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Abstract: Systematic control over molecular driving forces is essential for understanding the 

natural electron transfer processes as well as for improving the efficiency of the artificial mimics 

of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese 

ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may 

identify evolutionary intermediates and provide insights to the energetics of biological water 

oxidation.  This work presents effective environmental methods that substantially and 

simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic 

enzyme from native anoxygenic bacteria without the necessity of genetic modification or 

synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the 

manganese (II) to manganese (III) transition to an unusually low value (~400 mV) at pH 9.4 and 

allowed its binding to the bacterial reaction center. Binding to a novel buried binding site 

elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up 

to 92 mV also at pH 9.4 and facilitated the electron transfer that is able to compete with the 

wasteful charge recombination. These events impaired the function of the natural electron donor 

and made BTP-coordinated manganese a viable model for an evolutionary alternative. 

Keywords: photosynthesis, electron transfer, energy conversion, evolution, manganese 

Abbreviations: Bacterial Reaction Center (BRC); Primary electron donor of bacterial 

photosynthesis (P); Primary electron donor of oxygenic photosynthesis (P680), Oxygen Evolving 

Complex (OEC); terminal electron acceptor (QB); Wild type (WT), carotenoid-less strain (R-26); 

Rhodobacter (Rba); N-lauryl-N-N-dimethylamine-N-oxide (LDAO); Ethylenediaminetetraacetic 

acid (EDTA); 2,3-dimethoxy-5-methyl-6-polyprenyl-1,4-benzoquinone (ubiquinone, UQ); bis-

tris propane (BTP); Bacteriochlorophyll (BChl), Bacteriopheophytin (BPheo).  
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1. Introduction 

One of the critical milestones of the evolution of life on Earth is linked to the transition from 

anoxygenic to oxygen producing photosynthesis about 2.8-2.4 billion years ago [1- 4]. Models 

have been proposed to account for the numerous molecular requirements that had to be satisfied 

over the transition period [5, 6]. One of the key elements required for oxygen evolution is the 

ability to use manganese ions as rapid secondary electron donors [7]. Efficient utilization of 

manganese in the native bacterial reaction center (BRC) from purple anoxygenic photosynthetic 

bacteria has been considered energetically unfavorable (Fig. 1 left) as the primary electron donor 

(P) has lower potential (0.5 V) than that of the manganese sources readily available [5, 8].  

 

Fig. 1. Energetics of light-induced electron transfer steps at the donor side of photosystems.  

The redox potentials of the primary and secondary electron donors are indicated in the BRC 

(left), in Photosystem II (right), and in native BRC, where manganese oxidation is enabled by 

coordination and binding (middle). The electron transfer sequence is labeled by numbers in 

octagons for the electronic excitation of P or P680, for the charge separation, and for the electron 

donation from the secondary electron donors, respectively. Only reactions marked by thin 
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downhill arrows are spontaneous. Vertical block arrows indicate tuning of redox potentials. To 

demonstrate the structural similarities, the L and M subunits of BRC (PDB: 1PCR) and the D1 

and D2 proteins of Photosystem II (PDB: 3WU2) are shown in salmon and green colors, 

respectively.  The location of the OEC (Mn4O5Ca) and the proposed binding of Mn2+ are also 

indicated. 

 

Contrarily, the primary electron donor (P680) in Photosystem II can deploy high potential electron 

donors (Fig. 1 right), including manganese ions from the oxygen evolving complex (OEC) [7]. 

Photosystem II and BRC are evolutionary related as plants and cyanobacteria share a common 

ancestor with purple photosynthetic bacteria [9]. Despite the differences in the energetics 

surrounding the primary and secondary donors, the structural details and the mechanism of the 

transmembrane electron transfer are analogous in these two enzymes [5, 8, 10, 11]. Generation of 

the proton gradient across the membrane, a key feature for the survival of the organism, requires 

subsequent electron transfer steps that lead to the double reduction and double protonation of the 

terminal electron acceptors (secondary quinones; QB) in both systems. This process is only 

possible if the oxidized primary electron donors, P
+
 and P680

+
, are rapidly reduced by secondary 

electron donors in BRC and PSII, respectively. Electron transfer reactions from donors unique to 

oxygenic photosynthesis, such as light-driven tyrosine and manganese oxidation have been 

introduced to BRCs, however, thus far exclusively via multiple genetic modifications [12-14]. In 

these modified BRCs the redox potential of P was elevated by up to ~0.3 V by design and 

introduction of up to four mutations. Two-to-five mutations were necessary to observe 

manganese oxidation and at least five mutations were required to witness tyrosine oxidation. The 

electron transfer in these modified BRCs from the secondary electron donors to P
+
 was effective 
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as it successfully competed with the charge recombination reactions. A slow photo-oxidation of 

manganese(II) ions in native BRCs was reported in the presence of bicarbonate (BCT), however, 

the electron transfer from Mn
2+

 to P
+
 there was found at least two orders of magnitude slower 

than the charge recombination and the yield was only ~5% [15].  Here we describe how 

spontaneous coordination of manganese with hydroxyl and amine groups and its binding to 

native BRCs can tune the redox potentials of both manganese and P substantially. The electron 

transfer between Mn
2+

 and P
+
 not only can compete with the charge recombination but also 

approaches 100% yield. As solely environmental factors were required to gain this attribute our 

system may serve as a proof of principle for the earliest step in the development of oxygenic 

photosynthesis (Fig. 1 middle) that does not require genetic modification. 

2. Materials and Methods 

2.1. Bacterial growth and BRC isolation.  

Cells from wild type (WT) and the carotenoid-less R-26 strains of Rhodobacter (Rba.) 

sphaeroides were grown anaerobically under light. The RCs were isolated and purified using N-

lauryl-N-N-dimethylamine-N-oxide (LDAO) according to methods described earlier [16,17].  

Ethylenediaminetetraacetic acid (EDTA), a potent chelator, was removed from the samples by 

extensive dialysis. For some experiments the LDAO detergent was replaced with Triton X-100 

(TX-100) by ion exchange chromatography. In some experiments 100 M terbutryn was used to 

block the electron transfer between the quinones while in others the secondary quinone activity 

was reconstituted with either UQ10 or UQ0 (2,3-dimethoxy-5-methyl-6-polyprenyl-1,4-

benzoquinone). 

2.2.Preparation of the manganese complex.  
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Manganous acetate or chloride was dispersed in 0.03 %  LDAO containing 80 mM bis-tris 

propane (BTP) at pH 9.4.  A 1 M stock was prepared and this stock was diluted to the desired 

final concentration. A fresh stock was used for each measurement. The manganese complex was 

added to BRCs that were previously pre-illuminated and allowed to recover from their 

corresponding charge-separated states. The measurements were performed after 30 minutes 

incubation time.  

2.3. Optical spectroscopy 

 Optical spectra and some kinetics of the absorbance changes induced by continuous illumination 

or light pulse were measured using a Varian (Agilent) Cary 5000 spectrophotometer (Mulgrave, 

Victoria, Australia) according to methods described earlier [16-18]. The charge-separated states 

were induced either by continuous or pulsed illumination using high throughput fiber optics 

(Newport Corp., Irvine, CA, USA.). The continuous light source was either an Oriel 2129 

tungsten lamp or an Oriel 6140 Arc lamp. The light intensity was varied between 0.13 and 1 

W/cm
2
. Laser flash-induced electron transfer reactions in the ms time scale were recorded with a 

miniaturized laser flash photolysis unit (LFP-112 from Luzchem Research Co., Ottawa, Ontario, 

Canada) as reported elsewhere [17]. Kinetic traces were analyzed by decomposition into 

exponentials using Marquardt-Levenberg nonlinear least-squares method.  

2.4. Oxidation-reduction potential measurements 

 The oxidation-reduction midpoint potential of the P/P
+
 and Mn

2+
/Mn

3+
 couples  were 

determined by spectroelectrochemical oxidation-reduction titrations as we described earlier [18]. 

The redox potential dependent light-induced absorption changes were determined using the same 

spectroelectrochemical redox cell. For these measurements the cell was tilted at ∼45
o
 angle with 

respect to the propagation of the monitoring beam and the actinic illumination was delivered 
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perpendicular to the window of the cell to avoid stray light entering the detector chamber [18].  

At each selected potential value a short (~10 s) illumination was applied until the light-induced 

optical changes reached their equilibrium values. The absorption changes recorded at different 

potentials were fit with a single or a two component Nernst-equation. 

2.5. Dual Polarization Interferometry (DPI) 

Surface depositions of the BRCs and cytochrome were done using AnaLight Bio200 

interferometer (Farfield Ltd., Manchester, U.K.) as described earlier [19,20]. The samples were 

delivered to the sensor chip (Unmodified AnaChip
TM

 FB 80, Farfield Ltd., Manchaster, U.K) by 

the integrated microfluidic system (Harvard Apparatus PHD 2000 pump) with a flow rate of 10 

L/min and was allowed to adsorb onto the surface of the chip. Once the sample delivery was 

finished (20 mins) the unbound samples above the chip were washed away by maintaining the 

flow of the running buffer revealing the tightly adsorbed layer. The camera response was 

analyzed in terms of layer thickness, density and deposited mass using Maxwell’s equations [19]. 

2.6. Electron Paramagnetic Resonance (EPR) spectroscopy  

Room temperature, X-band EPR spectra of the manganese complex and BRC were recorded with 

a MiniScope MS 5000 spectrometer (Freiberg Instruments, Freiberg, Germany). The spectra 

were recorded at 9.4 GHz frequency and 10 W power. The field modulation was 0.2 mT (peak-

to-peak) at 100 kHz. Single scans were recorded with 80 mT/minute scan rate. The 

photooxidation of manganese by BRC was performed in samples containing ~30 M BRC, 

0.03% LDAO, 300 mM manganous acetate, 80 mM BTP at pH 9.4. The spectra were recorded 

before and after a short illumination and the difference was computed representing the loss of 

Mn
2+

 due to oxidation by P
+
. 
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2.7.Surface tension measurements  

The surface tension of LDAO at different concentrations was determined by using DuNouy 

interfacial tensiometer (Central Scientific Co. Inc., Fairfax, VA, USA). 

3. Results and discussion 

3.1. Low Potential Manganese Mn-BTP complex . 

The redox potential for the Mn
2+

/Mn
3+

 transition in the aqueous hexa-aqua complex is over 1 V 

and exchanging some water ligands with bicarbonate anions still yields potential values higher 

than that of P found in native BRCs [13,21,22]. The lowest potential for Mn
2+

/Mn
3+

 transition in 

proteins was reported for Mn-superoxide dismutase with a value of ~300 mV, where one of the 

ligands is a hydroxyl group besides the most frequent carboxylates and imidazoles [23-25]. To 

lower the potential of manganese we coordinated Mn
2+

 ions with bis-tris propane (BTP), a 

commonly used pH buffer, by simple mixing. The hydroxyl and secondary amine groups of BTP 

were reported to coordinate iron and manganese ions that form metal clusters but so far only via 

synthesis in biologically incompatible solvents [26].  Here the spontaneous coordination of Mn
2+

 

with BTP was dependent upon the pH (see Supplementary Fig. S1) suggesting that the secondary 

amine groups were also involved as ligands in addition to the hydroxyl groups. The room 

temperature electron paramagnetic resonance (EPR) spectrum of the Mn-BTP complex at pH 8 

was very similar to that of the mononuclear hexa-aqua complex signifying a similar mononuclear 

complex (see Supplementary Fig. S2A). Spectroelectrochemical redox titrations at pH 9.4 

revealed a reversible transition involving one electron that was well characterized using a one 

component Nernst-equation with midpoint potential value of ~400 mV for the Mn
2+

/Mn
3+

 couple 

(Fig. 2). 
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Fig. 2. Oxidation potential of Mn2+/Mn3+ couple in the Mn-BTP complex. The difference optical 

spectra (inserts; actual potential-minus-base potential) were recorded in the range between 243 

mV and 700 mV (vs. hydrogen electrode). The absorbance values at 265 nm (open blue 

circles), 341 nm (open red diamonds), and the band position (closed blue circles) were plotted 

against the applied potential. Single component Nernst equation was used to fit the data 

assuming the involvement of one electron. The fits yielded the following midpoint potential 

values for the Mn2+/Mn3+ transition: 381 mV, 398 mV, and 396 mV obtained from absorbance 

values at 265 nm, 341 nm and from the band shift between 247 to 265 nm, respectively. The 

error of the fits is less than ± 6 mV. Conditions: 1 M manganous acetate in 0.05% TX-100, 80 

mM BTP pH 9.4, 70 mM KCl. 
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3.2 Signatures of Mn
2+

 oxidation by P
+
 

 The light-minus-dark optical difference spectrum of BRC at pH 9.4 showed notable differences 

depending on whether BTP-coordinated Mn
2+

 was present or absent (Fig. 3a). Without Mn
2+

 

(black trace) the spectrum contained features of both P
+
 and the semireduced quinone (Q

-
) 

generally observed in the absence of secondary electron donors [12-14]. In the presence of Mn
2+

, 

if coordinated with BTP (dark cyan trace), all signals characteristic to P
+
 disappeared after a 5 s 

illumination demonstrating an electron donation from a potent electron donor, such as ferrocene 

(blue trace on Fig. 3a) [12-14].   Additionally, novel spectroscopic features, including a large (9 

nm) electrochromic shift of the P-band from 865 nm to 856 nm and a band centered at 265 nm 

were identified after subtraction of the features characteristic to the semiquinones (grey trace). 

The former is a result of a strong charge–dipole interaction between Mn
3+

 and P and the latter 

was identified as characteristic of Mn
3+

 (see also Fig. 2 insert). Both theoretical calculations and 

experimental data showed that such large hypsochromic shifts of the P band are expected if 

positive charges are placed near rings C and E along the Qy transition dipole of P
 
[27,28]. The 

loss of Mn
2+

 in the EPR spectrum due to illumination of the BRC is also consistent with the 

photo-oxidation of Mn
2+

 to Mn
3+

 (Supplementary Fig. S2B). The rate of the electron transfer 

from Mn
2+

 to P
+ 

and the influence of Mn
2+

 on the charge recombination were probed by 

recording the kinetics of absorption changes at 865 nm, where P has a strong absorbance, both 

under saturating continuous illumination and after a single saturating light pulse excitation (Fig. 

3b, c). Under strong continuous illumination the rate of manganese oxidation was 1.6-fold higher 

in the carotenoid-less strain (R-26) than in wild type (WT), with rate constants of 1.3 and 0.8 s
-1

, 

respectively (Fig. 3b). These values are comparable with the rate constants of the charge 

recombination without Mn
2+

 (Fig. 2c) if the secondary quinone binding site is occupied [13,29]. 
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Fig. 3. Spectroscopic signatures of manganese oxidation at pH 9.4. (a) Light-minus-dark optical 

difference spectra of BRC. Vertical dashed lines at 865 nm and 265 nm indicate the band 

positions characteristic to P+ and Mn3+, respectively. The spectrum of the oxidized Mn-BTP 

complex (thin black trace) is also shown for comparison. (b) Kinetics of continuous light-induced 

manganese oxidation in BRCs from WT and R-26. (c) Representative kinetic traces of 

absorbance changes at 865 nm induced by a light pulse at different Mn2+ concentrations. (d) 

Rate constants (top) and relative amplitudes (bottom) of the fast (open circles) and slow (closed 

circles) kinetic components of the charge recombination as a function of Mn2+ concentration. 

Solid lines represent fits to binding equations with dissociation constants of 6.5 mM and 6.4 mM 

for the fast and slow components, respectively. (e, f) Light-induced absorption changes at 865 

nm obtained at different applied potentials in WT and R-26 in the presence of manganese. 

Titrations were carried out both in the oxidative (closed circles) and reductive (open circles) 

directions. Lines represent fits to a two component Nernst-equation. The results for the fits are 

tabulated in Supplementary Table S1. Inserts show the light-induced spectra at different 

potentials in R-26 for oxidative direction. 
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Weaker illuminations resulted in slower observed kinetics in both strains that depended on the 

illumination intensity (Supplementary Fig. S3). Rapid manganese oxidation was only witnessed 

above pH 9 and the maximal rate was reached at 80 mM BTP concentration most likely due to 

the elevated potential of the Mn
2+

/Mn
3+

 couple under suboptimal conditions (Supplementary Fig. 

S4A and S5). The steady state values of the P at different BTP concentration suggest that 2 

BTP/Mn
2+

 are required for the rapid electron transfer (Supplementary Fig. S4B). The absorption 

at 865 nm in the same time scale did not change if BTP was replaced with BCT demonstrating 

that bicarbonate-coordinated manganous ions cannot donate an electron to P
+
 efficiently (Fig. 3b, 

Supplementary Fig S9A). Addition of Mn
2+

 in the presence of BTP destabilized the P
+
QA

̶
 and 

P
+
QB

̶
 states (Fig. 3c) via charge-charge interactions as the rate constants for the charge 

recombination from these states (fast and slow components, respectively) increased with 

increasing Mn
2+

 concentration (Fig. 3d). Similar acceleration was reported earlier when 

positively charged residues were introduced or protons were trapped in the vicinity of P or P
+
, 

respectively and resulted in elevated P/P
+
 potentials [12-14,22, 30]. Manganese ions also 

appeared to trigger the displacement of QB, as the fraction of the slow component that accounts 

for the fraction of BRCs that have secondary quinone decreased with increasing Mn
2+

 

concentration yielding an apparent dissociation constant of 6.5 mM (Fig. 3d). This observation 

suggests that Mn
2+

 ions must be able to access the QB binding site. Rapid electron transfer from 

Mn
2+

 to P
+
 can be excluded as the optical spectrum after the single flash did not resemble that of 

the PQ
̅
 state (Supplementary Fig. S5). The rapid (k = 13 s

-1
) recovery kinetics of P

+
 on Fig. 3c 

could only be assigned to electron donation from Mn
2+

 to P
+
 if charge recombination between 

Mn
3+

 and QA
̶   
would be feasible. 

3.3 Binding of manganese to BRC elevates the potential of P 
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Spectroelectrochemical redox titrations of the BRCs in the presence of the Mn-BTP complex 

were performed, where the photo-induced  charge separation and the subsequent electron transfer 

from Mn
2+

 to P
+
 were probed by short illuminations while the redox potential was poised (Fig. 

3e, f). The amount of P
+
 detected at different applied potentials was governed by the in situ 

redox potentials of Mn
2+

/Mn
3+

 and P/P
+
 redox couples that allow different reactions to take 

place. At low potentials neither manganese nor P is oxidized by the applied potential so Mn
2+

 

can reduce the photo-induced P
+
 (pink spectrum in the insert of Fig. 3e). Intermediate potentials 

oxidize Mn
2+

 to Mn
3+ 

, which is unable to reduce the photo-generated P
+
 (red spectrum in panel 

e). High applied potentials create P
+
 before the illumination and photo-oxidation of P to P

+
 is no 

longer possible (blue spectrum in panel e). Hence, the dependence of the photo-oxidized dimer 

on the applied potential shows a bell shaped curve that can be characterized with the sum of two 

Nernst-curves: one characteristic to the Mn
2+

/Mn
3+ 

and the other to the P/P
+
 transition (Fig. 3e,f).  

Significant variances were found in the redox potentials in R-26 and in WT indicating different 

degree of electrostatic repulsion between the charges on P
+
 and on the Mn-cofactor 

(Supplementary Table S1). The Mn
2+

/Mn
3+

 potential was raised in the presence of P
+
 by 20 mV 

and the P/P
+
 potential was elevated by 92 mV in the presence of manganese in R-26.  Smaller 

shifts of the redox potentials in WT suggest weaker charge-charge interactions between the 

manganese and P
+
. The redox potentials were sensitive to the direction of the titration resulting 

in a large hysteresis. Performing the titrations in the reductive direction restored the P/P
+
 

potential in both WT and R-26 to the value that can be obtained without Mn
2+

 (dashed lines in 

Fig. 3e, f). This observation is consistent with the Mn-cofactor being electrostatically repelled 

from its binding site if the positive charge on P
+
 is retained for extended period of time. The 

electron donation from Mn
2+

 to P
+
 and the hysteresis was completely absent and the P/P

+
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potential was not elevated significantly if BTP was substituted by BCT (grey trace in Fig. 3f). 

The elevated P/P
+
 potential in the presence of Mn-BTP from 500 mV to 592 mV at pH 9.4 in R-

26 is consistent with the acceleration of the charge recombination between P
+
 and QA

̵
   from ~9 

to ~13 s
-1

 (depicted earlier in Fig. 3c, d) and it suggests the presence of uncompensated charges 

near P. This is in good agreement with reports, where positively charged His residues were 

introduced at different positions near P, causing the P/P
+
 potentials to be elevated to a range of 

560 - 630 mV at pH 8 and a the corresponding charge recombination rates to increase from 10 s
-1

 

to a range of 13 - 15 s
-1

, respectively [13,22,30]. 

 3.4. Identifying the manganese binding sites 

Potential Mn
2+

 binding sites in the vicinity of P were explored by Q-SiteFinder, a binding site 

predictor server [31]. Two sites were identified that are within the range of effective biological 

electron transfer (Fig. 4, Supplementary Fig. S7, Video S1). One site is positioned at the 

periplasmic surface ~ 6 Å above P, where the native secondary electron donor, cytochrome (cyt) 

binds [32]. The second site was predicted at ~15 Å from the C and E rings of PB in a 

hydrophobic cavity near the inactive bacteriochlorophyll monomer (BChlB). The location of this 

site is near the position of the carotenoid molecule that marks the only difference between WT 

and R-26 and also provides access to all the B-side cofactors including the QB binding site.  The 

place of the carotenoid can be empty or occupied by detergent molecules (e.g. LDAO) in R-26 

[8]. Evidence of manganese binding was found at both predicted sites but proof of electron 

transfer could only be established from the hydrophobic site (Fig. 4). 
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Fig. 4. Probing the proposed sites for binding and electron transfer. (a, b) Surface 

representations of the BRC featuring the hydrophobic cavity near BChlB and (d) the periplasmic 

surface: P, BChlB, BpheoB, QB, carotenoid, and the zwitterionic LDAO are shown in red, blue, 

green, orange, salmon, and cyan, respectively. Residues in the proposed Mn2+ binding sites are 

displayed in magenta. The view from (a) to (b) was generated by ~80o rotation to the left. PDB 

ID codes used: 1PCR, 1RG5. (c) Light-minus-dark optical difference spectra of BRC from WT 

and R-26 in the presence of Mn2+. LDAO, UQ10, and a nonionic detergent (TX-100) were applied 

to influence the electrochromic absorption changes around 800 and 865 nm (vertical dashed 

lines). (e) Kinetics of light-induced absorption changes at 865 nm in the presence of secondary 

donors: cyt (insert, red trace) Mn2+ (magenta), and cyt and Mn2+ together (purple). Black solid 

lines are the fits to exponentials. Results of the fits are listed in Supplementary Table S2. (f) 

Kinetic traces of single layer protein deposition for cyt only (red), premixed Mn2+, cyt,  and BRC 

(magenta), and premixed cyt and BRC (dark cyan), respectively. 
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The electrochromic absorption changes at ~865 nm and ~800 nm both in the dark and upon 

illumination suggest that manganese must be localized at the hydrophobic site along the direction 

of the Qy transition dipoles of P and of BChlB (Fig. 4c, Supplementary Figs. S8-S10, Table S2, 

Video S1).  Additionally, molecules (e.g. LDAO, ubiquinones, terbutryn) that are all known to 

have access and binding sites in the cavity had profound effects on these electrochromic 

absorption changes and on the kinetics of Mn
2+

 oxidation (Fig. 4c, Supplementary Figs. S9 – 

S12). Presence of excess LDAO decreased the rate of Mn
2+

 oxidation in R-26 to the level found 

in WT, as LDAO was able to bind to the carotenoid binding site but it had no effect on it in WT, 

where this site was already occupied (Supplementary Fig. S9). Contrarily, even very high 

concentrations of salt had small influence on the kinetics demonstrating limited solvent 

accessibility of the electron donating metal (Supplementary Fig. S11D, E). The influence of the 

partition coefficients on the apparent binding abilities of ubiquinones with different dielectric 

properties to the QB binding site has been demonstrated earlier [33]. Correspondingly, we found 

a 16-fold difference in the apparent inhibitor constants for manganese oxidation depending on 

whether the most hydrophobic (UQ10) or the most hydrophilic (UQ0) member was used from the 

ubiquinone family (Supplementary Fig. S11). Exact determination of the local concentration of 

free Mn
2+

 in the buried site is a challenge although other hydrophilic compounds, such as sodium 

borohydrate and glycerol were also reported to enter the hydrophobic cavities of BRCs [34,35]. 

Based on these arguments the apparent KD of 6.5 mM (Fig. 3d) most likely significantly 

underestimates the true affinity of Mn
2+

 binding to the buried site. 

 3.5. Manganese binding also impedes the natural electron donor 

The periplasmic site was probed by assessing cyt binding and oxidation in the presence of Mn
2+

 

(Fig. 4e, f). The natural secondary electron donor, cyt c, can donate electrons in microseconds 
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under optimal conditions [36]. Above pH 9 this process was reported to slow down to 

milliseconds [37]. We found that presence of BTP alone did not alter this millisecond kinetics 

(Fig. 4e insert, Supplementary Table S2). However, when Mn
2+

 was also present at pH 9.4, the 

electron transfer rate from cyt to P
+
 dramatically decreased and became comparable to that of the 

charge recombination and of the Mn-oxidation by P
+
 (Fig. 4e, Supplementary Table S3).  Single 

molecular layer deposition using dual polarization interferometry confirmed the displacement of 

cyt by Mn
2+

 at the periplasmic surface (Fig. 4f). Binding of BRC to cyt was only possible if 

Mn
2+

 was absent and the deposited average layer thickness in that case was consistent with the 

molecular size of the BRC-cyt complex. In the presence of Mn
2+

 a thinner layer was immobilized 

to the surface indicating cyt deposition only as the Mn-BRC complex was washed away due to 

lack of access to the cyt-binding site. We have found no evidence of electron transfer from the 

periplasmic Mn
2+

 as the observed Mn
2+

 oxidation kinetics could be influenced by molecules that 

are hydrophobic but not by screening surface charges (Supplementary Fig. S11D). The ultimate 

test for a viable secondary electron donor is whether it can support the formation of a proton 

gradient, which is required for the survival of the organism. In our system quinol formation was 

observed in the presence of excess native quinone (UQ10) when manganese served as the sole 

secondary electron donor (Supplementary Fig. S12). The quinol formation is also supported by 

the 2 Mn
2+

/UQ10 stoichiometry as the double reduction of QB requires two electrons to be 

transferred from the secondary donor to P
+
 (Supplementary Fig. S11E). The 1 Mn

2+
/UQ0 

stoichiometry is also consistent with the lack of binding of UQ0 at high pH [33]. Despite the lack 

of strong binding of UQ0 the excess quinoines in the cavity dilute the manganese locally and 

weaken the metal binding resulting in a slower electron donation from Mn
2+

 to P
+
 

(Supplementary Fig S11 A,B) 
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 3.6. Evolutionary implications 

Growing geological evidence suggests that manganese oxidizing photosynthesis must have 

existed prior to the rise of oxygen evolving cyanobacteria [38,39]. It is unclear whether the 

introduction of this attribute required genetic modifications to elevate the potential of the 

bacteriochlorophylls above that of the manganese or environmental conditions could have tuned 

the corresponding redox potentials without the necessity of genetic modifications [5,15,21,41]. 

This work provides a proof of concept for the latter scenario. The concentration range required 

for manganese oxidation here is consistent with the elevated levels of Mn
2+

 reported for the 

Archean seawater [21,40]. It is unlikely that BTP itself was available in the environment of 

photosynthetic bacteria at the time of the transition period as opposed to bicarbonate in the CO2-

rich atmosphere [15,21]. Bicarbonate-coordinated manganese, however, cannot serve as a viable 

electron donor as the wasteful charge recombination reactions are at least two orders of 

magnitude faster than the electron donation from manganese and its potential is still higher than 

that of P [13,15,22] (Fig. 3, Supplementary Fig. S9). BTP could be considered, however, as a 

model ligand for manganese coordination that presents a manganese cofactor that i) has an 

unusually low potential (Fig. 2), ii) can bind to native anoxygenic BRCs and donate electrons to 

P
+
 efficiently (Fig. 3), iii) can support the generation of a proton gradient (Supplementary Fig. 

S12), and, iv) can inhibit the function of the native secondary electron donor (Fig. 4e). These 

attributes are all vital for an evolutionarily relevant electron donor that must have replaced the 

native cytochromes. Naturally abundant molecules with hydroxyl and amino groups (e.g. 

mixtures and adducts of amino acids) are currently being evaluated for manganese coordination 

and photo-oxidation. 
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Highlights 

 

 

 Mn
2+

/Mn
3+

 redox potential is lowered to ~400 mV without the need of synthesis 

 Electron transfer from Mn
2+

 to P
+
 in native anoxygenic reaction centers is efficient 

 Mn
2+

 binds to two sites in native reaction centers if coordinated by bis-tris propane 

 Mn
2+

 binding elevates the P/P
+
 potential by up to ~100 mV 

 Mn
2+

 binding impedes the natural electron donor, cytochrome 

 Mn
2+

 can support quinol formation in native reaction centers 
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