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Abstract 

 

Bifunctional polymer binders featured with both strong binding and superior polysulfide 

trapping properties are highly desired for the fabrication of sulfur cathodes with suppressed 

polysulfide shuttling in Li–S batteries. In this paper, we have explored the potential of a 

quaternary ammonium cationic polymer, polydiallyldimethylammonium (PDADMA-X; X = 

T, B, P, and Cl) with different counter anions (TFSI–, BF4
–, PF6

–, and Cl–, respectively) as the 

bifunctional binder. We have also revealed the dramatic effects of the counter anion on the 

performance of the cationic polymer binder. PDADMA-X’s containing the former three 

weakly associating anions have been demonstrated to show polysulfide adsorption capability. 

In particular, PDADMA-T having the largest, least interacting TFSI– anion shows the 
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optimum performance, with strong binding strength and the best polysulfide adsorption 

capability. Relative to commercial PVDF and PDADMA-X’s of other counter anions, it 

offers sulfur cathodes with lowered polarization, higher discharge capacity, significantly 

better capacity retention, and improved cycling stability. With its convenient synthesis from 

commercially available PDADMA-Cl, cationic PDADMA-T having the TFSI– anion is a 

promising bifunctioal binder for sulfur cathodes in practical Li-sulfur batteries. 

 

Key words: lithium-sulfur battery, binders, cathodes, cationic polymers, counter anions. 

 

1. Introduction 

 

Lithium–sulfur (Li–S) batteries as a post-lithium-ion technology have recently drawn 

enormous research interest due to sulfur’s high theoretical specific capacity (1672 mAh g-1) 

and high energy density (2600 Wh kg-1), as well as its low cost and environmental 

friendliness [1–6]. Despite these highly desirable features, the Li–S battery technology 

suffers from several technical restrictions that hinder its practical application. The dissolution 

of lithium polysulfides in Li–S batteries causes the long-known “polysulfide shuttling” 

between the electrodes, which leads to reduced Columbic efficiency, loss of active material, 

drastic capacity fade, high self-discharge, etc. The poor electrical conductivity of elemental 

sulfur and lithium sulfides, and volume expansion of sulfur during cycling are also the factors 

hindering the commercialization of Li–S batteries [1–6]. To resolve these challenges, 

numerous elegant strategies have been developed [1–6]. Most efforts have been focused on 
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designing carbon-based sulfur hosts (such as microporous/mesoporous carbons [7–14], 

hollow carbon nanospheres [15–18], graphenes [19–21], carbon nanotubes [22,23] and 

nanofibers [24,25], etc.), polar polysulfide-trapping cathode additives (such as graphene 

oxide [26,27], heteroatom-doped carbons [28,29], metal oxides [30,31], metal-organic 

frameworks [32], etc.), or polysulfide barriers [33–38]. These investigations demonstrate the 

successful suppression of “polysulfide shuttling” and the enhanced battery performance by 

entrapping polysulfides within the sulfur cathodes via physical confinement or chemical 

interactions. 

 

Polymer binder is an important element in batteries by maintaining both the electronic and 

mechanical integrity of the battery electrodes. It is required to strongly bind the active 

material and conducting carbon additives together against the volume expansion to the 

current collector through mechanical adhesion. Though used only at small quantities (about 

10 wt% of the total electrode materials), its selection affects battery performance significantly 

[39]. Conventional polymer binders for Li–S batteries, such as poly(vinylidenedifluoride) 

(PVDF), solely serve the single binding role while without the desired affinity to or trapping 

of the intermediate polysulfide species to ameliorate “polysulfide shuttling”. Developing 

bifunctional cost-effective polymer binders endowed with the additional capability of 

trapping polysulfide species and preventing their loss from the sulfur cathodes is a new trend 

for Li–S batteries of improved capacity retention.  

 

Several bifunctional polymer binders have been recently reported for Li–S batteries, showing 
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the valuable capability of trapping/absorbing polysulfides. These include 

poly(vinylpyrrolidone) (PVP) [40–43], modified natural β-cyclodextrins [44,45], natural gum 

Arabic [46], polyamidoamine dendrimers [47], and cross-linked polyethyleneimine [48]. As a 

common feature, these bifunctional binders all possess abundant polar groups (such as 

carboxyl, amine, imine, and hydroxyl) of strong affinity towards the polysulfide species and 

render Li–S batteries of significantly improved performance relative to conventional binders. 

 

In this work, we investigate a range of quaternary ammonium-containing cationic polymers, 

polydiallyldimethylammonium bearing different counter anions 

[bis(trifluoromethane)solfonimide (TFSI–), tetrafluoroborate (BF4
–) and hexafluorophosphate 

(PF6
–), choride (Cl–); termed correspondingly as PDADMA-X, with X = T, B, P, and Cl 

standing for TFSI–, BF4
–, PF6

– and Cl– anions, respectively] as binders for Li–S batteries. 

These PDADMA-X polymers bearing other counter anions can be easily obtained from 

commercially available, cheap PDADMA-Cl having a chloride counter anion by anion 

exchange. Containing abundant quaternary ammonium cations (one in each repeat unit), these 

cationic polymers are reasoned to show strong ionic interactions with the polysulfide anions 

in lithium polysulfides and thus facilitate the trapping of polysulfides to render Li–S batteries 

of improved performance. Quaternary ammonium salts, tetrabutylammonium triflate 

(NBu4SO3CF3) and N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide 

(PYR14TFSI), have been demonstrated, when introduced into the electrolyte, to stabilize the 

polysulfide anions through a chemical interaction with a significant improvement in the 

capacity retention of a Li–S cell [49]. Polymer binders bearing quaternary ammonium cations 
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have been previously reported to stabilize polysulfides and improve cyclic performance of 

Li–S batteries. Song et al. demonstrated that the modification of graphene oxide-sulfur 

composites with cetyltrimethylammonium bromide (a quaternary ammonium-containing 

surfactant) significantly improved battery cycling performance owing to the strong 

interactions between CTAB and polysulfide species [26]. Zeng et al. modified the 

β-cyclodextrin binder by introducing quaternary ammonium cations, rendering significant 

improvements in cyclic performance and rate capability of the cathodes [45]. In both 

examples, the cathode systems were quite complex due to the presence of GO or 

β-cyclodextrin that contain various polysulfide-attracting functionalities in addition to the 

cations. Because of the complication, the exact role of the quaternary ammonium cations has 

not been specified. This has intrigued us to investigate the use of PDADMA-X as the 

potential bifunctional binders, since they contain purely quaternary cations while with no 

other complicating functionalities. Their effects on the cathode performance have been 

systematically investigated, with a comparison made with PDADMA-Cl and conventional 

PVDF. Meanwhile, the effects of their counter anions on their cathode performance have also 

been revealed. 

 

2. Experimental 

 

2.1. Materials 

 

All chemicals, including sulfur powders (100 mesh particle size, Aldrich), Super-P carbon 
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black (IMERYS Graphite & Carbon, Belgium), poly(vinylidene fluoride) (PVDF, Mw 

~534,000 g/mol, Aldrich), bis(trifluoromethane)sulfonimide lithium salt (LiTFSI, 99.95%, 

Aldrich), 1-methyl-2-pyrrolidone (NMP, reagent Plus® 99%, Sigama-Aldrich), lithium nitrite 

(LiNO3, reagent Plus®, Aldrich), poly(diallyldimethylammonium chloride) (PDADMA-Cl, 

high molecular weight, 20 wt.% in water, Aldrich), 1,3-dioxolane (DOL, 99%, Aldrich), 

1,2-dimethoxyethane (DME, anhydrous, 99.5%, Aldrich), Super- Hydride® solution (1.0 M 

lithium triethylborohydride in tetrahydrofuran, Aldrich), sodium tetrafluoroborate (NaBF4, 

98%, Aldrich), potassium hexafluorophosphate (KPF6, 98%, Aldrich) were used as received 

without further purification, except that LiTFSI was dried under vacuum for over 12 h at 

room temperature, and DME and DOL were dried and stored over a 4 Å molecular sieve.  

Other solvents, including methanol (>99%), tetrahydrofuran (THF, HPLC grade, >99%), 

toluene (HPLC grade), etc., were obtained from Fisher Scientific and were also dried and 

stored over 4 Å molecular sieves. 

 

2.2. Preparation of PDADMA-X Bearing Different Counter Anions (TFSI-, BF4
-, and PF6

-) 

 

The aqueous PDADMA-Cl solution was first freeze-dried for over 120 h, rendering bulk 

white solid of PDADMA-Cl. The solid was further dried under vacuum at 80 ºC for 12 h. To 

prepare the anion exchanged PDADMA-X’s, 1.0 mmol of PDADMA-Cl and 1.1 mmol of the 

corresponding salt (LiTFSI, NaBF4, KPF6, respectively) bearing the desired counter anion 

were separately dissolved in 40 mL methanol. Subsequently, the as-prepared PDADMA-Cl 

solution in methanol was added drop by drop into the salt solution under rapid agitation, 
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rendering the immediate precipitation of the anion-exchanged polymer. The white polymer 

suspension was subsequently centrifuged and the resultant anion-exchanged polymer was 

washed with an excessive amount of methanol three times, followed by drying under vacuum 

at 80 ºC for 12 h. 

 

2.3. Polysulfide Adsorption Test 

 

A lithium polysulfide standard Li2S4 was prepared by modifying a literature procedure [30]. 

In an argon-filled glove box, sulfur was dissolved in Super-Hydride® solution (1.0 M lithium 

triethylborohydride in THF), with a Li to S mole ratio of 1:2. The resulting solution was dried 

under vacuum, followed by a final wash with hexane and centrifugation to isolate the yellow 

precipitate, Li2S4 (see the insert in Fig. 2(a)). 

 

Adsorption of Li2S4 with the five different binders was undertaken at two different 

binder/Li2S4 mass ratios of 12.5:1 and 1:1. Typically, the binder at a known mass was added 

into a known volume of Li2S4 solution (concentration, 0.4 mg mL-1) in mixed DME-DOL 

solvent (volume ratio, 1:1). The supernatant solution was monitored with UV-vis 

spectroscopy (Varian Cary 100). Typically, 40 mg of each binder was added into 8 mL of 

Li 2S4 solution in DME-DOL; containing 3.2 mg Li2S4), where the mass ratio of the binder to 

Li2S4 is 12.5:1. UV-vis measurement was carried out on the supernatant solution after a 

prescribed time to monitor the adsorption. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 8

To obtain spectroscopic evidence confirming the adsorption of Li2S4, x-ray photoelectron 

spectroscopy (XPS) measurements of PDADMA-T containing the adsorbed Li2S4, pure 

PDADMA-T and pure Li2S4 were undertaken on a Thermo Scientific Theta Probe XPS 

spectrometer (Thermo Fisher). A monochromatic Al Kα X-ray source was used, with a spot 

area 400 µm. The samples were run in a standard mode, i.e., all angle collected (60° angular 

acceptance) for the survey spectra, and for the region spectra. 

 

2.4. Electrode Fabrication 

 

The sulfur/carbon composite was prepared by grinding elemental sulfur and super-P at a mass 

ratio of 3:1 in a mortar, and followed with melt infusion at 155 ºC for 12 h in a sealed glass 

tube. The sulfur content in the resulting composite is 74.7 wt% as per thermogravimetric 

analysis (TA Instruments Q50 TGA at a heating rate of 10 ºC min-1). The slurries for sulfur 

electrodes were prepared by adding a known mass (400 mg) of S/C composite into the 

solution containing the prescribed mass of the binder (PDADMA-X or PVDF; 50 mg) and 

super-P carbon black (50 mg) in NMP (for all binders except PDADMA-Cl; 3 mL) or 

methanol (for PDADMA-Cl; 3 mL) to achieve a final S/C/binder ratio of 60:30:10, followed 

with thorough mixing with a mechanical stirrer. Electrodes were prepared by evenly 

depositing a known volume (16 or 48 µL) of each slurry on carbon-coated aluminum foil 

(0.018 mm in thickness, 1.32 cm2 in area) as the current collector. The sulfur loading for all 

electrodes was all controlled at ca. 1.0 or 3.0 mg cm-2. The electrodes were dried in an oven 

at 65 ºC for 5 h, then in a vacuum oven at 50 ºC prior to use.  
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2.5. Electrochemical Testing 

 

Electrochemical performances of the sulfur electrodes prepared with the different binders 

were tested in CR2032-type coin cells. All the cells were assembled in an Ar-filled glove box. 

The electrolyte employed contained 1.0 M LiTFSI in a binary solvent of DOL and DME (1:1 

in volume) with 2 wt% LiNO3 as additive. An electrolyte volume of ca. 20 µL or 35 µL was 

employed for electrodes with sulfur loading of 1.0 and 3.0 mg cm-2, respectively. Lithium 

metal foil was used as the negative electrode, and was physically separated from the sulfur 

cathode with two sheets of Celgard 2500 separators. The cells were tested through 

galvanostatic charge/discharge (GCD) cycling at room temperature on a LAND CT2001A 

battery testing system. Current density and specific capacity were calculated based on the 

mass of sulfur active material. 

 

Cyclic voltammetry (CV) measurements of the cells were all recorded on a Metrohm Autolab 

PGSTAT128N electrochemical work station in the voltage range of 1.5–3.0 V vs. Li+/Li at a 

scan rate of 0.1 mV s-1. Electrochemical impedance spectroscopy (EIS, Metrohm Autolab 

PGSTAT128) measurement was carried out from 10 mHz to 100 kHz at room temperature 

with a potentiostatic signal amplitude of 5 mV. 

 

3. Results and discussion 
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3.1 Polysulfide Adsorption with PDADMA-X 

 

A PDADMA-Cl-resembling cationic copolymer polyelectrolyte bearing the same quaternary 

ammonium ion with chloride counter ion, poly(acrylamide-co-diallyldimethylammonium 

chloride) (AMAC), has been previously used by Zhang as the binder for Li-S batteries [50]. 

Due to its nonsolubility in organic solvents, AMAC was reported to form the stable void 

structure in the sulfur cathode during battery cycling, rendering significantly higher capacity 

and better-maintained capacity retention compared to the cathodes fabricated with 

poly(ethylene oxide) as the binder. But AMAC having the chloride counter ion causes severe 

corrosion of the aluminum current collector. No polysulfide trapping capability was 

demonstrated with AMAC therein, despite our reasoning of possible ionic interactions 

between its quaternary ammonium cations and the polysulfide anions in lithium polysulfide 

species. This should result from too strong ionic interactions between the cation and the 

chloride counter ion, which prevents the anion exchange with polysulfide for trapping. We 

hypothesize that replacing the chloride anion in PDADMA-Cl with weakly interacting 

counter anions (such as TFSI–, BF4
–, and PF6

– [51]) should facilitate the possible 

adsorption/trapping of polysulfide species by anion exchange (see Figure 1(b)), which will 

subsequently help suppress polysulfide shuttling and improve battery capacity retention. We 

have thus prepared the range of PDADMA-X (X = TFSI–, BF4
–, and PF6

–) polymers bearing 

the different counter anions from PDADMA-Cl by simple convenient anion exchange. The 

repeat unit structures of the polymers are presented in Figure 1(a). 
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(Figure 1) 

 

To verify our hypothesis, we have first studied the interactions between a polysulfide 

standard, Li2S4, and the various PDADMA-X polymers, by investigating polysulfide 

adsorption on the polymers. To a Li2S4 solution in DOL/DME was added each individual 

polymer, with the same polymer/Li2S4 mass ratio of 12.5:1. Parallel experiments were also 

undertaken with PVDF and PDADMA-Cl, respectively, for the purpose of comparison. 

Figure 2(a) shows the color changes of the Li2S4 solutions after exposure to the various 

polymers for 5 min and 24 h, respectively, relative to the grass green blank Li2S4 solution. 

The colors of the two solutions exposed to PDADMA-T and PDADMA-P are quickly 

lightened within just 5 min, indicating the fast adsorption of the polysulfide species with 

these two polymers. On the contrary, no obvious color changes are observed for the other 

solutions after 5 min. After 20 h, the two solutions exposed to PDADMA-T and PDADMA-P 

have become completely colorless, and the one exposed to PDADMA-B also has a 

significantly lightened color. Meanwhile, the originally white colored polymer solids in these 

solutions have turned brown. These phenomena confirm the effective adsorption of the 

polysulfide species with the three polymers containing weakly interacting counter anions. 

However, negligible color changes can be seen with the other solutions exposed to 

PDADMA-Cl and PVDF, respectively, confirming that they do not have the affinity toward 

polysulfides. The ability of the three PDADMA-X polymers in adsorbing Li2S4 is further 

demonstrated with ex situ UV-vis spectroscopy. Figure 2(c) compares the UV-vis spectra of 

the various solutions after exposure for 24 h. While no change is observed in the spectra of 
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solutions exposed to PDADMA-Cl and PVDF relative to the blank solution, much lowered 

absorbance spectra (within 270–500 nm) are found with the solutions exposed to the other 

three polymers. In particular, according to the reductions of the UV-vis spectra, we can reason 

that the polysulfide-adsorbing capability of the three polymers increases in the order, 

PDADMA-Cl (PVDF) << PDADMA-B < PDADMA-P < PDADMA-T. This agrees well 

with the increasing radii of Cl– (2.70 Å), BF4
– (3.44 Å), PF6

– (3.60 Å), and TFSI– (4.39 Å) 

following the order [52], confirming that increasing anion size reduces the cation-anion 

interactions and subsequently improves the polysulfide adsorption capability of the cationic 

polymers. Having too strong cation-anion interaction, PDADMA-Cl is completely ineffective 

for the adsorption of polysulfide species as confirmed herein.  

 

(Figure 2) 

 

We have also investigated the polysulfide adsorption at a reduced polymer loading 

(polymer/Li2S4 mass ratio of 1:1). Figure 2(b) shows the solutions after exposure to different 

polymers for 2 h; Figure 2(d) compares their UV-vis spectra. While the color changes of the 

solutions are not as clear as in Figure 2(a), the three polymer solids (PDADMA-B, 

PDADMA-P, PDADMA-T) have become brown-colored, confirming their adsorption of the 

polysulfide. This is also confirmed from the appreciably lowered UV-vis spectra (within 350–

500 nm) of the solutions relative to the blank solution (see Figure 2(d)), despite the 

significantly reduced polymer loading. Meanwhile, the same order of polysulfide adsorption 

capability of the polymers can be found from Figure 2(d). These adsorption experiments thus 
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offer the solid evidence confirming the capability of PDADMA-X in adsorbing polysulfide 

with PDADMA-T being the best one. PDADMA-X’s (X = B, P, and T) have thus been 

subsequently investigated as the binder for the Li–S batteries. 

 

To obtain spectroscopic evidence confirming the interaction between lithium polysulfide and 

PDADMA-T, XPS characterization of PDADMA-T containing the adsorbed Li2S4 was 

undertaken, along with pure PDADMA-T and Li2S4 for comparison. Figure 3 compares their 

XPS spectra. A broad peak with multiple deconvoluted constituting peaks in the range of 

160–165 eV is seen in the S2p spectrum of Li2S4 (Figure 3(a)), arising from its polysulfide 

anion. In particular, the constituting peaks centered at 161.1 eV and 163.4 eV in S2p spectra) 

can be ascribed to the terminal (ST
-1) and bridging sulfur (SB

0) atoms of Li-S-S-S-S-Li, 

respectively, where the sulfur atoms at both ends have a formal charge of (-1) while those in 

the middle bear a formal charge of (0), as previously shown by Nazar et al. and Yoon et al. 

[53,54]. PDADMA-T with adsorbed Li2S4 also shows the broad polysulfide peak (Figure 

3(b)), while it is absent in the spectrum of pure PDADMA-T (Figure 3(c)). In addition, a 

small shift of ∆E = 0.2 eV to a lower binding energy is observed after the capture of Li2S4 by 

PDADMA-T, which can be attributed to the electropositive nature of tetralkyl ammonium 

ions on PDADMA-T, which forces electrons away from the terminal sulfur [55,56], resulting 

in a slight decrease in the binding energy. Correspondingly, the binding energy of lithium 

atom in Li2S4 in Figure 3(d–f) increases from 55.1 eV to 55.4 eV upon adsorption, possibly, 

due to the strengthened interaction resulting from the increased polarity of polysulfide. 

Owing to the electropositive nature, the binding energy of nitrogen atom in PDADMA-T also 
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shifts to higher values (from 401.1 eV to 402.5 eV; from 397.9 eV to 399.4 eV, see Figure 

3(g–i)) after the adsorption of Li2S4. The XPS evidence thus confirms the adsorption of 

lithium polysulfide on PDADMA-T and their interactions. 

 

(Figure 3) 

 

3.2 Evaluation of Binding Strength 

 

As a binder, binding strength is an important parameter to a binder [39,45]. The binding 

strengths of PDADMA-X have been evaluated, with a comparison made to PVDF. Electrodes 

were prepared from a melt-infused sulfur/Super P composite with different polymers as the 

binder (sulfur: Super P: binder = 60:30:10 in mass ratio for all cathodes in this study). Figure 

4(a) shows the images of representative fresh-made electrodes. All electrodes show visually 

smooth rather uniform surface, except the one made with PDADMA-Cl that shows rough 

non-uniform surface with the presence of light-colored domains having higher PDADMA-Cl 

content. Meanwhile, pitting corrosion of the aluminum current collector was observed in all 

the electrodes made with PDADMA-Cl due to its corrosive chloride ion, as reported by 

Zhang, when using the similar cationic copolymer polyelectrolyte AMAC [50]. On the 

contrary, no corrosion of the aluminum current collector was seen when PVDF or the 

anion-exchanged PDADMA-X’s was used. 

 

(Figure 4) 
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The different electrodes were soaked in the electrolyte solution (1 M LiTFSI in mixed 

DME/DOL solution) in a sealed vial for 2 weeks. After one week of soaking at room 

temperature, the electrolyte solution was heated to 95 ºC and kept for 30 min, then 

maintained at room temperature for another week. The binding strength is evaluated by 

comparing the amount of visible black particles that peel off from the electrodes [57]. Figure 

4(b) shows the resulting electrolyte solutions used for soaking the different electrodes. One 

can see that fine suspended black particles are present in almost all solutions. However, the 

solutions for soaking electrodes fabricated with PDADMA-Cl and PDADMA-P contain 

obviously much more fine particles than the other solutions. This indicates that PVDF, 

PDADMA-T, and PDADMA-B have better binding performance than PDADMA-Cl and 

PDADMA-P. In the case with PDADMA-Cl, the relatively poorer binding performance may 

result from the non-uniform distribution of the composite materials on the electrodes. On the 

contrary, with PDADMA-P, the result suggests its relatively weaker binding strength to retain 

the mechanical integrity of the electrodes. 

 

3.3 Cyclic Voltammetry (CV) Tests 

 

CV (voltage range: 1.5–3.0 V at 0.1 mV s-1) tests were undertaken on the cathodes fabricated 

with the five different polymers (sulfur loading density: 1.0 mg cm-2). Figure 5(a)–(e) shows 

the first 10 cycles of CV curves of the cathodes. All CV curves consist of one oxidation peak 

and two reduction peaks characteristic of the sulfur cathodes. No additional peaks are found, 
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indicating that all the polymer binders are stable within the voltage range and do not 

participate in the reduction/oxidation process of sulfur [45]. For all cathodes, the positions of 

reduction peaks in the 1st cycle deviate significantly from those of the following 9 scans, 

which indicate the activation of cathodes during the 1st cycle. From the 2nd scan, the peak 

positions of all cathodes except that with PDADMA-P appear stable, with the oxidation peak 

at 2.5 V and two reduction peaks centered at 2.3 and 2.0 V, respectively. While the first 

reduction peak at 2.3 V represents the reduction of elemental sulfur to soluble high-order 

Li 2Sx (4 ≤ x ≤ 8), the second reduction peak at 2.0 V corresponds to their further reduction to 

lower order polysulfide Li2Sx (x < 4) and finally to Li2S. In the anodic scans, the oxidation 

peak is attributed to the gradual conversion of Li2S back to elemental sulfur.  

 

The cathode fabricated with PDADMA-P shows a slight but distinct left shift (2.30 to 2.27 V 

and 2.00 to 1.98 V, respectively) of both reduction peaks from the 2nd to 10th cycle, along 

with a concomitant broadening and slight right shift of the oxidation peak (from 2.51 to 2.55 

V) (see Figure 5(d)). This indicates the gradual increase of polarization upon the dynamic 

volume change during cycling. A similar, but much weaker trend is also noticed with the 

cathode fabricated with PDADMA-Cl (see Figure 5(b)). The slight increased polarization is 

also indicative of the inferior binding performance of PDADMA-P and PDADMA-Cl as 

shown above, which leads to a gradual deterioration in the electrical contact within the 

cathode upon dynamic volume change during cycling. On the contrary, the well-retained peak 

positions with the other cathodes (with PDADMA-T, PDADMA-B, and PVDF) suggest the 

better binding performance of the other polymers against the volume change. 
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(Figure 5) 

 

Distinct differences in the capacity stability among the cathodes can also be noted from their 

CV curves. The cathode fabricated with PVDF shows significant decreases in the current for 

all the redox peaks (more obviously seen with the reduction peak at 2.0 V and the oxidation 

peak due to their higher intensities) from 2nd to 10th cycle (see Figure 5(a)), indicating the 

significant capacity decay with PVDF due to polysulfide loss. The one fabricated with 

PDADMA-Cl instead shows a current decrease in the reduction peak at 2.3 V and 

simultaneously a significant current increase in the other reduction peak at 2.0 V from the 2nd 

to 10th cycle. While the former decrease indicates the gradual loss of soluble polysulfides 

from the cathode due to the incapability of PDADMA-Cl for their capturing, the latter 

increase possibly indicates the rather poor distribution of insoluble Li2S2 and Li2S due to the 

non-uniform distribution of the carbon-sulfur composites on the electrode. These may 

contribute to the low sulfur utilization in the cathode with PDADMA-Cl. 

 

On the contrary, those fabricated with PDADMA-T and PDADMA-B, respectively, show 

much more stable CV curves, with only minor changes in the current for all the peaks over 

cycling (Figure 5(c) and (d)). Though showing slight peak shifts illustrated above, the two 

reduction peaks of the cathode fabricated with PDADMA-P also have relatively stable 

current upon cycling. These confirm the improved capacity retention with the use of 

PDADMA-T, PDADMA-B, and PDADMA-P having the capability for polysulfide 
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adsorption, which helps suppress polysulfide shuttling. In particular, among all cathodes, the 

one fabricated with PDADMA-T shows the best-retained capacity with negligible changes in 

the current for all redox peaks, confirming the reversible charge-discharge process. This is in 

good agreement with its best polysulfide adsorption capability demonstrated above.  

 

In addition, Figure 5(f) compares the 10th cycle CV curves of the various cathodes. The 

cathodes made with PDADMA-T and PDADMA-B show much sharper and narrower 

oxidation peak compared to the others. Meanwhile, the one made with PDADMA-T also 

shows the narrowest reduction peaks, with the smallest polarization of 0.46 V observed 

among all the cathodes. These results suggest better, more homogeneous dispersion of finer 

sulfur composite particulates for redox reactions with PDADMA-T, besides its polysulfide 

trapping capability. 

 

3.4 Galvanostatic Charge-Discharge Tests 

 

Galvanostatic charge-discharge tests within a voltage range of 1.5–3.0 V were undertaken on 

the various cathodes having a sulfur density of 1.0 mg cm-2. Figure 6 shows the rate 

performance of the various cathodes tested at increasing currents ranging from 0.2C to 3C 

(1C = 1672 mA g-1) with 10 cycles at each current, followed with 10 cycles back at 0.2 C. For 

all cathodes, a consistent capacity reduction is observed with the gradual current increase 

from 0.2C to 3C, along with the capacity recovery upon the switch of the current back to 

0.2C. Among all cathodes, the one made with PDADMA-Cl shows the lowest capacity at all 
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currents (e.g., reversible capacity of only ca. 550 mA h g-1 at 0.2C relative to the values of 

815–860 mA h g-1 found with the others) though with reasonable capacity retention upon the 

current increase. This suggests the poorest sulfur utilization in the case with PDADMA-Cl. It 

is reasoned to result from non-uniform distribution of larger sulfur composite particulates 

across the electrode as seen from Figure 4(a), leading to deteriorated electrical contact 

between the sulfur active material and the current collector. Meanwhile, the pitting corrosion 

of the current collector by PDADMA-Cl is also reasoned to deteriorate the electric contact 

within the cathode. For the cathodes made with PDADMA-T, PDADMA-B, and PVDF, 

similar capacity and capacity retention with no distinctive differences are observed, with the 

typical reversible capacity values of 840, 740, 650, 490, and 360 mA h g-1 at 0.2C, 0.5C, 1C, 

2C, and 3C, respectively. However, the cathode made with PDADMA-P shows relatively 

poorer rate performances compared to others. While it has similar capacity values as others at 

relatively low currents (0.2C, 0.5C, and 1C), its capacity values at enhanced currents (455 

and 300 mA h g-1 at 2C and 3C, respectively) are appreciably lower compared to the 

corresponding values of others. This suggests the deteriorated electric contact and increased 

resistance within the cathode made with PDADMA-P at high currents, which is consistent 

with its relatively poorer binding strength seen above. 

 

(Figure 6) 

 

Figure 7(a) compares the cycling performances of the cathodes (sulfur loading density: 1.0 

mg cm-2) within 1.5–3.0 V for 65 cycles at 0.2C. This voltage window for cycling is much 
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broader than those typically used (e.g., 1.7–2.8 V or even narrower) for sulfur cathodes. It is 

intentionally chosen herein to evaluate the cycling performances under more severe 

conditions involving more thorough redox reactions. Figure 7(b) compares their 50th cycle 

charge-discharge voltage profiles. Consistent with the redox peaks seen in their CV curves, 

all cathodes show the typical two-plateau discharge curves with a short upper plateau at 2.3 V 

and a long lower plateau at ca. 2.1 V, as well as a long charge plateau. For all cathodes, the 

branches of discharge curves below 1.8 V appear to be relatively noisy, which should result 

from the formation of excessive insulating Li2S2/Li 2S at too low discharge voltage and thus 

deteriorated electrical contact. Among the various cathodes, we note from Figure 7(b) that 

the cathode fabricated with PDADMA-T shows the smallest polarization (ΔV = 0.16 V) with 

the lowest charge plateau and the highest second discharge plateau. This trend is observed 

throughout the whole cycling process, indicating the improved electron transfer kinetics for 

the sulfur species with PDADMA-T as the binder [58]. The cathode with PDADMA-P shows 

the highest polarization of 0.20 V while the other with PDADMA-B, PVDF and 

PDADMA-Cl have the intermediate polarizations. In consistency with the results 

demonstrated above, this also suggests the better binding performance of PDADMA-T than 

PVDF. 

 

From Figure 7(a), the cathodes fabricated with PDADMA-T and PDADMA-P show similar 

initial capacity values (899 and 914 mA h g-1, respectively), while those made with the other 

polymers have relatively lower initial capacities (825, 779, and 720 mA h g-1 with 

PDADMA-B, PVDF, and PDADMA-Cl, respectively). Gradual decay of the discharge 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 21

capacity can be seen with all the cathodes over 65 cycles, indicating the occurrence of 

polysulfide shuttling. The exception is that with PDADMA-Cl, which undergoes a rapid 

capacity drop to 562 mA h g-1 at the 3rd cycle and remains relatively stable at ca. 580 mA h 

g-1 afterwards over the rest 62 cycles. The cathode with PVDF shows a small capacity 

increase (to 851 mA h g-1) within the first 5 cycles followed with the pronounced decrease 

afterwards. Herein, the initial capacity increase suggests the gradual cathode activation 

through slow electrolyte diffusion.  

 

Though having similar initial capacities, the cathodes show different capacity retentions after 

65 cycles, with the remaining capacity values of 667, 618, 600, 575 mA h g-1 with 

PDADMA-T, PDADMA-B, PDADMA-P, and PVDF, respectively, which correspond to 

capacity decays of 0.39, 0.39, 0.53, 0.54% per cycle, respectively, relative to the 

maximum/initial capacity values of each cathode. Meanwhile, for both cathodes fabricated 

with PDADMA-P and PVDF, the most severe capacity decrease occurs within cycles 25–40, 

followed with a rather flattened capacity plateau afterwards (see Figure 7(a)). This 

phenomenon is indicative of severe shuttling occurring within the period. On the contrary, the 

capacity decay for the cathodes with PDADMA-T and PDADMA-B are rather steady over 

the whole cycling process, with a linear capacity decrease over cycling. In particular, 

PDADMA-T offers higher capacity and significantly improved capacity retention than PVDF 

over the whole cycling process. Though not avoiding polysulfide shuttling, both PDADMA-T 

and PDADMA-B can thus suppress the shuttling at the current due to their capability of 

adsorbing polysulfide species as shown above besides their better binding performance. On 
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the contrary, due to its poorer binding strength, PDADMA-P does not improve the cycling 

performance despite its capability for polysulfide adsorption. 

 

We have further undertaken cycling of the various cathodes within 1.5–3.0 V at 0.5C. Figure 

7(c) compares their discharge capacity curves. At this enhanced current, we have found that 

the cathodes fabricated with PVDF, PDADMA-B, and PDADMA-P became unstable and 

display continuous charging at the 49th, 88th, and 102nd cycle, respectively, along with the 

severe drop of Columbic efficiency to nearly zero. This phenomenon is indicative of the 

severe loss of sulfur active material from the cathodes. On the contrary, the cathode with 

PDADMA-T was stable for the entire 200 cycles though with a gradual capacity decay from 

ca. 620 to 435 mA h g-1 (i.e., 0.15% per cycle) and the gradual decrease of Columbic 

efficiency from 100% at the first cycle to 96% at the 200th cycle. This comparison further 

confirms the best efficiency of PDADMA-T in suppressing polysulfide shuttling among the 

binders and in maintaining cycling performance of the cathodes. 

 

(Figure 7) 

 

To realize the practical application of Li-S batteries, a high sulfur loading is necessary [47].  

Herein, cathodes at higher sulfur loading (3.0 mg cm-2) were also fabricated with 

PDADMA-T and PVDF, respectively, and were tested for their cycling performance. Figure 

8 compares their discharge capacity of the cathodes within a voltage window of 1.7–2.8 V 

over 200 cycles, with the first cycle at 0.05C and all the rest at 0.2C. The cathode with 
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PDADMA-T displays a much higher initial discharge capacity (901 vs. 273 mAh g-1 at 0.05C) 

than that with PVDF. Subsequently, the discharge capacity of the former gradually decreases 

from 574 mAh g-1 at the 4th cycle to 424 mAh g-1 at the 200th cycle. On the contrary, the 

discharge capacity of the latter is generally much lower throughout and shows a slight 

increase from 190 mAh g-1 at the 2nd cycle to 236 mAh g-1 at the 200th cycle. In addition, the 

cathode with PDADMA-T also shows superior areal capacity, outperforming that with PVDF 

over the whole cycling process. For example, the cathode with PDADMA-T show a much 

higher discharge areal capacity (4.86 mAh cm-2 at 0.05C at the 1st cycle; 2.56 mAh cm-2at the 

200th cycle) relative to that with PVDF (1.31 mAh cm-2 at the 1st cycle; 1.22 at the 200th 

cycle). These results suggest that, at the high sulfur loading, PDADMA-T, with its ionic 

nature, is even more beneficial than PVDF by improving the transfer of Li+ within the 

cathodes besides its polysulfide adsorption capability. 

 

(Figure 8) 

 

3.5 EIS Tests  

 

To gain further understanding of the electrochemical performance, EIS tests were undertaken 

on the various cathodes (sulfur loading density: 1.0 mg cm-2) before any testing and after the 

16th cycle of charge-discharge (between 1.7–2.8 V at 0.2C). Figure 9(a) and (b) compares the 

Nyquist plots of the fresh cathodes before cycling and the cathodes after cycling, respectively. 

From Figure 9(a), all fresh cathodes show a depressed semicycle assigned to charge transfer 
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resistance in the high-frequency region and an inclined line corresponding to Warburg 

impedance at the low-frequency region. One notable difference is seen with the cathode 

fabricated with PDADMA-P, which has a much greater charge transfer resistance (ca. 500 Ω 

vs. 180–300 Ω) than the other cathodes. In consistency with above results, this is also 

suggestive of the inferior electric contact within the cathode with PDADMA-P.  

 

After cycling, all cathodes except that with PDADMA-P shows two distinct semicycles (see 

the insert), with overall charge transfer resistance significantly reduced compared to those of 

the fresh cathodes due to their activation (including the electrolyte wetting of composite and 

the formation of conductive soluble Li2Sx (4 ≤ x ≤ 8) from insulated solid sulfur) after cycling 

(see Figure 9(b)) [59,60]. In particular, the semicycle in the high frequency range reflecting 

the charge transfer at the conductive agent surface and the other one in the medium frequency 

range attributable to the formation of nonconductive Li2S/Li2S2 [61,62]. Among the cathodes, 

the former semicycle is the smallest with the cathode fabricated with PDADMA-T, 

confirming the best electric contact, while its second semicycle is the largest, indicating the 

best polysulfide adsorption capability with PDADMA-T [62]. In the case of the cathode with 

PDADMA-P after cycling, its charge transfer resistance still remains the largest among the 

cathodes, with no distinct semicycle found attributable to the formation of Li2S/Li2S2. 

 

(Figure 9) 

 

All above results suggest that PDADMA-T shows superior performance as a bifunctional 
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binder for sulfur cathodes, outperforming other PDADMA-X polymers bearing different 

counter anions as well as commercial PVDF. These results also demonstrate the dramatic 

effects of the counter anions on the performance of this group of cationic polymers as binders. 

Herein, TFSI- having the largest anion size renders PDADMA-T as a bifunctional binder with 

the best polysulfide adsorbing capability. Meanwhile, with its bulky organic anion structure, 

it also improves the affinity of the cationic polymer toward the carbon-sulfur composites. 

This contributes to the improved dispersion of the composites for enhanced sulfur utilization 

and the enhanced binding strength for maintaining the mechanical and electrical integrity of 

the cathodes against drastic volume change during cycling. 

 

4. Conclusions 

 

We have systematically investigated in this paper the performance of quaternary ammonium 

cationic polymers PDADMA-X (X = T, P, B, and Cl) bearing different counter anions (TFSI–, 

PF6
–, BF4

–, and Cl–, respectively) as binders for sulfur cathodes in Li–S batteries. The former 

three bearing weakly interacting anions have been demonstrated to adsorb/trap lithium 

polysulfide species, with the trapping capability increase in the order of PDADMA-B < 

PDADMA-P < PDADMA-T. On the contrary, like PVDF, PDADMA-Cl bearing strongly 

interacting Cl– is completely ineffective of polysulfide trapping. Electrochemical tests 

confirm that PDADMA-T bearing the optimum TFSI– anion shows superior performance as a 

bifunctional binder, with the resulting cathodes displaying the lowest capacity decay, lowest 

polarization, and best maintained cycling stability relative to cathodes fabricated with PVDF 
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and others PDADMA-X polymers. Changing the anion to PF6
–, BF4

–, or Cl– leads to various 

deteriorations in their binding performance. This is the first demonstration of the dramatic 

effects of the counter anions on the binding performance of these cationic polymers. 
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Figure Captions 

 

Figure 1. (a) Schematic representation of PVDF and PDADMA-X binders with different 

counter ions, and (b) the possible interactions between the PDADMA-X and polysulfides in 

the sulfur cathodes. 

 

Figure. 2. Photograph (a, b) and UV spectra (c, d) of Li2S4-contained DOL-DME mixed 

solutions at different mass ratios: without absorbent (blank) and with absorbents of PVDF, 

PDADMA-Cl, PDADMA-T, PDADMA-B and PDADMA-P, respectively. 

 

Figure 3. XPS study on the interaction between lithium polysulfide and PDADMA-T: (a)–(c) 

S2p spectra, (d)–(f) Li1s spectra, (g)–(i) N1s spectra of pure Li2S4, PDADMA-T containing 

adsorbed Li2S4, and pure PDADMA-T, respectively. 

 

Figure 4. Image of (a) the surface of electrodes (sulfur loading, 1.0 mg cm-2) and (b) the 

electrolyte solutions soaking the electrodes fabricated with different polymer binder for 2 

weeks. 

 

Figure 5. (a)–(e) CV curves of cathodes fabricated with the different polymer binders during 

the first 10 cycles; (f) comparison of their 10th cycle CV curves. Scan rate: 0.1 mV s-1. 

 

Figure 6. Rate performances of cathodes fabricated with the various polymer binders. Cut-off 
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voltage: 1.5–3.0 vs. Li+/Li anode; sulfur loading density: 1.0 mg cm-2. 

 

Figure 7. Galvanostatic cycling performance of the various cathodes with different binders 

within 1.5–3.0 V (vs. Li+/Li): (a) discharge capacity and Columbic efficiency curves at 0.2 C; 

(b) charge-discharge voltage profiles at the 50th cycle at 0.2C; (c) discharge capacity and 

Columbic efficiency curves at 0.5 C. 

 

Figure 8. Cycling performance of cathodes fabricated with PVDF and PDADMA-T, 

respectively, at a sulfur loading density of 3.0 mg cm-2 within 1.7–2.8 V (vs. Li+/Li) at 0.2C.  

 

Figure 9. Nyquist plots of the various cathodes (a) before cycling and (b) after 16 cycles 

within 1.7–2.8 V at 0.2C. 
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(Figure 2) 
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(Figure 3) 
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(Figure 4) 
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(Figure 5) 
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