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Abstract

Free Falling of Spheres in a Quiescent Fluid

Siavash Hedayati Nasab

Motion of spheres falling through fluids is a classical problem in fluid mechanics. The

problem is solved for steady motion and other special cases such as for small and large

Reynolds numbers, but not yet for transitional flows due to a complicated nonlinear drag

relationship. However, in recent decades a new approach has become available for study-

ing this problem via the development of powerful processors and computers. In this thesis

we investigate free falling of spherical shape objects through fluid media. We produce ex-

perimental data and then model the motion mathematically via Newton’s second law and

the Navier-Stokes equations. The resulting second order non-linear differential equation

has been solved numerically. Finally, by using the fluid-structure interaction method (im-

mersed boundary method) we simulate the free fall of spheres in water and compare these

results with our experimental data. The aim of this study will be to answer how density,

viscosity, temperature and gravitational acceleration affect the rate of descent of a solid

body through a fluid.
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“Oh, threats of Hell and Hopes of Paradise!

One thing at least is certain–This Life flies;

One thing is certain and the rest is Lies;

The Flower that once has blown for ever dies. .”

Omar Khayyam
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Chapter 1

Introduction

1.1 History of free fall studies

We have all observed objects in free fall. This classical problem in physics has attracted

attention since the earliest days of science. History books tell us that before the sixteenth

century. It was generally assumed that the acceleration of a falling body would be propor-

tional to its mass. The ancient Greek philosopher Aristotle (384-322 BC) [1] wrote this law

in what is considered to be the first book on mechanics. Philoponous (490 – 570 AD) [2] [3]

followed by Stevin (1548–1620) [4] and later on by Galileo Galilei (1564 -1641) [5] expressed

some objections about Aristotle’s assertion. However, Steven and Galileo Galilei (1564 -

1641) [5] were the first modern scientists who put Aristotle’s theories to the test. Unlike

others before him, Galileo tried to verify his own theories through experimentation and

observation. He combined the results of these experiments with mathematical analysis in

a method that was novel in those times. He demonstrated that pairs of objects of the same

shapes but different masses dropped from the top of the famous tower of Pisa touched the

ground simultaneously with the same velocity and acceleration. Nevertheless, Galileo’s

observations seemed unintuitive, because we observe that on earth, heavier objects hit the

ground earlier than lighter ones.

Later, reliable measurements and experiments showed that the velocity of objects with
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different masses, sizes, and materials, dropped simultaneously from the same height, are

different once they reached the ground. Accurate experiments also proved that the effect

of mass on the velocity of objects of similar shapes and sizes is very small, and this effect

tended to decrease with lowering the release height and tended to increase with increasing

the release height [5]. However, this difference no longer increased by increasing the re-

lease height more than a specific value, which is proportional to the mass and shape of the

object and the viscosity of the fluid through which it falls. This is due to the object reach-

ing its terminal velocity. In fact, experimental observations showed that in more viscous

fluids, such as water, an object reaches its terminal velocity earlier.

In the eighteenth century, fluid mechanics contributed modeling to this classical problem.

The drag force, defined as a force acting in the opposite direction of the relative motion

of an object, is affected by cross-sectional surface area and surface smoothness. In other

words, drag force is a resistive force acting on a solid body moving through a fluid. Sig-

nificant experimental and analytical progress has been made studying drag force, and it is

now known that any object dropped in a fluid media starts accelerating and then reaches

its steady state (terminal velocity). Meanwhile, via progress in numerical methods and

computational power a new approach for studying the phenomena has been introduced,

Computational Fluid Dynamics (CFD) [6].

1.2 Why free fall is important?

Free fall is a common phenomenon observed in our daily lives. However, free fall in a vis-

cous fluid has a complicated nonlinear behaviour with a number of physical and industrial

applications. Hydrodynamic or aerodynamic forces during the simple free fall of a sphere

can be observed in a wide range of other phenomena in nature from multiphase flow to

the aerospace and naval industries. In fact, free fall is a simple example of moving solid

particles or even gas bubbles through a fluid. Motion of gas bubbles and rigid particles

in a fluid is widely observed in industry, from the oil and petrochemical industries to the

2



aerospace industry. Hence it can be said that free fall is a classical problem with a variety

of applications. In Figure 1.1 blades of a boat propeller can be seen with small solid ob-

jects pitting on its surface (cavitation). In Figure 1.2 Russia’s Urals region has been rocked

by a meteorite explosion. The impact wave damaged several buildings, and destroyed

thousands of windows.

Figure 1.1: Cavitation of small solid objects on blades of a boat propeller [7]

Figure 1.2: Russia’s Urals region rocked by a meteor [8]
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1.3 On the physics of free fall

Based on Newton’s second law and conservation of mass, as an object falls through a vis-

cous fluid its interactions with that fluid are described by the Navier-Stokes equations.

There are two types of forces imparted on the solid object by the fluid, pressure forces and

shear stress (viscous) forces. However, based on Newton’s second law (assuming a rigid

body) there are additional forces acting on the object. There is the force of gravity that

pulls the sphere downward through the fluid, and based on Archemide’s principle, there

is a buoyancy force which arises from the fact that fluid pressure increases with depth and

this increased pressure is exerted in all directions (Pascal’s principle) so that there is an

unbalanced upward force on the bottom of a submerged (immersed) object [9] [10]. There

is also another apparent force due to the transient terms in the Navier-Stokes equations

which is the added or virtual mass. The added mass force can be explained as the required

force to accelerate fluid particles around the object, in other words when the solid object

wants to accelerate due to viscous effects some fluid particles also accelerate with the solid

object so they add to the real mass which is moving and, consequently, a greater force is

needed for the acceleration of the particle.

There are also some other minor forces such as the pressure gradient (which is due to dif-

ference in the hydrostatic pressure of the fluid surrounding different parts of the object)

and the Basset or history force (which addresses lagging of the boundary layer when the

solid particle is accelerating). All these force will be discussed in Chapter 3 in detail.

Figure 1.3 shows the idealized major forces in free fall under uniform acceleration of grav-

ity. In this figure, we see that gravity and buoyancy are always aligned with the direction

of x-axis by definition. Furthermore, by definition the drag force is parallel to, and in

the opposite direction of the velocity vector. In Figure 1.3 we show the velocity vector

aligned with the positive x axis, as we expect this to predominantly be the case. However,

in practice transverse forces could introduce additional velocity components, misaligning

the velocity vector from the x axis.

4



Figure 1.3: Major forces in free fall with Idealized directions

1.4 How to approach to free fall problem

Understanding the motion of a solid object in a viscous fluid remains a fundamental ques-

tion in multiphase flow modeling. This problem has many engineering applications, such

as spray combustion, pollution control, boiling and bubble dynamics, sedimentation, and

erosion of turbine blades. These problems are concerned with the interaction of particles

with fluids, which requires accurate knowledge of this phenomena.

There are three different possible approaches to addressing this problem in engineering:

• Experimental approaches using motion capturing methods such as the Particle Im-

age Velocimetry (PIV).

• Studying the hydrodynamic forces acting on solid particle using rigid body dynam-

ics to obtain an equation of motion based on Newton’s second law.

• Studying the full fluid domain by taking advantage of computational fluid dynamics

All of these approaches are studied in this thesis, and will be discussed in their relevent
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chapters.

1.5 Computational fluid dynamics in free fall

1.5.1 CFD and the finite volume method

Numerical approximations to the solution of the mathematical equations describing fluid

flow and heat transfer have been an ongoing pursuit for mathematicians and engineers.

However, via the development of powerful processors and super computers this approach

has become practical. Computational fluid dynamics is one of the tools (in addition to ex-

perimental and theoretical methods) that is useful for solving fluid-dynamics problems.

Through ongoing improvements of computer hardware, computational fluid dynamics is

now applied in many diverse fields including engineering, physics, and meteorology.

In computational fluid dynamics we discretize the fluid domain by generating meshes

and transform our nonlinear or linear partial differential equations to coupled algebraic

equations [6]. Discretization consists of a process whereby the domain is subdivided into

elements and the equations are expressed in discrete form at each element by using finite

differences or finite volumes. The finite difference method requires a structured grid ar-

rangement (that is, an organized set of points formed by the intersections of the lines of a

boundary-conforming curvilinear coordinate system). However the finite volume method

is more flexible and can be formulated to use both structured and unstructured grids (that

is, a collection of irregular elements).

Improper assumptions and discretization in turbulent flows could yield inaccuracies in the

numerical solution. In order to avoid this, there are a variety of approaches for modelling

turbulent flows. The Reynolds-Averaged Navier-Stokes (RANS) equations are derived by

decomposing the velocity into time-average and time-fluctuating components [11]. An-

other approach is large-eddy simulation, which solves the spatially filtered Navier-Stokes

equations [11]. The third approach, to simulate turbulent flows is direct numerical simu-

lation, which solves the Navier-Stokes equations on a mesh that is fine enough to resolve

6



all length scales in the turbulent flow. Unfortunately, direct numerical simulation (DNS)

is typically limited to simple geometries and low-Reynolds-number flows because of the

limited compute capabilities of even the most powerful modern supercomputers.

The final step in computational fluid dynamics is to visualize the results of the simula-

tion. Visualization enables us to generate velocity vectors, pressure and velocity contours,

streamlines, calculation of secondary quantities (such as vorticity), and animations of un-

steady flows. Nowadays, we have access to very powerful graphical hardware, but sim-

ulating three dimensional transient flows is still difficult. However, we can still obtain

valuable data from the approximate equations of RANS and LES.

In this study, with respect to our use case, our geometry, and the availability of computa-

tional methods, we decided to use finite volume method to discretize the problem via the

CFD solver package ANSYS CFX [12]. There are other approaches such as finite difference

schemes, for this special case since the geometry is simple. However, an approach that

could be generalized to any geometry, motivated us to use an unstructured finite volume

solver.
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Figure 1.4: Computational fluid dynamics simulation of vortices around a falling sphere

1.6 Thesis objectives

In this thesis, we exploit recent advances in numerical methods and turbulence modeling

to study the free fall of spherical shaped objects with three different materials in quiescent

water. We provide the results of experimental, numerical, and CFD studies (see Figure 1.4)
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and then we compare the results from all three approaches. The effect of drag, buoyancy

and gravity forces will be investigated.

The main objectives of this thesis are:

• To obtain experimental data, numerical solution of equation of motion, and CFD simulation

for three different solid spheres in free fall through water

• To examine the effect of gravitational hydrodynamic and aerodynamic forces in free fall

• To make a comparison among numerical simulation, CFD, and experimental data

• To examine Aristotle and Galileo claims regarding the free fall of solid bodies through a qui-

escent fluid

1.7 Thesis outline

This thesis is organized as follows. Chapter 2 provides experimental results for free fall of

three spherical shaped objects in water. It also provides a discussion of some of the prac-

tical aspects of hydrodynamic forces. Chapter 3 discusses the formulation and numerical

solution of the equations of motion of solid spheres in a quiescent fluid using the 4th order

Runge-Kutta method, and presents results from this approach. Chapter 4 presents CFD

simulation of free fall containing a short explanation of theory and the method used in

this study. Chapter 5 provides a comparison of the experimental, theoretical, and compu-

tational results in this study, summarizes the main conclusions of the study, and presents

recommendations for future work.
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Chapter 2

Experimental Observation

2.1 On the importance of the experimental approach

Determination of the hydrodynamic/aerodynamic forces acting on a solid particle in a vis-

cous fluid is a fundamental problem in fluid mechanics [9]. This phenomenon has many

applications such as multiphase flow, sedimentation and erosion in turbine blades. All of

these phenomena involve the same forces as free fall and require prediction of the trajec-

tory of a solid object in a fluid, when the density of the fluid and solid object are different.

The ability of a solid particle to behave as a Lagrangian tracer of fluid motion is important,

for example, for particle image velocimetry (PIV). This important issue of the prediction

of dispersion of solid particles in a fluid has many applications, such as turbomachinery

design and piping [13].

Analytical approaches for solving the transient (time dependent) motion of solid object

are limited to small Reynolds numbers [14]. However, they can give us insight into the

hydrodynamic/aerodynamic forces that are involved. The limitations of analytical meth-

ods motivate researchers to either use an analytical approach for simplified forms of the

governing equations (such as a quasi steady drag form) or perform experiments to pro-

vide a general description of the problem. Generally, we can say that experimental studies

in fluid mechanics are important for fundamental research and engineering. However,
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experiments are often prohibitively expensive or time-consuming. In some experiments,

such as decay of turbulent vortices, there are also practical measurement limitations.

2.2 Free fall experiment

As we discussed previously, experiments play an important role in studying many prob-

lems in fluid mechanics. Experimental determination of the free fall of solid bodies through

a fluid under gravitational acceleration has a long history in literatures [9] [10]. In this

study, we used an apparatus that is used widely at the Concordia University fluid me-

chanics laboratory. We used spheres with 3 different densities but the same volume, and

water as fluid to study three different density ratios (ratio of density of solid to fluid ρs/ρf ).

2.3 Experimental apparatus

Free fall experiments with three different density ratios requires precise measurement of a

solid objects position as a function of time.

The experimental apparatus, shown in Figure 2.1, consists of a long transparent cylindrical

vessel with an inner diameter DC = 0.2 meters, wall thickness of 0.006 meters and total

height of 0.9 meters. The cylinder was filled with tap water, and two black bands were

used to denote the test section with a total height h = 0.195 meters.

We used three spheres made from different materials: Delerin (ρs/ρf = 1.394), Teflon

(ρs/ρf = 2.304), and steel (ρs/ρf = 7.894), where ρs and ρf are the density of the spherical

particle and the fluid, respectively as shown in Figure 2.2. We used spherical shaped solid

objects with smooth surfaces to simplify calculation of the drag and added mass force for

numerical solution of the equation of motion which will be discussed in Chapter 3.
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Figure 2.1: Free fall apparatus

A high speed camera shown in Figure 2.3 was used to record the trajectory of the spheres.

This camera is a Basler acA640-750um delivering videos at 751 frames per second with

VGA resolution (more specification can be found in Appendix B). It captures a sequential

series of images that are recorded at high frame rates and played back in slow-motion to

12



allow us to capture, measure, and understand the position of spheres as a function of time.

Figure 2.2: The Delerin, Teflon, and steel
spheres

Figure 2.3: The High speed camera used to
record the trajectory of the spheres

2.4 Experimental setup

As discussed earlier, in this study we are investigating the trajectory of falling spheres in

quiescent water. Since the camera is fixed at a stationary point, and its distance to the

apparatus can not increase from a special value (0.5 meters) due to intransparency of the

pictures, we can not take a large height to examine the displacement of the spheres.

The density of tap water is assumed to be 998.1 (kg/cubic meters), whereas its viscosity

is 10−3 Pascal at T = 20 °C [15]. To avoid air entertainment, the particles were initially

submerged and held in a place under the water surface by a mechanical support and then

released. The particle trajectory was recorded by the high-speed camera at 750 frames

per second. The recorded sequences of the particle motion were analyzed using the MAT-

LAB [16] image processing toolbox.

In order to eliminate random perturbations, we repeated the experiment three times and

then took an ensemble average to obtain a displacement curve. Finally, we extracted the

corresponding velocity curve to the average displacement by using a centered finite differ-

ence method as:
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V =
xi+1 − xi−1

2Δt
, (1)

where V is ensemble average velocity and x In order to ensure that the velocity curve is

independent of size of Δt, we obtained the average velocity curve from average displace-

meny using different time steps and observed small difference between the curves. Figure

2.4 shows two different velocity curves.

Figure 2.4: Difference between 2 velocity curves derived with different time steps

2.5 Dimensionless quantities

In order to make general conclusions about the free fall of spheres through a quiescent

fluid we chose to non-dimensionalize our results (dimensional analysis). In dimensional

analysis, dimensionless quantities are pure numbers and, as such, always have dimension

of unity. Therefore, these quantities can be generalized to any geometry or configuration

with having same dimensionless quantities.

In this dissertation, we used the diameter of the sphere as characteristic length, the re-

quired time for the spheres to move equal to their diameters under the gravitational ac-

celeration in vacuum situation as the characteristic time, and the velocity at this time as
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the characteristic velocity. Finally, density ratio completes set of dimensionless quantities.

These quantities are defined mathematically as

t′ =

√
D

0.5g
, (2)

as the characteristic time, and:

v′ = gt′, (3)

as the characteristic velocity.

As noted, D (diameter of the sphere) as the characteristic length, ρs/ρf as density ratio,

and gravitational force (F ′ = mg) as the characteristic force.

Reynolds number is defined for the particle as

Rep =
V D

ν
(4)

where ν is the kinematic viscosity of water.

The dimensionless quantities built using these characteristic quantities are independent of

the apparatus, and can be used for any free fall of spheres having the same dimensionless

parameters.

2.6 Uncertainity in experimental results

As discussed previously, experiments have limitations and uncertainities. For example, as

we measured the diameter of the spheres with a micrometer with an accuracy of 0.00005

meters, we observed that real diameter of spheres are 0.005± 0.0001 meters. We observed

the same thing with mass of the spheres (m ± 0.001 g). We also know that the support

which is used to release the spheres in fluid makes some random perturbations in the fluid

at the moment of release.

In fact, these uncertainities cause error. Error is defined as the difference between the true

value of a measurement and the recorded value of a measurement. Errors are divided
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to two major categories, random and bias or systematic errors. Random error has no pre-

ferred direction, so we expect that averaging over a large number of observations will yield

a net effect tending to zero. On the other hand, bias has a net direction and magnitude so

that averaging over a large number of observations does not eliminate its effect. So, it is

usually difficult to address. Random error corresponds to imprecision, and bias to inaccu-

racy. In our study, we repeated the experiment to reduce random errors, such as release

perturbation and we tried to use as accurate as possible equipments to avoid bias errors.

2.7 Experimental Results

2.7.1 Impact quantities

It has been proven experimentally that the free fall of any particle in a quiescent fluid has

two parts. A transient part from the moment the particle is released until its velocity be-

comes approximately steady (terminal velocity). Then a quasi-steady state period after the

object reaches this terminal velocity.

Table 2.1 demonstrates the impact time and velocity as well as terminal Reynolds num-

ber from the current experimental study. Impact Reynolds number is calculated with the

velocity of solids spheres when they reach a dimensionless displacement of 39 ( x
D = 39) as

Repi =
ViD

ν
. (5)

Sphere Material ρs
ρf

h/D height studied Vi/V
′ impact velocity ti/t

′ Bed impact time Repi

Delrin 1.394 39 0.689 32.02 1075

Teflon 2.304 39 1.31 17.74 2045

Steel 7.794 39 3.36 8.55 5245

Table 2.1: Results from free fall of three density ratios based on experiments
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2.7.2 Experimental curves

Figures 2.5a, 2.5c, and 2.5e show the displacement curves for three individual experiment

and the ensemble average curve for each density ratios (ρs/ρf = 1.394, ρs/ρf = 2.304,

and ρs/ρf = 7.794). Figures 2.5b, 2.5d, and 2.5f show the velocity graphs corresponding to

average displacement curves. As can be seen in the figures, the velocity is observed to fluc-

tuate when approaching the terminal velocity. These fluctuations are possibly associated

with a temporal evolution of the solid body wake (turbulent vortices around solid body).

It is observed that the velocity is no longer a monotonical function of time, it fluctuates

between periods of increased and decreased velocity. For this to happen, the acceleration

of the particle must change its sign, in particular the reaction of the wake on the particle

is sufficient to overcome the gravitational force. Note that the particle Reynolds number is

close to 1075, 2045, and 5245 for ρs/ρf = 1.394, ρs/ρf = 2.304, and ρs/ρf = 7.794 (Delerin,

Teflon, and steel) respectively.

Figures 2.6, and 2.7, as well as Table 2.1 show the displacement and velocity curve for

different density ratios respectively. As density ratio increases the sphere moves the di-

mensionless length of 39 in the shortest time, and it reaches a higher terminal velocity. We

also observe that by increasing the density ratio the displacement and velocity curves ap-

proach those of free fall in a vacuum. It is clear that as density ratio increases Fg − Fb is

larger.

17



(a) Dimensionless displacement curves for three
individual experiments and their average for
ρs/ρf = 1.394 (Delerin)

(b) Dimensionless velocity curve correspond-
ing to average displacement for ρs/ρf = 1.394
(Delerin)

(c) Dimensionless displacement curves for three
individual experiment and average for ρs/ρf =
2.304 (Teflon)

(d) Dimensionless velocity curve corresponding
to their average displacement for ρs/ρf = 2.304
(Teflon)

(e) Dimensionless displacement curves for three
individual experiment and their average for
ρs/ρf = 7.794 (steel)

(f) Dimensionless velocity curve corresponding
to average displacement for ρs/ρf = 7.794 (steel)

Figure 2.5: Experimental curves
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Figure 2.6: Dimensionless displacement curves

Figure 2.7: Dimensionless velocity curves
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Chapter 3

Mathematical Formulation and

Numerical Solution

3.1 Basset-Boussinesq-Oseen equation

In dynamics, Newton’s second law is used to describe the motion of a rigid body. In free

fall of a rigid body, based on Newton’s second law solid body falls under the gravitational

force. In addition to the gravitational force, there are other major forces such as buoyancy,

drag and added (virtual) mass [17]. There are also other minor forces such as the Basset

(history) force and the pressure gradient. All of these forces are deduced from the Navier-

stokes equations and will be defined and discussed individually in this chapter.

The describing equation of motion for free fall was first introduced by Stokes [18], and

later Basset, Boussinesq, and Oseen independently, which contains all of the above forces.

They examined the effect of a transient drag force on a solid object passing through a fluid.

In physics, the equation of motion of free fall or rise of a solid object through a fluid named

after these three scientist as BBO equation. This equation can be written as [17]
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(6)
π

6
ρsD

3dVs

dt
= 3πμD(Vf − Vs)− π

6
D3∇p+

π

12
ρfD

3 d

dt
(Vf − Vs)

+
3

2
D2√πρfμ

∫ t

0

1√
t− τ

d

dτ
(Vf − Vs)dτ +

π

6
ρsD

3g +
π

6
ρfD

3g +
∑
k

Fk,

where: ρs is solid sphere density, ρf is fluid density, D is solid sphere diameter, Vf is fluid

velocity, Vs is particle velocity, μ is fluid dynamic viscosity, p is fluid pressure, τ is kernel

time, g is gravitational acceleration, t is time, and Fk are other forces.

The terms on the right-hand side are, respectively, the:

• Drag force (Stoke’s drag)

• Pressure gradient

• Added or virtual mass

• Basset or history force

• Gravity force

• Buoyancy force

• Other forces

Before, going through the numerical solution of this equation it is useful to know more

about the physical interpretation of these forces.

3.1.1 Drag force

The drag force causes a particle tends to follow the motion of the fluid Drag force consists

of viscous drag as well as pressure drag at the surface of the sphere. The drag force is

typically one of the most dominant terms in BBO equation. For highly viscous flow (low

particle Reynolds number) an analytical solution can be obtained for the drag force (Stokes

1851) [18]:

FD = 3πμD(Vf − Vs). (7)
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At higher particle Reynolds numbers, on the other hand, empirical correlations are needed

and are expressed via a drag coefficient:

CD =
FD

1
2ρf (Vf − Vs)2As

. (8)

However, based on experimental data (Schiller and Naumann, 1933) [19] a relation for the

drag coefficient can be drawn as:

CD =
24

Rep
(1 + 0.15Rep

0.687). (9)

In Equation (9) once the flow (particle velocity), reaches to critical velocity (critical Rep)

the CD tends to 0.44.

There are additional considerations in determining the drag coefficient:

• Turbulence of the surrounding fluid reduces the critical Reynolds number to about

1000 [20].

• Surface roughness also causes a reduction in the critical Reynolds number [20].

• With increasing particle concentration the drag is considerably increased (hydrody-

namic interaction)

In this study, since we are dealing with a range of Reynolds number from zero to 5000, we

decided to use Equation 9 as the drag coefficient to find the drag force.

3.1.2 Pressure gradient force

The pressure gradient force acting on the particle is due to local pressure gradient and

shear stresses in the flow [21]. Pressure gradient can be derived from Navier-Stokes equa-

tions:

Fp =
ms

ρs
(−∇p+∇τ). (10)
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With the Navier-Stokes equations we find that

−∇p+∇τ = ρf

(
DVf

Dt
− g

)
. (11)

This yields the total pressure force as

Fp = ms
ρf
ρs

(
DVf

Dt
− g

)
, (12)

where the right hand side shows the buoyancy and pressure gradient force.

3.1.3 Added mass

As a solid object moves through a fluid, some fluid particles around solid object move

along with it. In other words, when the body accelerates, a number of fluid particles must

also accelerate alongside with the solid particle. Thus, higher amount of force is required

to accelerate a body in a fluid than in vacuum. Since force equals mass times acceleration,

we can consider the additional force in terms of an imaginary mass (added mass). We can

derive the added mass of an object by considering the hydrodynamic/aerodynamic forces

acting on it as it accelerates [22]. Consider a sphere of radius, R or diameter D, accelerating

at rate of
∂V

∂t
= V̇ . (13)

If we assume that the sphere is idealized to move in x direction then we can find the added

mass force in the x-direction by integrating the pressure over the area projected in the x-

direction:

Fx =

∫
pdAx, (14)

where:

dAx = sinθdA , dA = 2πrds , r = Rsinθ and ds = Rdθ
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where

Ax is x-direction projection of the surface area,

A is the surface area,

and φ is the flow rate

Also via the unsteady Bernoulli equation we can say

p = −ρ[∂φ
∂t

+
1

2
|∇φ|2], (15)

and we know that for axisymmetric flow around a sphere

φ = V cosθ
R3

2r2
, (16)

and
∂φ

∂t

∣∣∣
r=R

= V̇ cosθ
R

2
, (17)

Similarly

1

2
|∇φ|2

∣∣∣
r=R

=
1

2

∣∣∣∣
(
V cosθ

R3

r3
,−V sinθ

R3

2r3

)∣∣∣∣
2

=
1

2

[
V 2cos2θ +

1

4
V 2sin2θ

]
, (18)

Therefore

(19)

Fy =

∫ π

0

[
− ρ

[
∂φ

∂t
+

1

2
|∇φ|2

]]
cosθ2πR2sinθdθ

=

∫ π

0

[
− ρ

[
V̇ cosθ

R

2
+

1

2
(V 2cos2θ +

1

4
V 2sin2θ)

]]
cosθ2πR2sinθdθ

= −ρ2πR2V̇
R

2

∫ π

0
sinθcos2θdθ − ρ2πR2 1

2
V 2

∫ π

0

[
sinθcos2θ +

1

4
sin3θcosθ

]
dθ

= −2

3
ρπR3V̇ ,

where V̇ is the acceleration of the body, and the negative sign indicates that the force is in

the negative x direction, opposing the acceleration. Thus, the equation must accommodate
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this extra force, and we can say the added mass is:

ma = −2

3
ρπR3. (20)

3.1.4 Basset force (history force)

As was discussed in the drag force section, the drag force only depends on the value of the

Reynolds number. Consequently, we can say that it is assumed that the boundary layer

is fully developed. However, as we know development of the boundary layer is a time

dependent process and it cannot form instantaneously. As a result, it can be said that the

drag term in the BBO equation is not an appropriate representation of the real physical

drag force for an accelerating particle. The Basset force accounts for this lagging of the

unsteady boundary layer development, as well as the solid particle wake [23]. To capture

these unsteady effects, an integral over time is required from the start of particle motion

up to the current time. A kernel which is a function of (t, τ) connects the acceleration of

the particle at time t to the resulting force at time τ . (Mei et al., 1991 [24]; Loth and Dorgan,

2009 [25]; Mordant and Pinton, 2000 [26]).

3.1.5 Simplified BBO equation

In this thesis, we decided to neglect the pressure gradient, since this force is only important

if large fluid pressure gradients exist and if the particle density is smaller than or similar to

the fluid density [12]. Therefore, with respect to the quiescent fluid assumption, the BBO

equation is simplified to

(21)
π

6
ρsD

3dVs

dt
= −1

2
ρfCDAVs

2 +
π

12
ρfD

3 d

dt
(−Vs) +

π

6
ρsD

3g

− π

6
ρfD

3g +
3

2
D2√πρfμ

∫ t

0

1√
t− τ

d

dτ
(−Vs)dτ,
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where

CD =
24

Re
(1 + 0.15Rep

0.687), (22)

and based on [27] the time kernel is defined as:

τ =
1√
t
. (23)

3.2 Numerical solution

We used MATLAB and the 4th order Runge-Kutta method to solve the simplified BBO

equation numerically (See Appendix A). We obtained displacement and velocity profiles

for the three density ratios ρs/ρf = 1.394, ρs/ρf = 2.304, and ρs/ρf = 7.794 and a fixed

dimensionless height of x
D = 39.

3.2.1 Impact quantities

Table 3.1 shows dimensionless time, velocity and Reynolds number after dimensionless

displacement of 39 ( x
D = 39).

Sphere Material ρs
ρf

h/D height studied Vi/V
′ impact velocity ti/t

′ Bed impact time Repi

Delrin 1.394 39 0.709 31.07 1100

Teflon 2.304 39 1.37 17.02 2140

Steel 7.794 39 3.39 8.24 5295

Table 3.1: Results from free fall of three density ratios based on numerical solution

3.2.2 Numerical solution curves

Figures 3.1, 3.2 as well as Table 3.1 show displacement and velocity graphs for each density

ratios based on numerical solution of the equation of motion. It can be seen that terminal

velocity increases as the density ratio increases. It is also clear that since the equation
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of motion does not consider turbulent chaotic effects, no oscillation can be observed in

the graphs. In Figure 3.3, we can see that the net force is very large at the beginning

of the motion. However, it decreases as the velocity of spheres increases, and tends to

approximately zero at the end, once the spheres reach their terminal velocity (steady state

condition).

Figure 3.1: Dimensionless displacement curves
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Figure 3.2: Dimensionless velocity curves

Figure 3.3: Dimensionless Force curves
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3.3 Contribution of each transient force

In Figures 3.4a, 3.4b, and 3.4c, we studied the contribution of each force (each term in BBO

equation), to the total force of falling spheres. Since the magnitude of the Basset force is

relatively small with respect to other forces, these figures are shown in logarithmic scale. It

is clear that the value of gravitational and buoyancy forces and their subtraction Fg −Fb is

constant in time and increases as the density ratio increases. It can be seen in these figures

that the total force is equal to the summation of all forces. Furthermore, the Basset and

added mass forces are transient terms which tend to zero once the motion of the sphere

becomes steady. It is clear that Basset force is small accounting for less than 1 percent

effect on the total force. However, the added mass has larger contribution to the total

force, particularly in the accelerating phase of the motion. As expected the drag force also

increases as the velocity of the sphere increases. Moreover, we can see that value of added

mass force remains constant until the drag force reaches the same value. This equal value

happens at the same dimensionless time (t/t′ ≈ 0.88) for all density ratios.
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(a) Delerin sphere

(b) Teflon sphere

(c) Steel sphere

Figure 3.4: Contribution of each force on the spheres
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Chapter 4

CFD Simulation

4.1 Theory

4.1.1 Finite volume analysis and finite volume method

Many of the laws in physics are space and time dependent. They are often expressed in

terms of partial differential equations (PDEs) such as fluid flow, thermal transport, wave

propagation, etc. Most applications involve complex geometries, such that these PDEs

cannot be solved using analytical approaches. Instead, a numerical approximation of the

equations can be made, typically based on different types of discretizations. As was dis-

cussed in the introduction, these discretization methods approximate the continuous PDEs

with discrete forms, which can be solved using numerical methods. The solutions to the

numerical model equations are an approximation of the real solution to the PDEs. The

finite volume method (FVM) is such a numerical method used to compute approximate

solutions to PDEs.

The FVM has been used successfully in the modeling of several aerospace and mechan-

ical engineering problems [28]. Application of the FVM covers a variety branches of

physics and engineering. One of the most exciting aspects of its application is to couple
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problems like fluid-structure interaction, thermo-mechanical, thermo-chemical, thermo-

chemo-mechanical, and bio-mechanical engineering. Some alternative methods have been

proposed in recent years to be used instead of the finite volume method. However, the

finite volume method remains popular due to its simplicity, ease of implementation, and

suitability for complex geometries.

4.1.2 How the FVM works

The general methodology of the finite volume method consists of:

• Decomposition of the domain into elements considered as control volumes (mesh

generation).

• Deriving integral formulations for these control volumes.

• Approximation of integrals using numerical integration and algebraic operations.

• Approximation of the values and differentials using interpolation

• Assembling the solution

The first step, is to generate a suitable mesh. In the finite volume method, depending on

the solver we can use different type of elements such as tetrahedral, hexahedral, pyramid

and triangular prisms. However, the finite volume codes are usually more efficient with

hexahedral shaped elements [29].

The second step involves forming integral relations for each control volume in the mesh.

For example, for a general transport equation of the form:

∂

∂xi

(
ρviφ− α

∂φ

∂xi

)
, (24)

where φ is the transport value, xi are spatial directions, ρ, and α are constants, we can form

the integrals as: ∫∫
Γ

(
ρviφ− α

∂φ

∂xi

)
nidΓ =

∫∫∫
Ω
fdΩ, (25)
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where Γ is is the surface of the element, Ω is the volume of the element, and ni are normals

of the surface. In the third step, we approximate these integrals to:

∑
c

ṁcφc −
∑
c

αniδΓ(
∂φ

∂xi
)c = fδΩ, (26)

where ṁc is mass flow rate. In step four and five we typically interpolate between the

values of function in control volumes to find the values on the surfaces of each element

(control volumes).

4.1.3 Recent developments and history of finite volume methods

The finite volume method could be said to have its origins in the work of Euler as early as

the 16th century. However, the earliest mathematical formulations on FVM can be found

in the works of Schellback (1851) and Courant (1943) [30] [31]. Later, the finite volume

method was independently developed by engineers to address structural mechanics prob-

lems related to aerospace and mechanical engineering.

In recent decades, finite volume methods have been developed in two general categories

[32]. The first category is considered as an extension of finite difference schemes for com-

plicated geometries and irregular meshes. Methods in this category usually reconstruct a

polynomial to satisfy the main principle and maintain flux consistency between elements.

Higher order methods in finite volume methods are considered as a relatively new method

is in this category. High order formulations take into consideration a high-order polyno-

mial reconstruction in their calculations. Good examples of methods in this Category are

WENO (Weighted Essentially Non-Oscillatory) and ENO (Essentially Non-Oscillatory) fi-

nite volume schemes [32]. Second category is considered as a development in the Galerkin

form by taking advantage of two different meshes, including one primary mesh to approx-

imate exact solution, and a dual mesh to discretize the equation [32]. A good example of

methods in this category is DG (Discontinuous Galerkin methods) [32].
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Recent developments of finite volume methods are considered to have two main advan-

tages. First, higher order of accuracy, that only depends on the order of polynomials used

for reconstruction. Second, higher compatibility with complicated geometries [32]. How-

ever, higher-order methods are often less robust than conventional second-order schemes.

Furthermore, the lack of commercially available high-order solvers has motivated the use

of a second-order accurate solver in this study.

4.1.4 Fluid-structure interaction "FSI"

4.1.4.1 Introduction

In the case of free fall, in addition to a normal fluid flow domain which is solved with the

finite volume method we have a solid domain with its own dynamics. This has a high

level of complexity, since we have a solid domain moving through a fluid domain under

the effect of body forces, such as gravity, buoyancy and the interaction of forces between

the fluid particle and its boundary. Such complexity requires a fluid-structure interaction

approach, which is discussed in this section. Underlying Bazilevs et al. [33] the interac-

tions between fluid particles and immersed solid structures are also nonlinear phenomena

that have applications in a wide range of scientific and engineering disciplines. In fluid-

structure interaction (FSI) problems, one or more solid structures interact with an internal

or surrounding fluid flow. FSI methods play important roles in many engineering fields.

However, so far a comprehensive approach for these problems is still a challenge due to

their strong nonlinearity and multidisciplinary nature.

4.1.4.2 FSI definition and formulation

In order to define the fluid structure problem, a mathematical formulation is necessary.

Based on Hou et al. [34] whole domain, which is denoted by Ω, has a boundary Γ. The

domain includes the solid object, Ωs , and the fluid domain which is water in our case, Ωf
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; i.e., Ω = Ωs ∪Ωf . The fluid-structure interface is defined by Γs = Ωs ∩Ωf . The equations

of motion for the fluid and structure are expressed in the same index form [34].

ρv̇i − σij,j + fi = 0, (27)

where fi is the body force, such as gravity and buoyancy in our case. Specifically, in the

solid domain, the equation is written as [34]:

ρsv̇i
s − σs

ij,j + f s
i = 0 in Ωs, (28)

where the superscript, s, shows the solid domain quantities, and the velocity, vsi , is the

material (or total) time derivative of the displacement field. As given, this equation is a

Lagrangian description. The first two terms in this equation are representing inertia and

internal stresses, respectively. If we consider linear elastic materials, the structural stress

follows the linear Hooke’s law:

σ2
ij = λδijεll + 2Gεij , (29)

where the structural stress σs
ij is a function of the strains, εij , and the Lame constants λ and

G, which are defined by:

εij =
1

2
(uij + uji), (30)

G =
E

2(1 + ν)
, (31)

λ =
Eν

(1 + ν)(1− 2ν)
, (32)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively. however, in

our case, for simplicity we decided to consider the solid domain as a rigid body. Conse-

quently, the second term in the (29) is equal to zero.
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The fluid domain, is described by [34]:

ρf v̇i
f − σf

ij,j + ff
i = 0 in Ωf , (33)

As can be seen, this equation provides an Eulerian description. In a similar way to the

solid domain, in the inertia term, there is:

v̇i
f =

dvi
f

dt
=

∂vi
f

∂t
+ vj

f + vij
f . (34)

In the free fall of solid spheres case in water, we assume that we are dealing with an in-

compressible Newtonian fluid, so the fluid stress σf
ij can be described by

σf
ij = −pδij + τij , (35)

where

τij = 2μ(eij − δijekk
3

), (36)

and

eij = vfji + vfij . (37)

In this equation the static pressure p, is the necessary force to enforce the incompressibility

condition vfij = 0.

In order to maintain the no-slip condition along the fluid and solid interface Γs, the fol-

lowing Dirichlet and Neumann conditions are considered:

vi
s = vi

f on Γs, (38)

which describes the equality of velocities at the interface, and

σij
sni = σij

fni on Γs, (39)
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which is the differentiation of the displacement (deformability) condition that both fields

sharing the same interface, in other words

xi
s = xi

f on Γs. (40)

Fluid-structure interaction methods is divided to two major categories:

• Conforming mesh methods

• Non-conforming mesh methods

These categories arose from the procedure of transmission conditions [35]. In other words,

conforming mesh methods track the motion of the solid object and its interface with the

fluid to enforce the no-slip condition. For the conforming mesh methods dynamic mesh

generation and a mesh update are used at every time step. However, the non-conforming

mesh methods focus on the enforcement of the Dirichlet boundary condition. In fact, the

non-conforming mesh method is derived from the Lagrangian multipliers theorem [34].

Lagrangian multipliers act as source term in the fluid domain equations to represents solid

boundaries in the fluid. Accuracy in determining the Lagrangian multipliers affects the

accuracy of the numerical solution [36].

Figure 4.1: Non-conforming mesh at 2 different time steps
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Figure 4.2: Conforming mesh at 2 different time steps

4.1.4.2.1 Conforming mesh methods

Conforming mesh methods usually have to update the mesh at each time step, so we can

say that in these methods there are three fields, describing the fluid domain, solid body

dynamics, and mesh movement. In this method, we solve the fluid domain in a time

step with an assumed solid boundary location. Then, the resulting pressure and stress are

applied to the solid object as external forces in addition to the buoyancy and gravity (body

forces). Then the computation based on solid dynamics is conducted and at the end, based

on these computed position of the solid object the mesh will be updated. Once a new mesh

is created, new interface locations will be revealed that will be used at the next time step.

One of the most popular fluid-structure interaction with conforming mesh methods is the

Arbitrary Lagrangian Eulerian method (ALE) [34]. In this method, the moving mesh is

explicitly related to the fluid domain equations. In this model we have a special kind of

material derivative which is expressed as [33]

dvf
dt

=
∂vf
∂t

+ (vf − U).∇vf , (41)

where U is the velocity of the fluid mesh.
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4.1.4.2.2 Immersed methods (non-conforming mesh method)

Many notable non-conforming fluid-structure solvers are based on the immersed meth-

ods [33]. In this method, we have two sets of governing equation for both the solid and

fluid domains, which are solved individually. However, in each equation there is cross-

term representing the effects of the other domain. In order to avoid mesh updates, we add

force equivalent terms to the fluid equations to represent interactions. The solid object in

this method (immersed solid) can be a 2 dimensional curve or a 3 dimensional rigid or

flexible body [34].

The immersed methods (non-conforming mesh methods) work by using Lagrangian mul-

tipliers. Meanwhile, the immersed method itself is categorized to two types of [37]

• Immersed boundary method

• Immersed domain method

Peskin(1977) [36] first introduced the immersed boundary method for studying blood

flow through a beating heart. Since then, this method has been widely used in differ-

ent branches of fluid mechanics. In this method, the fluid equations are solved with an

additional term representing the immersed boundary. Once the fluid velocity has been de-

termined we are able to determine the fluid-structure interaction force by using the no-slip

condition on the interface and then we can compute the forces and moments on the solid

body and determine its displacement and velocity. Actually, we can say in the immersed

boundary method we must solve the whole fluid domain with an Eulerian mesh config-

uration with the FSI term at each time step to determine the position and velocity of the

solid domain. We can say that in immersed boundary methods we assume that our solid

domain does not have a volume, instead, we try to consider its presence by fluid structures

interaction terms.

The immersed boundary method is much simpler in comparison to the conforming mesh

methods. In principle, the immersed boundary method deals with structures that do

not occupy volumes, e.g., a fiber or a closed curve in 2D space and a membrane in 3D

39



space [12]. However, it has its own disadvantages. For example, the solid object instanta-

neous response to the fluid particles motion may not be accurately modeled [38]. In order

to have a better model of these responses, the immersed domain method has been intro-

duced. In the immersed domain method it is assumed that an artificial fluid has covered

the solid domain. So the whole domain consists of real fluid and artificial fluid and no-slip

condition is implied on the interface of the artificial and real fluid and matches the posi-

tion and velocity between the real fluid and solid structure (artificial fluid). To enforce this

no-slip condition a fluid structure force is applied on both interfaces and the grids inside

the artificial fluid. The equation of motion is then solved over the entire fluid domain to

determine the displacement and velocity of the solid object. Ansys-CFX (1970-2017), is one

of the commercial computational and engineering software packages in the market that

has immersed boundary capabilities [12].

Figure 4.3: Immersed domain meshing
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Figure 4.4: Immersed boundary meshing

4.1.4.2.3 Basic formulation of Immersed methods

We showed the equations that describe the motion for fluid structure interaction as:

ρsv̇i
f − σf

ij,j + ff
i = 0 in Ωf , (42)

ρsv̇i
s − σs

ij,j + f s
i = 0 in Ωs, (43)

where fi
f and fi

s are external body forces such as gravity and buoyancy and

ui
s = ui

f in Γs, (44)

which shows that the displacement must be equal along the interface. The no-slip condi-

tion imposed on the interface between these two domains is the result of time differentia-

tion of the above equation

u̇i
s = u̇i

f in Γs, (45)
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üi
s = üi

f in Γs (46)

Or, in terms of velocities:

vi
s = vi

f in Γs, (47)

v̈i
s = v̈i

f in Γs. (48)

Using Lagrangian multipliers we can combine the equations to [34]:

(49)
0 =

∫
Ωs

(ρsv̇i
s − σij,j

s + fi
s)δui

sdvi
s

+

∫
Ωf

(ρf v̇i
f − σij,j

f + fi
f )δui

fdvi
f +

∫
Γs

λi(δui
s − δui

f )dvi,

where λi is the Lagrange multiplier, and shows the fluid-structure interaction force. It

has to be mentioned that the location of the interface boundary, Γs, is unknown, and its

position is determined by the interaction between the fluid and the solid body.

In the original formulation of the immersed boundary method of Peskin [36], the structure

is represented by an immersed boundary which is not represented by a finite volume. Thus

we have Ωs = Γs and the fluid domain becomes the entire computational domain: Ω = Ωf .

Consequently, the above equation becomes:

0 =

∫
Γs

(ρf v̇i
s − σij,j

s + fi
s + λi)δui

sdvi +

∫
Ω
(ρf v̇i

f − σij,j
f + fi

f + λiL(Γs))δui
fdvi, (50)

where the delta function, L(Γs), is defined as:
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L(Γs) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ Γs

0 if x /∈ Γs

So two different equations can be derived as:

ρf v̇i
s − σij,j

s + fi
s + λi = 0 on Γs, (51)

ρf v̇i
f − σij,j

f + fi
f + λiL(Γs) = 0 in Ω. (52)

In the immersed boundary method, the fluid-structure interaction force (the Lagrange

multiplier λi) is computed explicitly in Equation (51). The computed force is imposed

to Equation (52), which is solved to give the fluid motion. In a numerical method, the

discontinuous function L(Γs) can be replaced by a continuous discrete delta function. The

use of a discrete delta function is in fact an interpolation of the fluid structure force from

the immersed boundary (the solid domain) to the fluid domain [36].

When the fluid velocity is solved, the velocity of the structure is determined by applying

the no-slip condition. The same discrete delta function is usually used to interpolate the

velocity from the fluid domain to the boundary. The location of the boundary Γs is then

updated by using the solid displacement and velocity, and then used in the next time steps.
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4.2 Ansys-CFX

4.2.1 Introduction to the CFX package

CFX is one of the packages in the ANSYS workbench in which the immersed boundary

method has been implemented. Actually, Ansys-CFX supports both conforming and non-

conforming mesh methods for fluid-structure interaction. However, since it has an im-

mersed boundary solver, in this study, it is decided to use the non-conforming method

(immersed boundary method) solver due to its flexibility and to avoid complicated mesh

deformation equations and computational cost.

The immersed boundary method in CFX allows us to model steady state or unsteady sim-

ulations with rigid solid objects that can move through fluid domains. During the solution,

CFX applies the fluid structure interaction force terms in the fluid conservation of momen-

tum equation in order to force the flow to move with the solid. Based on the Ansys-CFX

users guide [12], the steps to create an immersed solid in CFX are:

• "Define an immersed solid domain to represent the solid. This domain should be

entirely or partly within a fluid domain. Care must be taken to ensure that the

immersed solid domain does not cross any fluid boundaries or collide with any

solid domains or immersed solid domains. An immersed solid domain should not

cross any interface that involves a non-stationary domain. Thus, there should not

be a domain interface between the immersed solid domain and the fluid domain.

• Specify the domain motion settings for the immersed solid domain in order to

prescribe the motion of the immersed solid."

In CFX, fluid structure interaction is represented in the fluid equation as a source term

that makes the fluid particles around the solid object take its velocity (no-slip condition).

This source term is always controlled by a scaling factor which is set before the solution

is initialized (in the "global control settings"). The default value of this scaling factor is

usually equal to 10, which is used in this study.
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4.3 Setup

4.3.1 Geometry

We use a simple geometry in this thesis, based on the experiments in a simple three dimen-

sional geometry. A hexahedral domain with dimension 0.25−0.25−0.25 meters was used.

This domain was filled with tap water and spheres were released from a height of 0.195

meters ( x
D = 39). Figure 4.5 shows the geometry defined for the CFD simulation. Based on

the trajectory of the spheres in experiments, we define a cylindrical area inside the box as

body of influence, where the grids is finer.

Figure 4.5: Geometry for CFD simulation

4.3.2 Meshing

4.3.2.1 Method of meshing

In order to have a comprehensive mesh on the whole domain we used the block decompo-

sition method. A cylinder was assumed to be the predicted trajectory of the solid sphere

where the meshing is tetrahedral unstructured. It is decided to use tetrahedral shaped
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mesh outside of this body of influence as well. The algorithm for the unstructured meshing

is chosen to be the "Delauney" method. The solid domain (spheres) has also unstructured

tetrahedral shaped meshing.

4.3.2.2 Mesh size

Mesh size is an important factor in stability and accuracy of any CFD simulation. In fluid

structure problems, in addition to this usual importance, mesh size plays an important

role in the determining the fluid structure force and consequently in the investigation of

solid object displacement, velocity, and acceleration. It becomes more crucial in the case

of complex geometries or complex interfaces between a solid object and the fluid domain.

The mesh size also becomes more stringent in the case of high Reynolds numbers or in the

case of compressible high Mach number flows. A lot has been written about appropriate

mesh size for FSI problems. For example, Glowinski et al. (1999) [39] in finite element

analysis proved that the fluid mesh size, should equal to the solid object mesh size.

In another study, Zhao et al. (2008) [40] investigated using fluid structure methods in

biological systems in which the immersed solid object is flexible. Their results showed that

deformation in the interface of the solid and fluid domains can cause large inaccuracies in

the simulation. In order to overcome this, they proposed that very fine meshes be used in

the areas that could be in the trajectory of the solid object.

In this study, based on our rigid body assumption, we defined a cylindrical shape body

of influence in the cubic fluid domain and we decided to have grid size of 0.000001 m in

the region of influence and growth rate of 12 percent outside of the region of influence.

For the solid domain, we decide to have a grid size equal or less than 0.00001 m. Figures

4.6, and 4.7 shows the bottom and front view of the mesh generated for CFD simulation

respectively.
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Figure 4.6: Bottom view of the mesh

Figure 4.7: Front view of the mesh
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4.3.3 Physical setup

4.3.3.1 Physical quantities of structure

As noted in the experimental and numerical solution chapters, we decided to use three

different spherical shaped materials with their physical properties listed in Table (4.1).

Material Density Kg
m3 Volume m3 Mass moment of Inertia Kgm2

Delerin 1359.41 5.24e-7 7.12e-9

Teflon 2299.62 5.24e-7 1.205e-8

Steel 7779.19 5.24e-7 4.076e-8

Table 4.1: Physical quantities of the materials

4.3.3.2 Turbulence model

It is obvious that sedimentation of a sphere in a fluid creates a turbulent wake. So, in order

to do a simulation we should first appropriately model this turbulence. In our case, we

decided to use the Spalart-Allmaras model because it is known due to have high accuracy

in aerodynamics applications and in this case the drag force plays an important role in the

terminal velocity [41]. Spalart-Allmaras is a one-equation turbulence model, that has been

developed mainly for aerodynamic flows, and is a transport equation for eddy viscosity.

While other turbulence models exist, such as k− ε, k−ω, and etc. A study on the influence

of turbulence model choice is beyond the scope of the current study. Therefore, we propose

such a study as a recommendation for future works.

4.3.3.2.1 Governing equations

In addition to the rigid body dynamics, which are derived from Newton’s second law and

explains the dynamics of our solid sphere (three rotation equations and three translation

equations), we have the fluid domain which has to be defined by using the continuity and
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Navier-Stokes Equations. These governing equations using Einstein tensor notation are:

∂ρ

∂t
+

∂

∂xj
[ρuj ] = 0, (53)

∂

∂t
(ρui) +

∂

∂xj
[ρuiuj + pδij − τji] = 0, i = 1, 2, 3. (54)

In this case, we are dealing with water as an incompressible fluid. In the simulation we

are modeling turbulence and are going to use the Spalart-Allmaras model. In this model,

we need to take a time-average from the Navier-Stokes equations. First we use Reynold’s

decomposition to decompose all the quantities to average and fluctuation as follows [42]:

φ = φ+ φ′, (55)

where:

Φ ≡ 1

T

∫
T
Φ(t)dt. (56)

Then we take time average from the Navier-Stokes equations to obtain Reynolds Average

Navier-Stokes (RANS) equations.

ρ(
∂ui
∂t

+ uj
∂ui
∂xj

) = − ∂P

∂xj
+ μ

∂2ui
∂xj∂xj

+
∂τij
∂xj

, (57)

It can be seen that the τij are new unknowns in our equation. we cannot solve this equation

without additional assumptions. Based on assumption of the isotropy of turbulence we

use the Boussinesq approximation as follows [42]:

τij = 2μt S
∗
ij −

2

3
kδij , (58)

or more explicitly:

− ρu′iu
′
j = μt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij . (59)

in order to solve this equation, concept of dynamic eddy viscosity μt or kinematic eddy
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viscosity νt has ben introduced. In order to determine this new term we have to make ad-

ditional assumptions or solve new partial differential equations [41]. The Spalart-Allmaras

model, often called the one-equation model, consists of one PDE of turbulent kinetic en-

ergy, which is derived by multiplying velocity fluctuation in the RANS:

∂k

∂t
+ uj

∂k

∂xi
= −u′iu′j

∂ui
∂xj

− ν
∂u′i
∂xj

∂u′i
∂xj

− 1

ρ

∂

∂xj
(u′jp′) + ν

∂2k

∂x2j
− 1

2

∂

∂xj
(u′iu

′
iu

′
j), (60)

We make an assumption which is called the Prandtl mixing length hypothesis and is pro-

portional to the distance to the wall. This assumption helps us to find a relationship for

eddy viscosity in equation (57).

νt = lm|∂ui
∂xj

|, (61)

where lm is Prandtl mixing length and depends on nature of the flow.

After mathematical manipulation we obtain the Spalart-Allmaras model:

(62)
∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1[1− ft2]S̃ν̃

+
1

σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2} − [Cw1fw − Cb1

κ2
ft2](

ν̃

d
)2 + ft1ΔU2,

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ :=
ν̃

ν
, S̃ ≡ S +

ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
, (63)

where:

S =≡√
2ΩijΩij , (64)

Ωij ≡ 1

2
(
∂ui
∂xj

− ∂uj
∂xi

), (65)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6
, g = r + Cw2(r

6 − r), r ≡ ν̃

S̃κ2d2
, (66)
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ft1 = Ct1gt exp(−Ct2
ω2
t

ΔU2
[d2 + g2t d

2
t ]), (67)

ft2 = Ct3 exp(−Ct4χ
2), (68)

where d is the distance to the closest surface and the constants are:
σ = 2/3,

Cb1 = 0.1355,

Cb2 = 0.622,

κ = 0.41,

Cw1 = Cb1/κ
2 + (1 + Cb2)/σ,

Cw2 = 0.3,

Cw3 = 2,

Cv1 = 7.1,

Ct1 = 1,

Ct2 = 2,

Ct3 = 1.1,

Ct4 = 2.

4.3.3.3 Boundary conditions

Due to having quiescent fluid (water) in a box, defining the boundaries is simple. We

have no-slip condition on five surfaces of the box at the bottom and the sides and we just

have one free-slip condition at the top of the box. we have also a wall condition (no-slip

condition) on the surface of the solid sphere where the solid body and the fluid interact.
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4.3.3.4 Initial condition

At time zero, we have quiescent water so the water velocity is zero and water pressure is

hydro-static pressure. The solid sphere is also stationary as shown in Figure (4.8). Charac-

terisitic pressure is defined as P ′ = m
Dt′2

and consequently, dimensionless pressure as P
P ′ ,

where P is hydrostatic pressure.

Figure 4.8: Hydrostatic pressure at t/t′ = 0

4.3.4 Time steps and time integration

As was mentioned previously, in this simulation we decided to use a URANS model

(Unsteady Reynolds Average Navier-Stokes). It is typically assumed that a time-average
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model has to be steady state. However, in Equation (57) we can retain the transient term

∂ui
∂t so by convention we call it a URANS approach. As discussed earlier, the averaged com-

ponents are still a function of time. Therefore the results from the URANS are unsteady,

but one is often interested only in the time-averaged flow. Here the time-averaged velocity

and fluctuating velocity means that we decomposed the results from Navier-Stokes equa-

tions as a time-averaged part and a resolved turbulent fluctuation, which are both time

dependent.

Another challenge in maintaining accuracy and stability of any CFD simulation is time

step size. Generally, time discretizations can be categorized as implicit or explicit schemes.

However, in a fluid structure interaction problem, since we are dealing with movement

of a solid object through the fluid, numerical stability can be improved by using implicit

and semi-implicit time discretization. The fully implicit and semi-implicit time integra-

tion of the immersed boundary methods typically contains computation of a large system

of coupled equations via a large number of iterations, which has to be converged. How-

ever, semi-implicit methods have reduced computational cost in comparison to fully im-

plicit ones. Semi-implicit schemes in fluid structure interaction were first developed by

Peskin [36] and later was proved by Newren (2008) [43] that is unconditionally stable in

first and second order conditions so we can say that semi-implicit schemes have an accept-

able order of accuracy and stability for our study.

In this study, since the simulation was running in parallel on a 2nd generation Intel Core

i7 cpu which has four cores and four threads. Due to memory requirements, a fully im-

plicit solution was impossible. Hence we decided to use semi-implicit time schemes for

our simulation.

4.3.5 Numerical schemes

With respect to time step and mesh size and for higher accuracy we used the following

schemes as shown in Table (4.2).
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Entity Scheme

Temporal Second order backward Euler

Spatial Second order upwind

Laplacian Gauss linear

Interpolation Linear

Table 4.2: Schemes used in the simulation

Second order backward Euler is a semi-implicit time discretization which is defined as:

u(x, tn+1) = u(x, tn) +
∂u(x, tn+1)

∂t
Δt+

∂2u(x, tn+1)

∂t2
Δt2

2
(69)

In CFX second order upwind spatial scheme is an improvement of first order upwind

scheme by including 3 points instead of just 2. In this approach, higher-order accuracy is

achieved at cell faces through a Taylor series expansion. In this method the face value Φf

is computed by:

Φf = Φ+∇Φ · �r, (70)

where Φ and ∇Φ are the cell-centered value and its gradient in the upstream cell, and �r is

the displacement vector from the upstream cell centroid to the face [12].

And Gauss linear laplacian for a grid size of h in one dimension can be defined as:

∇2Ψ =
∂2Ψ

∂x2
=

Ψn+1 − 2Ψn +Ψn−1

h2
− h2

12
(
∂4Ψ

∂x4
), (71)

where Ψ is an arbitrary scalar field.

54



4.4 CFD simulation results

4.4.1 Impact quantities

In Table (4.3) the CFD dimensionless impact velocity, time, and Reynolds Number for three

different density ratios are shown.

Sphere Material ρs
ρf

h
D falling height Vi

V ′ impact velocity ti
t′ impact time Repi

Delrin 1.394 39 0.692 31.72 1085

Teflon 2.304 39 1.33 17.53 2085

Steel 7.794 39 3.37 8.54 5260

Table 4.3: Results from free fall of three density ratios based on CFD approach

4.4.2 Numerical simulation curves

Figure 4.9: Dimensionless displacement curves by CFD
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Figure 4.10: Dimensionless velocity curves by CFD

In Figures 4.9 and 4.10, dimensionless graph of position and velocity for different density

ratios can be seen. These two graphs and Table 4.3 show that as density ratio (mass ratio)

increases the terminal velocity increases and the sphere reaches to ground faster as its cor-

responding displacement and velocity curves approach to the displacement and velocity

curve in vacuum condition.

In the velocity curves 4.10, the oscillations can be observed. These oscillations are believed

to be associated with turbulent effect. This chaotic turbulent behavior causes instability in

the motion of the spheres.

4.4.3 Velocity, pressure and vorticity contours

The velocity contours around the spheres at dimensionless height of x/D = 37.02 for in-

dividual density ratios (ρs/ρf = 1.394, ρs/ρf = 2.304, and ρs/ρf = 7.794) are plotted in

Figures 4.11a, 4.11c and 4.11e. As it was expected an area of high velocity is observed in the

top of the spheres. This high velocity caused by the circulation bubbles around the spheres.

However, the velocity decreases with distance from the top of the spheres in downstream.
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An area of high pressure can be detected in the bottom of the spheres. This area has a

higher pressure as the density of the spheres increases. An area of low pressure in the

sides and a relatively high pressure region can be observed in the wake of the spheres.

More details about movement of spheres are observed by looking at the vorticity contours

in Figures 4.11b, 4.11d and 4.11d at dimensionless height of x/D = 37.02. The higher

vorticity can be interpreted as a large region of rotational flow. Rotational flow is very

common in viscous flows, specially in the boundary layer where an inhomogeneous nor-

mal derivative of the velocity component is observed. Therefore, as it was expected, high

vorticity regions are the boundary layer around the spheres and the maximum value of

vorticity happens in a thin layer near the wall of spheres (boundary layer). High values

are also observed in separated boundary region, as well as inside a viscous vortex.
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(a) Velocity contours at x/D = 37.02 for
ρs/ρf = 1.394 (Delerin)

(b) Vorticity contour at x/D = 37.02 for ρs/ρf =
1.394 (Delerin)

(c) Velocity contour at x/D = 37.02 for ρs/ρf =
2.304(Teflon)

(d) Vorticity contour at x/D = 37.02 for
ρs/ρf = 2.304 (Teflon)

(e) Velocity curve at x/D = 37.02 for ρs/ρf =
7.794 (steel)

(f) Vorticity contour at x/D = 37.02 for ρs/ρf =
7.794 (steel)

Figure 4.11: Velocity and vorticity contours
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4.4.4 Q-criterion isosurfaces

Turbulent flow is considered as a full 3-dimensional phenomena. However, showing the

turbulence structure is not easy. Hence, a parameter (Q-criterion) is defined to represent

the turbulent structure. Q-criterion is defined as second invariant of velocity gradient

tensor. Q-criterion is also defined as difference of vorticity and strain tensor.

Q =
1

2
(||ω||−||S||), (72)

where ω is vorticity tensor and S is the symmetric strain rate.

In Figures (4.12a), (4.12b) and (4.12c), isosurfaces of Q-criterion = 100 are shown. It is

believed that instability in the movement of the spheres is associated to these turbulent

structures [9]. In other words, the oscillations which were observed in the velocity curve

of the spheres are associated to these turbulent structures. However, future work is needed

to study their influence in more detail.
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(a) Delerin sphere ρs/ρf = 1.394 at x/D = 37.02

(b) Teflon sphere ρs/ρf = 2.304 at x/D = 37.02

(c) Steel sphere ρs/ρf = 7.794 at x/D = 37.02

Figure 4.12: Isosurfaces of Q-criterion = 100
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Chapter 5

Comparison and Conclusion

5.1 Comparison

In Figures 5.1a, 5.1c, and 5.1e dimensionless displacement curves based on experimental

data and numerical solution of the BBO equation for different density ratios (ρs/ρf = 1.394,

ρs/ρf = 2.304, and ρs/ρf = 7.794) are plotted and Figures 5.1b, 5.1d, and 5.1f represent cor-

responding difference in displacement curves based on numerical solution of BBO equa-

tion and experimental data. As it can be drawn from these figures, we can see that differ-

ence is very low in the beginning. However, since the predicted terminal velocity in the

two approaches is different, the difference in predicted location increases as time passing

and it reaches about 1 (difference/D = 1) after falling for a dimensionless height (x/D)

of 39. oscillations are also seen in the difference curves, these oscillation are associated to

fluctuation in experimental curves which are related to turbulent effect (turbulent wake).

Figures 5.2a, 5.2c, and 5.2e show dimensionless displacement curves based on CFD simula-

tion and numerical solution of the BBO equation for different density ratios (ρs/ρf = 1.394,

ρs/ρf = 2.304, and ρs/ρf = 7.794), and Figures 5.1b, 5.1d, and 5.1f show corresponding

difference in displacement curves based on numerical solution of BBO equation and ex-

perimental data. In these figures we can see approximately the same trend we saw in

comparison of numerical solution and experimental data. The difference is relatively low
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in the beginning but it increases as the spheres fall through the fluid. However, in compar-

ison of CFD and experimental data the amplitude of oscillation is much smaller. This small

amplitude of oscillation can be explained with the fact that RANS turbulence modelling

which uses a time average statistical approach. Consequently, the turbulent fluctuations

are smoother in this model.

In a similar way, Figures 5.3a, 5.3c, and 5.3e demonstrate dimensionless displacement

curve based on experimental data and CFD simulation for different density ratios (ρs/ρf =

1.394, ρs/ρf = 2.304, and ρs/ρf = 7.794), and Figures 5.1b, 5.1d, and 5.1f represent corre-

sponding difference in displacement curve. These figures show lower difference between

CFD and experimental curves, which remains relatively constant through the movement.

However, high amplitude oscillation can be seen in difference curves. As it was described

before, it is believed that these oscillations are associated to the turbulence effect in both

experimental and CFD simulation.
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(a) Displacement curves for ρs/ρf = 1.394
(Delerin)

(b) Difference in position for ρs/ρf = 1.394
(Delerin)

(c) Displacement curves for ρs/ρf =
2.304(Teflon)

(d) Difference in position for ρs/ρf = 2.304
(Teflon)

(e) Displacement curves for ρs/ρf = 7.794 (steel) (f) Difference in position for ρs/ρf = 7.794 (steel)

Figure 5.1: Comparison between numerical simulation and experiments
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(a) Displacement curves for ρs/ρf = 1.394
(Delerin)

(b) Difference in position for ρs/ρf = 1.394
(Delerin)

(c) Displacement curves for ρs/ρf = 2.304
(Teflon)

(d) Difference in position for ρs/ρf = 2.304
(Teflon)

(e) Displacement curves for ρs/ρf = 7.794 (steel) (f) Difference in position for ρs/ρf = 7.794 (steel)

Figure 5.2: Comparison between numerical simulation and CFD
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(a) Displacement curves for ρs/ρf = 1.394
(Delerin)

(b) Difference in position for ρs/ρf = 1.394
(Delerin)

(c) Displacement curves for ρs/ρf = 2.304
(Teflon)

(d) Difference in position for ρs/ρf = 1.394
(Teflon)

(e) Displacement curves for ρs/ρf = 7.794 (steel) (f) Difference in position for ρs/ρf = 7.794 (steel)

Figure 5.3: Comparison between CFD and experiments
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5.1.1 Comparison of impact quantities based on experimental, numerical solu-

tion, and CFD simulation

ρs/ρf = 1.394 ti/t
′ impact time Vi/V

′ impact velocity Impact Reynolds number Difference percentage in impact time prediction

Experiments 32.02 0.689 1075 0

Numerical 31.07 0.709 1100 2.96

CFD 31.72 0.692 1085 0.95

Table 5.1: Comparison of impact quantities based on experiments, numerical solution, and
CFD for ρs/ρf = 1.394 (Delerin)

ρs/ρf = 2.304 ti/t
′ impact time Vi/V

′ impact velocity Impact Reynolds number Difference percentage in impact time prediction

Experiments 17.74 1.31 2045 0

Numerical 17.02 1.37 2140 4.05

CFD 17.53 1.33 2085 1.18

Table 5.2: Comparison of impact quantities based on experiments, numerical solution, and
CFD for ρs/ρf = 2.304 (Teflon)

ρs/ρf = 7.794 ti/t
′ impact time Vi/V

′ impact velocity Impact Reynolds number Difference percentage in impact time prediction

Experiments 8.55 3.36 5245 0

Numerical 8.24 3.39 5295 3.62

CFD 8.54 3.37 5260 0.11

Table 5.3: Comparison of impact quantities based on experiments, numerical solution, and
CFD for ρs/ρf = 1.794 (steel)

Tables 5.1, 5.2, and 5.3 show that there is a good agreement between our experimental

observations and CFD simulations (0 to 2 percent difference). However, there is 2 to 5 per-

cent difference in impact quantities in the numerical solution of equation of motion of solid

spheres. Impact quantities are defined as sphere falls through a fluid for a dimensionless

hight x/D = 39.

It is evident in comparison of these three tables that as density ratio increases, Reynolds

number after a dimensionless displacement of x
D = 39 increases and it is clear that required

time for such a dimensionless displacement decreases significantly.
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5.2 Summary

In this dissertation, we first performed an experimental investigation of free fall through

a fluid. Then by using the BBO formulation, we conducted a numerical solution of the

equation of motion of free falling spheres. Furthermore, we conducted CFD simulations

by using the fluid structure interaction (FSI) non-conforming mesh method. We finally

made a comparison between data from the experimental, numerical and CFD studies and

came to the general conclusion that in case of free falling objects through a fluid, where we

are dealing with a nonlinear transient drag force, the numerical solution to the equation

of motion gives a good approximation of displacement, velocity and forces. Nevertheless,

these methods are limited to solid objects with simple shapes (such as spheres) and simple

fluid motions. It also does not represent chaotic turbulent effects in the solid object motion.

However, numerical simulation of the Navier-Stokes equations (CFD simulation), is able

to represent both the solid object motion and the effect of its motion on the fluid.

5.3 Conclusion

• As can be observed from our experimental, numerical, and CFD results, it is demon-

strated that heavier spheres reach the ground faster than lighter spheres. Therefore,

we can say that Aristotle’s quotes about the free fall of a solid object through a fluid

had not been wrong. His claim was based on observation and experiments in air.

However, Galileo talked only about free fall in a vacuum situation.

• We can conclude that the added (virtual) mass and history forces, which appear in

the BBO equation, are transient terms, which are derived from unsteady terms in the

Navier-Stokes equations. They resist acceleration, and, consequently, they decrease

the rate of acceleration of the spheres.

• We can conclude from numerical solution of the BBO equation that effect of the his-

tory or basset forces is not more than 2 percent of the overall force. However, the
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effect of added mass is significant.

• CFD simulation is a more reliable approach to study the free fall of solid objects

through a quiescent fluid.

5.4 Recomendations for future works

In this study, we simulated free fall of spheres through a quiescent fluid demonstrating

good agreement with experiments. However, an interesting study in the direction of this

thesis would be to investigate the stability of falling spheres in a quiescent fluid. Another

interesting research area would be to study the importance and effects of the history force

on the bed impact time and impact velocity. Furthermore, we propose to simulate this case

using conforming mesh methods like the arbitrary Lagrangian Eulerian methods (ALE).

We also suggest a comprehensive study of the wakes behind the falling objects through

fluids, since many studies including Rostami et al [9], [10], and [24] associate the oscillation

in the velocity and acceleration (force) to turbulent vortex shedding behind the falling

objects. A detailed study of these wakes would be interesting. Doing the same study with

different dimensionless height, density ratios, and Reynolds numbers could also be a very

interesting subject for the future investigations.
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Appendix A

MATLAB CODE

% Siavash Hedayati Nasab 40012529 %

% Depatment of Mechanical and Industrial Engineering %

%----------------------------------------------------------%

%clc,clear ,close all

global rho mu D rhos vo mt A m

rho=998.1; %kg per cubic meter

Tf=0.293;

rhos=7.794*rho; % kg per cubic meter

D=0.005; % sphere diameter per meter

A=0.25*pi*(D^2); % Surface Area per square meter

vo=((4/3)*pi*0.125*(D^3)); % Volume of the Sphere per Cubic Meter

m=rhos*vo;% kg

mt=m+(0.5*rho*vo);

mu=1e-3; % Dynamic Viscosity Kg per Meter Second

h=0.195;

tspan=[0 Tf]; % Time Span

tspan2=[0 Tf];

tspan3=[0 Tf];
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initial_v=-0.00001;

initial_x=[h initial_v];

[t1,x]=ode45(@kutta,tspan,initial_x);

[t2,y]=ode45(@drag,tspan2,initial_x);

[t3,z]=ode45(@history,tspan3,initial_x);

plot(t1,abs(x(:,2)),’b’,’LineWidth’,3);

hold on;

plot(t2,abs(y(:,2)),’r’,’LineWidth’,3);

hold on;

plot(t3,abs(z(:,2)),’g’,’LineWidth’,3);

xlabel(’Time(Seconds)’);

ylabel(’Velocity(Meter per Second)’);

legend(’Total force’,’Total force without added mass and history force’);

grid;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure;

plot(t1,x(:,1),’b’,’LineWidth’,3);

hold on;

plot(t2,y(:,1),’r’,’LineWidth’,3);

hold on;

plot(t3,z(:,1),’g’,’LineWidth’,3);

xlabel(’Time(Seconds)’);

ylabel(’Displacement (Meter)’);

ylim([0 0.2]);

legend(’Total force’,’Total force without added mass and history force’);

grid;

hold on;

plot(T,dis,’r’,’LineWidth’,3);

legend(’Numerical’,’Experimental’);
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xq=0:0.001:1.02;

xqa=interp1(T,dis,xq);

xqb=interp1(t1,x(:,1),xq);

dfr=(xqa-xqb).*1000;

plot(xq,dfr,’LineWidth’,3);

grid;

xlabel(’Time (Second)’);

ylabel(’Error (Milimeter)’);

legend(’Error between numerical and experimental results’);

%%%%%%%%%%%%%%%%%%%FORCE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a_D=zeros(1,length(y));

for i=1:length(y)-2

a_D(i+1)=(y(i+2,2)-y(i,2))./(t2(i+2)-t2(i));

end

a_D(1)=a_D(2);

a_D(length(y))=a_D(length(y)-1);

F_D=m.*(a_D);

figure;

plot(t2,F_D,’r’,’LineWidth’,3);

xlabel(’Time (Seconds)’);

ylabel(’Drag Force (Newton)’);

grid;

hold on,

a_T=zeros(1,length(x));

for i=1:length(x)-2

a_T(i+1)=(x(i+2,2)-x(i,2))./(t1(i+2)-t1(i));
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end

a_T(1)=a_T(2);

a_T(length(x))=a_T(length(x)-1);

F_T=mt.*(a_T);

plot(t1,F_T,’b’,’LineWidth’,3);

a_H=zeros(1,length(z));

for i=1:length(z)-2

a_H(i+1)=(z(i+2,2)-z(i,2))./(t3(i+2)-t3(i));

end

a_H(1)=a_H(2);

a_H(length(z))=a_H(length(z)-1);

F_H=mt.*(a_H);

plot(t3,F_H,’g’,’LineWidth’,3);

legend(’Total force withput adde mass and history force’,’Total force’);
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Camera acA640-750um Specifications
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