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Abstract

Neural Network Approaches to Implicit
Discourse Relation Recognition

Andre Cianflone

In order to understand a coherent text, humans infer semantic or logical relations between

textual units. For example, in “I am hungry. I did not have lunch today.” the reader infers a

“causality” relation even if it is not explicitly stated via a term such as “because”. The linguistic

device used to link textual units without the use of such explicit terms is called an “implicit discourse

relation”. Recognising implicit relations automatically is a much more challenging task than in the

explicit case. Previous methods to address this problem relied heavily on conventional machine

learning techniques such as CRFs and SVMs which require many hand-engineered features.

In this thesis, we investigate the use of various convolutional neural networks and sequence-to-

sequence models to address the automatic recognition of implicit discourse relations. We demon-

strate how our sequence-to-sequence model can achieve state-of-the-art performance with the use

of an attention mechanism. In addition, we investigate the automatic representation learning of dis-

course relations in high capacity neural networks and show that for certain discourse relations such

a network does learn discourse relations in only a few neurons.
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Chapter 1

Introduction

1.1 Motivation

Understanding a discourse involves recognizing how its textual units are linked together to form

a coherent text. Recognizing such links automatically is known as discourse relation recognition

(DRR). Take for example the following sentence:

(Ex. 1) Get your facts first, and then you can distort ’em as much as you please.1

The underlined expression connects the first discourse argument (in italic), referred to as Arg1,

with the second discourse argument (in bold), referred to as Arg2, via a TEMPORAL discourse

relation. Understanding discourse relations has been shown to be beneficial to many tasks, includ-

ing sentiment analysis (Somasundaran et al., 2009), summarization (Louis et al., 2010), coherence

evaluation (Lin et al., 2011) and question answering (Jansen et al., 2014).

The underlined expression in (Ex. 1) is known as a discourse connective, and constitutes a strong

signal in the identification of discourse relations. When such a connective is present, the relation

is referrred to as Explicit. Today, the automatic recognition of Explicit discourse relation

is performed with near-human performance. In fact, (Pitler et al., 2008) showed that by solely

considering the Explicit’s discourse connective and ignoring the words in Arg1 and Arg2, one

can correctly predict the discourse relation sense with 93% accuracy. On the other hand, when the
1Quote by Mark Twain while interviewed by Rudyard Kipling. Page 180 of (Rudyard, 1899).
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discourse connective is missing, the discourse relation is referred to as Implicit. For example:

(Ex. 2) After two years of talks, plans for the venture are sufficiently advanced for the companies to

seek French and British government clearance. The companies hope for a final agreement

by year-end (2362)2

The connective accordingly is understood by the context and could have been inserted in (Ex. 2).

However, since the discourse connective is missing, the reader infers a causal relation in the dis-

course solely by the context.

In the case of Implicit discourse relation recognition (IDR), it is extremely challenging to

automatically predict these discourse relation senses due to the lack of a discourse connective. The

relation between the two arguments must be deduced by extracting the semantics. (Pitler et al., 2009)

presents the first work that addresses this task exclusively. Given the highly unbalanced distribution

of senses (see Chapter 2), the authors formulate the task as one-vs-all classification, previously

shown to be an appropriate approach to multiclass classification (Rifkin and Klautau, 2004). The

best combination of features achieves an F1-score on IDR of 21.96% for COMPARISON, 47.13%

for CONTINGENCY, 76.42% for EXPANSION and 16.76% for TEMPORAL, all very far from

the average F1-score of 93% in the Explicit case.

1.2 Goal of this Thesis

Past methods used for IDR have relied heavily on feature engineering (Pitler et al., 2009; Xue

et al., 2015) (see Chapter 2 for details). Motivated by recent research on the use of neural networks

for natural language processing, the goal of this thesis is to develop neural network architectures for

IDR. Instead of hand-crafting features, we want to develop architectures that not only automatically

learn such features, but are also better sense predictors. Furthermore, we hypothesize that a neural

network which takes into consideration discourse structure theory in its architecture can perform

better at IDR than a generic neural network.
2All examples in this thesis ending with a number in parenthesis come from the Penn Discourse Treebank (Prasad

et al., 2008), discussed in detail in Chapter 2. The number refers to the document ID.
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1.3 Contributions

This thesis presents a number of theoretical and practical contributions:

• the implementation of various convolutional neural networks for IDR, including our work at

CoNLL-2016 (Laali et al., 2016) (see Chapter 3)

• insights relating discourse theory and convolutional neural network architectures for IDR, and

the settings under which they work best (see Chapter 3)

• a novel architecture, based on sequence-to-sequence models, for IDR which achieves state-

of-the-art performance, to appear in (Cianflone and Kosseim, 2018) (see Chapter 4)

• insights into the possible automatic learning of discourse relation representation in unsuper-

vised learning (see Chapter 5)

1.4 Thesis Structure

This chapter briefly motivated the importance of discourse relations and the difficulty of IDR

with previous conventional machine learning approaches. Recent research inspired us to investigate

neural networks for IDR in this research. The rest of this thesis is structured as follows. Chapter 2

reviews the major discourse theories in use, the datasets used in our experiments, previous work

on IDR, and background theory on convolutional neural networks and recurrent neural networks

on which later chapters are based. Chapter 3 presents two variations of shallow CNNs, a system

with hierarchical CNNs as well as a CNN augmented with a recurrent layer. Chapter 4 presents

our work on sequence-to-sequence models for IDR, including a model achieving state-of-the-art

performance with the help of an attention mechanism. Chapter 5 examines unsupervised learning

of discourse relation sense. Finally, Chapter 6 summarizes the work in the thesis and proposes some

future experiments based on these findings.

3



Chapter 2

Related Work

Since this thesis focuses on implicit discourse relation recognition (IDR), we first briefly present

the main frameworks used in the study of computational discourse analysis. Discourse structures

represent the way humans organize or structure text to communicate. There are two popular ways

of viewing discourse structure in NLP: as a tree structure or as a linear structure. The tree structure

is the view taken by Rhetorical Structure Theory (RST) (Mann and Thompson, 1988), whereas the

linear structure is the view taken by the Penn Discourse Treebank (PDTB) (Prasad et al., 2008).

In Section 2.1 we give a brief overview of RST and give a more detailed description of the PDTB

in Sections 2.2 and 2.3 as we use this dataset throughout this thesis. We then describe previous

conventional machine learning and preliminary neural network approaches to IDR in Section 2.6.

In Section 2.7 we give the necessary background on convolutional neural networks and recurrent

neural networks to better appreciate our work in Chapters 2.7 and 2.8.

2.1 Rhetorical Structure Theory

The Rhetorical Structure Theory framework (Mann and Thompson, 1988) describes text in

terms of a tree structure, where each leaf is a textual unit, known as an Elementary Discourse

Unit (EDU). An EDU is the minimal unit of discourse. EDUs are linked to one another to form

nodes corresponding to contiguous text spans. An extensive sample tree is illustrated in Figure 2.1.

The tree describes how each node, or EDU, is related to another via a labelled arc, where the label

4



Figure 2.1: A sample RST tree from (Mann and Thompson, 1988). The tree corresponds to the
following text: [Farmington police had to help control traffic recently]A [when hundreds of people
lined up to be among the first applying for jobs at the yet-to-open Marriott Hotel.]B [The hotel’s
help-wanted announcement - for 300 openings - was a rare opportunity for many unemployed.]C

[The people waiting in line carried a message, a refutation, of claims that the jobless could be
employed if only they showed enough moxie.]D [Every rule has exceptions,]E [but the tragic and
too-common tableaux of hundreds or even thousands of people snake-lining up for any task with a
paycheck illustrates a lack of jobs,]F [not laziness.]G

on the arc corresponds to a discourse relation. Nodes can only be linked to adjacent text spans.

All nodes and EDUs are linked in a hierchical fashion. Take for example, clauses B and C from

Figure 2.1. The clause C is the context which explains the circumstances of clause B, hence the

discourse relation is labelled circumstance. The clause receiving the arrow is known as the nucleus,

since it is considered to carry the most important meaning in the discourse relation. The clause

from which the arrow leaves is known as the satellite, the supporting clause. RST tree structures

have been used in many NLP applications such as text summarization (Marcu, 1999), sentiment

analysis (Bhatia et al., 2015) and text classification (Ji and Smith, 2017). RST parsing can be done

automatically with discourse parsers such as the DPLP (Ji and Eisenstein, 2014).

The common dataset used for training RST parsers is the RST Discourse Treebank (RST-

DT) (Carlson et al., 2001). The RST-DT consists of 385 documents from the Penn Treebank (Mar-

cus et al., 1993), representing over 176,000 words. RST defines 78 relations grouped into 16 classes.

Given the complexity of implicit discourse relation recognition, the large number of RST relations

5



and the limited dataset, our work is based on the much larger and simpler Penn Discourse Tree-

bank (Prasad et al., 2008), also based on the Penn Treebank.

2.2 Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et al., 2008) dataset consists of 40,600 annotated

discourse relations and their arguments over the 1 million word Wall Street Journal (WSJ) corpus

on which the Penn Treebank (Marcus et al., 1993) is based1. Compared to the RST-DT, the PDTB

is based on the Discourse Lexicalized Tree-Adjoining-Grammar framework (Forbes et al., 2003;

Webber, 2004; Forbes-Riley et al., 2005). The PDTB structure takes a more “shallow” view of

discourse structures where relations are defined solely between adjacent sentences or close text

spans. There is no notion of nucleus, or satellite, and no hierarchical discourse structure. The two

textual units related by a relation are known as arguments (Arg1 and Arg2). The PDTB annotates

the beginning and end of Arg1 and Arg2 composing a discourse relation, a possible discourse

connective and the labelled discourse relation (called sense in the PDTB).

Samples in the dataset are first differentiated according to the syntactic expression of the dis-

course connective, called discourse annotation, such as Explicit or Implicit introduced in

Chapter 1.

The relation label, such as TEMPORAL, is referred to as discourse relation sense in the PDTB.

Discourse relation senses are not unique to an annotation, they can be the same for Explicit and

Implicit relations. While discourse relations are flat and not linked hierarchically, the relations

themselves are organized into a hierarchy. The details of the annotations and the inventory of the

senses are discussed in Sections 2.2.1 and 2.2.2.

The PDTB source files, following the PTB standard, is split into 24 sections where each section

has on average 1600 samples. Following the PTB tradition, the PDTB Manual (Prasad et al., 2008)

suggests that sections 2 to 21 be used for training, section 22 for validation and section 23 for

testing. Sections 0, 1 and 24 can additionally be used for validation. We refer to this section split

across training, validation and test datasets as the PDTB-split.
1Technically a few files from the PTB are not included in PDTB. See (Prasad et al., 2008) for details.

6



An alternative split is proposed by (Pitler et al., 2009) when classifying only top-level senses

for Implicit relations. Later work on IDR by various authors (Zhang et al., 2015a; Zhou et al.,

2010; Park and Cardie, 2012; Rutherford and Xue, 2014) also used the same split to make their work

comparable with (Pitler et al., 2009). In this scheme, sections 2-20 are used for training, sections

21-22 for testing and sections 0-1 for validation. We refer to this breakdown as the TOP-split.

2.2.1 Discourse Annotations

In Chapter 1 we briefly introduced the concepts of Implicit and Explicit relations. There

are 2 additional types of discourse relations. Like Implicit relations, AltLex, or alternative

lexicalization, are also not signalled by a connective. Unlike Implicit relation, it is signaled by a

textual expression, which stands as an alternative to a discourse connective. The last type EntRel,

for entity relation, connects two discourse arguments via an entity-based coherence relation. We

now review all forms of annotation with examples.

When discourse connectives are expressed in a text, these are labelled Explicit discourse

connective. For example:

(Ex. 3) The city’s Campaign Finance Board has refused to pay Mr. Dinkins $95,142 in matching

funds because his campaign records are incomplete. (0041)

In (Ex. 3) the discourse connective “because” is explicitly stated and acts to connect Arg1 and

Arg2. Arguments in Explicit relations are not necessarily adjacent to each other. In the case of

Implicit relations, the discourse connective is omitted as in:

(Ex. 4) The city’s Campaign Finance Board has refused to pay Mr. Dinkins $95,142 in matching

funds. His campaign records are incomplete. (0041)

While the text does not include a discourse connective, which is a strong signal of the dis-

course relation, the relation is still understood by the context, and a connective can be inferred.

For Implicit samples, the PDTB dataset additionally includes a suggested discourse connective

that could be inserted between the two arguments. With Implicit relations, Arg2 is always the

sentence immediately following Arg1, also a sentence.

7



Training Validation Test
Explicit 14722 680 923
Implicit 13156 522 769
AltLex 524 19 30
EntRel 4133 215 217
NoRel 204 8 4
Total 32739 1444 1943

Table 2.1: PDTB dataset breakdown with respect to annotation types. WSJ sections 2 to 21 are
used for the training set, section 22 for validation and section 23 for testing. Sections 0,1 and 24 are
not included in this table. In the CoNLL-2015 and CoNLL-2016 tasks, the above annotations are
split between Explicit and Non-Explicit, where the latter includes Implicit, AltLex
and EntRel relations. The dataset breakdown for Non-Explicit is: 17,813 for training, 756
for validation and 1016 for testing.

There are cases however where no such Implicit connective can be inferred, but a relation

still exists. This is the case for the so-called AltLex relations where the relation is alternatively

lexicalized by another expression and inserting a discourse connective would make the expression

of the relation redundant. For example:

(Ex. 5) During the latter part of the 19th century, Russia was on a gold standard and had gold

reserves representing more than 100% of its outstanding currency, but no one outside Russia

used rubles. The Bank of England, on the other hand, had gold reserves that averaged about

30% of its outstanding currency, and Bank of England notes were accepted throughout the

world. [The most likely reason for this disparity] is that the Bank of England was a

private bank with substantial earning assets, and the common-law rights of creditors to

collect claims against the bank were well established in Britain. (0985)

The AltLex expression between the brackets acts as a “non-connective expression”, an ex-

pression inferring a relation and acting like a discourse connective. Adding a discourse connective

would break the text coherence, unlike in the Implicit case. The PDTB dataset contains very

few samples of AltLex, as observed in Table 2.1. As such we have not considered AltLex in our

work.

A second case is the EntRel case where no discourse relation is inferred but an entity-based

coherence occurs. For example, in (Ex. 6) the same entity (Mr. Milgrim) is realized in Arg1 and

Arg2, as in:
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(Ex. 6) Hale Milgrim, 41 years old, senior vice president, marketing at Elecktra Entertainment Inc.,

was named president of Capitol Records Inc., a unit of this entertainment concern. Mr.

Milgrim succeeds David Berman, who resigned last month. (0945)

EntRel are closely related to the EXPANSION class and Implicit connectives, and thus

are often included in Implicit relations (see Section 2.2.2).

In the event of absence of discourse relation or entity-based coherence, the sentence pairs are

simply labelled NoRel. There are also very few NoRel in the PDTB, as seen in Table 2.1. For this

reason, these cases have not been considered in our work.

2.2.2 Discourse Sense

The discourse annotations Explicit, Implicit and AltLex share a discourse sense tagset.

EntRel, on the other hand, is simply labelled with the sense EntRel. In the PDTB, discourse

senses are hierarchically structured, with four top-level classes of discourse relations: TEMPORAL,

CONTINGENCY, COMPARISON and EXPANSION; as well as level 2 types and level 3 subtypes.

The full sense hierarchy is shown in Figure 2.2, the top-level distribution can be found in Table 2.2,

and the fine-grained distribution in Table 2.3. This thesis is only concerned with sense prediction of

Implicit and EntRel relations, and so Tables 2.2 and 2.3 do not include Explicit relations

data.

The TEMPORAL sense class indicates that the two arguments are linked temporally. For ex-

ample:

(Ex. 7) But a Soviet bank here would be crippled unless Moscow found a way to settle the $188

million debt, which was lent to the country’s short-lived democratic Kerensky government

before the Communists seized power in 1917. (0035)

(Ex. 7) is labelled with sense TEMPORAL:Asynchronous:precedence, where Asynchronous

indicates the arguments are temporally ordered, and precedence indicates Arg1 precedes Arg2. As

observed in Table 2.2, TEMPORAL is the smallest of the classes. Due to its small size, classifying

TEMPORAL can be problematic, as discussed in Chapter 4.

9



Figure 1: Hierarchy of sense tags

e.g., “Contrast” vs “Concession”. Cases when one anno-
tator picked a class level tag, e.g., “COMPARISON”, and
the other picked a type level tag of the same class, e.g.,
“Contrast”, did not count as disagreement. At the sub-
type level, disagreement was noted when the two annotators
picked different subtypes, e.g., “expectation” vs. “contra-
expectation”. Higher level disagreement was counted as
disagreement at all the levels below. Inter-annotator agree-
ment is shown in Table 3. Percent agreement, computed for
five sections (5092 tokens), is shown for each level. Agree-
ment is high for all levels, ranging from 94% at the class
level to 80% at the subtype level.
Class level disagreement was adjudicated by a team of three
experts. Disagreement at lower levels was resolved by pro-
viding a sense tag from the immediately higher level. For
example, if one annotator tagged a token with the type
“Concession” and the other, with the type “Contrast”, the
disagreement was resolved by applying the higher level tag
“COMPARISON”. This decision was based on the assump-
tion that both interpretations were possible, making it hard
to determine with confidence which one was intended.

LEVEL % AGREEMENT
CLASS 94%
TYPE 84%
SUBTYPE 80%

Table 3: Inter-annotator agreement

Table 4 shows the distribution of “CLASS” level tags in the
corpus. Each “CLASS” count includes all the annotations
of the specified “CLASS” tag and all its types and subtypes.
The total of Explicit, Implicit and AltLex tokens is shown

in parentheses at the top row. The total of sense tags ap-
plied to these categories is shown at the bottom of the table.
The numbers differ because some tokens may have been
annotated with two senses.
Table 5 shows the top ten most polysemous connectives and
the distribution of their sense tags. The total number of
tokens whose sense tags occurred less than ten times are
shown as other. The connectives after, since and when,
which typically relate non-simultaneous situations, are am-
biguous between “TEMPORAL” and “CONTINGENCY”
senses. The connectives while and meanwhile, which typ-
ically relate simultaneous situations, are ambiguous be-
tween the “TEMPORAL” and “COMPARISON” senses.
The connectives but, however and although are ambigu-
ous between the “Contrast” and “Concession” types and
subtypes of “COMPARISON” but rarely between different
classes of senses. The connective if is ambiguous between
subtypes of “Condition” and some pragmatic uses.

4. Attribution Annotation
Recent work (Wiebe et al., 2005; Prasad et al., 2005) has
shown the importance of attributing beliefs and assertions
expressed in text to the agent(s) holding or making them.
Such attributions are a common feature in the PDTB cor-
pus which belongs to the news domain. Since the discourse
relations in the PDTB are annotated between abstract ob-
jects, with the relations themselves denoting a class of ab-
stract objects (called “relational propositions” (Mann and
Thompson, 1988)), one can distinguish a variety of cases
depending on the attribution of the discourse relation or its
arguments: that is, whether the relation and its arguments
are attributed to the writer (e.g., attribution to the writer in

2965

Figure 2.2: Hierarchy of discourse relations in the PDTB. Credit: (Prasad et al., 2008)
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Top Level Nb Implicit Instances
TEMPORAL 950
CONTINGENCY 4185
COMPARISON 2832
EXPANSION 8861
Total 16828

Table 2.2: Top-level breakdown of the PDTB with EntRel merged into EXPANSION. Note here
we are using the Implicit term to mean both Implicit and Entrel, excluding AltLex,
following the standard set by (Pitler et al., 2009).

When Arg1 and Arg2 causally influence each other, the discourse relation is labelled with the

sense CONTINGENCY. For example:

(Ex. 8) USAir has great promise. By the second half of 1990, USAir stock could hit 60. (1881)

is labeled as CONTINGENCY:Cause:reason. The type Cause and reason indicate that Arg2 is

the cause and Arg1 is the effect.

The EXPANSION class indicates that Arg2 expands the discourse introduced by Arg1. For

example:

(Ex. 9) He says he spent $300 million on his art business this year. A week ago, his gallery racked

up a $23 million tab at a Sotheby’s auction in New York buying seven works, including

a Picasso. (0800)

is labelled EXPANSION:Instantiation where Instantiation indicates Arg2 gives more detail

about Arg1. Given that most frameworks consider EntRel to be a subset of EXPANSION, we

follow the convention set by (Pitler et al., 2009): when considering only the top-level classifica-

tion we merge EntRel into Implicit relation’s EXPANSION class sense. The combined class

results in a relatively much larger class, as observed in Table 2.2.

The final top-level sense class COMPARISON labels those relations which indicate differences

in the situation between Arg1 and Arg2. For example:

(Ex. 10) Operating revenue rose 69% to A$8.48 billion from A$5.01 billion. But the net interest bill

jumped 85% to A$686.7 million from A$371.1 million. (1449)
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is labelled COMPARISON:Contrast:juxtaposition, where Contrast indicates a contrast in the

values of a shared property across Arg1 and Arg2, and juxtaposition indicates those values can be

alternatives of each other. As shown in Table 2.2, COMPARISON is also a small class which can

be problematic to classify, discussed in Chapter 4.

For an extensive review of all classes, types, and subtypes, please refer to the PDTB 2.0 Man-

ual (Prasad et al., 2008).

Important note on terminology: In Chapters 3 and 4, we include EntRel relations as part

of an Implicit EXPANSION relation only when classifying the top-level relations (see Sec-

tion 2.2.2). In this case, we refer to the combined set simply as Implicit relations, despite

including EntRel. This has been done to follow the common practice in the literature (Pitler and

Nenkova, 2009; Zhou et al., 2010; Rutherford and Xue, 2014). However, in classifying the lower

level senses (see Section 2.2.2), we keep EntRel as a separate annotation, which has no labelled

sense. Additionally, when referring to relations which are not Explicit, including Implicit,

EntRel and AltLex, we use the term Non-Explicit relations, the preferred term in (Xue

et al., 2015, 2016).

2.3 The CoNLL Dataset and Shared Task

In 2015 and 2016, the Conference on Natural Language Learning (CoNLL) held a shared task on

Shallow Discourse Parsing (SDP), which we will respectively refer to as CoNLL-2015 (Xue et al.,

2015) and CoNLL-2016 (Xue et al., 2016). The two shared tasks introduced a slightly modified

version of the PDTB, which we denote C-PDTB. The C-PDTB dataset consists of the full PDTB

dataset with a minor reduction in the number of subtypes, detailed in (Xue et al., 2015). CoNLL-

2015 and CoNLL-2016 focused on fine-grained classification, meaning classifying the lowest level

discourse relations in the discourse hierarchy of Figure 2.2. All work in this thesis on fine-grained

classification uses the C-PDTB dataset.

In addition to including all of the PDTB, the C-PDTB includes a blind test set, a second test set

created specifically for CoNLL-2015 and reused for CoNLL-2016, but only released to participants

following the CoNLL-2016 conference. The blind test set consists of newswire text selected from
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English Wikinews2, accessed October 22nd, 2014. The annotation is consistent with WSJ-style

text and manually annotated with discourse relations and connectives (Xue et al., 2015). The text

selected for the blind dataset was chosen to resemble the WSJ in terms of grammar, style, and

length. When labelling discourse relation senses on the Wikinews dataset, annotator agreement

reached 91.0% for Explicit relations, and 80.9% for Non-Explicit relations. This highlights

the difficulty of labelling Implicit and other Non-Explicit relations, even for humans. The

blind test was used to officially rank systems at CoNLL-2015 and CoNLL-2016. Therefore we also

base our performance on the blind test set. Since this thesis focuses on fine-grained classification for

Non-Explicit relations, we list the C-PDTB breakdown in Table 2.3 for Implicit relations

and EntRel, ignoring AltLex due to its relatively small size. However, note that the C-PDTB

dataset includes AltLex.

2.4 Metrics

In this thesis, when performing discourse relation sense classification, we will measure the

performance of our classification with accuracy or F1-score. Accuracy is simply a measure of the

number of correctly classified instances, irrespective of their relevancy, giving equal importance to

positive (relevant) samples and negative (non-relevant) samples. Accuracy is not a proper metric in

case of one-vs-all classification for IDR.

Consider the sample distribution for the sense EXPANSION and TEMPORAL in Table 2.4.

While the EXPANSION class is somewhat balanced at 56.7% positive and 43.3% negative, the

TEMPORAL is extremely unbalanced at 5.4% positive and 94.6% negative. A classifier always

predicting the largest class would achieve accuracy of 56.7% for EXPANSION and an impressive

94.6% for TEMPORAL. While the classifier seems to perform quite well in case of TEMPORAL,

it actually does not since we value the correct identification of positive samples. We quantify our

classifier with two desired properties: precision and recall.

Precision P measures the relevance of selected items, specifically the ratio of true positives Tp

to the sum of Tp and false positives Fp:

2https://en.wikinews.org
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Implicit Sense Train Validation Test
EXPANSION:Conjunction 3227 120 141
EXPANSION:Restatement 2486 101 190
CONTINGENCY:Cause:reason 2059 73 113
COMPARISON:Contrast 1614 82 127
CONTINGENCY:Cause:result 1372 49 89
EXPANSION:Instantiation 1132 47 69
TEMPORAL:Asynchronous:precedence 418 25 7
COMPARISON:Concession 193 5 5
EMPORAL:Synchrony 153 8 5
COMPARISON 145 1 0
EXPANSION:Alternative:chosen-alternative 142 2 15
TEMPORAL:Asynchronous:succession 125 3 5
EXPANSION 73 6 3
EXPANSION:Alternative 11 0 0
CONTINGENCY:Condition 2 0 0
TEMPORAL 1 0 0
EXPANSION:Exception 1 0 0
CONTINGENCY:Cause 1 0 0
CONTINGENCY 1 0 0
Total 13156 522 769
EntRel 4133 215 217

Table 2.3: C-PDTB fine-grained sense distribution for Implicit relations with the addition of
EntRel. Although the PDTB framework considers senses as hierarchical with up to 3 levels, some
discourse samples do not have clear third level subtypes or even second level types, which explains
why some of the above senses have fewer than three levels. C-PDTB considers Non-Explicit
to also include AltLex. However, since AltLex samples are quite few, we ignore these. For an
extensive sense breakdown, see (Xue et al., 2015).

Relation Test (positive/negative)
EXPANSION 671 / 512
TEMPORAL 64 / 1119

Table 2.4: The distribution of a sample dataset for two one-vs-all binary classifiers for discourse
relation sense classes. Notice the relative balance of class EXPANSION and large imbalance of
class TEMPORAL.
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P =
Tp

Tp + Fp
(1)

Whereas recall R scores the quantity of selected items compared to all relevant items, specifi-

cally it calculates the ratio of Tp to the sum of Tp and false negatives Fn:

R =
Tp

Tp + Fn
(2)

In the case of TEMPORAL class in Table 2.4 a max-prior system would always predict the

label other, as in not-TEMPORAL, resulting in both an precision and recall score of 0, despite an

accuracy of 94%. If the classifier predicts a single discourse relation as TEMPORAL, which turns

out to be correct, and the rest as other, it would have precision of P = 1
1+0 = 100%, a perfect

precision score. Recall on the other hand would be R = 1
1+63 = 1.56%, a terrible score. Hence,

recall helps to counteract precision in the event the system returns as few positive labels as possible.

Combining the two results in the F1-score:

F1 = 2 · 1
1

recall +
1

precision
= 2 · precision · recall

precision + recall
(3)

which is the harmonic mean of precision and recall.

An additional metric to consider is model perplexity. We do not calculate perplexity for clas-

sification, but consider it when selecting parameters from a language model (see Chapter 5). A

language model computes the probability of a sequence of words x = [x1, x2, . . . , xN ], where each

word xi depends on all previous words x1, . . . , xi−1. We evaluate the language model’s perfor-

mance by calculating per word perplexity PP as:

PP = exp

(
− 1

N

N∑
i=1

logeq(xi)

)
(4)

where q is the model’s approximate distribution of the true language probability distribution

p. Since words wi are taken from actual test, a good model should give high probability to wi.

The lower the perplexity score the better. The Penn Treebank (Marcus et al., 1993) is a common

benchmark on which language models are tested. In only the past few years, published perplexity
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scores on the PTB have improved quite significantly from 92.0 (Mikolov and Zweig, 2012), to

72.1 (Grave et al., 2017) and an astoundingly low recent state-of-the-art of 52.8 (Merity et al., 2018).

The ability of recurrent neural networks to model language with such performance motivates our

use of RNNs in Chapter 4.

2.5 Implicit Discourse Relation Tasks

The full task at CoNLL-2015 (Xue et al., 2015) and CoNLL-2016 (Xue et al., 2016) consists

of not only predicting the discourse relation sense for Explicit and Non-Explicit relations,

but also segmenting Arg1 and Arg2 as well as annotating the discourse connective in case of

Explicit relations. Such an approach is called end-to-end discourse relation parsing. This thesis

focuses only on discourse relation sense prediction. Therefore, when using the data from the PDTB

for top-level classification, and the C-PDTB fine grained classification, we use the data already

segmented between Arg1 and Arg2. The classification task in this thesis consists only of sense

prediction in cases where the discourse connective is missing, including Implicit relations and

EntRel.

Furthermore, given the difficulty of automatic IDR, most previous work focuses only on top-

level classification; i.e. classifying only the four top-level relations with EntRel merged into

Implicit class EXPANSION as preferred by (Pitler et al., 2009; Rutherford and Xue, 2014; Ji

and Eisenstein, 2015). When comparing our work with these authors, we also focus only on top-

level classification. The first work on classifying top-level senses on the PDTB focusing exclusively

on Implicit relations was carried out by (Pitler et al., 2009). Given the unbalanced dataset,

as shown in Table 2.2, the authors formulated the task as four one-vs-all binary classifiers. The

training, validation and test datasets are thus composed of positive and negative samples. Our

specific procedure for our experiment is discussed in Chapter 3.

When comparing our work with those of CoNLL-2016, we perform fine-grained classification

where we predict the low-level subtypes. In fine-grained classification, EntRel is not merged with

Implicit’s EXPANSION class, it is predicted along with other senses as shown in Table 2.3. To

facilitate the reading, for each experiment in this thesis, the task of either top-level or fine-grained
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classification will be specified. In all cases, when classifying top-level senses, the PDTB dataset

with the TOP-split is used. When classifying fine-grained senses, the C-PDTB dataset with the

PDTB-split is used.

2.6 Previous Approaches to Implicit Discourse Relation Recognition

We turn to reviewing previous work on IDR over the PDTB. We split this section into con-

ventional machine learning, and neural network approaches. By conventional we simply refer to

non-neural network approaches, including conditional random fields (CRFs), support vector ma-

chines (SVMs) and naive Bayes classifiers. The split is motivated by the dramatic shift in IDR

research between 2015 and 2016, which saw much interest in deep learning, along with the wider

NLP community. In Section 2.6.1 we also include rule-based approaches for brevity, which are

technically not machine learning algorithms.

2.6.1 Conventional Machine Learning Approaches

Early work by (Pitler et al., 2009) established the first results on IDR over the PDTB, and

commonly used as baseline ever since. They showed how a CRF classifier (Lafferty et al., 2001)

could outperform a naive Bayes classifier given certain features. The features used by the CRF that

were strongest indicators of discourse relation included word polarity, verb classes and orientation,

and certain lexical features. Additionally, these features are not consistent across discourse relation

classes. For example, for CONTINGENCY, the best features were verb information and first, last

and first three words, whereas for expansion they were polarity tags and inquirer tags. Commonly

used features are listed in Table 2.5.

(Zhou et al., 2010) showed how to augment the feature model with a language model to get

better performance for certain discourse relation senses. (Rutherford and Xue, 2014) showed that

Brown cluster pair features contribute to IDR.

Various combinations of the features listed in Table 2.5 are typically used with the following

algorithms: naive Bayes (Pitler et al., 2009; Park and Cardie, 2012), SVM (Zhou et al., 2010;

Rutherford and Xue, 2014), maximum entropy (Pitler et al., 2009; Rutherford and Xue, 2014),
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Feature Description
FirstLast-First3 The first and last words as well as the first three words of

each argument are extracted.
Polarity Words are assigned polarity according to the Multi-

perspective Question Answering Opinion Corpus (Wilson
et al., 2005). The feature is the number of negative positive,
non-negated positive, negative and neutral sentiment words.

Verbs The number of verb pairs across Arg1 and Arg2 which
come from a common verb class.

Word Pairs After stemming, all words in Arg1 are grouped into W1,
words in Arg2 are grouped into W2. Then, possible word
pairs (wi, wj)(wi ∈W1, wj ∈W2) are generated.

Inquirer Tags Look at semantic categories of each word in discourse argu-
ments. The tags are drawn from the General Inquirer Lex-
icon (Stone and Hunt, 1963), which correspond to negated
and non-negated fine-grained semantic classification for the
verbs in each argument.

Production Rules Extract all possible production rules from arguments, check
whether rules appear in Arg1, Arg2, or both.

Money, Percent-
ages and Numbers

The count of: currency symbols and abbreviations, percent-
ages signs or the word “percent”, as well as numbers in each
discourse argument.

Dependency Rules Extract all rules form the dependency trees of arguments.
Define 3 binary features for each rule and check whether
the rules appear in Arg1, Arg2 or both.

Context If previous or following discourse is an Explicit dis-
course relation, use the connective as feature.

Brown Cluster Each word in Arg1 and Arg2 is mapped to its correspond-
ing Brown cluster assignment, which can be 1 of 3.200 clus-
ters. The Cartesian product is calculated over the words in
Arg1 and Arg2.

Table 2.5: Commonly used features for implicit discourse relation recognition (Pitler et al., 2009;
Zhou et al., 2010; Park and Cardie, 2012; Biran and McKeown, 2013; Rutherford and Xue, 2014;
Xue et al., 2015).
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System Learning Methods Resources Used
ECNU Naive Bayes, MaxEnt Brown cluster, MPQA sub-

jectivity lexicon
Concordia C4.5 ClearTK, syntactic parse
Trento CRF++, AdaBoost Brown clusters, dependen-

cy/phrase structure parses
NTT SVM Brown clusters, dependency

trees
AU KBC CRF++, rules MPQA, VerbNet, Brown

clusters
Dublin 2 LibSVM, Theano, Word2Vec Brown clusters

Table 2.6: System descriptions at CoNLL-2015, selected reproduction of Table 4 from (Xue et al.,
2015). The examples were selected to highlight the variety of algorithms used, all of which are
conventional machine learning approaches with the exception of Dublin 2.

AdaBoost (Pitler et al., 2009).

At CoNLL-2015 (Xue et al., 2015), for the task of fine-grained sense classification, discourse

parsers relied exclusively on many conventional machine learning approaches and features. In Ta-

ble 2.6, we reproduce part of Table 4 from (Xue et al., 2015) to show the wide spectrum of ap-

proaches used by researchers.

Many more systems not shown in Table 2.6 used the same conventional machine learning meth-

ods. A single system, Dublin 2 (Okita et al., 2015), used neural networks for sense classification.

The system uses a paragraph vector model to obtain phrase embeddings (Le and Mikolov, 2014),

but did not perform as well as conventional approaches listed in Table 2.6.

Hand-crafting features for IDR can be extremely tedious and overly task specific. Addition-

ally, best feature combinations vary across discourse relation classes. For the one-vs-all classifiers,

(Park and Cardie, 2012) found the best features for COMPARISON were FirstLast-First3, verbs,

and production rules, whereas for TEMPORAL they were polarity, inquirer tags and production

rules. To reduce the over-reliance on task specific and sparse features, (Rutherford and Xue, 2014)

show that adding Brown clustering (Brown et al., 1992) features for IDR leads to significant per-

formance gain, when using along with the traditional features listed in Table 2.5. The feature is the

computed Cartesian product of Brown cluster assignment across Arg1 and Arg2. Brown clusters

are interesting features as they are data-driven and theory-independent, the same intuition which

motivates later neural network approaches to IDR.
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An additional issue to relying on hand-crafted features is that performance can also be extremely

sensitive to preprocessing. For example (Park and Cardie, 2012) found that for features dependent

on lexicons, such as polarity and inquirer tags, a failure to properly stem words decreased F1 score

by roughly 10%. The reason is simply because the feature cannot be passed to the classifier if the

words are not matched with the lexicon.

Using word embeddings somewhat alleviates the preprocessing issue (Mikolov et al., 2013b)

when using pretrained embeddings which include a vast vocabulary size. Various word spelling

should be present and have similar vectorized representation, ensuring exploitation of embedding

features.

2.6.2 Neural Network Approaches

To our knowledge, (Li et al., 2014) present the first work applying neural networks to discourse

parsing. They propose a recursive network (Goller and Kuchler, 1996) that predicts related clauses

and their sense on the RST-DT (see Section 2.1 for details on the RST-DT). The network combines

two clauses recursively, where the representation of a parent is based on its children. The recursion

follows a constituent parse tree structure, a technique developed by (Socher et al., 2013).

A related approach is implemented by (Ji and Eisenstein, 2015) on the PDTB, but focusing

solely on sense prediction. The model uses word embeddings based on Word2Vec (Mikolov et al.,

2013b). A vectorized representation of an argument is calculated which is then augmented with

the vector representation of the argument’s entity, if such an argument contains an entity coreferent

to the matching argument. In addition to word embeddings, the model includes additional features

such as: word pair features, constituent parse features, dependency parse features and contextual

features. Their approach achieves state-of-the-art accuracy on level-2 discourse relations as well as

top-level classification in the case of 4 one-vs-all binary classifiers. The downside of this approach

is its reliance on engineered features. Despite the use of neural networks, the basic recursive net-

work underperforms previous state-of-the-art non-neural network approaches on level-2 multiclass

classification with an accuracy of 36.98% vs 40.2% by (Lin et al., 2009). Only once adding the

entity semantics and surface features does the network achieve a state-of-the-art 44.59% accuracy.

The top-level state-of-the-art results are shown in Table 2.7.
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Author Comparison Contingency Expansion Temporal
(Pitler et al., 2009) 21.96 47.13 76.42 16.76
(Zhou et al., 2010) 31.79 47.16 70.11 20.30
(Park and Cardie, 2012) 31.32 49.82 79.22 26.57
(Rutherford and Xue, 2014) 39.70 54.42 80.44 28.69
(Ji and Eisenstein, 2015) 35.93 52.78 80.02 27.63
(Zhang et al., 2015a) 33.22 52.04 69.59 30.54

Table 2.7: F1-scores of selected work on top-level implicit discourse relation recognition. Note
EntRel is merged into EXPANSION as is done in the above listed works.

(Zhang et al., 2015a) propose the first neural network approach IDR relying solely on distributed

representations of the discourse input, ignoring previously used features such as first, last words,

part-of-speech tags and production rules (see Table 2.5). Unfortunately, the model does not perform

as well as (Lin et al., 2009) or even non-neural network approaches. However, it is a promising

approach which motivated future development on neural networks for IDR, including our own (see

Chapter 3).

2.7 Convolutional Neural Networks

As seen in Section 2.6.2, neural network approaches have begun to be used for IDR around

2015. Most of these models are based on convolutional neural networks (CNNs), inspired by Zhang

et al. (2015a) and other work on sentence classification with CNNs (such as Kim (2014); Zhang et al.

(2015b)). The insight into these many works is that neural networks are better suited at capturing

semantic clues between the two arguments of an implicit relation than traditional methods heavily

reliant on feature engineering, as in Pitler et al. (2009); Xue et al. (2015).

We introduce convolutional neural networks of the kind used in computer vision. In its classical

formulation, a CNN for classification is composed of repeated pairs of convolutional and pooling

(subsampling) layers, a penultimate fully connected layer, and finally a softmax output layer (LeCun

et al., 1995). For example, the CNN by (LeCun et al., 1995) shown in Figure 2.3 used for hand-

writing recognition consists of two iterations of convolution and pooling.

At the heart of a CNN is the kernel. A kernel is a small convolving tensor, commonly referred

to as a window, that scans an input and outputs “features”. This convolutional layer automatically

learns local relationships between neighbouring words, while upper hidden layers can represent
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Figure 2.3: A classic convolutional neural network for image processing; in this example, handwrit-
ing recognition. Credit: (LeCun et al., 1995)

hierarchical features, akin to parse trees in the linguistic context. As information flows higher in the

neural network, more “abstractive” features are learned.

Consider the simplified setup shown in Figure 2.4 for the input sentence It has made a promising

start. One way to think of convolutions is as a sequence of operations. The operations centered at

the words has and made result in output vectors c2 and c3,

c2 = f(Wxhas + b)

c3 = f(Wxmade + b)

(5)

Where W ∈ Rh×k is the kernel weight matrix multiplied by vector xhas = [x1, x2, x3] and

xmade = [x2, x3, x4], h is the convolution output size, k is the window width, and f is a non-

linearity. The parameters W and b are shared throughout the sequence. The nodes in Figure 2.4

represent real-valued numbers. In this simplified setup, each word is swapped with a real number

found in a lookup table. Hence the entire input x is simply a real-valued vector. In Figure 2.4,

the kernel tensor is a 3 × 3 matrix with 9 values (weights) learned by the neural network. A sin-

gle multiplication of this matrix over the partial sequence [x2, x3, x4] results in the feature vector

[c3,1, c3,2, c3,3].

The CNN effectively learns how to combine tuples of neighbouring words (3 words in this case)

throughout the sentence. The convolution thus maps the input layer into an abstracted, yet con-

strained representation. This neighbour constraint results in the output layer having some properties
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approximating the conditional probability distribution of a word sequence (see Section 3.2.4). The

convolutions are followed by non-linearities and pooling, which we describe in Section 3.3.1.

2.8 Recurrent Neural Networks

Recurrent neural networks (RNNs) in the most general terms refer to neural networks with a

computational node whose output at a time step is used as input at the next time step. Originally,

an RNN referred to a very specific formulation which we introduce next. To reduce confusion, we

refer to such a network as a Vanilla RNN, and RNN to mean any type of recurrent network. The

original formulation of recurrent neural networks of the kind introduced for NLP (Rumelhart et al.,

1986; Werbos, 1990; Elman, 1990) have the following simple form:

ht = fh(Whxt + Uhht−1 + bh) (6)

yt = fy(Wyht + by) (7)

where xt is the input vector, ht is the hidden state, yt is the output vector, W,U are trainable

parameter matrices, and b is a trainable vector. fh and fy are non-linear activation functions such as

sigmoid or softmax. The corresponding structure is illustrated in Figure 2.5.

As shown in Figure 2.5, an RNN’s output is closely aligned with its input. The alignment

constraint is a reasonable assumption for sequential modelling, such as language modelling, where

the current time step’s output is the next time step’s input. However, this constraint is inappropriate

for predicting an entire sequence only once the network is given an entire input sequence, such

as in dialogue generation or translation. In addition to the alignment issue, the source and target

sequences can vary greatly in length. Mapping a variable length sequence to another variable length

sequence is referred to as transduction (Graves, 2012). Encoder-decoders are the neural network

approach to model such tasks.

Although several neural network approaches have been proposed for IDR, to our knowledge

none have investigated the use of encoder-decoder models with attention, an approach success-

fully applied to machine translation. To improve translation, notably for longer sentences, a neural
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Figure 2.4: A simple convolution operation with a kernel of window size 3, stride of 1, and output
of 3. In this simplified setup, words are represented by a single real number. The kernel begins at
the word it, convolves over it and has and outputs a real-valued vector of size 3, called a feature.
The kernel then moves one unit to the right (stride of 1) and convolves over it, has and made and
again outputs a vector. Since the input is a single unit for each word, the window size is 3 by 1, and
output size is 3, there are: (1 × 3) × 3 + 3 = 12 kernel parameters to learn. These parameters are
shared across each convolution operation. The concatenation of all features forms a feature map.
Note that the bias term is omitted in the figure for clarity.
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Figure 2.5: A simple recurrent neural network in recursive form (left) and unrolled through time
(right). The matricesWy,Wh and Uh are shared across time and trainable through backpropagation.
This graph shows the recurrent neural network at training time where xt may be equal to yt−1. The
training objective is to predict the next input, that is for yt to equal xt+1. Therefore, at test time the
current time step prediction is used as the next time step’s input: xt = yt−1.

translation model is augmented with an attention mechanism uniquely purposed for capturing align-

ment (Bahdanau et al., 2015). The alignment model scores how well the input words from the source

language match output words in the target language. Inspired by this work, in Chapter 4 we used

attention to leverage this alignment scoring for IDR as word-pair features have be shown to con-

tribute to IDR (Pitler et al., 2009; Biran and McKeown, 2013). However, unlike these methods we

make no feature engineering.

In this chapter we reviewed the main discourse theories and explained how these relate to the

work in this thesis on implicit discourse relation recognition. We introduced the RST framework

with hierarchical discourse structure and concluded the PDTB structure was more appropriate to our

research due to its simpler assumptions and larger dataset. The most relevant features of the PDTB

dataset were introduced: the difference between Explicit, Implicit, EntRel relations, as

well as details of top level discourse relations senses.

We reviewed previous work on IDR and noted how much work focused heavily on engineering
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features with varying levels of success. In addition, best features were shown to be inconsistent

across discourse relation senses, making a successful IDR classifier even more task specific. We

presented preliminary work on IDR with neural networks as well as other NLP research which

motivates the focus in this thesis on neural network architecture as opposed to feature engineering.

Finally, we explained the necessary background theory to CNNs and RNNs on which Chapters 3

and 4 are built.
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Chapter 3

Convolutional Networks for Implicit

Discourse Relation Recognition

In this chapter we present our work on the use of convolutional neural networks (CNNs) for

Implicit discourse relation recognition (IDR) and examine the various approaches we experi-

mented with.

3.1 CNN for NLP

Since their earliest inception convolutional neural networks, or CNNs, showed great potential

in computer vision classification tasks. In the original work formulating CNNs, (LeCun, 1989)

showed how a network constrained to local connections and shared weights could increase digit

recognition accuracy by more than 10% on a given dataset. The constrained network accomplishes

this by extracting local features that are combined at higher layers to form more abstract information.

As discussed in Chapter 3, CNNs, along with other deep neural networks, emerged onto the

mainstream in the last few years due to their impressive performance in many realms, such as

computer vision (Krizhevsky et al., 2012), speech recognition (Graves et al., 2013) and machine

translation (Bahdanau et al., 2015). The first work by (Krizhevsky et al., 2012) showed how CNNs

could significantly outperform previous, non neural network methods, when given enough capacity.

Adopting neural network architectures for NLP tasks entails particular challenges not present
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in the field of computer vision, notably the question of how to convert the input (i.e. words) into a

numerical representation for the neural network’s input layer. The basic setup for neural networks

for text classification on which later work is based is presented in (Collobert and Weston, 2007).

The authors show how a shallow and simple multi-layer perceptron (MLP) performs comparably

with state-of-the-art systems on semantic role labeling. Not only does the system perform well but

it learns much faster all the while not relying on hand-engineered features. The work is also an early

example of learning a task for NLP that is performed fully end-to-end with a neural network. In the

last few years, convolutional neural networks have been shown to be effective for several NLP tasks

such as text classification (Collobert et al., 2011), semantic parsing (Yih et al., 2011) and sentence

modeling (Kalchbrenner et al., 2014).

In Section 3.2 we detail our first experiment on IDR with a CNN, a replication study, including

how we preprocess our inputs in Section 3.2.1, the details of this CNN architecture in Section 3.2.2,

and how we prepared the dataset for IDR in Section 3.2.3. In Section 3.2.4 we show our results

and some interpretations explaining the downside of this approach. This motivates our work on a

new CNN architecture for fine-grained classification introduced in Section 3.3. In Sections 3.3.1

and 3.3.2 we give the details of this architecture and its results in Section 3.3.3. In Section 3.4 we

propose a hierarchical pipeline to IDR, a new approach. In Section 3.5 we provide an additional

new approach, combining a CNN with an LSTM.

3.2 Baseline CNN: A Replication Study

Our first system to classify Implicit discourse relation uses a CNN based on work by (Zhang

et al., 2015a), which is in turn based on previous work by (Collobert et al., 2011) on text classifica-

tion with CNNs. As far as we know, (Zhang et al., 2015a) were the first to apply neural networks for

IDR on the Penn Discourse Treebank. A previous work on discourse relation recognition using neu-

ral networks was proposed by (Ji and Eisenstein, 2015). In contrast to (Zhang et al., 2015a), their

work used a recursive neural network, an approach tailored to the unique hierarchical tree struc-

ture of RST discourse relations, an approach not necessarily applicable to PDTB style discourse

structure.
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We now detail our implementation, which may be different to (Zhang et al., 2015a) as not all

details were published.

3.2.1 Input

The first step is preprocessing the text into a form compatible for our neural network. All words

are converted to lower text. Word contractions, such as “I’ll” are split into two words “I” and

“ll”. All words are then tokenized by white space, hence in the rest of this thesis we will refer

to these units as tokens as opposed to words. Representing tokens into a meaningful form for a

neural network is a particular challenge for natural language processing which other domains do

not suffer from, such as with computer vision where a pixel value is a natural fit. To address this, we

follow a preprocessing method, now standard, based on the pioneering work by (Bengio et al., 2001;

Schwenk and Gauvain, 2002) which focuses on learning a distributed representation for words.

We form a vocabulary V of all tokens used in our dataset. A discourse argument in our dataset

is represented as a vector s of length n. Vector s is composed of tokens zi, represented as an index

mapped to a word in V . The index value i is related to the frequency of a word in our dataset, so

that frequent tokens take on lower index values. We convert each token index zi into a dense vector

representation wi ∈ Rd called word embeddings.

These embeddings come from a word embedding matrix L ∈ R|V |×d, where |V | corresponds

to the number of tokens in V and d is the embedding size. We used the Word2Vec word embed-

dings (Mikolov et al., 2013b) which were pretrained on the 100 billion words of Google News

by (Mikolov et al., 2013b), and are available online1. A lookup vector function u() maps zi to wi,

such that u : Z+ → Rd. The zi index value is used as row index in L to map the word. Simply put,

wi = Lzi . We concatenate all dense word vectors to form our argument matrix representation:

X =



w1,1

w1,2

...

w1,d


||



w2,1

w2,2

...

w2,d


|| · · · ||



wn,1

wn,2

...

wn,d


(8)

1https://code.google.com/archive/p/word2vec/
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where || is the concatenation operation.

3.2.2 Model

As indicated in Section 3.2.1, our input to the network X is now a d × n matrix, where each

column represents a word embedding.

Because the length of each discourse argument j may be different, this entails that X may be of

a different size for each argument, an issue we must resolve. In the case of standard CNNs, as used

in computer vision, the neural network input layer is of a fixed size, which are not necessarily an

issue for image classification where samples do not vary within a set, but is rather problematic for

text which naturally varies in length. The following equations deal with this issue.

Based on (Collobert et al., 2011) and on early neural networks for discourse relation recognition

by (Zhang et al., 2015a) we first seek to replicate the results of (Zhang et al., 2015a). We begin with

three convolutional feature operations across rows r in X:

cavgr =
1

n

n∑
i

Xr,i (9)

cmin
r = min(Xr,1, Xr,2, . . . , Xr,n) (10)

cmax
r = max(Xr,1, Xr,2, . . . , Xr,n) (11)

This results in three vectors of size d, invariable to length n. The same set of operations is

performed on the second discourse argument. The 6 resulting vectors are then concatenated into a:

a = [cavgarg1||c
min
arg1 ||cmax

arg1 ||c
avg
arg2||c

min
arg2 ||cmax

arg2 ] (12)

This is followed by a tanh normalization to eliminate manifold differences among the features:

h =
tanh(a)

‖ tanh(a)‖
(13)

Note that in this context “‖” is the normalization operation (not to be confused with concatena-

tion ||) which scales the components of tanh(a) to unit length. Vector h is connected to an output
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layer by an affine transform:

s =Woh+ b (14)

Where matrix Wo ∈ Rsize(h)×K , K is the number of labels (classes) and therefore vector s ∈

RK . Vector s can be interpreted as the unnormalized log probabilities of each element j in s

belonging to class k. We compute the actual probability that sj , a score in s, is discourse relation k

given our original matrix input X and model parameters θ, with the softmax function:

P (y = j|X, θ) = esj∑K
k=1 e

sk
(15)

The vectorized implementation of the softmax function takes in vector s and outputs vector ŷ.

Each element j in vector ŷ is real-valued between 0 and 1, while vector ŷ sums to 1. This produces

a proper probability distribution over all possible discourse relation senses. Additionally, due to

the exponential term, the softmax maximizes the probability of the highest scoring term in s and

“pushes” less probable scores towards zero, but never to zero (hence the name softmax). In our

implementation, the softmax is computed in a single step over all scores, resulting in vector ŷ. Due

to the softmax, vector ŷ can be a close approximation of the target one-hot encoded vector y.

For a single training sample pair x, y, we compute the distance between our predicted class

probability distribution ŷ and true distribution y with the cross-entropy error:

H(ŷ, y) = −
K∑
j=1

yj log(ŷj) (16)

The training objective consists of minimizing the mean cross-entropy errorH between predicted

label ŷ and gold label y over all samples m, with weight-decay regularization:

J(θ) =
1

m

m∑
t=1

H(ŷt, yt) +
λ

2
‖θ‖2 (17)
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Relation Train Validation Test
COMPARISON 1942 / 1942 197 / 986 152 / 894
CONTINGENCY 3342 / 3342 295 / 888 279 / 767
EXPANSION 7004 / 7004 671 / 512 574 / 472
TEMPORAL 760 / 760 64 / 1119 85 / 96l

Table 3.1: Positive/negative split for the 4 one-vs-all binary classifiers for Implicit sense clas-
sification, where EntRel is included in class EXPANSION. The number of training samples is
based on (Zhang et al., 2015a). The train, validation and test split is discussed in Section 2.2, which
we call TOP-split.

3.2.3 Data

For top-level classification, we used the PDTB dataset with the WSJ section breakdown as

discussed in Section 2.2. In Section 2.5, following the practice established by (Pitler et al., 2009),

top-level classification is formulated as four one-vs-all classification, where each classifier is one of

four top-level senses. While the source PDTB dataset is the same across authors, the positive and

negative training data is not necessarily consistent.

For each sense classifier COMPARISON, CONTINGENCY and TEMPORAL we selected all

positive samples in WSJ sections 2 to 20. Negative samples are randomly sampled from sections

2 to 20, excluding positive samples, where the number of chosen samples is equal in count to the

positive training set. For the EXPANSION classifier, on the other hand, the full positive dataset

outnumbers the possible negative set, as observed by the unbalanced dataset in Table 2.2. We

randomly undersampled the positive EXPANSION dataset and oversampled the negative dataset so

that our training set size would equal that of (Zhang et al., 2015a). It is not clear from (Zhang et al.,

2015a) why they chose this strategy.

The validation and test sets on the other hand are not equally balanced like the training set. For

each binary classifier, the positive set consists of all positive labels in PDTB, whereas the nega-

tive dataset includes all other senses combined. As observed in Table 3.1, this results in a highly

unbalanced validation and test dataset, notably for the TEMPORAL sense class.
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COMPARISON CONTINGENCY EXPANSION TEMPORAL
ours 25.14 42.86 71.05 12.64
(Zhang et al., 2015a) 30.40 48.41 66.05 28.71

Table 3.2: F1-score of top-level classification comparing our replication study to the original exper-
iment by (Zhang et al., 2015a)

3.2.4 Results and Analysis

We show our replication results in Table 3.2. As seen in Table 3.2, our implementation outper-

formed (Zhang et al., 2015a) for the EXPANSION class, the largest sense class, but underperformed

for COMPARISON, CONTINGENCY and TEMPORAL, the smaller classes. These results vary

from the original experiment of (Zhang et al., 2015a), most likely due to differences in the train-

ing set sample selection, different optimizers and hyperparameters. It is difficult to know the exact

difference since the original code is not available.

The model presented in Section 3.2.2 proposes a solution to the variable length dilemma, how-

ever it seems that performance suffers from convolutional operations across embeddings, as opposed

to convolutions across time. This would mean it models language as a bag of words and ignores

the structure of language. Consider the language modeling setup. A statistical language model esti-

mates the probability distribution of a sequence of words by predicting the probability of a word wi

given the history of words until wi−1:

P (w0, . . . , wN ) = P (w0)

N∏
i=1

P (wi|w0, . . . , wi−1) (18)

Recall from Equations 9, 10 and 11 that our convolutional operations operate on ordered input

X but are agnostic to the order of a language model as in Equation 18. In no way do the equations

take advantage of the possible meaning extracted from word order. Furthermore, the equations

naively operate on all embeddings uniformly, without weighing any word more than another. The

model cannot detect keywords that are strong signals of a discourse relation nor can they measure

pair-wise interactions. This motivates us to explore a different kind of CNN which convolves locally

over the input, considering only a limited number of words as we see next in Section 3.3. This also

motivates fully auto-regressive models which we discuss in Chapter 4.

33



3.3 Our CNN at CoNLL-2016

In this section we turn to convolutional neural networks (CNNs) with convolutional operations

of the kind found in computer vision. We describe a CNN for Non-Explicit discourse relation

recognition. Recall that Non-Explicit relations refers to Implicit, EntRel and AltLex

relations (see Section 2.3 for details). The starting point of our setup is inspired by prior work

on text classification with convolutional neural networks, notably by (Collobert et al., 2011; Kim,

2014).

Our CNN implementation is discussed in the context of our participation to the Twentieth Con-

ference on Computational Natural Language Learning (CoNLL-2016) Shared Task on Multilingual

Shallow Discourse Parsing (SDP) (Xue et al., 2016) as described in Section 2.3. The overall goal of

the task is to identify discourse relation arguments, discourse connectives in the Explicit case,

as well as the discourse relation sense.

The dataset used at CoNLL-2016 is the Penn Discourse TreeBank (PDTB) (Prasad et al., 2008)

with the C-PDTB split (see Section 2.3 for details) which contains a tuple of argument 1 text

(Arg1), argument 2 text (Arg2), discourse connective and sense relation. As shown in Table 2.3

the Non-Explicit dataset contains 17,289 training samples, 737 validation samples and 986

test samples. The blind dataset was specially created for this task and comes from the Wikinews

dataset (Xue et al., 2015). The blind dataset contains 653 Non-Explicit discourse relations.

Please see Section 2.2 and 2.3 for details of the two datasets. The two datasets also contain lin-

guistic features such as POS tags and syntactic trees, but these are not used in our case. In the full

task, a syntactic parser must parse each argument, identify the discourse connective as well as the

fine-grained relation. The task is called “shallow” since, unlike Rhetorical Structure Theory (Mann

and Thompson, 1988)(described in Section 2.1), a system must not output a tree of relations across

an entire text, but only between two argument pairs. Discourse arguments can be clauses, sentences

or phrases.

In 2015, the CLaC lab participated in the CoNLL Shared Task on Shallow Discourse Pars-

ing (Laali et al., 2015). At the time, the CLaC Discourse Parser did not address Non-Explicit

relations. For the 2016 edition we developed a method for IDR which was added to the end-to-end
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CLaC parser (Laali et al., 2016). We briefly review our parser and then focus on our network for

Non-Explicit discourse relation recognition.

3.3.1 Pipeline System

As shown in Figure 3.1, the end-to-end parser (Laali et al., 2016) is split into two main modules:

Explicit Discourse Relation Annotation (EDRA) and Non-Explicit Discourse Relation An-

notation (NEDRA). Raw text units are first passed through the EDRA for segmentation and annota-

tion. Those discourse units which cannot be labelled are then piped into the NEDRA, as can be seen

in the last two modules of the pipeline in Figure 3.1. The relation labeler neural network classifies

the samples as containing a discourse relation and those not containing any relation. Samples that

do contain a relation are piped to the sense labeler neural network for final classification, while the

remaining samples are labeled as not containing any relation. The relation labeler and sense labeler

are convolutional neural networks with an identical architecture except for the size of the output

layer.

Explicit
Discourse Relation

Annotator
(EDRA)

Discourse
Connective
Annotator

Discourse
Connective

Sense
Labeler

Explicit
Discourse
Argument
Segmenter

Explicit
Discourse
Argument
Trimmer

Non-Explicit
Discourse Relation

Annotator
(NEDRA)

Non-Explicit
Relation
Labeler

Non-Explicit
Sense

Labeler

Figure 3.1: Pipeline of the CLaC Discourse Parser

3.3.2 Model

Similarly to the experiment in Section 3.2, the input to the models are pretrained word embed-

dings from the Google News corpus, as trained with Word2Vec 2. Words not in the word embeddings

are randomly initialized. We test static and non-static word embeddings and choose to keep them
2https://code.google.com/archive/p/word2vec/
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Figure 3.2: Histogram of the number of tokens per sample in the C-PDTB training set. Texts longer
than 120 words are included in the 120 bar.

static as they slightly outperform non-static embeddings. Non-static embeddings are not allowed to

vary during training.

In this neural network setup, we cannot allow for variable input length as we did in the model

of Section 3.2.2. From Figures 3.2 and 3.3 we observe most text is clustered between 10 and 60

tokens.

Typically convolutional network inputs are zero padded to match the size of the longest in-

put (Zhang and Wallace, 2015; Kim, 2014). Since the training set contains a few unusually long

arguments, we limit the arguments to 60 tokens each, which accounts for 99.5% of the tokens in

the training set (see Figure 3.2). Each input to the networks is thus composed of two discourse

arguments, truncated or padded to 60 tokens. This reduces the maximum length of Arg1 from

1000 to 60 words, and that of Arg2 from 400 to 60 words. This dramatically decreases the model

complexity with insignificant impact on performance. The two arguments are then concatenated to

form a single input. Each token is then replaced with their embedded vector representation, giving

us input matrix X . A visualization of the input preprocessing pipeline is shown in Figure 3.4.
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Figure 3.3: Histogram of the number of tokens per sample in the C-PDTB validation set. Texts
longer than 120 words are included in the 120 bar.

Figure 3.4: Input preprocessing pipeline. The raw discourse text “I am going to school today”
(Arg1) and “I have an exam” (Arg2) are tokenized and integerized, where the integer is a dic-
tionary index. Each argument is padded or truncated to equal the standard length of 60 tokens
after which the two are concatenated. The last step embeds the input only immediately before being
passed to the network to conserve memory. Each token in a mini-batch is swapped for an embedding
via a lookup table.
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The input matrixX has the same structure as that ofX in Equation 8 and follows the same setup.

However, unlike our simplified example in Figure 2.4, each token in our input is of dimension k.

For the moment, consider a kernel with a single output, then the convolution consists of kernel

w ∈ Rhk. A feature ci is computed as:

ci = f(Wxi:i+h−1 + b) (19)

Where f is a non-linear function. In our CNN, we choose the exponential linear unit (ELU)

as introduced by (Clevert et al., 2015). The ELU diminishes the vanishing gradient effect, as do

ReLU and leaky ReLU (Maas et al., 2013), by being the identity function when the parameter is

positive and thus having a derivative of one in that region. However unlike ReLU, the ELU and leaky

ReLU have negative values, pushing activations closer to zero and hence resulting in faster learning.

Additionally, ELU has a small derivative which decreases activation variation. See (Clevert et al.,

2015) for a full analysis of this activation function. ELU is computed as:

f(x) =


x if x > 0

α(exp(x)− 1) if x ≤ 0

(20)

Where α is a hyperparameter controlling the level of saturation. We set α to 1. The convolutions

always convolve over the entire word embeddings (1D convolution). All ci computed at all window

locations x1:h, x2:h+1, . . . , xn−h+1:n are concatenated to form a feature map:

r = [c1||c2|| . . . ||cn−h+1] (21)

The convolution/feature map operation is repeated j times, equivalent to the 3 outputs in Figure 2.4,

which results in j feature maps, stacked into matrix R, where R ∈ Rj×l. When using a CNN for

text classification, it is key to pool by maximizing over time following a convolution as is observed

by (Zhang et al., 2015b; Boureau et al., 2010). We perform a max-over-time pooling over R:

pj = max
i∈R

xji, j = 1, . . . , l. (22)
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Where vector p is the result of selecting the maximum value in each row j in R. The mot-pool

operation selects the maximum element in each row of R, hence the naming max over time pooling.

The maximum is interpreted as the most salient feature in time which is automatically learned by

the neural network.

So far we have described the process of convolution and pooling for a single kernel. In our

model, we repeat the process for m kernels with varying window sizes. The resulting p vectors are

concatenated to form the penultimate layer z:

z = [p1||p2|| . . . ||pm] (23)

See Figure 3.5 for a visualization of the concatenated pooled layers. As illustrated in Figure 3.5,

we applied 128 feature maps and pooled each one of these. We repeated the entire process 3 times

for w = 3, 4 and 5, as shown to perform better in (Zhang and Wallace, 2015), and concatenated

them together. This gave us a final matrix M ∈ R3×128. We reshaped M to a flat vector and applied

dropout as our regularization (Srivastava et al., 2014), giving us vector u ∈ R384. u is fully con-

nected to a softmax output layer where loss is measured with cross-entropy. The network was trained

by stochastic gradient descent in mini-batches and optimized with the Adam optimizer (Kingma and

Ba, 2015).

3.3.3 Results and Analysis

We trained our model for a maximum of 200 epochs with early stopping if no improvement

occurred after 20 epochs. Generally, the performance on the validation set would peak around 75

epochs.

3.3.3.1 Overall Performance

Table 3.3 shows the F1 scores of the CLaC Discourse Parser and other participants on the val-

idation, test and blind datasets. Only the F1 scores for the supplementary task of sense labelling

is shown. In this setting, argument 1, argument 2, as well as the discourse connective are given

to the system and only the discourse relation need be predicted. As Table 3.3 shows, we achieved
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Figure 3.5: A simplified view of our convolutional neural network as part of our discourse
parser (Laali et al., 2016) submitted to the CoNLL 2016 Shared Task on Shallow Discourse Pars-
ing (Xue et al., 2016). Arguments 1 and 2 are represented as concatenated word embeddings,
followed by 3 convolution operation of different sizes, max-over-time pooling and a softmax layer.
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an F1-score of 27.72 on the blind test set while the top system achieved 37.67. We compared our

model with that of (Wang and Lan, 2016), called ecnucs in Table 3.3. Surprisingly our models had

fairly similar approaches. (Wang and Lan, 2016) also implemented a shallow CNN with multiple

window convolutions, max-pooling and a fully connected layer. Some minor differences include

ecnucs using wider window sizes of 4, 6 and 13 tokens instead of our 3, 4 and 5, as well as the use

of the hyperbolic tangent activation function instead of ELU.

Explicit Relations Non-Explicit Relations
ID Reference Validation Test Blind Validation Test Blind
ttr (Rutherford and Xue, 2016) - - - 40.32 36.13 37.67
gtnlp - 90.29 89.48 74.95 40.72 34.95 36.75
tao0920 (Qin et al., 2016) 92.26 89.59 75.74 46.33 38.20 35.38
tbmihaylov (Mihaylov and Frank, 2016) 91.20 89.80 78.20 40.32 39.19 34.51
ecnucs (Wang and Lan, 2016) 92.56 90.13 77.41 46.42 40.91 34.18
oslopots (Oepen et al., 2016) 91.35 90.13 77.17 43.12 33.76 33.84
gw0 1 (Weiss and Bajec, 2016) 91.81 89.48 75.25 34.58 30.21 33.08
ykido (Kido and Aizawa, 2016) 90.29 90.22 75.43 29.11 22.61 32.31
goethe (Schenk et al., 2016) 91.35 90.13 76.40 45.42 37.61 31.85
nguyenlab (Nguyen, 2016) 90.29 88.72 74.77 34.31 28.83 31.42
PurdueNLP (Pacheco et al., 2016) 89.68 87.96 19.58 38.05 34.45 29.10
CLaC (Laali et al., 2016) 90.74 89.48 76.22 37.12 28.13 27.72
steven - 71.19 72.66 64.16 26.68 20.58 23.58
gw0 2 (Weiss and Bajec, 2016) 89.68 15.51 18.35 35.11 18.56 21.29
BIT (Jian et al., 2016) 23.22 24.62 17.99 17.36 16.58 19.30
aarjay - 91.50 89.70 78.56 36.85 15.60 9.95

Table 3.3: F1-score of the CLaC Discourse Parser on the discourse relation sense classification
supplementary evaluation, in comparison with other submissions. Results include performance
on the development, test and blind datasets for both Explicit relations and Non-Explicit
relations.

On the other hand, one major difference is the fact ecnucs convolves over discourse arguments

separately, as shown is Figure 3.6. The convolution outputs are concatenated only after the separate

max-poolings. By comparing our two models we conclude a neural network, in this case a CNN,

can extract meaningful features but only once the lower network layers are structured according

to the discourse structure. Technically, the reason is likely due to the max-pooling across time. By

concatenating the two discourse arguments, the pooling operation returns the max features across the

entire input without distinguishing between the arguments. If the majority of the features returned

come from a single argument, the later fully connected layer cannot learn any interaction across

arguments. Another high-performing model by (Rutherford and Xue, 2016) also used a CNN which
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Figure 3.6: ecnucs, a CNN for IDR where discourse arguments are convolved and pooled separately.
Credit: (Wang and Lan, 2016)

convolves over separate arguments. This finding is key to building our state-of-the-art model in

Chapter 4.

While our work focused only on Non-Explicit relations classification, Table 3.3 also pro-

vides the performance with explicit relations classification to highlight the difficulty of our task,

even given the most favourable setup where no segmentation is required. For example, ecnucs

achieves an F1-score of 90.13 on the test set for Explicit relations, but only 40.91 on the

Non-Explicit relation test set, a staggering difference of almost 50 points. This highlights

the huge difficulty in classifying Non-Explicit discourse relation where a system cannot rely

on any connectives. In fact, many discourse connectives almost always map the same discourse

relation (Xue et al., 2016) hence greatly facilitating Explicit relation recognition. This is why

most systems at CoNLL-2016 simply adopted “conventional” machine learning approaches (Xue

et al., 2016) and performed quite well on Explicit relation recognition (see Table 3.3).
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Validation vs test set Validation vs blind set
Explicit Non-Explicit Explicit Non-Explicit

Excluding outlier 1.53 6.28 17.65 6.88
Including outlier 6.37 7.22 21.15 8.14

Table 3.4: Mean absolute performance difference. We take the absolute difference in performance
for all systems (see Table 3.3) between the validation set and the test set, as well as between the de-
velopment set and the blind dataset. Here we show the mean of these differences for the Explicit
and Non-Explicit cases.

As shown in Table 3.3 in both Explicit and Non-Explicit relation classification most

systems underperformed when comparing the blind dataset with the test dataset. However we should

note a key difference between Explicit and Non-Explicit relation performance. From Ta-

ble 3.4 we observe that on average the Explicit sense labellers’ F1 scores on the test set is only

off by 1.53 compared to the validation set, much better than the Non-Explicit sense labeller

which drops by 6.28. However, the Explicit labeller is off by a large margin when compar-

ing the development and blind set performance, by as much as 17.65, while the Non-Explicit

labeller remains almost the same with only 6.88 difference.

The main reasons the Explicit models do not perform as well on the blind dataset, in terms

of relative performance is due to:

(1) The domain difference: The validation and test dataset were extracted from the same original

Wall Street Journal dataset, whereas the blind dataset was extracted from Wikinews. We are

likely seeing domain overfitting in the case of all Explicit relation recognition models,

but do not see this pattern with Non-Explicit models.

(2) Explicit models already perform well: Most Non-Explicit models are neural net-

works whereas Explicit models are mostly conventional machine learning models based

on hand-crafted linguistic features (Xue et al., 2016). Because of this, Non-Explicit

models may pick language patterns that are more generalizable to different domains when

compared to Explicit models.

Another possibility, however, is that Non-Explicit models simply do not perform well

enough to overfit to a particular domain. We can conclude that future work on Explicit sense
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Filter Size F1 Step Time (in seconds)
2 31.88 85700 4598
3 32.94 91400 5139
5 31.08 78500 6234
7 32.41 51100 7092
9 31.08 70400 8447

11 31.75 54300 10071
15 31.35 71200 12813
20 31.75 32900 11770
30 33.47 71300 24831
50 32.67 90600 38643

Table 3.5: Region size of a single filter. F1 represents the best F1 achieved on the validation set
during the experiment. We indicate at which step this accuracy was reached, out of a possible
97,650 steps (150 epochs). Time is the total time in seconds to complete the 150 epochs. The model
was trained on an 8-core desktop computer with 16GB of RAM. Neural network operations were
computed on the computer’s Nvidia K620 GPU.

labelling should focus on models that work well across domains, while Non-Explicit mod-

els can still continue to be developed on the current dataset. One serious caveat is that most

Non-Explicit models are implemented with neural architectures which generally require vast

amounts of data to perform well (see Chapter 6).

Before submitting our official system to CoNLL-2016, we performed additional analysis to

better understand our model, in particular we analyzed the effect of varying the region size and the

input representation.

3.3.3.2 Further Analysis

Region Size We experimented with different region sizes to see how this would affect perfor-

mance. (Zhang and Wallace, 2015) recommends training with a single window and linearly in-

creasing the size, ranging from 2 to 30. We experimented with window sizes of up to 50, after

which F1 remained low and training time became too long. Each run ran for 150 epochs, with the

best F1 score achieved in the runs shown in Table 3.5. In other experiments (data not shown here)

we trained several times up to 600 epochs, however the model would always overfit before 150

epochs.

Our original intuition was that larger filter sizes should capture longer range dependencies,
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which should help discern discourse relation types. However this is not supported by the results in

Table 3.5. Despite the increase in region size, the F1 score does not seem to increase systematically.

We should ignore the small differences in accuracy as we only trained the network once per region

size. A more conclusive experiment would require at least 10-fold cross-validation, but time did not

permit this. From the Step column, we can observe that there is no linear trend in overfitting; some

runs overfit at 32,900 steps, and some towards the end of the experiment at 91,400 steps. This is

likely due to the neural network random parameter initialization. From the Time column, we can

conclude that a smaller window size is beneficial for this task since training time is much shorter. A

filter size of 2 is more than 8 times faster to train than a filter of size 50, with comparable accuracy.

Input Representation Recall that our system used at CoNLL-2016 (see Section 3.3.2) used pre-

trained word embeddings and kept them static throughout the learning phase. After experimenting

on pretrained word embeddings and randomly initialized embedding, we conclude that we actually

obtain similar results. When first training, the training accuracy for pretrained embeddings is a little

higher than for random embeddings (less than 1%). The larger memory requirements do not justify

the use of pretrained embeddings in the case of discourse relation recognition. This is somewhat

surprising, as research by (Mikolov et al., 2013b,a) showed that word embeddings trained with the

Word2Vec method actually do embed syntactic and semantic information. (Zhang and Wallace,

2015) also concluded that pretrained embeddings were useful in sentence classification. It is not

clear why they were not helpful in our system for discourse recognition, especially in the case of

Non-Explicit relation where we must rely on semantic representation. Neural word embedding

are difficult to understand on their own. They are usually understood in the context of analogies.

By subtracting the vector “man” from the “king” and adding the vector “woman”, we get the vector

for “queen”(Mikolov et al., 2013b). We can extract all sorts of analogies, both semantic and syn-

tactic. It is possible that very few or none of these relations are useful for discourse. Neural word

embeddings that capture only narrower syntactic/semantic features could be useful. Neural word

embedding such as in Word2Vec look at context, i.e. surrounding words. (Ramat-Gan, 2014) have

trained neural embeddings based on syntactic context as opposed to lexical. It would be interesting

to combine these with Word2Vec embeddings for our experiment. As noted in Chapter 6, more
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work in this area is required.

3.4 Hierarchical CNN

Our third CNN model attempts to address the difficulty of fine-grained classification. Recall

from Section 3.3 that the goal of fine-grained IDR is to maximize the probability of class y given

two discourse arguments, P (y|arg1, arg2), where y is one of the fine grained classes in Table 2.3.

Recall that fine-grained senses are part of a hierarchy of senses, as illustrated in Figure 2.2. Using

this fact, to do fine-grained classification we augment the training objective as maximizing:

P (y|arg1, arg2, top-sense) (24)

Where the top-sense must be predicted by a model. If a model can correctly predict the top-

sense, then given this additional evidence we can expect a model to better approximate Equation 24

than an objective without this evidence.

3.4.1 Model

Our approach to this new objective is two steps. First, a model classifies the top-level sense.

Second, taking the most likely class from that first model, we pass on the fine grained classification

to a separate model, restricted to classify a fine-grained sense which is a successor of the top-level

sense, as shown in Figure 2.2.

For this experiment, we used the same model as described in Section 3.3, as well as the same

preprocessing. Please see Section 3.3 for details on CNN hyperparameters, equations, and input

preprocessing.

3.4.2 Results and Analysis

The task is to classify fine-grained senses, exactly as in Section 3.3. However, in our experiment

we add the additional task of first classifying top-level senses, as seen in Section 3.2. To limit the

number of models, we created a single multi-class top-level model which classifies a discourse

as belonging to one of the following discourse sense class: COMPARISON, CONTINGENCY,
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Figure 3.7: Hierarchical convolutional networks for fine-grained IDR.

TEMPORAL, EXPANSION or EntRel. The original discourse relation is then passed to the fine-

grained model corresponding to the top-level model’s most likely sense class.

Validation Test blind
22.19 13.14 11.98

Table 3.6: F1 score of hierarchical CNN.

Unfortunately, as we see in Table 3.6 the system’s performance is quite low when compared to

other systems in Table 3.3. We believe the fundamental problem is the fact we chose to pipeline the

architecture into a top-level model and many fine-grained models. Since IDR models for top-level

sense classification perform poorly compared to their Explicit counterparts (see Section 3.2),

these errors cascade to lower systems, compounding their poor results. Additionally, since the

lower level models train only within a given class, each model trains on much less data. We believe

a better approach would share a representation across top-level and fine grained classification, which

we discuss in Chapter 6.
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Relation Train Validation Test
COMPARISON 1988 90 134
CONTINGENCY 3660 131 218
EXPANSION 7259 280 428
TEMPORAL 773 39 19
EntRel 4133 215 217

Table 3.7: Top-level relations breakdown for Non-Explicit on the PDTB using the PDTB-split.
The PDTB-split includes WSJ sections 2-21 for training, section 22 for validation and section 23 for
testing. In contrast to the TOP-split in Table 2.2, Non-Explicit relations includes Implicit,
Explicit and AltLex relations, whereas the TOP-split does not include AltLex. Additionally,
EntRel is not merged into Implicit EXPANSION class.

3.5 Convolutional Neural Network with a Long Short-Term Memory

Network

Building on the success of using convolutional neural networks for text classificaiton, we aug-

ment our network with a recurrent neural network (RNN) layer. The reasoning is to leverage the

CNN’s proven ability to extract meaningful features at the local level, and use the RNN to parse

the extracted features as a sequence, i.e. time-dependent features. We hypothesize that a recurrent

neural network would detect long-term dependencies which occur in Implicit discourse relation

recognition. To illustrate this, consider the following discourse:

(Ex. 11) Sierra has been instrumental in securing a number of the California bans. It has been waging

an all-out campaign to beat back a proposal, pushed by Utah bike groups, to allow the

cycles in federally designated wilderness areas. (2034)

RNNs are naturally adapted to tasks in computational linguistics due to the recurrent network’s

recursive property. This property allows a network to parse inputs of various sizes, a natural fit

for text. Hence, they are heavily used in language modeling. For example, in recent years RNN-

based models have reached state-of-the-art perplexity for the Penn Treebank language modeling

task. From 92.0 (Mikolov and Zweig, 2012), to 72.1 (Grave et al., 2017) and recent state-of-the-

art of 52.8 (Merity et al., 2018), all with RNN-based models. We discuss in more depth RNNs in

Chapter 4.
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3.5.1 Model

Based on (Kim et al., 2016; Jozefowicz et al., 2016) we propose to augment our CNN model

with a recurrent network. Recurrent networks are powerful tools to model sequences due to their

relation to Markov chains in the sense that the network’s next time step output is conditioned solely

on its current time-step inputs. At each time step t, an RNN outputs a hidden state vector ht ∈ Ru:

ht = f(Wxt + Uht−1 + b) (25)

The recurrent node mapping ht−1, xt → ht is commonly referred to as an RNN cell, where u,

the length of vector ht, refers to the cell’s number of hidden units. The exact cell mechanics varies

depending on the RNN implementation. Since we will use an RNN to model the time component of

our neural network, we must modify our previous convolutional neural network (see Section 3.3).

We start with the concatenation of all convolutions from Equation 21:

r = [c1||c2|| . . . ||cn−h+1] (26)

This r operation is repeated j times, where j is the output size of the convolution, stacked into

matrix R, where R ∈ Rj×l and l is the number of convolutions. The convolution would normally

be followed by a max-over-time pooling (see Section 3.3), however in this case the RNN models the

time component. Hence we perform max-over-features pooling, extracting the most salient features

at each time step.

pj = max
i∈R

xji, j = 1, . . . , l. (27)

Now vector p is of length l, the time variable, as opposed to length j as in Equation 22, a result

of selecting the maximum value in each column of R. Additionally, unlike in Equation 23, only

a single convolutional kernel with width of size 3 is used. Once the CNN has extracted the most

salient features across representation for each time step, we can pass on p to the RNN.

An RNN modeling sequential data in this fashion can in principle model data of any length.

Unlike Markov states, a cell’s hidden state acts like a memory which represents (theoretically) the
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entire sequence x1, x2, . . . , xt from first input to current time t into the single vector ht. However, a

serious issue with Equation 25 is the vanishing or exploding gradient problem which occurs during

backpropagation (Hochreiter, 1991; Hochreiter et al., 2001) which limits the RNN’s ability to learn

long-term dependencies. This is problematic since the number of outputs produced by our CNN

through time is approximately equal to the number of words in our sequences. As observed in

Figure 3.2, discourse arguments can be as short as a few tokens and as long as more than 120

tokens.

To deal with the limitations of Equation 25, we employ Long Short-Term Memory (Hochreiter

and Schmidhuber, 1997) recurrent neural networks (LSTM). LSTM introduce memory vector ct ∈

Ru, in addition to ht, which purposely deals with long-term dependencies. Information flowing into

ct and removed by ct is controlled by gates. At each time step, an LSTM cell produces vectors ht

and ct as follows:

it = σ(Wipt + Uiht−1 + bi) (28)

ft = σ(Wfpt + Ufht−1 + bf ) (29)

ot = σ(Wopt + Uoht−1 + bo) (30)

c̃t = tanh(Wcpt + Ucht−1 + bc) (31)

ct = ft � ct−1 + it � c̃t (32)

ht = ot � tanh(ct) (33)

where σ is the element-wise sigmoid function, � operator denotes element-wise multiplication,

and p is the result of the pooling from Equation 27. The elements from p, the vector output from

the pooling function, is the input to the recurrent neural network. Function it is a gate controlling

the amount of information from the current input pt and previous hidden state ht−1 flowing into the

memory ct. Function ft, the forget gate, controls the amount of information to be removed from the

previous memory ct−1, again depending on current input pt previous hidden state ht−1. Function ot,

the output gate is used to produce the new hidden state ht. MatricesWi,Wf ,Wo,Wc, Ui, Uf , Uo, Uc

and vectors bi, bf , bo, bc are parameters learned by the neural network. The architecture is detailed
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Figure 3.8: Our convolutional neural network with stacked long short-term memory network for
discourse relation recognition.

in Figure 3.8. The network is trained in mini-batches of size 32 with the Adam algorithm (Kingma

and Ba, 2015) just like the CNN in Section 3.3. The forget gate biases in the LSTM are initialized

to 1.0 (Jozefowicz et al., 2015).

We test this setup in the context of fine-grained classification using the CoNLL-2016 dataset.

Variations in several parameters are examined to see which would work best for this experimental

setup. Given our previous finding in Section 3.3.3.2 that pretrained embeddings may not be benefi-

cial, random embeddings are tested with various sizes and trained jointly with the network. Since

a recurrent network parse the convolutional network’s output, it is also assumed that large sized

kernels are unnecessary. That assumption is tested with various kernel width.

Table 3.8 lists the network’s basic hyperparameters common to all experiments unless specified

(see Section 3.5.2).
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Parameter Value
window size 10
filters 100
activation ReLU
batch size 32
embedding size 100
LSTM 128 units

Table 3.8: Base parameters used for training the CNN with LSTM model.

Dimensions F1 score
10 0.2502
50 0.2527

100 0.2380
200 0.2405
300 0.2389

Table 3.9: Variation in embedding dimensions, F1-score on the validation set. Embeddings are
randomly sampled from N (0, 0.5) and trained with the network.

3.5.2 Results and Analysis

The impact of various embedding sizes is listed in Table 3.9. It seems that for this particular

network setup smaller embeddings around 50 dimension work best. This is a welcome result as

smaller embedding dimensions reduce training time. This does come with the serious caveat that

results in Table 3.9 are than those of Table 3.3. In this setting, lower embeddings perform better

most likely since they reduce the number of parameters and therefore the chance of overfitting.

It would be wise to assume that without a recurrent network, wider kernels would perform well

to map long-distance dependencies, while stacking a CNN with a recurrent network only requires

smaller windows. Actually, evidence in Table 3.10 suggests that a kernel with a width of 10 performs

better than any other size. Additionally, combining window sizes of 3, 10 and 20, acting as a kind

of backoff to capture various-size dependencies, had no additional benefit. In all cases, combining

two or more windows in a single run degraded performance (not shown).

In terms of pooling, max-pooling across features performed on average 3% better than average

or min-pooling (not shown). This is not surprising as our other experiments confirm max-pooling

works best on our dataset and convolutional models.
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Dimensions F1 score
3 0.2252
5 0.2525

10 0.2702
20 0.2583
30 0.2573
40 0.2485
50 0.2404

Table 3.10: Variation in kernel width, impact on F1-score of development set.

We also tested the network over mixed and split arguments. In the mixed case, the two argu-

ments are concatenated as a single matrix and input into the network, as in Figure 3.8. In the split

case, a convolution followed by a pooling in computed over Arg1 then a separate convolution and

pooling is computed over Arg2. The two pooled features are concatenated and fed into the recurrent

neural network as shown in Figure 3.8. Doubling the convolution operations also adds an additional

set of parameters, risking further overfitting. However, the split case actually improved performance

(not shown). Unfortunately, given the network’s low performance, the additional performance was

only around 2%.

This last experiment suggests that stacking an CNN with an LSTM is not appropriate for dis-

course relation recognition. While it is theoretically possible to capture quite long-term dependen-

cies with recurrent neural network, as does (Radford et al., 2017) in the case of language modelling,

this comes with the cost of expanding the recurrent neural network’s capacity. In our experiment,

the LSTM has 128 hidden units, small when compared with the 4096 units in (Radford et al., 2017).

Unfortunately, we cannot increase the LSTM’s capacity since the CNN/LSTM network already

overfits on the data. We would need more data to explore this avenue.

In this chapter we presented four types of convolutional neural network architectures. We dis-

cussed the importance of feature extraction across time by constraining each convolution over a

narrow set of words, as well as the importance as separating convolutions and poolings between
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each discourse argument. We presented a pipeline approach to IDR to take advantage of the hierar-

chical nature of discourse relation senses and the downside to such approach. We also presented a

mixed architecture where a convolutional layer extracts low-level features which are then combined

across time with a recurrent neural network. These findings, as well as our limited dataset, motivate

a neural network explicitly built to exploit the pair-wise interaction between the two arguments,

without the addition of a large number of parameters. We turn to such a solution in Chapter 4.
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Chapter 4

Encoder Decoder Models for Implicit

Discourse Relation Recognition

As we have seen in Chapter 3, key downsides to using convolutional neural networks for

Implicit discourse relation recognition is that 1) CNNs are not flexible to varying input lengths

and 2) they do not explicitly model sequential data. This latter point can be problematic given our

preference for models with fewer parameters. A CNN with many layers could learn such sequential

representation but would require much more data than available. In the CNNs used in Chapter 3,

introducing any more capacity would quickly lead the models to overfit.

In this chapter we take the view that an Implicit discourse argument is generated not sequen-

tially, but is conditioned on an entire previous sequence, i.e. on the first argument in an Implicit

discourse relation. Consider for example:

(Ex. 12) The National Institute of Health policy would require researchers to cut financial ties with

health-care businesses – or lose their government money. Among other concerns researchers

with business ties are more likely to falsify findings in order to tout new drugs. (0975)

The Implicit discourse relation in (Ex. 12) is labelled with sense CONTINGENCY:Cause:reason.

The entire Arg1 (in bold) is the reason for Arg2 (in italics). Given Arg1, several sequences of

words could be used as argument 2. However, the possibilities are restricted given the discourse

relation. We believe that a model that explicitly learns the probability of the entire sequence of
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argument 2 conditioned on argument 1 should also implicitly encode the discourse relation as a

latent variable, which we can recover. In order to do so, we explored the use of recurrent neural net-

works and sequence-to-sequence models to develop our approach to Implicit discourse relation

recognition.

4.1 Encoder-Decoder RNNs for NLP

Encoder-decoders are a fairly recent trend in deep learning for NLP. They were introduced

independently as RNN encoder-decoder (Cho et al., 2014) and sequence-to-sequence (Sutskever

et al., 2014) for machine translation. This family of encoder-decoder models are commonly referred

to as seq2seq, irrespective of their specific implementation. A seq2seq model is interpreted as

learning the conditional distribution:

p(y1, y2, . . . , yT ′ |x1, x2, . . . , xT ) (34)

Where y corresponds to an output sequence conditioned on the input sequence x, and where

sequence length T ′ and T are not necessarily identical. A seq2seq model first encodes the entire

variable x input with an RNN into a fixed size vector c. Then, a separate RNN generates output

y1, . . . , yT conditioned on previous predictions and context vector c:

p(y1, y2, . . . , yT ′ |x1, x2, . . . , xT ) =
T ′∏
t=1

p(yt|{y1, y2, . . . , yt−1}, c) (35)

The implementation by (Sutskever et al., 2014) conditions y on c only at the first output, that

is y1, whereas (Cho et al., 2014) conditions every yt on the same context vector c, closely approx-

imating Equation 35, thus forming the basis to our model. Modifying Equation 7, and letting st

correspond to the target sequence’s hidden states, st is calculated as:

st = fh(Wsx
d
t + Usst−1 + Cc+ bs) (36)

where C is a parameter matrix and c is the context vector. Note that Equation 36 differs
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Figure 4.1: An encoder-decoder recurrent neural network. xet and ht respectively represent the en-
coder input and hidden state, xdt , st and yt respectively represent the decoder input, hidden state and
output prediction. The last encoded vector state, hT is used as context vector c. Unlike the encoder
hidden states, each decoder hidden state st are conditioned on the context vector c in addition to the
previous hidden state st−1 and the current input xdt .

from (Cho et al., 2014). Our formulation assumes a Vanilla RNN as opposed to a Gated Recur-

rent Unit (GRU) to simplify the notation.

By modifying the RNN in Figure 2.5 with the encoding and decoding features, we obrain the

network shown in Figure 4.1.

Additionally, (Sutskever et al., 2014) found that reversing the input sequence helped the de-

coder make better predictions (more accurate yt). Based on this finding, as well as those of (Bah-

danau et al., 2015) and earlier work on bidirectional RNNs (Schuster and Paliwal, 1997; Graves and

Schmidhuber, 2005), we experiment with encoding the input in both directions (see Section 4.2).

The downside of using standard encoder-decoder models as presented thus far is similar to

using other RNNs, that is their relatively poor performance on longer sequences. (Bahdanau et al.,

2015) show how in neural machine translation seq2seq models gradually degrade in performance

beginning with sequences of 20 tokens or more. Discourse arguments are typically between 20 and
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60 tokens, as shown in Figure 3.2, which motivates the need for models which deal well with longer

sequences. Additionally, we assume in the context of discourse relation recognition that there are

key words in one argument that are linked with words in the other argument. We hypothesize that a

neural network model would benefit by explicitly learning these links across arguments. This brings

us to the use of attention mechanisms, discussed in Section 4.2.

4.2 Encoder-Decoder with Attention

4.2.1 Attention Mechanism

In Section 4.1 we gave an overview of the standard encoder-decoder RNN model. We now dis-

cuss our encoder-decoder model augmented with an attention mechanism (Bahdanau et al., 2015).

The encoder encodes an input x, where x is represented as a sequence of word embedding vectors,

into a single context vector c = q(h1, . . . , hTx) and a hidden state ht = f(xt, ht−1). Functions f

and q are nonlinearities, in our case Bidirectional RNN (Schuster and Paliwal, 1997).

As shown in Equation 35, typically the decoder predicts a sequence of words yi, where each yi

prediction is conditioned on past predictions {y1, . . . , yi−1} and the context vector c, maximizing

the following joint probability:

p(y) =

T ′∏
i=1

p(yi|{y1, . . . , yi−1}, c) (37)

In the context of RNNs, the conditional probability of each yt in the joint probability of Equa-

tion 37 is modeled as a nonlinear function g with input yi−1, context vector c and hidden state

st:

p(yt|{y1, . . . , yi−1}, c) = g(yi−1, si, c) (38)

(Bahdanau et al., 2015) propose the use of a unique context vector ci for each decoding time

step, redefining the decoder conditional probability for each word yi as:

p(yi|{y1, . . . , yi−1},x) = g(yi−1, si, ci) (39)
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where the context vector ci is a weighted sum over all input hidden states (h1, . . . , hT ):

ci =

T∑
j=1

αijhj (40)

where a weight aij is calculated as:

aij =
exp(eij)∑Tx
k=1 exp(eik)

(41)

eij = a(si−1, hj) (42)

where scalar function a is a pair-wise scoring function, scoring the relation between the decoder

hidden state si−1 and encoder hidden state hj . Learning of the scoring is done by a simple feedfor-

ward neural network. In our case, this means that the discourse argument 1 has T tokens, for each

decoder hidden state si the network computes T scoring terms e.

Using attention leads to a vectorized representation of the second discourse argument (the de-

coder hidden states) which is not only informed of its context but also of its alignment with Arg1.

4.2.2 Recurrent Neural Network Cell

In addition to exploring the use of an attention mechanism, we also used the gated recurrent unit

(GRU) (Cho et al., 2014) as the nonlinear recurrent function. This function has fewer parameters

than long short-term memory (LSTM) networks while performing just a well (Cho et al., 2014;

Chung et al., 2014). In Section 3.5.1, we introduced the equations that compose the LSTM. Recall

that an LSTM is composed of four gating functions that control the amount of information flowing

into the memory unit and the information to be forgotten from the cell at the next time step. In the

GRU, only two gating functions are used. As discussed in Chapter 3, minimizing the number of

parameters is a serious concern for our neural networks. Hence, the use of a GRU seems promising.

The encoder RNN with a GRU cell is computed with the following three functions:
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zt = σ(Wzxt + Uzht−1 + bz) (43)

rt = σ(Wrxt + Urht−1 + br) (44)

ht = zt � ht−1 + (1− zt)� tanh(Whxt + Uh(rt � ht−1) + bh) (45)

where xt is the input vector, ht the new hidden state vector, W , U are learned parameters

matrices and b are learned bias vectors. In the GRU, zt is known as the update gate and rt as the

reset gate. With this formulation, hidden units tend to specialize into capturing either longer term

or shorter term dependencies. Long-term dependency units tend to have mostly active update gates,

while short-term units tend to have active reset gates (Cho et al., 2014).

The decoder cell has the same setup but is augmented with the context vector and associated

parameter matrices C:

zi = σ(Wzxi + Uzhi−1 + Czci + bz) (46)

ri = σ(Wrxi + Urhi−1 + Crci + br) (47)

si = zi � si−1 + (1− zi)� tanh(Whxi + Uh(ri � hi−1) + Chci + bh) (48)

4.2.3 Augmenting the Encoder-Decoder Model for Classification

We now describe how we augment the previous seq2seq with attention model in Section 4.2.1 for

classification. To do IDR recognition we used an encoder-decoder RNN with attention. However,

given our classification task and since the decoder inputs (the words of discourse argument 2) are

known and not to be predicted, the model is not trained by maximizing the likelihood of the decoder

targets, as in Equation 37, but rather by minimizing the cross-entropy error between the predicted

label ŷ and the true label y for all possible labels l:

E(y, ŷ) = −
l∑

i=1

yi log(ŷi) (49)

We experimented with two classifiers to predict ŷ.
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4.2.3.1 Classifier with Attention (CA)

In the simplest case, we make the assumption that as the decoder steps through argument 2, it

decodes the latent discourse relation representation which is conditioned on the previous time step

hidden state and certain words from Arg1 which align with Arg2 to signal a discourse relation.

Once decoding is finished, the final hidden state should fully reflect the decoded discourse relation.

We can view the decoding process as the model slowly converging towards a discourse relation

label. Hence, we use the final decoder hidden state sT ′ as the input to our classification layer:

ŷ = f(WosT ′ + b) (50)

where f is the softmax function over the final decoder hidden state sT ′ of size d, Wo ∈ Rl×d

is a parameter matrix and b ∈ Rl is a bias vector. In this setup the classifier only relies on the last

hidden state, minimizing the total number of parameters at the expense of information loss. We

name this model classifier with attention (CA). The architecture for this model can be visualized in

Figure 4.2.

We predict a potential issue with this type of setup. Recall from Section 4.1 that encoder-

decoders have difficulty handling long sequences as it is too hard a task for a recurrent network

to fully express a sequence into a single final vector. Attention mechanisms work well in machine

translation since the decoder predicts an output at every time step, alleviating the need to remember

the entire decoded output (Bahdanau et al., 2015). However, in our case we are basically requiring

the final decoded output to fully capture the discourse relation latent variable from all of Arg1 and

Arg2 into a single vector. To alleviate this potential issue, we experimented with a second classifier:

CSA.

4.2.4 Classifier from Sequence with Attention (CSA)

Since the decoder hidden states capture the interactions between the tokens of Arg2 and Arg1

tokens (via attention) as well as the decoded discourse sense (its hidden states), we propose a clas-

sification layer that uses all decoded hidden states as input. This new architecture, that we name
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Figure 4.2: Our classifier with attention (CA): an encoder-decoder recurrent neural network with
attention with the last hidden state used for classification. In the doted rectangles, the forward
and backward hidden states are concatenated. Note there is no backpropagation through time from
output predictions at each time step. Only the final cross-entropy error is backpropagated through
time.

classifier from sequence with attention (CSA), is shown in Figure 4.3. The CSA’s ŷ is a function of:

p = max poolT
′

i=1(s1, . . . , si) (51)

h = g(Wdp+ bd) (52)

ŷ = f(Wsh+ bs) (53)

where p is a T ′ sized concatenated vector of the maximum values over each decoder hidden

state si, i.e. 1D max pooling. Wd ∈ Rv×T and Ws ∈ Rl×v are parameter matrices, b ∈ Rv and

b ∈ Rl are bias terms, and g a nonlinearity. In this case each decoded time step informs the relation

classification, as seen in Figure 4.3.

4.3 Experiments

In this section we explain our data preprocessing and experiments. As with the experiments of

Chapter 3, the raw texts from the PDTB (Prasad et al., 2008) and the CoNLL SDP (Xue et al., 2016)
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Figure 4.3: Our classifier with sequence of attention (CSA): encoder-decoder recurrent neural net-
work with attention. The decoder hidden states are used for classification. Note that there is no
backpropagation through time from output predictions at each time step.

are converted to lower case and tokenized. Then we keep only the 10,000 most common words.

After forming a dictionary of unique tokens, we substitute each token with a dense word embedding

from a pretrained model. Following the preferred embeddings used at the 2016 CoNLL SDP, we

used the pretrained Word2Vec binaries1, pretrained by (Mikolov et al., 2013b) for both top-level and

fine-grained classification. While the PDTB samples contain additional data such as part-of-speech

tags and parse trees, this additional information was not used.

The top-level classification consists of four separately trained binary classifiers, while we train

a single classifier for the fine-grained classification. We experimented with the use of LSTM and

GRU (Cho et al., 2014) cells, opting for the GRU since it showed slightly better results during

development. The number of cell parameters were randomly searched at each training run. For

the CSA, we additionally performed hyper-parameter search on the number of hidden units. Both

models were optimized by Stochastic Gradient Descent with the Adam algorithm (Kingma and Ba,

2015) with mini-batches of size 32. Models evaluated on the test sets are based on optimal validation
1https://code.google.com/archive/p/word2vec/
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Model Parameter Value

CSA
CA

batch size 32
embedding size 300
cell type GRU
cell units 100
pooling 1D max
dense layer units 60

Table 4.1: Architecture parameters. Dense layer refers to the CSA model’s fully connected layer
between pooling and softmax layers.

ID Author Blind Test Dev
ecnucs (Wang and Lan, 2016) 34.18 40.91 46.40
tbmihaylov (Mihaylov and Frank, 2016) 34.51 39.19 40.32
tao0920 (Qin et al., 2016) 35.38 38.20 46.33
gtnlp - 36.75 34.95 40.72
ttr (Rutherford and Xue, 2016) 37.67 36.13 40.32
CSA ours 35.07 28.05 36.58
CA ours 38.25 35.63 39.42

Table 4.2: F1-scores of our CSA and CA models for fine-grained IDR compared to the top 5 teams
at CoNLL-2016.

set F1 score. Our main parameters that produced the best performance are listed in Table 4.1.

4.4 Results and Analysis

Table 4.2 summarizes our fine-grained classification results2 on the CoNLL SDP dataset and

Table 4.3, our top-level classification results on the PDTB dataset in comparison with other authors.

As shown in Table 4.2, our CA model scored 38.25% on fine-grained classification, higher than

the state-of-the-art F1 score of 37.67%. Observing the blind test set results in Table 4.2 we note

that our model seems to generalize well to an unseen and different dataset (Wikinews). Other top

models from Figure 4.2 such as gtnlp and ecnucs (both CNNs), have a more than 10 point difference

between development score and blind test score compared to only 2 points in the CA case.

On top-level classification, only our CA model (see Table 4.3) scored well in the case of EX-

PANSION and CONTINGENCY, the largest relation classes. Classes CONTINGENCY and TEM-

PORAL were better than most other approaches. The F1-score of 30.56% for COMPARISON was

far from the top result in Table 4.3, likely due to the small dataset size. Our model overfits on the
2We used the official CoNLL-2016 scorer: https://github.com/attapol/conll16st
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Author COMPARISON CONTINGENCY EXPANSION TEMPORAL
(Pitler et al., 2009) 21.96 47.13 76.42 16.76
(Zhou et al., 2010) 31.79 47.16 70.11 20.30
(Park and Cardie, 2012) 31.32 49.82 79.22 26.57
(Rutherford and Xue, 2014) 39.70 54.42 80.44 28.69
(Ji and Eisenstein, 2015) 35.93 52.78 80.02 27.63
(Chen et al., 2016a) 40.17 54.76 80.62 31.32
CSA 27.02 49.86 77.45 24.43
CA 30.56 54.80 80.72 27.15

Table 4.3: F1-scores of our CSA and CA models for top-level IDR. Note Entrel is merged into
EXPANSION as is done in the above listed works.

smaller datasets when compared with other systems listed in Figure 4.2 possibly due to a higher

parameter count from the bidirectional RNN and attention parameters. However, this is difficult to

verify since we do not have access to these other models.

Our CA model is relatively shallow, a single bidirectional RNN encoder layer and a single

RNN decoder layer with attention. Hence, it is possible that the chosen input embedding had a

minor impact on our results. We would have liked to measure the embedding effect to compare

with (Chen et al., 2016a), but to our knowledge their embedding is not publicly available.

We were surprised by the CSA’s lower performance in all cases. We believed the model would be

more robust if the classification layer had inputs from all decoded hidden states directly. However,

using only the final state vector resulted in higher classification score while using less parameters.

This may be due to overfitting. As future work (see Chapter 6), we would need to reevaluate it on a

much larger dataset.

In this chapter, we presented an efficient encoder-decoder model with attention for Implicit

discourse relation recognition, a model which fully exploits the sequential nature of the data, to ap-

pear in (Cianflone and Kosseim, 2018). Our model computes attention between discourse argument

word pairs without feature engineering and without the need for additional neural network layers,

possibly minimizing the number of trainable parameters. We show that our model generalizes well

to unseen datasets on fine-grained classification, performing comparatively with state-of-the-art,

without large variance in scoring between development and test sets. In the current chapter we
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hypothesized that argument 2 is generated by conditioning on argument 1 and a latent discourse

relation which we tried to recover. In the next chapter we test this hypothesis in the unsupervised

setting where large language models may automatically learn discourse relations.

66



Chapter 5

Disentangled Representation of

Discourse Relation

5.1 Background

Learning a representation with unsupervised learning has a rich history in neural networks and

plays a critical role in their recent success (Bengio et al., 2013). Good representations are commonly

reused across tasks, such as in computer vision (Oquab et al., 2014) and NLP (Collobert et al., 2011),

a form of transfer learning.

To fight the curse of dimensionality (Bengio et al., 2003), learning a distributed word representa-

tion (Hinton et al., 1986) has been shown to be an essential tool of natural language processing with

neural networks (Bengio et al., 2003). Words with similar meaning or similar usage, are expected

to have similar distributed feature vectors, where similarity is measured with a vector distance func-

tion such as Euclidean distance. (Bengio et al., 2003) first showed that these representations can be

learned on vast quantities of data in an unsupervised way.

An excellent example by (Mikolov et al., 2013b) shows an interesting degree of compositionality

in the word vectors learned by their Word2Vec training method. For example, the addition of the

word vectors “Germany” and “capital” result in a vector that is close to the vector for the word

“Berlin”. Similar analogies have also been shown for images after training a deep convolutional

generative adversarial network (DCGAN) (Radford et al., 2016). The authors showed, for example,
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that if you take the mean noise vector of images of men with glasses, followed by a subtraction of

the mean vector for men without glasses, and finally add the mean vector of women without glasses,

this results in a noise vector for women with glasses. By inputting this vector into the DCGAN’s

generator, the model generates a number of highly plausible images of women with glasses.

A key strength of these approaches is that they are trained in a completely unsupervised way.

The learning of a good representation results in how the models are trained. (Mikolov et al., 2013b)’s

continuous bag-of-words training consists of a neural network which predicts a middle word given

a context window, such as the 2 preceding and the 2 following words. Skip-thought vectors (Kiros

et al., 2015) extend this idea to larger text by encoding a sentence and predicting the surrounding

sentences. For images, (Radford et al., 2016)’s learn representation results from training a new type

of generative adversarial network (GAN) (Goodfellow et al., 2014). GANs are trained by having

two networks play a kind of game where one network generates fake images (the generator) while

another network predicts if a generated image is real or fake (the discriminator).

The downside to these methods is that the learned factors of variation are distributed across the

learned representation. For example, there is no single neuron that turns glasses on or off in an

image. The glasses factor is shared across the latent space. To isolate that factor, one must first

observe images with glasses and rely on vector arithmetic.

(Bengio et al., 2013) argue that for an AI to understand the world it “can only be achieved if

it can learn to identify and disentangle the underlying explanatory factor”. By “disentangled”, we

mean a representation which learns to separate the various explanatory factors. For example, a rep-

resentation that disentangles shadows from objects would have a region in latent space specialized in

the representation of shadows, and a different spaces for other factors. (Kingma and Welling, 2014)

showed that a Variational AutoEncoder (VAE) trained on Frey faces with only a two-dimensional

latent space, learned to disentangle facial expression in one dimension, and object rotation in the

other dimension. A more recent model, InfoGAN (Chen et al., 2016b), proposes a new type of

GAN with the explicit goal of disentangling representations. This is achieved by augmenting the

GAN objective with an auxiliary loss. The new objective consists of maximizing the mutual infor-

mation between a new latent “code” and the generator’s output. They show this latent code learns

to disentangle factors much like VAEs (Kingma and Welling, 2014) but in the GAN setup.
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5.2 Recurrent Neural Network for Disentanglement

Recently (Radford et al., 2017) showed that a high-capacity character-level language model

trained on large corpora can learn disentangled representation. They trained a recurrent language

model, a multiplicative LSTM (mLSTM) (Krause et al., 2017) in this case, on the Amazon product

review dataset (McAuley et al., 2015) and showed that such a model automatically learns sentiment,

represented in mostly a single neuron of the mLSTM’s possible 4096 neurons. Based on these find-

ings, we hypothesize that a neural network trained on a large amount of data could learn disentan-

gled representation of discourse relations. We first describe the dataset we used in Section 5.2.1, our

model in Section 5.2.2, and give details of our experiment and results in Sections 5.2.3 and 5.2.4.

5.2.1 Dataset

The mLSTM model trained by (Radford et al., 2017) on the Amazon reviews dataset took one

month to train, parallelized across 4 Pascal Titan X GPUs. Given our computational limits, we

could not train such a high-capacity model on such a large corpus and therefore opted to reuse the

mLSTM parameters from (Radford et al., 2017). The Amazon product review datasets consists of

82 million product reviews from 1996 to 2014, with over 38 billion characters.

The mLSTM is used to extract a high quality representation of our data on which we want to

predict discourse relations (see Section 5.2.3 for details of the experiment). The data we use for

discourse relations is the PDTB as described in Chapter 2. Each sample consists of Arg1, Arg2

and possibly a discourse connective in the case of Explicit relations.

5.2.2 Model

We use a character-level recurrent neural network, mLSTM in our case, to encode the characters

of our data. Since the model is character based, preprocessing is minimal. We first convert our

dataset to integer form, swapping the characters for their ASCII encoding. For each mini-batch,

these encodings are swapped for dense embeddings of size 64. For details on integerization and

embedding, see Chapter 3.
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Figure 5.1: RNN using pretrained weights. At each time-step, a discourse character is encoded by
the RNN, conditioned on past hidden states until the final character is encoded. With parameter
matrix Wo, we predict perform binary classification. Note Wo is trained by logistic regression with
lasso regularization, while all other parameters remain fixed.

The embedded sample forms a sequence of embedded characters x1, x2, . . . , xT where T cor-

responds to the number of characters in the sample. At each time step t, character xt is input into

the network’s non-linear function f(), the cell, which outputs a new memory vector ct and hidden

state vector ht :

ct, ht = f(xt, ht−1, ct−1) (54)

Figure 5.1 shows an abstracted view of the flow of information through the RNN. Since we are

only concerned with ht, we omit ct and all other mLSTM parameters. Once the entire discourse,

including Arg1 and Arg2 is fed into the RNN, we save only the last hidden state hT . We then

perform binary classification by predicting the probability of the discourse belonging to a class or

not:

ŷ = softmax(WohT + bo) (55)

Where Wo is the learned matrix mapping hT to the vector of length two. During training, only

Wo is updated. All input-to-cell parameters and all internal cell parameters are fixed during training.
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Relation All Explicit Implicit
COMPARISON 11388 / 2438 / 2438 7826 / 1676 / 1676 3498 / 748 / 748
CONTINGENCY 11570 / 2478 / 2478 5238 / 1122 / 1122 5946 / 1274 / 1274
EXPANSION 21532 / 4614 / 4614 8994 / 1926 / 1926 12236 / 2622 / 2622
TEMPORAL 6586 / 1410 / 1410 5176 / 1108 / 1108 1290 / 276 / 276
EntRel 7296 / 1562 / 1562 - 7296 / 1562 / 1562

Table 5.1: Dataset distribution for training/validation/testing in 3 scenarios: 1) Explicit,
Implicit and EntRel combined, 2) Explicit only, 3) Implicit and EntRel only. Note
the numbers here combine positive and negative samples. In all cases, positive and negative samples
are split evenly.

5.2.3 Experiments

To detect if a discourse relation is learned by the language model, we perform a series of ex-

periments on each discourse relation sense. Since we are not concerned with classifying discourse

relation senses in a natural distribution, we do not use the common PDTB breakdown as we did in

Chapters 3 and 4 as the recommended breakdown is extremely unbalanced (see Table 2.2). We opt

for a balanced binary positive/negative dataset as in (Radford et al., 2017). For each discourse sense,

the positive class consists of all senses belonging to a same class, whereas the negative senses are

randomly sampled from the rest of the dataset. 15% of the dataset is held out for validation and 15%

for testing. All sections of the PDTB are used. Details of the breakdown are shown in Table 5.1.

In Section 5.2.2 we explained how we obtained the discourse representation. The experiments

consists of classifying each discourse, using the representation, as belonging to a discourse re-

lation sense or not. We hypothesize that a performing model trained with the described setup

would have disentangle the representations, which we could observe. Hence it is important to

perform a single binary classification for each discourse sense to isolate the location of this rep-

resentation. Additionally, we believe that the representation may not necessarily be the same for

Explicit, Implicit and EntRel relations. We therefore perform the classification in 3 sce-

narios: 1) Explicit, Implicit and EntRel combined as category All, 2) Explicit only,

3) Implicit and EntRel only. Since EntRel is both an annotation type and sense, we also

consider it on its own. This breakdown is shown in Table 5.1.

The goal of these binary classifications is not to actually classify discourse relations, but to

discover where and if discourse relations are disentangled. The key is the weight matrix Wo in
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Figure 5.1. For each classification, we perform logistic regression with the lasso, the “least abso-

lute shrinkage and selection operator”, which we choose specifically as it regularizes the model by

shrinking some weights and setting others to zero (Tibshirani, 1996). Weights in Wo which are not

zero and strongly linked to hT neurons are clues as to disentangled features.

It is however difficult to determine with certainty if a learned representation is disentangled.

Results are not always as clear as in (Radford et al., 2017) where using a single hidden state unit

helped achieve accuracy of 92.30%, close to state-of-the-art of 94.09%, in sentiment recognition.

Additionally, the use of all 4096 hidden state units marginally increased accuracy to 92.88%.

To the best of our knowledge, there is no objective criteria to determining “disentanglement”.

We can propose 3 criteria to determining disentanglement: accuracy, dataset size and number of

hidden units strongly signaled. At the moment, results are interpreted simply in relation to one

another.

5.2.4 Results and Analysis

From Table 5.2 we can see that in all cases accuracy is greater than the 50% baseline. As

we mentioned in Section 5.2.3, we cannot make a clear statement of disentanglement, but we can

compare the results across class.

One important observation to make is the negative correlation between the number of neurons

and classification accuracy, as observed in Table 5.3. In the All case, a dataset which includes

Explicit, Implicit and EntRel relations, the Pearson correlation is -0.65. On their own,

Explicit and Implicit are quite differently behaved, with Explicit relations classification

accuracy much less related to the number of used neurons. In other words, while the language model

does automatically learn Explicit relations better than Implicit relations, it does so in a less

systematic fashion in terms of disentanglement. It is more case by case, depending on the discourse

relation. For example, Explicit COMPARISON achieves an accuracy of 65.99% while only

57.49% in the Implicit COMPARISON case. And it does so with much less neurons, needing

only 71 neurons compared to Explicit’s 278, out of a total of 4096. We can also observe this

pattern visually in Figure 5.2 (a) and (b). Notice the noisy Implicit chart compared to the less

active Explicit chart except for 2 significant weights, indicative of disentanglement.

72



Sense Annotation type Accuracy #Neurons σ > 1σ > 2σ

COMPARISON
All 62.14 305 0.11 16 3
Explicit 65.99 71 0.20 2 0
Implicit 57.49 278 0.11 32 5

CONTINGENCY
All 63.72 100 0.12 8 3
Explicit 66.13 149 0.12 14 3
Implicit 67.90 57 0.18 3 0

EXPANSION
All 58.32 1270 0.09 139 32
Explicit 61.63 241 0.10 20 7
Implicit 57.09 861 0.10 106 15

TEMPORAL
All 74.33 181 0.19 12 8
Explicit 76.90 157 0.18 17 7
Implicit 63.41 237 0.24 29 9

EntRel EntRel 74.39 186 0.22 13 5

Table 5.2: Top-level sense classification results on balanced dataset. For each sense class, we show
the results for the various datasets: 1) All annotation types including Explicit, Implicit and
EntRel which form category All, 2) only Explicit, and 3) only Implicit. EntRel is also
considered on its own as both a sense and annotation type. Accuracy is on the balanced binary
dataset. The column neurons represents the non-zero coefficient resulting from the lasso regulariza-
tion. It can be interpreted as the number of features (neurons) necessary for the classification. The
σ column represents the standard deviation of the logistic regression weights. The last two columns
represents the number of weights greater than one or two standard deviations.

Correlation
All -0.6352
Explicit -0.2586
Implicit -0.7501

Table 5.3: Pearson correlation between the number of used neurons by the logistic regression (non-
zero weights) and classification accuracy.
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(a) active weights for Explicit COMPARISON

(b) active weights for Implicit COMPARISON

Figure 5.2: Visualization of neuron weights (the regression coefficients). Due to the lasso regu-
larization, in most cases only a small proportion of the 4096 neuron features are needed to for the
classification task. We only show the active weights leading to different x-axis sizes.
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(a) active weights for EntRel

(b) active weights for Implicit EXPANSION

Figure 5.3: Visualization of neuron weights (the regression coefficients). Due to the lasso regu-
larization, in most cases only a small proportion of the 4096 neuron features are needed to for the
classification task. We only show the active weights leading to different x-axis sizes.
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We can hypothesize that this is due to the nature of Explicit relations where discourse rela-

tions are highly correlated with discourse connectives. Given the large number of discourse connec-

tives (more than 100), the discourse connective representation is scattered in a narrower representa-

tion space, by being signaled by key words, compared to Implicit relation where representation

is not disentangled. We believe this is why Explicit TEMPORAL, at 76.90% accuracy, performs

better than other classes. The Explicit TEMPORAL sense is more predictable given its lower

number of discourse connectives (Prasad et al., 2008). Similarly, EntRel accuracy is quite high.

As discussed in Chapter 2, EntRel refers to relations between entities across discourse arguments.

Occasionally entity mentions will repeat, as in (Ex. 6) of Chapter 2, which makes the pattern more

predictable.

There is an interesting exception to our previous observations, the case of Implicit CON-

TINGENCY. It is the only discourse sense where Implicit accuracy, at 67.90% is higher than

its Explicit counterpart, at 66.13%. It also has the highest Implicit discourse sense accu-

racy in Table 5.2. And even more surprising, it is the only Implicit sense where fewer neuron

features are active from the regularized logistic regression in comparison with its Explicit coun-

terpart. The classification needs only 57 features, with 3 significant features at greater than one

standard deviation from mean weight value, compared with 149 for the Explicit case. 57 is also

the lowest number of used features compared to all other classification results in Table 5.2. The

likely explanation is that we used parameters from (Radford et al., 2017) whose model strongly

captures sentiment. (Pitler et al., 2009) showed that polarity features are helpful in distinguishing

CONTINGENCY, as they contain more opposite polarity pairs than non-CONTINGENCY senses.

Also interesting is the high performance of EntRel, at 74.39% accuracy, compared to the

relatively lower performance of Implicit EXPANSION, at 57.09%. Recall from Chapter 2 that

the common practice is to include EntRel into Implicit EXPANSION when performing top-

level classification due to its perceived interpretation as a form of EXPANSION. However, based

on the large difference in performance and weight activations, it seems the language model learns

these two representations quite differently, with much more ease for EntRel. We can observe

these logistic weight activations in Figure 5.3 (b), which are much more noisy when compared to

EntRel in Figure 5.3 (a).
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In this chapter we introduced a preliminary investigation of discourse relation representation

disentanglement. Our results show that a high capacity neural language model can learn discourse

relation with unsupervised learning, and shows signs of disentanglement notably in the case of the

Implicit CONTINGENCY sense. We hypothesized that our findings are supported by discourse

relation theory, such as the connection between CONTINGENCY and polarity and the choice of

dataset. Given this new research direction, much more work can be done. We believe finding

parameters from a high capacity network trained on a large dataset in the same domain as the PDTB

would yield better results. We believe such a model could generate interesting text conditioned on

discourse relation, as (Radford et al., 2017) generated text conditioned on sentiment. Additionally,

such a model would complement a supervised classification model presented in Chapter 4.
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Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis explored the recognition of implicit discourse relation (IDR) with neural networks,

in particular with convolutional (CNN) and recurrent neural networks (RNN). In Chapter 3, we

experimented with several varieties of CNN models. Our experiments showed that one of the key

ingredients to a well performing CNN for IDR is to keep the number of layers shallow and separate

the model inputs across discourse arguments. Convolution and pooling operations should not blend

across Arg1 and Arg2, they should be kept separate. Otherwise, due to the max-pooling the

penultimate network layer operates on information which is not representative of the most important

features in both arguments, but can be skewed towards a single one. We showed that small kernels

work best. We did not see any benefit from the use of pretrained embeddings but believe that may

be because of the limited depth of the convolutional network.

We hypothesized that building a pipeline system linking top-level classification with fine-grained

classification could result in better fine-grained IDR. However, given the difficulty of top-level mul-

ticlass classification, misclassification error simply compounded the performance of a fine-grain

classifier. We also experimented with an RNN layer to exploit the sequential nature of the data, but

results were disappointing.

These results led us to create a sequence-to-sequence model in Chapter 4, which to our knowl-

edge is the first of its kind for IDR. We experimented with two attention models, one where we
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combine information from all decoder hidden states, and another where we only consider the last

hidden state. We showed that the simpler attention model with a classification layer based only on

its last hidden state could achieve state-of-the-art performance on fine-grained IDR, and state-of the

art on some top-level discourse relation senses.

Classification models of Chapters 3 and 4 showed we could discover latent discourse relation

from natural text in a supervised fashion. In Chapter 5 we explored the representation of discourse

relation in completely unsupervised training. Our preliminary results showed that some discourse

relations are automatically learned, but that more work is needed for this new research direction on

discourse relation recognition.

6.2 Contributions

This thesis presented a number of theoretical and practical contributions, including:

• the implementation of various convolutional neural networks for IDR, including our partic-

ipation to the CoNLL-2016 International Shared Task on Shallow Discourse Parsing (Laali

et al., 2016) (see Chapter 3)

• insights relating discourse theory and convolutional neural network architectures for IDR, and

the settings under which they work best (see Chapter 3)

• a novel neural network architecture, based on sequence-to-sequence models, for IDR which

achieves state-of-the-art performance (see Chapter 4)

• insights into the possible automatic learning of discourse relation representation in unsuper-

vised learning, a new research direction for discourse relations (see Chapter 5)

6.3 Future Work

In Chapter 3 we discussed the wide performance margin between Explicit and Implicit

relations. Results in Section 3.3.3 showed how Explicit discourse relation recognition mod-

els perform quite well on the PTB test dataset but not so well on the Wikinews test dataset, with
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high variance across models when compared with their Non-Explicit counterparts. This sug-

gests Explicit models have begun to overfit the PTB dataset as a whole and further development

needs to focus on alternative datasets, which, unfortunately are lacking. We have shown that neural

networks achieve state-of-the art performance on IDR and do not seem to overfit to the current PTB

domain. However, given the fact neural networks achieve their full potential on natural language

processing tasks only once datasets reach a large minimal size (Zhang et al., 2015b), developing dis-

course relation datasets is key to the future development of better discourse relation sense classifiers

in both cases of Explicit and Non-Explicit relations.

In Chapter 3 we examined a hierarchical system for IDR. However, to exploit the hierarchical

nature of discourse relation senses, it would be interesting to explore another approach for future

work, inspired in part by the hierarchical softmax used for language modelling (Morin and Bengio,

2005; Mnih and Hinton, 2009; Mikolov et al., 2013a). The hierarchical softmax is a trick used

in neural networks to deal with large output distributions, such as large vocabularies. A Huffman

tree of the vocabulary is built, assigning short binary codes to frequent words. The probability of

words down the Huffman tree are conditioned on previous node splits. This resembles fine-grained

classification where low-level sense subtypes are dependent on sense types, in turn dependent on

top-level sense classes. Additionally, hierarchical softmax is implemented in a way such that the

parameters used to predict each node all share common input features. Sharing neural network

layers for multiple tasks, in our case predicting the various hierarchical discourse senses, has been

shown to be beneficial, as recently and impressively as in AlphaGo Zero (Silver et al., 2017).

We also believe future work should focus on data augmentation and regularization for the PDTB

dataset. Common techniques to combat overfitting include dropout (Hinton et al., 2012) and batch

normalization (Ioffe and Szegedy, 2015), common to many supervised learning domains using neu-

ral networks including NLP. Data augmentation is another strategy quite common in computer vi-

sion (Krizhevsky et al., 2012; Antoniou et al., 2017) but less common in NLP. In NLP, model

inputs, such as words or characters, cannot simply be transformed as done with images or speech

recognition, since small perturbations can render a sentence meaningless. Some preliminary work

suggests augmenting text by replacing some words with semantically close words based on a the-

saurus (Zhang et al., 2015b). We believe a better alternative would be to replace words using close
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words based on word embeddings, allowing for a much larger choice of vocabulary than a thesaurus,

and objective closeness function.

In Section 3.3.3.2 we presented some preliminary analysis of the effect of CNN kernel filter

size on IDR. We hypothesized that wider filters would map longer dependencies across discourse

arguments. However this was not supported by the results in Table 3.5. In future work we would

like to fully analyze the effects of various filter sizes as well as various simultaneous filters with at

least 10-fold cross-validation. In Section 3.3.3.2 we also found no difference in using pre-trained

word embeddings or training randomly initialized embeddings. In future it would be interesting to

experiment with combining word embeddings with other strategies. For example, (Lee et al., 2017)

represent their text input with a combination of two pretrained word embeddings and character

embeddings, the latter which is trained simultaneously with their task of coreference resolution.

Alternatively, Skip-Thought vectors (Kiros et al., 2015), where the entire sentence is embedded can

be used instead of working with word embeddings.

In Chapter 4 we introduced novel attention models for IDR. In recent months, new kinds of

attention mechanisms have been introduced for various tasks such as attention-over-attention for

reading comprehension (Cui et al., 2017), self-attention for document summarization (Paulus et al.,

2017) and multi-head attention for translation (Vaswani et al., 2017). We believe these could be

quite valuable for IDR and encourage further research in this direction.

Finally, in Chapter 5 we introduced some preliminary work on disentanglement of discourse

representations. We propose using alternative datasets more closely aligned with the PDTB content

and style to discover discourse relation neurons. A high-capacity model trained on such a dataset

may be able to generate text conditioned on discourse relation sense, an interesting prospective.

In this thesis we presented only a small fraction of potential research on implicit discourse rela-

tion recognition. Considering how far automatic IDR is from human performance and the relatively

recent interest in applying neural network techniques, much more research still remains.
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