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Investigating Rank Reversal in Reciprocal Fuzzy Preference Relation Based on Additive 

Consistency: Causes and Solutions 

 

Abstract: 

Rank reversal is a common phenomenon in decision making. Rank reversal occurs when a new 

alternative is added to (or removed from) a set of alternatives, which causes change in the 

ranking order of the alternatives. This paper studies the possible causes of rank reversal in 

reciprocal preference relation based on additive consistency. Our investigation reveals that 

inconsistency of information is the main cause of this phenomena in preference relations 

followed by ranking score aggregation. We propose score aggregation methods to address the 

phenomenon of rank reversal. The proposed methods are illustrated using numerical examples. 

The results are better than other tested methods.   

 

Keywords:  

Preference relation; Multi criteria analysis; Rank Reversal; Additive consistency; AHP  

 

 

 

 

 

 



  

 

 
3 

1. Introduction 

Multi-Criteria Decision-making (MCDM) is a field with many strengths, among which is its 

ability to assist decision-makers in solving difficult decisions involving conflicting criteria and to 

help them learn more about their preferences. However, some methods are known to exhibit a 

phenomenon called rank reversal. Rank reversal occurs when a new alternative is added to (or 

removed from) a set of alternatives, which causes a change in the ranking order of the 

alternatives (Barzilai & Golany, 1994). The literature on decision-making reveals that a number 

of methods suffer from this phenomenon. Some of them are Analytic Hierarchy Process (AHP) 

(Barzilai & Golany, 1994; Wang & Luo, 2009), Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) (Wang et al., 2007; Wang & Luo, 2009), ELimination and Choice 

Expressing Reality (ELECTRE), Preference Ranking Organisation Method for Enrichment 

Evaluations (PROMETHEE) (Frini et al., 2012; Mareschal et al., 2008), Data Envelopment 

analysis - Analytic hierarchy process (DEAHP), Borda-Kendall (BK) (Wang & Luo, 2009) and 

Weighted Sum Method (WSM)( Wang & Luo, 2009).  

The rank reversal phenomenon has raised concerns against the use of affected methods, 

especially AHP. Rank reversal could be of two types: partial or total. Partial rank reversal 

happens to limited alternatives while other alternatives still have the same ordering. For example, 

suppose that the current ranking of three alternatives is         , such that alternative    is 

preferred over alternative    and    respectively. However, when a new alternative   , which is 

not dominant, is introduced, the ranking could become             . Notice that 

alternative    now becomes second while alternative    is first. This is called partial rank 

reversal. On the other hand, total rank reversal is the same as the partial rank reversal except that 
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the whole ranking order is reversed. In this case, the best alternative becomes the worst and the 

worst becomes the best             (Dymova et al., 2013; Garcia-Cascales & Lamata, 

2012).  

Belton and Gear (1983) were the first to notice this phenomenon in AHP. Since then, the 

literature of MCDM has been in debate about the impact of this phenomenon, and the validity of 

the affected methods. Many researchers such as Dyer (1990), Schenkerman (1994), Perez (1995), 

and Leung and Cao (2001) criticized the exhibited methods, whereas researchers such as Saaty 

and Vargas (1984), Saaty (1987), Forman (1990), and Millet and Saaty (2000) argued for the 

legitimacy of this phenomenon.  

To emphasize the phenomenon of rank reversal, we point the reader to the contraction 

consistency condition mentioned by Pavlicic (2001) adopted from Amartya Sen that states: 

Contraction consistency condition: If alternative   is the best in the set of alternatives   such 

that    , then it has to be the best in every subset     where    . 

This phenomenon could drive some decision-makers away from using methods known to have 

rank reversal, even if they are well-known. For instance, recently Anbaroglu et al. (2014) chose 

to use the Weighted Product Model (WPM) instead of relying on well-known and widely used 

models such as AHP and WSM just because it does not suffer from any kind of rank reversal 

issues. Furthermore, they commented on the problem of rank reversal as “a serious limitation” of 

the MCDM field, which could lead researchers to misunderstand the difference between 

examined alternatives. Therefore, a need for handling this phenomenon is necessary, at least for 

the experts who are not in favor of it. The literature on preference relations, especially 
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multiplicative preference relations, links this phenomenon to the inconsistency of the data, the 

concept of pairwise comparison on which preference relations are based, the preference 

aggregation method, and the score aggregation method. To our knowledge, there is no complete 

study yet that investigates these three possible reasons for rank reversal in preference relations. 

There is one study, conducted by Leskinen and Kangas (2005), on the inconsistency of pairwise 

comparison based on a regression model. They concluded that inconsistency could lead to rank 

reversal. This phenomenon, however, does not occur when there is single criterion. But, in 

multiple criteria even if the data are consistent, the aggregation method (i.e. arithmetic mean) can 

result in rank reversals.  

In this paper, our goal is to investigate how inconsistency and aggregation methods could lead to 

rank reversal in fuzzy preference relations. 

The rest of the paper is organized as follows: in section 2 we present some preliminary 

knowledge on preference relations. In section 3, we present a review of rank reversal literature 

regarding possible causes and attempts to solve rank reversal. In section 4, we study the possible 

causes of rank reversal in preference relation, namely, inconsistency of preference relation, 

aggregation operators, and score aggregation method and their link to rank reversal. In section 5, 

we propose score aggregation methods that have better performance than the sum normalization 

methods in avoiding rank reversal. In section 6, we provide a numerical example. Finally in 

section 7, we present the conclusions.     
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2. Preliminary Knowledge 

Definition 1 (Urena et al., 2015): A preference relation   is a binary relation defined on the set   

that is characterized by a function         , where   is the domain of representation of 

preference degrees provided by the decision-maker. 

Definition 2 (Xu, 2007): A fuzzy preference relation   on a finite set of alternatives   is 

represented by a matrix           
     with: 

                                              . 

when         indicates that the expert prefers alternative    over alternative   ;         

indicates that the expert prefers alternative    over alternative   ;          indicates that the 

expert is indifferent between    and   , thus,        . 

Furthermore, the fuzzy preference relation            is additive consistent if and only if the 

following additive transitivity is satisfied (Meng & Chen, 2015; Urena et al., 2015; Herrera-

Viedma et al., 2007a; Tanino, 1984): 

                                                                                                                                                    

Definition 3 (Saaty, 1980): A multiplicative preference relation   on the set                
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of alternatives is defined as a reciprocal matrix                 with the following 

conditions: 

                                         . 

where     is interpreted as the ratio of the preference intensity of the alternative    to   .  

There are several numerical scales for the multiplicative preference relation; however, the most 

popular one is the 1-9 Saaty scale.       means that alternative    and    are indifferent; 

      implies that alternative    is preferred to   . As the ratio of intensity of       increases, 

the stronger is the preference intensity of    over   . Thus,       means that alternative    is 

absolutely preferred to   . 

The multiplicative preference relation            is called consistent if the following 

multiplicative transitivity is satisfied (Saaty, 1980): 

                                   . 

The AHP method, which uses multiplicative preference relations, decomposes complex problems 

into a hierarchy consisting of several levels, where the top level represents the goal and the lower 

levels consist of criteria, sub-criteria and alternatives respectively. The elements in each level are 

compared with each other through pair-wise comparison on a scale of 1-9 to find their relative 

importance. Then the weight for each element is computed using the eigenvector method.  The 

same technique is used at the lower level with respect to a higher level element to find their 

relative importance (Saaty, 1980).  
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3. Literature Review 

The purpose of this section is to explore the literature of MCDM to investigate possible causes of 

rank reversal phenomena. We will then cover the attempts of researchers to solve this issue. 

Thus, two main subsections will be explored: the literature of rank reversal causes and attempts 

to fix rank reversal.   

3.1. The literature on rank reversal causes’ 

The literature on multiplicative preference relations, especially AHP, discusses three possible 

reasons behind rank reversal, see Table 1: inconsistency, pairwise comparison, and aggregation 

method. Dodd et al. (1995) claimed that Saaty’s AHP misses a form of inconsistency within its 

model, which puts its results under doubt. Farkas et al. (2004) also blamed inconsistency in 

pairwise comparison for this issue. According to Paulson and Zahir (1995), judgmental 

uncertainty could also cause rank reversal. Chou (2012) referred the issue of rank reversal in 

AHP due to the aggregation method. However, researchers like Karapetrovic and Rosenbloom 

(1999) refused to link the problem to inconsistency. They argued that there is no direct relation 

between the consistencies or inconsistencies of pairwise comparison matrices and the occurrence 

of rank reversal. They stated that each could be considered as a separate problem. Ishizaka and 

Labib (2011) agreed with them and reported that rank reversal is independent of the consistency 

of the data and priority method. Moreover, they believed this phenomenon could happen in any 

additive model.  

Other researchers like Schenkerman (1994) believed that the rank reversal in AHP is caused by 

normalization, and its scales seem arbitrary. He claimed that criteria weights are dependent on 
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the measurements of the alternatives. Thus, any change in the number of alternatives and 

normalization imposes revising of the criteria weights. Correspondingly, Ishizaka and Labib 

(2011) claimed that the rank reversal phenomenon is related to the method rather than modeling 

procedure and it may not be resolved because aggregation of the standardized units is not simply 

interpretable, which has been even disputed by French school. Lai (1995) pointed out that rank 

reversal happens because of multiplying criteria weights by unrelated normalized scale of 

performance ratings. Dyer (1990) claimed that the problem is not just rank reversal but the AHP 

results are arbitrary. This is because the criteria weights may not be right due to the 

normalization procedure. Triantaphyllou (2001) agreed with Dyer that in AHP or any additive 

variants of it, ranking is arbitrary often which tends to generate rank reversal even if the data is 

perfectly consistent. According to Rosenbloom (1997), researchers tried to resolve this problem 

in AHP by proposing different normalization methods. Perez (1995) argued that the phenomenon 

of rank reversal is common in almost all of ordinal aggregation methods such as AHP. He 

claimed that rank reversal could be avoided if both criteria weights and performance ratings are 

generated from a common space of scales. On the other hand, Bana e Costa and Vansnick (2008) 

blamed the eigenvalue method. They stated that the priority vector violates a condition of order 

preservation, which makes use of AHP in decision-making very problematic. 
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Table 1: The causes’ literature of rank reversal  

Cause(s) Author(s) Claimed	based	on

Dodd et al., (1995) No	proof

Farkas et al., (2004) No	proof
Uncertainty Paulson and Zahir (1995) Simulation
Aggregation method Chou (2012) No	proof

AHP method and score aggregation Ishizaka and Labib (2011) No	proof
Normalization Schenkerman (1994) Examples

Lai (1995) Based	on	comparison	between	MAUT	and	AHP*

Perez (1995) Examples
Dyer (1990) Examples
Triantaphyllou (2001) Examples

Normalization methods Rosenbloom (1997) No	proof
Eigenvalue method Bana e Costa and Vansnick (2008) Examples

Inconsistency

Multiplying criteria weights by 

unrelated normalized scale 

AHP method (normalization)

*MAUT:	Multiattribute	Utility	Theory

 

3.2. Attempts to fix rank reversal 

The rank reversal phenomenon in AHP was initially observed by Belton and Gear in 1983 after 

they discovered that introducing a new similar alternative to the existing ones could reverse the 

ranking of the alternatives. They proposed a modified normalization method to overcome the 

rank reversal issue in the original AHP, which is later known as a Revised AHP. The revised 

method differs from the original AHP prioritization method where each criterion is divided by 

the max value with respect to it for all the alternatives. Later on, this method came to be known 

as the ideal model. Afterwards, Schenkerman (1994) claimed that in methods such as Referenced 

AHP, normalization to maximum entry (ideal model), normalization to minimum entry, and 

linking pins avoid rank reversal only when the criteria are quantitative. On the other hand, Saaty 

(1987) linked rank reversal with the existence of near or similar copies within the set of 

alternatives. To solve this issue, either the set of alternatives has to be revised or more criteria 

need to be considered. Saaty defines a near copy as an alternative that has close values within 

10% for overall criteria. However, Dyer (1990) later criticized this suggestion. 
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Lootsma (1993), followed by Sheu (2004), claimed that using a geometric mean aggregation 

method in AHP helps to avoid rank reversal. Likewise, Ishizaka and Labib (2011) mentioned that 

using geometric mean in AHP prevents rank reversal since geometric mean in both row and 

column approaches produces the same results, unlike eigenvector methods. Barzilai and Golany 

(1994) stated that the rank reversal problem is related to the structure of AHP mainly through the 

additive aggregation rule. They argued that the multiplicative procedures such as the geometric 

mean and the weighted-geometric-mean aggregation rule are the solution. In fact, some studies 

have shown that multiplicative methods such as the weighted product model and the 

multiplicative AHP are immune against rank reversal (Wang & Triantaphyllou, 2008). Barzilai 

and Lootsma (1997) demonstrated that the multiplicative AHP method does not generate rank 

reversal by testing the method on Belton and Gear’s (1983) example. Additionally, the 

multiplicative variants of the AHP tend to be more reliable and do not show any kind of rank 

reversal, which means they are perfect (Triantaphyllou, 2001). On the other hand, Buede and 

Maxwell (1995) pointed out that using geometric mean “will not eliminate rank reversal,” 

contrary to removing normalization of the ratio scale, which guarantees immunity against rank 

reversal.  

Farkas et al. (2004) developed an approach by determining the intervals for all possible 

occurrences of rank reversals. They demonstrated it for an example of a 3X3 matrix. Recently, 

Rodriguez et al. (2013) proposed a modification to the fuzzy AHP- TOPSIS method with a 

graphical approach for rank reversal detection and analysis. They claimed that this graphical 

approach increases the level of confidence in the results. However, they mentioned that the 

graphical approach is not suitable when large set of criteria is under consideration. Table 2 

summarizes the attempts to avoid/solve rank reversal in AHP. 
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Table 2: Some attempts to solve AHP's rank reversal 

Solution Author(s)
Max normalization method Belton and Gear (1983) 

Find the intervals of all  rank reversals Farkas et al. (2004)

Graphical approach Rodriguez et al. (2013)

Exclude/remove near or similar copies of 

the alternatives

Saaty (1987)

Lootsma (1993); Sheu (2004); Ishizaka 

and Labib (2011); Barzilai and Golany 

(1994); Wang and Triantaphyllou (2008); 

Barzilai and Lootsma (1997) 

Geometric mean aggregation method 

 
 

4. Mathematical Investigation of Rank Reversal Causes in Preference Relations 

The literature reveals (summarized on Table 1) reveals that researchers link the phenomenon of 

rank reversal in preference relations to: inconsistency, uncertainty, aggregation method, pairwise 

comparison concept (AHP method), normalization, multiplying criteria weights by unrelated 

normalized scale and eigenvalue method. Observing these claims deeply, we notice that 

uncertainty of information results in inconsistent input. Normalization, multiplying criteria 

weights by unrelated normalized scale and eigenvalue method are all related to aggregation 

method. Researchers blame eigenvalue method for rank reversal because during normalization it 

produces different priority values in case of adding or deleting an alternative, which violates the 

order preservation concept. On the other hand, some researchers claim multiplying criteria 

weights by unrelated normalized scale (related to normalization procedure) is the cause since 

criteria weights usually are normalized solely based on their data domain which might differ 

from alternatives normalized scale. Hence, these causes could be reduced to inconsistency, 

aggregation method and pairwise comparison. The preference relations are built based on the 

later concept and it has been proven to be valid. In addition to that, Millet (1997) compared five 

different types of preference elicitation methods and concluded that preferences based on 
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pairwise comparison are more accurate than the others. Therefore, in this paper we are going to 

investigate inconsistency and aggregation methods for fuzzy preference relations.  

According to Chiclana et al. (2009), preference relations have three fundamental and hierarchical 

levels of rationality assumptions: 1) the first level requires indifference between any alternative 

   and itself, 2) the second level requires that if the decision-maker prefers    to    then they 

should not at the same time prefer    to   , and 3) the third level is related to transitivity among 

any three alternatives. There are a number of consistency properties in the literature. A few of 

these are: triangle condition, weak transitivity, max-min transitivity, max-max transitivity, 

restricted max-min transitivity, restricted max-max transitivity, multiplicative transitivity, and 

additive transitivity (Herrera-Viedma et al., 2004). Among these properties, additive and 

multiplicative transitivity are the most used and are equivalent to each other through a 

transformation function. The transitivity property is interpreted by the idea that the preference 

value of any two alternatives obtained directly by comparison should be equal to or greater than 

the preference value of an indirect alternative (intermediate alternative) that is between them 

(Herrera-Viedma et al., 2004). Furthermore, any property that enforces transitivity in the 

preferences is called a consistency property (Chiclana et al., 2009). 

4.1. Additive consistency  

From     two other formulations can be generated based on the characteristics of the reciprocal 

rule,             , as follows: 
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Proposition 1: Let            be a fuzzy preference relation, then for every preference 

degree on   we can find its estimation based on the additive consistency through: 

     
 

      
                          

   
     

                                                                           

Proof: by taking the average of equations    ,     and     for     for   alternatives, the 

following equation is generated: 

  

    
 

  
                

 

   

                              

     
 

  
                         

 

   

 

     
 

  
                         

 

   
     

 
 

  
                      

     
 

  
                         

 

   
     

 
 

  
                          

     
 

  
                         

 

   
     

 
 

  
       

                                  

 

   
     

        

                                     

 

   
     

 

     
 

      
                         

 

   
     

   



  

 

 
15 

For a reciprocal fuzzy preference relation,     can be re-written as: 

    
 

     
               

 

   
     

                                                                                                        

Definition 4: Let               a given reciprocal fuzzy preference relation and    

    
      be the estimated fuzzy preference relation calculated by    . Then the consistency 

degree of   is calculated by  

           
 

      
          

  

 

   
   

   

   

                                                                                         

Thus,     is used to check the consistency degree of any reciprocal fuzzy preference relation. 

When            then   is perfectly consistent; keeping in mind that     is a preference 

degree or preference intensity of alternative   over alternative  .  

The additive consistency implies dependency between alternatives, which is clear from the 

transitivity property. Thus, any change in the examined set of the alternatives implies a possible 

change on the preference degrees. This is correct, especially if the provided information is not 

perfectly consistent. To illustrate this, let us assume that the provided information for a set of   

alternatives is perfectly consistent. Then, if we remove an alternative     from the set     

                 , or if we add an alternative     to the set,                      . 

Therefore, the remaining preference degrees from     after   is modified maintain their 

valuations only if     is satisfied. This can only happen if the original information and the new 

alternative are perfectly consistent.  
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Theorem 1: Based on additive consistency, a preference degree     
   maintains its valuation 

after removing or adding an alternative   from   if 

    
         

    
 

 
                     

 

 
                                                                        

Otherwise the preference relation    or      is not perfectly consistent. 

Proof: from   ,    
  

 

      
                          

   
     

, when we remove   from 

  we get: 

    
    

 

        
                            

   
     

     

 

             
 

      
                            

   
     

     

 

For       and          , then  
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For       and    , then  

    
  

 

      
                           

                                   

                                   

 
 

      
                                                      

                               
   

      
 

Thus, the only way    
        

  after removing   is if  
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Since, 

                                                           

                                                     

Then, 

 

           
                       

                                      

 
 

      
                             

Multiply both sides by            , we get, 

                                                             

                                   

Thus, 
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Also, we get the same conclusion when   is added to     

This shows how removing or adding an alternative could affect the entire information, especially 

when they are inconsistent. Thus, introducing new information implies a change in the original 

information, particularly if the new information is not consistent. Usually decision-makers do not 

revise their assessments based on the new information. In general, the decision-makers compare 

two alternatives at a time; however, when we consider the consistency of the information, all the 

alternatives need to be considered. So the decision-makers do not revise their previous 

assessments on a pair of alternatives if another alternative is removed or a new one is added. 

Moreover in real life, most decision-makers are not consistent in their opinions. Thus, how 

should we handle acceptably inconsistent information in a way to avoid rank reversal? Saaty 

(1980) suggested that the acceptable inconsistency (consistency ratio) should be less than 10%. 

Later, Saaty (1994) suggested another 5% acceptable inconsistency level for 3x3 preference 
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relation and 8% for 4x4 preference relation. Aguaron and Moreno-Jiménez (2003) followed 

Saaty’s threshold suggestion and come up with 10% threshold for inconsistency measure for 

Geometric Mean Method. However, it seems there is no clear answer as to when a preference 

relation is considered to be inconsistent (Ishizaka and Labib, 2011).   

4.2. Aggregation methods 

Aggregation methods or operators are used to aggregate individual preference relations into a 

collective one. For example, in group decision-making, the individuals’ preference relations are 

aggregated into a collective preference relation. There are many aggregation operators in the 

literature; however, the most common one is the weighted averaging operator. The weighted 

averaging operator is defined as follows (Zhang et al., 2016; Wu and Xu, 2012): 

   
         

  
                                                                                                                                                

where    is the weight of decision-maker   such that       
   ,    

  is the given preference 

degree by decision-maker  ,   is the number of decision-makers, and    
  is the collective 

preference degree. The weighted averaging operator becomes an averaging operator when the 

decision-makers have equal weights. 

Proposition 2: Let        
      be a reciprocal fuzzy preference relation given by a decision-

maker  . When all   s are perfectly consistent then the collective preference relation is also 

perfectly consistent. 

Proof: from     
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Similarly, when an arithmetic mean operator is used, the consistency is also maintained.  
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Proposition 3: The constructed collective preference relation by arithmetic mean operator gains 

the mean consistency degrees of the individuals’ preference relations. Likewise, the constructed 

collective preference relation by the weighted averaging operator acquires the weighted 

averaging consistency degrees of the individuals’ preference relations. 

Proof: from     

                
 

      
      

     
      

   
   

   
   , then for         , we get: 
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   ,  

This is also true for the weighted averaging operator  

For an inconsistent preference relation, removal or addition of an alternative   could play a 

significant role in altering the ranking order of the alternatives if   is the outbalance element 

among the alternatives. 

To illustrate this, first we define the following score aggregation method, which is called the sum 

normalization method: 
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where    is the score of alternative   and    
 
     . The higher the score of an alternative, the 

better it is. 

Theorem 2: Let the sum normalization method, equation   , be the way to generate the ranking 

scores for the alternatives, then the following are true if alternative   is removed: 

For   
     

  and      
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    if and only if 

     
   
         

   
                                                                                                                         

For   
     

  and     
   
         

   
    then              

  
       

                                                                                                                                                       

                                                                                                                                                                 

Proof: for      ,  

    
 
        

   
            , substitute this into   , 
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For   
     

  we get 
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  and since 

    
   
         

   
    then   

    
 

      
    

   
    

 

      
     

   
       

   , this completed 

the proof   

This is also true when an alternative   is added. Therefore, rank reversal could occur when       

and       are not satisfied.  

Example 1: Suppose a decision-maker provides his assessments for one criterion on four 

alternatives using following reciprocal fuzzy preference relation: 

                       

  

  

  

  

 

               
              
              
               

 
 

Based on      the consistency degree of this preference relation is 82%. By using     the 

following ranking scores are generated: 

                                     

However, when alternative    is removed, the consistency degree increases to 87% with the 

following ranking scores: 
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Notice that   and    have been reversed. This is because    was the outbalance element that 

differentiating between   and   . In fact, this happens because       is violated: 

     
   
                      ,     

   
                     ,          and 

        , 

  
         

        Thus   
    

  only if 
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Theorem 3: For any perfectly consistent reciprocal preference relation,      ,        and       

are satisfied by the additive consistency. 

Proof: from     
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                         , but for reciprocal relation 

          then     
   
         

   
                     

     
   
         

   
                     

Thus     
   
         

   
            . When the left hand side of this equals to 0, which 

means     
   
         

   
                        which satisfies      ,       

and        

Example 2: Suppose a decision-maker provides his assessments for one criterion on four 

alternatives using following reciprocal fuzzy preference relation: 

                       

  

  

  

  

 

               
               
               
               

 
 

This preference relation is 100% consistent and yields following ranking scores using    : 

                                         

When    is removed, the consistency degree is still 100%. Likewise, the ranking order is: 

                           

There is no rank reversal because       is satisfied  

  
    

      
   
        

   
                                           . 
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                                           . 

  
    

      
   
        

   
                                            . 

5. Proposed Score Aggregation Methods  

Based on these results, the only way to ensure ranking order is free of rank reversal in the 

preference relations is by ensuring that the preference relation(s) is perfectly consistent. 

However, to some extent this is hard to achieve in real world problems, especially in a group 

decision-making environment where there is a tradeoff between consistencies and consensus 

(Herrera-Viedma et al., 2007a). Thus, we need to handle rank reversal when it is not desirable by 

maintaining some guidelines that deal with the dependency of the data/information. Here we 

present three scenarios that are possible to happen to the set of alternatives during the decision 

process: a new alternative is introduced, an existing alternative is removed, or a new one replaces 

an alternative.  

Note: This is only applied if the set of alternatives have been modified. 

Proposition 4: The following formulation does better than the sum normalization method in 

avoiding rank reversal in reciprocal preference relations when a new alternative,  , is introduced: 

   
    

     
 
               

 

                                                                                                                  

where    
  is the estimated preference degree calculated by    . 

Proof:  
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When     is perfectly consistent, then   
       

   since        
  thus  

   
    

     
 
               

 

       
      

 
            

       
     

   
   

         
   . However, when 

    has an acceptable consistency degree but       is not, then the ranking generated by the 

sum normalization method might be affected by the information of  . Thus, integrating the 

values driven by the consistency property     and the provided ones for   will improve the 

consistency degree of     . The chance of rank reversal decreases as the consistency increases.  

For   
       

    then  

 

      
    

   
    

 

      
     

 
        

 
                      

 
       ,  

since          
 
           

       then 

     
 
             

 
                . Thus   

     
  and   

       
    only 

if     
 
             

 
                .  

However, with    
        

   , after eliminating the constants in both sides we get, 

     
 
        

       
 

 
      

 
        

 
   

  
   
 

 
      

 
              

 
        

         
         

 , but    
  

 

       
                  

   
     

 then 
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, 

       
 
             

 
                  

 

     
               

   
     

,  

but     
   
   

     

     
 
           , thus  

 
    

   
     

 
             

 
                        

 
             

 
        

   

    
          , 

When generating the ranking scores for       with sum normalization there is no rank reversal 

only if  

    
 
             

 
                , 

but with      there is no rank reversal only if 

    
 
             

 
        

   

    
          , so clearly      has a higher possibility to 

avoid rank reversal than sum normalization. In addition,      ensures maintaining the sum of the 

scores of the alternatives at 1,      
   
        

Proposition 5: The following formulation does better than the sum normalization method in 

avoiding rank reversal in reciprocal preference relations when an alternative   is replaced by a 

new alternative   :  
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Proof:  

Similar to the proof of the previous proposition. 

Proposition 6: The following formulation prevents rank reversal from occurring in reciprocal 

preference relations when an alternative,  , is removed: 

   
    

          
   
    

        
 
   

 
     

 
   

        
 
   

                                                                              

Proof: 

   
 

  
    

 
              

 
    , when   

     
  then 

           Thus if we divide both sides by any constant greater than zero, the inequality will 

not be affected. Therefore, we divide both sides by         
 
    since      

 
    is always 

less than   , where   is the number of alternatives of the original problem. We get: 

 
    

        
 
   

 
   

  

        
 
   

 
     

 
   

        
 
   

 
     

 
   

        
 
   

 

    
        

         , and this formulation also ensures maintaining the sum of the scores of 

the alternatives at 1,      
   
         

6. Numerical Example 
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Suppose that four decision-makers provide their assessments (by fuzzy preference relations) on 

four alternatives as follows: 

    

                
                
                
               

                          

                
                
                
                

  

    

                
                
                
                

                          

                
                
                
                

  

After several rounds of discussion, they reach an acceptable level of consensus, which results in 

the following collective preference relation, which has been aggregated by a weighted averaging 

operator assuming equal weights for decision-makers: 

   

                                    
  

  

  

  

 

               
               
               
               

 
 

This preference relation is 95% consistent. If we calculate the ranking score by the sum 

normalization method    , then we get the following ranking order: 

                                       . 

A. Adding a new alternative 

Now consider that the decision-makers introduce a new alternative   . Going through the 

consensus process, they end up with the following collective preference relation:   
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The consistency degree of this preference relation has dropped to 78.5% and the new ranking 

order by     is:  

                                                   

Notice that by introducing   , which is a non-dominant alternative, the ranking order for the first 

two alternatives has reversed. This is because the collective preference relation is not perfectly 

consistent and thus, there is no guarantee that       and       are satisfied. 

However, if we apply    , which relies on improving the consistency of the added alternative, 

we get the following ranking order:  

                                                  

This ranking order is similar to the original problem except that alternative    has been placed in 

its right ranking position among the alternatives. 

B. Replacing an alternative  

Now, let us consider that alternative    has been replaced by     in the original problem. The 

collective preference relation is 81% consistent for the collective preference relation below: 
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The following are the ranking orders obtained by the sum normalization method     and the 

proposed formula    , respectively: 

Obtained by    :                                          

Obtained by     :                                        

Note that both methods generate the same ranking order but with different score values. 

C. Removing an alternative 

Consider Example 1 again,  

                       

  

  

  

  

 

               
              
              
               

 
 

Where the preference relation is 82% consistent and has the following ranking order, by    : 

                                      

We saw that when alternative    is removed, the consistency degree increases but the ranking 

order has reversed between the first and the second: 
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However, if we apply      we get the following ranking order: 

                            

which is consistent with the ranking order of the original problem. 

7. Conclusions  

In this paper, we have proved that consistency of the data/information is the main cause of rank 

reversal in preference relation. Also, we have shown that when the preference relations are 

perfectly consistent then neither a weighted averaging aggregation operator nor an arithmetic 

mean aggregation operator could cause rank reversal. This is also true for the score aggregation 

operator, particularly, the sum normalization method. However, when the preference relation is 

inconsistent, which is usually the case in real life decision problems, then the score aggregation 

operator could generate rank reversal when the set of alternatives is modified. Thus, we proposed 

modified score aggregation operators that could be used when a change in the set of alternatives 

is done. The proposed score aggregation operators integrate the consistency element to reduce 

the chances of rank reversal. We show that the proposed operators perform better than the sum 

normalization method in avoiding rank reversal when a change happens in the set of alternatives. 

This work was based on additive consistency in reciprocal preference relation. As future work, 

we would like to extend this work to preference relation based on multiplicative consistency. 

Multiplicative consistency is as important as additive consistency. Moreover, we would like to 
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investigate the possibility of establishing a score aggregation method that has the ability to 

handle rank reversal in general cases. 
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Solution Author(s) 

Max normalization method Belton and Gear (1983) 

Exclude/remove near or similar copies 

of the alternatives 

Saaty (1987) 

Geometric mean aggregation method Lootsma (1993); Sheu (2004); Ishizaka 

and Labib (2011); Barzilai and Golany 

(1994); Wang and Triantaphyllou 

(2008); Barzilai and Lootsma (1997) 

Find the intervals of all rank reversals Farkas et al. (2004) 

Graphical approach Rodriguez et al. (2013) 
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Research Highlights 

 

1. The paper deals with the subject of rank reversal in decision making.  

 

2. Reciprocal preference relations based on additive consistency are studied.  

 

3. Inconsistency of information and score aggregation are found as main causes. 

 

4. Two score aggregation methods are proposed. 

 

5. Numerical application shows better results than other tested methods.   

 

 

 

 


