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Abstract

A new algorithm to split and merge ultra-high resolution 3D images

Yongping Gao

Splitting and merging ultra-high resolution 3D images is a requirement for parallel
or distributed processing operations. Naive algorithms to split and merge 3D blocks
from ultra-high resolution images perform very poorly, due to the number of seeks
required to reconstruct spatially-adjacent blocks from linear data organizations on
disk. The current solution to deal with this problem is to use file formats that preserve
spatial proximity on disk, but this comes with additional complexity. We introduce
a new algorithm called Multiple reads/writes to split and merge ultra-high resolution
3D images efficiently from simple file formats. Multiple reads/writes only access
contiguous bytes in the reconstructed image, which leads to substantial performance
improvements compared to existing algorithms. We parallelize our algorithm using
multi-threading, which further improves the performance for data stored on a Hadoop
cluster. We also show that on-the-fly lossless compression with the lz4 algorithm
reduces the split and merge time further.
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Chapter 1

Introduction

Ultra-high-resolution images that can exceed typical memory size are increasingly
found in a variety of disciplines. Big Brain, for instance, is a 3D histological image
of the human brain that represents 1 TB of raw data organized in 3600 planes at
full resolution and 76 GB at a 40-micrometer isotropic resolution commonly used in
neurosciences [3].

The processing of such large images requires extensive amounts of disk, memory,
and computing power. Two architectures are commonly identified to aggregate re-
sources: scaling up and scaling out. Scaling up, also called vertical scaling, consists in
adding more resources to a single node in a system. Scaling out, also called horizontal
scaling, consists in adding more compute nodes to the current system to form a clus-
ter. The nodes in a cluster act like a single system to enable high performance and
high availability through load balancing and parallel processing. Scaling out is the
most commonly used approach in current Big Data systems, as it results in cheaper,
more extensible systems. This thesis focuses on the processing of large 3D images on
such clusters.

Big Data clusters currently use specific distributed file systems such as the Hadoop
Distributed File system to store the data on multiple nodes. Distributed file systems
provide two essential properties: (1) data availability: data is replicated to multiple
storage nodes to make the system robust to the failure of a few nodes, (2) data
locality: storage nodes are also compute nodes so that computations can be triggered
without the need for data transfers in the cluster.

Distributed file systems obviously require the data to be split in multiple chunks,
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and eventually merged back to be delivered to the user. This thesis focuses on the
specific problem of splitting and merging 3D images efficiently, to enable their efficient
processing on Big Data clusters. As detailed later in the thesis, the main issue en-
countered when splitting or merging large images is that random I/Os need to be done
in the large image, to reconstruct spatially-adjacent 3D blocks from non-contiguous
bytes stored in a file. This results in important file access and seek times, which can
drastically slow down image processing operations. We are looking for algorithms
that reduce the number of file accesses required to split and merge a high-resolution
3D image.

We aim at algorithms that can work with arbitrary chunk geometries. Image
processing pipelines are extremely diverse and have different requirements on the size
and geometry of the chunks they can process. Depending on the pipeline, a large
image might be split into slabs or blocks, of different sizes. Our split and merge
algorithms should be versatile enough to support arbitrary geometries efficiently.

1.1 Goals and Contributions

The goal of this thesis is:

• To propose a new algorithm to split and merge ultra-high resolution 3D images.

• To compare with the current algorithms.

The contribution of this thesis is as follows:

• We introduce a new algorithm to split and merge ultra-high resolution 3D image
efficiently (Chapter 3).

• We parallelize such algorithm (Chapter 4).

• We apply on-the-fly compression to further improve the performance (Chap-
ter 5).

• We implement such algorithms, and build a Python library based on different
algorithm parameters.
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We also benefit open-science by making the code publicly available 1, and make a
new release when done with experiments.

This thesis will be broken into four chapters, in Chapter 2, we will examine the
current solution to split and merge ultra-high resolution 3D images of different neu-
roimaging file formats, and introduce the related tools and libraries we used. Chap-
ter 3 introduces a new sequential algorithm to split and merge ultra-high resolution
3D images. Chapter 4 introduces the parallel version of this new algorithm. In
Chapter 5, we apply on-the-fly compression to our new algorithm.

1sam: https://github.com/big-data-lab-team/sam/releases
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Chapter 2

Big Data infrastructure for the

processing of ultra-high resolution 3D

images

2.1 Introduction

To process ultra-high resolution 3D images by using a parallelized pipeline, it is nec-
essary to split and merge the image efficiently. In this chapter we first investigate
different neuroimaging formats and associated libraries that support reading and writ-
ing of such file types. Then we address the problem of splitting and merging large
images, and investigate the causes that slow down the split and merge process. We
review the current solutions to this problem: (1) file formats based on space-filling
curves, (2) the clustered reads/writes algorithm. Finally we will review the current
big data infrastructure as well as parallel image processing methodology, compare
different compression formats and their associated libraries.

2.2 Image formats and library

In this section we introduce several popular image formats and the associated libraries
that are going to be used in the thesis.
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2.2.1 Neuroimaging Informatics Technology Initiative

Neuroimaging Informatics Technology Initiative (NIfTI), is adapted as an extension
of the popular ANALYZETM 7.5 file format (.hdr/.img file pairs) [4], which are
desirable to functional magnetic resonance imaging (f-MRI) analysis. NIfTI-1 uses
the “empty space” in the ANALYZETM 7.5 header to add several new features [5].
The NIfTI file format remains compatible with non-NIfTI aware ANALYZETM 7.5
software. NIfTI-1 image can have dual file (.hdr & .img) or single file (.nii) storage.
The .hdr or header component is described as a single struct, a maximum of 348 bytes
in size. The struct can describe this images’s metadata like dimension, data type,
number of bits per voxel, etc. After the end of the header, the next 4 bytes are a char
array field named “extension”. In a .nii file, these 4 bytes will always be present, and
should be set to zero as default. NIfTI-1 image stores the image binary data linearly
and in “column-major” order on disk, that is, for an image of dimensions (i, j, k), i is
the fastest changing dimension, followed by dimension j, followed by dimension k [1].
All the implementation of the algorithm in this thesis will mainly focus on NIfTI-1
format image.

2.2.2 Medical Imaging NetCDF 2.0

An alternative to NIfTI format, is the HDF5-based Medical Imaging NetCDF (MINC)
2.0 format [6], which is designed for flexible and efficient I/O and for high volume and
complex data and supports high-dimensionality and irregularly-shaped dimensions.
MINC 2.0 also supports 64-bit data. MINC 2.0 provide more flexibility by allowing
data to be partitioned in limited-sized chunks, each chunk being stored in a specific
order. Also similar to HDF5, MINC 2.0 file format is hierarchical, consisting of groups
and subgroups, similar to a file system. The metadata is stored to the following sub-
groups: info and dimensions, and image data is stored within the image subgroup.
Moreover, the added feature of internal compression is also provided in MINC 2.0,
which means we can decompress/compress chunks of an image at a time. NIfTI, on
the other hand does not have this built-in feature.

The byte organization in MINC is stored in “row-major” order, that is, for an image
of dimensions (i, j, k), k is the fastest changing dimension, followed by dimension j,
followed by dimension i [6].
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2.2.3 NiBabel

NiBabel is a popular Python library used for the reading and writing of various
neurological imaging file formats, including NIfTI-1, NIfTI-2 and MINC 2.0. NiBabel
offers both high-level format-independent access to neuroimages, as well as an API
with various levels of format-specific access to all available information in a particular
file format [7]. A NiBabel image object has three things:

• an N-D array containing the image data;

• a (4, 4) affine matrix mapping array coordinates to coordinates in some RAS+
world coordinate space (Coordinate systems and affines);

• image metadata in the form of a header.

To load image file as an NiBabel image object, get header of the image, and get image
data is extremely simple:

import nibabel as nib

# img is an nibabel image object

img = nib.load(nifti_file)

# get header of the image

header = img.header

# get data of the image

data = img.get_data()

When the image file is really large, just in our case, we cannot use “img.get_data()"
to load all the data into memory directly. It will throw an “out of memory” exception.
NiBabel gives a solution for this by using array proxy. An array proxy is not the array
itself but something that represents the array, and can provide the array when we
ask for it. The array proxy allows for the reading of a subset of data into memory
without having to read the entire image:

import nibabel as nib

# img is an nibabel image object

img = nib.load(nifti_file)

# get array proxy of the image

dataobj = img.dataobj

# get partial data from the image

6



data = dataobj[:100]

2.3 The problem of splitting and merging large im-

ages

In this section, we investigate the naive way of splitting and merging ultra-high res-
olution 3D images, and explain what is the overhead of the naive methods. This
problem is described in [2].

2.3.1 Disk model

A disk is characterized by its read and write rates, its access time and its seek time.
For common file sizes, seek time is negligible compared to read or write time as typical
seek times range from about 0.1 ms for Solid-State Drives (SSD) to 10 ms for Hard-
Disk Drives (HDD). However, naive algorithms might seek up to 107 times to merge
a high-resolution image, which renders total seek time comparable to read and write
times. In addition, extensive seeking also has an effect on read and write rates, as
these are typically increasing with the duration of uninterrupted reads or writes.

In our analysis, we do not distinguish between access time and seek time. We
also assume that seeks require a constant amount of time, regardless of the position
seeked to. That is, we focus on the average seek time. In practice, large variations
would be expected depending on the seek distance, but modeling such variations
would inevitably lead to models specific to the hardware, file system or operating
system, which we intentionally avoid here. Likewise, in contemporary systems, read
and write times are greatly impacted by caches operating at several levels, which we
do not model here. Thus, our goal is to find algorithms that minimize the number of
seek and file access operations, which we denote “number of seeks” in the remainder.

2.3.2 Naive slabs and Naive blocks

We assume that the high-resolution image is split into chunks representing 3D blocks
or 3D slabs that fit in memory. A 3D block (as shown in Figure 2) consists of a stack
of one or more 2D tiles (incomplete slices or incomplete columns) spanning contiguous
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slices, whereas a 3D slab (as shown in Figure 2) is a series of one of more complete
contiguous 2D slices. A dataset such as Big Brain would perhaps be split into 125
chunks of 0.6 GB. The decision to split an image into slabs or blocks, and the size of
the chunks, is up to the application. We can also merge 3D blocks or 3D slabs to a
reconstructed image.

To explain the problem, we will take merging as an example. For naive merging
3D slabs or 3D blocks, as shown in Algorithm 1, we load each slab/block at once, and
write to the reconstructed file at the corresponding position.

Algorithm 1 Naive merging from 3D blocks/slabs
for each block/slab do

read block/slab
write block/slab in reconstructed image

end for

The results shows in Figure 1, we can see naive merging methods for 3D slabs and
3D blocks actually can have very different time even though blocks and slabs have
identical sizes (0.6 G).

8
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Figure 1: Merge time comparison between Naive slabs and Naive blocks in NIfTI
format(data extracted from [2]).

Comparing to naive 3D slabs, naive 3D blocks has to do extra seeks for each row in
each slice of each block due to the spatial organization of the bytes on disk (Figure 2).
In practice, this difference could lead to a tremendous slowdown.
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To adapt it for slab, we essentially need a linear data format. Also it requires that
existing pipelines are modified to use a format different than they currently use, which
is mainly linear data format.

We need search for algorithms that would reduce the seek time regardless of the
data format, and can be better fitting current image processing pipeline so that
applications with flexible schemes can be served.

2.5 Sequential split and merge: Clustered reads and

Clustered writes [1]

To avoid using complex data formats such as space-filling-curves, Clustered reads in
the merging phase and Clustered writes in the splitting phase are two algorithms
that can effectively reduce the seek time. The basic idea of Clustered reads is that
they load multiple blocks in memory, concatenate them in a buffer and write the
buffer in the reconstructed image. Seeking is reduced compared to Naive blocks since
contiguous parts of the buffer are written without seeking. A given block is accessed
only once during the whole merging process.

Similar to Clustered reads in the sequential merge, Clustered writes in the sequen-
tial split will load several blocks from the origin image, split them in the buffer and
write the buffer to each blocks.

For Clustered reads and Clustered writes, the number of seeks is actually less than
Naive blocks, however, there are still some seeks happening for non-contiguous parts,
which may slow down the process.

2.6 Big data infrastructure and parallelization

Big Data technologies have been used in the last decade to analyse enterprise data,
internet of things (IoT) data, bio-medical data, etc. [10]. We are trying to apply them
to large images to process and analyze the image information.
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2.6.1 Parallel image processing

In general, computational platforms for processing large images can be categorized as
multi-processor desktop computers, computer clusters, high-performance computing
(HPC) resources with big shared memory, grid computing on loosely coupled and
networked computers, and computing on novel hardware architectures (e.g., Graph-
ical Processing Units (GPUs), Field Programmable Gate Arrays (FPGA)) [11]. The
literature of parallel and distributed image processing has obviously been extensively
studied and used in various platforms [12], [13], [14], [15], [16]. However, methods
have focused on geometrical approaches to partition images, and on load-balancing
or task scheduling techniques. Instead, we aim at algorithms to efficiently split or
merge images regardless of the geometry of the chunks. The literature on this problem
is remarkably scarce. Hadoop is the target infrastructure on which image analysis
pipelines would run.

2.6.2 Hadoop and Hadoop Distributed File System

Hadoop is a framework that allows for the distributed processing of large data sets
across clusters of computers using simple programming models. The Hadoop Dis-
tributed File System (HDFS) is the primary storage system used by Hadoop appli-
cations [17].

It is useful to have a distributed file system as it could parallelize the read, write
process, and the storage can be scalable to several machines. It can also make the
data highly available by making the data redundant. HDFS and Hadoop can also
allow to have data locality. Data locality is the concept that makes the computation
close to where the data resides, which can minimize unnecessary data transfers by
moving data to computation node.

NameNode and DataNode of HDFS

HDFS has a master/slave architecture. A HDFS cluster consists of a single NameN-
ode, and multiple DataNodes. The NameNode is the master server that manages the
file system namespace and it also saves the information of where all the blocks for a
given file are located. The DataNode is where the files are located. The file is usually
split into one or more blocks and these blocks are stored in a set of DataNodes. The
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DataNodes are responsible for storing and retrieving blocks when they are told to,
and they report back to the NameNode periodically. HDFS supports exclusive writes
only. When one client make a request to NameNode to open the file for writing, the
NameNode will grant a lease to the client. Whenever another client tries to open
the same file for writing, the NameNode will see that the lease for the file is already
taken, therefore it will reject this request. HDFS cannot be randomly accessed, we
always have to read and write one block a time. All HDFS communication protocols
are on top of the TCP/IP protocol.

Three different modes in Hadoop

Hadoop can be run in three different modes. They are standalone mode, pseudo-
distributed mode and fully distributed mode.

• Standalone mode

– Default mode of Hadoop.

– One node is used.

– HDFS is not used.

– Local file system is used for read, write.

• Pseudo-distributed

– HDFS is used.

– HDFS uses one node for both NameNode and DataNode.

• Fully distributed mode

– HDFS is used.

– Mode used in production.

– Blocks are distributed across many nodes.

– Different nodes will be used as NameNode and DataNode.

In our case, all the experiments done with HDFS are running in fully distributed
mode.
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Read and Write in HDFS

When we are trying to read or write file in HDFS, the client will make a request
to the NameNode, the NameNode will respond to the client which DataNode(s) the
client should be read from or writen to. For read, the client will directly contact
the DataNode(s) and start reading data. For write, the DataNode(s) are chosen ran-
domly and we cannot predict it. The client will directly contact the DataNode(s) to
make sure they are ready, then the client starts to stream the data to the DataN-
ode(s). When the DataNode(s) received all the data successfully, they will send back
acknowledgments of job completeness to the NameNode.

Configuration of HDFS

The default HDFS block size is 64 MB. The blocks of a file are replicated for fault
tolerance, and distributed to several DataNodes. The block size and replication factor
can both be set in the configuration file. This is the sample configuration file (hdfs-
site.xml) on both NameNode and DataNode to set the replication factor and block
size.

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.blocksize</name>

<value>652190720</value>

</property>

</configuration>

HDFS client: HdfsCLI

HdfsCLI is a Python (2 and 3) library to make interacting with HDFS simpler. It
support both secure and insecure clusters [18]. In the experiments, we use HdfsCLI
to make interactions with HDFS.
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2.7 Compression of large images

File compression has two benefits, it reduces the space needed to store files, and it
speeds up data transfer across the network or to or from disk. On the other hand,
file compression has an overhead on CPU time.

We focus on lossless file compression where the original data can be perfectly
reconstructed from the compressed data, that is, the original and the decompressed
data should be identical, which we can keep all the information. There are several
lossless compression file formats and libraries available.

2.7.1 Compression algorithms and Python libraries

gzip

gzip is a widely used compression data format. The actual compression is performed
by the so-called deflate/inflate-compression [19]. Deflate is an LZ77-based [20] method
which is used in several general compression programs. Huffman coding is included
in the method to encode the data [21]. Python has its built-in gzip library gzip,
built on the zlib module [22] . The standard gzip class exposes a random access-like
interface (via its seek and read methods), but every time we seek to a new point in
the uncompressed data stream, the GzipFile instance has to start decompressing from
the beginning of the file, until it reaches the requested location, which slows down
the performance of a random-access I/Os. There is a library called indexed_gzip,
built on zran.c, which can get around this performance limitation by building an
index, which contains seek points, mappings between corresponding locations in the
compressed and uncompressed data streams [23]. Additionally, we can load an image
directly from a gzip compressed file by using NiBabel (Section 2.2.3).

LZ4

LZ4 [24] is a lossless compression algorithm, and also a compression format which
leverages utilization of multiple core CPUs. LZ4 can compress and decompress data
in parallel. LZ4 has raw block compression format which is called block format. For
compressing an arbitrarily long file or data stream, multiple blocks are required. LZ4
has another format called Frame format. Organizing these blocks and providing a

15



common header format to handle their content is the purpose of the Frame format 1.
We use Frame format in our cases.

1LZ4: https://github.com/lz4/lz4
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Chapter 3

Multiple reads/writes: a new

algorithm to split and merge

ultra-high resolution 3D images

Note: the Multiple reads/writes algorithm presented in this chapter was published
together with Clustered reads/writes (Section 2.5) in an article accepted to 2017 IEEE
International Conference on Big Data [2].

3.1 Introduction

As explained in Section 2.3, the algorithm used to split and merge ultra-high reso-
lution 3D images significantly impacts the performance. Furthermore, to split and
merge such data to a computing cluster (HDFS in our case) may bring overhead
compared to running on a single machine. Therefore, the goal of this chapter is to
find the most efficient algorithms for splitting and merging ultra-high resolution 3D
images and investigate whether splitting and merging ultra-high resolution 3D images
data on a cluster will bring any overhead.

First, we introduce a new algorithm to improve the performance by reducing
seek time. Then we compare the algorithm to Clustered reads/writes in different
situations. Finally, we investigate whether splitting and merging to a cluster brings
any overhead.

Split and merge relate to the same dual problem in our context. We can always
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3.2.2 Problem

For the sake of simplicity and to better understand the algorithms, we will investigate
the algorithms on a single machine first, and complexity is measured in number of
seeks.

As we mentioned in Section 2.3.2, naive algorithms performs very poorly to split
or merge 3D blocks from ultra-high resolution 3D images, due to seek times. For
Clustered reads and Clustered writes in Section 2.5, seeking is reduced compared
to Naive blocks since contiguous parts of the buffer will be written or read without
seeking. A given block is accessed only once during the whole process.

However, the number of seeks performed by Clustered reads and Clustered writes
depend on how blocks loaded in memory arrange in the reconstructed image. In the
best case, complete contiguous slabs of the reconstructed image can be assembled in
memory and written in a single seek. In the worst case, the memory load only partially
covers rows in the reconstructed image. In the intermediary case, rows are complete
but some slices can only be partially reconstructed [1]. We have to investigate a new
algorithm which will improve this situation. This algorithm is called Multiple reads
and Multiple writes.

3.2.3 Merge: Multiple reads

Multiple reads are shown in Algorithm 2.
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Algorithm 2 Buffered merging of blocks with Multiple reads
1: sorted_blocks = sort blocks by increasing (k,j,i)
2: start_index = 0 ; end_index=(m-1)
3: write_range = (start_index, end_index)
4: while end_index <R*b do

5: initialize buffer
6: for block in sorted_blocks do
7: if block has voxels in write_range then
8: block_data = read block
9: in block_data, extract the rows in write_range

10: insert rows in buffer
11: end if

12: end for

13: write buffer to reconstructed_image
14: start_index = end_index + 1 ; end_index += m
15: end while

The main idea of this algorithm is that blocks are read partially (line 9) to ensure
that the memory buffer only contains contiguous bytes. Therefore, the buffer can be
written continuously to the reconstructed image, without seeking (line 13). However,
a given block might be read multiple times, in different memory loads.

In the complexity analysis, we assume that m′ represents an integer number k of
sub-rows (Case 1, k1 < 3

√
n), of complete rows (Case 2, k2 < d), of tile rows (Case 3,

k3 < 3
√
n), of slices (Case 4, k4 < d) or of block slices (Case 5, k5 < 3

√
n), as illustrated

in Figure 4. In each of these 5 cases, we define vi as follows:

v1 = db ; v2 = Db ; v3 = Ddb ; v4 = D2b ; v5 = D2db

so that we have:
ki =

⌊
m

vi

⌋
and m′

i = kivi, i ∈ J1, 5K

The total number of seeks performed by Multiple reads in case i is:

N i
MR = xi + (xi − 1)bi + b′i, i ∈ J1, 5K

= xi (1 + bi)− bi + b′i
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It gives the following expression for NMR:

NMR =



⌈
Rb
m′

1

⌉
(k1 + 1)− k1

+( 3
√
nD2 mod k1) if d ≤ m

b
< D⌈

Rb
m′

2

⌉
( 3
√
n+ 1) if D ≤ m

b
< Dd⌈

Rb
m′

3

⌉
(k3 3
√
n+ 1)− k3 3

√
n

+ 3
√
n ( 3
√
nD mod k3) if Dd ≤ m

b
< D2⌈

Rb
m′

4

⌉
( 3
√
n
2
+ 1) if D2 ≤ m

b
< D2d⌈

Rb
m′

5

⌉
(k5 3
√
n
2
+ 1)− k5 3

√
n
2

+ 3
√
n
2
( 3
√
n mod k5) if D2d ≤ m

b
< R

And finally, using R and n as main variables:

NMR =


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√
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<

3√R
2

3√n⌈
Rb
m′

3

⌉(
m′

3
3√n

2

3√R
2
b
+ 1
)
− m′

3
3√n

2

3√R
2
b

+ 3
√
n
(

3
√
nR mod

⌊
m 3√n
3√R

2
b

⌋)
if

3√R
2

3√n
≤ m

b
< 3
√
R

2⌈
Rb
m′

4

⌉(
3
√
n
2
+ 1
)

if 3
√
R

2 ≤ m
b
< R

3√n⌈
Rb
m′

5

⌉(
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n
2
(

3
√
n mod

⌊
m 3√n
Rb
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if R

3√n
≤ m

b
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(1)

Implementation

To avoid reading all blocks for each memory load, we pre-process the block headers.
We read all the block headers and save their position information in a Python dictio-
nary. When we need to read data, we will go over this dictionary first to check if this
split is in this memory load, if not, we just pass it which will make the whole reading
process faster. The data buffer used in Multiple reads is implemented as a Python
dictionary where the keys are offsets in the reconstructed image and the values are
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NumPy arrays containing the data starting at this offset. When the memory load is
complete, dictionary entries are written sequentially to the reconstructed image. In
Multiple reads, dictionary entries are always contiguous in the reconstructed image.
We tried to use a single NumPy array instead of Python dictionary as a buffer, but we
finally abandoned it as inserting data at a specific position in a NumPy array copies
the data in memory, which increases both the execution time and the peak memory
consumption.

3.2.4 Split: Multiple writes

Similarly to section 3.2.3, as shown in Algorithm 3, the main idea of Multiple writes
is that blocks are written partially (line 9) to ensure that the memory buffer only
contains contiguous bytes. Therefore, the buffer can be read continuously (line 5)
in the original image, without seeking. However, a given block might be accessed
multiple times for writing.

Algorithm 3 Buffered splitting of image with Multiple writes
1: block_names = generate blocks name based on the blocks in each dimension
2: start_index = 0 ; end_index=(m-1)
3: read_range = (start_index, end_index)
4: while end_index <R*b do

5: data_in_range = read_data_from_original_image(read_range)
6: for block_name in block_names do
7: index_to_write = calculate_index(block_header)
8: data_to_write = data_in_range[index_to_write]
9: write_to_file(data_to_write)

10: end for

11: start_index = end_index + 1 ; end_index += m
12: end while

Implementation

Similar to Multiple reads, we also create a Python dictionary before split process start
to avoid meaningless calculation. The key of the dictionary is the split’s filename, the
value is the split’s header information. The data buffer used in Multiple writes is a
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NumPy array, which can be read sequentially from original image by using NiBabel
(Section 2.2.3) library in Python. After getting the NumPy array per memory load, we
calculate the offset of memory load for each block and start to write the corresponding
data.

3.3 Sequential split and merge on a cluster

To process ultra-high resolution images in parallel, images should be distributed in a
cluster instead of a single node. We assume that HDFS is used in our experiments.
We need to discover if there is any overhead and how much is the overhead to write to
HDFS compared to writing data locally (single host). In addition to benchmarking,
besides benchmark disk I/O, we also have to measure network I/O between each node
in the cluster.

3.3.1 Split an image to HDFS by using Multiple writes

To split an image in the client and write data to HDFS by using Multiple writes,
the only difference from running on single host (Section 3.2) is instead of writing
data back to the local file system, we write data to a multiple nodes cluster, which is
running HDFS.

Implementation

We use HdfsCLI library in Python to implement read/write files in HDFS. The library
provides file–like API to make file I/O easier. For Multiple writes, we need to write
header files to each split first. Before each write, we read header files from HDFS
to get their indexes to filter out the splits not in the writing range, which will avoid
meaningless calculation of indexes. However, each time we read header from HDFS,
it brings overhead of reading compared to read directly from memory. Therefore, we
built a cache in the client memory, saving the header information in memory. This
cache is implemented by a Python dictionary. As each header file in our case is only
352 bytes data, they only occupy a little memory.
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3.3.2 Split an image to HDFS by using Clustered writes

To split an image in the client and write data to HDFS by using Clustered writes,
the only difference from running on single host, is instead of writing data back to the
local file system, we write data to a multiple nodes cluster, which is running HDFS.

Implementation

When Clustered writes is on single host mode, we can use NiBabel library to save
Nifti image directly by using nib.save(). However, NiBabel doesn’t support writing
to HDFS directly. Therefore, we write binary data directly to the files on the HDFS.
We use HdfsCLI library in Python to write binary data to HDFS.

3.4 Experiments

3.4.1 Hardware

Running code on single host

We use a Dell Precision Tower 3620 workstation to run all the programs described in
Section 3.2. For convenience, we use its hostname “consider” to refer to this machine
from now on. “consider” has 32 GB of RAM and two disks:

• a Hard disk drive (HDD): HGST Travelstar 7K1000, 7200 rpm, 931GiB (1TB),
firmware version JB0OA3W0;

• a Solid-state drive (SSD): SanDisk X400 2.5, 238GiB (256GB), firmware version
X4130012.

Both drives use 512-byte logical sectors, 4096-byte physical sectors, SATA >3.1.

Running code on a cluster

We use four computers, which are all connected to a local network to run all the
programs described in Section 3.3. Also, for convenience, we use hostnames to refer
to machines.

• “gao-sparse”
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– CPU: 4 cores, Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz;

– RAM: 8 GB;

– Hard disk drive (HDD): Seagate Barracuda 7200.12, 7200 rpm, 250GB;

• “gao-dell”

– CPU: 8 cores, Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz;

– RAM: 8 GB;

– Hard disk drive (HDD): Seagate Samsung SpinPoint M8 (AF), 5400 rpm,
1TB;

• “gao-dope”

– CPU: 8 cores, Intel(R) Xeon(R) CPU X3450 @ 2.67GHz;

– RAM: 8 GB;

– Hard disk drive (HDD): Seagate Barracuda 7200.12, 7200 rpm, 500GB;

• “gao-ahoy”

– CPU: 4 cores, Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz;

– RAM: 4 GB;

– Hard disk drive (HDD): Seagate Barracuda 7200.12, 7200 rpm, 250GB;

We use a Bell Connection Hub as the router for our local network, speed is up to
1000 Mbps. Firmware version FAST2864_v6851E. Hardware version: 2864-000000-
002.

3.4.2 Software

Operating system

“consider” runs CentOS Linux release 7.3.1611 with the XFS file system. All the
nodes (“gao-sparse”, “gao-dell”, “gao-dope”, “gao-ahoy”) in the cluster runs Ubuntu
16.04.3 LTS with ext4 file system.
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Hadoop and HDFS

All the nodes in the cluster are installed with Hadoop 2.7.4. Java version: 1.8.0_131.

3.4.3 Monitoring network I/O and disk I/O

Monitoring network I/O and disk I/O is important as we can study whether the nodes
in the cluster have similar behaviors in the same condition. We can find out what
affect system’s performance.

Network I/O

We use iperf3 2 utility to measure network I/O. iperf3 is a speed test tool for TCP,
UDP and SCTP. We can use this to measure network I/O between these 4 nodes in
the cluster.

# on the server side, run:

iperf3 -s

# on the client side, run:

iperf3 -c server-ip

Disk I/O

We can also use iperf3 to measure disk I/O. For example, if we want to test node
A’s read speed (from disk to memory), we can execute the following scripts:

# on the other machine B which is in the same cluster with the node A

iperf3 -s

# on the node A

iperf3 -c B -F toReadFile

The sample output of machine A:

-----------------------------------------------------------

Server listening on 5201

-----------------------------------------------------------

Accepted connection from 192.168.2.15, port 56262

2iperf3: https://iperf.fr/iperf-download.php
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[ 5] local 192.168.2.17 port 5201 connected to 192.168.2.15 port 56264

[ ID] Interval Transfer Bandwidth

[ 5] 0.00-1.00 sec 107 MBytes 896 Mbits/sec

...

...

[ 5] 10.00-10.04 sec 4.55 MBytes 930 Mbits/sec

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bandwidth Retr

[ 5] 0.00-10.04 sec 1.09 GBytes 932 Mbits/sec 0 sender

[ 5] 0.00-10.04 sec 1.09 GBytes 930 Mbits/sec receiver

The sample output of machine B:

Connecting to host gao-dope, port 5201

[ 4] local 192.168.2.17 port 35584 connected to 192.168.2.15 port 5201

[ ID] Interval Transfer Bandwidth Retr Cwnd

[ 4] 0.00-1.00 sec 113 MBytes 951 Mbits/sec 0 370 KBytes

...

...

[ 4] 9.00-10.00 sec 111 MBytes 935 Mbits/sec 0 389 KBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bandwidth Retr

[ 4] 0.00-10.00 sec 1.09 GBytes 936 Mbits/sec 0 sender

[ 4] 0.00-10.00 sec 1.09 GBytes 935 Mbits/sec receiver

To test node A’s write speed (from memory to disk), we need to run a longer test
to factor out network buffering issues. We can execute the following scripts:

# on the node A

iperf3 -s -F toWriteFile

# on the other machine B which is in the same cluster with the node A

iperf3 -c A -i 1 -t 40

The results of the slowest test will indicate the bottleneck of our whole system, which
means we can find our system are disk limited or network limited.
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3.4.4 Data

We use the 3850x3025x3500 Big Brain image 3 for running all splitting algorithms.
We used 50/125/250/500 non-overlapping chunks with 2 bytes per voxel split by
3850x3025x3500 Big Brain image to run merging algorithm.

3.4.5 Algorithm parameters

Single host mode

For merging blocks by using Multiple reads and splitting image by using Multiple
writes on single host mode, we test our program with 3 GB, 6 GB, 9 GB, 12 GB and
16 GB of memory. This corresponds to the case 4 from 3 GB to 12 GB, and case 5
for 16 GB in Figure 4. We did 5 repetitions for each memory value. Memory values
were shuffled in each repetition, to avoid potential ordering biases such as caching
effects. To ensure equal conditions, we dropped the kernel page, dentry and inode
caches before each run.

echo 3 | sudo tee /proc/sys/vm/drop_caches

We measured the cumulative read, write and seek time in each run, as well as the
overhead time defined as the total time minus the sum of all other times.

Cluster mode

For splitting an image to a cluster by using Multiple writes and Clustered writes, we
test our program with 3 GB of memory. For the sake of simplicity, we set the client and
NameNode in HDFS to the same machine. We set “gao-sparse” as our NameNode
and also we set 2 DataNodes (“gao-dell” and “gao-dope”) and 3 DataNodes (“gao-
dell”, “gao-dope”, “gao-ahoy”) to test if different number of DataNodes will affect our
performance. We did 5 repetitions and also dropped the caches before each run. For
the configuration of HDFS, we set replication factor to 1 and also set block size to a
proper value (622 M when 125 splits), which should be larger than one split size, to
make sure the block will not be automatically split again in HDFS.

32015 Big Brain release with 40-micrometer isotropic resolution available at ftp://bigbrain.

loris.ca/BigBrainRelease.2015/3D_Blocks/40um
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3.5 Results

3.5.1 I/O testing

Table 1 shows the average rates of Network I/O, disk to memory, and memory to
disk rates. We can clearly see that the bottleneck of our experiments is disk write
rates, which means the overhead of the network is negligible compared to the write
overhead. So it makes sense to focus on optimizing the writes.

Table 1: I/O testing

Network I/O rates Disk to memory rates Memory to disk rates

Average 938.5 Mbits/s 935.25 Mbits/s 26.05 Mbits/s

3.5.2 Seeks for Multiple reads on single host mode

The number of seeks of Multiple reads is reported in Figure 5. The baseline corre-
sponds to Clustered reads, and the model is the Equation 1 in Section 3.2.3. The
average relative model error is 26.8%, presumably explained by the fact that the model
assumes cubic blocks while we used non-cubic ones in the experiment. For Multiple
reads, our complexity analysis also assumed that one of the 5 cases in Figure 4 was
used while they are usually blended in practice. Overall, the model correctly explains
the observations, which indicates that our implementation is correct. Furthermore,
Multiple reads has fewer number of seeks compared to the Clustered reads on 3 G,
6 G, 9 G, 12 G memory.
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Figure 5: Number of seeks for Multiple reads on 125 splits. Top: experimental values
compared with model of Equation 1. Bottom: Multiple reads compared with baseline:
Clustered reads.
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3.5.3 Merge time for Multiple reads on single host mode

Figure 6 shows that Multiple reads can bring more performance improvement com-
pared to Clustered reads for low memory values, when the number of splits to be
merged is 125. Multiple reads are 8.4 times faster than Naive way on HDD and 5.3
times on SSD. As SSD is better on seeking than HDD, we can see the improvements
of Multiple reads when running on SSD compared to HDD.
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Figure 6: Merge time for 125 splits on Multiple reads. Top: HDD. Bottom: SSD.
Averages over 5 repetitions. Error bars show ± 1 standard deviation.

Figure 7 shows how the total merge time on 125 splits breaks down to read, write,
seek and overhead time for Multiple reads. Multiple reads almost annihilate the seek
time. The same behavior is observed on HDD and on SSD, although the effect of
seeking is slightly smaller on SSD, as expected. Read times are consistently and
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substantially lower than write times. This may be a result of discrepancies between
disk read and writes rates, or of reading data using Python’s NiBabel package, which
is more efficient than using native Python – as is the case with our writes. The
overhead time is small for Multiple reads.
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Figure 7: Breakdown of total merge time for 125 splits on Multiple reads. Left
column: HDD. Right column: SSD.

3.5.4 Effect of the number of splits

Figure 8 shows that for each memory load, different number of splits can bring dif-
ferent performance. As we can see for 500 splits and 250 splits, Multiple writes is
slightly slower than Clustered writes. Especially for 500 splits, Multiple writes are
always slower than Clustered writes no matter on which memory configuration. How-
ever, when the number of splits is 50, Clustered writes are always slower than Multiple
writes.
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Figure 8: Split time for Multiple writes and Clustered writes based on different num-
ber of splits on single host. Top: 50 splits. Middle: 250 splits. Bottom: 500 splits.

Regarding the merge (Figure 9), we can see that for 50 splits, Clustered reads can
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be 6.2 times slower than Multiple reads with 3 G of memory. For 500 splits, Multiple
reads is a bit slower than Clustered reads.

From the figures, we can see split and merge have the similar behavior for different
number of split. We can conclude that for a few large splits, Multiple reads/writes
can do better than Clustered reads/writes, and for a lot of small splits, Clustered
reads/writes is better than Multiple reads/writes.

The reason is when there are a few large splits, the overhead of seeking in Clustered
reads/writes is larger than the overhead of opening each split in Multiple reads/write.
On the other hand, if there are lots of small splits, the overhead of opening each split in
Multiple reads/write is larger than the overhead of seeking in Clustered reads/writes.
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Figure 9: Merge time for Multiple reads and Clustered reads based on different num-
ber of splits on single host. Top: 50 splits. Middle: 250 splits. Bottom: 500 splits.
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3.5.5 Overhead of cluster mode

From Figure 10, we can see there is little difference between single host mode and
cluster mode. No matter the split method, the differences of split time is trivial. We
conclude that the overhead of HDFS is negligible.
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Figure 10: Split time for Multiple writes and Clustered writes based on on single
node, two DataNodes and three DataNode. Left: Multiple writes. Right: Clustered
writes.

3.6 Conclusion

Multiple reads and writes can both reduce to a negligible amount the overall seek
time required to split or merge 3D blocks in a high-resolution image where data is
stored linearly.

For splitting, if the number of splits is high, we prefer to use Clustered writes, as
for Multiple writes, we have to open every split multiple times and append data to
it. In Clustered writes, each split is just accessed once.

In the single host mode, if the memory is low, we prefer use Multiple reads/writes
than Clustered reads/writes, as Clustered reads/writes needs more seeking in few
memory configuration. If we have enough memory, we can either use Multiple read-
s/writes or Clustered reads/writes, since their performance is comparable. For the
cluster mode, as expected, splitting image to HDFS won’t bring any overhead. We
can also conclude this based on the I/O benchmark. Clearly, the bottleneck of our
program is disk I/O, so using HDFS won’t degrade the system’s performance.
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Chapter 4

Parallelization of the Multiple

reads/writes algorithm

4.1 Introduction

As mentioned in Section 3.6, the bottleneck of our program is disk I/O. To further
improve our system’s performance, we should find solutions to improve our data
throughput to/from the disk. In the HDFS cluster, there will be several disks to
which we could write.

Since we assume that the images are located on a single disk, parallelizing the
reading process seems difficult, although parallel filesystems might be useful here.
However, there is only one disk used at one time in our system when doing the write
process. If we make all the disks write concurrently, we may improve performance of
the sequential algorithm.

As we mentioned in Section 2.6.2, we cannot predict which DataNode is chosen
to write data. Therefore, to achieve writing data to disks concurrently, we should
make the data always available to each disk. In other words, we should try to send
data to each disk in parallel. So in the client side, we decided to leverage multi-core
CPU of the client and use multi-threading to make requests to several DataNodes
simultaneously. Therefore, the goal of this chapter is to combine multi-threading and
our algorithms in the previous chapter, to implement writing imaging data to the
different disks in parallel.
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Firstly, we introduce how Multiple writes and Clustered writes can be multi-
threaded. Then we re-run these algorithms using different parameters and benchmark
their performance.

4.2 Parallelizing the splitting algorithms

4.2.1 Multiple writes in parallel

Algorithm 4 shows that to apply multi-threading to the writing process in Multiple
writes, the main idea is that, after each read from one memory load (line 6), we will
split the data in memory to several pieces (line 7), and trigger several threads to
partially write data to image files at the same time (line 12, 13).

Algorithm 4 Splitting of image with Multiple writes in parallel
1: block_names = generate blocks name based on the blocks in each dimension
2: start_index = 0 ; end_index=(m-1)
3: nThread = Number of threads
4: read_range = (start_index, end_index)
5: while end_index <R*b do

6: data_in_range = read_data_from_original_image(read_range)
7: block_names_pieces = split block_names to nThread pieces
8: for block_names_piece in block_names_pieces do
9: for block_name in block_names_piece do

10: index_to_write = calculate index based on block_name(position, etc.)
11: data_to_write = data_in_range[index_to_write]
12: Thread t = create_new_thread(HDFS_client.write(data_to_write))
13: t.start()
14: end for

15: end for

16: start_index = end_index + 1 ; end_index += m
17: end while
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Implementation

For the multi-threading part, we use Python’s built in threading module to trigger
multi-thread. We set write function as the target to create a new Python thread. We
start the threads first, then we use thread.join() to block the calling thread until
all the threads represented by this instance terminates. We use HdfsCLI library in
Python to implement read/write files in HDFS.

4.2.2 Clustered writes in parallel

To apply multi-threading to the writing process in Clustered writes, the main idea
is that, after we read several splits from the original image on one memory load, we
trigger several threads to completely write the splits at the same time.

4.3 Experiments

4.3.1 Hardware, Software

We are still using one NameNode and three DataNodes to run our program. Hardware
and software used in this chapter is the same as the cluster mode of the Section 3.4.1
and Section 3.4.2.

4.3.2 Data

As with the previous chapter, the image selected to perform such tests was the 40µm
resolution BigBrain image mentioned in as the Section 3.4.4.

4.3.3 Algorithm parameters

For both Multiple writes and Clustered writes in the split algorithm, we set number
of splits to 125 and 500. We trigger 1 thread, 8 threads, 16 threads besides the
main thread with 2 G memory to each algorithm with different number of splits. We
measure their read time, write time and total split time on each configuration.
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4.4 Results

4.4.1 Split time for Multiple writes and Clustered writes with

125 splits

As shown in Figure 11, we can see that with 125 splits, Multiple writes are always
faster than Clustered writes based on different number of threads. In addition, the
performance improvement provided by multi-threading is higher for Multiple writes
than for Clustered writes.
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Figure 11: Total split time on multiple threads, 125 splits, with 2 G memory.

We can see from Figure 12, that multi-threading reduces the write time for Multi-
ple writes. However, for Clustered writes, it doesn’t have any obvious improvements
on write, hence there is no apparent performance speed up of total time.

The reason behind this is to split the image with 125 splits in Clustered writes, the
parallel portion of the write process is less than Multiple writes. HDFS will randomly
choose DataNode to write and it is unpredictable. As we have three DataNodes, and in
Multiple writes we write partial data to each file by using multiple threads at the same
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time, we can always make sure that HDFS can write data in fully parallel by using
multi-threading. However, as Clustered writes write whole file at one time, we only
have 2 G memory and each split is almost 700 MB (125 splits), and 2 G/700M ≤ 3,
thus for three DataNodes, we cannot make sure to get the maximum parallelizing. In
other words, due to the lack of concurrent writes in HDFS, parallelisation achieved
is limited by the number of splits in the memory load which is larger for Multiple
writes than for Clustered writes.
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Figure 12: Split time breakdown for Multiple writes and Clustered writes based on
different number of threads. Left: Multiple writes on 1 thread, 8 threads, 16 threads,
with 2 G memory. Right: Clustered writes on 1 thread, 8 threads, 16 threads, with
2 G memory.

4.4.2 Split time for Multiple writes and Clustered writes with

500 splits

For Figure 13, we can see that with 500 splits, Multiple writes are always slower than
Clustered writes for any number of threads.
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Figure 13: Total split time on multiple threads, 500 splits, with 2 G memory.

With 500 splits, from Figure 14, we can see both Multiple writes and Clustered
writes reduce the write time, which lead to performance improvement on total split
time.
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Figure 14: Split time breakdown for Multiple writes and Clustered writes based on
different number of threads. Left: Multiple writes on 1 thread, 8 threads, 16 threads,
with 2 G memory. Right: Clustered writes on 1 thread, 8 threads, 16 threads, with
2 G memory

When the number of splits is 500, one memory load comes more splits because
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splits are smaller. We can say that we can get the higher parallelization than with
125 splits for Clustered writes.

4.4.3 Speed up analysis

To calculate speed up, for each algorithm, we use the execution time obtained with
one thread (T1thread) as the base value, and we make T1thread divided by T16threads,
T8threads and T1thread to get the speed up for 16 threads, 8 threads and 1 thread.

We compare each speed up with Amdahl’s law [25] formulated as follows:

Slatency(s) =
1

(1− p) + p
s

(2)

Slatency is the theoretical speedup of the execution of the whole task; s is the speedup of
the part of the task that benefits from improved system resources; p is the proportion
of execution time that the part benefiting from improved resources originally occupied.

In our case, s is always equal to 3, since we have 3 DataNodes. We calculate p
by equation p = Twrite/TTotal, where Twrite stands for write time for 1 thread, and
TTotal stands total time for 1 thread. As p and s are constant, based on Amdahl’s
law, Slatency is also constant.

The measurement of speed up and comparison with Amdahl’s law are shown in
Figure 15. We can see that when the number of splits is 125, Multiple writes has
1.18 times speed up on 16 threads and Clustered writes has 1.03 times speed up on
16 threads. For number of splits is 500, Multiple writes has 1.23 times speed up on
16 threads, and Clustered writes has 1.14 times speed up on 16 threads.

Clearly there is a gap between the value of experiments and Amdahl’s law and
several factors may cause this. As we have 4 CPU cores in the client (Section 3.4.1),
we cannot assure each core runs only one thread, context switch must happen during
the process. Second of all, HDFS will randomly choose DataNodes to write, it does
not distribute data in the particular order, which means the DataNodes may not be
fully parallized sometime.
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Figure 15: Comparision between Multiple writes, Clustered writes with Amdahl’s
law with 125, 500 splits. Green line stands for Multiple writes, purple line stands for
Clustered writes. Light line: speed up with 125 splits. Bold line: speed up with 500
splits. Dash line: Amdahl’s law. All with 2 G Memory.

4.5 Conclusion

Splitting and merging ultra-high resolution 3D images in parallel can improve system
performance. We use multi-threading to parallelize the write process.

For the split algorithms, as expected, based on conclusion from Section 3.6, on low
memory configuration, to get fewer number of splits, Multiple writes is always faster
than Clustered writes no matter of number of threads. However, with more splits,
Clustered writes is better than Multiple writes no matter of number of threads. This
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is consistent with what we had measured in a sequential environment.
Furthermore, Multiple writes can always gain more performance improvements

than Clustered writes because it copes better with lack of the concurrent writes in
HDFS. No matter of different number of splits, both algorithms can gain more speed
up by splitting to more splits.

Last but not least, it does not mean more threads can bring more speed up. Based
on Amdahl’s law, when the number of CPU cores achieve some value, there will be
little improvement. Also, network I/O bottleneck is another bottleneck for speed
up. As we measured the network I/O (Table 1) in our environment is 938.5 Mbit/s.
If our data to be transferred per second is larger than this, there will not be any
performance improvement.
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Chapter 5

On-the-fly compression of the

Multiple reads/writes algorithm

5.1 Introduction

So far, we have studied algorithms for splitting and merging the ultra-high resolution
3D images. Processing data in single node or in parallel, we tried to improve perfor-
mance by reducing seek time of the disk (Chapter 3) and using multi-threading to
write in parallel (Chapter 4). All these methods or algorithms are focusing on the
disk I/O.

In this chapter, we focus on improving performance by using on-the-fly compres-
sion. Using on-the-fly compression has two benefits, it can speed up data transfer
across the disk and the network. Therefore, the goal of this chapter is to find a solu-
tion to apply on-the-fly compression to our algorithms, and investigate if it can bring
any improvement.

We have studied two data compression formats, “gzip” and “LZ4” in Section 2.7.1.
At first, we show how we combine on-the-fly compression to our algorithms, and then
we make experiments on “gzip” and “LZ4” compression formats. Last but not least,
we analyze “gzip” and “LZ4” compression format and compare their performance to
the uncompressed case for our algorithms.
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5.2 Lossless on-the-fly compression

Lossless compression denotes data compression algorithms where the original data
can be perfectly reconstructed from the compressed data, that is, the original and
the decompressed data should be identical. We should use lossless compression in our
system as we don’t want to lose any information of our images.

On-the-fly compression means the data are compressed when they are being read
or written. By using on-the-fly compression, especially for the sparse data of the
image, we will write fewer data to the disk, which will make our whole write process
faster.

However, compression has a computational overhead. For disk read/write rates
and network throughput, compression might be useful or not depending on the com-
pression rate.

5.3 Algorithm and implementation

Compression can always be applied to Multiple reads/writes and Clustered writes.
However, it cannot be applied to Clustered reads because the write process in Clus-
tered reads need reverse seeking, which is not implementable in the gzip and LZ4
format.

For writing compressed data, the basic idea is before we try to write binary data
to HDFS (line 12 in Algorithm 4), we compress data in memory first. For data
compression algorithms, we mainly focus on these two data compression formats,
“gzip” and “LZ4”.

To compress data to gzip format, we use Python’s built-in library, “gzip”. To
compress data to LZ4 format, we use the “lz4” PyPI package in Python. However,
in the implementation, Python’s built-in “gzip” doesn’t support write binary data
directly to HDFS, since the implementation of in memory compression are wrapped
in Python’s built-in “gzip” library, we have to extend “client” class in HdfsCLI, and
override its write function to make gzip suitable for HDFS.

For LZ4 compression format, “lz4” package has API to compress the data in mem-
ory. Hence, we can compress the data first, then write the compressed data to HDFS
directly.

For reading LZ4 compressed blocks, there is no direct solution to random access to
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LZ4 file, we have to decompress the whole file first, write to the disk and use NiBabel
to load image. For gzip file, we can use NiBabel to load a gzip file directly.

5.4 Experiments

5.4.1 Hardware, software

We are still using one NameNode and three DataNodes to run our program. Hardware
and software used in this chapter is the same as the cluster mode of Section 3.4.1 and
Section 3.4.2.

5.4.2 Data

As before, the image selected to perform such tests was the 40µm resolution BigBrain
image mentioned in Section 3.4.4.

5.4.3 Algorithm parameters

We have done two sets of experiments. All the experiments are splitting to 125 splits
with 2 G of memory. First, we read image data in uncompressed format, process and
compress them in memory, and write the gzip/LZ4 compressed data to HDFS. We
use 1 thread, 8 threads, 16 threads besides the main thread to run the program. Then
we read image data in gzip/LZ4 compressed format and after processing, we write
gzip/LZ4 compressed data to HDFS. We use 16 threads besides the main thread to
run the program. We set compression level of LZ4 and gzip to the highest level, that
is, we can get the highest compression rate.

5.5 Results

5.5.1 Read uncompressed, write gzip/LZ4 compressed

Figure 16 shows that when we are using compression formats, using multi-threading
can still bring performance improvements.

Furthermore, for both Multiple writes and Clustered writes, when we read un-
compressed data and write gzip/LZ4 compressed, LZ4 data format can bring some
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performance improvement over write uncompressed data. However, write gzip data
format slow down the whole system performance.

The reason is that LZ4 is extremely fast compression algorithm and it will utilize
multi-core CPUs to compress data which will bring little overhead. On the other
hands, compression in gzip is relative slow. Although we will write less for gzip
compressed compared to the uncompressed data, but it takes more time of the CPU
to compress the data in memory.

50



 0

 1000

 2000

 3000

 4000

 5000

1thread 8threads 16threads

S
pl

it 
tim

e 
(s

)

Number of Threads

Multiple writes on different file formats

Gzip
Uncompressed

LZ4

 0

 1000

 2000

 3000

 4000

 5000

1thread 8threads 16threads

S
pl

it 
tim

e 
(s

)

Number of Threads

Clustered writes on different file formats

Gzip
Uncompressed

LZ4

Figure 16: Different compression formats for Multiple writes and Clustered writes.
Top: experiments on Multiple writes. Bottom: experiments on Clustered writes.

The breakdown of total time in Figure 17 can still prove that LZ4 reduces write
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time and makes the whole process faster. For gzip, we cannot calculate in memory
compression time since it is built in Python’s library. So the write time includes the
compression time, which takes longer than using uncompressed and LZ4 compressed
data.

 0
 1000
 2000
 3000
 4000
 5000

gzip uncompressed lz4

S
pl

it 
tim

e 
(s

)

File formats

Split time breakdown for Multiple writes 
 on 16 threads, 125 splits

Calculation
Read
Write

 0
 1000
 2000
 3000
 4000
 5000

gzip uncompressed lz4

S
pl

it 
tim

e 
(s

)

File formats

Split time breakdown for Clustered writes 
 on 16 threads, 125 splits

Calculation
Read
Write

Figure 17: Split time breakdown of different compression formats for Multiple writes
and Clustered writes. Top: experiments on Multiple writes. Bottom: experiments on
Clustered writes.

From Figure 18, we can see that no matter writing gzip compressed or LZ4 com-
pressed, for fewer memory (Memory = 2 G), Multiple writes is better than Clustered
writes on 16 threads, 125 splits, which is the same as before.
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Figure 18: Split time comparison between Multiple writes and Clustered writes on
LZ4 and gzip format. Memory=2 G, using 1,8,16 threads. Top: comparison in LZ4
format. Down: comparison in gzip format.

5.5.2 Read compressed, write gzip/LZ4 compressed

When reading compressed, and writing compressed, we can see from Figure 19, gzip
compressed takes extremely longer than LZ4 compressed and uncompressed file for
either Multiple writes and Clustered writes. Reading and writing LZ4 compressed
won’t bring performance improvement compared to read and write uncompressed,
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since read gzip/LZ4 compressed file can bring more overhead than reading uncom-
pressed files directly.
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Figure 19: Split compressed image to compressed splits in Multiple writes and Clus-
tered writes. Memory=2 G, using 16 threads. Top: experiments on Multiple writes.
Bottom: experiments on Clustered writes.

From Figure 20, we can see that for splitting compressed image to compressed
splits, for fewer memory (Memory = 2 G), Multiple writes is always better than
Clustered writes on 16 threads, 125 splits no matter of gzip format or LZ4 format.
Splitting compressed image to compressed splits, have the same behaviour of both
splitting uncompressed image to compressed splits and using uncompressed file for
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the whole process, that is for fewer memory, Multiple writes is better than Clustered
writes.
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Figure 20: Comparison on splitting compressed image to compressed splits between
Multiple writes and Clustered writes. Memory=2 G, using 16 threads. Top: compar-
ison in LZ4 format. Down: comparison in gzip format.

5.6 Conclusion

When we have the input file uncompressed, and we need to write compressed files to
the disk, we can use LZ4 file format to compress data on-the-fly, which will improve
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our system’s performance and save disk space especially for sparse images.
For Multiple writes and Clustered writes, which is better depends on the split size

and available memory, compression format will not affect which algorithm is better.
For Clustered reads in merging, we cannot use on-the-fly gzip/LZ4 compression,

since Clustered reads in the write phase need to do reverse seeking, and gzip/LZ4
does not support it.
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Chapter 6

Conclusion and Future Work

We have proposed a new algorithm for splitting and merging ultra-high resolution
3D images, and compared it to the state-of-the art algorithm in various conditions.
We investigated parallelization of the Multiple reads/writes, and made the compari-
son with Clustered reads/writes. Last but not least, we investigated how on-the-fly
compression applies to our algorithms. Table 2 summarizes comparison between the
Multiple reads/writes and Clustered reads/writes in all the studied conditions.

We have a clear view on these algorithms and know which one can do better in
each circumstance. Next step, we will test our code on the cluster with more nodes
and work on converting the outputs to a RDD of Apache Spark 1, which will also be
beneficial for the ultra-high resolution 3D images processing pipeline [1]. Furthermore,
“re-splitting” algorithms would be beneficial in case an image already split needs to
be split in a different geometry. Designing such algorithms is part of our future work,
in which Clustered reads/writes and Multiple reads/writes will be used as starting
points [2]. We will keep studying how the compression works in the MINC file format
and compare it with Multiple reads/writes. Last but not least, we will keep working
on the library, writing more unit tests and improve the documentation.

1Apache Spark: https://spark.apache.org/
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Table 2: Conclusion

Condition Best algorithm Data Explanation

A few large blocks Multiple reads/writes
Split: Figure 8
Merge: Figure 9

The overhead of seeking in
Clustered reads is larger than
overhead of opening each
block in Multiple reads

A lot of small blocks Clustered reads/writes
Split: Figure 8
Merge: Figure 9

The overhead of seeking in
Clustered reads is smaller than
overhead of opening each
block in Multiple reads

Few memory Multiple reads/writes
Split: Figure 8
Merge: Figure 9

Clustered reads needs more
seeking when memory is low.

Lot of memory Either
Split: Figure 8
Merge: Figure 9

Both boil down to the same
number of seeks.

Speed up gained
for HDFS cluster

Multiple writes gets more
speed up

Split: Figure 15
Merge: N/A

In Clustered writes, the number
of files in a memory load is
limited, so parallel writes
are limited since HDFS does
not allow concurrent writes
to the same file.

gzip compression in HDFS
(only available on
splitting)

Multiple writes
Split: Figure 18
Merge: N/A

Clustered reads still
do random I/Os in the
reconstructed image, which
is not supported by
LZ4/gzip compression.

LZ4 compression in HDFS
(only available on
splitting)

Multiple writes
Split: Figure 18
Merge: N/A

N/A: not tested in this thesis.
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