine learning. While data keep getting bigger,

deep learning may be used to take advantage of the predictive power of big data

[110]. A significant importance of using deep learning is to analyze and learn massive

amounts of unlabeled data since raw data are largely unlabeled [111]. Deep learning

has widely been utilized in several big data domains, including computer vision [112]

and speech recognition [113], to improve classification results. As a result, using deep

learning and big data algorithms are promising for developing deep skill models and

the provision of D-LbG forces as well as the segmentation and recognition of the user

motions.

In addition, the outcomes of this thesis can be used in other fields such as rehabil-

itation, sport training, autonomous driving, and mobile robot navigation. The skill

of healthy people, sport coaches, or drivers can be transfered to designated robotic
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systems that will be able to assist humans for performing dynamic tasks (in rehabili-

tation or sport training) or autonomously carry out tasks (in driving or mobile robot

navigation).
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