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ABSTRACT

A Hybrid Nonlinear Model Predictive Control and Recurrent Neural

Networks for Fault-Tolerant Control of an Autonomous Underwater Vehicle

Mahsa Khoshab

The operation of Autonomous Unmanned Vehicles (AUVs) that is used for environ-

ment protection, risk evaluation and plan determination for emergency, are among the most

important and challenging problems. An area that has received much attention for use of

AUVs is in underwater applications where much work remains to be done to equip AUVs

with systems to steer them accurately and reliably in harsh marine environments. Design

of control strategies for AUVs is very challenging as compared to other systems due to

their operational environment (ocean). Particularly when hydrodynamic parameters un-

certainties are to be integrated into both the controller design as well as AUVs nonlinear

dynamics. On the other hand, AUVs like all other mechanical systems are prone to faults.

Dealing effectively with faulty situations for mechanical systems is an important consider-

ation since faults can result in abnormal operation or even a failure. Hence, fault-tolerant

and fault-accommodating methods in the controller design are among active research topics

for maintaining the reliability of complex AUV control systems.

The objective of this thesis is to develop a nonlinear Model Predictive Control (MPC)

that requires solving an online Quadratic Programming (QP) problem by using a Recurrent

Neural Network (RNN). Also, an Extended Kalman Filter (EKF) is integrated with the

developed scheme to provide the MPC algorithm with the system states estimates as well

as a nonlinear prediction. This hybrid control approach utilizes both the mathematical

model of the system as well as the adaptive nature of the intelligent technique through

neural networks. The reason behind the selection of MPC is to benefit from its main

capability in optimization within the current time slots while taking future time slots into

consideration. The proposed control method is integrated with EKF which is an appropriate
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method for state estimation and data reconciliation of nonlinear systems. In order to address

the high performance runtime cost of solving the MPC problem (formulated as a quadratic

programming problem), an RNN is developed that has a low model complexity as well as

good performance in real-time implementation. The proposed method is first developed to

control an AUV following a desired trajectory. Since the problem of trajectory tracking and

path following of AUVs exhibit nonlinear behavior, the effectiveness of the developed MPC-

RNN algorithm is studied in comparison with two other control system methods, namely

the linear MPC using Kalman Filter (KF) and the conventional nonlinear MPC using the

EKF.

In order to guarantee the fault-tolerant features of our proposed control method when

faced with severe actuator faults, the developed MPC-RNN scheme is integrated with a dual

Extended Kalman Filter that is used for a combined estimation of AUV states and param-

eters. The actuator faults are defined as the system parameters that are to be estimated

online by the dual-EKF. Therefore, the developed Active Fault-Tolerant Control (AFTC)

strategy is then applied to an AUV faced with loss of effectiveness (LOE) actuator fault

scenarios while following a trajectory. Analysis and discussions regarding the comparison of

the proposed AFTC method with Fault-Tolerant Nonlinear Model Predictive Control (FT-

NMPC) algorithm are presented in this work. The proposed approach to AFTC exploits the

advantages of the MPC-RNN algorithm properties as well as accounting explicitly for severe

control actuator faults in the nonlinear AUV model with uncertainties that are formulated

by the MPC.
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Chapter 1

Introduction

1.1 Motivation

Oceans are occupying approximately 71 percent of surface of the earth and the collection of

ocean data by survey for studies and development is indispensable. Therefore, the research

and contribution in underwater vehicles have become an important field for researchers since

almost six decades [14].

There are basically three types of underwater vehicles: Remotely Operated Vehicle

(ROV), Unmannd Underwater Vehicles (UUV) and Autonomous Underwater Vehicle (AUV)

[13]. In 1957, Stan Murphy, Bob Francois and later on Terry Ewart, developed the first AUV,

Self-Propelled Underwater Research Vehicle (SPURV), at Applied Physics Laboratory in the

University of Washington, which was used to study diffusion, acoustic transmission, and

submarine wakes [15]. Most of early AUVs that had been developed were large, inefficient,

and expensive.

While the ROVs were becoming more mature in early 1980s, the AUV technology was

essentially in its infancy. In fact, ROVs have attributes of a brain (the human operator)

attached via a long nervous system (the umbilical cable) and brawn (hydraulic power),
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which is provided by heavy-duty electro-hydraulic power systems to thrusters, tools and

manipulators. AUVs are required to carry their brain and brawn with them, a requirement

that in early 1980s left them waiting for advances in computer technology and energy storage.

After more than twenty years of continuous development, AUVs can operate without the

need of constant monitoring and supervision from a human operator [16]. Therefore, among

all types of underwater vehicles, AUVs are used across a wide range of mission scenarios

and from an increasingly diverse set of operators [17].

Since then, with the development of activities in ocean, AUVs have been widely used in

many fields such as military reconnaissance and mine countermeasures, region surveillance,

search and rescue, profiling the water column for scientific measurements of conductivity,

temperature, density, sound speed and other acoustic measures [13]. AUVs present an ever

expanding range of applications that enhance human capabilities and mitigate human risks.

Meanwhile, oil and gas industries highly benefit from AUVs technology for the inspec-

tion of the pipelines and other marine related tasks [15]. Therefore, underwater vehicles

have been developed that range from Robo-Lobster and Robo-Tuna to the giant Defense

Advanced Research Projects Agency’s (DARPA) UUVs. The offshore oil industry looks

at AUVs, such as the Hugin used by Norways Statoil, to lower the cost of operations in

many areas. Japan is developing an AUV to reach the depths of Mariana Trench, while Jet

Propulsion Laboratory (JPL) is developing AUVs to bore through the ice and investigate

the seas of other planets and moons [16]. The Urashima [18], for which JAMSTEC started

actual ocean experiments in Fiscal 2000, was chosen for the demonstration of simulator

application. Nowadays, many countries either operate AUVs or they are at the stage of

developing one [19]. For example, the WHOIs ABE AUV [20] has been operational for

the accurate terrain mapping and sea floor hydrothermal vents investigation for more than

ten years. It was then replaced with a 4500m leveled SENTRY AUV which has better

maneuverability [21].
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1.2 Literature Review

This section aims to briefly review the control of AUVs and to bring some background about

the importance of fault tolerant control systems. In addition, some preliminary topics about

computational intelligence in control systems are presented.

1.2.1 Control of AUVs

Generally, what makes it difficult to control AUVs are: the highly nonlinear time-varying

dynamic behavior of robots, uncertainties in hydrodynamic coefficients and disturbances by

ocean currents. Also, when the manipulators are attached to the AUV the higher order and

redundant structure as well as the changes in the centers of the gravity and buoyancy (due

to the manipulator motion) disturb the main body of AUVs. Therefore, it is complicated

to fine-tune control gains during an operation in water. It is highly desirable to have a

control system that has a self-tuning ability when the control performance degrades during

the operation due to changes in dynamics of the AUV and its environment.

Yoerger and Slotine [23] have proposed a sliding mode controller for an underwater

vehicle to control its trajectory. They have investigated the effects of uncertainty of the

hydrodynamic coefficients and negligence of cross-coupling terms. Healey and Lienard [24]

have used sliding mode methods for controlling underwater vehicles. The system in [24]

is decomposed into non-interacting (or lightly interacting) subsystems, and certain key

motion equations are combined according to separate functions of steering, diving, and

speed control.

In [25], Nakamura and Savant have proposed a nonlinear tracking control of a 4 degree

of freedom (surge, roll, pitch and yaw) AUV considering its kinematic motion . The work

[25] uses the nonholonomic nature of the system without considering system dynamics.

Goheen et al. [26] have proposed multi-variable self-tuning controllers acting as an autopilot
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for underwater vehicles to overcome model uncertainties while performing auto-positioning

and station-keeping. Later, Choi and Yuh [27] have developed a novel Multiple Input

Multiple Output (MIMO) adaptive controller using bound estimation for underwater robotic

systems. They have implemented the developed control system on an AUV, namely the

Omni Directional Intelligent Navigator (ODIN).

A hybrid adaptive control (suggesting that the procedure is a mixture of continuous

and discrete operations) of an AUV was investigated by Tabaii et al. [28]. The system in [28]

was simulated in the continuous time domain while control and identification sections were

discrete-time. Yuh [14] has proposed a neural network control system using a recursive

adaptation algorithm with a critic function (a reinforced learning approach). The special

feature of this controller is that the central system adjusts itself directly and in an online

manner without an explicit model of vehicle dynamics.

Ishii et al. [29] have proposed a neural network based control method called Self-

Organizing Neural-net-Controller System (SONCS) for AUVs and also examined its effec-

tiveness through another AUV called Twin-Burger. In [29], a quick controller adaptation

method called Imaginary Training is used to improve the time-consuming adaptation process

of SONCS. Tsukamoto et al. [30] practically implemented four model-free control systems

for the position and velocity control of a single thruster system that are: online neural net

controller, off-line neural net controller, fuzzy control, and the non-regressors based adap-

tive control . In [30], the off-line neural controller utilizes Intel i80170 Electrically Trainable

Artificial Neural Network (ETANN) chips.

Since there are many challenging engineering problems for vehicles with manipulators,

unlike many underwater remotely operated vehicles (ROVs), most AUVs are not equipped

with mechanical manipulators. In fact, for a large robot, effects of arm motion on the main

body may be negligible, and even the main body and arm can be considered as two separate

systems with different bandwidths. Unlike large robots, coupling effects of the main body
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and arm are significant in case of a small robot and must be taken into account in the

overall control system design. With the arm attached to the vehicle, the overall system

becomes a multi-rigid body. The vehicle’s main body continuously moves in water, and

consequently high arm control performance, in terms of speed and accuracy, requires highly

accurate information about the vehicle’s position and velocity. Therefore, most commercial

sensors for vehicle’s position and velocity do not meet the accuracy requirements of the

arm control. Hence there are few papers about the coordinated motion of the vehicle and

manipulator [31–35].

Mahesh et al. in [31] have developed a coordinated control scheme, using a discrete-

time approximation of the dynamic model of underwater robotic systems, which controls

the vehicle and manipulator simultaneously and also compensates for end-effector errors

resulting from motion of the vehicle. McLain et al. [32] have conducted experiments at

the Monterey Bay Aquarium Research Institute (MBARI) using the OTTER vehicle and

have shown that dynamic interactions between robot arm and vehicle can be very signifi-

cant. McLain et al. [32] pointed out that coordinated motion control strategy along with

an accurate model of the arm/vehicle hydrodynamic interaction forces would impose the

station-keeping capability and end-effector accuracy.

Taren et al. [33] investigated a nonlinear model based control scheme that simultane-

ously controls the position and orientation of the vehicle and manipulator. Canudas-de-Wit

et al. in [35] have designed a robust nonlinear control for a vehicle/arm system to com-

pensate for the coupling effects due to an onboard robot arm . Different bandwidth char-

acteristics of the composite vehicle-manipulator dynamics are used [35] as a basis for the

controller design via singular perturbation theory. Moreover, both the robust controller as

well as the partial linearized controller proposed in [35] achieve similar performance even in

the presence of saturation fault. Antonelli and Chiaverini [34] proposed a task-priority based

redundancy resolution scheme for kinematic control of an underwater vehicle-manipulator
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system by suitably using the null space vector.

Motion Control of AUVs

There is a considerable interest in the development of advanced methods for motion control

of marine vehicles (including surface and underwater vehicles) in the presence of unknown

ocean currents, wave action, and vehicle model uncertainty. The most relevant AUV prob-

lems are as follows:

• vertical and horizontal plane control,

• pose (position and attitude) control,

• trajectory tracking and path following control.

Vertical and Horizontal Plane Control

In a vast number of mission scenarios, underwater vehicles are required to maneuver in ver-

tical and horizontal planes while tracking a desired speed profile bounded away from zero.

Examples include heading control in the horizontal plane and depth or altitude control

(above the seabed) in the vertical plane [10, 36, 37]. More challenging applications require

depth control close to the sea surface while in the presence of strong wave action [38]. Ex-

amples of this type of control that is required for both streamlined and bluff bodies are the

Infante AUV and the Sirene AUV, respectively [39]. The first class of bodies has a preferred

direction of motion and the control objective is usually accomplished by resorting to sim-

plified dynamic models of motion that is obtained by linearizing their nonlinear dynamics

about trimming conditions. The second class of bodies does not have a preferred direction

of motion leading to a more difficult control strategy that requires more complex nonlinear

dynamic models of motion. The problem of control in the horizontal plane is also relevant

in the case of autonomous surface craft such as the Delfim or Caravela vessels [39].
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Pose Control

A completely different class of problems arises when an underwater vehicle must be steered

to a final target point with a desired orientation. This situation calls for the development

of controllers to manoeuvre the vehicle at speeds around zero. The problem is especially

challenging when the number of vehicle actuators is fewer than its degrees of freedom, as

in case of the Sirene AUV [40]. In this situation, theoretical limitations arising from the

fact that the vehicles are non-holonomic [41], and hence discontinuous, hybrid, or even

time-varying feedback control laws should be used.

Trajectory Tracking and Path Following

Trajectory tracking refers to the problem of tracking a time-parameterized reference curve

in two or three-dimensional space, usually by a marine vehicle. Simply, one requests that

the vehicle to be at assigned spatial coordinates at particular time instants. This requires

that the position of the vehicle to be controlled with respect to an inertial frame. In the case

of an AUV faced with strong currents, trajectory tracking may lead to a situation where

the vehicle surfaces stall and also the control authority is drastically reduced.

Furthermore, the trajectory tracking control often leads to unpredictable vehicle mo-

tions in an attempt to meet stringent spatial requirements as well as requiring considerable

actuator activity. Both problems are slightly attenuated when temporal constraints are

lifted, and hence leading to the problem of path following. Path following is the task of

forcing a vehicle to converge to and follow a desired spatial path, without any temporal

specifications [10]. In some missions the vehicle is still required to track a desired temporal

speed profile. For instance, this objective occurs for example when an autonomous sur-

face vessel must cover a certain area by performing a lawn mowing maneuver along desired

trajectories with great accuracy, at speeds determined by the end-user.
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The underlying assumption in path following control is that vehicles forward speed

tracks in a the desired speed profile bound, while the controller directs the vehicle’s orienta-

tion to move toward the path. Typically, smoother convergence to the path is achieved when

path following strategies are used instead of trajectory tracking control laws, and the control

signals are less likely to be pushed to the saturation. This interesting circle of ideas opens

the door to more sophisticated strategies that naturally combine some of the attributes of

trajectory tracking and path following, as first suggested in the pioneering work of Hauser

and Hindman [42] and more recently pursued in works [43] and [44].

Nonlinear Path Following

The majority of AUV controller designs take a classic strategy followed by linear control

techniques such as proportional integral derivative (PID) controller. However, AUVs are

typically small multi-purpose underwater vehicles that are working around numerous op-

erating points, which makes the classical linear control theory to be not applicable. Since

nonlinear effects of hydrodynamic damping and lift, added mass, Coriolis and centripetal

forces may produce degraded performances, the use of advanced control techniques in vari-

ous AUV applications is drawing researchers attentions.

Path following requires the vehicle to reach and follow a desired path generally without

any time constraint. This task is accomplished through controlling the forward speed and

also through directing the vehicle’s orientation towards its desired path. The task of path

following is considered to be solved when the designed controller guarantees asymptotic

convergence to the path. Some works have addressed the problem of path-following control

for a nonlinear systems [45–48]. A new methodology has been proposed in [49] for the design

of path-following systems within an autonomous marine craft in the presence of constant

but unknown currents.
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The work [49] explains the key ideas behind the development of the nonlinear algo-

rithm. In [49], it is assumed that the main body-axis of a hypothetical vehicle is aligned

with the net velocity vector. A nonlinear kinematic controller is then derived for the vehicle

to steer it to a reference path in the presence of a constant and known ocean current. The

work [49] followed this by the design of a linear estimator for the current that yields expo-

nential asymptotic stability of the estimation errors to zero. The nonlinear control law is

then modified to use the estimated values of the current instead of the real ones. In [49], it

is assumed that the position and attitude of the marine craft, as well as its angle of side-slip,

are accessible for measurement. Asymptotic convergence to the reference path is proven for

the overall control system. Finally, the use of nonlinear dynamic inversions and applying

backstepping technique are explained.

1.2.2 The Necessity of Fault Detection, Isolation and Reconfigu-

ration in AUV Systems

A large amount of attention has been paid to the problem of Fault Diagnosis (FD) of AUVs

to improve the reliability of these systems. Because of the communication delays in depth,

AUVs should be able to diagnose the failure and decide how to reconfigure their control

commands. Therefore, the early detection of the malfunctions and faults as well as their

compensation are crucial both for the maintenance and for the mission reliability of these

vehicles.

Faults are defined as any deviations from the normal behavior in the plant or its other

relevant instruments. In fact, a fault detection system makes a binary decision that whether

the system works in a normal condition or a fault happed to the monitored system. Fault

isolation is the determination of location of a fault in the monitored system, whereas the fault

identification identifies the type of the fault. A system with fault detection, isolation and
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identification capabilities is known as Fault Detection, Isolation and Identification (FDII)

system.

In case of Fault Recovery (FR), AUV missions generally use pre-scripted plans but

these missions do not scale well with partially known or unknown environments. Pre-

scripted plans, have intrinsically limited capability of exploiting observations that can be

used as a basis for decision-making. Unexpected changes in the environment or the vehicle

state, sensor limitations and hardware faults often affect mission performance. In addition,

high-level priority changes can occur in real-time and accordingly, vehicles should be able to

accommodate and act upon them. Fault detection, online mission planning and knowledge

acquisition approaches are necessary but hardly sufficient. To promote persistent autonomy

and successful mission execution, system control approaches should be backed by fault

recovery capabilities and adaption on both the mission planning and execution levels [50].

The integration of FDI and recovery module is an important consideration in develop-

ing an FDIR methodology. According to [51], this integration divides to three subsections:

1) the open-loop approach in which the FDI module has no affect on the control function.

Therefore, the control system effects the FDI operation through the residual signals. 2)

Establishing a relation between the FDI information and the controller. In this way, once

the fault is detected and isolated, the recovery system performs the fault accommodation

task. The controller reconfiguration scheme performs the recovery task without changing

the control structure. 3) A combination of control design and fault estimation resulted in a

robust FDI approach, which imposes extra design constraints on the system. The work [51]

explains how this approach results in a trade-off between the performance and robustness.

11



1.2.3 Fault-Tolerant Control of AUVs

The hazardous ocean environment presents many challenging problems in the event of sys-

tem failures for AUVs. For any major failure of robots subsystems, the robot should rise

to the surface and signal for retrieval. However, for any tolerable failure, the robot should

be able to adjust for the failure and complete the assigned task. Therefore, an efficient and

effective fault tolerant system becomes imperative for AUVs.

A fault-tolerant system consists of three steps: fault detection, fault isolation, and fault

accommodation [52]. The fault detection process is a high-level function that monitors the

overall systems (both hardware and software) for any signal that exceeds any preset tolerance

or measured sensor values. Once a fault is detected, the fault isolation process determines the

exact location of the fault. If the fault is evaluated to be tolerable, the fault accommodation

process either accommodates or reconfigures the robots control architecture to successfully

carry out the assigned task. Several methods for fault-tolerant control of AUVs have been

discussed in the literature [53–57].

FTC approaches can be divided into passive and active FTCs. Passive FTC (PFTC)

methods treat faults as sources of system uncertainty, and correspondingly the controller

is designed for the worst case scenario. Moreover, they do not rely on the fault detection,

since the resulting controller is passively resilient to all the faults considered at the design

stage [58]. Active FTC methods (AFTC) only react to faults when necessary. This way,

once the fault is detected, the controller can be either selected from a set of pre-defined

controllers, or it can be computed online. Since AFTC methods are not designed for the

worst case scenario, they can yield better performance than PFTC methods. However, the

effectiveness of AFTC relies heavily on the reliability of the fault detection stage.

In contrast to PFTC systems, AFTC methods react to system component failures
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1.2.4 Computational Intelligence

Computational Intelligence (CI) is the study of intelligent agents [74]. An intelligent system

can adapt to changes in its goals and also in the environment, since it learns from experience

and can make appropriate decisions within its given perceptual limitations. The main

difference between the Artificial Intelligence (AI) and CI is that, AI is not real. For instance,

an artificial cherry is not real but, a synthetic cherry may not be a natural cherry while it

is a real one and that is how the CI differs.

There is a class of intelligent agents that is somehow more intelligent than humans,

and that is organizations [74]. Consider ant colonies that are a prototypical example of

organizations. Each individual ant may not be very intelligent, but an ant colony can act

more intelligently than any individual ant. The ant colony can discover food and exploit it

very effectively as well as adapt to any changes in circumstances. Similarly, corporations

can develop, manufacture, and distribute products where the sum of the skills require is

much more than any individual could understand. This concept is referred to as synergy.

The human society, if viewed as an agent, is probably the most known intelligent agent [74].

CI means that there is a level of abstraction in which one can interpret reasoning as

symbol manipulation, so this level can explain an agent’s actions in terms of its inputs [74].

Consider an agent as a black box, at any time, the agent has: 1) prior knowledge about

the world, 2) past experience that it can learn from, 3) goals that it must try to achieve

or values about what is important, and 4) observations about the current environment and

itself, as its inputs. The agent’s action at any time is the black box output.

Figure 1.4 illustrates a graphical overview of the subsections of the AI domain [6].
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Computation Intelligence (CI) Applications

The theories on representation and reasoning are only applicable for the automation of

problem solving tasks. CI has many applications such as medical diagnosis, scheduling

factory processes, robots for hazardous environments, chess playing, autonomous vehicles,

natural language translation systems, and cooperative systems [74]. After investigating

essential features of such applications, the following four main tasks should be considered

to study principles behind intelligent reasoning and action: 1) modeling the environment,

2) evidential reasoning or perception, 3) taking action and 4) learning from past experience.

According to [6], neural network, fuzzy systems and evolutionary computation approaches

are also considered as branches of CI.

A consequence of the increase in complexity of the task and physical hardware in

our application is to observe an ever-widening gap between our mathematical model and

the corresponding practical application. Consequently, the need for research towards the

development of approaches having the capability of self-organization under the changing

conditions of the task and environment is evident. The work [75] discusses the Variable

Structure Systems (VSS) theory in CI.

Traditionally, AI methods are utilized in the literature to deal with the high-level

programming. Several programming and control architectures have been developed for high-

level controls of mobile robots, particularly for AUVs. Some architectures, such as planning-

based systems, are not suitable for real-time operations in systems of reasonable complexity.

On the other hand, few other approaches such as behavior-based systems were developed to

address real-time concerns and also provide flexibility, however many of them lack a rigorous

set of definitions as well as an associated systems analysis. The focus of intelligent control

architectures has been on the use of technologies such as adaptation and learning. However,

in order to facilitate safe execution of missions in complex environments, few works consider
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real-time operations, automatic code-generation, and semi-automatic verification of safety

and progress at every design stage. To this end, the work [76] proposed a model-based and

hierarchical architecture. From control perspective, an AUV can broadly be divided into

lower level control that is concerned with continuous dynamics, and high-level control that

is typically discrete and event/time-driven [76].

1.3 Model Predictive Control (MPC) [1]

Nonlinear effects from lift and hydrodynamic damping, added mass, Coriolis and centripetal

forces may produce highly degraded performance. Therefore, AUV applications using ad-

vanced control techniques are constantly drawing researchers’ attention. Meanwhile, model

predictive control (MPC) has been extensively studied for more than four decades [1]. Other

names for the MPC are rolling-horizon planning, receding-horizon control, dynamic matrix

control, and dynamic linear programming. The mid-seventies to mid-eighties is considered to

be the true birth of MPC [77]. Due to its capabilities of handling nonlinearities and directly

enforcing constraints, MPC finds an increasing number of applications across various fields.

This control method has been applied in a broad range of applications such as in chemical

process and industrial control [78] [79], control of queuing systems [80], supply chain man-

agement [81], stochastic control in economics and finance [82], dynamic hedging [83] and

revenue management [84].

From the first algorithms of MPC, they all shared the same structural features. All

MPC algorithms obtain a sequence of future control variables based on the optimization of

the future system behavior. The first part of the obtained optimal sequence is then applied

to the system, and the entire procedure is repeated after a short time interval [7]. MPC is

an advanced optimization-based control method that entails extensive online computation

of real-time solution to the underlying optimization problems [85].
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According to [86], the flexibility of the MPC to plant size and the automated setup

are stated as two important advantages of MPC. In addition, MPC controller is capable

of dealing with the scalarization of multi-objective optimization problems, which means it

might be possible to tackle two or more control goals simultaneously. Subsequently, the

AUV path tracking (and even formation) problem can be formulated into an MPC scheme.

The common control objective used in the MPC is the Linear-Quadratic (LQ) objective

(cost) function. The LQ objective function along with a linear prediction model and linear

constrains give rise to a so called Quadratic programming (QP) optimization problem that

can be solved within a finite number of numerical operations [1]. A QP problem is a convex

optimization problem with a unique global minimum if the problem is feasible. Moreover,

a QP problem ensures that the resulting MPC algorithm is robust for the process control.

The MPC strategy is an important class of the optimal control theory that was de-

veloped in 1960s and later [87]. MPC is an iterative optimization technique in which at

each sampling time k, it measures or estimates the current state, and then obtains the op-

timal input vector by solving an optimization problem. The main goal of the optimization

problem is to compute a new control input vector, uk, while taking process constraints into

consideration. An MPC algorithm consists of the following items:

(1) A cost function, or a control objective, Jk, which is a scalar criterion to measure

the difference between future outputs, yk+1|L, and some future reference, rk+1|L, while taking

the cost of the control input uk into account. Hence, the objective, which is a measure of

the process behavior over the prediction horizon L is minimized with respect to the future

control vectors, uk+1|L. In this process, the first uk is used for control only. Figure 1.5

illustrates the general MPC control strategy.

(2) Some constraints, which can be simply treated on the process far more efficient

than in conventional control systems (such as the PID-control). This is one of the main

motivation behind selecting the MPC [87]. Input amplitude constraints and input rate

19





computational complexity [90] [91]. Various nonlinear MPC techniques have been developed

since behavior of many technological dynamic systems are nonlinear [91–93]. In fact, the

major limitation of linear MPC is that the plant behavior is described by a linear dynamic

model, and hence unsuitable for both moderately as well as highly nonlinear processes

with large operating systems [92]. The structure of the nonlinear model and the way it is

used in an online manner affect the accuracy, the computational burden, and the reliability

of the nonlinear MPC. Fundamental (first-principle) models are usually not suitable for

online control strategy although potentially very precise. Such models are consisted of

nonlinear differential and algebraic equations which have to be solved in an online manner

within MPC. This type of approach is usually requires performance runtime monitoring since

fundamental models can be very complex and may lead to numerical problems. Moreover,

development of fundamental models is difficult in many applications. If a process exhibits

significantly nonlinear behavior, the classical PID controller and the MPC algorithm based

on a linear model are unable to control the system efficiently. Linear Quadratic Regulator

(LQR) method, which guarantees the operation of a dynamic system at minimum cost, lacks

the constraints on input, output, and state variables, while MPC brings them directly into

account [94].

The work [95] is proposed as a benchmark setup for several MPC methods for nonlinear

and piecewise affine systems. Corona et al. [95] presented a description of the methods to

be compared, and collected the comparison results in a table. In particular, the trade-

offs between complexity and accuracy of the solution, as well as computational aspects are

highlighted in [95]. Practically, there exist several drawbacks in choosing nonlinear MPC

[95–98] such as higher online computation time, and a larger online memory. According

to [87] and [99], a nonlinear MPC is generally not guaranteed to converge within a reasonable

computing time. Also, a nonlinear optimization problem often has flaws in local minima

and convergence problems. Hence, a nonlinear MPC method may not be robust for some
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cases within an online process control.

To reduce the severe performance runtime problems associated with the nonconvexity,

a suboptimal approach for continuous-time systems is proposed in [100] that employs an

initial feasible solution that is improved iteratively in lieu of optimization. The work [99]

extends these results by showing that under mild conditions, feasibility rather than optimal-

ity is sufficient for stability. Also, for nonlinear discrete-time systems, under mild condition,

feasibility is sufficient to establish the stability of suboptimal fixed horizon versions of MPC.

Motivated from [101], a performance runtime efficient nonlinear MPC algorithm with the

nonlinear prediction linearized optimization was applied to the temperature control of a

yeast fermentation reactor based on a neural model. On the other hand, the work [95]

presents the linear methods with the minimum position and velocity overshoot values in-

dicating with how far the vehicle overtakes the reference. Also, from the control cost per-

spective, linear methods has lower control costs. Adding up the mentioned literature, the

importance of using a methodology which is a trade-off between linear and nonlinear MPC

is feasible.

1.3.1 MPC-based Hybrid Control Methods

The advantages of making a system hybrid with CI methods are significant. Timed and

hybrid automata have proved to be a successful modeling framework for formal verification

[51,102–107].

A good example of the fusion with CI-based methodologies is the integration of CI and

sliding mode control (SMC) available in [103]. A pure SMC suffers from some drawbacks.

First, the chattering problem (the high frequency oscillations of a controller’s output due

to the high speed switching) should be considered for the establishment of a sliding mode.

In real-world implementations, chattering is highly undesirable as it may excite unmodeled
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high-frequency plant dynamics leading to unforeseen instabilities. In addition, an SMC is

vulnerable to measurement noise since its input depends on the sign of a measured variable

that is very close to zero [108]. Moreover, the SMC may employ unnecessarily large control

signals to overcome parametric uncertainties. Finally, it is difficult to calculate the equiva-

lent control exists that needs a complete knowledge of plant dynamics. Kaynak et al. [103]

discuss how some intelligence can be incorporated in SMCs by using CI methodologies.

In [104], a new control strategy using MPC is developed and simulated on an AUV

to track the reference heading provided by a guidance system. MPC is chosen because of

several reasons such as the ability to handle constraints in a natural way. A novel approach

for the implementation of nonlinear MPC is proposed using GAs [105]. The proposed

method in [105] formulates the MPC as an optimization problem. Application to two types

of nonlinear models are studied, namely Hammerstein and Wiener Models. The simulation

results are illustrated for two chemical processes to demonstrate the performance of the

proposed scheme.

In [102], an MPC problem with fault-tolerance capabilities is formulated within the

hybrid system framework. In particular, the mixed logical dynamic form is considered to

represent hybrid systems. Using this approach, a hybrid model of the system to be controlled

is obtained, which includes inherent hybrid phenomena and possible modes caused by fault

occurrences. This allows to adapt the system model online by taking into account the fault

information provided by a fault diagnosis and isolation module. In this way, the controller

can cope with the considered faults. Additionally, different implementation schemes and

fault-tolerance evaluation procedures for hybrid MPC (HMPC) considering fault-tolerance

capabilities are proposed and discussed [102]. Finally, to exemplify the implementation

of the proposed approach along with considering actuator fault tolerance, the proposed

approach is applied to portion of the sewer network of Barcelona.

In the work [106], an asymptotically stable combined kinematic/torque control law is
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developed using a backstepping approach to accommodate the complete dynamics of robots.

Moreover, a neural network is introduced to approximate the dynamics of the robots using

online weight tuning.

1.3.2 Fault-Tolerant MPC

MPC is potentially a promising tool for fault tolerant control applications , due to its promi-

nent capabilities such as constraint handling, flexibility to changes in process dynamics, and

the applicability in nonlinear dynamics [5,109–112]. Since MPC recalculates the control sig-

nal at each sampling time, any change in process dynamics can be reflected simply into the

control signal calculation. A fundamental question about MPC is its performance robust-

ness to model uncertainty and noise. When we say that a control system is robust we mean

that, the performance specifications are met for a specified range of model variations and a

class of noise signals. [113].

Fault-tolerance aspect in control methods requires an effort at every stage and in

all aspects of system design [60]. Most of the literature in control systems only consider

problems which are based on mathematical models of the plant. A Fault-Tolerant Control

(FTC) method should ideally be accompanied by a systematic integrated approach. The

FTC strategy should start with an understanding of the system structure, the reliability of

different components, the types of redundancy available (or to be generated) and the types

of the controller function that are available.

There exists two main AFTC approaches in redesigning or recovering the controller

to become fault-tolerant, that are: fault accommodation and control reconfiguration. The

fault accommodation task is performed by adapting controller parameters according to the

dynamical properties of the faulty system. In this recovery approach, the input and output

signals of the system remain the same like in the fault-free case. If the fault accommodation
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task does not perform sufficiently, the complete control loop has to be reconfigured in the

fault reconfiguration task, a new control configuration is selected where alternative input

and output signals are used [114]. It should be mentioned that in the process of fault

detection, accommodation and controller reconfiguration, a percentage of degradation in

the performance of the controller is feasible.

In [115], Roofigari et al. have developed a novel control scheme based on coupled

modeling of a satellite controlled by MPC, and then they studied the local-level recovery

accommodation of faulty agent performance by using local fault information. The work

[115] also shows the enhancement of the recovery performance by reducing the oscillatory

behavior.

In [116], Sedaghati et al. considered the problem of limited information availability in

underwater applications that are controlled based on the MPC technique. An active fault

recovery scheme is proposed and its performance is compared in tracking and formation

keeping in the presence of actuator faults. In [116], a virtual vehicle formation coordination

method is considered to achieve individual and cooperative objectives depending on their

significance to individuals. Gopinathan et al. [117] used an MPC strategy as a basic control

law within the framework of Multiple Models, Switching and Tuning (MMST) to design a

reconfigurable flight control system. The main feature of the overall controller is that due

to the use of MPC, it can explicitly consider hard constraints on control inputs. It can also

achieve an acceptable flight performance in the presence of control effector freezing. In order

to obtain an effective reconfigurable control design, a new parameterization of the aircraft

model in the presence of control effector freezing is suggested. It turned out that such a

parameterization is well suited for use within an MPC framework. The overall Multiple

Model Predictive Control (MMPC) scheme quickly identifies the nature and time instant of

the failure, and then carries out an automatic reconfiguration of the control law by achieving

an acceptable flight performance. The properties of the reconfigurable controller in [117]
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are evaluated through simulations of an F/A-l8A aircraft carrier landing maneuver in the

presence of critical control effector failures.

In [118], an actuator FTC scheme combining tube-based MPC and set-theoretic FDI

approached was proposed. The work [118] presents a passive fault detection scheme by

using invariant sets and an active fault isolation scheme by relying on MPC and tubes.

The use of tube-based MPC and set-theoretic FDI is interesting due to their relatively

low computational complexity, robustness of the FDI, and their proper combination to

implement the proposed active Fault Isolation (FI) strategy. Thus, the proposed fault-

tolerant MPC scheme has robust FDI performance, low computational complexity, and less

conservative FI conditions. The key idea of the proposed FTC scheme in [118] is to design

the input and state sets for an active FI. The sets are chosen by offline trial and error as a

practical method, which can be improved if a systematic design method can be proposed for

the input and state FI sets in the future. It should be emphasized that the main drawback

about the proposed FTC scheme in [118] is that it cannot detect all faults. Thus, for

undetectable faults, the PFTC ability of this scheme can still tolerate them to some extent

even though a possible degree of performance degradation may appear. Advantages of the

proposed FTC scheme lie in its relatively simple structure and less conservative active FI.

In a recent series of papers, Lyapunov-based model predictive control (LMPC) schemes

for nonlinear systems are proposed as a way to guarantee the closed-loop stability [72, 73,

119]. These LMPC methods, known as proactive MPC, are based on uniting receding

horizon control with Control Lyapunov Functions (CLFs). This method has been a popular

topic in the communication systems and aerospace control systems communities for the last

10 years [120]. Recent studies deal with the design of FT controllers for nonlinear systems

subject to sensor faults such as time-varying measurement delay in the feedback loop or

data loss. Recent proposed LMPC scheme is applied on nonlinear systems use nominal

model of the system along with the faulty measurement to estimate the current state, when
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measurement fault occurs. Then, when no measurement is available, due to the fault, the

resulting estimate is applied to evaluate the LMPC controller instead of setting the control

input to zero or to the last available parameter value.

When it comes to AUV application we come across difficulties in case of implementing

such method on our proposed MPC algorithm in Chapter 3. First, proactive approaches

need a huge data available. Resulted from the available data and based on the analysis of the

design of normal and passive fault tolerant controllers, such fault-tolerant control schemes

are proposed. Since such data history is not available in our application, proactive scheme

seems to be not feasible. Second, in case of actuator faults the actuator should implement

the last optimal input trajectory evaluated by the controller. Since this requires that the

controller must stores the last evaluated optimal control input trajectory in its memory, the

complexity of the system increases, undesirably. Moreover, to the best of our knowledge,

there is no guarantee, so far, about consequent faults to be reconfigured or accommodated

in the proactive schemes.

1.4 State Estimators in Nonlinear Systems

After Recursive Least Squares (RLS) used commonly for parameter estimation of linear sys-

tems [121], Kalman filter became the optimal parameter estimator, particularly, in tracking

applications [122]. Kalman filter uses the hypotheses of Gaussian measurement and process

noises and the linearity of state and measurement equations [12]. Recently, there has been

a great deal of interest to use the online fault estimators [123–125]. Few of the literature

have investigated moving horizon estimation (MHE) for nonlinear systems [126].

The Extended Kalman Filter (EKF) is being extensively used as a standard technique

for recursive estimation for nonlinear systems and machine learning applications. Few of

these applications include estimating states of a nonlinear dynamic system, identification
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of the nonlinear system parameters (e.g., learning the weights of a neural network), and

dual estimation (e.g., the Expectation Maximization (EM) algorithm) where both states

and parameters are simultaneously estimated. The work [127] provides the reader with an

overview about EKF and also the advantages of Unscented Kalman Filters (UKF), which

is another variant of the KF. The parameter estimation block, in [128], uses either MHE or

UKF to estimate the fault parameters. Using parameterized model to calculate the control

signal, the MPC adopts the input and output information of the process in an online manner

at each time step. In [128], an MPC based fault tolerant controller has been integrated

with an MHE and/or UKF for fault parameters estimation to form an active FTC system.

Simulation results in [128] suggest that the MPC-based fault tolerant controller provides

prominent fault tolerant capabilities to the control of quad-rotor helicopter with constrained

nonlinear dynamics. Furthermore, it satisfies all system constraints and performs control

redistribution effectively in an optimal manner. It is also seen that the parameters of

the fault converge faster using MHE when compared with the UKF-based fault estimator.

However, the computation time of MHE is slightly higher than that of UKF.

In the work [129], a robust MPC controller for constrained discrete-time nonlinear

systems with additive uncertainties is presented. This strategy follows the general MPC

formulation that it is based on the nominal prediction of the states. It also considers a

terminal cost and a terminal constraint on the state. Assumptions on the design parameters

of the MPC controller are given in order to guarantee robust constraints satisfaction. The

design in [129] is based on computation of the bound on the mismatch between the nominal

prediction and the uncertain evolution of the system. The drawback of the work [129] is

that over-conservative bounds may be obtained since the design is based on the Lipschitz

continuity of the system as well as the open-loop nature of the predictions.

EKF can suffer from suboptimal performance and sometimes divergence due to errors

introduced by the first-order approximation of the true nonlinear dynamics [130] [131]. To
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overcome the above limitations, the works [130] [131] utilized a multi-layer feed-forward

(static) neural network due to the excellent universal approximating properties and also the

availability of effective online adaptation algorithms.

In the work [132], an FTC methodology is presented to handle possible sensor and/or

actuator faults, any abrupt changes in model parameters and unmeasured disturbances. The

work [132] integrated a bank of adaptive unscented Kalman filters (AUKFs) and fuzzy-based

decision making (FDM) schemes in the proposed FDI module. The proposed FDI approach

in [132] recursively corrects the measurement vector as well as the model used for both state

estimation and output prediction in an MPC formulation. For robustness of the proposed

FTC system in [132], H∞ optimal robust controller and an MPC are combined via a fuzzy

switch that is used for switching between MPC and robust controller. Therefore, the FTC

system is able to maintain the closed loop stability in the face of abrupt changes in model

parameters and unmeasured disturbances. The proposed FTC methodology in [132] can

handle soft faults due to bias and drift in sensors and actuators and any model mismatch

that cannot be isolated as faults by the FDI module. Also, it facilitates recovery of the

closed loop performance after the faults have been isolated leading to an offset free behavior

in the presence of sensor/actuator faults that can be either abrupt or drift change in biases.

The particle filters can be utilized as an alternative for real-time applications ap-

proached by model-based Kalman filter techniques [133–135]. Recursive implementations

of Monte Carlo-based statistical signal processing are known as particle filters. According

to [133], promising results in case of highly nonlinear models, or in the presence of non-

Gaussian noise, especially in applications where computational power is rather cheap and

the sampling rate is moderate. According to [136], there are still many results to be con-

ducted be sure about the convergence of the empirical distributions generated by particle

filtering methods. Similarly, Crisan et al. [136] proved that the crucial uniform convergence
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results rely on strong assumptions on the dynamic models making particle filters inapplica-

ble for most real-world problems.

UKF uses several sigma points (which if treated as elements of a discrete probability

distribution has mean and covariance equal to the given mean and covariance) to calculate

the mean and covariance of random variables [137]. These sigma points propagate through

the true nonlinear system. The posterior estimation is then calculated by the average of

the sigma points. The UKF is essentially a kind of Quasi-Monte Carlo method that has

the ability of processing nonlinearities [138]. The UKF is only valid when the posterior

distribution can be closely approximated by a Gaussian distribution [139]. The drawbacks

of UKF are as follows [140]:

• It preserves the linear update structure of the Kalman filter which is optimal only in

linear Gaussian systems.

• It uses second order moments which is only valid for Gaussian distributions.

• The number of sigma points is small and may not represent adequately complicated

distributions.

The work [141] shows that a UKF implementation on our application gives a minor im-

provement and further discusses with the amount of heading uncertainty we are faced with,

EKF does not suffer abrupt catastrophic inconsistency.

The work [142] presents a Cubature Kalman filter (CKF [143]) as an alternative for

UKF. Gustafsson et al. [142] claim that the unscented transform may have a negative weight

for the center point. This might cause problems when implementing the UKF such as using

the square root form. On the other hand, the CKF has a similar set of sigma points.

The points have positive weights, and the central point is left out. Authors in [142–144]

concluded that apart from all the advantages, CKF may marginally improve our system’s
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performance at the expense of a reduced numerical stability and an increased computational

cost.

1.4.1 Dual Extended Kalman Filter (dual-EKF):

Dual-EKF was proposed by Wan and Nelson in [145]. This variant provides a boot strapping

procedure for combined state and parameter estimation using two EKFs [146]. Therefore,

the state and parameter estimation problems are split, although the two problems cannot

be entirely separated due to their inherent interdependencies. Thus, the system is provided

with measurement updates on states and parameters of its system and reconfigures. One of

the advantages of this technique is that there exists the possibility to switch off the parameter

estimator, once a sufficiently good set of estimates has been obtained. The work [12] shows

the state-space formulation of the dual-EKF algorithm makes it applicable to a much wider

variety of contexts than has been explored in the literature. The simultaneous estimation

of the state and disturbance not only improves state observer robustness, but also helps to

compensate for disturbances in the controller according to the work [147].

The work [12] illustrated dual-EKF as a fundamental method for solving a range

of fault-tolerant predictive control problems related to signal processing. In [12] modeled

the AUV application by bringing a number of examples to illustrate the performance of

the dual-EKF methods and its ability to capture the underlying dynamics of a noisy time

series. Interested reader is referred to read [12] for more information on dual estimation

algorithms.

1.4.2 Observer-based Nonlinear Model Predictive Control

In Section 1.3, the importance of nonlinear model predictive control (NMPC) is highlighted.

Applications of NMPC for AUV are less frequent. A dual observer in [147], which combines
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a state and a perturbation observer, aims to solve the problem of being sensitive to ex-

ternal disturbance. The work [148] considered the elevator angle constraints and proposed

a controller based on MPC with artificial bee colony algorithm in which a classical linear

state observer is used. In [149], a novel discrete-time proportional and integral observer is

used to estimate the states, output, input, and disturbance together. Zhang et al. [150]

proposed a new reduced-order observer with multi-constrained thoughts by using specific

system decomposition. However, these results only use linear models.

In contrast, most practical systems are nonlinear and therefore nonlinear models are

required. Authors in [151] proposed a nonlinear observer based on dynamic model of AUV,

which is used to estimate the vehicles velocity. The work [152] investigated a nonlinear

feedback control algorithm with a nonlinear state observer, but the error dynamics stability

was not considered in observer design. The work [153] extended an adaptive state observer

to a class of nonlinear systems. However, due to the selected special Lyapunov matrix, there

is a reduction of the accuracy of state estimation.

As it is mentioned earlier, the MPC needs state variables to achieve desired output

tracking in the minimization of cost function, so the role of observer-based MPC is signif-

icant in practical implementation [154]. So, the motivation of this thesis is to address the

aforementioned problems and deficiencies, and the aim is to design an observer-based MPC

with nonlinear AUV kinematics and dynamics model.
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1.5 Combining Control Algorithms with Neural Net-

work (NN)

Neural Network (NN) properties such as, learning, nonlinear mapping, parallel processing

are attractive for underwater control problems [155]. Fujii et al. [156] investigated an ap-

plication to control problems of underwater robots and developed an NN-based adaptive

control system called SONCS (Self-Organizing Neural-net Control System). The work [156]

constructs a neural network as a feedback controller based on a back propagation method

proposed in [157]. Yuh [158] described an NN control system using a recursive adaption

algorithm with a critic function (reinforcement learning approach). The special feature of

the controller proposed in the work [158] is that a system directly adjusts itself in an online

manner with no explicit model for vehicle dynamics.

The works [159] [160] employed an NN method as well as a PID control strategy to

develop a robust adaptive controller. In [161], an NN combined with variable structure

method is used to develop the position controller. A neural learning control design is pre-

sented in [162] for trajectory tracking of ocean ships in the presence of unmodeled dynamics

as well as environmental disturbances.

According to [163], a combined system structure providing an input to an NN in

AUV equipment will be useful for enhancing mission control operation. Motivated from the

statistical learning theory, the work [11] presents a one-layer recurrent NN for the support

vector machines (SVM) learning in pattern classification and regression. In [11], the SVM

learning problem is first converted into an equivalent QP formulation, and then a one-layer

recurrent neural (RNN) network for SVM learning is proposed. For large scale and real-

time optimization problems, RNN emerged as a promising computational approach. The

work [164] presents a one-layer NN for solving convex optimization problems. In [165],

another one-layer neural network is presented for pseudo-convex optimization problems.
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These RNNs are shown to perform well in terms of convergence property as well as model

complexity.

Liu et al. [160] aim to perform a group of vessels to automatically position themselves in

a desired time-varying formation. Liu et al. [160] use a dynamic surface control technique as

well as distributed adaptive controllers to track a reference position by using the information

of neighboring vessels. The work [160] uses iterative updating law of NN to accurately

identify dynamical uncertainty and time-varying ocean disturbances. In [160], two types of

adaptive laws are proposed and validated, namely 1) direct iterative updating laws based

on the velocity tracking errors and, 2) composite iterative updating laws based on tracking

errors and prediction errors. Then, the work [160] employed Lyapunov-Krasovskii functions

to analyze the stability of the closedloop network. Due to the use of a distributed control

strategy in [160], the information exchanges among agents are reduced. Also, the mixed

uncertainty that includes the internal model uncertainty as well as external time-varying

ocean disturbances is compensated. Liu et al. [160] claimed that their proposed controller in

comparison with previous literature is 1) easier to implement in digital processors, as they

used derivativefree laws and, 2) they achieved a faster adaptation and improved performance

by using iterative neural control laws.

Li et al. [166] proposed an FDI strategy based on a Dynamically Driven Recurrent

Neural Network (DDRNN), to be used in situations when there are actuator failures in

satellite’s attitude control system. The architecture in [166] is designed to consist of two

DDRNNs. The first DDRNN diagnoses the presence of a faulty thruster and the second

DDRNN identifies the faulty actuator. In [166], it is shown that in the presence of external

disturbances and noise, the proposed scheme is more robust as compared to a scheme that

is based on a single feed-forward back-propagation NN or a single DDRNN scheme. The

fact that using global feedback is likely to reduce the memory requirement significantly, is

one of the privileges of the work [166].
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history in its internal state. In other words, an RNN has a dynamical memory, and

hence it is able to process temporal context information.

RNNs emerged as a promising approach for addressing the issue of heavy online com-

putational tasks. Neural optimization has an inherent nature of parallel and distributed

information processing and its hardware implementation is available. Various NNs are

proposed to solve linear programming, quadratic programming (QP), general convex pro-

gramming, and pseudoconvex optimization problems. These networks are categorized based

on their duality and projection methods, namely the projection NN, the general projection

NN, the simplified dual network, the improved dual NN, the RNNs for non-smooth opti-

mization problems, the one-layer RNNs with discontinuous activation functions, and the

delayed projection NNs [167].

Neural networks are used in various domains such as pattern recognition, signal pro-

cessing, system parameter identification, and automated diagnostics etc.. Two classes of

network have received much attention in underwater control systems that are: 1) the mul-

tilayer static NN which is a memoryless mapping of inputs to outputs and, 2) the recurrent

network which has associative memory of its present state [163]. The static network is suc-

cessful in identification of patterns while the recurrent networks are applied to optimization

problems in which emergent dynamic behavior can be mapped.

Since RNN possess many desirable properties such as real-time information processing,

it received tremendous interest for optimization, control and signal processing [168]. There

are several RNN approaches to solve quadratic programming problems. Kennedy and Chua

in [169] presented a primal neural network for solving the quadratic problem obtained from

MPC. The network proposed in the work [169] contained a finite penalty parameter which

converged to an approximate solution. To overcome the penalty parameter Xia et al. in [170]

proposed a primal-dual neural network with a two-layer structure for solving some convex
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QP problems. The works [168–170] cannot be shown to have a finite-time convergence and

exponential convergence to the optimal solution of their corresponding quadratic problems.

Therefore, designing NN control framework with a low complexity and a fast convergence

rate, especially in real time application, is of importance.

There exist literature on MPC controllers which are based on using RNN [2, 171,

172]. These MPC-RNN approaches (sometimes known as Neurodynamics-based MPC ap-

proaches) are developed to improve system’s computational efficiency as well as the con-

trol performance. In case of applying such control approaches on an AUV, the dynamical

uncertainty and time-varying environment disturbances in the agent dynamics can be com-

pensated by NN using recurrent updating laws. In the work [171], a simplified network is

used for solving real-time quadratic optimizations in various MPC approaches. A two-layer

neural network is applied for solving reformulated minimax optimization problems of robust

MPC approaches in [172]. In the work [2] Wang et al. applied an RNN for solving the QP

problem in real-time. The shortcomings of the work [2] (detailed in Section 2.9) are another

motivation for this thesis to improve the MPC-RNN approach.

Recurrent networks can be single or multiple layered. Considering the trade-off be-

tween less system complexity in the AUV application and gaining a superior performance

in terms of global convergence as well as parallel computational implementability, one-layer

RNN is integrated into our proposed hybrid control framework.

1.6 The Procedure of Choosing Methodology

Choosing between model-based techniques and model-free ones is highly related to the

application of the system. A model-based technique has the merits such as low cost, high

reliability and easy realization for AUVs. However, it is difficult to build an accurate model

for autonomous underwater vehicles due to the effect of model error, measurement noise,
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outer disturbance and etc. [173]. In model-free approaches, a variety of techniques have

been sought to assist fault detection, isolation and recovery [174].

Artificial Intelligent-based methods (such as NNs and SVMs) as a broad category

of data driven approaches, can handle highly nonlinear problems but their drawback is

that, they require huge number of training data which is often not available in practice

[175]. Perhaps the major issue with data-driven models is whether the causality among

the variables are modeled and if so, what variables are related causally. A model causally

relates two variables if it correctly shows that a change of a certain magnitude in one will

result in a change of a certain magnitude of the other. In data-driven models, causality

among variables is determined entirely by the nature of the data and by the structure of the

empirical model. If independent variations are not present in certain manipulated variables,

then no causality information for effects of those individual variables will be present in the

data, nor in any model built from them.

The work [174] looks at recent advances in the use of data-driven models built from

such historical data for monitoring, fault diagnosis, optimization and control. Latent vari-

able models are used because they provide reduced DOF models for high DOF systems.

They also provide unique, interpretable and causal models, all of which are necessary for

the diagnosis, control and optimization of a process. The drawback of such data-driven mod-

els is the need for a routine plant data that are of a very different nature from typical R&D

data collected usually under designed experiments. Only few works simultaneously take

advantage of mathematical model of a system as well as the adaptive nature of intelligent

techniques especially NNs in a hybrid frame work [176].
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1.7 Thesis Objectives and Contributions

This section presents the problem statement, the proposed methodology, and the contribu-

tions of the work developed in this thesis to solve the problem.

1.7.1 The Problem Statement

In this thesis, fault tolerant control of an autonomous underwater vehicle with uncertainties

is addressed by using a hybrid method of Model Predictive Control and Recurrent Neural

Network for control and fault recovery purposes. The main objective is to develop a fault

tolerant strategy so that the autonomous underwater vehicle with uncertainties follow the

desired trajectory while meeting a set of requirements and bounds on position, orientation,

linear and rotational velocity, and actuator efforts. These requirements, which are depicted

to met in the autonomous underwater vehicle’s mission, aim to minimize the control cost

along with the performance runtime of the system while the performance of the autonomous

underwater vehicle in path tracking remains satisfactory. Another objective of this research

is to address the fault detection-recovery task in order to overcome the loss-of-effectiveness

fault in the actuators of the autonomous underwater vehicle.

1.7.2 Methodology

The problem of trajectory tracking and nonlinear path following have been discussed in

Section 1.2.1. Section 1.2.2 states the importance and necessity of fault tolerant control

as well as the advantages of using a combination of several methods to achieve the best

overall fault tolerant control system. The procedure to choose a model-based approach

which accounts for system’s nonlinearity and uncertainties is presented in Section 1.6.

Motivated by the literature given in Section 1.3, the model predictive algorithm is

selected as the base method for the control of an autonomous underwater vehicle with
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uncertainties considering the designed mission objectives. Model predictive control is in-

troduced as a promising tool for fault tolerant control applications, due to its prominent

capabilities such as constraint handling, flexibility to changes in process dynamics, and the

applicability in nonlinear dynamics. In Section 1.3 the importance of using a methodology

which is a trade-off between nonlinear and linear model predictive control is highlighted.

Then, in Section 1.4.2, an observer-based nonlinear Model Predictive Control is explained

as a feasible solution of the problem stated in this research. Also, the benefits of formulat-

ing the model predictive control problem which has fault-tolerance capabilities within the

hybrid system framework are discussed.

In Section 1.5, several literature given on advantages of combining the system con-

troller with neural networks, particularly, learning, nonlinear mapping, and parallel process-

ing. Then, recurrent networks demonstrated as a class of network that has received attention

in underwater control systems. Coming to a trade-off between less system complexity in the

autonomous underwater vehicle’s application and gaining a superior performance in terms

of global convergence and parallel computational implementability, one-layer recurrent neu-

ral network got selected to maintain our proposed hybrid control framework to address the

designed problem of this research.

The approach proposed in this thesis falls into a hybrid of nonlinear Model Predictive

Control and Recurrent Neural Network control methodology to benefit from both a pri-

ory mathematical model information of system and the adaptation capability of recurrent

neural networks. Therefore, a performance-runtime efficient nonlinear Model Predictive

Control is developed to control an autonomous underwater vehicle. Since, the algorithm

requires solving an online quadratic programming problem, a recurrent neural network is

employed to guarantee obtaining the optimal solution of model predictive control in each

sampling time. The main feature of the overall developed controller is that due to the use

of model predictive controller, it can explicitly consider hard constraints on control inputs,
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and achieve acceptable path tracking performance. Also, since the controller benefits from

the adaptability of recurrent neural network, it shows to be more tunable as a step toward

addressing the problems of unachieved goals resulted from choosing small prediction horizon

numbers and the necessity of remaining cost-to-go estimation issue.

Considering the above mentioned, the model-based approach chosen in this study calls

for the need of a recursive estimation for nonlinear system of an autonomous underwater

vehicle with uncertainties. In Section 1.4, the pros and contras of using Extended Kalman

filter in comparison with other nonlinear estimation filters are discussed. Although extended

Kalman filter has its set backs, but considering the problem stated in this thesis and the

objectives this research sought, applying this estimation filter technique is feasible.

Moreover, the fault tolerant properties that the dual extended Kalman filter provided

the system with, have explained in Section 1.4.1. Then, in the second part of this thesis,

motivated by the literature on dual extended Kalman filter methods in Section 1.4.1, the

developed hybrid controller, integrated with dual extended Kalman filter to accomplish the

objectives of an autonomous underwater vehicle’s mission through the designed path track-

ing that faces the vehicle with severe loss-of-effectiveness actuator faults. The integration

of dual extended Kalman filter with the developed model predictive control and recurrent

neural network control method yields an active fault-tolerant control scheme that is ap-

plied to an autonomous underwater vehicle with uncertainties. In Chapter 4, the mentioned

active fault-tolerant control system faults are detected and identified by a fault detection

identification scheme, and the controllers are reconfigured accordingly, online in a single

frame.
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1.7.3 Thesis Contributions

The contributions of the work developed in this research to solve the aforementioned prob-

lems are listed below.

• In Chapter 3, a hybrid Model Predictive Control (MPC) and Recurrent Neural Net-

work (RNN) scheme for the tracking control problem of an AUV is developed while

considering the application’s constraints in path following as well as improving the

performance runtime. The developed scheme considers the constraints on system

states and meets the objectives of this research according to the system’s mission

requirements such as lower tracking error cost for the controller, while considering

the performance runtime as an important constraint. A comparison section includ-

ing simulations in various scenarios and the corresponding discussions are provided to

evaluate the developed control method.

• In Chapter 4, an active recovery fault-tolerant hybrid control is developed by inte-

grating the MPC, RNN and dual extended Kalman filter (dual-EKF). The developed

method meets the objectives of the desired mission, namely, the capability to handle

constraints on the system states, improving the control cost of the controller and per-

formance runtime of the system while effectively dealing with severe actuator fault

scenarios. Since, the proposed method uses a dual-EKF, it updates its control dis-

tribution matrix entities at each time step. This way, under the faulty conditions a

control recovery action is taken in order to keep the performance of the faulty AUV

dynamics close to the healthy AUV dynamics. Similarly, a comparison section in-

cluding simulations of various scenarios and discussions is provided to evaluate the

developed active fault-control method.
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1.8 Thesis Outline

This thesis is organized as follows.

In Chapter 2, the background information required for obtaining the dynamic equa-

tions of underwater vehicles, MPC method and the extended Kalman filter is provided.

MPC principles as a preliminary to our proposed control method is presented and the non-

linear discrete-time form of the system is used for applying to the MPC framework. Also,

some background information about fault types presented. The Quadratic Programming

problem explained and the Recurrent Neural Network (RNN) that is emerged as a promising

approach for addressing the issue of online convex QP problem solving, is also provided.

In Chapter 3, the proposed nonlinear hybrid control method using an EKF is presented

as an efficient performance-runtime NMPC algorithm, which requires solving a QP problem

via an RNN in an online manner. For the evaluation of the proposed control algorithm in the

designed mission of this research, three control systems have been considered in this chapter.

1) Linear MPC with KF state estimation, 2) Nonlinear MPC with EKF state estimation,

and 3) the developed MPC-RNN with EKF state estimation. The simulation results and

discussions regarding an AUV trajectory tracking is presented for all three scenarios.

In Chapter 4, the developed methodology in Chapter 3 is integrated with a dual-

EKF that can effectively deal with fault detection and accommodation in case of loss-of-

effectiveness actuator faults. Then, different scenarios are designed to evaluate the developed

approach. First, three different scenarios are designed to demonstrate the importance of

applying FTC on our developed control scheme from Chapter 3. Then, three different

scenarios are designed as a comparison between the developed approach of this chapter with

nonlinear MPC AFTC approach faced with loss-of-effectiveness actuator faults. Simulation

results and discussions are presented at the end of this chapter.

Chapter 5 presents conclusion as well as remarks for our developed methodologies.
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Few suggestions and potential future work are also provided.
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Chapter 2

Background Information

2.1 Introduction

This chapter provides the information needed for deriving dynamic equations of underwater

vehicles, Extended Kalman Filter (EKF) and Model Predictive Control (MPC) method.

Moreover, an overview of the Recurrent Neural Network (RNN) proposed in work [11] to

solve the strict convex quadratic programming problems, is explained. A description of the

kinematic and kinetic model of a 6 degree of freedom (DOF) AUV is provided and a reduced

order dynamical model is obtained after analyzing our problem, stated in Section 1.7.1, in

the horizontal plane. Then, the effect of ocean currents on the model is considered by means

of applying a 2 dimensional current model for the submerged body.

The principles of MPC are presented as a preliminary to our proposed control method.

The nonlinear discrete-time definition of the system is used whithin the nonlinear MPC

(NMPC) framework. For the NMPC algorithm to work, a nonlinear state estimator is

needed for which the EKF is an appropriate tool considering the literature in Section 1.4

and our mission objectives in Section 1.7.1.

Some background information suggests that the RNN is emerging as a promising
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approach to address the issue in time-consuming online task of solving the quadratic problem

obtained from the MPC.

2.2 Dynamical Model

This section considers a 6-DOF model [13] and its corresponding reduced order. The reduced

order models are often used since most craft do not have actuation in all DOF. Therefore, a

3-DOF dynamic model that stabilizes the surge, sway and yaw motions is explained in this

chapter. This horizontal plane model is suitable for dynamic positioning systems, trajectory

tracking control systems and path following systems [13], [177].

Some assumptions that should be considered when modeling an AUV are:

1) The environment in which the AUV is running through, is shallow water. This

assumption reduces the hydrodynamics noise that is caused by wind, rain, currents and

other environmental sea-life ambient noise. It should be noted that this assumption is made

to reduce the ambient noise although ceratin terms for uncertainties are still considered.

2) The vehicle is a rigid body of constant mass (ṁ = 0). In other words, the vehicle’s

mass and mass distribution, which is assumed to be homogeneous, do not change during

the operation.

3) The center of mass should be considered very close to the center of buoyancy. This

way, modeling and controlling the AUV in software would be easier although its power

consumption would be far greater.

4) Control surface assumptions: We assume that the control fins do not stall regardless

of the angle of attack. We assume an instantaneous fin response, meaning that the vehi-

cle’s actuator time response is small in comparison with the time response of the vehicle’s

attitude.

5) The vehicle is deeply submerged in a homogeneous, unbounded fluid. In other
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words, the vehicle is located far from the free surface (no surface effects, i.e. wave-making

loads), walls and bottom.

6) The vehicle does not experience memory effects. The simulator neglects the effects

of the vehicle passing through its own wake.

7) Note that during the straight and level motion, the vehicle operates at a roll offset

of negative five degrees (θ = −5) due to the propeller torque. As a result, we never get

pure vertical or horizontal-plane motion. Therefore, the vehicle’s roll is small enough that

it is still possible to identify the vehicle’s behavior in pitch and yaw movements. Reynolds

number dependencies of the desired motions are not taken into consideration.

2.2.1 Equations of Motion for 6-DOF AUV Model

The AUV equations consist of kinematics (the geometric aspects of motion), rigid-body

dynamics (the vehicle inertia matrix) and mechanics (forces and moments causing motion)

[178]. Two coordinate frames should be considered in modeling the AUV as a rigid body

subject to external forces and torques while moving in a fluid environment.

The Earth-fixed coordinate frame {U} composed of the orthonormal axes (XU , YU , ZU)

and the body-fixed coordinate frame {B} (also known as the moving coordinate frame)

composed of the axes (XB, YB, ZB). The {B} frame is fixed to the vehicle and its axes are

aligned with the principal axes of inertia. Figure 2.1 illustrates the cordinate frames, motion

components and few navigation terminologies briefly. The interested reader can find more

details in [9, 13, 177,178].
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Figure 2.1: Coordinate frames and AUV motion variables [9].
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Table 2.1: 6DOF Motion Components [13].

Motion components used for 6DOF marine vehicles and flight systems
DOF Description Linear and

Angular
Velocity

Position
and Euler
Angles

External
Forces

1 Motion along
the x-axis
(surge)

u x X

2 Motion along
the y-axis
(sway)

v y Y

3 Motion along
the z-axis
(heave)

w z Z

4 Rotation about
the x-axis (roll)

p φ K

5 Rotation about
the Y-axis
(pitch)

q θ M

6 Rotation about
the Z-axis (yaw)

r ψ N

Generally, a 6-DOF coordinate system is necessary to describe any variation in position

and orientation including three position coordinates (x, y, z) and three Euler orientation

angles (φ, θ, ψ). These six components known as surge, sway, heave, roll, pitch, and yaw are

illustrated in Table 2.1. The position and velocity vectors are given in the following form:

η = [ηT1 , η
T
2 ]T (2.1a)

ν = [νT1 , ν
T
2 ]T (2.1b)

τ = [τT1 , τ
T
2 ]T (2.1c)

where η1 = [x y z]T denotes the position of the origin of {B} expressed in {U} (barycen-

ter coordinates in inertial coordinate system [179]), η2 = [φ θ ψ]T denotes the orientation of

{B} with respect to {U}, ν1 = [u v w]T denotes the linear velocity of {B} relative to {U},
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ν2 = [p q r]T denotes the angular velocity of {B} relative to {U}, τ1 = [X Y Z]T denotes the

forces acting on {B}, and τ2 = [KM N ]T denotes the moments acting on {B}.

2.2.2 Kinematics

A kinematic equation is used to describe the motion of the vehicles body without considering

the causes of motion. This equation describes the relation between the body-fixed velocity

and the position vector η.

The corresponding equation in the north-east-down (NED) coordinate frame is ex-

pressed as follows:

η̇ = J(η)ν, (2.2)

where J(η) is the Jacobian matrix transforming the velocities from the body-fixed to the

earth-fixed frame. The elements of η̇ are given below







η̇1

η̇2






=







J1(η2) 0

0 J2(η2)













υ1

υ2






,

where J1(η2) and J2(η2) denote the coordinate transform matrix (rotation matrix and the

angular velocity transformation) and they are defined as follows:

J1(η2) =













c(θ)c(ψ) −c(φ)s(ψ) + s(φ)s(θ)c(ψ) s(φ)s(ψ) + c(φ)s(θ)c(ψ)

c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)c(ψ) −s(φ)c(ψ) + c(φ)s(θ)s(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)













,

J2(η2) =













1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)













,
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where c(), s(), and t() denote cos(), sin(), and tan(), respectively. It should be noted that

the fact that the matrix J2(η2) is not defined for pitch angles θ = ±90◦ does not impose a

problem in our model since our desired motion in the horizontal plan is limited to ±30◦.

In kinematics, the full-order nonlinear dynamic equation of motion of a vehicle is

expressed as follows

Mν̇ + C(ν)ν +D(ν) + g(η) = τ (2.3)

where M is the inertia matrix, C(ν) is the matrix of Coriolis and centripetal terms, D(ν) is

the damping matrix, g(η) is the vector of gravitational forces and moments, and τ = [τ1 τ2]

is the vector of control inputs (force/torque). Both M and C(ν) include added mass as well

as the rigid-body as can be seen in equations (2.4) and (2.5),

M ,MRB +MA (2.4)

C(ν) , CRB(ν) + CA(ν) (2.5)

where rigid-body and added mass effects in mass and Coriolis terms are respectively illus-

trated by MRB, CRB(ν), MA, and CA(ν). In fact, D(ν) is composed of four other matrices,

namely the potential damping, the skin friction, wave drift damping and damping due to

vortex shedding as can be noted in equation (2.6) as:

D(ν) , DP (ν) +DS(ν) +Dw(ν) +DM(ν) (2.6)

where DP (ν) is the radiation-induced potential damping due to forced body oscillations,

DS(ν) is the linear skin friction due to laminar boundary layers and quadratic skin friction

due to turbulent boundary layers, Dw(ν) is the wave drift damping, and DM(ν) is the

damping due to vortex shedding (Morisons equation).
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Due to the fact that the hydrodynamic damping matrix is real, non-symmetrical and

strictly positive for a rigid body moving through an ideal fluid [178], hence,

D(ν) > 0 ∀ν ∈ R
6.

The reader is referred to [178] for detailed matrices effect on D(ν) and the vector of control

inputs (force/torque) τ .

The vehicle coefficients (lumped into the elements of MRB , CRB, and τ) are adopted

and calculated based on the theory as well as empirical data [178].

2.2.3 Horizontal Motion of a Dynamically Positioned Underwater

A dynamically positioned underwater (U = 0) is described by the motion components in

surge, sway and yaw, and consequently ν = [u, v, r]T and η = [x, y, ψ]T . This implies that

the dynamics associated with motions in heave, roll and pitch are neglected (w = p = q = 0)

as seen in equations 2.2 and 2.3 are

Mν̇ + C(ν)ν +D(ν) + g(η) = τ

η̇ = J(ψ)ν

where

J(ψ) =













cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1













,

and η is the vector of position and orientation in the inertial frame, J(ψ) is the rotation

matrix that is reduced to one principle rotation about z-axis and τ = [τu τv τr] is the matrix of

forces and moments that act on the surge, sway, and yaw dynamics, respectively, Moreover,
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g(η) is the vector of unknown nonlinear uncertainties that take model uncertainties into

account.

The rigid-body mass and inertia MRB, rigid-body Coriolis and centripetal CRB(ν),

added mass MA, and added Coriolis, and centripetal CA(ν) matrices are given by

MRB =













m 0 0

0 m mxG

0 mxG Iz













, (2.7a)

CRB(ν) =













0 0 −m(xGr + v)

0 0 mu

m(xGr + v) −mu 0













, (2.7b)

MA =













−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Yṙ −Nṙ













, (2.7c)

CA(ν) =













0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v + Yṙr Xu̇u 0













, (2.7d)

Hence, applying equations (2.4), (2.5), (2.7a), and (2.7b) into equations (2.7c) and (2.7d)
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leads to the matrices of M and C(ν) as follows:

M =













m−Xu̇u 0 0

0 m− Yv̇ mxG − Yṙ

0 mxG − Yṙ Iz −Nṙ













,

(2.8a)

C(ν) =













0 0 −(m− Yv̇)v − (mxGr − Yṙ)r

0 0 (m−Xu̇)u

(m− Yv̇)v + (mxG + Yṙ)r −(m−Xu̇)u 0













,

(2.8b)

where xG, yG and zG denote the body-fixed coordinates of the vehicle’s center of gravity on

the surge, sway, and yaw axes, respectively, Iz denotes the moment of inertia of the vehicle

about the yaw axis.

Note that in the above equations, the body’s inertia tensor I0, known as an arbitrary

body-fixed coordinate system X0Y0Z0 with the origin O in the body-fixed frame. The inertia

tensor I0 is defined as follows:

I0 ,













Ix −Ixy −Ixz

−Iyz Iy −Iyz

−Izx −Izy Iz













, I0 = IT0 > 0 (2.9)

In equation (2.9), diagonal entities are the moments of inertia about the origin axis and off

diagonal entities are the products of inertia. The vehicle cross-products of inertia Ixy, Ixz

and Iyz are assumed to be small and are neglected in the terms of equation (2.3). Similarly,

equation (2.3) does not include zero-valued coefficients. Moreover, the coincidence of the

center of gravity and the center of added mass leads to a simplified M and C(ν), and also
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results in the decoupling of surge from sway and yaw.

In [178], it is assumed that damping in surge is decoupled from the sway and the yaw,

and hence the linear damping Dln is the only effective damping component. Therefore, in

case of the linear damping, the matrix Dln is given as follows:

Dln =













−Xu 0 0

0 −Yv −Yr

0 −Nv −Nr













The nonlinear damping matrix Dn is modeled as follows:

Dn =













−X|u|u|u| 0 0

0 −Y|v|v|v| − Y|r|v|r| −Y|r|v

0 −N|v|v|v| −N|r|v|r| −N|r|v|r| −N|r|r|r|













For more information on matrices Dln and Dn, the interested reader is referred to the

work [178].

Finally, the detailed kinematics and dynamics equations of motion in the surge, sway,

and yaw degrees of freedom is defined in equation (2.10)

ẋ = u cos(ψ) − v sin(ψ) (2.10a)

ẏ = u sin(ψ) + v cos(ψ) (2.10b)

ψ̇ = r (2.10c)

muu̇−mvvr + duu = τu (2.10d)

mvv̇ −muur + dvv = τv (2.10e)

mrṙ + (mv −mu)uv + drr = τr (2.10f)

where mu = m−Xu̇, mv = m−Yv̇, mr = Iz −Nṙ , du = −Xu−X|u|u|u|, dv = −Yv −Y|v|v|v|
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and dr = −Nr−N|r|r|r|. The interested reader is referred to [116] for additional information

on the parameters in the equation (2.10).

2.3 Uncertainties in the Model

The possible uncertainties that are counted as an effect on the dynamical model include

vehicle’s initial conditions as well as the ocean currents. The most significant uncertainty

is the vehicle’s state at the start of each experiment objective. In fact, we are unable to

measure currents, wave effects, and non-axial vehicle velocities, which would have all affected

the vehicle’s motion during open-loop maneuvers.

There exists few uncertainties that are caused by human mistakes or flaws in the

hardware assembling process of AUV. Therefore, it is feasible to allocate additional terms

for these uncertainties too. For instance, although the alignment of vehicle fins is checked

before each experiment mission, it is difficult to keep the vehicle control fins from knocking

during vehicle’s transportation and lunch. Therefore, fin misalignment as large as five

degrees is inevitable [180].

Any uncertainty in the water-column temperature and salinity comes from two sources,

namely the sensors inherent accuracy and the aliased environmental variability. These

variations occur in the water column both spatially and temporally. Most of the works done

on oil and gas commercial AUV models include less uncertainty terms, unlike the reality of

working in the shallow (less than 200 meters depth) water.

In [17], a Total Propagated Uncertainty (TPU) modeling for AUVs is described, which

is fundamentally similar to the Hare-Godin-Mayer model [24] [181]. The TPU model pro-

vides an estimate of the total horizontal uncertainty (THU) and the total vertical uncertainty

(TVU) for every seafloor depth value. This way, elements contributing to the calculation of

seafloor depth at a specific location are considered and their corresponding uncertainties are
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separately measured or estimated and propagated using the law of propagation of variances.

Therefore, the total horizontal and total vertical uncertainty estimates are produced. For

simplicity in this model, it is assumed that component uncertainties are uncorrelated. In

practice, the TPU values are used to characterize the quality of the data in order to assist

in decision making about the suitability of the data for its intended purpose [87]. Next, the

effect of ocean currents is applied to the dynamical model via a 3 dimensional (3-D) current

model for submerged body [178].

2.3.1 The 3-D Current Model

Considering the vertical profile Vz(z) and the hull draft T , the average current velocity Vc

over the draft of the vehicle can be evaluated as follows:

Vc =
1

T

∫ T

0

Vz(z)dz (2.11)

The earth-fixed fluid velocity V E
c can be related to Vc by the angle of attack α and

the sideslip angle β. These two angles describe the orientation of Vc about the y and z axis

as follows:

uEc = Vc cos(α) cos(β)

vEc = Vc sin(β)

wE
c = Vc sin(α) cos(β)

where uEc , vEc , and wE
c denote the earth-fixed fluid velocities along X, Y , and Z axes.
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as follows:







uc

vc






=







cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)













uEc

vEc






(2.14)

Integrating equation (2.13) into equation (2.14) yields:

uc = Vc cos(β − ψ)

vc = Vc sin(β − ψ)

2.3.3 Considering the Effect of Ocean Currents

Generally, there are two methods that consider the effect of ocean currents in our application.

The first method introduces the dynamic equation in terms of the relative velocity. This

way, the earth-fixed current velocity is modeled as a Gauss-Markov process as follows:

V̇c(t) + µ0Vc(t) = ω(t) (2.16)

Vc,min ≤ Vc(t) ≤ Vc,max

where ω(t) is a zero mean Gaussian white noise and µ0 ≥ 0 is a constant. According to [10],

it is sufficient to choose µ0 = 0 in most cases, which simply corresponds to a random walk

defined as the time integration of white noise. The constraint of the equation (2.16) limits

the process in order to simulate realistic ocean currents. Therefore, the dynamical model of

AUV with relative velocity, νr, is given as follows:

Mν̇ + C(ν)ν +D(ν) + g(η) = τ

where ν = [νu−ν
B
uc, νv−ν

B
vc, νr], and the body-fixed current velocity νBc = [νBuc ν

B
vc 0] denotes

the current velocity components in surge, sway and yaw, respectively. Using the transposed
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Euler angle rotation matrix, νBc is obtained as follows

νBc = J(ψ)−1νEc (2.17)

Hence, the kinematic model for AUV in terms of relative velocity νr would be

η̇ = J(ψ)ν = J(ψ)νr + νEc (2.18)

In the second method, which is used as a basis for derivation of model based controllers

for path following and tracking of AUVs, the effect of ocean currents is considered through

input channels in the simulation step.

Due to the effect of second-order disturbances, ocean currents as drift forces in X, Y ,

and Z axes are modeled by slowly varying drift dc = [dcx dcy 0] (dcx and dcy are drift along

X and Y axes), such that:

ḋc = ωd (2.19)

where ωd describes constant, but unknown, environmental forces acting on the system. ωd

is a vector of zero mean Gaussian white noise process, According to the superposition law,

second-order disturbances are combined with the original model to yield the following:

Mν̇ + C(ν)ν +D(ν) + g(η) = τ + J(ψ)−1dc, (2.20)

η̇ = J(ψ)v, (2.21)

Also, first-order disturbances, which describe the high frequency oscillatory motion of a

marine vehicle, are included in the measurement equations implicitly.

Apart from what mentioned in this section, any fluctuations in fraction drag or pres-

sure drag numbers results in the change of the whole model since they are related to the

Reynolds number and compressibility effects.
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2.4 Fault Types in AUV Actuators

Faults are classified based on several criteria, such as the time characteristics of faults,

physical locations in the system and the effects of faults on system performance [182]. From

the time-dependency perspective, faults are categorized as abrupt (stepwise), incipient and

intermittent faults. Faults can also be classified based on their locations. A fault can occur

in actuator, sensor or plant component. In terms of induced effects of the faults on system

performance, faults can be either additive or multiplicative.

Actuator faults have serious consequences on the AUV system performance and may

lead to system malfunction or failure. Actuator faults are commonly modeled by incorpo-

rating their effect through multiplicative modeling that is defined as an abrupt change of the

control input u to uf , (the actual input generated by the faulty actuator). The effectiveness

coefficient Γ matrix of the actuator control parameters is expressed as follows [116]:























































Γu Γ = 1, ∀t ≥ 0 No Failure

Γu 0 < ε < Γ < 1, ∀t ≥ tf Loss of Effectiveness (LOE)

Γu Γ = 0, ∀t ≥ tf Float

Γu+ uLock Γ = 0, ∀t ≥ tf Lock In Place (LIP)

Γu+ umin or umax Γ = 0, ∀t ≥ tf Hard Over Failure (HOF)

(2.22)

where u denotes the controller input, tf is the time that a fault occurs, uf is the actual

input that is generated by the faulty actuator and uLock is a constant level of actuation

being between the minimum and maximum possible actuation limits. Γ is represented by
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the multiplicative matrix as follows:

Γ =













γ1 0 0

0 γ2 0

0 0 γ3













, (2.23)

where 0 < γk < 1, k = 1, . . . , 3 denotes the effectiveness factor of the forces and torque in

surge, sway and yaw motions.

Later, in Chapter 4 we use the matrix Γ to implement the effects of actuators’ loss-

of-effectiveness in various scenarios in order to evaluate our developed AFTC method.

2.5 Discrete Extended Kalman Filter (EKF)

For nonlinear MPC algorithms to work, a nonlinear state estimator is needed and the Ex-

tended Kalman filter (EKF) is an appropriate tool for state estimation and data reconcili-

ation of nonlinear systems. In most practical applications of interest, the system dynamics

and the measurement equations are given by

ẋ = f(x, u) + ω (2.24a)

y = hx+ v (2.24b)

where

f(x, u) =







Mν−1[τ − C(ν)ν −D(ν) − g(η)]

J(η)ν







where f and h are known nonlinear functions and ω and v represent the white noise signals

of uncorrelated Gaussian random vectors with zero means and covariance matrices Qc and
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Rc. Then, in a discrete-time nonlinear model is given as follows:

x(k) = F (x(k − 1), u(k − 1)) + ω(k − 1) (2.26a)

y(k) = Hx(k) + v(k) (2.26b)

The nonlinear system in equations (2.26a) and (2.26b) are subject to the following con-

straints:

umin ≤ u(k) ≤ umax (2.27a)

∆umin ≤ ∆u(k) ≤ ∆umax (2.27b)

ymin ≤ y(k) ≤ ymax (2.27c)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, y(k) ∈ R
p is the output

vector, F (.) and H(.) are nonlinear functions, and umin ≤ umax, ∆umin ≤ ∆umax, ymin ≤

ymax are vectors of lower and upper bounds. As a result, nonlinearity can come in either

through process model, equation (2.26a), and/or through the measurement model, equation

(2.26b). In practice, the system model in equation (2.26a) is of continuous-time nature.

However, the measurements in equation (2.26b) are available through the common digital

data-acquisition systems at discrete measurement time instants. Therefore, an efficient

formulation of the algorithm is needed to be made for a real-time practical application in

order to minimize the filter process time, while obtaining a reasonable accuracy in the filter

implementation.

The EKF computes the state estimates at each sampling instance by using the Kalman

filter on the linearized approximation of the nonlinear system model. If the noise is white

Gaussian and a large neighborhood exists in which the linearizion is a reasonable approxi-

mation of true model, then the optimal linear estimate will be an accurate approximation
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of the nonlinear state estimate. For example, the work [183] uses the first-order EKF im-

plementation in which the nonlinear system is linearized around the current state estimate

using the first-order Taylors series approximation. In [183], Bhonsale et al. present an

open-source python-based simulation environment, known as SolACE, which enables even

non-experts to easily formulate the control (and estimation) problems. Summarizing the

different steps needed for the efficient implementation of the discrete time EKF is presented

in the Algorithm 1, whereˆdenotes the estimation of x.
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Algorithm 1: discrete Extended Kalman Filter [184].

Input: x̂(k − 1) // a nominal reference trajectory from equation (2.26a)

without system noise

Output: x̂(k), Pk // The optimal process state estimate and its corresponding

error covariance matrix

Initialization

Time update (”predict”);

Project the state ahead; // ¯̂x(k) = ¯̂x(k − 1) + Tsf(¯̂x(k − 1))

foreach EKF Process do

Update the system covariance matrix

Ak = ∂f

∂x
|x=x̂(k)

φ = I + TsAk

Qd = (φQcφ
T +Qc)

Ts

2

Project the error covariance ahead

(Pk)i = (φPk−1φ
T +Qd)

Mesurement update (”correct”)

Compute the Kalman gain

Hk = ∂h
∂x
|x=x̂(k)

Kk = P̄kH
T (HP̄kH

T +Rc)
−1

Update estimate with measurement Yk

x̂(k) = ¯̂x(k) +Kk(Yk −H ¯̂x(k))

Update the error covariance

Pk = P̄k −KkHP̄k

end
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The EKF algorithm 1 gives the optimal system state estimate x̂(k) and its corre-

sponding error covariance matrix as the main two outcomes. The EKF algorithm requires

the measurement covariance matrix Rc, the system covariance matrix Qc, the observation

matrix Hk, and the state transition matrix Ak. In fact, Ak and Hk are the Jacobin matrices,

derived from the actual nonlinear state-space models in equations (2.26a) and (2.26b), which

depend on the most recent state estimation. The measurement error covariance matrix, Rc,

indicates the intrinsic quality of the available measuring devices. The larger the covariance,

the more quickly older data are discarded. Thus, increasing the corresponding element in

matrix Rc for a non-measured variable forces the EKF to estimate the variable using the

other output sensor values.

The first-order Euler integration technique is used for numerical integration of the

system model from one sample time to the next. The time propagation equation for the

state covariance matrix Pk can be solved using the transition matrix technique [185]. This

method preserves both the symmetry and the positive definitions of matrix Pk, and yields

an adequate performance. Consequently, any possible time-varying dynamic variations in

the process or measurement model equations can be introduced in the state estimation

procedure.

2.6 Model Predictive Control Formulation

The optimization problem that is solved at each step of MPC is actually a planning exercise

which meant to ensure that the current action does not neglect the future. In Linear MPC

problem, assuming the discrete-time linear dynamical model of the system is given by

x(k + 1) = Ax(k) + Bu(k) (2.28)

z(k) = Cx(k) (2.29)
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where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, z(k) ∈ R
p is the

output vector. Then, the MPC can be formulated by introducing the following open-loop

optimization problem at every time interval k,

min
u(k)

J(u(k), x(k))

subject to:

x(k + p+ 1|k) = Ax(k + p|k) + Bu(k + p|k) (2.30a)

z(k + p|k) = Cx(k + p|k) (2.30b)

zmin ≤ z(k + p|k) ≤ zmax, p = 0, . . . , Nu − 1 (2.30c)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , N − 1 (2.30d)

Therefore, the performance index is defined as:

min J(u(.), x(k)) =
Nu−1
∑

p=1

[zT (k + p|k)Qpz(k + p|k) (2.31)

+uT (k + p|k)Rpu(k + p|k)] + xT (k +Nu|k)QNx(k +Nu|k) (2.32)

where Q ∈ R
p×p and QN ∈ R

p×p are positive semi-definite, and R ∈ R
m×m is positive-

definite penalty matrices, N and Nu denote the prediction horizon (1 ≤ N) and the control

horizon (0 < Nu < N), respectively. In Section 1.3, the literature on several approaches

for solving the minimization problem in 2.32 through QP problem formulation of MPC

is provided. Also, in the literature there are no sufficiently fast and reliable optimization

algorithms for nonlinear MPC problems. More details on the MPC is available in [186]. The

reliable optimization algorithms that would be able to determine the global optimal solution

within a predefined time (each time interval) are not practical in online control applications.

Chapter 3 deals with this problem using an observer-based nonlinear prediction linearized

67



optimization MPC-RNN algorithm in the AUV path-tracking problem.

2.7 Nonlinear Prediction in Model Predictive Control

Nonlinear prediction is the first step in the nonlinear model predictive control approach [186].

Considering the conventional nonlinear MPC formulation at each consecutive sampling in-

stant, k, a set of future control increments is obtained as follows:

∆u(k) = [∆u(k|k) . . . ∆u(k +Nu − 1|k)]T (2.33)

and the following quadratic cost function is typically used.

J(k) =
N
∑

p=1

Qp(y
ref (k + p|k) − ŷ(k + p|k))2 +

Nu−1
∑

p=1

Rp(∆u(k + p|k))2 (2.34)

where ∆u(k+j|k) denotes the input increment, and ∆u(k+p|k) = u(k+p|k)−u(k+p−1|k),

Qp > 0 and Rp > 0 are weighting matrices, it is assumed that ∆u(k + p|k) = 0 for p ≥ Nu,

The objective is to minimize differences between the reference trajectory of output signal

yref (k + p|k) and predicted values of the output ŷ(k + p|k) over the prediction horizon

N > Nu, as well as considering that fact that the excessive control increments should be

penalized. In fact, only the first element of the determined sequence in equation (2.33) is

applied to the system.

u(k) = ∆u(k|k) + u(k − 1) (2.35)

At the next sampling instant, k + 1, the prediction is shifted one step forward, the out-

put measurement is updated, and finally the whole procedure is repeated. Since problem

constraints have to be usually taken into account, future control increments are determined
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from the following optimization problem.

min
∆u(k|k) ...∆u(k+Nu−1|k)

J(k) (2.36)

subject to the following constraints:

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1 (2.37a)

∆umin ≤ ∆u(k + p|k) ≤ ∆umax, p = 0, . . . , Nu − 1 (2.37b)

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 0, . . . , Nu − 1 (2.37c)

The general prediction equation for p = 1, . . . , N is given by

ŷ(k + p|k) = y(k + p|k) + d(k) (2.38)

where quantities y(k+p|k) are calculated from a dynamic model of the system. The Dynamic

Model Control (DMC) type disturbance model is used in which the unmeasured disturbance

d(k) is assumed to be constant over the prediction horizon [91] [187]. d(k) is estimated from

equation (2.39)

d(k) = y(k) − y(k|k − 1) (2.39)

where y(k) is measured whereas y(k|k − 1) is calculated from the dynamic model.

Prediction vectors ŷ(k+ p|k) are nonlinear functions of future control moves [188]. In

this case, the nonlinear MPC optimization problem, described in equation (2.34), should be

solved in an online manner at each sampling instant. Although in theory such an approach

seems to be potentially very precise, it has a limited practical applicability. It is necessary to

emphasize that the difficulty of nonlinear MPC optimization problems is two folded. First

, it is nonlinear and high performance-runtime demanding. Second, it may be non-convex
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and even multi-modal [91].

Assumption [187]: The output prediction ŷ(k) is expressed as the sum of a forced

trajectory, which depends only on the future and the free trajectory y0(k), which depends

only on the past,

ŷ(k) = Md(k)∆u(k) + y0(k) (2.40)

where ŷ(k) are vectors of length rN and presents the output prediction, r is the number

of outputs and N is the prediction horizon, ∆u(k) is the future input moves that is in the

form of equation (2.33), ∆u(k) is a vector of length mNu while m is the number of inputs

and Nu is the control horizon. The free trajectory y0(k) is as follows:

y0(k) = [y0(k + 1|k) . . . y0(k +N |k)] (2.41)

Motivated from [187], the dynamic matrix Md(k) of dimensionality rN × mNu is

comprised of step-response coefficients of the linearized model.

Md(k) =



















m1(k) 0 . . . 0

m2(k) m1(k) . . . 0

...
...

. . .
...

mN(k) mN−1(k) . . . mN−Nu+1(k)



















∈ R
rNu×mNu (2.42)

where each mi(k) is, basically, the step-response coefficient of the linearized model and has

the dimensionality of r×m. Both the free trajectory y0(k) and the dynamic matrix Md(k)

are calculated online from the system current states.

There exists differences between the suboptimal prediction calculated from equation

(2.40) and the optimal prediction determined from the nonlinear model. However, using the

suboptimal prediction turns the optimization problem in equation (2.34) to a QP problem
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task as follows:

min
∆u(k)

‖ yref (k) −Md(k)∆u(k) − y0(k) ‖2Q + ‖ ∆u(k) ‖2R (2.43a)

subject to:

umin ≤ JNPL∆u(k) + uNPL(k) ≤ umax (2.43b)

− ∆umax ≤ ∆u ≤ ∆umax (2.43c)

ymin ≤Md(k)∆u(k) + y0(k) ≤ ymax (2.43d)

where yref , ymin and ymax are vectors of length N , space and denote the reference trajectory,

minimum constraint, and maximum constraint output vectors, respectively. Vectors of

minimum and maximum control inputs, and input increments are denoted by umin, umax,

and ∆umax, respectively, and they are vectors of length Nu, uNPL(k) is an auxiliary vector

length Nu and JNPL is an auxiliary matrix, JNPL is the all ones lower triangular matrix of

dimensionality Nu×Nu, Q and R are matrices of the sizes N×N and Nu×Nu, respectively,

R is the matrix of weights in MPC given by R = diag(λ0, . . . , λNu−1).

2.8 Quadratic Programming Problem Solving

One of the tasks in the process of MPC optimization is to solve the QP problem, obtained

from the corresponding cost function. Motivated from the works [189] on nonlinear systems,

an RNN proposed to solve a strict convex QP problem and its related piecewise equations

applied to a Support Vector Machines (SVM). Compared with the existing neural networks

for QP, the proposed NN has a one-layer structure with a low model complexity. Moreover,

the proposed NN is shown to have a finite-time convergence and exponential convergence.
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Considering the following QP problem

min
1

2
xTQx+ cTx (2.44)

s.t. b1 ≤ Ax ≤ b2, d0 ≤ x ≤ h0

where Q ∈ R
n×n is an asymmetric and positive-definite matrix, A ∈ R

m×n, h0, d0 ∈ R
n,

b1, b2 ∈ R
m, and c ∈ R

n. Since the objective function is strictly convex, the problem 2.44

has a unique optimal solutionn. The work [189] used a standard optimization technique in

which the equation (2.44) is transformed into a piecewise formulation. Let

e =







A

I






, d =







b1

d0






, h =







b2

h0







where I ∈ R
n×n is an identity matrix. Then the problem (2.44) can be re-written as

min
1

2
xTQx+ cTx (2.45)

s.t. d ≤ Ax ≤ h

where d = [d1, . . . , dn+m]T and h = [h1, . . . , hn+m]T . Consider the Lagrangian formulation

of equation (2.45) as follows:

L(x, y, η) =
1

2
xTQx+ cTx− uT (ex− η), (2.46)

where u ∈ R
n+m is referred to as the Lagrange multiplier and η ∈ X = {u ∈ R

n+m|d ≤ u ≤

h}. Bazaraa et al. [189] in their saddle point theorem, show that x is an optimal solution

of equation (2.45) if and only if there exist u∗ and η∗ satisfying the following condition.

L(x∗, u, η∗) ≤ L(x∗, u∗, η∗) ≤ L(x, u∗, η)
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That is

1

2
(x∗)TQx∗ + cTx∗ − uT (ex∗ − η∗) ≤

1

2
(x∗)TQx∗ + cTx∗ − (u∗)T (ex∗ − η∗)

≤
1

2
(x)TQx+ cTx− (u∗)T (ex− η)

∀x ∈ R
n, u ∈ R

n+m, η ∈ X (2.47)

From the first inequality in equation (2.47) it is obtained that

(u− u∗)T (ex∗ − η∗) ≥ 0 ∀u ∈ R
n+m (2.48)

Then ex∗ = η∗. From the second inequality in equation (2.47), it is obtained that

f(x∗) − f(x) ≤ (u∗)T (η∗ − η) ∀x ∈ R
n, η ∈ X, (2.49)

where f(x) = 1
2
xTQx+ cTx− (u∗)T ex and for i = 1, . . . , n+m which is contradictive when

η∗ = η. Thus for any x ∈ R
n, we have f(x∗) − f(x) ≤ 0 and

(u∗)T (η∗ − η) ≥ 0 , ∀η ∈ X.

Using the projection formulation from [190], it can be seen that the above inequality can

be equivalently represented as

η∗ = PX(η∗ − u∗) (2.50)

where PX(u) = [PX(u1), . . . , PX(un+m)] and for i = 1, . . . , n+m,

PX(ui) =































di ui < di,

ui di ≤ (ui ≤ hi,

hi ui > hi,

(2.51)
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On the other side, f(x∗) ≤ f(x) implies that Of(x∗) = Qx∗ + c− eTu∗ = 0. Thus x∗ is an

optimal solution of equation (2.45) if and only if there exist u∗ and η∗ such that (x∗, u∗, η∗)

satisfies






























ex = η,

Qx+ c− eTu = 0,

η = PX(η − u).

Substituting equations (2.48) and (2.49) into the equation (2.50) we have

eQ−1(eTu− c) = PX(eQ−1(eTu− c) − u).

Then x∗ is an optimal solution of equation (2.45) if and only if there exists u∗ such that

(x∗, u∗) satisfies














eQ−1eTu+ q = PX(eQ−1eTu− eQ−1c− u),

x = Ru+ a,

where R = Q−1eT and a = −Q−1c. Therefore, let u∗ be a solution of the piecewise equation,

Wu+ q = PX(Wu+ q − u), (2.52)

where W ∈ R
(n+m)×(n+m) is a matrix and q ∈ R

(n+m) is a vector. If W = eQ−1eT and

q = −eQ−1c, then x∗ = Ru∗ + a is the optimal solution of equation (2.44). Hence, it can

see that the optimal solution of equation (2.44) can be obtained by solving the piecewise

equation (2.52).
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function. Following results for the convergence of the proposed RNN in [11], are proved.

• The proposed RNN has a globally convergent state trajectory and it is convergent to

the solution of piecewise equation (2.52) within a finite time, if W is symmetric and

semi-definite, and is globally exponentially convergent if W is symmetric and definite.

• Within a finite time, the output trajectory of the proposed RNN converges globally to

a unique optimal solution of the equation (2.44), if W = EQ−1ET and q = −EQ−1c.

Moreover, the output trajectory has a bounded convergence rate

‖ x(t) − x∗ ‖2≤
γRNN

λRNN(t− t0)
, ∀t > t0 (2.55)

where ‖ . ‖ denotes the l2 norm, ‖ x(t)−x∗ ‖ is the future control increment ∆u(k) from

equation (2.33), γRNN is a positive constant, and λRNN > 0 is a scaling constant [191].

The reader is referred to [11] for more details and the comparison among existing NNs and

the proposed one. Also, the works [11], [191], and [192] provide the reader with the proof

of convergence for the proposed RNN.
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2.9 Shortcomings of Previous MPC-RNN Approach

in [2]

Wang et al. [2] applied an RNN for solving the QP problem in real-time. The first short-

coming of the work in [2] which motivated us to improve the MPC-RNN approach is that,

the work was based on a bilinear model whereas in our case, the model is nonlinear as

mentioned in the statement of the problem of this thesis.

Wang et al. [2] claimed to solve the equation (2.34) as follows:

First, according to the model, Wang et al. obtained the following sequence

x(k + 1|k) = f(x(k|k − 1)) + g(x(k|k − 1)))(u(k − 1) + ∆u(k|k))

x(k + 2|k) = f(x(k + 1|k − 1)) + g(x(k + 1|k − 1)))(u(k − 1) + ∆u(k|k) + ∆u(k + 1|k))

...

x(k +N |k) = f(x(k +N − 1|k − 1))

+ g(x(k +N − 1|k − 1))(u(k − 1) + ∆u(k|k) + · · · + ∆u(k +Nu − 1|k)),

Then, the following vectors were defined:

ȳref (k) = [yref (k + 1) . . . yref (k +N)]T (2.57a)

¯̂y(k) = [ŷ(k + 1|k) . . . ŷ(k +N |k)]T (2.57b)

ū(k) = [u(k|k) . . . u(k +Nu − 1|k)]T (2.57c)

x̄(k) = [x(k + 1|k) . . . x(k +N |k)]T (2.57d)

∆ū(k) = [∆u(k|k) . . . ∆u(k +Nu − 1|k)]T (2.57e)

where ȳref (k) denotes the reference trajectory vector of output signal that is known

in advance, ¯̂y(k) denotes the predicted output vector, ū(k) denotes the inputs vector, x̄(k)
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denotes the system states vector, and ∆ū(k) denotes the input increment vector,

In the proposed procedure by the work [2], the predicted output ¯̂y(k) is expressed in

the following form:

¯̂y(k) = C̃x̄(k) = C̃(G∆ū(k) + f̃ + g̃)

where C̃, G, f̃ and g̃ are matrices that are defined as follows:

C̃ =













C . . . 0

...
. . .

...

0 . . . C













∈ R
N×Nn,

G =













g(x(k|k − 1)) . . . 0

...
. . .

...

g(x(k +N − 1|K − 1)) . . . g(x(k +N − 1|k − 1))













∈ R
Nn×Num,

f̃ =



















f(x(k|k − 1))

f(x(k + 1|k − 1))

...

f(x(k +N − 1|k − 1))



















∈ R
Nn,

g̃ =



















g(x(k|k − 1))u(k − 1)

g(x(k + 1|k − 1))u(k − 1)

...

g(x(k +N − 1|k − 1))u(k − 1)



















∈ R
Nn,
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Hence, the original optimization problem (equation (2.34) becomes:

min ‖ ¯yref (k) − C̃f̃ − C̃g̃ − C̃G∆ū(k) ‖2Q + ‖ ∆ū(k) ‖2R (2.58a)

s.t.

ūmin ≤ ū(k − 1) + Ĩ∆u(k) ≤ ūmax (2.58b)

∆ūmin ≤ ∆ū(k) ≤ ∆ūmax (2.58c)

¯̂ymin ≤ C̃f̃ − C̃g̃ − C̃G∆ū(k) ≤ ¯̂ymax (2.58d)

where

Ĩ =



















I 0 . . . 0

I I . . . 0

...
...

. . .
...

I I . . . I



















∈ R
Num×Num.

Then, Wang et al. [2] rewrote the equation (2.34) as a time-varying QP problem as

follows:

min
1

2
∆ūTW∆ū+ CT∆ū (2.59)

s.t.

l ≤ E∆ū ≤ h
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where the coefficients in equation (2.59) are defined as follows:

W = 2(GT C̃TQC̃G+R) ∈ R
Num×Num

c = −2GT C̃TQ(r̄(k) − C̃g̃ − C̃f̃) ∈ R
Num

E = [−Ĩ Ĩ − C̃G C̃G Ĩ]T ∈ R
(3Num+2Np)×Num

l = [−∞ ∆ūmin]T ∈ R
3Num+2N

h = [b ∆ūmax]T ∈ R
3Num+2N

b =



















−ūmin + ū(k − 1)

ūmax − ū(k − 1)

−¯̂ymin + C̃g̃ + C̃f̃

¯̂ymax − C̃g̃ − C̃f̃



















∈ R
2Num+2N

Wang et al. [2] claimed that, the solution to their QP problem gives optimal control

increment vector ∆ū(k) whose first ∆u can be used to calculate the optimal control input.

The formulation of authors in the work [2], have major issues to be improved. The state

predictions in the first step’s equations (2.56), are obtained using the information at time

step k− 1 (both f and g are calculated utilizing the state information at time k− 1). This

is incorrect because by applying the control input at time k could change the state profile

drastically, hence the state predictions using this framework can be totally incorrect. The

substantial effect of this wrong estimation is specially observable when we have g(x) = 0 for

some x. Therefore, the whole matrix G would be zero and QP optimization would produce

∆u = 0. Moreover, the proposed approach in [2] lacks an applicable method that searches

global solution, other than local, in case of applying to nonlinear systems.
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2.10 Conclusion

In this chapter, the backgroundl related to this thesis is provided. After bringing important

concepts in designing AUVs, the full-order and reduced-order dynamics and modeling of

underwater vehicle are adapted from [10]. Then, uncertainties in the model and fault

types in AUV application are presented. Also, a discrete extended Kalman filter algorithm

followed by model predictive method formulation are introduced. The Recurrent Neural

Network adopted in [11] to solve the quadratic programming problem and its peicewise

formulation are explained. It is shown that the proposed neural network has a finite-time

convergence as well as an exponential convergence for the optimal solution of the piecewise

equation. Moreover, the shortcomings of previous litrature on the MPC-RNN based control

approaches are discussed in this chapter. Next chapter deals with the problem regarding the

MPC optimization using the proposed observer-based MPC approach for an AUV system.

81



Chapter 3

A Performance-Runtime Efficient

Observer-based Nonlinear Model

Predictive Control

3.1 Introduction

This chapter aims to bring an alternative solution to Model Predictive Control (MPC) of

nonlinear systems. The developed methodology in this chapter benefits from the accuracy

of nonlinear optimization approaches in MPC, lower complexity of linear MPC optimization

approaches. Moreover, the developed methodology is performance runtime efficient and has

adaptivity of computational intelligent hybridized control methods.

In Chapter 1, the importance of using model based methodology has been discussed. In

Chapter 2, the nonlinear dynamic model of an autonomous underwater vehicle is described.

Then, the fault types regarding AUV actuator are explained. Chapter 1 stated that MPC

is explicitly a function of the model that can be modified in real-time (and plan time).

Therefore, MPC explicitly accounts for system constraints and can easily handle nonlinear
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and time-varying plant dynamics [186]. Also, in Chapter 1 and Chapter 2, the difficulties

of working with nonlinear MPC optimization problems are presented.

After bringing the literature on hybrid control approaches containing MPC method,

the benefits and importance of development and improvement in this field are demonstrated

in Chapter 1. Moreover, in Section 2.9 shortcomings of previous hybrid of MPC and Re-

current neural network control algorithms are presented.

Previous chapters given the literature on nonlinear systems’ estimators. Particularly,

in Section 1.4.2 observer-based nonlinear MPC algorithm is presented. Due to the AUV

application, the objectives of this research, Extended Kalman Filter (EKF) is selected (as

stated in Section 1.4). In Chapter 2 motivated by [11], a one layer RNN for solving the

convex QP problem and its piecewise formulation are suggested. The RNN is shown to have

a finite-time convergence and exponential convergence.

The contribution of this chapter is to formulate the MPC optimization problem with

nonlinear prediction from the nonlinear system model, acquiring its corresponding quadratic

problem and using the RNN approach, (explained in Section 2.8) to solve the QP problem

obtained from the MPC formulation.

In this approach, the system states are gained from Extended Kalman Filter that

is applied to the Dynamic Matrix (explained in Section 2.7). The proposed method in

this chapter requiressolving a QP problem in an online manner which guarantees finding a

control input within each time interval. The aforementioned objectives are shown to be met

via the RNN approach motivated from [11]. Consequently, our proposed control method in

this chapter combines RNN with the MPC method to avoid high complexity of solving the

QP problem as well as reaching a faster convergence time for the system. For the evaluation

of the proposed control algorithm in this chapter, three control schemes are considered

in Section 3.3 for the same AUV trajectory tracking and path following problem. Our
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developed control scheme is compared with the nonlinear MPC method using Levenberg-

Marquardt algorithm [193] as well as the linear MPC scheme. Finally, the corresponding

simulation results and discussions are presented.

3.2 Formulating the Problem

In this chapter, an efficient algorithm is developed by employing state observers that can be

applied to multi-variable systems such as AUV. The developed algorithm utilizes the EKF

and it merely requires solution of an online QP problem.

As explained in Section 2.7, in the conventional nonlinear MPC formulation, a set of

future control increments is calculated at each consecutive sampling instant k as follows:

∆u(k) = [∆u(k|k) . . . ∆u(k +Nu − 1|k)]T , (3.1)

and the following quadratic cost function is typically used.

J(k) =
N
∑

p=1

Qp(y
ref (k + p|k) − ŷ(k + p|k))2 +

Nu−1
∑

p=1

Rp(∆u(k + p|k))2. (3.2)

It is assumed that ∆u(k + p|k) = 0 for p ≥ Nu , where N and Nu are prediction horizon

(1 ≤ N) and control horizon (0 < Nu < N), respectively, yref (k + p|k) is the reference

trajectory of output signal, and ŷ(k+p|k) is predicted values of the output over the prediction

horizon N > Nu.

Objective Minimize the differences between the reference trajectory of output signal

yref (k + p|k) and predicted values of the output ŷ(k + p|k) over the prediction horizon

N > Nu, as well as considering the fact that the excessive control increments should be

penalized. ∆u(k+j|k) denotes the input increment, ∆u(k+pk) = u(k+pk)−u(k+p−1k),

Qp > 0 and Rp > 0 are weighting matrices.
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In fact, only the first element of the determined sequence in equation (3.1) is applied

to the system u(k) = ∆u(k|k)+u(k−1). At the next sampling instant, k+1, the prediction

is shifted one step forward, the output measurement is updated, and the whole procedure is

repeated. Since problem constraints have to be taken into account, future control increments

are determined from the following optimization problem:

min
∆u(k|k) ...∆u(k+Nu−1|k)

J(k)

subject to the following constraints:

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

∆umin ≤ ∆u(k + p|k) ≤ ∆umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 0, . . . , Nu − 1

The general prediction equation for p = 1, . . . , N is

ŷ(k + p|k) = y(k + p|k) + d(k)

where y(k + p|k) is calculated from a dynamic model of the system. The Dynamic Model

Control (DMC) type disturbance model is used in which the unmeasured disturbance d(k)

is assumed to be constant over the prediction horizon [91] and [187]. d(k) is estimated as

given below:

d(k) = y(k) − y(k|k − 1)

where y(k) is measured while y(k|k − 1) is calculated from the dynamic model.

Prediction vectors ŷ(k+ p|k) are nonlinear functions of future control moves [188]. In

such a case, the nonlinear MPC optimization problem (described in equation (3.2)), has to
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be solved in an online manner at each sampling instant. In theory, such an approach seems

to be potentially very precise, but it has a limited practical applicability.

Then motivated from [187], the output prediction ŷ(k) is expressed as the sum of

a forced trajectory that depends only on the future and the free trajectory y0(k), which

depends only on the past. ŷ(k) is calculated as follows:

ŷ(k) = Md(k)∆u(k) + y0(k),

where ŷ(k) are vectors of length rN presenting an output prediction, r is the number of

outputs and N is the prediction horizon, ∆u(k) is the future input moves and it is in the

form of equation (3.1), ∆u(k) is a vector of length mNu while m is the number of inputs

and Nu is the control horizon. The free trajectory y0(k) is as follows:

y0(k) = [y0(k + 1|k) . . . y0(k +N |k)]

The dynamic matrix Md(k) of dimensionality rN×mNu is comprised of step-response

coefficients of the linearized model as provided below.

Md(k) =



















m1(k) 0 . . . 0

m2(k) m1(k) . . . 0

...
...

. . .
...

mN(k) mN−1(k) . . . mN−Nu+1(k)



















∈ R
rNu×mNu

where each mi(k) is the step-response coefficient of the linearized model and has r × m

dimensionality. Both the free trajectory y0(k) and the dynamic matrix Md(k) are calculated

online from the current states of system.

The approach this research selected based on the literature is using EKF, discussed in

Section 2.5 and Algorithm 1, considering the current state of the system to build both the

86



free trajectory y0(k) and the dynamic matrix Md(k). Therefore, in the linearized model, A

and C matrices are obtained using the equations in the Algorithm 1 for Ak and Hk. The

matrix B of the linearized model is obtained from Bk = ∂f

∂u
|x=x̂(k). Then, the suboptimal

prediction calculated from equation ŷ(k) = Md(k)∆u(k)−y0(k) transforms the optimization

problem in equation (3.2) to a quadratic programming problem task as follows:

min
∆u(k)

‖ yref (k) −Md(k)∆u(k) − y0(k) ‖2Q + ‖ ∆u(k) ‖2R (3.4a)

subject to

umin ≤ JNPL∆u(k) + uNPL(k) ≤ umax

− ∆umax ≤ ∆u ≤ ∆umax

ymin ≤Md(k)∆u(k) + y0(k) ≤ ymax

where yref , ymin and ymax are vectors of length N , and present the reference trajectory,

minimum constraint, and maximum constraint output vectors, respectively, umin, umax,

and ∆umax are vectors of minimum and maximum control inputs, and input increments,

respectively, Q and R are matrices of the sizes N ×N and Nu ×Nu, respectively, R is the

matrix of weights in MPC given by R = diag(λ0, . . . , λNu−1), u
NPL(k) is an auxiliary vector

length Nu and JNPL is an auxiliary matrix of dimensionality Nu ×Nu as follows:

JNPL(i, j) =















1, i = j or i = j + 3

0, others

(3.5)

By using the nonlinear model of system and EKF, the nonlinear prediction of MPC is

gained. This thesis considered xQP = ∆uT (k) be a vector containing all decision variables

of the MPC algorithm, and correspondingly the optimization problem (equation (3.4a)) is

87



rewritten in a standard QP form as follows:

min
1

2
xTQPHQPxQP + fT

QPxQP (3.6)

s.t. MT
d (k)∆u(k) = ŷ(k) − y0(k)

AQPxQP ≤ bQP

−∆uTmax ≤ xQP ≤ ∆uTmax

where ∆uT (k) = xQP ,

The cost function in the QP problem equation (3.6) is defined by following equations

which has a unique optimal solution, as the objective function is strictly convex.

HQP = 2(MT
d(k)QMd(k) +R) (3.7)

fQP = −2(Md
T (k)yref (k) − y0(k)) (3.8)

where Q and R are matrices of the sizes N×N and Nu×Nu, respectively. R is the matrix of

wights in MPC given by R = diag(λ0, . . . , λNu−1). yref is a vector of length N , and denotes

the reference trajectory. The constraints are defined as:

AQP =

































−JNPL

JNPL

−CMd(k)

CMd(k)

−INu×Nu

INu×Nu

































, (3.9)
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bQP =

































−umin + uk−1(k)

umax − uk−1(k)

−ymin + y0(k)

ymax − y0(k)

∆umax

∆umax

































, (3.10)

where C = I and JNPL is an auxiliary matrix obtained from equation (3.5). using a

standard optimization technique in which the equation (3.6) is transformed into a piecewise

formulation. Let

E =







A

I






, d =







b1

−∆uTmax






, h =







b2

∆uTmax






,

where I ∈ R
n×n is an identity matrix and A and b2 are given by

A =







AQP

MT
d






, b2 =







ŷ(k) − y0(k)

bQP







Then the problem (3.6) can be re-written as

min
1

2
xTQPHQPxQP + fT

QPxQP (3.11)

s.t. d ≤ ExQP ≤ h

where d = [d1, . . . , dN ]T and h = [h1, . . . , hN ]T . Consider the Lagrangian formulation of
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equation (3.11) as follows:

L(x, y, η) =
1

2
xTQPHQPxQP + fT

QPxQP − uT (ExQP − η), (3.12)

where u ∈ R
n+m is referred to as the Lagrange multiplier and η ∈ X = {u ∈ R

n+m|d ≤

u ≤ h}. where xQP = ∆uT (k) denotes the vector containing all decision variables of

the MPC algorithm, AQP given in (3.9), HQP ∈ RN×N is positive-definite and HQP =

2(MT
d(k)QMd(k)+R), and fQP = −2(Md

T (k)yref (k)−y0(k)). Bazaraa et al. [189] in their

saddle point theorem, show that xQP is an optimal solution of equation (3.11) if and only

if there exist u∗ and η∗ satisfying the following condition.

L(x∗QP , u, η
∗) ≤ L(x∗QP , u

∗, η∗) ≤ L(xQP , u
∗, η)

Similar to the Section 2.8, using the projection formulation form [190], it can be seen that

the above inequality can be equivalently represented as

η∗ = PX,QP (η∗ − u∗), (3.13)

where the projection operator PX,QP (u) = [PX,QP (u1), . . . , PX,QP (uN)] and for i = 1, . . . , N ,

PX,QP (ui) =































di ui < di,

ui di ≤ ui ≤ hi,

hi ui > hi,

Thus x∗QP is an optimal solution of equation (3.11) if and only if there exist u∗ and η∗ such
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that (x∗QP , u
∗, η∗) satisfies































ExQP = η,

HQPxQP + fQP − ETu = 0,

η = PX,QP (η − u).

Substituting the above first and second equations into the third equation, we have

EH−1
QP (ETu− fQP ) = PX,QP (EH−1

QP (ETu− fQP ) − u).

Then x∗QP is an optimal solution of equation (3.11) if and only if there exists u∗ such that

(x∗QP , u
∗) satisfies















EH−1
QPE

Tu+ q = PX,QP (EH−1
QPE

Tu− EH−1
QPfQP − u),

xQP = Ryu+ a,

where Ry = H−1
QPE

T and a = −H−1
QPfQP . Therefore, let u∗ be a solution of the piecewise

equation,

Wu+ q = PX,QP (Wu+ q − u), (3.14)

where W ∈ R
N×N is a matrix and q ∈ R

N is a vector. If W = EH−1
QPE

T and q =

−EH−1
QPfQP , then x∗QP = Ryu

∗ + a is the optimal solution of equation (3.6). Hence, it can

see that the optimal solution of equation (3.6) can be obtained by solving the piecewise

equation (3.14).

Therefore, according to the Section 2.8.1, an RNN is proposed that solves both equa-

tion (3.6) and its piecewise equation Wu + q = PX,QP (Wu + q − u). The proposed RNN’s
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dynamical equation is defined as

du

dt
= λRNN{PX,QP (Wu+ q − u) −Wu− q}, (state equation) (3.15)

xQP (t) = Ryu(t) + a, (output equation) (3.16)

where λRNN > 0 is a scaling constant, u(t) ∈ R
N is the state variable, xQP (t) ∈ R

n is the

output variable, and Ry,W, q, a are defined in equation (3.14). In [191], presents that the

one later RNN has a single- layer structure with totally 3Num+2N neurons. In the Section

2.8.1, it is illustrated that our proposed RNN has a globally convergent state trajectory

and it is convergent to the solution of piecewise equation (3.14) within a finite time, if W

is symmetric and semi-definite, and is globally exponentially convergent if W is symmetric

and definite. Moreover, within a finite time, the output trajectory of our proposed RNN

converges globally to a unique optimal solution of the equation (3.6), if W = EH−1
QPE

T and

q = −EH−1
QP c. Moreover, the output trajectory has a bounded convergence rate

‖ xQP (t) − x∗QP ‖2≤
γRNN

λRNN(t− t0)
, ∀t > t0 (3.17)

where ‖ . ‖ denotes the l2 norm, ‖ xQP (t) − x∗QP ‖ is the future control increment ∆u(k)

from equation (3.1), γRNN is a positive constant, and λRNN > 0 is a scaling constant [191].

Hence, according to the work [191], given in the Section 2.7, the developed RNN

provides the controller with the vector of future decisions, so that the controller applies the

first element of this vector in order to control the AUV. The proposed RNN guaranteed

to find the solution to the equation (3.2) at each time interval k (Section 2.8.1). The

implementation of our proposed hybrid of MPC and RNN control method is described in

Figure 3.1.
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Nonlinear

optimization

via RNN

AUV

Nonlinear prediction

using EKF

MPC-RNN Controller using EKF

yref
u

y0Md

y

Figure 3.1: The developed MPC-RNN methodology.

3.2.1 The Overall Developed MPC-RNN Control Scheme

The following steps should be repeated at each sampling instant for the MPC-RNN algo-

rithm to work:

• Let k = 1 and set the control time terminal T , prediction horizon N , control horizon

Nu, control time terminal T , sampling interval Ts, weight matrices Q and R.

• Calculate the nonlinear free trajectory y0(k) given in equation (2.41) using EKF.

• Calculate the dynamic matrix Md(k). Set NN parameters, HQP , fQP , AQP , Ry, q and

W (given in equations (3.7), (3.8), (3.9), and (3.14)).

• Solve the convex quadratic minimization problem given in equation (3.6) to obtain

the optimal control action ∆uk by using an RNN with 3Num+ 2N neurons, where m

denotes the number of system inputs and n denotes the number of system states.

• Apply the optimal input vector u(k) given in equation (2.35).

• If k < T , set k = k + 1 and go to the second step; otherwise end.
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The proposed method in this chapter achieves its stability by proper tuning of the prediction

horizon and weighting coefficients λRNN .

3.3 Comparative Methods

This section uses the tracking dynamics of a nonlinear model to illustrate the application

of this study. Simulation results are given and discussed to demonstrate the effectiveness of

the proposed MPC-RNN scheme for AUV control application.

In previous chapters, it was discussed that the nonlinear MPC has higher online time,

requiring a larger online memory. Also,higher number of variables are required (real and

integer) refers to the programming features, results in higher computation time and memory

requirements for implementing of nonlinear MPC. Moreover, a nonlinear MPC is generally

not guaranteed to converge within a reasonable computing time. Hence, a nonlinear MPC

method may not be robust for some cases within an online process control. On the other

hand, the linear MPC is shown to have the least position and velocity overshoot values and

from the control cost perspective, the most approximate behavior (including linear MPC)

with lower cost.

In order to evaluate of the proposed nonlinear MPC-RNN control algorithm, three

control systems are considered here:

• Linear MPC using Kalman Filter (KF) state estimation.

• Nonlinear MPC (NMPC)using Extended Kalman Filter (EKF) state estimation.

• MPC-RNN using EKF state estimation.

The first control algorithm is based on a discrete-time linearized dynamical model of

the system using Taylor series expansion about a valid operating point (x̂(k), û(k)) given

by
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x(k + 1) = Akx̂(k) + Bkû(k) (3.18)

y(k) = Cx̂(k)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, y(k) ∈ R
p is the output

vector, Ak and Ck matrices are obtained using the equations in the Algorithm 1 for Ak and

Hk, respectively. The matrix Bk is obtained from Bk = ∂f

∂u
|x=x̂(k). The matrices Ak, Bk, and

C are defined as follows:

Ak =
∂f

∂x
|(x̂(k),ûlin(k)) =

































0 0 −v̂ cos(ψ̂) − û sin(ψ̂) cos(ψ̂) − sin(ψ̂) 0

0 0 û cos(ψ̂) − v̂ sin(ψ̂) sin(ψ̂) cos(ψ̂) 0

0 0 0 0 0 1

0 0 0 −du
mu

mv

mu
r̂ mv

mu
v̂

0 0 0 −mu

mv
r̂ dv

mv
r̂ −mu

mu
û

0 0 0 mu−mv

mr
v̂ mu−mv

mr
û −dr

mr

































Bk =
∂f

∂u
|(x̂(k),ûlin(k)) =

































0 0 0

0 0 0

0 0 0

1
mu

0 0

0 1
mv

0

0 0 1
mr

































C =













1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0












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where û(k) = (û, v̂, r̂) and the rest of parameters and equations are defined as follows:

ẋ = u cos(ψ) − v sin(ψ) (3.19a)

ẏ = u sin(ψ) + v cos(ψ) (3.19b)

ψ̇ = r (3.19c)

muu̇−mvvr + duu = τu (3.19d)

mvv̇ −muur + dvv = τv (3.19e)

mrṙ + (mv −mu)uv + drr = τr (3.19f)

where mu = m−Xu̇, mv = m−Yv̇, mr = Iz −Nṙ , du = −Xu−X|u|u|u|, dv = −Yv −Y|v|v|v|

and dr = −Nr −N|r|r|r|.

The MPC implementation can be formulated by introducing an open-loop optimization

problem at every time interval k [116]. In the linear MPC and in case of the unconstrained

optimization, equation (2.34) is employed to solve the Riccati equation yielding:

∆u = (Md
TQMd +R)−1Md

TQ(yr − yfree) (3.20)

where yfree is the free response generated by the KF andMT
d is the transposed of the dynamic

matrix Md specified in equation (2.42). The step-response coefficients of the linearized model

comprising the dynamic matrix Md given by:

Md(k) =



















Bk 0 . . . 0

AkBk Bk . . . 0

A2
kBk AkBk Bk

...

AN−1
k Bk AN−2

k Bk . . . AN−Nu

k Bk



















(3.21)

The second control method, NMPC, directly minimizes equation (2.34) at each in-

stant. Therefore, it seems to be the most accurate control scheme. However, performing an
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online nonlinear optimization of a non-convex problem is both time-consuming and unreli-

able. In this thesis, the Levenberg-Marquardt algorithm was chosen among the nonlinear

least squared methods to optimize equation (2.34). A discrete EKF Algorithm 1 is also

required to estimate the current states and predict the output over the prediction horizon.

In the Algorithm 1, Rc is a diagonal matrix with the entries computed from measurement

covariance. In other words, Rc is our estimation of the measured noise’s power.

The third control algorithm which was used in this thesis, is the nonlinear MPC-

RNN with the EKF state estimation. This algorithm is based on the online strategy of the

nonlinear state space model specified in equation (2.26a), using EKF Algorithm 1. After

discretization the model (A,B,C), the dynamic matrix Md can be computed using equa-

tion (3.21). During each sampling interval, the RNN is applied for solving the formulated

quadratic optimization problem. Within a sampling interval k, the convergence behaviors

of the one-layer RNN is depicted in Figure 3.2. The output of RNN is ∆u(k) vector where

the first element is feed into the control system. It is shown that the RNN can converge to

the optimal solution in a very short time interval.

3.4 Simulation Results

To analyze and evaluate the effectiveness of the performance of the developed method a

comparative simulation is conducted. During the following experiments, the AUV is forced

to do a desired path tracking mission as well as considering the constraints on the variables.

The performance runtime, control cost, position and orientation state errors regarding each

control algorithm are compared.

Physical constraints of the AUV dynamic model is summarized in Table 3.1. These

constraints are only considered in MPC-RNN and NMPC algorithms. In all three designed

control cases, the results are obtained using T = 20s, Ts = 0.2s, the output penalty matrix
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Q = 104 × I6×6 and control penalty matrix R = I3×3. Also, the maximum thruster force

along X and Y axes is assumed to be 400N and the maximum thruster torque of yaw axis

is set to be 100Nm. The inertia matrix M , matrix of Coriolis and centripetal terms C(ν),

and the damping matrix D(ν) in equation (2.3) are as follows:

M =













25.8 0 0

0 33.8 1.0115

0 1.0115 2.76













,

C(ν) =













0 0 −(33.8v + 1.0115r)

0 0 25.8u

33.8v + 1.0115r −25.8u 0













D(ν) =













2 0 0

0 7 0.1

0 0.1 0.5













The control objective is to force the AUV to follow a predefined trajectory of positions

and orientations. The simplified dynamic model consists of six state variables and three

input variables. AUV system states are the positions on X and Y axis and its orientation

from Z axis. Considering the equation (2.1a), the initial position, orientation and velocity

of the AUV are set to η0 = [0, 0, π
15
, 0, 0, 0]T and the desired tracking mission’s surge, sway

and yaw yields ηd = [2.4, 2, π
4
, 0, 0, 0]T .

The effect of environmental disturbances due to irrational ocean currents are gained

from equation (2.19) and described as slowly varying drift forces acting on the input channels

of AUV along X and Y axses.
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In the EKF/KF initializations, the measurement covariance matrix Rc = diag[5 ×

10−2, 5×10−2, 5×10−2, 1×10−2, 1×10−2]2 and the system covariance matrix Qc = diag[5×

10−5, 5×10−5, 1×10−5, 1×10−5, 1×10−5]2. For the vehicle, the matrix of unknown nonlinear

uncertainty from 2.3 is considered as diagonal matrix of square roots of matrix element

from the measurement covariance matrix multiplied by rand(1, p), where p is the number

of system output states.

g(η) = diag[sqrt(Rc) × rand(1, p)]

For the RNN initialization, λRNN = 100, ∆u0 = 0 × ones(N, 1), and µ0 = 0.

The simulations are conducted in MATLAB. The simulation results is an average of

20 simulations held on a computer equipped with a quad-cored processor operating at 2.67

GHz, and is operated by a 64-bit operating system.

Table 3.1: Physical constraints of the AUV dynamic model.

Discription Variables Min Max

Roll Angular Velocity p −π/6 π/6

Pitch Angular Velocity q −π/6 π/6

Yaw Angular Velocity r −π/6 π/6

Roll Euler Angle φ −π π

Pitch Euler Angle θ −π/2 π/2

Yaw Euler Angles ψ −2π 2π
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3.4.1 First Experiment N = 9, Nu = 1

In the first experiment, the AUV is forced to follow a predefined trajectory of positions

and orientations. The initial position, orientation and velocity of the AUV set to η0 =

[0, 0, π
15
, 0, 0, 0]T and the desired tracking mission’s surge, sway and yaw results in ηd =

[2.4, 2, π
4
, 0, 0, 0]T . Prediction horizon assumed to be N = 9, the control horizon is Nu = 1

and number of neurons in the RNN architecture is 27.

During each sampling interval Ts = 0.2s, the RNN is applied to solve the formulated

quadratic optimization problem. The convergence behaviors of the one-layer RNN is de-

picted in Figure 3.2. It is shown that the output of RNN (∆u(k)) converges to the optimal

solution within the time interval.

Time (s) #10
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Figure 3.2: Convergence behaviors of the one-layer RNN.

The AUV reaches the pre-defined set-point via three given control schemes. The

position and orientation (Euler angle) states are shown in Figure 3.3. More details on this

comparative case is shown in the next 3 figures.

The position states along X and Y axis is shown in Figures 3.4 and 3.5. As can be

seen, the developed method reaches the pre-defined set-point along X and Y axes faster

100





than the other two control methods. Moreover, using Kalman Filter in linear MPC, more

differences between the measured and the value of state is shown in comparison with using

EKF in the nonlinear MPC control method.

The orientation state around Z axis is shown in Figure 3.6. As can be seen, the

developed method and the NMPC method is reached the pre-defined set-point around Z

axis faster than linear MPC methods. Also, using Kalman filter in linear MPC, more

differences between the measured and the value of state is shown in comparison with using

EKF in nonlinear MPC control methods.

Control inputs of all three approaches are illustrated in Figure 3.7. In all three control

methods, the optimal control inputs are found. It can be seen that our developed method

has more oscillation than the other two control methods. However, our developed control

method has the advantages of being more accurate (in comparison with linear MPC) as well

as faster performance runtime (in comparison with NMPC method) during its path tracking

mission.

The linear and angular velocity states for AUV in all three control schemes are shown

in Figure 3.8. Note that in this path following mission, the goal is to just control the

position and orientation states. Linear and rotational velocity states are given to compare

the overshoots. In Figure 3.8, it is shown that the NMPC method has better results in

case of velocity states than the other two control schemes. Moreover, linear MPC has more

oscillatory results compared to the other two control schemes.
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Estimation of Error Signals in the First Experiment: The estimation of error

signals in the first experiment with same conditions are illustrated for all three control

schemes. During the trajectory tracking and path following, the prediction horizon and

control horizon are assumed to be N = 9 and Nu = 1, respectively. Figures 3.9 to 3.11

illustrate the comparison of estimation error signals in surge, sway and yaw motions among

three control schemes. Linear MPC using KF has the highest estimation errors while our

developed control methodology performs close to the NMPC approach. Both NMPC and

MPC-RNN control methods, use the EKF algorithm.
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Mean Square Error (MSE), Steady-state Tracking Error, Tracking Error Cost,

Performance Runtime, and Average Control Cost:

Tables 3.2 to 3.4, and 3.6 illustrate the comparison results for control schemes in Section

3.3 during the trajectory tracking and path following problem stated in Section 3.4.1. The

prediction horizon and control horizon are assumed to be N = 9 and Nu = 1, respectively.

Table 3.2: MSE for 100 sampling instants of each system state, using linear MPC with KF,
nonlinear MPC with EKF and MPC-RNN with EKF.

System States Linear MPC with KF NMPC with EKF MPC-RNN with EKF

Position along X axis 0.0074 4.9461 × 10−4 3.5321 × 10−4

Position along Y axis 0.0987 3.0781 × 10−4 2.2462 × 10−4

Orientation around Z axis 0.1049 0.0011 9.2110 × 10−4

Table 3.2 shows that, linear MPC using KF control method has the highest values

among three control schemes in case of MSE. On the other hand the proposed control

scheme has lower values of MSE in case of positions and orientation states in comparison

with NMPC using EKF.

Table 3.3: Steady-state Tracking Error of each system state, using linear MPC with KF, nonlinear
MPC with EKF and MPC-RNN with EKF.

System States Linear MPC with KF NMPC with EKF MPC-RNN with EKF

Position along X axis 0.0015 0.0005 0.0007

Position along Y axis 0.0580 0.0035 0.0003

Orientation around Z axis 0.0253 0.0008 0.0013

Table 3.3 presents that our proposed control method has a better performance than

the linear MPC using KF in case of the steady-state tracking error. Overall, among all

three methods, NMPC using EKF performed better than the other two control methods.

112



As can be seen in Table 3.3, our proposed control methodology performs very close to the

NMPC using EKF control scheme in case of evaluating the steady-state tracking error. The

steady-state error formulation is given by

ess = ||xi(100) − xesti(100)||

where x is the system state.

Table 3.4: Tracking error cost for 100 sampling instants of each system state using linear MPC
with KF, nonlinear MPC with EKF and MPC-RNN with EKF control schemes.

System States Linear MPC with KF NMPC with EKF MPC-RNN with EKF

Position along X axis 0.5081 0.8395 0.5602

Position along Y axis 0.3666 0.4269 0.3524

Orientation around Z axis 0.0536 0.0406 0.0293

Table 3.4 presents that our developed control method has lower values of tracking

error cost in comparison with the other two control schemes in tracking the desired position

state along Y axis and orientation around Z axis. The tracking error cost formulation is

given by

Jt =

∫ 100

0

||xi(t) − xesti(t)||
2dt

where x is the system state. In case of tracking error cost values of the positions state along

X axis, the MPC-RNN using EKF scheme performs very close to linear MPC using KF

control scheme. Table 3.4 also shows that the NMPC using EKF control scheme has higher

tracking error cost among all in case of position state along X and orientation state around

Z axes.
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Table 3.5: A comparison between the performance runtime of each control system.

Control method Performance runtime

Linear MPC with KF 0.0002s

NMPC with EKF 0.0912s

MPC-RNN with EKF 0.0079s

Table 3.5 shows that our proposed control method has improved the performance

runtime of the AUV control system in missions when using nonlinear method and nonlinear

optimization. Since linear MPC uses the linearized model and finds the optimal control

input linearly, it has a lower performance runtime in comparison with the other two control

methods. In our application of a nonlinear system with uncertainties, the linear MPC does

not meet the objectives of problem statement in the trajectory following and path tracking

mission.

Table 3.6: Average Control Cost of three designed control schemes for 100 sampling instants.

Control scheme Linear MPC with KF NMPC with EKF MPC-RNN with EKF

Control cost of X 4.0088 × 102 3.4096 × 102 3.7056 × 102

Control cost of Y 1.2003 × 102 1.5669 × 102 2.4282 × 102

Control cost of N 1.2176 × 102 1.5291 × 10 1.0910 × 102

Total Control cost 6.4267 × 102 5.1294 × 102 7.2248 × 102

Table 3.6 presents the costs resulted from the parameters X, Y and N from Table 2.1

as well as the total cost of the designed trajectory tracking and path following problem stated

in Section 3.4.1 for each control scheme from Section 3.3. Average control cost formulation

is given by

Jc =
1

100

∫ 100

0

||∆ui(t)||
2dt
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where ∆u is the system state. As can be seen in Table 3.6, the proposed scheme has higher

average control cost among the three control schemes. It is worth mentioning that the

NMPC method control cost in handling the path tracking goal around Z axis (the control

cost regarding the yaw motion) is significantly lower than other motions in other control

methods in Table 3.6. Table 3.6 also shows that the proposed control method has a better

performance runtime (in comparison with NMPC method) and more accurate path tracking

results (in comparison with linear MPC method), but with an increase in the control cost

for the system.
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3.4.2 Second Experiment

In the second experiment, the effect of changes in prediction horizon and the control horizon

on the performance runtime of each control scheme given in Section 3.3 are investigated. The

AUV is required to do the path tracking with its initial position, orientation and velocity

set to η0 = [0, 0, π
15
, 0, 0, 0]T in which the desired tracking mission’s surge, sway and yaw is

ηd = [2.4, 2, π
4
, 0, 0, 0]T . Other constraints and specifications are found in Section 3.4.

The main goal of the second experiment is that when designing an MPC, a main

concern is how large the prediction horizon N should be. If the pre-defined control plan

goal is not achieved then an estimation of the remaining cost-to-go is essential and should

be considered. In practice, variations in the parameter N have heavy costs. On the other

hand, short control plans are not necessarily guaranteed to achieve all the plant goals [194–

196]. Table 3.7 presents the results of second experiment The simulations are conducted

in MATLAB. The simulation results is an average of 20 simulations held on a computer

equipped with a quad-cored processor operating at 2.67 GHz, and is operated by a 64-

bit operating system. This is worth mentioning that, linear MPC using KF control scheme

faced with highly unstable circumstances when an increase happen in prediction and control

horizons.
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Table 3.7: The effect of changing N and Nu on the performance runtime of Nonlinear MPC and
MPC-RNN control schemes using EKF for the total sampling times, 20s.

Measured performance runtime in trajectory tracking and path following control

N Control scheme N = 8 N = 9 N = 10 N = 11

Nu = 1 MPC-RNN 0.0078s 0.0079s 0.0087s 0.0097s

NMPC 0.0649s 0.0912s 0.1170s 0.1301s

Nu = 3 MPC-RNN 0.0082s 0.0084s 0.0090s 0.0110s

NMPC 0.3168s 0.3550s 0.5432s 0.9932s

Nu = 5 MPC-RNN 0.0103s 0.0111s 0.0113s 0.0125s

NMPC 2.0691s 2.1964s 2.2005s 2.3705s

As can be seen in Table 3.7, the proposed control method has faster performance

runtime. Since the AUV application is a real-time system which needs fast responses to

the system inputs, lower performance runtime, while reaching the mission goals, makes

it desirable to choose MPC-RNN. Nonlinear optimization of AUV it shown to be time-

consuming according to the second experiment in Section 3.4.2. High time-consumption

can result in an undesirable transient or unstable situations in the presence of fault. This

issue is discussed more in the Chapter 4. Table 3.7 also shows that an increase in the

number of the prediction horizon N of the optimization problem from 9 to 10 (with Nu = 1)

results in an increase of 28% and 10% performance runtime in the NMPC and our developed

MPC-RNN control schemes, respectively. In this case neurons in RNN are increased from

27 to 29 in this case. Also, an increase in the number of the prediction horizon N of the

optimization problem from 9 to 11 (with Nu = 1) results in an increase up to 42% and

22% performance runtime in the NMPC and our developed MPC-RNN control schemes,

respectively. In this case, neurons in RNN are increased from 27 to 31.

Increasing the number of control horizon Nu from 1 to 3 (with N = 9) results in an
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increase of 289% and 6% performance runtime in NMPC and MPC-RNN control schems,

respectively. In this case, neurons in RNN are increased from 27 to 45. Also, an increase

in the number of control horizon Nu from 1 to 5 (with N = 9) results in increasing 2300%

and 40% performance runtime in NMPC and MPC-RNN control schems, respectively. In

this case, neurons in RNN are increased from 27 to 63.

Similar experiments in Table 3.7 show that increasing the number of the prediction

horizon N and the control horizon Nu of the optimization problem has mild effects on the

system performance runtime when the AUV is controlled with the proposed control method

in comparison with the NMPC method. The reason behind this added tune-ability feature

in the system comes from the adaptability of RNN in solving the solution of finding the

optimal control input to the system.
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3.5 Discussion

In this chapter a hybrid MPC and RNN control method is developed and integrated with

EKF. The proposed control scheme in this chapter allows for designing a control solution

that takes into account the system kinematics and meets uniform asymptotic convergence

requirements using RNN. Comparative methods are destined and several simulations are

given in order to evaluate the developed control method of this chapter. Based on the

graphs and tables in each experiment the following points can be stated:

• The suboptimal algorithm in equation (3.4a) performs an online execution of the QP

problem. It is shown that the solution is found within a bounded time frame (details

in Section 2.8.1 and 3.2) with the developed control method of this chapter, where the

nonlinear optimization may result in a local minimum.

• The proposed method of this chapter reached to the pre-defined path tracking goal

faster than NMPC and Linear MPC methods according to Figures 3.4, 3.5, and 3.6.

Also, the developed MPC-RNN method performed with least values of MSE for po-

sitions and orientation states among three designed control methods according to

Table 3.2. Moreover, MPC-RNN developed method shown to have lower Tracking

Error Cost values regarding the position and orientation states, overall, while NMPC

method showed the highest values among 3 designed control methods.

• According to Figures 3.4, 3.5, and 3.6, Linear MPC using KF has the highest es-

timation errors and the developed control method of this chapter performs close to

NMPC control method in this regards. Both NMPC and MPC-RNN control meth-

ods, benefited from EKF algorithm. Also, according to the results from Table 3.3,

the proposed control method of this chapter performs very close to NMPC using EKF

control scheme, in case of evaluating the steady-state tracking error values. Both
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NMPC and MPC-RNN performed better than Linear MPC method, if steady-state

error is considered.

• The developed method of this chapter has more oscillatory behavior in its control

input results than the other 2 control methods, according to Figure 3.7. Also, Table

3.6 presents that the improvement in the performance runtime (in comparison with

NMPC method) as well as the improvement in accurate trajectory following and path

tracking (in comparison with linear MPC method) of the proposed control method of

this chapter, comes along with an increase in the control cost for the system.

• The reduction in performance runtime complexity gained from our suboptimal al-

gorithm in comparison with the NMPC is very significant when it comes to setting

various prediction and control horizon numbers. This is illustrated in the Table 3.7.

• The number of the control horizon Nu of the optimization problem has larger effect

on the performance runtime than the number of prediction horizon N , specially when

NMPC control method is used, as per Table 3.7. The proposed control method in this

chapter, overall has performed better when faced with MPC design tunning circum-

stances. According to Section 3.4.2, since MPC-RNN performance runtime would not

be affected by tunning variables N and Nu significantly, this makes it a feasible option

to be applied on industrial applications.

Therefore , considering our real-time application and its objective that is trajectory following

and path tracking in horizontal plan, the choice of the developed method of this chapter to

control is feasible.
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3.6 Conclusion

In this chapter, a nonlinear MPC algorithm is formulated to ingrated with a Recurrent

Neural Network to solve the QP problem, resulted from MPC cost function minimization.

The developed MPC-RNN control scheme applied to force a nonlinear AUV model with un-

certainties to follow a predefined trajectory of positions and orientations. Also, comparative

methods are developed and series of simulations and analysis results are provided. Finally,

the discussion about the results is presented. Next chapter equips our proposed control

method of this chapter with a Dual Extended Kalman Filter in order to develop an active

fault tolerant control system.
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Chapter 4

Active Fault-Tolerant Nonlinear

Predictive Control Using Recurrent

Neural Networks

4.1 Introduction

In the previous chapter, the MPC method integrated with RNN was employed to design

the controller for an AUV nonlinear model with uncertainties during a trajectory following

and path tracking mission. In Chapter 3, EKF provided the AUV system with an effi-

cient method for generating approximate maximum-likelihood estimate of the states of a

discrete-time nonlinear dynamic system. EKF optimally combines noisy observations with

predictions from the pre-defined dynamic model via a recursive procedure. Also, EKF can

estimate the parameters of a model (e.g. neural network) given clear training data of input

and output data. This way, EKF presents a modified-Newton type of algorithm for an

online system identification [127].
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The developed control method of the previous chapter has benefited from MPC prop-

erties that are using the system model, a prediction horizon and explicitly handling con-

straints. Also, The developed control method of the previous chapter allows for designing a

control solution that takes into account the system dynamics and meets uniform asymptotic

convergence requirements using RNN. Moreover, MPC-based control algorithms need well

tuned parameters that the proposed method in Chapter 3 has addressed, when it comes

to choosing prediction and control horizon numbers. MPC does an optimization problem

setup and its development time is much shorter than for many competing advanced control

methods and it is easier to maintain. Therefore, changing model or specifications does not

require complete redesign of the model predictive controller. Therefore, in this chapter the

proposed control method in Section 3.2 is modified with replacing the Extended Kalman

Filter (EKF) by a dual-Extended Kalman Filter (dual-EKF) to address the stated problem

of this chapter that is controlling a nonlinear system with faulty inputs.

The proposed active system control strategy of this chapter accounts for the on-

line fault estimation as well as recovery, yields an Active Fault-Tolerant Control (AFTC)

method. The developed AFTC method of this chapter uses the proposed control method

from Chapter 3 to address the problem of trajectory tracking and path following of an AUV

faced with Loss of Effectiveness (LOE) in its actuators during its pre-defined mission. The

actuator LOE is depicted in the effectiveness coefficient matrix Γ given in equation (2.23),

which affects on control input matrix u in the model.

In Section 3.4.2, the second experiment presented the conventional nonlinear MPC

(NMPC) using EKF control method as a time consuming and risky optimization method.

From fault-tolerant control view, using NMPC when a fault occurs, a non-convex problem

may not converge or converge to a local minima, according to the works [87] and [99]. Table

3.7 presented NMPC as a method that its parameters are not easily tunable when AUV is

following a predefined trajectory of positions and orientations in its normal status. This
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can make Fault-Tolerant Nonlinear Model Predictive Control (FT-NMPC) algorithms get

unstable after the occurrence of the fault.

Finally, performance efficiency of the developed AFTC method of this chapter is eval-

uated during several trajectory tracking and path following mission scenarios. Simulation

results of an AUV nonlinear model with uncertainties during designed missions, faced with

LOE actuator faults, are given in Section 4.3. The results are analyzed and compared with

conventional FT-NMPC method in Section 4.4.

4.2 Active Fault-Tolerant Model Predictive Control

(AFTC) Framework

Shen et al. [197] presents a unified receding horizon optimization scheme to solve the com-

bined path planning and tracking control problem for an AUV. In [197], the NMPC technique

was employed to the AUV and simulation results using a Falcon dynamic model with real-

istic experimentally identified parameters revealed the effectiveness of the proposed control

algorithm. Shen et al. [197] claim that it remains to analyze the robustness of the closed-

loop system and the disturbance rejection performance of the control system. Also, a fast

NMPC algorithm should be developed for AUV real-time implementations [197] .

Motivated by the literature given, the problem of adaptive AFTC for a class of nonlin-

ear systems with actuator fault is investigated in this chapter. In fact, the stated problem

of this chapter arises when the input is not accurate and requires coupling of both the state

estimation and the parameter estimation. We consider the problem of learning both the

hidden states x(k) and parameters w of a discrete-time nonlinear dynamical system in the
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following equations,

ẋ = f(x, u, w) + v,

y = h(x) + n,

where

f(x, u, w) =







Mν−1[wτ − C(ν)ν −D(ν) − g(η)]

J(η)ν






,

where f and h are known nonlinear functions, v and n denote the white noise sequences

of uncorrelated Gaussian random vectors with zero means and covariance matrices Qc and

Rc. In fact, wτ = τf is the faulty input. Then, a discrete-time nonlinear system is given as

follows:

x(k + 1) = f(x(k), u(k), w(k)) + v(k), (4.3a)

y(k) = hx(k) + n(k), (4.3b)

The nonlinear system in equations (4.3) is subject to the following constraints:

umin ≤ u(k) ≤ umax, (4.4a)

∆umin ≤ ∆u(k) ≤ ∆umax, (4.4b)

ymin ≤ y(k) ≤ ymax, (4.4c)

where the system states x(k) ∈ R
n and the set of model parameters w(k) for the dynamical

system must be simultaneously estimated from only the observed noisy signal y(k) ∈ R
p,

f(.) and h(.) are the model nonlinear structure, v(k) is the process noise, n(k) is the mea-

surement noise, and u(k) ∈ R
m corresponds to the observed exogenous inputs, umin, umax,

∆umin,∆umax, and ymin, ymax are the lower and upper bounds.
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As it is mentioned before, the task of dual-EKF is to estimate both the state and

model parameters from only noisy observations. Therefore, at every time interval, a state-

EKF estimates the states using the current model estimate ŵ(k), while the weight-EKF

estimates the weights using the current state estimate x̂(k). Since the observation y(k) is

set to be one of the states, we just need to consider estimating the parameters associated

with a single nonlinear function f .

Definition

The developed AFTC method of this chapter adopts the actuator fault model in the nonlin-

ear AUV model that are defined as the system parameters w obtained from the dual-EKF,

therefore, w has an appearance close to how the system state variables and control input

appear in the model.

In fact, the LOE faults are estimated by the dual-EKF and this estimation will modify

the model used by MPC. So, whenever a fault occurs in the actuators, the amplitude of

the LOE fault is estimated by the parameter estimator of dual-EKF, which in turn modify

the state estimator. Then, the modified state estimator predicts the future states in the

prediction horizon. Therefore, the predictive controller accommodates the fault with this

configuration.

The actuator fault w is assumed to have effects on the effectiveness coefficient matrix

Γ as follows:

wm×m = Γm×m − Im×m,

where m is the number of system inputs, the matrix Γ is represented by equation (2.23) and
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is a multiplicative matrix as follows:

Γ =













γ1 0 0

0 γ2 0

0 0 γ3













,

where 0 < γk < 1, k = 1, . . . , 3 denotes the effectiveness factor of the forces and torque in

surge, sway and yaw motions.

Figure 4.1 presents the dual-EKF algorithm that consists of two EKFs running concur-

rently. The top EKF generates state estimates, and requires ŵ(k − 1) for the time update.

The bottom EKF generates weight estimates, and requires x̂(k − 1) for the measurement

update.

Figure 4.1: The dual Extended Kalman Filter. The top EKF generates state estimates, and
requires ŵ(k− 1) for the time update. The bottom EKF generates weight estimates, and requires
x̂(k − 1) for the measurement update [12].

The dual-EKF algorithm [12] is presented in the Algorithm 2 in which the state

estimation should be is used in the parameter estimation process. Therefore, at each time

step, one EKF state filter estimates the current model estimate ŵ(k). At the same time, the
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other EKF parameter filter estimates the parameters using the current states estimate x̂(k).
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Algorithm 2: Dual Extended Kalman Filter (dual-EKF) [12].

Input: Noisy y and faulty input uf

Output: System states x and parameters w

Initialization

ŵ0 = E[w], Pw0
= E[(w0 − ŵ0) − (w0 − ŵ0)

T ];

x̂0 = E[x], Px0
= E[(x0 − x̂0) − (x0 − x̂0)

T ];

For k ∈ {1, . . . ,∞} the time-update equations for the weight filter are ;

ŵ−
k = ˆwk−1

−;

P̂−
wk

= Pwk−1
+Rr

k−1 = λ−1Pwk
;

and the time-update equations for the state filter are ;

x̂−k = ˆxk−1
− + Tsf( ˆxk−1

−);

φ = I + TsĀk−1 ;

Qd = (φRvφT +Rv)
Ts
2 ;

P̂−
xk

= (φP−
xk−1

φT +Qd)

foreach dual-EKF do

the measurement updates equations for the state filter are

Kk
x = P−

xk
CT (CP̂−

xk
CT +Rn)−1

x̂k = x̂−k +Kk
x(yk − Cx̂−k)

Pxk
= (I −Kk

xC)P̂−
xk

and the measurement updates equations for the weight filter are

Kk
w = P−

wk
(Ck

w)T (Ck
wP̂−

xk
(Ck

w)T +Re)−1

ŵk = ŵ−
k +Kk

w.εk

Pwk
= (I −Kk

wCk
w)P̂−

wk

where

εk = (yk − Cx̂−k)

Āk−1 = ∂f(x)
∂x

|x=x̂k−1

Ck
w = −∂εk

∂w
= C ∂x̂k

−

∂w
|w=ŵk

end
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Pwk
and Pxk

are the parameter part and the state part of the covariance matrix Pk,

respectively. There are several choices on how to select matrix Rr
k [12]. We set Rr

k =

(λff
−1−1)Pwk

, where λff ∈ (0, 1] is often referred to as the forgetting factor. This provides

an approximate of an exponentially decaying weighting on past data (More detail is available

in [198]). Therefore, Pxk
gets updated by the forgetting factor, at each time interval, as

follows:

Pxk
= λx

−1Pxk
.

Rn is the measurement noise and is set to be Gaussian, Rv is the measurement noise covari-

ance matrix, Qd and φ are auxiliary parameters, Kk
x and Kk

w are the Kalman gains related

to state and parameter filters, respectively, ε is the error term, and Ck
w is the parameter

filter.

Algorithm 2 illustrates that x̂(k) is a function of x̂(k − 1), and both are functions of

system parameters w. Therefore, there is a recurrent architecture with a method similar

to the real-time recurrent learning, in the linearization process of the parameter filter Ck
w.

Thus, the following system of recursive equations are given [12]

∂x̂−k+1

∂ŵ
=
∂f(x̂, ŵ)

∂x̂k

∂x̂k
∂ŵ

+
∂f(x̂, ŵ)

∂ŵk

, (4.5)

∂x̂k
∂ŵ

= (I −Kk
xC)

∂x̂−k
∂ŵ

+
∂Kk

x

∂ŵ
(yk − Cx̂−k ), (4.6)

where ∂f(x̂,ŵ)
∂x̂k

and ∂f(x̂,ŵ)
∂ŵk

contain static linearization of the nonlinear function at ŵk. The

derivative of Kk
x with respect to the i-th element of ŵ by ∂Kk

x

∂ŵ
(the i-th column of ∂Kk

x

∂ŵ(i)
)

yields

∂Kk
x

∂ŵ(i)
=

(I −Kk
xC)

CPxk
−CT +Rn

∂Pxk
−

∂ŵ(i)
CT (4.7)

When the dual-EKF has estimated the states and parameters of the system that are
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affected by the faulty input control wτ = τf , and uf = [w1τ1, w2τ2, w3τ3], the problem

formulation of the nonlinear prediction (see Section 2.7) with the conventional NMPC for-

mulation a set of future control increments is calculated at each consecutive sampling instant

k as follows:

∆uf (k) = [∆uf (k|k) . . . ∆uf (k +Nu − 1|k)]T , (4.8)

and the quadratic cost function (used from Chapter 3 equation (3.2)) given by

J(k) =
N
∑

p=1

Qp(y
ref (k + p|k) − ŷ(k + p|k))2 +

Nu−1
∑

p=1

Rp(∆uf (k + p|k))2. (4.9)

It is assumed that ∆uf (k + p|k) = 0 for p ≥ Nu , where N and Nu are prediction horizon

(1 ≤ N) and control horizon (0 < Nu < N), respectively, yref (k + p|k) is the reference

trajectory of output signal and ŷ(k + p|k) is the predicted values of the output over the

prediction horizon N > Nu, ∆uf (k + j|k) denotes the input increment, and ∆uf (k + pk) =

uf (k + pk) − uf (k + p− 1k), Qp > 0 and Rp > 0 are weighting factors.

Objective Minimize the differences between the reference trajectory of the output

signal yref (k + p|k) and the predicted values of the output ŷ(k + p|k) over the prediction

horizon N > Nu, as well as considering the fact that the excessive control increments should

be penalized. Also, w at each time instant is a vector of dimension m× 1 that defines the

system measurement of the effectiveness of each actuator, m is the number of actuators.

The first element of the determined sequence in equation (4.8) is applied to the system

and the contol decosion in faulty condition uf (k) is given by

uf (k) = ∆uf (k|k) + uf (k − 1).

At the next sampling instant k + 1 the prediction is shifted one step forward, the
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output measurement is updated, and finally the whole procedure is repeated. Since problem

constraints have to be usually taken into account, future control increments are determined

from the following optimization problem:

min
∆uf (k|k) ...∆uf (k+Nu−1|k)

J(k)

subject to the following constraints:

umin ≤ uf (k + p|k) ≤ umax, p = 0, . . . , Nu − 1

−∆umax ≤ ∆uf (k + p|k) ≤ ∆umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 0, . . . , Nu − 1

where uf is the updated control input with regards to the LOE fault happened on the

actuators. The general prediction equation for p = 1, . . . , N is

ŷ(k + p|k) = y(k + p|k) + d(k)

y(k + p|k) is calculated from a dynamic model of the system and d(k) = y(k) − y(k|k − 1).

Prediction vectors ŷ(k + p|k) are nonlinear functions of future control moves [188].

Again, the output prediction ŷ(k) is expressed as the sum of a forced trajectory, depending

only on the future and the free trajectory y0(k) that is based on the past only.

ŷ(k) = Md
′(k)∆uf (k) + y0(k),

where ŷ(k) are vectors of length rN and presents output prediction, r is the number of

outputs and N is the prediction horizon, ∆uf (k) is the future input moves and it is in the

form of equation (4.8), ∆uf (k) is a vector of length mNu while m is the number of inputs
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and Nu is the control horizon. The free trajectory y0(k) is as follows:

y0(k) = [y0(k + 1|k) . . . y0(k +N |k)].

The dynamic matrix Md
′(k) of dimensionality rN×mNu is comprised of step-response

coefficients of the linearized model (obtained from dual-EKF) as follows:

Md
′(k) =



















BkΓ 0 . . . 0

AkBkΓ BkΓ . . . 0

A2
kBkΓ AkBkΓ BkΓ

...

AN−1
k BkΓ AN−2

k BkΓ . . . AN−Nu

k BkΓ



















.

Similar to our approach in the previous chapter, both the free trajectory y0(k) and the

dynamic matrix Md
′(k) are calculated online from the current states of system by dual-EKF.

Therefore, the controller calculates the matrix BkΓ and updates the system. Consequently,

the dynamic matrix will be changed and the LOE fault get accommodated in an online

manner. The Jacobian matrix Ak is comprised of recurrent derivatives ∂f(x̂,ŵ)
∂x̂k

and ∂f(x̂,ŵ)
∂ŵk

.

According to [12], Ā(k− 1) in Algorithm 2 depends not only on the parameters ŵ, but also

on the operating point of linearization x̂(k − 1). ∂Ā(k−1)
∂ŵ(i)

contains a 3-D tensor given by

∂Ā(k − 1)

∂ŵ(i)
=

∂2F

∂x̂k−1∂ŵ(i)
+

∂2F

(∂x̂k−1)2
∂x̂k−1

∂ŵ(i)
, (4.11)

where ∂x̂k−1

∂ŵ(i)
is Ck−1

w.

The matrices Ak, BkΓ, and the rest of derivative terms for implementing the dual-EKF
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are defined as follows:

∂f

∂x̂
|(x̂(k),ŵ(k)) =

































0 0 −v̂ cos(ψ̂) − û sin(ψ̂) cos(ψ̂) − sin(ψ̂) 0

0 0 û cos(ψ̂) − v̂ sin(ψ̂) sin(ψ̂) cos(ψ̂) 0

0 0 0 0 0 1

0 0 0 −du
mu

mv

mu
r̂ mv

mu
v̂

0 0 0 −mu

mv
r̂ dv

mv
r̂ −mu

mu
û

0 0 0 mu−mv

mr
v̂ mu−mv

mr
û −dr

mr

































,

∂f

∂ŵ(k)
|(x̂(k),ŵ(k)) =

































0 0 0

0 0 0

0 0 0

τ1
1

mu
0 0

0 τ2
1
mv

0

0 0 τ3
1
mr

































,

B̄Γ =
∂f

∂uf
|(x̂(k),ûf (k)) =

































0 0 0

0 0 0

0 0 0

w1
1

mu
0 0

0 w2
1
mv

0

0 0 w3
1
mr

































,

∂2f

∂x̂(k − 1)∂ŵ(i)
|(x̂(k),ŵ(k)) = 0.

As mentioned earlier, ∂2F
(∂x̂k−1)2

is a three-dimensional tensor given by 6 matrices of
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dimension 6 × 6 which are given as:

∂2F

∂x̂2 1
= [0]6×6,

∂2F

∂x̂2 2
= [0]6×6,

∂2F

∂x̂2 3
=

































0 0 v̂ sin(ψ̂) − û cos(ψ̂) − sin(ψ̂) − cos(ψ̂) 0

0 0 −û sin(ψ̂) − v̂ cos(ψ̂) cos(ψ̂) − sin(ψ̂) 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

































,

∂2F

∂x̂2 4
=

































0 0 − sin(ψ̂) 0 0 0

0 0 cos(ψ̂) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 mu

mv

0 0 0 0 mu−mv

mr
0

































,

∂2F

∂x̂2 5
=

































0 0 − cos(ψ̂) 0 0 0

0 0 − sin(ψ̂) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 mv

mu

0 0 0 0 0 0

0 0 0 0 mu−mv

mr
0

































,
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∂2F

∂x̂2 6
=







































0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 mv

mu
0

0 0 0 −mu

mv
0 0

0 0 0 0 0 0

0 0 0 0 0 0







































,

Therefore, the dual-EKF has estimated both states and parameters of the system, and

similar to the Section 3.2, the optimization problem in the cost function (equation (4.9))

converts to a QP problem task as follows:

min
∆uf (k)

‖ yref (k) −Md
′(k)∆u(k) − y0(k) ‖2Q + ‖ ∆uf (k) ‖2R

subject to

umin ≤ JNPL∆uf (k) + uNPL(k) ≤ umax

− ∆umax ≤ ∆uf ≤ ∆umax

ymin ≤Md
′(k)∆uf (k) + y0(k) ≤ ymax

where yref , ymin and ymax are vectors of length N , and present the reference trajectory,

minimum constraint, and maximum constraint output vectors, respectively, vectors of min-

imum and maximum control inputs, and input increments, respectively, umin, umax, and

∆umax are vectors of length Nu, Q and R are matrices of the sizes N × N and Nu × Nu,

respectively, R is the matrix of weights in MPC given by R = diag(λ0, . . . , λNu−1). u
NPL(k)

is an auxiliary vector length Nu and JNPL is an auxiliary matrix of dimensionality Nu×Nu
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as follows:

JNPL(i, j) =















1, i = j or i = j + 3

0, others

Similar to the previous chapter, x′QP = ∆uTf (k) is considered to be a vector containing

all decision variables of the MPC algorithm, and correspondingly the optimization problem

(equation (4.12)) is rewritten in a standard QP form as follows:

min
1

2
x′QP

T
H ′

QPxQP + f ′
QP

T
x′QP

s.t. Md
′T (k)∆u(k) = ŷ(k) − y0(k)

A′
QPxQP ≤ b′QP

−∆uTmax ≤ x′QP ≤ ∆uTmax

where ∆uT (k) = x′QP ,

The cost function in the QP problem (equation (4.12)) has a unique optimal solution

and the objective function is strictly convex. H ′
QP and f ′

QP in equation ( ) are given by

H ′
QP = 2(Md

′T (k)QMd
′(k) +R), (4.13)

f ′
QP = −2(Md

′T (k)yref (k) − y0(k)), (4.14)

where Q and R are matrices of the sizes N × N and Nu × Nu, respectively. R is the

matrix of weights in MPC given by R = diag(λ0, . . . , λNu−1), and yref presents the reference
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trajectory. A′
QP and b′QP in equation ( ) are defined as

A′
QP =

































−JNPL

JNPL

−CMd
′(k)

CMd
′(k)

−INu×Nu

INu×Nu

































, (4.15)

b′QP =

































−umin + uf k−1(k)

umax − uf k−1(k)

−ymin + y0(k)

ymax − y0(k)

∆umax

∆umax

































, (4.16)

Therefore, a recurrent neural network is developed with the dynamics detailed in equation

(3.15). The reader is referred to the Section 3.2 (equations (3.12) to (3.15)) for rest of the

proof of neural networks convergence motivated from [191].

The implementation of the developed hybrid of MPC and RNN active fault-tolerant

control method is described in Figure 4.2 .

4.2.1 The Overall Developed AFTC Scheme

The following steps should be repeated at each sampling instant for the AFTMPC-RNN

algorithm to work:

• Let k = 1 and set the control time terminal T , prediction horizon N , control horizon

Nu, control time terminal T , sampling interval Ts, weight matrices Q and R.
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4.3 Application to AUV Mission and Simulation Re-

sults

Our proposed AFTC integrates the dual-EKF estimations as well as the control method

proposed in Chapter 3. In this chapter, the goal is to design a robust MPC-RNN controller

that inherits the stability properties of a model-based controller. The proposed solution iso-

lates and identifies the severity of faults in the system within a single integrated framework.

For evaluation purposes, the proposed AFTC method is applied on an AUV.

4.3.1 Mission Objective

The control objective is to force the AUV to follow a pre-defined trajectory of positions

and orientations while keeping its physical constraints considered. AUV is faced with var-

ious LOE fault scenarios in its actuators while controling surge, sway and yaw motions.

Therefore, the performance runtime, average control cost and the estimation of system from

the actuator faults are the important parameters that are taken into account for further

improvements.

• First, we aim to show how applying FTC changes the performance of a system faced

with mild and severe actuator faults. Therefore, in Section 4.3.2 a series of scenarios

are designed to make a comparison between our proposed method with and without

FTC feature. In the first experiment, it is assumed that the initial position, orientation

and velocity of the AUV are set to η0 = [0, 0, π
15
, 0, 0, 0]T , and the desired tracking

mission’s surge, sway and yaw are ηd = [0.5 cos(t/3/π) + 1.5, 2.5, π/3, 0, 0, 0]T . In the

first experiment, the objective is improving the average control cost while reducing the

steady-state errors in path tracking, fault detection and control recovery of actuator

faults.
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• Second, demonstrating a comparison between our developed AFTMPC-RNN and FT-

NMPC methods, several scenarios are considered in Section 4.3.3. In the second

experiment, it is assumed that the initial position, orientation and velocity of the

AUV are set to η0 = [0, 0, π
15
, 0, 0, 0]T and the desired tracking mission’s surge, sway

and yaw are ηd = [0.5 cos(t/3/π) + 1.5, 2.5, π/3, 0, 0, 0]T .

Simulation results are presented in both set of experiments to demonstrate the efficiency of

the developed scheme.

The physical constraints of the AUV dynamic model in both experiments is summa-

rized in Table 3.1. For initializations of MPC algorithm, the output penalty matrix is set

to be Q = 5 × 104 × I6×6 and the control penalty matrix R = I3×3. The prediction horizon

assumed to be N = 20 and the control horizon is Nu = 5. The maximum thruster force

along X and Y axes are assumed to be 400N and the maximum thruster torque of yaw axis

is set to be 100Nm. The inertia matrix M , the Coriolis and centripetal matrix C(ν), and

the damping matrix D(ν) in equation (2.3) are provided as follows:

M =













25.8 0 0

0 33.8 1.0115

0 1.0115 2.76













,

C(ν) =













0 0 −(33.8v + 1.0115r)

0 0 25.8u

33.8v + 1.0115r −25.8u 0












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D(ν) =













2 0 0

0 7 0.1

0 0.1 0.5













The simplified dynamic model consists of six state variables and three input variables.

AUV system states are the positions on X and Y axes and its orientation about Z axis.

The effect of environmental disturbances due to irrational ocean currents are gained from

equation (2.19) and are described as slowly varying drift forces acting on the input channels

of AUV along X and Y axes.

The implementation of the EKF algorithm requires the noise variance σ2
v and σ2

n

that are commonly determined from physical knowledge of the problem (e.g. sensor ac-

curacy or ambient noise measurements) [12]. In the initializations of the dual-EKF it is

assumed that λw = λx = 0.999. The covariance matrices are initialized with larger values

of diagonal matrix entities comparing to what we have previously assumed in Section 3.4.

Px = I6×6,Pw = I3×3, Rn = diag[5 × 10−2, 5 × 10−2, 5 × 10−2, 1 × 10−2, 1 × 10−2, 1 × 10−2]2 ,

Re = Rn and QdEKF = diag[5 × 10−2, 5 × 10−2, 5 × 10−2, 1 × 10−2, 1 × 10−2, 1 × 10−2]2.

The matrix of unknown nonlinear uncertainty from equation (2.3) is considered as the

diagonal matrix of square roots of matrix entities from the measurement covariance matrix

multiplied by rand(1, p), where p is the number of system output states.

g(η) = diag[sqrt(Rc) ∗ rand(1, p)]
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The initialization of matrix Ck
w is as follows:

Ck
w =

































0 0 0

0 0 0

0 0 0

X 1
mu

0 0

0 Y 1
mu

0

0 0 N 1
mu

































where X, Y , ans N are defined in Table 2.1.

For RNN initialization, λRNN = 100, ∆u0 = 0 × ones(N, 1), µ0 = 0, N = 20, Nu = 5,

and 85 neurons in the RNN architecture.

4.3.2 First Experiment: The Effect of Making the Developed

MPC-RNN Control System Fault-Tolerant

Consider the equation (2.1a), the initial position, orientation and velocity of the AUV are

set to η0 = [0, 0, π
15
, 0, 0, 0]T and the desired tracking mission’s surge, sway and yaw are

ηd = [0.5 cos(t/3/π) + 1.5, 2.5, π/3, 0, 0, 0]T . During this mission, the AUV is faced with

various LOE scenarios in its actuators. The coresponding effectiveness coefficient matrices

are as follows:

• In the first scenario of Section 4.3.2, the AUV’s actuator along X and about Z axes

work with 10% of their efficiency and the actuator along Y axis works with 50% of its
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efficiency,

Γ1 =













0.1 0 0

0 0.5 0

0 0 0.1













.

• In the second scenario of Section 4.3.2, the AUV’s actuator along X axis is fully

working and the actuators along Y and around Z axes are working with 10% of their

efficiency,

Γ2 =













1 0 0

0 0.1 0

0 0 0.1













,

• In the third scenario, the AUV’s actuators along X and Y axes are fully working and

the actuator around Z axis is working with 10% of its efficiency,

Γ3 =













1 0 0

0 1 0

0 0 0.1













,

where td represents the the time takes for the FDI module to detect and identify the

fault severity and it is considered as the performance runtime of the system. The simulation

results are obtained for a duration of T = 200s with Ts = 0.2s. As discussed in Section

4.3.1, in the first experiment , the objective is improving the average control cost while

reducing the steady-state errors in path tracking, fault detection and control recovery of

actuator faults.
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First Scenario

In this scenario, the AUV is forced to do the mission discussed in Section 4.3.2 while its

actuators along X and around Z axes are working with 10% of their efficiency and the

actuator along Y axis is working with 50% of its efficiency. The effectiveness coefficient

matrix Γ1 of this scenario is given by

Γ1 =













0.1 0 0

0 0.5 0

0 0 0.1













.

The main objectives of this mission are discussed in Section 4.3.1. Figures 4.3 and 4.4

illustrate the slight improvements of the results in case of using our AFTC method with

regards to the objectives of this mission. As shown, the system is not capable of measuring

the actuator effectiveness when no FTC applied. The goal of our developed methodology is

to fault detection and control recovery of the system when faced with LOE faults. Figure

4.4 illustrates that the developed AFTC method accomplished this goal. Note that in this

path following mission, the aim is to just control the position and orientation states. the

states regarding linear and rotational velocities are just given as information.

Table 4.1: The LOE fault in actuators under different scenarios. A comparison between the
performance runtime td.

td performance runtime no FTC proposed FTC

Γ1 0.0233s 0.0164s

Γ2 0.0167s 0.0164s

Γ3 0.0216s 0.0165s
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Table 4.1 shows that our proposed AFTC method has slightly improved the perfor-

mance runtime of the AUV control system which affected the performance runtime corre-

sponding to the control, fault detection and recovery procedures. Note that in this set of

experiment, our objective is to show that the added FTC features to the system do not

improve the performance runtime of the system.

Table 4.2: MSE for 1000 sampling instants of position and orientation system state during Γ1 fault
scenario.

System States no FTC proposed FTC

Position along X axis 7.8820 × 10−4 5.5105 × 10−4

Position along Y axis 6.4589 × 10−4 5.0792 × 10−4

Orientation around Z axis 5.6147 × 10−4 5.9886 × 10−4

Table 4.2 illustrates the slight improvement that we achieved in decreasing the MSE

in position system states by using the dual-EKF algorithm. In this scenario, there exist a

90% LOE in the AUV actuators along X and around Z axes, and 50% LOE in the AUV

actuator along Y axis.

Table 4.3: Steady-state error of position and orientation system state during Γ1 fault scenario.

System States no FTC proposed FTC

Position along X axis 0.2312 0.1161

Position along Y axis 0.1678 0.0101

Orientation about Z axis 0.0426 0.0197

Table 4.3 illustrates the improvement that we achieved in decreasing the steady-state

error in position and orientation system states by using the dual-EKF algorithm. In this

scenario, there exist a 90% LOE in the AUV actuators along X and around Z axes, and

50% LOE in the AUV actuator along Y axis.
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Table 4.4: Average Control cost during 1000 sampling instants in scenario Γ1.

Control Methods no FTC proposed FTC

Control cost of X 1.2306 × 102 1.4092 × 102

Control cost of Y 7.6793 × 102 1.4935 × 102

Control cost of N 1.0016 × 103 3.7247 × 10

Total Control cost 1.8926 × 103 3.2751 × 102

Consider the fault scenario depicted in the effectiveness coefficient matrix Γ1, Table

4.4 shows that the proposed AFTC in this chapter improves the performance runtime as

well as decreasing the MSE and steady-sate error while resulting in lower costs for the AUV

controller in comparison with the AUV controller that does not equipped with FTC.

Second Scenario

In this scenario, the AUV is forced to perform the mission discussed in Section 4.3.2, while

its actuator along X axis is fully working and AUV’s actuators along Y and around Z axes

are working with 10% of their efficiency,

Γ2 =













1 0 0

0 0.1 0

0 0 0.1













,

The main objectives of this mission are discussed in Section 4.3.1. Figures 4.5 and 4.6

illustrate the improvement of the results in case of using our AFTC method with regards

to the objectives of this mission. As shown, the system is not capable of measuring the

actuator effectiveness when no FTC applied. The goal of our developed methodology is to

perform fault detection and control recovery of the system when faced with LOE faults.

Figure 4.6 illustrates that the developed AFTC method accomplished this goal. Note that
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in this path following mission, the aim is to just control the position and orientation states.

the states regarding linear and rotational velocities are just given as information.

Table 4.5: MSE for 1000 sampling instants of position and orientation system state during Γ2 fault
scenario.

System States no FTC proposed FTC

Position along X axis 5.6113 × 10−4 4.9173 × 10−4

Position along Y axis 6.1010 × 10−4 4.8442 × 10−4

Orientation around Z axis 6.5109 × 10−4 6.0294 × 10−4

Table 4.5 illustrates the slight improvement that we achieved in decreasing the MSE in

position and orientations system states by using the dual-EKF algorithm. In this scenario,

the AUV actuator along X axis is fully working and actuators along Y and around Z axes

have 90% LOE.

Table 4.6: Steady-state error of position and orientation system state during Γ2 fault scenario.

System States no FTC proposed FTC

Position along X axis 0.3948 0.1446

Position along Y axis 0.1684 0.0111

Orientation around Z axis 0.0303 0.0211

Table 4.6 illustrates the improvement that we achieved in decreasing the steady-state

error in position and orientation system states by using the dual-EKF algorithm. In this

scenario, the AUV actuator along X axis is fully working and actuators along Y and around

Z axes have 90% LOE.
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Table 4.7: Average Control cost during 1000 sampling instants in scenario Γ2.

Control Methods no FTC proposed FTC

Control cost of X 5.3013 × 102 7.3396 × 10

Control cost of Y 1.4069 × 103 2.1712 × 102

Control cost of N 5.6914 × 102 7.7058 × 10

Total Control cost 2.4984 × 103 3.6757 × 102

Consider the fault scenario depicted in the effectiveness coefficient matrix Γ2, Table

4.7 shows that the proposed AFTC in this chapter improves the performance runtime as

well as decreases the MSE and steady-sate error while resulting in lower costs for the AUV

controller in comparison with the AUV controller that is not equipped with FTC.

Third Scenario

In this scenario, the AUV is forced to perform the mission discussed in Section 4.3.2, while

the AUV’s actuators along X and Y axes are fully working and the actuator around Z axis

is working with 10% of its efficiency,

Γ3 =













1 0 0

0 1 0

0 0 0.1













.

The main objectives of this mission are discussed in Section 4.3.1. Figures 4.7 and 4.8

illustrate the improvement of the results in case of using our AFTC method with regards

to the objectives of this mission. As shown, the system is not capable of measuring the

actuator effectiveness when no FTC applied. The goal of our developed methodology is to

perform fault detection and control recovery of the system when faced with LOE faults, as

one of its objectives. Figure 4.8 illustrates that the developed AFTC method accomplished
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this goal. Note that in this path following mission, the aim is to just control the position

and orientation states. the states regarding linear and rotational velocities are just given as

information.

Table 4.8: MSE for 1000 sampling instants of positions and orientation system states during Γ3

fault scenario.

System States no FTC proposed FTC

Position along X axis 5.6306 × 10−4 5.0859 × 10−4

Position along Y axis 5.3400 × 10−4 4.9815 × 10−4

Orientation around Z axis 0.0017 6.2688 × 10−4

Table 4.8 illustrates the slight improvement that we achieved in decreasing the MSE in

position and orientations system states by using the dual-EKF algorithm. In this scenario,

the AUV actuator along X and Y axesare fully working and its actuator around Z axis has

90% LOE.

Table 4.9: Steady-state error of position and orientation system states during Γ3 fault scenario.

System States no FTC proposed FTC

Position along X axis 0.0921 0.1242

Position along Y axis 0.0260 0.0103

Orientation around Z axis 0.0195 0.0088

Table 4.9 illustrates the improvement that we achieved in decreasing the steady-state

error in position and orientation system states by using the dual-EKF algorithm. In this

scenario the AUV actuator along X and Y axes are fully working and its actuator around

Z axis has 90% LOE.
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Table 4.10: Average Control cost of proposed AFTC schemes for 1000 sampling instants in scenario
Γ3.

Control Methods no FTC proposed FTC

Control cost of X 3.4230 × 103 9.1849 × 10

Control cost of Y 5.7103 × 103 1.4065 × 102

Control cost of N 2.1550 × 102 5.2835 × 10

Total Control cost 9.3488 × 103 2.8533 × 102

Consider the fault scenario depicted in the effectiveness coefficient matrix Γ3, Table

4.10 shows that the proposed AFTC in this chapter improves the performance runtime as

well as decreasing the MSE and steady-sate error while resulting in lower costs for the AUV

controller in comparison with the AUV controller that does not equipped with FTC.

In this section, the first sets of experiment is conducted to demonstrate the effects

of FTC on our developed control method. During the first experiment, the objective is

improving the average control cost, while reducing the steady-state errors in path tracking,

fault detection and control recovery of actuator faults. The objectives sought were all

reached by the developed AFTC scheme of this chapter. Next set of experiment illustrate

a comparison between the developed AFTC of this chapter and nonlinear MPC AFTC

algorithm.
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4.3.3 Second Experiment: A Comparison Between the Proposed

AFTC Method and Nonlinear MPC AFTC Method

This section aims to study the comparisons between the proposed AFTC approach in this

chapter with the existing FT-NMPC approach. Considering the equation (2.1a), the initial

position, orientation and velocity of the AUV are set to η0 = [0, 0, π
15
, 0, 0, 0]T and the desired

tracking mission’s surge, sway and yaw are ηd = [0.5 cos(t/3/π) + 1.5, 2.5, π/3, 0, 0, 0]T .

During this mission, the AUV is faced with LOE scenarios in its actuators.

The coresponding effectiveness coefficient matrices are as follows:

• In the fourth scenario, the AUV is in its path tracking mission faced with an actuator

fault. In this scenario, actuators are working with 10% of their real efficiency,

Γ4 =













0.1 0 0

0 0.1 0

0 0 0.1.













,

• In the fifth scenario, the AUV performs its path tracking mission with 75% LOE in

its actuator along X axis, 50% LOE in its actuator along Y axis, and 25% LOE in

its actuator around Z axis. This scenario is depicted in matrix Γ5 with diagonal

effectiveness coefficients,

Γ5 =













0.25 0 0

0 0.50 0

0 0 0.75













.

• In the sixth scenario, the AUV works with a fully effective actuator along X axis (0%

LOE), 50% LOE in its actuator along Y axis, and 25% LOE in its actuator around Z
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axis. This scenario is depicted in matrix Γ6 with diagonal effectiveness coefficients,

Γ6 =













1 0 0

0 0.50 0

0 0 0.75













.

In the implementation of NMPC method, the Levenberg-Marquardt algorithm is cho-

sen among the nonlinear least squared methods to optimize equation (2.34). The simulation

results are obtained using T = 200s, Ts = 0.2s. The fault is assumed to occur sometime

after k = 50 while the total number of signal sampling is k = 1000.

The performance runtime takes for FDI module to detect and isolate the fault, and

performance runtime td are given in Table 4.11.

Table 4.11: The LOE fault in actuators in different scenarios. A comparison between the perfor-
mance runtime td FT-NMPC and the developed MPC-RNN AFTC using dual-EKF.

Effectiveness Coefficient Matrix FT-NMPC Developed AFT MPC-RNN

Γ4 4.4629s 0.0152s

Γ5 4.8544s 0.0153s

Γ6 4.2118s 0.0167s

Table 4.11 shows that the proposed AFTC method in this chapter improved the per-

formance runtime of the fault detection and recovery in comparison with the FT-NMPC

scheme, significantly.

Fourth Scenario

Fourth scenario studies the performance of the AUV in its path tracking mission, discussed

in Section 4.3.3, faced with actuator fault while equipped with FT-NMPC and the developed

AFTC scheme of this chapter. In this fault scenario actuators are working with 10% of their
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real efficiency,

Γ4 =













0.1 0 0

0 0.1 0

0 0 0.1













.

The main objectives of this mission are discussed in Section 4.3.1. Figures 4.9 to 4.12

illustrate the results and estimation errors of simulations during fault scenarios which their

effectiveness coefficient matrices are Γ4. Note that in this path following mission, the aim is

to just control the position and orientation states. the states regarding linear and rotational

velocities are given just as information.

Table 4.12: MSE for 1000 sampling instants of positions and orientation system state during Γ4

fault scenario. A comparison between the MSE of the FT-NMPC and the proposed MPC-RNN
AFTC using dual-EKF.

System States FT-NMPC Developed AFT MPC-RNN

Position along X axis 5.1556 × 10−4 5.5197 × 10−4

Position along Y axis 5.2340 × 10−4 5.4294 × 10−4

Orientation around Z axis 6.8721 × 10−4 6.3048 × 10−4

Table 4.12 shows that during the fourth scenario which its effectiveness coefficients

are illustrated in the matrix Γ4, our proposed AFTC method has, approximately, the same

MSE using both AFTC methods.
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Table 4.13: Steady-state error for each system state for the AUV faced with the Γ4 fault scenario. A
comparison between the steady-state error of the FT-NMPC and the proposed MPC-RNN AFTC
using dual-EKF.

System States FT-NMPC Developed AFT MPC-RNN

Position along X axis 0.1181 0.0973

Position along Y axis 0.0108 0.0054

Orientation around Z axis 0.0285 0.0019

Parameter wloe1 0.0016 0.0046

Parameter wloe2 0.0005 0.0005

Parameter wloe3 0.0199 0.0077

Table 4.13 shows that during the fourth scenario which its effectiveness coefficients are

illustrated in the matrix Γ4, our proposed AFTC method has slightly lower steady-states

error, except the states of system regarding the orientation around Z axis and the first

parameter of system wloe1. Note that in this path following mission, the goal is to just

control the position and orientation states.

Table 4.14: Average Control cost during 1000 sampling instants in scenario Γ4.

LOE Scenarios FT-NMPC Developed AFT MPC-RNN

Control cost of X 7.1142 × 103 1.4177 × 102

Control cost of Y 4.9571 × 102 2.7730 × 102

Control cost of N 1.9809 × 103 5.4051 × 10

Total Control cost 9.5908 × 103 4.73121 × 102

Table 4.14 shows that during the fourth scenario which its effectiveness coefficients

are illustrated in the matrix Γ4, the average control cost of our proposed AFTC method

is appreciably lower than the average control cost during the experiment using FT-NMPC
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method.

Fifth Scenario

Fifth scenario studies the performance of the AUV in its path tracking mission, discussed in

Section 4.3.3, faced with actuator fault while equipped with FT-NMPC and the developed

AFTC scheme of this chapter. In this fault scenario, the actuator along X and Y axes work

with 25% and 50% of their efficiency, respectively. Also, The AUV’s actuator around Z axis

works with 75% of its efficiency,

Γ5 =













0.250 0 0

0 0.50 0

0 0 0.75













.

The main objectives of this mission are discussed in Section 4.3.1. Figures 4.13 to 4.16

illustrates the results and estimation errors of simulations during fault scenarios which their

effectiveness coefficient matrices are Γ5. Note that in this path following mission, the goal is

to just control the position and orientation states. the states regarding linear and rotational

velocities are given just for information purposes.

Table 4.15: MSE for 1000 sampling instants of each system state during Γ5 fault scenario. A
comparison between the MSE of the FT-NMPC and our proposed MPC-RNN AFTC using dual-
EKF.

System States FT-NMPC Developed AFT MPC-RNN

Position along X axis 6.2475 × 10−4 5.5315 × 10−4

Position along Y axis 5.2572 × 10−4 4.9474 × 10−4

Orientation around Z axis 6.0255 × 10−4 6.3894 × 10−4

Table 4.15 shows that during the fifth scenario which its effectiveness coefficients are

illustrated in the matrix Γ5, our proposed AFTC method has lower MSE except for the
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states of system regarding the orientation around Z axis.

Table 4.16: Steady-state error for each system state during Γ5 fault scenario. A comparison
between the steady-state error of the FT-NMPC and the proposed MPC-RNN AFTC using dual-
EKF.

System States FT-NMPC Developed AFT MPC-RNN

Position along X axis 0.0606 0.0902

Position along Y axis 0.0148 0.0149

Orientation around Z axis 0.0281 0.0108

Parameter wloe1 0.6236 0.0047

Parameter wloe2 0.1476 0.0406

Parameter wloe3 0.0723 0.0186

Table 4.16 shows that during the fifth scenario which its effectiveness coefficients are

illustrated in the matrix Γ5, our proposed AFTC method has lower steady-states error

except for the states of system regarding the position along X axis, position along Y axis.

Since accuracy in fault severity detection is one of our objectives, this is worth mentioning

that the measured values for parameters are shown to be estimated more accurate with our

proposed AFTC method than using the FT-NMPC method.

Table 4.17: Average Control cost during 1000 sampling instants in scenario Γ5.

LOE Scenarios FT-NMPC Developed AFT MPC-RNN

Control cost of X 2.6494 × 103 8.6731 × 10

Control cost of Y 2.1348 × 102 3.2184 × 102

Control cost of N 8.4657 × 10 1.0878 × 102

Total Control cost 2.9475 × 103 5.1735 × 102

Table 4.17 shows that during the fifth scenario which its effectiveness coefficients are
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illustrated in the matrix Γ5, the average control cost of our proposed AFTC method is lower

than the average control cost during the experiment using FT-NMPC method.

Sixth Scenario

Sixth scenario studies the performance of the AUV in its path tracking mission, discussed in

Section 4.3.3, faced with actuator fault while equipped with FT-NMPC and the developed

AFTC scheme of this chapter. In this fault scenario the AUV’s actuator along X axis is

fully effective (0% LOE), the actuator along Y and around Z axes work with 50% and 25%

of their efficiency, respectively,

Γ6 =













1 0 0

0 0.50 0

0 0 0.75













The main objectives of this mission are discussed in Section 4.3.1. Figures 4.17 to 4.20

illustrate the results and estimation errors of simulations during fault scenarios which their

effectiveness coefficient matrices are Γ6. Note that in this path following mission, the goal is

to just control the position and orientation states. the states regarding linear and rotational

velocities are given just for information purposes.

Table 4.18: MSE for 1000 sampling instants of each system state during Γ6 fault scenario. A
comparison between the MSE of the FT-NMPC and the proposed MPC-RNN AFTC using dual-
EKF.

System States FT-NMPC Developed AFT MPC-RNN

Position along X axis 5.1326 × 10−4 5.5298 × 10−4

Position along Y axis 5.0431 × 10−4 5.6239 × 10−4

Orientation around Z axis 7.0810 × 10−4 6.0469 × 10−4

Table 4.18 shows that during the sixth scenario which its effectiveness coefficients are
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illustrated in the matrix Γ6, our proposed AFTC method has approximately the same MSE

as the nonlinear MPC AFTC method.

Table 4.19: Steady-state error for each system state during Γ6 fault scenario. A comparison
between the steady-state error of the FT-NMPC and our proposed MPC-RNN AFTC using dual-
EKF.

System States FT-NMPC Developed AFT MPC-RNN

Position along X axis 0.1368 0.1167

Position along Y axis 0.0137 0.0151

Orientation around Z axis 0.0031 0.0072

Parameter wloe1 0.1351 0.0065

Parameter wloe2 0.2023 0.0887

Parameter wloe3 0.0604 0.018

Table 4.19 shows that during the sixth scenario which its effectiveness coefficients are

illustrated in the matrix Γ6, our proposed AFTC method has better estimations of the

parameters of the system, which are the actuator effectivenesses.

Table 4.20: Average Control cost during 1000 sampling instants in scenario Γ6.

LOE Scenarios FT-NMPC Developed AFT MPC-RNN

Control cost of X 3.7008 × 102 7.6973 × 10

Control cost of Y 6.2001 × 102 2.4056 × 102

Control cost of N 4.7591 × 10 1.4476 × 102

Total Control cost 1.0376 × 103 4.6229 × 102

Table 4.20 shows that during the sixth scenario which its effectiveness coefficients are

illustrated in the matrix Γ6, the average control cost of our proposed AFTC method is lower

than the average control cost during the experiment using FT-NMPC method.
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The second experiment series illustrates reaching to the objectives of developing the

AFTC method of this chapter. Our proposed AFTC method in this thesis shown to have

approximately the same accuracy of FT-NMPC method while it reduced the average control

cost and performance runtime of the controller. Also, our proposed method is more accurate

in estimating the actuator faults which are the parameters of the system, in comparison with

FT-NMPC algorithm. Next section brings more discussions on the results of all sixth series

of simulations illustrated in this chapter.
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4.4 Discussion

In this chapter using the proposed control method from Chapter 3, a dual-EKF algorithm

was integrated to the controller. The proposed AFTC scheme in this chapter allows for

designing a control solution that takes into account the system kinematics and meets uniform

asymptotic convergence requirements using RNN. Several simulations are given in order to

evaluate the developed AFTC method of this chapter. First the effects of applying FTC

is illustrated in 3 different scenarios. Then, a comparison between the developed method

of this chapter and FT-NMPC method is done through 3 more additional scenarios. The

Results from the graphs and tables in each experiment are discussed below:

• First experiment, given in Section 4.3.2, presented the privileges of integration of the

dual-EKF algorithm with the proposed control method from Chapter 3 to illustrate

the satisfactory performance of the developed controller when severe faults occur in

the actuators.

• As shown in the first experiment, several severe actuator fault scenarios are designed

and shows that the proposed AFTC in this chapter is slightly enhancing the perfor-

mance runtime as well as decreasing the MSE and steady-sate error while resulting in,

appreciably, lower costs for the AUV controller in comparison with the AUV controller

that does not equipped with FTC.

• As a comparison, the second experiment, given in Section 4.3.3, presented the privi-

leges of the developed AFTC method of this chapter over the FT-NMPC method with

regards to the objectives of this chapter.

• The second experiment illustrates the accomplishment of the objectives of developing

the AFTC method of this chapter. The proposed AFTC method in this thesis shown

to have approximately the same accuracy of FT-NMPC method while it reduces the
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average control cost and performance runtime of the controller. Also, our proposed

method is more accurate in estimating the actuator faults which are defined the pa-

rameters of the system, in comparison with FT-NMPC algorithm. The estimation of

the fault severity is another main objective of this chapter.

4.5 Conclusion

In this chapter, the problem of adaptive AFTC for a class of nonlinear systems with

actuator fault is investigated. It is stated that the problem statement of this chapter

arises when the input is not accurate and requires the coupling both state estimation

and parameter estimation. Therefore, using the proposed control method from Chap-

ter 3, a dual-EKF algorithm was integrated to the controller. Through a number of

scenarios the effects of FTC on the system have been studied. Moreover, a series of

analysis given as a comparison between our developed AFTC method and a conven-

tional FT-NMPC method. Finally, considering model nonlinearities and our designed

mission objectives, the advantages of our proposed AFTC approach are discussed.

Next chapter gives the conclusions and probable future works of this thesis.
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Chapter 5

Conclusion and Future Works

In this thesis we have explored the problem of trajectory tracking and path following control

of autonomous underwater vehicle (AUV) systems. The purpose of this work is to improve

the model-based control of highly nonlinear systems with uncertainties while incorporating

system constraints, and to reduce the high performance runtime cost of solving QP problem

in Nonlinear Model Predictive Control (MPC) -based algorithms. This was to be achieved

by integrating the control scheme with a Recurrent Neural Network (RNN). The second

goal of this work is to develop a Fault-Tolerant Control (FTC) algorithm of an AUV system

with uncertainties, to include some alternative techniques and methods based on hybrid

of MPC and RNN, so that the AUV follows the desired trajectory while meeting a set

of requirements and bounds on position, orientation, linear and rotational velocity, and

actuator efforts. The requirements which are set to be achieved by the developed control

scheme in the AUV’s mission, aim to minimize the control cost along with the performance

runtime of the system while the AUV’s performance in path tracking remains satisfactory.

Also, as another objective, this research seeks a fault detection-recovery task to overcome

the loss-of-effectiveness (LOE) faults as well as to improve the system’s recognition of fault

severity in the actuators of the AUV system.
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Toward aforementioned goals, the performance-runtime efficient approach proposed in

this thesis falls into a hybrid of MPC and RNN control method to benefit from both nonlin-

ear mathematical model information of the system and the adaptation capability of RNN.

Due to the advantages of Extended Kalman filter (EKF) and the objectives of our problem

statement, EKF is selected for state estimation of the AUV nonlinear system to provide

MPC formulation as well as the nonlinear prediction. Since, the algorithm requires solving

an online quadratic programming problem, an RNN is employed to guarantee obtaining the

optimal solution of the model predictive control in each sampling time. The main feature

of the overall developed controller is that due to the use of MPC, it can explicitly consider

constraints on control inputs, and achieve acceptable path tracking performance. To eval-

uate the performance of the developed control method, 3 comparative control methods are

given, namely linear MPC using Kalman filter (KF), NMPC using EKF and the developed

MPC-RNN using EKF. The developed method of this work has reached to the pre-defined

path tracking goal faster with lower Tracking Error Cost values in the position and orien-

tation states, than the NMPC and Linear MPC methods. Also, the developed MPC-RNN

control method has performed with least values of Mean Square Error (MSE) for track-

ing positions and orientation states among the above mentioned comparative methods. In

comparison with conventional NMPC algorithm results on steady-state tracking error, our

proposed control method performs very close to NMPC.

Although, it is shown that improvement in the performance runtime (in comparison

with NMPC method) as well as the improvement in accurate trajectory following and path

tracking (in comparison with linear MPC method) of our developed control method, comes

along with an increase in the control cost for the system, but the developed MPC-RNN,

overall has performed better when faced with MPC design tunning circumstances. Hence,

considering our real-time application and its objective that is trajectory following and path

tracking in horizontal plan, and confirmed from the simulations and analysis, choosing the
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developed method of this chapter to control is a feasible option to be applied to industrial

applications.

To accomplish the second goal of this work, an Active Fault-Tolerant Control (AFTC)

scheme is developed by integrating the developed hybrid MPC and RNN controller with dual

Extended Kalman Filter (dual-EKF). The developed AFTC method of this chapter adopted

the actuator fault model in the nonlinear AUV model defined as the system parameters that

are obtained form the dual-EKF. Hence, in the mentions active fault-tolerant control system

faults are detected and identified by a fault detection identification scheme, and the con-

trollers are reconfigured accordingly, online in a single frame. Several simulations are given

in order to evaluate the developed AFTC method of this chapter. Conclusions and analysis

of the simulation results show the advantages of integration of the dual-EKF algorithm with

the proposed control method of this research by demonstrating the satisfactory performance

of the developed fault-tolerant controller when severe faults occur in the AUV’s actuators.

The proposed AFTC is slightly enhancing the performance runtime as well as decreasing

the MSE and steady-sate errors while resulting in, appreciably, lower costs for the AUV

controller in comparison with the AUV controller that is not equipped with FT scheme.

The developed AFTC method based on integrating MPC and RNN, demonstrated

approximately the same accuracy of Fault-Tolerant Nonlinear Model predictive Control

(FT-NMPC) scheme while the developed method reduces the average control cost and per-

formance runtime of the AUV controller during a trajectory following mission faced with

LOE actuator faults. The proposed AFTC method is more accurate in estimating the actua-

tor faults which are defined as the parameters of the system, in comparison with FT-NMPC

algorithm. Therefore, the proposed AFTC scheme in this work allows for designing a control

solution that reaches our stated problem goals as well as taking into account the system

dynamics and meets convergence requirements using RNN while providing an automated

system recovery scheme when subjected to common actuator faults
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Based on the conclusions obtained in this study, the recommended future works can

be listed as

• To extend the functionality of the AUV for wider range of underwater missions, con-

sidering the 6-DOF nonlinear model of AUV can enhance the trajectory tracking and

path following precision to a great deal.

• The proposed fault tolerant scheme can be developed to address sensor faults as well

as other types of actuator faults.

• Fault-Tolerant Control of multi-agent systems are more challenging as compared with

the single agent system studied in this thesis. Therefore, as an extension to this

work, one can develop the proposed fault-tolerant control of this thesis for a team of

dynamically identical or heterogeneous agents.

• Proactive fault-tolerant control defined as another approach to FTC in the commu-

nication systems and aerospace control system communities. At this point, no work

has been done on proactive fault-tolerant control within the context of AUV control.

If a big data history is available for the AUV application performance, this approach

to proactive fault-tolerant control is feasible in AUV single-agent and multi-agent

systems as a future work.
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Appendix A

MATLAB Implementation Codes

A.1 MATLAB Codes for Chapter 3

1 c l c
2 c l e a r a l l
3 c l o s e a l l
4 g l o b a l Ts
5 g l o b a l Q R N u x p C m Nu agent k r ba r
6 method=2; %1 : Linear 2 : non l i n ea r 3 : MPC−RNN
7 s top t ime =20;
8 computation time =0;
9 Ts =0.2 ;

10 NN=stop t ime /Ts ;
11 na=1;
12 n=6;
13 m=3;
14 p=6;
15 % EKF i n i t i a l i z a t i o n
16 P=eye (n) ;Rn=diag ( [ 5 e−2;5e−2;5e−2;1e−2;1e−2;1e−2]) . ˆ 2 ;
17 Qkf=diag ( [ 5 e−5;5e−5;5e−5;1e−5;1e−5;1e−5]) . ˆ 2 ;
18 moderr=ze r o s (p ,NN) ;
19 %MPC i n i t i a l i z a t i o n
20 N=9;Nu=1;
21 Q=10ˆ4∗ eye (p) ;%
22 % Q(4 , 4 ) =0;
23 % Q(5 , 5 ) =0;
24 % Q(6 , 6 ) =0;
25 Q=kron ( diag ( 1 . ˆ ( 1 :N) ) ,Q) ;
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26 R=1∗eye (m) ;
27 R=kron ( diag ( 1 . ˆ ( 1 :Nu) ) ,R) ;
28 %Neural network i n i t i a l i z a t i o n
29 e p s i l o n =0.000001;
30 z 0 =0.2∗ randn (3∗Nu∗m+2∗N∗p , 1 ) ;
31 %AUV i n i t i a l i z a t i o n
32 mu=200;mv=250;mr=80;
33 du=170;dv=100; dr =50;
34 C=eye (n) ;
35 C t i l d e=kron ( eye (N) ,C) ;
36 x ac=ze r o s ( na , n ,NN) ;
37 x=ze r o s ( na , n ,NN) ; % (E)KF est imated s t a t e
38 y ac=ze r o s ( na , p ,NN) ;% Actual output
39 y m=ze r o s ( na , p ,NN) ; % Measured no i sy output
40

41 u=ze r o s ( na ,m,NN) ;
42 f o r i =1:na
43 x ac ( i , : , 1 ) = [ 0 ; 0 ; p i / 1 5 ; 0 ; 0 ; 0 ] ;
44 x ( i , : , 1 ) = [ 0 ; 0 ; p i / 1 5 ; 0 ; 0 ; 0 ] ;
45 %u( i , : , 1 ) =[2.8;− pi /6 ; −pi /6 ; −pi / 6 ] ;
46 u( i , : , 1 ) = [ 4 ; 4 ; 0 ] ;
47 end
48 x ac ( : , : , 2 )=x ac ( : , : , 1 ) ;
49 x ( : , : , 2 )=x ( : , : , 1 ) ;
50 dU=ze r o s ( na ,m,NN) ;
51 u bar min=kron ( ones (Nu, 1 ) , [ −400; −400; −100]) ;
52 u bar max=kron ( ones (Nu, 1 ) , [ 4 0 0 ; 400 ; 1 0 0 ] ) ;
53 y bar min=kron ( ones (N, 1 ) ,[− i n f ; − i n f ; − i n f ; − i n f ; − i n f ;

− i n f ] ) ;
54 y bar max=kron ( ones (N, 1 ) , [ i n f ; i n f ; i n f ; i n f ; i n f ;

i n f ] ) ;
55 du bar min=−i n f ∗ones (Nu∗m, 1 ) ;
56 du bar max=i n f ∗ones (Nu∗m, 1 ) ;
57 I t i l d e=kron ( ones (Nu,Nu) , eye (m) ) ; I t i l d e=t r i l ( I t i l d e ) ;
58 du bar=ze r o s ( na ,m∗Nu) ;
59 KMPL=ze r o s (m,N∗n , na ) ;
60 opt ions = opt imopt ions ( @quadprog , ’ Algorithm ’ , ’ ac t ive−s e t ’ ) ;
61

62 i f method==1 %l i n e a r
63 f o r agent =1:na
64 A=[0 0 −x ( agent , 5 , 1 ) ∗ cos ( x ( agent , 3 , 1 ) )−x ( agent , 4 , 1 ) ∗ s i n ( x (

agent , 3 , 1 ) ) cos ( x ( agent , 3 , 1 ) ) −s i n ( x ( agent , 3 , 1 ) ) 0 ;
65 0 0 x ( agent , 4 , 1 ) ∗ cos ( x ( agent , 3 , 1 ) )−x ( agent , 5 , 1 ) ∗ s i n ( x (

agent , 3 , 1 ) ) s i n ( x ( agent , 3 , 1 ) ) cos ( x ( agent , 3 , 1 ) ) 0 ;
66 0 0 0 0 0 1 ;
67 0 0 0 −du/mu mv∗x ( agent , 6 , 1 ) /mu mv∗x ( agent , 5 , 1 ) /mu;
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68 0 0 0 −mu∗x ( agent , 6 , 1 ) /mv −dv/mv −mu∗x ( agent , 4 , 1 ) /mv;
69 0 0 0 (mu−mv)∗x ( agent , 5 , 1 ) /mr (mu−mv)∗x ( agent , 4 , 1 ) /mr

−dr/mr ] ;
70 B=[0 0 0 ;
71 0 0 0 ;
72 0 0 0 ;
73 1/mu 0 0 ;
74 0 1/mv 0 ;
75 0 0 1/mr ] ;
76 sys=c2d ( s s (A,B,C, 0 ) ,Ts ) ;Ad=sys .A; Bd=sys .B;
77 f o r q=1:N
78 f o r w=1:Nu
79 i f q>=w
80 G(n∗q−n+1:n∗q ,m∗w−m+1:m∗w)=Adˆ(q−w)∗Bd ;%

c a l c u l a t i o n o f dynamic matrix
81 end
82 end
83 end
84 KMPL( : , : , agent )=inv (G’∗Q∗G+R)∗G’∗Q;
85 end
86 end
87 %Main c o n t r o l Loop
88

89 f o r agent =1:na
90 f o r k=2:NN
91 t i c ;
92 % EKF or KF es t imat i on
93 i f method˜=1 %non l i n ea r e s t imat i on (EKF)
94 A=[0 0 −x ( agent , 5 , k )∗ cos ( x ( agent , 3 , k ) )−x ( agent , 4 , k )∗

s i n ( x ( agent , 3 , k ) ) cos ( x ( agent , 3 , k ) ) −s i n ( x ( agent , 3 ,
k ) ) 0 ;

95 0 0 x ( agent , 4 , k )∗ cos ( x ( agent , 3 , k ) )−x ( agent , 5 , k )∗
s i n ( x ( agent , 3 , k ) ) s i n ( x ( agent , 3 , k ) ) cos ( x ( agent
, 3 , k ) ) 0 ;

96 0 0 0 0 0 1 ;
97 0 0 0 −du/mu mv∗x ( agent , 6 , k ) /mu mv∗x ( agent , 5 , k ) /mu

;
98 0 0 0 −mu∗x ( agent , 6 , k ) /mv −dv/mv −mu∗x ( agent , 4 , k ) /

mv;
99 0 0 0 (mu−mv)∗x ( agent , 5 , k ) /mr (mu−mv)∗x ( agent , 4 , k )

/mr −dr/mr ] ;
100 B=[0 0 0 ;
101 0 0 0 ;
102 0 0 0 ;
103 1/mu 0 0 ;
104 0 1/mv 0 ;
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105 0 0 1/mr ] ;
106 sys=c2d ( s s (A,B,C, 0 ) ,Ts ) ;Ad=sys .A; Bd=sys .B;
107 phi=expm(Ts∗A) ;
108 Qd=(phi∗Qkf∗phi ’+Qkf )∗Ts /2 ;
109 P=phi∗P∗phi ’+Qd;
110 K=P∗ inv (P+Rn) ;
111 x ( agent , : , k )=AUV( x ( agent , : , k−1) ’ , u ( agent , : , k−1) ’ ) ;
112 moderr ( : , k )=y m( agent , : , k )−x ( agent , : , k ) ;
113 x ( agent , : , k )=x ( agent , : , k )+moderr ( : , k ) ’∗K’ ;
114 P=P−K∗P;
115 e l s e % Linear Est imation (KF)
116 x ( agent , : , k )=Ad∗(x ( agent , : , k−1)’−x ( agent , : , 1 ) ’ )+Bd∗(u(

agent , : , k−1)’−u( agent , : , 1 ) ’ )+x ( agent , : , 1 ) ’ ;
117 P=Ad∗P∗Ad’+Qkf ;
118 K=P∗ inv (P+Rn) ;
119 moderr ( : , k )=y m( agent , : , k )−x ( agent , : , k ) ;
120 x ( agent , : , k )=x ( agent , : , k )+moderr ( : , k ) ’∗K’ ;
121 P=P−K∗P;
122 end
123 % MPC
124 r ba r=fun r dec en ( agent , k∗Ts) ;
125 f o r i =1:N−1
126 r ba r =[ r ba r ; f un r dec en ( agent , ( k+i )∗Ts) ] ;
127 end
128 du bar ( agent , : ) =[ du bar ( agent ,m+1:end ) du bar ( agent , end−m

+1:end ) ] ;
129 i f method==2 %non l i n ea r du bar ( agent , : )
130 % [ du bar ( agent , : ) , f va l , e x i t f l a g ]= fminunc (@costAUV ,

du bar ( agent , : ) ) ;
131 % [ du bar ( agent , : ) , f va l , e x i t f l a g ]= l s q n o n l i n (

@costAUVlsq , du bar ( agent , : ) ) ;
132 [ du bar ( agent , : ) , f v a l ( k ) , e x i t f l a g ]= fminsearch (@costAUV

, du bar ( agent , : ) ) ;
133 e l s e i f method==1%l i n e a r
134 Xfree ( : , 1 )=Ad∗(x ( agent , : , k ) ’−x ( agent , : , 1 ) ’ )+Bd∗(u(

agent , : , k−1)’−u( agent , : , 1 ) ’ ) ;
135 f o r i =1:N−1
136 Xfree ( : , i +1)=Ad∗Xfree ( : , i )+Bd∗(u( agent , : , k−1)’−u(

agent , : , 1 ) ’ ) ;
137 end
138 Xfree=Xfree+kron ( ones (1 ,N) , x ( agent , : , 1 ) ’ ) ;
139 du bar ( agent , : )=KMPL( : , : , agent ) ∗( r bar−reshape ( Xfree , [

n∗N, 1 ] ) ) ;
140 e l s e %NPL
141 f o r q=1:N
142 f o r w=1:Nu
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143 i f q>=w
144 G(n∗q−n+1:n∗q ,m∗w−m+1:m∗w)=Adˆ(q−w)∗Bd ;%

c a l c u l a t i o n o f dynamic matrix
145 end
146 end
147 end
148 Xfree ( : , 1 )=AUV( x ( agent , : , k ) ’ , u ( agent , : , k−1) ’ ) ;
149 f o r i =1:N−1
150 Xfree ( : , i +1)=AUV( Xfree ( : , i ) , u ( agent , : , k−1) ’ ) ;
151 end
152 W=2∗(G’∗Q∗G+R) ;%W=(W+W’ ) /2 ;
153 c= −2∗G’∗Q∗( r bar−reshape ( Xfree , [ n∗N, 1 ] ) ) ;
154 E=[− I t i l d e ; I t i l d e ; −C t i l d e ∗G; C t i l d e ∗G; eye (Nu∗m)

] ;
155 b=[−u bar min+kron ( ones (Nu, 1 ) ,u ( agent , : , k−1) ’ ) ;
156 u bar max−kron ( ones (Nu, 1 ) ,u ( agent , : , k−1) ’ ) ;
157 −y bar min+C t i l d e ∗ reshape ( Xfree , [ n∗N, 1 ] ) ;
158 y bar max−C t i l d e ∗ reshape ( Xfree , [ n∗N, 1 ] ) ] ;
159 l =[− i n f ∗ones (2∗m∗Nu+2∗p∗N, 1 ) ; du bar min ] ;
160 h=[b ; du bar max ] ;
161 % Recurrent Neural network s imu la t i on
162 i f 0
163 sim ( ’ S imu l inkF i l e ’ )
164 z 0=z ( end , : ) ’ ;
165 du bar ( agent , : )=d e l t a u ( end , : ) ’ ;
166 e l s e
167 du bar ( agent , : ) = quadprog (W, c ,E, h , [ ] , [ ] , [ ] , [ ] , [ ] ,

op t i ons ) ;
168 % du bar ( agent , : ) = quadprog (W, c

, [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , op t i ons ) ;
169 % [ du bar , f va l , e x i t f l a g ] = fmincon ( @costf

, 0 . 0 0 1∗ randn (m∗Nu, 1 )+du bar ,E, h) ;
170

171 end
172

173 end
174 computation time=toc ;
175 dU( agent , : , k )=du bar ( agent , 1 :m) ;
176 u( agent , : , k )=u( agent , : , k−1)+dU( agent , : , k ) ;
177 %Auv Simulat ion
178 x ac ( agent , : , k+1)=AUV( x ac ( agent , : , k ) ’ , u ( agent , : , k ) ’ ) ; %

ac tua l s t a t e
179 y ac ( agent , : , k+1)=C∗ x ac ( agent , : , k+1) ’ ; % ac tua l output
180

181 y m( agent , : , k+1)=y ac ( agent , : , k+1)+diag ( s q r t (Rn) ) ’ .∗ randn
(1 , p ) ; % Measured no i sy output
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183 end
184 end

A.2 MATLAB Codes for Chapter 4

1 c l c
2 c l e a r a l l
3 c l o s e a l l
4 g l o b a l Ts
5 g l o b a l Q R N u x p C m Nu agent k r ba r W loe
6 method=2; %1 : Linear 2 : non l i n ea r 3 : MPC−RNN−DEKF
7 s top t ime =200;
8 Ts =0.2 ;
9 NN=stop t ime /Ts ;

10 na=1;
11 n=6;
12 m=3;
13 p=6;
14 % DEKF i n i t i a l i z a t i o n
15 Px=eye (n) ;Rn=diag ( [ 5 e−2;5e−2;5e−2;1e−2;1e−2;1e−2]) . ˆ 2 ; Re=Rn;
16 W loe=ze r o s (m,NN) ;Pw=eye (m) ; f f =.999;
17 Qkf=diag ( [ 5 e−2;5e−2;5e−2;1e−2;1e−2;1e−2]) . ˆ 2 ;
18 moderr=ze r o s (p ,NN ) ;
19 rKx rW ( 1 : n , 1 : n , 1 :m) =0;rP rW ( 1 : n , 1 : n , 1 :m) =0;
20 %MPC i n i t i a l i z a t i o n
21 N=20;Nu=5;
22 Q=50000∗ eye (p) ;%
23 % Q(4 ,4 ) =0;
24 % Q(5 ,5 ) =0;
25 % Q(6 ,6 ) =0;
26 Q=kron ( diag ( 1 . ˆ ( 1 :N) ) ,Q) ;
27 R=1∗eye (m) ;
28 R=kron ( diag ( 1 . ˆ ( 1 :Nu) ) ,R) ;
29 %Neural network i n i t i a l i z a t i o n
30 e p s i l o n =0.000001;
31 z 0 =0.2∗ randn (3∗Nu∗m+2∗N∗p , 1 ) ;
32 %AUV i n i t i a l i z a t i o n
33 mu=200;mv=250;mr=80;
34 du=170;dv=100; dr =50;
35 C=eye (n) ;
36 % C=[1 0 0 0 0 0 ;
37 % 0 1 0 0 0 0 ;
38 % 0 0 1 0 0 0 ] ;
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39 C t i l d e=kron ( eye (N) ,C) ;
40 x ac=ze r o s ( na , n ,NN) ;
41 x=ze r o s ( na , n ,NN) ; % (E)KF est imated s t a t e
42 W loe ( : , 1 )=ones (m, 1 ) ;
43 y ac=ze r o s ( na , p ,NN) ;% Actual output
44 y m=ze r o s ( na , p ,NN) ; % Measured no i sy output
45

46 u=ze r o s ( na ,m,NN) ;
47 f o r i =1:na
48 x ac ( i , : , 1 ) = [ 0 ; 0 ; p i / 1 5 ; 0 ; 0 ; 0 ] ;
49 x ( i , : , 1 ) = [ 0 ; 0 ; p i / 1 5 ; 0 ; 0 ; 0 ] ;
50 %u( i , : , 1 ) =[2.8;− pi /6 ; −pi /6 ; −pi / 6 ] ;
51 u( i , : , 1 ) = [ 4 ; 4 ; 0 ] ;
52 end
53 x ac ( : , : , 2 )=x ac ( : , : , 1 ) ;
54 x ( : , : , 2 )=x ( : , : , 1 ) ;
55 dU=ze r o s ( na ,m,NN) ;
56 u bar min=kron ( ones (Nu, 1 ) , [ −400; −400; −100]) ;
57 u bar max=kron ( ones (Nu, 1 ) , [ 2 0 0 ; 400 ; 1 0 0 ] ) ;
58 y bar min=kron ( ones (N, 1 ) ,[− i n f ; − i n f ; − i n f ; − i n f ; − i n f ;

− i n f ] ) ;
59 y bar max=kron ( ones (N, 1 ) , [ i n f ; i n f ; i n f ; i n f ; i n f ;

i n f ] ) ;
60 du bar min=−i n f ∗ones (Nu∗m, 1 ) ;
61 du bar max=i n f ∗ones (Nu∗m, 1 ) ;
62 I t i l d e=kron ( ones (Nu,Nu) , eye (m) ) ; I t i l d e=t r i l ( I t i l d e ) ;
63 du bar=ze r o s ( na ,m∗Nu) ;
64 KMPL=ze r o s (m,N∗n , na ) ;
65 opt ions = opt imopt ions ( @quadprog , ’ Algorithm ’ , ’ ac t ive−s e t ’ ) ;
66 i f method==1 %l i n e a r
67 f o r agent =1:na
68 A=[0 0 −x ( agent , 5 , 1 ) ∗ cos ( x ( agent , 3 , 1 ) )−x ( agent , 4 , 1 ) ∗ s i n ( x (

agent , 3 , 1 ) ) cos ( x ( agent , 3 , 1 ) ) −s i n ( x ( agent , 3 , 1 ) ) 0 ;
69 0 0 x ( agent , 4 , 1 ) ∗ cos ( x ( agent , 3 , 1 ) )−x ( agent , 5 , 1 ) ∗ s i n ( x (

agent , 3 , 1 ) ) s i n ( x ( agent , 3 , 1 ) ) cos ( x ( agent , 3 , 1 ) ) 0 ;
70 0 0 0 0 0 1 ;
71 0 0 0 −du/mu mv∗x ( agent , 6 , 1 ) /mu mv∗x ( agent , 5 , 1 ) /mu;
72 0 0 0 −mu∗x ( agent , 6 , 1 ) /mv −dv/mv −mu∗x ( agent , 4 , 1 ) /mv;
73 0 0 0 (mu−mv)∗x ( agent , 5 , 1 ) /mr (mu−mv)∗x ( agent , 4 , 1 ) /mr

−dr/mr ] ;
74 B=[0 0 0 ;
75 0 0 0 ;
76 0 0 0 ;
77 1/mu 0 0 ;
78 0 1/mv 0 ;
79 0 0 1/mr ] ;
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80 sys=c2d ( s s (A,B,C, 0 ) ,Ts ) ;Ad=sys .A; Bd=sys .B;
81 f o r q=1:N
82 f o r w=1:Nu
83 i f q>=w
84 G(n∗q−n+1:n∗q ,m∗w−m+1:m∗w)=Adˆ(q−w)∗Bd ;%

c a l c u l a t i o n o f dynamic matrix
85 end
86 end
87 end
88 KMPL( : , : , agent )=inv (G’∗Q∗G+R)∗G’∗Q;
89 end
90 end
91 %Main c o n t r o l Loop
92 f o r agent =1:na
93 Cw=[ ze r o s (m, n−m) ; diag (u( agent , : , 1 ) . ∗ [ 1 /mu 1/mv 1/mr ] ) ] ;
94 f o r k=2:NN
95 t i c ;
96 % DEKF or KF es t imat i on
97 i f method˜=1 %non l i n ea r e s t imat i on (DEKF)
98 %%%%%%%%%%%%%%%%%%%%%%% Dual Extended Kalman F i l t e r

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99 %/////////////////////// weight time update . . . . . . . . . . .

100 W loe ( : , k )=W loe ( : , k−1) ;
101 Pw=Pw/ f f ;
102 %\\\\\\\\\\\\\\\\\\\\\\\ weight time update \\\\\\\\\\
103 %/////////////////////// s t a t e time update . . . . . . . . . . . .
104 A=[0 0 −x ( agent , 5 , k−1)∗ cos ( x ( agent , 3 , k−1) )−x ( agent , 4 , k

−1)∗ s i n ( x ( agent , 3 , k−1) ) cos ( x ( agent , 3 , k−1) ) −s i n ( x (
agent , 3 , k−1) ) 0 ;

105 0 0 x ( agent , 4 , k−1)∗ cos ( x ( agent , 3 , k−1) )−x ( agent , 5 , k
−1)∗ s i n ( x ( agent , 3 , k−1) ) s i n ( x ( agent , 3 , k−1) ) cos
( x ( agent , 3 , k−1) ) 0 ;

106 0 0 0 0 0 1 ;
107 0 0 0 −du/mu mv∗x ( agent , 6 , k−1)/mu mv∗x ( agent , 5 , k

−1)/mu;
108 0 0 0 −mu∗x ( agent , 6 , k−1)/mv −dv/mv −mu∗x ( agent , 4 , k

−1)/mv;
109 0 0 0 (mu−mv)∗x ( agent , 5 , k−1)/mr (mu−mv)∗x ( agent , 4 ,

k−1)/mr −dr/mr ] ;
110 B=[0 0 0 ;
111 0 0 0 ;
112 0 0 0 ;
113 W loe (1 , k ) /mu 0 0 ;
114 0 W loe (2 , k ) /mv 0 ;
115 0 0 W loe (3 , k ) /mr ] ;
116 sys=c2d ( s s (A,B,C, 0 ) ,Ts ) ;Ad=sys .A; Bd=sys .B;
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117 phi=expm(Ts∗A) ;
118 Qd=(phi∗Qkf∗phi ’+Qkf )∗Ts /2 ;
119 P x=phi∗Px∗phi ’+Qd;
120 %\\\\\\\\\\\\\\\\\\\\\\\ s t a t e time update

\\\\\\\\\\\\\\\
121 %/////////////////////// s t a t e f i l t e r measurement

update . . .
122 Kx=P x /( P x+Rn) ;
123 x ( agent , : , k )=AUV( x ( agent , : , k−1) ’ , u ( agent , : , k−1) ’ , W loe

( : , k ) ) ;
124 moderr ( : , k )=y m( agent , : , k )−x ( agent , : , k ) ;
125 x ( agent , : , k )=x ( agent , : , k ) +[Kx∗moderr ( : , k ) ] ’ ;
126 Px=P x−Kx∗P x ;
127 %\\\\\\\\\\\\\\\\\\\\\\\ s t a t e f i l t e r measurement

update \\\\
128 %/////////////////////// weight f i l t e r measurement

update . . .
129 Kw=Pw∗Cw’ / (Cw∗Pw∗Cw’+Re) ;
130 W loe ( : , k )=W loe ( : , k )+Kw∗moderr ( : , k ) ;%( [Ym(7 , i ) ;Ym(1 , i

) ;Ym(5 , i ) ;Ym(3 , i ) ]−X( : , i ) ) ;
131 Pw=Pw−Kw∗Cw∗Pw;
132 A=[0 0 −x ( agent , 5 , k )∗ cos ( x ( agent , 3 , k ) )−x ( agent , 4 , k )∗

s i n ( x ( agent , 3 , k ) ) cos ( x ( agent , 3 , k ) ) −s i n ( x ( agent , 3 ,
k ) ) 0 ;

133 0 0 x ( agent , 4 , k )∗ cos ( x ( agent , 3 , k ) )−x ( agent , 5 , k )∗
s i n ( x ( agent , 3 , k ) ) s i n ( x ( agent , 3 , k ) ) cos ( x ( agent
, 3 , k ) ) 0 ;

134 0 0 0 0 0 1 ;
135 0 0 0 −du/mu mv∗x ( agent , 6 , k ) /mu mv∗x ( agent , 5 , k ) /mu

;
136 0 0 0 −mu∗x ( agent , 6 , k ) /mv −dv/mv −mu∗x ( agent , 4 , k ) /

mv;
137 0 0 0 (mu−mv)∗x ( agent , 5 , k ) /mr (mu−mv)∗x ( agent , 4 , k )

/mr −dr/mr ] ;
138 phi=expm(Ts∗A) ;
139 i f 1 && k>=3%r e c u r r e n t d e r i v a t i v e o f the Kalman Gain
140 r2F rX2 ( : , : , 1 )=ze r o s (6 , 6 ) ;
141 r2F rX2 ( : , : , 2 )=ze r o s (6 , 6 ) ;
142 r2F rX2 ( : , : , 3 ) =[0 0 x ( agent , 5 , k−1)∗ s i n ( x ( agent , 3 , k

−1) )−x ( agent , 4 , k−1)∗ cos ( x ( agent , 3 , k−1) ) −s i n ( x (
agent , 3 , k−1) ) −cos ( x ( agent , 3 , k−1) ) 0 ;

143 0 0 −x ( agent , 4 , k−1)∗ s i n ( x ( agent , 3 , k−1) )−x (
agent , 5 , k−1)∗ cos ( x ( agent , 3 , k−1) ) cos ( x (
agent , 3 , k−1) ) −s i n ( x ( agent , 3 , k−1) ) 0 ;

144 z e r o s (4 , 6 ) ] ;
145 r2F rX2 ( : , : , 4 ) =[0 0 −s i n ( x ( agent , 3 , k−1) ) 0 0 0 ;
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146 0 0 cos ( x ( agent , 3 , k−1) ) 0 0 0 ;
147 0 0 0 0 0 0 ;
148 0 0 0 0 0 0 ;
149 0 0 0 0 0 −mu/mv;
150 0 0 0 0 (mu−mv) /mr 0 ] ;
151 r2F rX2 ( : , : , 5 ) =[0 0 −cos ( x ( agent , 3 , k−1) ) 0 0 0 ;
152 0 0 −s i n ( x ( agent , 3 , k−1) ) 0 0 0 ;
153 0 0 0 0 0 0 ;
154 0 0 0 0 0 mv/mu;
155 0 0 0 0 0 0 ;
156 0 0 0 (mu−mv) /mr 0 0 ] ;
157 r2F rX2 ( : , : , 6 ) =[ z e r o s (3 , 6 ) ;
158 0 0 0 0 mv/mu 0 ;
159 0 0 0 −mu/mv 0 0 ;
160 0 0 0 0 0 0 ] ;
161 rA rW ( : , : , 1 ) =[ r2F rX2 ( : , : , 1 ) ∗Cwp( : , 1 ) r2F rX2

( : , : , 2 ) ∗Cwp( : , 1 ) r2F rX2 ( : , : , 3 ) ∗Cwp( : , 1 )
r2F rX2 ( : , : , 4 ) ∗Cwp( : , 1 ) r2F rX2 ( : , : , 5 ) ∗Cwp( : , 1 )

r2F rX2 ( : , : , 6 ) ∗Cwp( : , 1 ) ] ;
162 rA rW ( : , : , 2 ) =[ r2F rX2 ( : , : , 1 ) ∗Cwp( : , 2 ) r2F rX2

( : , : , 2 ) ∗Cwp( : , 2 ) r2F rX2 ( : , : , 3 ) ∗Cwp( : , 2 )
r2F rX2 ( : , : , 4 ) ∗Cwp( : , 2 ) r2F rX2 ( : , : , 5 ) ∗Cwp( : , 2 )

r2F rX2 ( : , : , 6 ) ∗Cwp( : , 2 ) ] ;
163 rA rW ( : , : , 3 ) =[ r2F rX2 ( : , : , 1 ) ∗Cwp( : , 3 ) r2F rX2

( : , : , 2 ) ∗Cwp( : , 3 ) r2F rX2 ( : , : , 3 ) ∗Cwp( : , 3 )
r2F rX2 ( : , : , 4 ) ∗Cwp( : , 3 ) r2F rX2 ( : , : , 5 ) ∗Cwp( : , 3 )

r2F rX2 ( : , : , 6 ) ∗Cwp( : , 3 ) ] ;
164 rP rW ( : , : , 1 )=rA rW ( : , : , 1 ) ∗Pxp∗phip ’+ phip∗(−rKx rW

( : , : , 1 ) ∗P xp+(eye (6 )−Kxp)∗rP rW ( : , : , 1 ) )∗phip ’+
phip∗Pxp∗rA rW ( : , : , 1 ) ’ ;

165 rP rW ( : , : , 2 )=rA rW ( : , : , 2 ) ∗Pxp∗phip ’+ phip∗(−rKx rW
( : , : , 2 ) ∗P xp+(eye (6 )−Kxp)∗rP rW ( : , : , 2 ) )∗phip ’+
phip∗Pxp∗rA rW ( : , : , 2 ) ’ ;

166 rP rW ( : , : , 3 )=rA rW ( : , : , 3 ) ∗Pxp∗phip ’+ phip∗(−rKx rW
( : , : , 3 ) ∗P xp+(eye (6 )−Kxp)∗rP rW ( : , : , 3 ) )∗phip ’+
phip∗Pxp∗rA rW ( : , : , 3 ) ’ ;

167 rKx rW ( : , : , 1 ) =(eye (6 )−Kx)∗rP rW ( : , : , 1 ) /( P x+Rn) ;
168 rKx rW ( : , : , 2 ) =(eye (6 )−Kx)∗rP rW ( : , : , 2 ) /( P x+Rn) ;
169 rKx rW ( : , : , 3 ) =(eye (6 )−Kx)∗rP rW ( : , : , 3 ) /( P x+Rn) ;
170 Cwp=Cw;
171 Cw( : , 1 )=phi ∗ ( ( eye (6 )−Kx)∗Cw( : , 1 )+rKx rW ( : , : , 1 ) ∗

moderr ( : , k ) )+Ts ∗ [ 0 ; 0 ; 0 ; u ( agent , 1 , k−1)/mu ; 0 ; 0 ] ;
172 Cw( : , 2 )=phi ∗ ( ( eye (6 )−Kx)∗Cw( : , 2 )+rKx rW ( : , : , 2 ) ∗

moderr ( : , k ) )+Ts ∗ [ 0 ; 0 ; 0 ; 0 ; u ( agent , 2 , k−1)/mv ; 0 ] ;
173 Cw( : , 3 )=phi ∗ ( ( eye (6 )−Kx)∗Cw( : , 3 )+rKx rW ( : , : , 3 ) ∗

moderr ( : , k ) )+Ts ∗ [ 0 ; 0 ; 0 ; 0 ; 0 ; u ( agent , 3 , k−1)/mr ] ;
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174 e l s e
175 Cwp=Cw;
176 Cw=phi ∗ ( ( eye (6 )−Kx)∗Cw)+Ts ∗ [ z e r o s (m, n−m) ; diag (u(

agent , : , k−1) . ∗ [ 1 /mu 1/mv 1/mr ] ) ] ;
177 end
178 phip=phi ; Pxp=Px ; P xp=P x ; Kxp=Kx;
179 %\\\\\\\\\\\\\\\\\\\\\\\ weight f i l t e r measurement

update \\\\
180 e l s e % Linear Est imation (KF)
181 x ( agent , : , k )=Ad∗(x ( agent , : , k−1)’−x ( agent , : , 1 ) ’ )+Bd∗(u(

agent , : , k−1)’−u( agent , : , 1 ) ’ )+x ( agent , : , 1 ) ’ ;
182 P=Ad∗P∗Ad’+Qkf ;
183 K=P∗ inv (P+Rn) ;
184 moderr ( : , k )=y m( agent , : , k )−x ( agent , : , k ) ;
185 x ( agent , : , k )=x ( agent , : , k )+moderr ( : , k ) ’∗K’ ;
186 P=P−K∗P;
187 end
188 % MPC
189 r ba r=fun r dec en ( agent , k∗Ts) ;
190 f o r i =1:N−1
191 r ba r =[ r ba r ; f un r dec en ( agent , ( k+i )∗Ts) ] ;
192 end
193 du bar ( agent , : ) =[ du bar ( agent ,m+1:end ) du bar ( agent , end−m

+1:end ) ] ;
194 i f method==2 %non l i n ea r du bar ( agent , : )
195 % [ du bar ( agent , : ) , f va l , e x i t f l a g ]= fminunc (

@costAUV , du bar ( agent , : ) ) ;
196 % [ du bar ( agent , : ) , f va l , e x i t f l a g ]=

l s q n o n l i n ( @costAUVlsq , du bar ( agent , : ) ) ;
197 [ du bar ( agent , : ) , f va l , e x i t f l a g ]= fminsearch (@costAUV ,

du bar ( agent , : ) ) ;
198

199 e l s e i f method==1%l i n e a r
200 Xfree ( : , 1 )=Ad∗(x ( agent , : , k ) ’−x ( agent , : , 1 ) ’ )+Bd∗(u(

agent , : , k−1)’−u( agent , : , 1 ) ’ ) ;
201 f o r i =1:N−1
202 Xfree ( : , i +1)=Ad∗Xfree ( : , i )+Bd∗(u( agent , : , k−1)’−u(

agent , : , 1 ) ’ ) ;
203 end
204 Xfree=Xfree+kron ( ones (1 ,N) , x ( agent , : , 1 ) ’ ) ;
205 du bar ( agent , : )=KMPL( : , : , agent ) ∗( r bar−reshape ( Xfree , [

n∗N, 1 ] ) ) ;
206 e l s e %NPL
207 f o r q=1:N
208 f o r w=1:Nu
209 i f q>=w
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210 G(n∗q−n+1:n∗q ,m∗w−m+1:m∗w)=Adˆ(q−w)∗Bd ;%
c a l c u l a t i o n o f dynamic matrix

211 end
212 end
213 end
214 Xfree ( : , 1 )=AUV( x ( agent , : , k ) ’ , u ( agent , : , k−1) ’ , W loe ( : , k

) ) ;
215 f o r i =1:N−1
216 Xfree ( : , i +1)=AUV( Xfree ( : , i ) , u ( agent , : , k−1) ’ , W loe

( : , k ) ) ;
217 end
218 W=2∗(G’∗Q∗G+R) ;W=(W+W’ ) /2 ;
219 c= −2∗G’∗Q∗( r bar−reshape ( Xfree , [ n∗N, 1 ] ) ) ;
220 E=[− I t i l d e ; I t i l d e ; −C t i l d e ∗G; C t i l d e ∗G; eye (Nu∗m)

] ;
221 b=[−u bar min+kron ( ones (Nu, 1 ) ,u ( agent , : , k−1) ’ ) ;
222 u bar max−kron ( ones (Nu, 1 ) ,u ( agent , : , k−1) ’ ) ;
223 −y bar min+C t i l d e ∗ reshape ( Xfree , [ n∗N, 1 ] ) ;
224 y bar max−C t i l d e ∗ reshape ( Xfree , [ n∗N, 1 ] ) ] ;
225 l =[− i n f ∗ones (2∗m∗Nu+2∗p∗N, 1 ) ; du bar min ] ;
226 h=[b ; du bar max ] ;
227 % Recurrent Neural network s imu la t i on
228 i f 0
229 sim ( ’ S imu l inkF i l e ’ )
230 z 0=z ( end , : ) ’ ;
231 du bar ( agent , : )=d e l t a u ( end , : ) ’ ;
232 e l s e
233 du bar ( agent , : ) = quadprog (W, c ,E, h , [ ] , [ ] , [ ] , [ ] , [ ] ,

op t i ons ) ;
234 % du bar ( agent , : ) = quadprog (W, c

, [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , op t i ons ) ;
235 % [ du bar , f va l , e x i t f l a g ] = fmincon ( @costf

, 0 . 0 0 1∗ randn (m∗Nu, 1 )+du bar ,E, h) ;
236 end
237 end
238 computation time=toc ;
239 dU( agent , : , k )=du bar ( agent , 1 :m) ;
240 u( agent , : , k )=u( agent , : , k−1)+dU( agent , : , k ) ;%+randn (1 ,m) ;
241 u( agent , u ( agent , : , k ) ’>u bar max ( 1 :m, 1 ) , k )=u bar max (u(

agent , : , k ) ’>u bar max ( 1 :m, 1 ) ) ’ ;
242 u( agent , u ( agent , : , k ) ’<u bar min ( 1 :m, 1 ) , k )=u bar min (u(

agent , : , k ) ’<u bar min ( 1 :m, 1 ) ) ’ ;
243 %Auv Simulat ion
244 i f 1 %&& k>NN/3
245 l o e = [ 0 . 2 5 ; 0 . 5 ; 0 . 7 5 ] ;
246 e l s e
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247 l o e = [ 1 ; 1 ; 1 ] ;
248 end
249 x ac ( agent , : , k+1)=AUV( x ac ( agent , : , k ) ’ , u ( agent , : , k ) ’ , l o e ) ;

%ac tua l s t a t e
250 y ac ( agent , : , k+1)=C∗ x ac ( agent , : , k+1) ’ ; % ac tua l output
251 y m( agent , : , k+1)=y ac ( agent , : , k+1)+diag ( s q r t (Rn) ) ’ .∗ randn

(1 , p ) ; % Measured no i sy output
252 end
253 end
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environments,” Ph.D. dissertation, École de technologie supérieure, 2010.

[108] A. Bartoszewicz, “On the robustness of variable structure systems in the presence of
measurement noise,” in Industrial Electronics Society, 1998. IECON’98. Proceedings
of the 24th Annual Conference of the IEEE, vol. 3. IEEE, 1998, pp. 1733–1736.

[109] J. M. Maciejowski and C. N. Jones, “Mpc fault-tolerant flight control case study:
Flight 1862,” IFAC Proceedings Volumes, vol. 36, no. 5, pp. 119–124, 2003.

[110] J. M. Maciejowski, “The implicit daisy-chaining property of constrained predictive
control,” Applied Mathematics and Computer Science, vol. 8, pp. 695–712, 1998.

[111] A. P. Deshpande, S. C. Patwardhan, and S. S. Narasimhan, “Intelligent state estima-
tion for fault tolerant nonlinear predictive control,” Journal of Process control, vol. 19,
no. 2, pp. 187–204, 2009.

[112] A. Hennig and G. J. Balas, “Mpc supervisory flight controller: A case study to flight el
al 1862,” in AIAA Guidance, Navigation and Control Conference and Exhibit. Hon-
olulu, Hawaii, 2008, p. 6789.

[113] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” Robustness
in identification and control, pp. 207–226, 1999.

[114] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder, Diagnosis and
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