
Eliminating Code Duplication in Cascading Style Sheets

Davood Mazinanian

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Software Engineering) at

Concordia University

Montréal, Québec, Canada

August 2017

c© Davood Mazinanian, 2017

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Davood Mazinanian

Entitled: Eliminating Code Duplication in Cascading Style Sheets

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr Jia Yuan Yu

External Examiner
Dr Foutse Khomh

Examiner
Dr Juergen Rilling

Examiner
Dr Wahab Hamou-Lhadj

Examiner
Dr Peter Rigby

Supervisor
Dr Nikolaos Tsantalis

Approved by
Dr Volker Haarslev, Graduate Program Director

30 August 2017
Dr Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Eliminating Code Duplication in Cascading Style Sheets

Davood Mazinanian, Ph.D.

Concordia University, 2017

Cascading Style Sheets (i.e., CSS) is the standard styling language, widely used for defining

the presentation semantics of user interfaces for web, mobile and desktop applications. Despite its

popularity, CSS has not received much attention from academia. Indeed, developing and maintaining

CSS code is rather challenging, due to the inherent language design shortcomings, the interplay of

CSS with other programming languages (e.g., HTML and JavaScript), the lack of empirically-

evaluated coding best-practices, and immature tool support. As a result, the quality of CSS code

bases is poor in many cases.

In this thesis, we focus on one of the major issues found in CSS code bases, i.e., the duplicated

code. In a large, representative dataset of CSS code, we found an average of 68% duplication in

style declarations. To alleviate this, we devise techniques for refactoring CSS code (i.e., grouping

style declarations into new style rules), or migrating CSS code to take advantage of the code ab-

straction features provided by CSS preprocessor languages (i.e., superset languages for CSS that

augment it by adding extra features that facilitate code maintenance). Specifically for the migration

transformations, we attempt to align the resulting code with manually-developed code, by relying

on the knowledge gained by conducting an empirical study on the use of CSS preprocessors, which

revealed the common coding practices of the developers who use CSS preprocessor languages.

To guarantee the behavior preservation of the proposed transformations, we come up with a

list of preconditions that should be met, and also describe a lightweight testing technique. By

applying a large number of transformations on several web sites and web applications, it is shown

that the transformations are indeed presentation-preserving, and can effectively reduce the amount

of duplicated code in CSS.

iii

Acknowledgments

First and above all, I praise God, the Almighty, for all the gifts that I had in my life: health,

strength, a wonderful family, and all the remarkable people that I was inspired by and learned from.

My deepest gratitude goes to Dr. Nikolaos Tsantalis: thanks for accepting me as your student,

believing in me, being always beyond just a supervisor, and helping me to grow with your continuous

support and mentorship. I have learned a great deal from you, both as a person, and as a researcher.

I’m grateful for the support of my PhD committee, Drs. Juergen Rilling, Wahab Hamou-Lhadj,

Peter Rigby, and Foutse Khomh. Especially, I’m grateful to Dr. Rigby for his outstanding course

(Open Source Software and MSR); what I learned there significantly aided me throughout my studies.

I would like to express my gratitude to Dr. Ali Mesbah for his insightful feedback and collab-

oration on my first paper, Dr. Emad Shihab for exceptionally helpful discussions, and Dr. Danny

Dig, for being an inspirational researcher who not only extraordinarily supported me when we col-

laborated on papers, but also took any opportunity for teaching me true life lessons.

Thanks to all the people who made the time at Concordia fantastically joyful. Especially, my

incredible friends, Dr. Laleh Eshkevari, Shahriar Rostami and Matin Mansouri, from whom I learned

a lot, together with whom I laughed a lot – and, of course, we also researched a bit!

Saeed Sarencheh, Sultan Wehaibi, Everton Maldonado, Asif AlWaqfi, Moiz Arif, Rabe Abdalka-

reem, Raphi Stein, Zackary Valenta, Andy Qiao, Giri Krishnan – and several others – thank you very

much for all the friendship and support. Thanks also to the friends outside Concordia, including

but not limited to Ameya Ketkar, for tirelessly working with me on our OOPSLA paper.

Even if I was a native English speaker, I wouldn’t be able to express my feelings about certain

people in words. My parents, Mahmood and Parivash: sorry for not being around when you needed

me, and thanks for letting me live miles apart from you to follow what I liked the most. My lovely

brothers, Danial and Dariush: thanks for being there for our parents instead of me. My brother in

law, Mehran: thanks for being the best brother in law ever! And lastly, my wife, Mehrnoosh: this

was simply impossible without you. I’m truly blessed to have you in my life. Thank you very much

for all the support, kindness, care, understanding, patience, sacrifice, and love.

iv

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Contributions . 3

1.3 Thesis Organization . 4

1.4 Related Publications . 5

2 Background 7

2.1 The History . 7

2.2 The CSS Language . 8

2.3 CSS Syntax . 9

2.4 Value Propagation . 11

2.5 At-rules . 13

2.6 CSS Specifications . 14

2.6.1 CSS Versions . 14

2.6.2 CSS Specification Standardization Stages . 15

2.7 Chapter Summary . 15

3 Related Work 16

3.1 The Analysis and Maintenance of CSS Code . 16

3.1.1 General Studies . 16

3.1.2 Code Quality . 17

3.1.3 Alternative Language Proposals for CSS . 23

3.1.4 Clone Detection in CSS . 24

3.1.5 Migrating CSS to Preprocessor Languages 26

v

3.1.6 Other Related Studies . 26

3.2 Clone Detection in Web Applications . 30

3.3 Empirical Studies on Language Features Usage . 31

3.4 Automated Code Migration . 32

3.4.1 Migration of the Legacy Systems . 32

3.4.2 Migration of Web Systems . 32

3.5 Chapter Summary . 33

4 Refactoring Duplication Within CSS 34

4.1 Introduction . 34

4.2 Duplication in CSS . 35

4.2.1 Duplication Types . 36

4.2.2 Eliminating Duplications . 38

4.3 Method . 39

4.3.1 Abstract Model Generation . 39

4.3.2 Preprocessing . 41

4.3.3 Duplication Detection . 42

4.3.4 Extracting Refactoring Opportunities . 42

4.3.5 Ranking Refactoring Opportunities . 46

4.3.6 Preserving Order Dependencies . 47

4.4 Evaluation . 50

4.4.1 Experiment Design . 50

4.4.2 Results . 52

4.4.3 Comparison with Federman and Cook’s approach [Dav10] 55

4.4.4 Discussion . 58

4.5 Chapter Summary . 60

5 An Empirical Study on the Use of CSS Preprocessors 62

5.1 Introduction . 62

5.2 CSS Preprocessor Features . 64

5.2.1 Variables . 64

5.2.2 Nesting . 64

5.2.3 Mixins . 66

5.2.4 The “Extend” Construct . 66

5.3 Experiment Setup . 67

5.3.1 Subject Systems . 68

vi

5.3.2 Data Collection . 68

5.4 Empirical Study . 72

5.4.1 Variables . 73

5.4.2 Nesting . 75

5.4.3 Mixin Calls . 77

5.4.4 The “Extend” Construct . 81

5.5 Threats to Validity . 83

5.6 Chapter Summary . 83

6 Migrating CSS to Preprocessors by Introducing mixins 85

6.1 Introduction . 85

6.2 Abstraction Mechanisms in CSS Preprocessors . 86

6.3 Automatic Extraction of Mixins . 87

6.3.1 Grouping Declarations for Extraction . 87

6.3.2 Detecting Differences in Style Values . 89

6.3.3 Introducing a Mixin in the Style Sheet . 94

6.3.4 Preserving Presentation . 98

6.4 Evaluation . 101

6.4.1 Experiment Design . 101

6.4.2 Results . 104

6.4.3 Limitations . 108

6.5 Comparison with Charpentier et al.’s Approach [CFR16] 109

6.5.1 Summary of the Method . 109

6.5.2 Comparison . 109

6.6 Threats to Validity . 114

6.7 Chapter Summary . 115

7 CSSDev: A tool suite for the analysis and refactoring of CSS 116

7.1 Introduction . 116

7.2 Tool Design . 118

7.2.1 CSS Model Generator Module . 118

7.2.2 Duplication Module . 119

7.2.3 Crawler Module . 119

7.2.4 Dependency Module . 119

7.2.5 Preprocessor Module . 119

7.2.6 Refactoring Module . 119

vii

7.3 Tool Features . 120

7.3.1 Clone Detection . 120

7.3.2 Extracting Order Dependencies . 121

7.3.3 Clone Refactoring . 124

7.4 Chapter Summary . 126

8 Conclusions and Future Work 127

8.1 Summary of the Findings . 127

8.2 Future Work . 129

8.2.1 Current Limitations . 129

8.2.2 Other Possible Opportunities for Future Research 130

Bibliography 132

viii

List of Figures

1 Basic rule syntax in CSS . 9

2 Class selectors. 10

3 Use of @media at-rules in CSS . 13

4 Type I duplication in Gmail’s CSS . 37

5 Declaration duplication in Gmail’s CSS . 38

6 Shorthand and individual declarations . 38

7 Grouping style declarations to remove duplication 39

8 A hierarchical object model for CSS . 40

9 Clones extracted from a style sheet . 42

10 Dataset for the style sheet of Figure 9 . 44

11 FP-Tree for the dataset of Figure 10 . 45

12 Output of the FP-Growth algorithm for the style sheet of Figure 9 46

13 Order dependencies before and after refactoring . 48

14 Breaking presentation semantics with improper refactoring 49

15 Characteristics of the analyzed CSS files . 51

16 Ratio of the duplicated declarations . 53

17 Statistics for the detected clones . 53

18 Initial refactoring opportunities vs. applied presentation-preserving refactorings . . . 54

19 Order dependencies and size reduction . 54

20 Variables in Less . 65

21 Nesting in Less . 65

22 Mixin in Less . 66

23 Extending style rules in Less . 67

24 Characteristics of the analyzed preprocessor files . 70

25 The workflow applied for the collection and analysis of the experimental data 70

26 Variable types distribution (numbers represent percentages) 76

27 Nesting depth . 77

ix

28 Number of mixin calls . 78

29 Number of property declarations inside mixins . 79

30 Number of mixin parameters . 79

31 Parameter reuse across vendor-specific properties . 80

32 Percentage of websites using extend or parameterless mixins 82

33 Mixin example . 88

34 Alternative ways for extracting a mixin . 90

35 Mixin for shorthand/individual properties . 94

36 Merging mixin parameters . 97

37 Intra-style rule order dependencies . 99

38 Characteristics of the analyzed CSS files . 104

39 Example of interpolated property name . 107

40 Example of !important use in arguments . 107

41 Comparison of the time taken for detecting migration opportunities 114

42 Duplication view . 120

43 Crawler settings . 122

44 Overriding dependencies View . 123

45 Affected DOM elements view . 124

46 Refactoring options wizard . 125

47 Refactoring preview . 126

x

List of Tables

1 Different representations for the rebeccapurple color. 37

2 Selected subjects . 51

3 Statistical model’s estimated parameters . 56

4 List of the websites used in the study . 69

5 Overview of the collected data . 71

6 Scope of variables . 74

7 Categorization of value types . 75

8 Use of nesting . 76

9 Frequent itemsets of style properties . 89

10 Individual Style Properties (ISPs) . 92

11 List of the supported style properties . 93

12 Overview of the collected data . 103

13 Threshold-based filtering of opportunities . 108

xi

Chapter 1

Introduction

Cascading Style Sheets (henceforth, CSS) is the lingua franca for styling: it is extensively used for

defining the presentation semantics (e.g., layout and typography) of user interfaces of web, mobile

and desktop applications. CSS was originally designed for defining how structured documents devel-

oped using a markup programming language (e.g., HTML or SVG) should be presented. It is widely

used in today’s web development – over 90% of web developers use CSS [Moz10] in 90% of the web

sites [Web16]. CSS is also increasingly used in mobile app development through frameworks (e.g.,

Apache Cordova, Ionic) that generate hybrid apps, i.e., mobile apps that look like native applications

on mobile devices, yet they are actually developed using client-side web languages (HTML, CSS

and JavaScript). There are also similar frameworks for developing desktop applications (e.g., Elec-

tron) which have resulted into a plethora of successful cross-platform applications (e.g., R-Studio,

Atom test editor, Visual Studio Code). Progressive web apps, in which CSS plays a crucial role,

are also gaining momentum: web applications that are installable on mobile devices, are connection-

independent (i.e., they can run offline or on low-bandwidth connections), and can access to resources

of mobile devices which were formerly allowed only in native apps (e.g., sending push notifications).

As a result, CSS has become an important language with applications in many different domains.

This has made CSS one of the most-used programming languages in the industry. In 2014, GitHub

repositories containing CSS code outnumbered the ones containing PHP, Ruby and C++ [Car14].

Indeed, CSS now plays a vital role in businesses by directly affecting the perceived user experience

of their online presence. At Dropbox, for example, there existed around 1200 CSS files (and other

files that were used to generate CSS), exceeding 150K line of code. In one incident, a change in some

of these files unknowingly broke the presentation of a revenue-generating page that the developers

were not aware it even existed, and lack of adequate tools resulted to concealing the fact that the

critical page depended on the modified CSS file. This could even damage Dropbox’s professional

1

relationship with the business partner that relied on the broken page [Ede14].

CSS can frequently undergo maintenance activities. Boryana and Zaytsev found that in the

course of January to April 2015, there were 2,282,788 commits pushed to GitHub where a CSS

code was modified. While CSS has a relatively simple syntax [Con13], some of its complex features

(e.g., inheritance, cascading, specificity, initial values [Lie05, Wor17]), its interplay with HTML and

JavaScript, and the inherent inadequacy of code reuse mechanisms, make both the development

and maintenance of CSS code cumbersome tasks [MM12] for developers. In addition, despite the

popularity, CSS has received a very limited attention from academia, especially from the software

engineering research community. This explains why CSS development is far from a rigorous and

disciplined process, and lacks established design principles and effective tool support [GLQ12].

1.1 Problem Statement

Mature programming languages often provide a comprehensive list of language constructs which

allow code reuse, e.g., functions and variables. There exist complementary mechanisms for code

reuse in different programming paradigms. Object-oriented programming languages, for instance,

offer inheritance, object composition, mixins, and traits.

In CSS, however, abstraction constructs are inadequate, immature, or even nonexistent. For

example, there is no notion of functions in CSS. At the time of writing this thesis, the CSS specifi-

cations for variables (called custom properties in CSS), are in the candidate recommendation stage,

meaning that variables are still considered as an experimental feature [Con15], and have not been

fully-supported by some web browsers yet.

Consequently, duplicated code exists to a large extent in CSS. Nevertheless, no studies have

looked into the existence of duplicated code in CSS, and how it can be refactored.

Thesis Statement 1: Code duplication is prevalent in CSS, and refactoring

can be a viable solution for eliminating duplication in CSS.

For avoiding duplicated code in CSS, developers sometimes tend to use a higher-level program-

ming language that supports more mature abstraction mechanisms. CSS preprocessors have emerged

as the de-facto solution to this aim: superset languages for CSS that augment it by adding constructs

that facilitate code reuse (e.g., function-like constructs, which are called mixins in the preprocessors

jargon). The code written in a CSS preprocessor is compiled (more precisely, transpiled) to pure

CSS. The use of CSS preprocessors is a trend in the industry [Coy12, Uni15], and leading web

companies have already adopted them. Some examples of popular preprocessors are Less, Sass,

2

Google Closure Style Sheets, and Stylus. However, it is unknown to us how the features of CSS pre-

processors that do not exist in CSS are utilized by developers. In other words, we don’t know what

developers want to achieve when using CSS preprocessors that they can’t easily fulfill in “vanilla”

CSS (e.g. eliminating duplicated code using function-like constructs).

Thesis Statement 2: CSS developers use CSS preprocessors to a large extent

to avoid duplicated code (among the other goals).

Despite the gradual adoption of preprocessors in the web development community, there is still

a large portion of front-end developers and web designers using solely “vanilla” CSS. An online

poll with nearly 13,000 responses from web developers [Coy12] revealed that 46% of them develop

only in “vanilla” CSS, mostly because they are not aware of preprocessors. Therefore, there is a

large community of web developers that could benefit from tools that help them in automatically

migrating their “vanilla” CSS code to a preprocessor of their preference. Specifically, function-like

constructs in CSS preprocessors can be beneficial in eliminating duplicated code.

Thesis Statement 3: Migration of CSS code to take advantage of function-

like constructs in CSS preprocessors can be automated.

In the next section, we briefly describe what we are going to do in this thesis, in order to support

the mentioned thesis statements.

1.2 Thesis Contributions

In this thesis, we make the following contributions:

• We study the problem of duplicated code in CSS and report to what extent it exists in the

CSS code base of several web sites / web applications (Chapter 4).

• We define three types of duplication in CSS (that can be eliminated within CSS, i.e., by

refactoring using a built-in CSS construct), and propose an efficient technique for detecting

the instances of these three types of duplicated code (Chapter 4).

• We introduce an approach for refactoring the instances of the mentioned three types of du-

plicated code in CSS. We discuss how we can be sure that the proposed transformations are

presentation-preserving (i.e., the behavior of the CSS code remains unchanged after refactor-

ing), by providing a list of safety preconditions for the refactoring (Chapter 4).

3

• We empirically assess how developers take advantage of preprocessor languages (Chapter 5),

in order to:

– Gain an understanding of developers’ practices that can help when developing automatic

techniques for migrating CSS to preprocessor languages, so that the resulting code will

look closer to what developers manually write,

– Aid developers to take full advantage of CSS preprocessors, by spotting the features that

are underused by developers, and

– Reveal opportunities for CSS preprocessor language designers to revisit the design of these

languages, e.g., by adding support for new features (which are currently implemented by

developers in an ad-hoc manner), or making existing features easier to use, or eliminating

features that are not adopted by developers.

• We propose a technique for identifying the instances of duplicated code in CSS that can be

refactored to take advantage of the function-like constructs (the so-called mixins) in CSS

preprocessor languages (i.e., migrating CSS code to preprocessors). These instances include

the ones that can be refactored within CSS, however, there are instances that can be eliminated

only by using a CSS preprocessor, which will be explained. We then discuss different ways for

refactoring these instances, and also introduce techniques for testing the safety of the applied

transformations (Chapter 6).

• We provide details about the implementation of the proposed techniques for refactoring and

migration of CSS in a comprehensive tool suite and an Eclipse plug-in (Chapter 7).

1.3 Thesis Organization

To better understand the rest of this thesis, in Chapter 2, we will provide background information

about the history and syntax of CSS, how it interacts with HTML and JavaScript, how web

browsers read and understand CSS code and render web pages, and how the core features of CSS

(e.g., cascading, specificity, inheritance) work. In Chapter 3, a summary of related works will be

given. The works related to CSS itself are scarce in the literature. However, as we are dealing with

clone refactoring for CSS, we will briefly cover the related works from the clone community. Also,

we will look at empirical studies that aimed at understanding how developers use language features,

i.e., the ones that have similar goal to our empirical study on the use of CSS preprocessors but in

other programming languages. Finally, we will review a few works that devised similar techniques

for migrating code written in various traditional programming languages.

4

Chapters 4, 5, 6 and 7 are dedicated to the main contributions of this thesis, which were mentioned

earlier. The conclusions and some promising avenues for future work are discussed in Chapter 8.

1.4 Related Publications

Earlier versions of the work done in this thesis have been published in the following papers:

1. Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah, “Discovering Refactoring Oppor-

tunities in Cascading Style Sheets,” in the Proceedings of the 22nd ACM SIGSOFT Interna-

tional Symposium on the Foundations of Software Engineering (FSE), pp. 496-506, 2014.

2. Davood Mazinanian, and Nikolaos Tsantalis, “An empirical study on the use of CSS prepro-

cessors,” in the Proceedings of the 23rd IEEE International Conference on Software Analysis,

Evolution, and Reengineering (SANER), 2016. [Best paper candidate award]

3. Davood Mazinanian, and Nikolaos Tsantalis, “Migrating Cascading Style Sheets to Pre-

processors by Introducing Mixins,” in the Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2016.

4. Davood Mazinanian, “Refactoring and Migration of Cascading Style Sheets (Towards opti-

mization and improved maintainability),” The 24th ACM SIGSOFT International Symposium

on the Foundations of Software Engineering (FSE), Doctoral Symposium Track, 2016.

5. Davood Mazinanian, and Nikolaos Tsantalis, “CSSDev: Refactoring duplication in Cas-

cading Style Sheets,” The 39th International Conference on Software Engineering (ICSE),

Demonstrations Track, 2017.

The following papers were published in parallel to the abovementioned publications. While they

are not directly related to this thesis, at the same time, they are not completely irrelevant, as

their topics include clone refactoring (although for Java systems), improving the maintainability

of programs written in another web language (i.e., JavaScript), and empirical studies on how

developers use a newly-introduced language feature (i.e., lambda expressions in Java 8).

6. Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, Danny Dig, “Understanding the

use of lambda expressions in Java,” The 2017 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’17).

7. Laleh Eshkevari, Davood Mazinanian, Shahriar Rostami, and Nikolaos Tsantalis, “JS-

Deodorant: Class-awareness for JavaScript programs,” The 39th International Conference on

Software Engineering (ICSE), Demonstrations Track, 2017.

5

8. Nikolaos Tsantalis, Davood Mazinanian, and Shahriar Rostami, “Clone Refactoring with

Lambda Expressions,” The 39th International Conference on Software Engineering (ICSE),

2017. [Distinguished paper award]

9. Shahriar Rostami, Laleh Eshkevari, Davood Mazinanian, and Nikolaos Tsantalis, “Detect-

ing Function Constructors in JavaScript,” in the Proceedings of the 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME) - Early Research Achievements

Track, 2016

10. Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta, “JDeodorant:

Clone Refactoring,” 38th International Conference on Software Engineering (ICSE), Formal

Demonstrations Track, Austin, Texas, USA, May 14-22, 2016.

11. Nikolaos Tsantalis, Davood Mazinanian, and Giri P. Krishnan, “Assessing the Refactorabil-

ity of Software Clones," IEEE Transactions on Software Engineering, vol.41, no.11, pp.1055-

1090, Nov. 1 2015

6

Chapter 2

Background

In this section, we briefly talk about the history of CSS language, its syntax and semantics, and

how it interacts with HTML and JavaScript. Knowing the history of CSS will help to further

understand the importance of CSS and its role in shaping the current state of practice in web (and,

as mentioned, mobile and desktop) application development.

As it will be discussed, the syntax of CSS is simple, but its semantics are more complicated

to capture. Understanding the semantics of CSS is crucial for defining safety preconditions which

guarantee that the transformations proposed in this thesis are presentation-preserving.

2.1 The History

As a crucial part of the World Wide Web, the Hyper Text Markup Language (i.e., HTML) was

proposed by Tim Berners-Lee, which was initially a simple structured document format: the markup

tags defined the role of the text in the document, in the form of HTML elements (e.g., paragraphs

were enclosed in the <p></p> tags, and there were other tags for headings, hyperlinks, etc.). In

HTML, however, there was no way to indicate how each element should be presented in the web

browser. The presentation semantics of each element (e.g., with what font a heading or a piece of

normal text should be displayed) was therefore determined solely by the web browser.

To address this deficiency, presentational tags and attributes were introduced in HTML. For

example, the tag was used for making a piece of text (enclosed in the tag) bold-faced, or

the <blink></blink> tag for creating blinking texts.

However, the decision of having the means for defining presentation semantics inside HTML code

hindered content re-usability. Web browsers are not the only media on which an HTML document

could be displayed. One might want to print the document, or display it on a wearable device, or

– in case of a visually-impaired person – use a text-to-speech device to read the document. In all

7

these situations, the same content should be logically re-used, but with different presentation on

each presentational medium.

This issue led the people involved in the standardization of web technologies to agree that there

is a need for adapting style sheets for web. In the traditional typography and printing industry,

style sheets were used as guidelines for consistent presentation of documents. Similarly, style sheets

on web would allow the creators and authors of web pages to define a consistent presentation for

multiple presentation devises (i.e., content re-usability). More importantly, one set of style sheets

could be re-used for multiple web pages, enabling style re-usability.

Among the several proposals for a style sheet standard for web, “Cascading HTML Style Sheets”

by Håkon Wium Lie [Lie94] was gained a momentum, which later became the Cascading Style Sheets

(CSS) which is now the lingua franca for styling. A detailed discussion of the history of CSS (and

other proposals for style sheets in web) can be found in Lie’s doctoral thesis [Lie05]. In the next

section, we briefly explain the syntax and semantics of CSS.

2.2 The CSS Language

CSS is a style sheet language and is used to define the presentation semantics of structured docu-

ments (predominantly HTML and SVG). In this thesis, we call the structured documents on which

CSS code is applied target documents. Henceforth, the terms CSS and style sheets might be used

interchangeably in this thesis (while CSS is a specific language for creating style sheets, the extensive

prevalence of CSS makes this decision natural).

The way CSS works is quite simple: CSS code is attached to the target document(s), and styles

are defined for one or a group of elements of the target documents. There are three ways to attach

CSS code to HTML files:

Inline CSS code is defined inside the style attributes for each HTML tag that needs to be styled

(e.g., <p style="...CSS style declarations...">...styled paragraph...</p>).

Internal CSS code is defined inside the <style> tags in the HTML files. The <style> tags can

appear almost everywhere in the HTML file, but developers usually put them close to the

beginning of the file, inside the <head> tag.

External CSS code is defined in external files, and the files are attached to HTML pages using

the CSS files’ URLs declared in the <link /> tags in the HTML files (the <link /> tags are

in turn defined in the <head> tag of the page).

For example, <link href="theme.css" rel="stylesheet" /> attaches the CSS file theme.css

to the enclosing HTML file.

8

CSS Selectors

CSS offers a comprehensive list of selectors, which we briefly discuss in this section. Understanding

how selectors work is important to reveal the intricacies associated with detecting the dependencies

between CSS style rules (e.g., when two style rules have – possibly lexically-different – selectors that

select the same elements of the target documents, and assign values to the same style properties

for the selected elements, there is a dependency between these two style rules). As we will see,

dependencies between style rules can affect the refactorings done on the CSS code.

The universal selector (i.e., *): Selects all the elements of the target document). It is sometimes

used with combinators (which will be discussed shortly), so that you can, for instance, select all the

elements which are the children of a specific element.

Type selectors: A type selector selects elements of a specific tag. For example, as it is also

mentioned earlier, selector p selects all the paragraph tags (<p>).

Class selectors: A group of declarations could be defined in a style rule for which the selector is a

class selector. It is then possible to apply the same class to many different elements thus avoiding

the duplication of declarations. Figure 2 shows an example of a class selector.

HTML CSS

<div class="class1">

 content

</div>

 content

.class1 {

 color: red;

 font: 10pt tahoma;

}

Figure 2: Class selectors.

ID selectors: It is possible to set an ID for elements in the target documents, using the ID attribute

of each element. For example, the HTML tag <div id="toolbar"/> corresponds to a div element

for which the ID is equal to "toolbar". The #toolbar CSS selector, which is called an ID selector,

can be used to select the element(s) with this ID.

Attribute selectors: We can also add attribute conditions to a selector. If selector S selects a

set of elements S, a selector of the format S[attr operator value] selects the subset elements

of S for which, in the target document, attribute attr is defined and set to a substring of value.

The operator defines the condition for the substring [Wor17]. For example, a[target] selects all

<a> elements that have the target attribute set to any value, and img[src $= ".png"] selects all

 elements that have the “.png” suffix in their src attribute value.

Pseudo Classes and Pseudo Elements: Pseudo classes can be used to filter the elements selected

by a given selector. For example, :not(div) selects all elements except for div elements. There are

10

also structural pseudo classes, such as tr:nth-child(2n+1) which selects every odd row (denoted

by <tr> tags in HTML) in every table (the <table> tag) of the target document.

Pseudo-elements create abstractions about elements in the target document, beyond those spec-

ified by the HTML standards [Wor17]. The p::first-line selector, for example, selects only the

first line of the text inside every <p> element.

Combinators: We can combine various selectors to achieve more specific selectors, using different

combinators. Assuming we have two selectors A and B, we can combine them as follows:

A B (descendant combinator) selects all elements selected by B, which are descendants of the

elements selected by A.

A > B (child combinator) selects all elements selected by B, which are direct children of the

elements selected by A.

A ∼ B (general sibling combinator) selects all elements selected by B, which have an element

selected by A as a sibling.

A + B (adjacent sibling combinator) selects all elements selected by B, which are directly pre-

ceded by a sibling element selected by A.

Grouping selectors (also known as selector lists or multiple selectors): Finally, there is

the possibility of grouping different selectors in CSS. For instance, if we want to declare the same

style declarations for all h1 and h2 HTML elements, we could use the h1, h2 CSS selector. Note

that, this allows re-using style declarations and thus avoids code duplication. In fact, the refactoring

proposed in Chapter 4 uses grouping selectors to eliminate duplicated code in CSS.

2.4 Value Propagation

After the elements of target documents are selected using CSS selectors, the web browser tries to

assign values to each style property of the selected elements. Knowing the way web browsers assign

values to style properties is important, as it helps in understanding the later discussions which prove

that the transformations introduced in this thesis are presentation-preserving.

For each target document being rendered in a web browser, style sheets come from the following

sources (i.e., the style origins):

1. Each web browser has some embedded style sheets, called user-agent style sheets, that define

the default style values for some CSS properties when there is no attached style sheet to the

target document being rendered, or for the style properties for which the attached style sheets

do not define values.

11

2. Web browsers also allow end users to make custom style sheets that override the user-agent

style sheets (i.e., the user style sheets).

3. The CSS code that is attached to the target documents (also known as author style sheets).

The author style sheets can be external, embedded or inline, as mentioned before.

For each selected element, there could be style declarations with the same style properties with

values assigned to them. These conflicting style declarations can come from each of the mentioned

origins. The web browser prioritizes the style declarations coming from each of these origins in the

order given here (i.e., the so-called cascading rules). As a result, if an author style sheet defines

value for the font property, it will override the possible definitions of the same property in the

user and user-agent style sheets. For conflicting style declarations defined in author style sheets,

web browsers give priority to the style rules declared in the inline style sheets, then embedded style

sheets, and then external style sheets.

What if there are conflicting style declarations within the same external CSS file? In such cases,

the selectors specificities of the style rules enclosing the conflicting style declarations determine the

“winning” declaration, i.e., the more specific selector has priority over the less specific ones [Wor17].

For example, selector .menu a selects all the hyperlinks (denoted by <a> tags in HTML) which are

the children of the elements with class .menu (e.g., <div class="menu">...</div>). This selector

is more specific than selector a, which selects all hyperlinks regardless of their location in the target

documents. As a result, any declaration in .menu a will override the declarations with the same

property in a.

When for two conflicting style declarations the style rules’ origins and selectors specificities are

the same, the position of the style rules in the CSS file determines the winning declaration (i.e., the

last declaration overrides the previous ones).

It is also possible to add the !important annotation as the last style value in a style declaration.

Using !important will invert the specificity calculations, in order to make a balance between the

ability of users and developers in overriding style declarations. For example, a user of a web page

can create a style sheet which overrides the author style sheet, i.e., inverting the priority of user and

author style sheets. Interestingly, unjustified use of the !important keyword is known to be a code

smell in CSS [Gha14].

For some specific style properties (e.g., color, font), CSS supports inheritance in values by

taking advantage of the hierarchical structure of target documents. For example, if we apply color:

blue to the <body> element, all child elements of the <body> tag will be automatically styled with

the blue color. For other properties where value inheritance is not applied automatically, one might

explicitly enforce it by replacing the style values with inherit (e.g., margin: inherit).

12

Finally, if none of the mentioned methods does not yield a value for a specific style property, the

web browser will assign the initial value to the style property, as defined in CSS specifications.

2.5 At-rules

There are specific statements in CSS called at-rules, which start with @ (Unicode U+0040). At-rules

can appear in embedded or external style sheets, just like normal style rules. Some examples of

at-rule statements in CSS include @font (which allows to specify the characteristics of external

fonts), @import (which allows to import styles from one CSS file into the other), @keyframes (for

defining animations), and the @media at-rule, which allows to define style rules for specific media

(e.g., printers, mobile and wearable screens).

The @media at-rule plays a crucial role when creating responsive user interfaces, i.e., user in-

terfaces that can be adapted to different presentation media, even on-the-fly (consider a web page

being displayed on a mobile phone, and the user rotates her screen to display the website in the

landscape mode. The web browser can switch between style rules based on the conditions defined

in the @media at-rules). An example of a @media at-rule is shown in Figure 3.

@media print {
 body {
 font-size: 12pt
 }

 input {
 display: none
 }

}

@media screen {
 body {
 font-size: 13px
 }

}

@media screen, print {
 body {
 line-height: 1.3
 }

}

/* Retina iPad in Portrait and Landscape modes */
@media only screen
 and (min-device-width: 768px)
 and (max-device-width: 1024px)
 and (-webkit-min-device-pixel-ratio: 2) {
 body {
 line-height: 1.4
 }

Figure 3: Use of @media at-rules in CSS

In Figure 3, the first @media at-rule defines style declarations for the document when it is printed

out. In this case, the font for the entire document is set at 12 points, and all the <input> tags are

13

set not to be displayed. Here, the developer did not want to show elements such as text boxes in

the printed version of the document. The next @media at-rule defines the font of the text to be 13

pixels for the entire document on all screens. The line height of the text (i.e., the spacing between

the lines) is set to be 1.3 both for screens and printers. However, the last @media overrides the value

for the line height for specific devises with higher pixel densities (e.g., Retina iPads) to be 1.4. If

the developer omitted the last @media at-rule, the text would be less readable, since the lines would

be displayed closer together.

It is worth mentioning that, in all the proposed techniques in this thesis, style declarations

defined in the @media at-rules are considered and duplicated style declarations are extracted having

the @media at-rules in mind, as we will see in the next sections.

2.6 CSS Specifications

For anyone who deals with CSS, especially for the researchers working on developing analysis tools

for it, it is crucial to know about the way CSS is standardized. The standards can change rapidly

and new features (e.g., new style properties) can be introduced regularly. Consequently, a complete

CSS analysis tool should be able to keep up with these quick changes to the specifications.

2.6.1 CSS Versions

The standardization of CSS is led by the CSS working group (i.e., the CSSWG) in the World Wide

Web Consortium (i.e., W3C). The CSSWG’s members are from browser vendors, several leading

companies in the software industry, and independent CSS experts.

The versions of CSS specifications are called levels. At first, all the specifications of CSS were

a monolithic unit. Since the monolithic specifications were difficult to maintain and develop, after

CSS specifications level 2.1, the members of the CSSWG decided to divide the specifications into

several modules (e.g., the Backgrounds and Borders or the Text modules). Each module follows

its own development path; consequently, the term CSS3 is rather loose, since there is no single,

monolithic specification for CSS3. At the time of writing this thesis, there are modules in CSS that

are at the final stage of development in Level 3 (e.g., the Backgrounds and Borders Module Level

3), while some other are at the earlier stages (e.g., the Animations Module Level 3). There are

even modules at the fourth level in their early development stages, e.g., the CSS Selector Modules

Level 4.

14

2.6.2 CSS Specification Standardization Stages

The members of the CSSWG first create an editor’s draft of the specifications when a change

is proposed. When the specifications are ready from the internal members’ point of view, it is

published to the public as a working draft. The external bodies can then discuss it and comment on

the possible difficulties of its implementation, and several versions of the working draft are created.

The working draft specifications can be even rejected. Otherwise, the specifications reach the First

Public Working Draft. The CSSWG will continue working on this version, and finally a deadline

is set so that all the comments are collected from the involved parties, i.e., the Last Call Working

Draft is created.

When specifications are thoroughly tested by the CSSWG and browser vendors, the specifications

reach the Candidate Recommendation stage. To continue to the next stage (i.e., the Proposed

Recommendations), the CSSWG demonstrates two correct implementations of the specifications.

Then, a higher-level committee in the W3C organization (namely, the W3C Advisory Committee)

decides whether the specifications can be elevated to the final stage of Recommendation.

Note that, the Recommendation stage does not mean that the specifications are stable. Web

browsers start implementing the specifications at the Candidate Recommendation stage, therefore,

CSS analysis tools should start supporting the new features from that point. The Recommendation

stage in fact means that the specifications are dead, because there will be still errors in the specifica-

tions that are not going to be fixed in that level of the specifications. Instead, the CSSWG prefers

to start the new level of the specifications (e.g., from level 3 to level 4), and this usually happens

even before the specifications are at the Recommendation stage.

2.7 Chapter Summary

In this chapter, we provided a brief history of CSS, explained the syntax of its core, (partially)

talked about its semantics, and discussed how the standardization process of CSS works. We will

frequently refer to this chapter in Chapters 4, 5, 6, and 7, since the provided information will be

extensively required.

In the next chapter, we look at the previous studies related to this thesis.

15

Chapter 3

Related Work

There has not been much work done on CSS (and, in general, style sheet languages) in the academic

literature, and this is despite the widespread adoption of CSS in practice. It is safe to conclude that

“style sheet languages are terribly underresearched”. Surprisingly, this is stated in 1999 by Philip M.

Marden and Ethan V. Munson [JM99], and this statement is still perfectly valid after almost two

decades.

In this chapter, we have categorized the related works into four sections. First, we look at the

few works done on the analysis and maintenance of CSS code. Then, since the goal of this thesis

is to study the problem of code duplication in CSS, we briefly summarize the works done in the

“software clones” community. Among the plethora of studies in this domain, we only focus on the

works done specifically for web languages, since they are more related to the topic of this thesis.

Next, as we have conducted an empirical study on the use of CSS preprocessors, we discuss

some of the studies that have similar goals to ours, yet in other domains (e.g., other program-

ming languages and paradigms). Finally, considering that we have proposed an automatic and

presentation-preserving approach for migrating CSS code to preprocessors, we will list some of the

papers related to the automatic migration of source code.

3.1 The Analysis and Maintenance of CSS Code

3.1.1 General Studies

There are few works in the literature that investigate style sheet languages from different points

of view, like their history, features, and shortcomings. While they are not directly related to the

topic of this thesis, studying them can help in understanding the challenges that understanding,

analyzing, and refactoring CSS code impose.

16

Of the first publications that looked into style sheet languages (including CSS) was a short

article authored by Marden and Munson in the Computer Journal in 1999 [JM99]. The authors

discuss the “accessibility” as the great vision of web, which can only be achieved by allowing content

and presentation vary independently, so that the end users “have the final say on the presentation”.

This separation of concerns is allowed in the presence of mature style sheet languages. The authors

discuss some of the flaws in the two main standard style sheet languages at the time, XSL1 (the

eXtensible Stylesheet Language) and CSS, and show how this great vision is “blinded” due to these

flaws. These flaws, however, were not studied in academia, leading the authors to call style sheet

languages as “unexplored terrain”.

As mentioned, the language that we know today as CSS is based on the proposal by Håkon

Wium Lie. Lie summarize the history of CSS, how it works, and a lot of the subtleties associated

with its development in his PhD thesis [Lie05]. In addition, he lists other style sheet proposals

before CSS, deeply analyzes their strengthens and weaknesses, and explains why they did not gain

the momentum as CSS did. Today’s CSS is, however, much more complex than what Lie describes

in his PhD thesis.

Quint and Vatton [QV07] outline the state of the art (of course, in 2007) of techniques and tools

for editing style sheets. They pinpoint challenges CSS developers face and conclude that there is

a crucial need for robust CSS debuggers and rule analyzers. They also propose ways for aiding

CSS developers in editing style sheets. The proposed methods are implemented in Amaya, a web

authoring tool developed by the same authors [QV04]. The authors claim that using Amaya can

solve many of the mentioned problems in editing style sheets. Today, all the major web browsers

include built-in debugging tools (e.g., FireFox’s FireBug) that share more or less the same features

as Amaya.

3.1.2 Code Quality

The quality of CSS code has been of interest in a number of studies in the literature, which will be

discussed in this section.

Quality Metrics

Keller and Nussbaumer [KN09, KN10] come up with an “abstractness factor” for CSS: a more

abstract CSS code is the one that can be applied on target documents with different content, and

changes to the content will not cause faulty presentation. For example, the authors argue that

1XSL is a family of standards by the World Wide Web consortium (i.e., W3C), that is recommended for trans-
forming and presenting XML documents. The subset of XSL standard that is used for defining formatting (the XSL
Formatting Objects or XSL-FO) is, however, rarely used in practice, and the development of its standard has stopped.
Note that, XSL-FO was mainly used for formatting XML documents for printed media, which can now be done using
CSS’s paged-media features.

17

type selectors (e.g., p for paragraphs) are more abstract (and less specific) than class selectors

(e.g., .c1). Consequently, a higher proportion of style rules with type selectors in a style sheet

means a more abstract style sheet. Through conducting an empirical study, the authors compute

and compare the abstractness factor of human-written versus machine-generated CSS code, and

conclude that humans beat machines in authoring CSS code in making more abstract style sheets.

The authors, however, use the CSS code generated by WYSIWYG web editors for the comparison.

These tools generate CSS code when the developer drag-and-drops user interface elements into

HTML documents. Notwithstanding, generating CSS code by using CSS preprocessors is a trend

in the industry [MT16a], and there is no study about the quality of the generated code from CSS

preprocessors. Note that, refactoring duplicated declarations in CSS does not have any effect on

the abstractness factor of CSS, as it does not have any effect on CSS selectors.

Adewumi et al. [AMIO12] proposed six complexity metrics for CSS, inspired from traditional

code complexity metrics. The metrics include:

• Sum of the lengths of the style rules in a CSS file. Length of a style rule is measured by

counting the number of style declarations declared in it. This metric is a proxy for size in CSS

code, and generally, size has a high positive correlation with complexity.

• The number of style rules in a CSS file, as another size metric,

• The entropy metric. For traditional code, previous works used entropy to measure variety

in size, structure, connections between the elements, or other code attributes. Similarly, the

authors used entropy to measure the variety of style rule types in a CSS file, as a proxy for

complexity. Style rules with type selectors and style rules with id selectors are two different

style rule types to name.

• The number of extended style blocks. Extended rule blocks have selectors that add additional

conditions to the selectors of existing style rules, e.g., style rule with selector a:hover is an

extended style rule in Adewumi et al.’s definition,

• The average number of style declarations defined per style rule, which is another size metric,

• The number of cohesive style rules , i.e., the ones that possess only one style declaration.

There are several limitations with this work that make using the proposed metrics impractical

for any study that deals with CSS code quality. First, what these metrics actually measure should

be intuitively understood by the reader, as they are not given by the authors. For example, we don’t

know the reason why the authors used selector types when measuring variety, or why extended style

rules are more complex. Second, some of the defined metrics are not necessarily useful. For example,

18

the proposed size metrics potentially highly correlate, so one might use a general size metric (e.g.,

the number of style rules in the CSS file) instead of using the proposed metrics. Third, the definition

of some of the metrics is not necessarily complete, for example, the cohesiveness metric: a style rule

that only contains style declarations for defining values for text properties (e.g., text-align, font,

letter-spacing) can still be considered as a very cohesive style rule, while the style rule can have

more than one style declaration. Finally, and the most importantly, while the authors provide a

very shallow discussion for validating these metrics, there is no empirical validation conducted to

support the claim that the proposed metrics actually measure CSS code quality. Therefore, using

these metrics is by no means reliable, and a similar study (yet in a much more complete manner),

is certainly required.

Bad Practices and Code Smells

There are tools that can detect bad practices in CSS, such as CSS Lint and W3C Validator. At

the time of writing this thesis, CSS Lint incorporated 32 rules for identifying problems in CSS code,

organized in six categories. These categories include possible errors (practices that are known to be

error-prone, e.g., setting size attributes for an HTML element, which can be tricky due to the special

box-model of CSS), compatibility (setting style properties that may behave differently across different

web browsers), performance (practices that are known to be bad performance-wise), maintainability

(using CSS features, like !important, which make understanding CSS code difficult), accessibility

(obvious style definitions that will lead to reduced accessibility for users, e.g., outline: none

that removes the border of text boxes in target documents, making them difficult to be recognized),

and OOCSS (not following OOCSS guidelines2). W3C Validator service is provided by the World

Wide Web Consortium (i.e., W3C, of which the CSS Working Group is responsible for standardizing

CSS), and tests CSS code against CSS specifications, identifies a number of potential usability

problems (e.g., when an element does not have a background color, but the text on it has color,

it warns the developers that the rendered text might be illegible), and also checks for syntactical

problems (e.g., missing curly brackets).

In her Master’s thesis, Gharachorlu [Gha14] proposed eight code smells in CSS, complementing

what CSS Lint and W3C Validator can identify. These code smells are classified into three

categories: rule-based (including non-external and overly long style rules), selector-based (including

selectors having too much cascading, with high specificity, containing erroneous adjoining pattern

where developers incorrectly drop a space character between class and id selectors in a combinator,

and overly general selectors), and property-based (undoing styles, where style values are reset to zero

or none, and hard-coded values). The detection rules for detecting the proposed code smells are

2OOCSS is an abbreviation for Object-Oriented CSS. As its name suggests, OOCSS is inspired from Object-
Oriented Programming and promotes CSS code that is more reusable and maintainable [Sul13]

19

implemented in a tool called CSSNose, and the author investigated the prevalence of the proposed

code smells, in addition to the smells detected by CSS Lint and W3C Validator (total of 26

smell types) in 500 websites. She observed that 499 out of the 500 websites contained at least one

instance of CSS code smell, and CSS properties with hard-coded values and undoing styles are the

most prevalent code smells, found in 96% of the websites. Moreover, the author fit a regression

model to predict the existence of code smells in CSS code.

While the mentioned tools provide a starting point toward having a complete repertoire of CSS

bad practices, it turns out that the definitions of some of the code smells that they detect should

be revisited. As an example, Gharachorlu’s definition of undoing style code smell is not necessarily

correct, as stated by Punt et al. [PVZ16]. Gharachorlu counts every style property set to zero or

none as an instance of the undoing style. However, Punt et al. argues that this code smell essentially

happens when a developer sets a value to a style property that already has a value (e.g., through

inheritance, initial values, or cascading), and then resets it back to the original value. This definition

(called the A?B*A pattern by Punt et al.) is broader than Gharachorlu’s, and also makes more

sense, as resetting styles in this way can have negative impact on understanding where a style value

actually comes from. The instances of this code smell with this definition cannot be identified by

CSSNose (i.e., false negatives). On the other hand, an example of a false positive for the undoing

style code smell can happen in CSSNose when a developer wants to hide an element, so she correctly

and logically sets its display property to none. This is detected as a code smell in CSSNose, while

it is not. Punt et al. proposes a tool for detecting the instances of the A?B*A code smell and

refactoring it within the web browser.

In any case, the prevalence of various smells in CSS code bases can be alarming. However, we

are yet to see any work that investigates the severity of these code smells and quantifies their adverse

impact. As a result, such a study is needed before making any attempt to eliminate code smells in

CSS trough refactoring. Among the code smells, however, refactoring duplicated code – which is

the topic of this thesis – can have immediate return of investment (e.g., smaller CSS file size that

has to be transmitted over the Internet). Nevertheless, the infrastructure developed in this thesis

can accommodate any refactoring in CSS.

Code Conventions

Having code conventions facilitate the information exchange between the developers [PJ15], leading

to better code understandability and readability [Spi11]. Goncharenko and Zaytsev [GZ15, Gon15,

GZ16] look into the existence of code conventions for CSS. The authors explain that CSS code

conventions exist, although not from the World Wide Web Consortium, but from the CSS developer

community. They used a special search engine that aggregates the results of multiple other search

20

engines to collect data about CSS code conventions, and come up with a catalog of 143 code

conventions for CSS. The authors further developed a tool, namely CssCoco, that uses ontologies

for detecting violations from code conventions in CSS code.

Detection and Refactoring of Dead Code

Dead (i.e., unreachable) code has been a hot topic of research in academia. For CSS code, dead

code means style rules and declarations that are ineffective. This happens, for example, when a style

rule has a selector that selects nothing in the target documents, or a style declaration that is always

overridden by other style declarations through cascading. Detecting dead code is a challenging task

in CSS, as parts of one CSS file can become used or unused, depending on the target document

on which the CSS file is applied. For instance, consider a piece of JavaScript code that adds the

following element to a login page of a web application, after the user enters a wrong password:

The password is not correct!

This is done at runtime on a specific event. Now, consider that the attached CSS file to the

login page defines a style rule like this:

.error {

color: red;

}

This piece of CSS code is ineffective (i.e., dead) when there is no authentication error, since there

is no element for which the class attribute is equal to error. This practice (i.e., adding elements

at runtime to the target documents) is indeed extensively done in today’s web applications. An

empirical study [BM13] showed that 95% of the websites (out of a corpus of 500 websites) contain

client-side content that is initially hidden and JavaScript is used to inject the content at runtime.

The study found that, in these websites, 62% of the states of target documents are initially hidden.

Using @media rules also makes detecting dead code challenging. Consider a piece of CSS code

inside a @media rule defined for a specific device (e.g., a printer, or a smart watch). The enclosed

code will be ineffective unless the target document is rendered on the specific device for which the

media is defined.

Mesbah and Mirshokrae [MM12] developed Cilla, a tool that detects unmatched and ineffec-

tive selectors, overridden style properties, and undefined classes. The tool employs an automated

technique which analyzes the runtime relationship between the CSS rules and the elements in tar-

get documents of dynamic web applications. This is done by crawling the web application using

Crawljax, a tool that mimics the behavior of users by clicking on different clickable elements (e.g.,

hyperlinks, buttons, and elements for which the an event handler is attached for the click event).

Crawljax explores new states of the web application caused by the events, and then the proposed

21

approach identifies ineffective CSS code with respect to the explored states. The authors report

that, on average, 60% of style rules in today’s CSS files are redundant. For the work done in this

thesis, we used Crawljax to identify dependencies between style declarations, which are necessary

to consider when refactoring CSS code.

Genevès et al. [GLQ12] showed that tree logics can be used to apply static analysis on CSS: target

documents are encoded as binary trees (as the approach works with binary trees), and CSS selectors

and properties are translated to logical formulas. This representation makes several static analyses

possible using tree logics, for example, the emptiness (i.e., ineffectiveness) of selectors – which

basically means dead code in CSS – is checked when a selector’s logical formula is not satisfiable for

a given target document. The authors also mention similar use cases of the approach, like checking

for the equivalence of selectors (i.e., two selectors select the same element), the coverage without

properties nor inheritance (i.e., whether there are elements in the target document that are not

covered by any CSS selector), and the coverage with inheritance for a given property (i.e., whether

some style value is set to a given style property for all the elements of a target document, considering

the propagation of values defined by the inheritance mechanism of CSS).

The refactorings introduced in this thesis require detecting the dependencies between CSS decla-

rations to be done safely. Some of these dependencies can be detected using Genevès et al.’s proposed

technique. However, this approach does not consider the presence of JavaScript or server-side pro-

gramming languages for the analysis (e.g., the former given example of the addition of an HTML

element at runtime using JavaScript). Not only this can lead to false positives in their approach,

but it misses dependencies that exist in specific states of the target documents. In addition, employ-

ing Genevès et al.’s approach that requires encoding target documents to binary trees, modeling the

problem as a logical formula, and using a special solver for detecting the dependencies would be an

overkill; as we will see, the dependencies can be detected by using straightforward rules defined on

the style rules’ selectors and declarations, after attaching the CSS file under analysis to the target

documents and mapping its style rules to the target documents’ elements.

Hague et al. [HLO15] developed a tool, called TreePed, with the goal of detecting redundant

(i.e., dead) style rules in CSS. In contrast to Cilla that uses dynamic analysis, TreePed attempts

to detect redundant style rules using static analysis. The authors proposed a tree-rewriting model of

the updates done on the target documents’ tree structure at runtime by JavaScript (e.g., injecting

new elements, adding CSS classes to the existing elements in the target documents, or removing

target documents). The proposed approach outperforms Cilla in correctly detecting some of the

cases that might be invisible to dynamic analysis, e.g., due to the sensitivity of dynamic analysis

to the configuration of the crawler. However, as the work stands as a proof of concept, the model

captures only the features of JQuery, a popular JavaScript library, that is used for modifying

22

target documents at runtime, and does not consider the modifications done using pure JavaScript

or other JavaScript libraries. That’s why a tweaked version of this approach was not used in this

thesis for detecting dependencies between CSS declarations.

Bosch et al. [BGL14a, BGL14b, BGL15] introduced an approach for reducing the size of CSS

files by removing redundant style declarations and rules based on static analysis. In their approach,

redundant CSS rules are the ones that can be detected within the CSS file, without the need for

mapping the CSS file to any target document, i.e., where reasoning from the CSS file alone is

possible. For example, the authors define verbose declarations as two declarations which are equal,

but they are defined in style rules with equivalent selectors (e.g., li.foo and li[class=‘foo’]

are equivalent). Verbose declarations are redundant and can be removed from the style sheet. The

authors propose a technique for eliminating such redundant style rules, and ague why the existence

of @media rules can affect the refactorings. As mentioned before, we also take care of the @media

rules in our refactorings.

Note that, in addition to detecting redundant style rules (which is also done by Cilla and

TreePed), the goal of Bosch et al. is to eliminate the redundant CSS style rules, and the elimination

is done aiming at reducing CSS file size. The proposed refactoring in Chapter 4 of this thesis also

seeks size reduction by removing duplicated style declarations in CSS files. As a result, the approach

of Bosch et al. is complementary to ours, as it will be discussed later.

3.1.3 Alternative Language Proposals for CSS

Both academia and the industry have come up with tools and approaches for augmenting CSS

to compensate for its shortcomings. From the industry, CSS preprocessors have almost become

the de facto way of developing style sheets. CSS preprocessors are discussed in more detail in

Chapter 5. The proposals from the academia, however, have not gained much momentum, but we

briefly introduce the reader with some of them in this section.

Badros et al. [BBMS99] introduced the notion of the Constraint Cascading Style Sheets (i.e.,

CCSS) that extend CSS by allowing the developers to define arbitrary linear arithmetic constraints

(e.g., to control elements’ positions and sizes), and finite-domain constraints (e.g., to control font

properties). An example of a constraint in CCSS is @constraint #c1[width] = #c2[width],

which forces the two elements to have the same width. The proposal has been implemented in the

Amaya web browser, that we formerly talked about.

Wieser [Wie06] proposed CSSNG, an enhanced version of CSS for supporting some dynamic

features in CSS. For example, in CSSNG, the developer is allowed to write:

23

*:: before {

content: element("span", "elem");

}

This style rule selects all the elements in the target document (i.e., using the universal selector *),

and an element in the following form is injected before each selected element:

elem

Note that, the element is added before each element as the selector uses the ::before pseudo

element. Normally, this is done using JavaScript, because the content property in CSS does not

allow adding HTML tags before (or after) the selected element (although normal text is allowed).

CSSNG allows this by using the element() function.

Serrano [Ser10] proposed HSS, a preprocessor language for CSS that supports custom proper-

ties (acting like variables), user-defined functions, conditional expressions, user-defined types (i.e.,

variable selectors) and the support for arithmetic calculations. Like any other CSS preprocessor,

the HSS code should be first compiled to pure CSS. Note that, most of the features supported in

HSS are also supported in the industrial CSS preprocessor languages (e.g., Less and Sass). How-

ever, HSS does not support selector nesting , a handy and extensively-used feature supported by

the industrial CSS preprocessor languages (as we will see in Chapter 5, nesting is one of the most

popular language features used by the developers).

HSS has not been adopted by the industry. This could be possibly explained by the fact that the

syntax of the HSS-specific features is radically different from pure CSS, in contrast to the industrial

CSS preprocessors that have a very similar syntax to pure CSS. That’s also why we did not use

HSS in our empirical study (Chapter 5), because we couldn’t find any website that used HSS.

3.1.4 Clone Detection in CSS

Mao et al. [MCD07] proposed an approach for the automatic migration from table-based structure

to the style-based structure for web pages, and in a step of this approach, duplicated style rules

are identified using a traditional clone detector. The authors first use table recognition techniques

to detect portions of web pages that use tables (i.e., the <table></table> elements) for layout.

This was a frequent anti-pattern in web application development, because CSS did not provide any

layout mechanism3. This anti-pattern is an abuse of tables that brings several performance and

maintenance problems. Detecting tables used for defining layouts is first done on single web pages,

and then the HTML tables are transformed to a nested, hierarchical structure based on <div></div>

elements. In the next step, for each web page, the corresponding CSS code is generated for styling

the <div></div> elements. Then, the clone detection approach proposed by Cordy et al. [CD04]

3As mentioned in Section 3.1.6, CSS specifications added the layout module to fill this gap.

24

is used in order to find duplicated code across the generated CSS files to consolidate them into a

unified CSS file, which could be applied to different web pages.

In Mao et al.’s technique, a set of style rules that are exactly the same (with the exception of

style rule’s selector) are detected as clones. Only one instance of the cloned style rules are kept,

and the rest are removed. The locations in the HTML files under analysis where the removed style

rules are used are in turn updated to use the single style rule that is kept. This kind of detection

and analysis that is used by Mao et al. is sufficient for finding duplicated code with no differences in

style declarations (except for white spaces and comments). However, the approach proposed in this

thesis is able to detect more advanced types of duplicated code in CSS files at a finer granularity,

as will be discussed in the next chapter.

In a technical report, Federman and Cook [Dav10] show the applicability of the Formal Concept

Analysis (i.e., FCA) for grouping style declarations that are exactly the same into grouping selectors

in CSS. FCA allows analyzing data which describes relationships between a set of objects, and a

set of attributes that those objects might possess. Using FCA, one can investigate the data with

queries like “what is the set of objects that all share a set of particular attributes?”. In the Federman

and Cook’s approach, style rules act as objects, and style declarations as attributes. With this

representation, the aforementioned query will essentially result into the set of style declarations that

are repeated in some style rules, and can be in turn refactored to eliminate duplication.

As we will discuss in Chapter 4, this is very close to what we have proposed in this thesis for

refactoring duplication code within CSS. There are, however, several shortcomings in the Federman

and Cook’s approach, that our work has attempted to solve. We list some of these shortcomings in

detail in Chapter 4.

There are also tools in the web development community for detecting or removing duplicated

code in CSS. CSSCSS [Moa13], for example, is a clone detection tool designed specifically for

CSS. It detects declaration-level refactoring opportunities in a manner similar to our technique;

however, it supports only exactly copied-and-pasted CSS code, and does not detect the majority

of the advanced types of duplication that the proposed approach in this thesis can detect. It also

does not provide any way for refactoring the detected duplication instances. CSSPurge [Qua13]

detects duplicated style rules (i.e., the ones with exactly same selectors) and merges all of them

into a single style rule, removing style declarations that it assumes will not be applied, with the

assumption that they will be always overridden. In any case, CSSPurge does not guarantee a safe

code transformation that will have the same styling effect on target documents.

25

3.1.5 Migrating CSS to Preprocessor Languages

One contribution of this thesis is proposing an automatic technique for migrating CSS code to

preprocessor languages (which is discussed in Chapter 6). We noticed that Charpentier et al. have

worked in parallel with us on the same problem [CFR16]. While our work was published in the 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE’16), their work

was published in the 2016 IEEE International Conference on Software Maintenance and Evolution

(ICSME’16). We have discussed, in detail, the differences between our work and Charpentier et al.’s

in Chapter 6. In a nutshell, we used an association rule mining technique for detecting duplicated

code in CSS (built on top of the work done in Chapter 4), discussed how safety preconditions

can lead to presentation-preserving transformations, and further provided a testing technique for

assuring the safety of the transformations. Charpentier et al., on the other hand, used Formal

Concept Analysis for grouping duplicated declarations in CSS. As mentioned, using FCA with the

goal of grouping duplicated declarations was not a novel idea, as it appears in a technical report by

Federman and Cook in 2010 [Dav10]. Moreover, and more importantly, the technique proposed by

Charpentier et al. neither provides nor checks any preconditions, i.e., the proposed transformations

are not necessarily safe. However, Charpentier el al. conducted a user study with four developers to

assess the acceptance of the transformations, something that we lack in this thesis, but is planned

for the future work. There are more differences between the two approaches that we will discuss in

Chapter 6.

3.1.6 Other Related Studies

Alternative implementations

Acebal et al. [ABRC12] provided an implementation of the CSS Layout Module using JavaScript.

At the time before CSS 3 modules were emerged, CSS did not provide any means for specifying the

layout of the web pages, while it already supported a rich set of properties for defining other pre-

sentation facets (e.g., fonts and colors). Web developers often misused existing CSS style properties

(e.g., the float property) with additional HTML markup to achieve the desired layout. To fill this

gap, the CSS Layout Module was proposed by Acebal in his PhD thesis [Ace10]. Acebal provided

the JavaScript implementation as a proof of a concept to show the layout module’s advantages.

Performance

Jovanovski and Zaytsev [Jov16, JZ16] discuss critical CSS rules: style rules in the external CSS files

that have to be loaded so that the web browser can start rendering the web page. By refactoring

critical CSS rules and moving them from external CSS files to become embedded, the authors

26

observed an average of 1.3 seconds speed-up in loading web pages in a corpus of 1000 web sites.

Jones et al. [JLM+09], and in a follow-up work, Meyerovich and Bodik [MB10] propose efficient

and parallel algorithms for several time-consuming tasks that the web browsers have to fulfill when

rendering web pages with CSS. These tasks include CSS selector matching, layout solving, and font

rendering. Using the proposed algorithms, different browsers’ layout engines gained performance

ranging from 3x to 80x.

Testing

When maintaining existing code (e.g., adding new features, fixing bugs, improving code quality

by applying refactorings), testing is a crucial activity to make sure that code modifications do not

break any existing functionality. In the Introduction of this thesis (Chapter 1), we mentioned a story

showing how some critical pages at Dropbox were unknowingly broken due to modifying a shared

CSS file [Ede14] – an example of why testing is also very important for CSS code.

Surprisingly, there is no study in the literature dedicated to testing CSS code [GMBCM13]. In

the industry, two rather immature approaches have been proposed to test CSS code:

The Frozen DOM In this approach, CSS regression testing essentially includes checking the

equality of the final style values that are applied to each style property, for all the elements

of the target documents, before and after modifying the CSS code. This approach needs

maintaining a list of static (i.e., frozen) target documents (or multiple states of a single target

document) to apply the CSS code on, and updating it whenever the structure of the web

pages changes. The comparison of style values is usually done by employing JavaScript in

a web browser. In JavaScript, developers have access to the elements of the target docu-

ments represented as a tree structure, using a standard Application Programming Interface

(i.e., API) that is called the Document Object Model (DOM). The term DOM is sometimes

used interchangeably with the tree representing the target document, like in the Frozen DOM

technique. The elements of target documents are in turn called DOM elements. Similarly,

different states of a single target document generated by manipulating it using JavaScript

at runtime are called DOM states. There are several tools that facilitate applying the frozen

DOM technique, e.g., Hardy [Mad13], and css-wrangler [Nei17].

There are some shortcomings with the Frozen DOM approach. First, it is required to keep

the frozen DOM states in sync with the actual web application, which is a tedious task.

To overcome this problem, developers sometimes configure a web crawler to run the web

application and extract the underlying DOM states automatically. In this case, the explored

DOM states are more realistic, as they have the real content. Note that, a web page can appear

with no problem with dummy content, while it can break with large content, or in the presence

27

of multimedia elements in the text (e.g., images, or embedded video players). In a large web

application, however, configuring the crawler to cover all DOM states with diverse-enough

content can also be cumbersome.

The Frozen DOM technique might be also unable to spot the possible behavior alternations

for web pages presented on different media. A state of a web page can be rendered correctly

on one device and incorrectly on the other, while the style values being assigned to all the

elements are the same before and after modifying the CSS code. As a result, the Frozen DOM

technique should be always complemented, either by manual investigation or another testing

method.

Using image processing techniques In this technique, instead of using DOM states for compar-

ing styles after modifying CSS code, image snapshots are taken from different states of the

web application, and image comparison techniques are used for detecting differences between

the snapshots. PhantomCSS [CtHdt13] is one of the tools that employs this technique for

automating visual regression testing. Liang et al. [LKL+13] used this technique for developing

a tool, namely SeeSS, which is able to track the visual impact of code changes in CSS across

a website.

The Achilles’ heel of the approach is the underlying algorithm for image comparison; Phan-

tomCSS, for instance, uses a simple RGB pixel differentiator. This can lead to detecting

very low-level differences that developers (or users) might tolerate, or even not notice. In

addition, having dynamic content (which is the case, usually) can lead to false positives, i.e.,

tests failing due to the changes in the content, but not the style or layout. As a result, it is

important to feed the technique with only meaningful places of the screen shots to avoid false

positives. To solve these problems, Mahajan and Halfond proposed WebSee [MH15] that uses

Perceptual Image Differencing, a computer vision technique that compares two images using

computational models that make comparing two images similar to what humans’ visual system

does, to detect visual differences. It is also possible to define exclusion regions for testing in

WebSee. Mahjan et al. further improved WebSee by employing a probabilistic model based

on the Bayes’ theorem to connect the detected problems to their root causes in the HTML

code [MLBH16]. A root cause, in their definition, means the HTML element that is found to

be faulty, and one of its attributes or style properties that has different value compared to the

test oracle.

Cross-browser compatibility testing: Sometimes a web application exhibits presentational and

functional inconsistencies when it is viewed on different web browsers. A study shows that more

28

than 20% of web applications suffer from cross-browser compatibility issues [RCPO13]. An impor-

tant quality aspect of web applications to test, therefore, is cross-browser compatibility. These issues

sometimes have roots in CSS. Knowing some of the approaches in detecting cross-browser compat-

ibility issues might be helpful in devising methods for CSS testing to accompany refactoring and

migration techniques.

WebDiff [RCVO10] locates cross-browser issues, including differences in the presentation and

the structures (i.e., DOM trees) of web pages across different web browsers. WebDiff compares

screen shots taken from the unvarying parts of web pages (i.e., parts that do not change in successive

reloads, e.g., parts that are not ads or videos) for detecting presentational changes. Also, it utilizes

a non-exact comparison algorithm for comparing DOM trees landed to different web browsers to

detect structural differences.

WebDiff finds issues on single web pages. In contrast, CrossT [MP11], tracks the behavior

of web applications in different web browsers to detect functional inconsistencies. This is done by

comparing the state-flow graphs, which Crawljax generates when crawling the web applications,

across different web browsers. CrossT does not aim for detecting presentational inconsistencies

that arise on the same content on different web browsers. CrossCheck [CPO12] is proposed to

take advantage of the techniques proposed in both WebDiff and CrossT, and augments them by

employing a machine learning-based classifier to decide whether two screen elements are different. X-

Pert [RCPO13] further enhances CrossCheck by improving its differencing technique for detecting

layout issues. Similarly, Browserbite [SDKS14, SDS13] uses image comparison techniques for

detecting cross-browser compatibility issues, but utilizes machine learning methods (including both

a classifier and a neural network) to remove false positives from the results.

Defect Prediction

There are a plethora of works in the literature, studying the approaches for predicting the exis-

tence of defects, with the hope of discovering them before shipping the code to the end users. To

our knowledge, for CSS, there is only one recent study that investigates the possibility of defect

prediction. Biçer and Diri [SBD16] trained Naive Bayes, Logistic Regression, and Random Forests

classifiers to predict whether a style rule is going to be buggy or not. The authors used several

metrics extracted from each style rule as predictors, including but not limited to the number of

simple selectors in a combinator selector of the style rule, the specificity of the style rules’ selector

and the number its pseudo-classes, and the number of declarations defined in the style rule. The

training was done using a dataset of four open-source projects, and the defective rules (i.e., the 1

class in the classification) were found by marking every style rule that were changed in a bug-fixing

commit in the history of the projects. The results showed a prediction performance comparable to

29

the state-of-art prediction techniques. Moreover, using the classifiers reduced the cost required for

inspecting the defect prone rules by 8% to 29%. However, the study does not take into account the

dependencies between the style declarations (caused by the cascading feature of CSS), which can

intuitively be the reason for several bugs (indeed, that’s why all web browsers provide a feature in

their debugging tools for displaying overridden style values for any selected element).

3.2 Clone Detection in Web Applications

Code duplication has been extensively studied in procedural and object-oriented languages [RBS13,

RC07], leading to a variety of detection techniques. Several researchers have also developed tech-

niques for the detection of duplication in web artifacts. Most of the studies in the area of web

applications have focused on the detection of duplicated content in web pages [BK01], or finding

web pages with similar structure [DLDP01, DLDPF02]. Boldyreff et al. [BK01] replace the content

of web pages (i.e., the text inside different tags) with hash values and compare them to find du-

plicated content in web pages. Lanubile and Mallardo [LM03] propose a semi-automatic approach

to find function clones in the source code of web applications. Their approach first compares the

names of the functions written in either JavaScript or VBScript. If the names are the same,

they compute various size metrics and report the functions with similar metric values as candidate

clones. In their follow-up work, they evaluated this approach on four web applications and found

out that 21% to 80% of functions were duplicated and could be refactored [CLM04].

De Lucia et al. [DFST05] use the Levenshtein edit distance to quantify the structural similarity

between web pages. Rajapakse and Jarzabek [RJ05] use CCFinder (a tool which detects clones by

applying token-to-token comparison [KKI02]), to find code clones in the source code of web applica-

tions written in various languages. They examined 17 web applications and found a duplication rate

of 17% to 63%. Synytskyy et al. [SCD03] use an island grammar in order to define smaller portions

of the HTML syntax for elements, such as forms and tables, that might be cloned across different

pages. The grammar is used to extract those structures from web pages and examine whether their

structure is repeated in other pages.

Cordy et al. [CD04] propose an approach that is language-independent and can detect exact and

near-miss clones using island grammar extraction, pretty-printing and textual differencing of the

clone candidates. In their study, they used this approach for detecting clones in HTML code. This

work led to the introduction of NiCad [RC08], which is an exact and near-miss (i.e, Type 2 and

3) clone detector. Muhammad et al. [MZYR13] also use NiCad to find clone patterns in the PHP

code of two industrial systems.

The extracted duplication information can be used to re-engineer web applications, i.e., to create

30

dynamic pages from static ones [BK01, SCD03], generate more-generalized dynamic web pages

to minimize the duplication [DFST04, RJ07], or find similar functionalities across different web

pages [DFST05]. None of the aforementioned works investigated the existence of duplication in CSS

code, or developed a technique specialized in the safe elimination of duplication in CSS code.

3.3 Empirical Studies on Language Features Usage

In Chapter 5 of this thesis, we look at how CSS developers take advantage of CSS preprocessor

language features. To the best of our knowledge, this is the first empirical study on the use of

CSS preprocessors. The gained knowledge, as we will see, is helpful for several audience. For tool

builder, for example, it helps in achieving the ultimate goal of designing recommendation systems

that migrates pure CSS code to preprocessors, as a means to improve the maintainability of existing

CSS code.

In the literature, there are several empirical studies on the use of language features in different

languages and technologies, with similar goals to our work, e.g., understanding how developers have

adopted these language features. For instance, Ernst et al. [EBN02] investigated how C preprocessors

are used in practice, by conducting an empirical study on 26 publicly available C programs, using a

tool which includes approximate, Cpp-aware parsers for expressions, statements, and declarations.

Tempero et al. [TNM08] studied the use of inheritance in Java programs. They used different metrics,

such as Depth of Inheritance, extracted from the bytecode of the subject systems for their analysis.

Grechanik et al. [GMD+10] conducted a large-scale study on the use of object-oriented features

including classes, methods, fields and conditional statements on 2000 open-source Java projects.

They represented the information about the source code in a relational database and used SQL to

extract the required metrics about different features. Gil and Lenz [GL10] conducted an empirical

study on how Java developers take advantage of method overloading in 99 open source Java programs.

Similar to Tempro et al.’ work [TNM08], they also used bytecode for data collection.

Xiaoyan et al. [ZWSS14] investigated the frequency of different statement types (e.g., if, return,

function declarations) in 311 projects written in C, C++ and Java. They extracted this informa-

tion from an XML representation (i.e., srcML) of the source code of subject systems. Dyer et

al. [DRNN14] conducted a very large-scale study on 31K open-source Java projects to find usages of

new Java language features over time. This is done on the Abstract Syntax Tree (i.e., AST) of the

source code of the subject systems. Richards et al. [RLBV10] studied the use of dynamic language

features in JavaScript applications, using an instrumented web browser. Callaú et al. [CRTR11]

conducted an empirical study on the use of the reflection feature in 1000 Smalltalk projects by

statically tracing the features being used from the AST of the source code.

31

Martin et al. [MCAA15] examined the use of GNU Make’s language features (such as functions,

macros, lazy variable assignments and the Guile embedded scripting language) in around 12k make

files of 250 open source projects. They used TXL to define a custom grammar for Makefiles to

extract and count instances of features. In our analysis, we used the AST of the parsed preprocessor

files to extract the required information, similar to other works including [CRTR11, DRNN14].

In a recent work, we looked at how Java developers take advantage of lambda expressions, which

have been retrofitted into Java 8 [MKTD17]. Similar to the study done in this thesis, we have

provided implications for developers, tool builders, language designers, and researchers.

3.4 Automated Code Migration

In Chapter 6, we investigate the possibility of migrating existing CSS code bases to take advantage

of CSS preprocessor language features. As mentioned, to our knowledge, there is only one study

having the same goal of migrating CSS to preprocessor languages, which was published in parallel

with our work [CFR16]. We will investigate the work in more detail in Chapter 6.

3.4.1 Migration of the Legacy Systems

There are numerous works in the literature proposing migration techniques for legacy systems in

order to improve their maintainability. The migration activities can be done either within a language

(e.g., for taking advantage of a new feature added to the language), or from one language to another

one. Several incentives drive academia and practitioners to develop such techniques, including but

not limited to improving the maintainability of code bases.

For example, several researchers developed techniques for migrating procedural code to the

object-oriented paradigm, such as automatic or semi-automatic translators from C to C++ [ZK01],

Eiffel [TFN+12], or Java [MM01]. Migration is also performed when there is a lack of human re-

sources for maintaining existing software systems written in an extinct language, e.g., migrating

Lisp to Java [Lei07]. Other works proposed approaches for detecting opportunities to use constructs

introduced in a newer version of a programming language. For Java, there are techniques for intro-

ducing parameterized classes from non-generic ones [KETF07], the enumerated type [KSR07], and

Lambda expressions [FGLD13].

3.4.2 Migration of Web Systems

As mentioned before, some of the studies that investigated the duplication in the content or structure

of web pages, proposed techniques for migrating duplicated static web pages to dynamic, server-side

web applications [BK01, SCD03]. The proposed work of Mao et al. [MCD07] for the automatic

32

migration of HTML pages having table-based structures to the style-based structure is one more

example of migration activities in web systems.

3.5 Chapter Summary

In this chapter, we looked at several works related to the topic of this thesis. As mentioned, while

there are numerous works in the literature that investigated clones in traditional code, the problem

of duplicated code in CSS has not been deeply studied. For CSS, refactoring duplicated code (and

in general, applying any kind of refactoring) has received no or very little attention from academia,

while CSS is an extensively-used programming language. In the next chapter, we will look at the

problem of duplication in CSS in more detail.

33

Chapter 4

Refactoring Duplication Within CSS

4.1 Introduction

CSS development is far from being a rigorous and disciplined process. One instance of undis-

ciplined development is the definition of new CSS rules by copying and modifying existing code

instead of reusing already defined ones, i.e., code duplication. There is empirical evidence that

duplicated code in software systems developed with procedural or object-oriented languages is as-

sociated with increased maintenance effort [LW08], higher error-proneness [JDHW09], and higher

instability [MRS12] in terms of change frequency and recency. We believe that the development

and maintenance of CSS code is also subject to the same problems caused by code duplication.

A small change in the presentation of a website might require tremendous effort for locating and

understanding parts of the CSS code that need to be consistently updated.

The problem of duplication might even be more intense in CSS code, because the CSS language

lacks many features available in other programming paradigms that could enable code reuse. For

instance, there is no notion of functions in CSS to build reusable blocks of code.

In addition, CSS code has to be transferred over the network from a server to a large number

(sometimes, millions) of clients. Extensive code duplication increases the size of the transferred data,

resulting in a large network load overhead.

Once on the client side, CSS code has to be processed by the web browser. Extensive code

duplication increases the size of the CSS code that has to be processed by the browser (e.g., CSS

code has to be parsed and the selectors have to be matched to the DOM elements), resulting in

a computational overhead. This could affect more mobile or wearable devices that have limited

computation, memory, and power resources available. Previous studies [MB10] have shown that the

visual layout of web pages, performed by analyzing the CSS code, consumes 40–70% of the average

34

processing time of the browser.

In this chapter, we propose an automated technique to (1) analyze and detect various types of

CSS duplication, and (2) discover and recommend refactoring opportunities to eradicate duplicated

CSS code. In summary:

1. We define various types of duplication in CSS code and propose a technique for the detection of

duplication instances. Additionally, we provide empirical evidence on the extent of duplication

in the CSS files of several web applications. To the best of our knowledge, this is the first

study that investigates the problem of duplication in CSS code in such an extensive manner.

2. We present a technique for eliminating CSS code duplication through presentation-preserving

refactorings. Additionally, we provide a ranking mechanism based on the size reduction that

can be potentially achieved by each suggested refactoring to help CSS developers prioritize

their maintenance efforts by focusing on the refactorings with higher impact.

3. We describe preconditions that should be met to preserve the CSS styling after the application

of a refactoring.

4. We perform an empirical study to assess the efficacy of our approach using 38 real-world web

sites/web application that use 91 CSS files in total.

Our results show that the extent of duplication in CSS code is indeed very intense ranging from

40% to 90% for the vast majority of the examined CSS files. On average, we found 165 refactoring

opportunities in the examined CSS files, out of which 62 could be applied by preserving the styling of

the web pages. Finally, the average size reduction achieved by applying only presentation-preserving

refactorings was 8%, while the highest reduction was 35%.

Note: Earlier version of the work done in this chapter has been published in the 22nd ACM SIG-

SOFT International Symposium on the Foundations of Software Engineering (FSE 2014) [MTM14a].

4.2 Duplication in CSS

The code duplication problem is expected to be more potent in CSS due to the lack of reuse con-

structs. As a result, many common style declarations have to be repeated in multiple style rules. In

this section, we define different types of duplicated declarations in CSS, and provide examples from

real-world web applications. The proposed duplication types for CSS code are inspired from the soft-

ware clones research area. Compared to procedural and object-oriented languages like C and Java,

CSS has a very simple syntax, which makes the detection of duplication an easier task. However,

the detection of more advanced types of duplication in CSS requires a CSS-specific technique.

35

We then show how we can eliminate the duplication through a simple refactoring that happens

within CSS code (i.e., without using another programming language, like a CSS preprocessor).

4.2.1 Duplication Types

The software clone research community has defined different types of duplication in procedural and

object-oriented code, based on the textual or functional similarity of two code fragments [RC07]:

Type 1 (Or exact clones) Identical code fragments, except for variations in whitespace, layout, and

comments,

Type 2 Structurally/syntactically identical fragments except for variations in identifiers, literals,

types, layout and comments,

Type 3 Copied fragments with statements changed, added or removed in addition to variations in

identifiers, literals, types, layout and comments,

Type 4 Code fragments that perform the same computation, but implemented through different

syntactic variants.

In this work, we focus on duplicated CSS declarations inside CSS style rules. By eliminating this

kind of duplication, we can reduce the size of the CSS code that has to transferred over the network

and be maintained in the future. We define three different types of declaration-level duplication in

this section.

Type I: Declarations having lexically identical values for given properties.

An extreme example of type I duplication can be seen in Figure 4, which is taken from the main

CSS file of Gmail’s inbox page. In this file, there are 23 declarations that are repeated in three style

rules. Figure 4 shows only a subset of these declarations for two of the style rules.

Note that the definition of type I duplication considers only the equality of the property values

and disregards the value order. For instance, consider the two border declarations in Figure 4.

If one of them was defined as border: transparent solid 1px (i.e., same values in different

order), we would still consider them as an instance of type I duplication, because based on the CSS

specification, the browser will interpret both declarations in the same way.

Type II: Declarations having equivalent values for given properties.

36

.z-b-Vn{

nnnn-webkit-box-shadow:n

nnnnnnn0n1pxn0nrgba(0,n0,n0,n.05);

nnnnbox-shadow:n

nnnnnnn0n1pxn0nrgba(0,n0,n0,n.05);

nnnnbackground-color:nffff;

nnnncolor:nf404040;n

nnnncursor:ndefault;

nnnnfont-size:n11px;

nnnnfont-weight:nbold;

nnnntext-align:ncenter;

nnnnwhite-space:nnowrap;

nnnnborder:n1pxnsolidntransparent;

nnnnborder-radius:n2px;

nnnn...

}

.z-b-Gn{

nnnn-webkit-box-shadow:n

nnnnnnnn0n1pxn0nrgba(0,n0,n0,n.05);

nnnnbox-shadow:n

nnnnnnnn0n1pxn0nrgba(0,n0,n0,n.05);

nnnnbackground-color:nffff;

nnnncolor:nf404040;

nnnncursor:ndefault;

nnnnfont-size:n11px;

nnnnfont-weight:nbold;

nnnntext-align:ncenter;

nnnnwhite-space:nnowrap;

nnnnborder:n1pxnsolidntransparent;

nnnnborder-radius:n2px;

nnnn...

}

Figure 4: Type I duplication in Gmail’s CSS

In CSS, we may have the same values for properties with alternative representations. Font

size, color, length, angle and frequency values are representative cases. For instance, Table 1 shows

alternative representations for the same color. We consider all these different representation values

as equivalent values.

Table 1: Different representations for the rebeccapurple color.

Representation† Value

Named Color rebeccapurple

Hexadecimal #663399

Red, Green, and Blue values rgb(102, 51, 153)

Red, Green, Blue, and the Alpha Channel values rgba(102, 51, 153, 1)

Hue, Saturation, and Lightness values hsl(270, 50%, 40%)

Hue, Saturation, Lightness and the Alpha Channel values hsla(270, 50%, 40%, 1)

† In the CSS Color Module Level 4 specifications, there are more ways added to represent

colors, but our current implementation does not support them.

If two or more declarations have equivalent values for the same properties, we consider them as

an instance of type II duplication. In Figure 5a, we can see an example of type II duplication in the

CSS file of Gmail’s inbox page. Note that the declarations with color property are duplicated.

In addition, there are some default values for certain properties, which are applied when

explicit values are missing. For example, based on the CSS specifications, the declaration

padding: 2px 4px 2px 4px; can be also written in a shorter version as padding: 2px 4px; with

37

.fJ {

 ...

 color: white;

 ...

}

.Ik {

 ...

 color: #fff;

 ...

}

(a) Type II

.sG0wIfz{

zzzzborder-bottom-color:z#e5e5e5;

zzzzborder-bottom-style:zsolid;

zzzzborder-bottom-width:z1px

}

bodyz.azewNz{z

zzzz...

zzzzborder-bottom:z1pxzsolidz#e5e5e5;

zzzz...

}

(b) Type III

Figure 5: Declaration duplication in Gmail’s CSS

the same effect. Such cases are also considered as equivalent declarations and thus constitute in-

stances of type II duplication.

Type III: A set of individual-property declarations is equivalent with a

shorthand-property declaration.

Some CSS properties, such as margin, padding, and background are called shorthand properties.

With these properties, we can define values for a set of properties in a single style declaration. For

instance, the margin shorthand property could be used in order to define values for margin-top,

margin-right, margin-bottom and margin-left, as shown in Figure 6.

margin-top: 3px;

margin-right: 4px;

margin-bottom: 2px;

margin-left: 1px;

margin: 3px 4px 2px 1px;

Figure 6: Shorthand and individual declarations

If a style rule contains a set of individual style declarations, which is equivalent to a shorthand

declaration of another style rule, we consider those declarations as an instance of type III duplication.

Figure 5b, shows an example of type III duplication in the CSS file of the Gmail’s inbox page.

4.2.2 Eliminating Duplications

The aforementioned types of duplication can be eliminated directly in CSS code without changing the

target documents by extracting a style declaration with grouping selectors. If a set D of declarations

is duplicated (in the form of type I, II, III duplication) in a set of n style rules with selectors

S1, S2, ..., Sn, we can create a new style rule with a grouping selector S1, S2, ..., Sn and move D to

this new style rule. Such refactoring has been depicted in Figure 7. Here, the CSS code snippet on

the left side could be refactored to what is shown on the right side.

38

.Jv {

 font-size: 0;

 height: 100%;

 left: 53px;

 position: absolute;

 right: 35px;

 top: 0

}

.qibgmf {

 font-size: 0;

 height: 100%;

 left: 53px;

 position: absolute;

 right: 35px;

 top: 0;

 white-space: nowrap

}

.Jv, .qibgmf {

 font-size: 0;

 height: 100%;

 left: 53px;

 position: absolute;

 right: 35px;

 top: 0

}

.qibgmf {

 white-space: nowrap

}

The selector of the new style rule is

formed by grouping the two original
selectors using comma

Non-duplicated declaration will remain in its original

style rule. The ".Jv" style rule is removed since all

its declarations are now in the new style rule

Duplicated
declarations
are grouped

Before After

Figure 7: Grouping style declarations to remove duplication

Another possible solution, based again on grouping, is to create a common class for the repeated

declarations and assign that class to the target elements. However, this solution requires also to

update the target documents, so that they make use of the newly defined class.

4.3 Method

Our method for the detection of duplication in CSS and the extraction of refactoring opportunities

is divided into four main steps discussed in the following subsections.

4.3.1 Abstract Model Generation

To find duplicated style declarations, we first parse all the CSS files of a given web application.

Our method then generates an instance of the abstract model shown in Figure 8, which represents

a high-level structure of the application’s CSS code. All the analysis and refactoring activities, as

we will see, are done on this hierarchical model, and therefore are independent from the abstract

syntax trees created by any CSS parser. This is necessary, because CSS parsers can become obsolete

due to fast evolution of CSS specifications. We will give more details about this design decision in

Chapter 7.

Note that, the World Wide Web Consortium (i.e., W3C) has a standard object model for CSS

called the CSS Object Model (i.e., CSSOM) [Con16a]. Using the API provided by CSSOM, one can

access and modify CSS code, e.g., using JavaScript in the web browser. As mentioned, W3C has

also standardized the Document Object Model (i.e. DOM) for accessing and modifying HTML doc-

uments. While DOM has a very rich set of APIs that allow advanced analysis of HTML documents,

39

Selector

BaseSelector

SimpleSelector Combinator

MediumType

Declaration

ShorthandDeclaration

GroupingSelector

.s1 .s2 .s1 ~ .s2

.s1 + .s2

1

1..*

1..*
2..*

1

Style Rule

Style Sheet

1..*

@media print

margin: 0px 2px

text-align: center

p::first-letter, li a, h1

#ID
.class
:nth-child(3n-5)
::first-letter
:not(p)
img[title~="flower"]

DescendantSelector SiblingSelector

AdjacentSiblingSelectorChildSelector.s1 > .s2

1

Right‐hand side

Light‐hand side

0..1

0..1

0..1

1

1

0..1

1

Figure 8: A hierarchical object model for CSS

CSSOM is rather immature. For instance, a selector is represented as a string1 in CSSOM, and there

is no API for accessing different parts of a complex selector (e.g., .menuitem > li a:hover). This

is the same for style values, i.e., even a list of style values in a style declaration is represented as a

string.

Any advanced analysis on CSS code requires having fine-grained access to each of the building

blocks of the CSS code. For example, when analyzing type II duplications we need to compare

style values for certain style properties regardless of the order they appear in the style declaration.

Therefore, a single string representation for the list of style values will make the comparison difficult,

if not impossible. Due to several similar shortcomings, we did not use CSSOM, and instead designed

our own model for representing CSS code.

As shown in Figure 8, every CSS style sheet may be bound to some medium type. This identifies

the target presentation medium for which the style sheet is defined. For instance, one may distinguish

styles for printing and displaying in a mobile device [Wor17]. For defining presentation mediums,

we use the @media at-rules. It is also possible to define the same style rules for different media types

within a given style sheet.

In this model, a BaseSelector represents selectors that do not perform grouping. A SimpleSelector

represents type selectors or the universal selector (* selector, which selects every element). The class

SimpleSelector has special attributes for specifying properties like the element ID, class identifier,

pseudo class, pseudo element, and attribute conditions. Finally, a Combinator represents combinator

selectors, which can be formed by combining a SimpleSelector with a BaseSelector. Examples

1More accurately, the type is DOMString, a sequence of characters encoded using UTF-16. In Java and ECMAScript,
DOMString is equal to the String type, since both languages use UTF-16 as their encoding.

40

of each of these selectors can be seen in Figure 8.

4.3.2 Preprocessing

The detection of Type I duplications does not require any preprocessing. However, to facilitate the

detection of type II and III duplication instances, we perform three separate preprocessing steps.

Normalization of property values

In this step, we replace values that can be expressed in different formats or units (e.g., colors

and dimensions) with a common reference format or unit. For example, every color in named,

hexadecimal, or HSL format (see Table 1) is replaced with its equivalent rgba() value. Every

dimension specified in centimeters, inches, or points is converted to its equivalent pixel value2.

All applied conversions are based on the guidelines provided by the CSS specifications [Wor17].

Replacing values with a common representation is known as normalization and has been used in

traditional code clone detection techniques for finding clones with differences in identifiers, literals,

and types [KKI02, RC08]. Our motivation is to find declarations using alternative formats or units

for the same property value. Such cases constitute type II duplication instances.

Addition of missing default values

As we discussed in Section 4.2, CSS developers sometimes omit values for some of the multi-valued

properties, in order to have shorter declarations. In this step, we have some predefined rules based

on the CSS specifications [Wor17] that add the implied missing values to the properties in the

model. For instance, margin property should normally have 4 values. We enrich the declaration

margin: 2px 4px with the two missing implied values as margin: 2px 4px 2px 4px. This allows

the comparison of declarations based on a complete set of explicit values enabling the detection of

type II duplication instances.

Virtual shorthand declarations

Detecting type III duplication instances requires the comparison between shorthand declarations in

one style rule and an equivalent set of individual declarations in another style declaration. To facil-

itate this task, we add “virtual” shorthand declarations to the model. We examine the declarations

of every style declaration to find sets of individual declarations that can be expressed as equivalent

shorthand declarations. For every set of such individual declarations, we generate the corresponding

2In CSS, an inch is always 96 pixels, regardless of the resolution of presentation devices. In fact, the definition
of pixel in CSS is different than the conventional definition of physical pixels in presentation devices. To know more
about this, please refer to [Con16b].

41

shorthand declaration, and add it as a “virtual” declaration to the corresponding style rule in the

model. These virtual shorthand declarations will be compared with “real” shorthand declarations to

detect type III duplication instances.

4.3.3 Duplication Detection

Duplication instances can be found by comparing every possible pair of declarations in the CSS

model and checking whether they are equal (for type I) or equivalent (for type II and III). The

notions of equality and equivalence were discussed in Section 4.2. Note that in our approach we

consider the declarations present in the CSS model as they have been formed after the preprocessing

steps to allow for the detection of type II and III duplication instances.

Our detection approach is summarized in Algorithm 1. The algorithm receives as input a prepro-

cessed CSS style sheet and returns a set of clones, where each clone is a set of equal or equivalent

declarations, D = {d1, d2, ..., dn}, and each declaration belongs to a style rule si ∈ S = {s1, s2, ..., sn}

of the analyzed CSS style sheet.

Figure 9 depicts an example of a style sheet and the corresponding clones extracted from the

application of Algorithm 1. The first two clones contain instances of type II duplication, while the

last clone contains an instance of type III duplication.

.class13{

3333color:3blue;

3333font-weight:3bold;

}

.class23{

3333color:3y00F;

3333font-weight:3bold;

3333border:3solid31px3yd3d3d3;

}

.class33{

3333font-weight:3700;

3333border:3solid33px3red;

3333float:3left;

}

.class43{

3333border-style:3solid;

3333border-color:3LightGray;

3333border-width:31px;

}

Style Sheet Clones

[color:3blue]
[color:3y00F]

[font-weight:3bold]
[font-weight:3bold]
[font-weight:3700]

[border:3solid31px3yD3D3D3]
border-style:3solid
border-color:3LightGray
border-width:31px

{font-weight}

{border}

{color}

Figure 9: Clones extracted from a style sheet

4.3.4 Extracting Refactoring Opportunities

A clone, as defined in subsection 4.3.3, can be directly refactored by extracting a single declaration

di ∈ D to a new style rule, which groups all selectors in S, and then removing all declarations in

42

Algorithm 1: Detection of type I, II & III clones

Input : A preprocessed style sheet styleSheet

Output: allClones including Type I, II & III clones

1 mediumTypes ← all medium types in the styleSheet

2 allClones ← ∅

3 foreach m ∈ mediumTypes do

4 D ← all declarations in m

5 clonesm ← ∅

6 for i← 1 to |D| do

7 clone ← Di

8 for j ← i+ 1 to |D| do

9 if identical(Di, Dj) ∨ equivalent(Di, Dj) then

10 clone← clone ∪ Dj

11 end

12 end

13 if |clone| > 1 then

14 merged← false

15 foreach clonek ∈ clonesm do

16 if clonek ∩ clone 6= ∅ then

17 clonek ← clonek ∪ clone

18 merged← true

19 end

20 end

21 if not merged then

22 clonesm ← clonesm ∪ clone

23 end

24 end

25 end

26 allClones← allClones ∪ clonesm

27 end

43

D from the original style rules they belong to. The refactored version of the CSS code will contain

|D| − 1 less declarations, but should have exactly the same effect in terms of the styles applied to

the selected elements. As such, the larger the clone (i.e., the cardinality of D), the more beneficial

the corresponding refactoring is, since a larger number of declarations will be eliminated by the

application of the refactoring.

The detected clones constitute the “building blocks” for extracting more advanced and higher

impact refactoring opportunities. For instance, there may exist style rules that have multiple dec-

larations in common (i.e., style rules involved in multiple clones). A set of common declarations

shared among a group of style rules constitutes a clone set. In that case, all declarations in the clone

set could be extracted into a single style rule with grouping selector (or having a class selector)

reducing significantly the repetition of declarations. Figure 7 in Section 4.2.2 presents an example

of such a case. In general, the more clones are common in a larger set of style rules, the higher the

impact of the corresponding refactoring opportunity in the reduction of repeated declarations.

In this work, we use a data mining metaphor to extract clone sets as refactoring opportunities

from the initially-detected declaration-level clones. Let us assume that the style sheet is a trans-

actional dataset, in which every style rule si is a transaction, and the clones corresponding to the

declarations of si are the items of transaction si. Based on this mapping, Figure 10 shows the

resulting dataset for the style sheet of Figure 9. Note that the clones are sorted according to their

size (i.e., the number of duplication occurrences).

Transactions
(Selectors)

Items
(Corresponding clones)

.class2

.class3

.class4

.class1 {color}{font-weight}

{border}{color}{font-weight}

{font-weight}

{border}

Figure 10: Dataset for the style sheet of Figure 9

In the data mining domain, a set of items which is repeated in different transactions is called

an itemset. If an itemset is repeated in more than a certain number of transactions, which is called

the minimum support count, the itemset is known to be frequent. Our goal is to extract all frequent

itemsets with a minimum support equal to 2 (i.e., the minimum size for a duplication instance),

because a frequent itemset in our case represents a clone set that is repeated in more than one style

rule. Therefore, every frequent itemset is a potential grouping refactoring opportunity.

In our method, we use the FP-Growth association rule mining algorithm [HPY00], which finds

the frequent itemsets using a structure called frequent-pattern tree (FP-Tree) [TSK05]. The FP-

Tree is essentially a compact representation of the dataset, since every itemset association within

the dataset is mapped onto a path in the FP-Tree. Figure 11 displays the FP-Tree for the dataset

44

of Figure 10.

Header Table

{border}

{color}

{font-weight} {border}{font-weight}
13

NULL

{color}
2

{border}
1

Figure 11: FP-Tree for the dataset of Figure 10

The FP-Tree has a header table, which includes all distinct items that exist in the FP-Tree.

The items in this table are sorted in descending order based on their support count. There is a link

between every item in this table to the first occurrence of that item in the FP-Tree (represented

as a dotted arrow from the header table to the nodes of the FP-Tree in Figure 11). To enhance

the traversal of an item in the header table to all nodes containing that item, nodes that contain

the same item are also linked (e.g., the border nodes in the FP-Tree).

The number next to a node represents the number of transactions (style rules in our case)

involved in the portion of the path from this node to the root of the tree. For example, the path

from node color to the root represents that there are two style rules that contain both items

color and font-weight (i.e., style rules with selectors .class1 and .class2). The path from node

border nested under node font-weight to the root represents that there is only one style rule that

contains both items border and font-weight (i.e., style rule .class2). Finally, the path from node

font-weight to the root represents that there are three style rules that contain item font-weight.

It is worth mentioning that, in the data mining domain, usually it is not important in which

transactions the itemsets are frequent ; instead, it suffices to know how many times the itemsets appear

together. As a result, in the original FP-Tree representation, only the number of transactions in

which the itemsets appear is kept. In our application, however, we have to know the style rules in

which the set of repeated style declarations repeated. Consequently, we have tweaked the FP-Tree

data structure to also store this information.

Once the FP-Tree is constructed, the FP-Growth algorithm generates all frequent itemsets

with the minimum support specified as input. Figure 12 shows all frequent itemsets (i.e., grouping

refactoring opportunities) generated with a minimum support value equal to 2.

In the refactoring scheduling literature, two refactorings are considered as conflicting if they have

a mutually exclusive relationship [MTR07], i.e., the application of the first refactoring disables the

application of the second refactoring and vice versa. Within the context of CSS, two refactoring op-

portunities are conflicting if their application affects a common subset of declarations. For instance,

in Figure 12, if the last refactoring opportunity is applied, the third one becomes infeasible and vice

45

Frequent Itemsets/
Refactoring Opportunities Involved Selectors

.class1, .class2

.class1, .class2

.class1, .class2, .class3

.class2, .class4[{border}]

[{color}]

[{color}, {font-weight}]

[{font-weight}]

1

2

3

4

Figure 12: Output of the FP-Growth algorithm for the style sheet of Figure 9

versa, because these two refactoring opportunities affect two common font-weight declarations.

In the same manner, the second and third refactoring opportunities are also conflicting, because

they affect two common color declarations. However, in that case, the third refactoring opportu-

nity subsumes the second one, since the set of declarations affected by the latter is a subset of the

declarations affected by the former. Our approach filters out subsumed refactoring opportunities,

if the ones subsuming them can be safely applied (Section 4.3.6). For the problem of conflicting

refactoring opportunities, we provide a ranking mechanism explained in Section 4.3.5.

4.3.5 Ranking Refactoring Opportunities

Although a refactoring operation affects several quality aspects of the code, such as understandability,

maintainability, and extensibility, in this work we focus on the size of the CSS code, because size

is directly associated with the other aforementioned higher-level quality attributes (in general, a

code with small size can be more easily maintained). Hence, in order to prioritize the refactoring

opportunities and allow developers to focus on the most important ones, we define a ranking formula

based on the number of characters that can be removed from the CSS code by applying a given

refactoring opportunity.

Let RDr be the set of duplicated declarations that will be removed from the style sheet by

applying the refactoring opportunity r, Sr be the set of style rules that contain the duplicated

declarations of set RDr (i.e., the style rules that will be grouped after applying r), and ADr be

the set of declarations that will be added to the new style rule with the grouping selector. It

should be noted that ADr contains the declaration with the minimum number of characters for each

set of equal/equivalent declarations within RDr. The size reduction (SR) achieved by refactoring

opportunity r is calculated as follows:

SR(r) =
∑

d∈RDr

c(d)−
∑

s∈Sr

c(s)−
∑

d∈ADr

c(d) (1)

where the function c counts the number of characters of the declaration (or the selector of the

style rule) passed as an argument. The higher the SR(r) value, the higher the impact of r will be

46

on reducing the size of the CSS code. A negative SR(r) value indicates that the size of the CSS

code will increase after the application of r. A negative value is possible if the textual size of the

resulting style rule with grouping selector is larger than the textual size of the declarations being

removed. Of course, this would not be an issue if the duplicated declarations were placed under a

newly defined class; however, this solution would require to update the target documents to make

use of the new class. As mentioned before, in this work we aim to avoid modifications of the target

document, i.e., all refactorings should be merely within the style sheets. Consequently, when size

reduction is the objective, the refactoring opportunities should be applied in a descending order of

SR value excluding those having a negative SR value.

Based on Equation 1, the size reduction values for the four refactoring opportunities shown in

Figure 12 are 46, -3, 14, and 13 characters, respectively. The second refactoring opportunity would

actually increase the size of the CSS code, if it was applied. The first refactoring opportunity

corresponds to the highest size reduction, and the CSS code resulting after its application is shown

in Figure 13b (the new style rule with grouping selector is appended to the end of the file).

4.3.6 Preserving Order Dependencies

Behavior preservation is a crucial property of refactoring [Opd92]. The refactored program should

have exactly the same functionality as the original program. Within the context of CSS, the notion

of behavior corresponds to the presentation of the target documents (i.e., the style values that are

eventually applied to each of the style properties of the target document elements). Therefore, a

refactoring can be considered as valid, if its application preserves the presentation of the target

documents.

Let us assume that the CSS code of Figure 13a is applied to the target document shown in

Figure 14a. As we can observe from Figure 14a, the second div element uses the style declarations

from both style rules corresponding to .class2 and .class3 selectors. As we can see from Fig-

ure 13a, the declaration of the border property in .class3 overrides the corresponding declaration

in .class2 and as a result, the second div element is styled with a red color border as shown in

Figure 14b.

Now, let us assume that the first refactoring opportunity shown in Figure 12 is applied to the

CSS code of Figure 13a resulting in the CSS code of Figure 13b. In the refactored CSS code,

the declaration of the border property in the extracted style rule having the grouping selector

.class2,.class4 overrides the corresponding declaration in .class3. As a result, the second

div element is no longer styled with a red color border as shown in Figure 14c, which is a clear

indication that the applied refactoring did not preserve the presentation of the target document.

This inconsistency is caused by the inversion of the original overriding relationship between the style

47

.class13{

3333color:3blue;

3333font-weight:3bold;

}

.class23{

3333color:3y00F;

3333font-weight:3bold;

3333border:3solid31px3yd3d3d3;

}

.class33{

3333font-weight:3700;

3333border:3solid33px3red;

3333float:3left;

}

.class43{

3333border-style:3solid;

3333border-color:3LightGray;

3333border-width:31px;

}

1

2

(a) Order dependencies in the original CSS file

.class1x{x

xxxxcolor:xblue;x

xxxxfont-weight:xbold;x

}x

.class2x{x

xxxxcolor:x#00f;x

xxxxfont-weight:xbold;

}x

.class3x{x

xxxxfont-weight:x700;

xxxxborder:xsolidx3pxxred;xx

xxxxfloat:xleft;x

}x

.class2,x.class4x{x

xxxxborder:xsolidx1pxx#d3d3d3;x

}x

1

2

(b) Order dependencies after refactoring

Figure 13: Order dependencies before and after refactoring

declarations defined in the style rules .class2 and .class3 after the application of the refactoring.

We define an order dependency from style rule si containing declaration dk to the style rule sj

containing declaration dl due to property p, denoted as 〈si, dk〉
p
−→ 〈sj , dl〉, iff:

a) the selectors of the style rules si and sj select at least one common element having property

p in the target document,

b) declarations dk and dl set a value to property p and have the same importance (i.e., both or

none of the declarations use the !imporant rule),

c) declaration dk precedes dl in the style sheet,

d) the style rule si and sj have selectors with the same specificity.

As it can be observed, the order dependencies are extracted based on the cascading rules defined in

the CSS specifications, discussed in detail in Chapter 2.

To ensure that the presentation of the target documents is preserved, we define the following

precondition:

The extraction of the style rule having the grouping selector should preserve all

order dependencies among the style declarations of the style sheet.

48

...

<div class="class1 class4">

 content1

</div>

<div class="class2 class3">

 content2

</div>

...

(a) Sample HTML document

content1

content2

(b) Styling using the CSS code of Figure 13a

content1

content2

(c) Styling using the CSS code of Figure 13b

Figure 14: Breaking presentation semantics with improper refactoring

The problem of finding an appropriate position for the extracted style rule g in the style sheet

can be expressed as a Constraint Satisfaction Problem (CSP) defined as:

Variables The positions of the style rules involved in order dependencies including g.

Domains The domain for each variable is the set of values {1, 2, ..., N +1}, where N is the number

of style rules in the original style sheet.

Constraints Assuming that g contains style declarations for the set of properties P , an order

constraint is created in the form of pos(si) < pos(sj) for every order dependency 〈si, dk〉
p
−→

〈sj , dl〉 where p ∈ P .

In the example of Figure 13a, the order dependencies are

〈.class2, font-weight: bold〉
font−weight
−−−−−−−−→ 〈.class3, font-weight: 700〉

and

〈.class2, border: solid 1px #d3d3d3〉
border
−−−−→ 〈.class3, border: solid 3px red〉

and we extract the following constraint:

pos(.class2) < pos(.class3)

Based on this constraint, the extracted style rule with grouping selector .class2, .class4

should be placed at any position before the style rule with selector .class3 (i.e., .class3 should be

the last style rule in the style sheet after refactoring) in order to preserve the presentation of that

target document in Figure 14a.

If we assume that there is an additional order dependency from .class3 to .class4 due to

property border, then the CSP would be unsatisfiable due to the new following constraint:

pos(.class3) < pos(.class4)

49

In that case, the extracted style rule with the selector .class2,.class4 has to be placed before

.class3 to satisfy the first constraint and after .class3 to satisfy the second constraint, and thus

there is no solution satisfying both constraints. Refactoring opportunities leading to an unsatisfiable

CSP violate the defined precondition, and therefore are excluded as non presentation-preserving.

4.4 Evaluation

To assess the efficacy of our approach, we conducted a case study addressing the following research

questions:

RQ1: What is the extent of declaration-level duplication in CSS files?

RQ2: What is the number of refactoring opportunities that can be potentially applied in CSS files

and how many of them are actually presentation-preserving?

RQ3: What is the size reduction we can achieve by applying presentation-preserving refactorings in

CSS files?

Our tool and empirical data are all available online [MTM14b].

4.4.1 Experiment Design

Selection of subjects

In total, our study contains 38 subjects. In order to select representative real-world web applications,

we adopted the web-systems included in the study conducted by Mesbah and Mirshokraie [MM12],

in which they investigated the presence of unused CSS code. The list includes 15 (in total) open-

source, randomly-selected, and author-selected online web applications. We included 14 subject

systems from that list (one of them was not available online anymore, at the time of conducting

this study). We extended the list with 24 more subjects including web applications developed by

companies considered leaders in web technologies, such as Facebook, Yahoo!, Google, and Microsoft,

in addition to a subset of the top-100 visited web sites based on Alexa ranking. The complete list

of the selected systems is shown in Table 2.

Figure 15 shows the size characteristics of the CSS code, selectors (i.e., style rules), and declara-

tions of the subjects included in our study. As it is observed, the subjects are quite diverse in terms

of size.

50

Table 2: Selected subjects

ID Web app / Website #CSS Files ID Web app / Website #CSS Files

1 Facebook 6 20 Pinteerst 2

2 YouTube 4 21 Reddit 1

3 Twitter 2 22 Tumblr.com 2

4 YahooMail 3 23 Wordpress.org 1

5 Outlook.com 6 24 Vimeo.com 3

6 Gmail 5 25 Igloo 2

7 Github 2 26 Phormer 1

8 Amazon.ca 3 27 BeckerElectric 1

9 Ebay 2 28 Equus 1

10 About.com 1 29 ProToolsExpress 1

11 Alibaba 3 30 UniqueVanities 3

12 Apple.ca 3 31 ICSE12 3

13 BBC 3 32 EmployeeSolutions 3

14 CNN 1 33 SyncCreative 3

15 Craiglist 1 34 GlobalTVBC 5

16 Imgur 2 35 Lenovo 1

17 Microsoft 1 36 MountainEquip 2

18 MSN 1 37 Staples 2

19 Paypal 1 38 MSNWeather 3

Size (KB)

1
5

M
d
=

4
3
.3

2
4
0
0

M
e
a
n
=

 9
0
.9

5

#Selectors

1
0

1
0
0

5
0
0
0

M
d
=

 4
0
8

M
e
a
n
=

 8
3
1

#Declarations

1
0

1
0
0

1
0
0
0
0

M
d
=

 9
9
4

M
e
a
n
=

 2
1
6
8

Figure 15: Characteristics of the analyzed CSS files

51

Extraction of CSS code and DOM states

As mentioned, CSS code can be directly embedded in the web documents (i.e., embedded or internal

CSS), linked to web pages as external files, or dynamically-generated (or linked) at runtime through

JavaScript code. For our experiments, we focus on the external CSS files, since the refactoring

of the other sources of CSS code requires the modification of other web artifacts (such as HTML

documents), which is not the focus of our technique.

We take advantage of the dynamic analysis features provided by Crawljax [MvDL12] and

developed an external CSS file extractor plug-in on top of it. Additionally, we use Crawljax

to dynamically capture different DOM tree instances (i.e., DOM states) from the examined web

applications and use them for the extraction of order dependencies between the CSS style rules.

Detection of presentation-preserving refactorings

In order to collect the set of presentation-preserving refactorings that can be applied on a CSS file

f styling the set of DOM states S collected from a web application, we:

1. Extract the order dependencies between the style rules of f by analyzing the DOM states in

S, as described in Section 4.3.6.

2. Extract the set of refactoring opportunities R that can be potentially applied to f .

3. Sort R based on size reduction (Formula 1) and remove the refactoring opportunities having

a negative value.

4. Iterate through the elements of R and apply the first refactoring opportunity for which the

CSP defined in Section 4.3.6 is satisfiable.

5. If step 4 results in the application of a refactoring, repeat steps 1-5 with the refactored CSS

file f ′.

4.4.2 Results

Extent of duplication in CSS declarations (RQ1)

The results of our empirical study confirm the expectation that duplication is more extensive in

CSS code compared to procedural and object-oriented code (with 5–20% duplicated code [RC07]).

Figure 16 displays a violin plot with the percentage of the declarations that are involved in at least

one clone (i.e., they are at least once duplicated) in the analyzed style sheets. The median value for

the percentage of duplicated declarations is 68%, while the average is 66%. The vast majority of the

examined style sheets exhibits a duplication ranging from 40% to 90%. Note that in the reported

52

0.2 0.4 0.6 0.8Md= 0.68

Mean= 0.66

Figure 16: Ratio of the duplicated declarations

results we have set the minimum support count (i.e., the minimum number of style rules that should

share a common declaration) to the lowest possible value (equal to 2); setting a larger minimum

support value would lead to lower duplication rates. As we will see in Chapter 5, developers are

interested in using abstraction techniques provided by CSS preprocessors to avoid repeating style

declarations, even when they are repeated across as few as two style rules.

Figure 17a shows the number of clones detected in the analyzed CSS files. On average, there are

270 distinct declarations being repeated more than once in the examined style sheets that could be

used as building blocks for extracting more advanced refactoring opportunities. The Venn diagram

shown in Figure 17b displays the percentage of the clones including different combinations of the

duplication types defined in Section 4.2. As it can be observed, 97% of the clones include only type

I duplication instances, while 2% of the clones include a combination of type I and II duplication

instances. Furthermore, the existence of type III duplication instances within the clones is very rare.

5
3
0

2
0
0
0

M
d
=

 1
6
8

M
e
a
n
=

 2
6
9
.6

4

(a) Total number of detected clones

Type I Type II

Type III

96.84% 0.74%

0.01%

2.38%

0.03%

0%

0%

(b) Duplication types in the detected clones

Figure 17: Statistics for the detected clones

53

#
A

p
p

lie
d

#
O

p
p

o
rt

u
n

it
ie

s

1 5 1000 10000

Md= 46 Mean= 164.63

Md= 23 Mean= 62.28

Figure 18: Initial refactoring opportunities vs. applied presentation-preserving refactorings
1

5
6

0
0

M
d

=
 2

5

M
e

a
n

=
 7

8
.8

6

(a) #Order dependencies

0
2

0
3

0
4

0
M

d
=

 5
.3

1

M
e

a
n

=
 8

.0
8

(b) %Size reduction

Figure 19: Order dependencies and size reduction

Refactoring opportunities in CSS (RQ2)

Figure 18 shows on top, a bean plot of the number of refactoring opportunities that were initially

extracted from the original CSS files, excluding refactoring opportunities being subsumed and/or

having a negative size reduction value. On the bottom of Figure 18, we can see a bean plot of the

number of presentation-preserving refactorings, which we actually applied on the CSS files. As it can

be observed, our approach was able to detect, on average, 165 refactoring opportunities in the original

version of the examined CSS files, while the average number of presentation-preserving refactorings

was 62. Additionally, we found out that the examined CSS files had 79 order dependencies on

average between their style rules, as shown in Figure 19a.

Size reduction (RQ3)

In Figure 19b, we have depicted a bean plot with the percentage of the size reduction achieved

by applying only presentation-preserving refactorings. In the examined CSS files, the average size

reduction was 8%, while the maximum achieved value was 35%. Overall, in 12% of the examined

CSS files (11 out of 91) the size reduction was over 20%, while in 27% (25 out of 91) the size

54

reduction was over 10%.

In order to determine the factors that influence the applicability of refactorings in the examined

CSS files, we decided to build a statistical regression model. Regression models are mostly used for

the purpose of prediction, where the values of one or more predictor variables can be used to predict

the value for the response variable. However, a multiple linear regression model can be also used to

assess the impact of one predictor on the response variable, while controlling the other predictors

[DWC04]. Using regression, we estimate a coefficient for each predictor, which shows the magnitude

and direction of the effect of the predictor on the response variable.

We built a model with the number of applied refactorings as the response variable, and size and

the number of order dependencies as predictors (note that, size is measured in Kilobytes, on the

syntactically-formatted CSS files). Intuitively, we expect a positive relationship between the number

of applied refactorings and the size of the CSS files, since larger files exhibit more duplication and

thus offer more opportunities for refactoring. On the other hand, we expect a negative relationship

between the number of applied refactorings and the number of order dependencies detected for

a given CSS file, since a larger number of order dependencies implies a higher probability for a

precondition violation and thus rejecting a candidate refactoring opportunity. To this end, we

created a generalized linear model of the Poisson family with the log link function [ZKJ08], which

is a reasonable choice due to the nature of the response variable, which is count data.

As it is shown in Table 3, all estimated coefficients are statistically significant, and as we expected,

the coefficient for the size of the CSS files is positive, while the coefficient for the number of order

dependencies is negative. More precisely speaking, an additional order dependency that exists in a

CSS file will multiply the number of applicable refactoring opportunities by e−1.195e−03 = 0.9988057.

Similarly, one Kilobyte increase in the size of a CSS file will multiply the number of applicable

refactoring opportunities by e8.149e−03 = 1.008182. From this result, we can conclude that for CSS

files with a similar size, the number of applicable refactorings decreases as the number of order

dependencies increases. Additionally, we can conclude that our approach is more effective in terms

of size reduction for large CSS files with a limited number of order dependencies.

4.4.3 Comparison with Federman and Cook’s approach [Dav10]

As mentioned in the related works chapter (i.e., Chapter 3), Federman and Cook applied For-

mal Concept Analysis (FCA) on CSS style sheets in order to group CSS declarations that are

repeated across different CSS rules, and published the results in a non-peer-reviewed technical re-

port [Dav10]. Unfortunately, the implementation of the Federman and Cook’s approach (henceforth,

the FCA-based approach) is not available, and therefore, we cannot make a fair comparison of the

two approaches, with respect to the output (i.e., whether the FCA-based approach identifies the same

55

Table 3: Statistical model’s estimated parameters

Parameter Estimate p-value

Intercept* 2.989 <2e-16

Size coefficient 8.149e-03 <2e-16

Number of order dependencies coefficient -1.195e-03 <2e-16

* The intercept is the constant term in the regression model, which

makes the residuals have a mean of zero.

refactoring opportunities as ours) or the scalability/performance. Therefore, we can only extract

the differences/commonalities from the technical report.

The very first difference between the two approaches is that, instead of using FCA, we use a

frequent itemset generation algorithm to group duplicated declarations. In the FCA-based approach,

a CSS file is seen as a formal context. A context in FCA is composed of a set of objects, a set of

attributes of those objects, and a binary relation describing whether an object possesses some certain

attributes or not. Treating a CSS file as a formal context means seeing style rules as objects and

style declarations as attributes, and the context’s binary relation means whether or not some style

declarations appear in a style rule. Each FCA concept, on the other hand, includes a subset of

objects (i.e., the extent) that share a subset of all attributes (i.e., the intent). Consequently each

concept in the FCA-based approach is equivalent to a duplication refactoring opportunity, where a

set of style declarations are shared by a set of style rules.

Formal concepts can be organized in a hierarchical manner: a super-concept in the hierarchy

contains a superset of the objects of its sub-concepts. This creates a partial order which satisfies

the axioms of a lattice, i.e., the concept lattice. Federman and Cook take advantage of the concept

lattice of a CSS file to extract duplicated code. When one concept (i.e., a refactoring opportunity)

is selected for extraction, its relationship with other concepts is inferred from the lattice (e.g.,

conflicting refactorings). The concepts for extraction are selected by traversing the concept lattice.

Different traversals can lead to different sequence of refactorings, as discussed by Federman and

Cook.

While in theory FCA can also be used to generate frequent itemsets [Smi09] (and, as a result,

the two approaches can generate the same refactorings), the FCA-based approach of Federman and

Cook appears to be suffering from several shortcomings, namely:

1. The definition of the equality of style declarations in the FCA-based approach is based on

the exact similarity. In other words, two style declarations color: red and color #f00 are

deemed to be different in their approach, while these two style declarations are semantically

56

the same. In our approach, however, style declaration equality has a broader definition that

includes the equivalence of style declarations, as well as equality.

2. While FCA-based approach attempts to keep the presentation semantics of the refactored CSS

code intact, it only considers obvious dependencies between style declarations within the CSS

code, and does not take into account target documents (and also JavaScript) and the hidden

dependencies that they might create in CSS code. The FCA-based approach, consequently,

can re-order style declarations in the CSS file in a presentation-breaking way.

3. The FCA-based approach does not take into account media at-rules. As mentioned before,

today’s CSS code bases use media at-rules to a large extent to implement responsive web pages

that are presented consistently across different media. Our approach, in contrast, takes care

of media at-rules.

4. The FCA-based approach pre-processes CSS code and converts all the existing style rules with

grouping selectors to multiple rules with simple selectors, repeating all the style declarations

for each style rule with simple selector, and then apply FCA on them. As an example, consider

the following style rule:

.c1 , .c2 {

color: red;

}

This preprocessing converts the mentioned style rule to the following two style rules:

.c1 {

color: red;

}

.c2 {

color: red;

}

The refactoring approach is actually supposed to do the reverse. Indeed, the real motivation

behind this decision is unclear in the report, and seems to have root in a technical limitation in

the implementation of the used CSS parser/FCA library. This essentially can lead to changing

the order of selector names in the style rules. In our work, in contrast, we try to make as little

changes as possible in the CSS file, by not allowing such changes.

5. Lastly, the FCA-based approach has been evaluated on artificial CSS code, while we tested

our approach on real CSS files collected from several popular web applications.

57

4.4.4 Discussion

CSS duplication and refactoring opportunities

Our case study shows that CSS code duplication is prevalent in today’s web systems. The majority

of the clones we found pertain to type I duplication instances, and type II and III duplications

are relatively less common. This indicates that developers use the same representation for style

values consistently throughout their style sheets. Additionally, they make use of shorthand-property

declarations consistently within different style rules. The results of our evaluation also show that our

method is able to successfully detect many CSS refactoring opportunities that remove duplications

and preserve the initial presentation of the target documents. These refactorings, when applied,

allow for a much cleaner CSS code and considerable size reduction.

Size reduction

There are some considerations regarding the use of size reduction as a measure for evaluating our

approach, which we discuss in this subsection.

• In the industry, there are several CSS minifiers available for the developers that attempt to

reduce the size of CSS files by applying simple transformations, e.g., removing unnecessary

white spaces or semicolons. As also mentioned in the related works section (Chapter 3, page

16), Bosch et al. [BGL14a, BGL14b, BGL15] also introduced an approach for reducing the

size of CSS files by removing redundant style declarations and rules based on static analysis.

To our knowledge, both CSS minifiers and the Bosch et al.’s approach only analyze CSS files

and do not consider target documents for exploring other possibilities for size reduction. Our

method complements (and not replaces) the mentioned tools, by suggesting refactorings which

are presentation-preserving since the DOM states of the target documents are also considered.

• In our method, we focus on refactoring opportunities that extract the same set of equivalent

declarations in a style rule with a grouping selector. We mentioned that an alternative approach

would be to extract and group the declarations in a new style rule with a class selector instead.

By selecting an appropriate name for the class selector, we can reduce even further the size of

the CSS file (i.e., by replacing a set of selector names with a single class name), and at the

same time improve its understandability (the class name could represent a common concept

being extracted). However, this approach requires making use of the new class in the DOM

elements of the target document. From the refactoring point of view, this approach should

update the corresponding HTML documents for static web sites, or even the source code that

generates the HTML elements for dynamic web sites. Alternatively, there could be a shorter

58

(e.g., one simple selector) that selects exactly the same elements as what the grouping selector

of the newly-extracted style rule selects.

• Finding a sequence of refactoring applications that optimizes size reduction is somehow greedy.

Applying always the refactoring with the highest immediate size reduction does not guarantee

that the resulting sequence of refactorings leads to the maximum size reduction. A possible

explanation is that the application of some refactorings at the beginning of the sequence could

make infeasible the application of subsequent refactorings eventually leading to a solution

with higher size reduction. The ordering of refactoring applications can be treated as an

optimization problem that can be solved using search techniques.

• Most of the today’s web applications use web servers that employ general-purpose content

compression algorithms (e.g., GZip) for reducing the size of the files sent to the clients. These

compression algorithms actually work better in the presence of more redundancy in files. As

a result, when using compression algorithms, the proposed size reduction algorithm in this

chapter cannot always lead to smaller files. Conversely, the original files compressed by the

web server can have smaller size compared to the compressed version of the refactored file

using our approach. Indeed, in a preliminary study, we observed that applying only the GZip

algorithm will create smaller CSS files in 69% of cases, and only in 31% of cases applying our

approach followed by the GZip algorithm lead to smaller files.

Nevertheless, not all web servers/clients provide compression features. Moreover, using CSS

classes instead of grouping selectors (or equivalent selectors with fewer characters) for the

proposed approach may yield a better size reduction after compression. In addition, using

content compression on the client and server sides to compress and decompress CSS files has

performance and energy overhead, and using a content-specific size-reduction approach (like

our proposed approach) can decrease the required computation resources.

Alternatively, in the cases where the proposed refactorings cannot lead to smaller file sizes,

one can extract the duplicated style declarations into mixins (i.e., function-like constructs in

CSS preprocessor languages, that will be discussed in detail in the next sections).

Limitations

In our current implementation, we have only considered CSS files linked to the HTML documents.

In order to provide complete CSS refactoring support, in the future, we will also include in our

analysis CSS styles embedded inside the <style> tags of the web pages (i.e., internal CSS).

In addition, the CSS files used in our study could be generated code, and generated code in-

tuitively has more duplication than hand-written code. We do not have access to the production

59

code of several web applications used in this study (e.g., Facebook or Google), and we do not have

a general way to understand whether a CSS file attached to a web application is generated or not.

Moreover, one should note that refactoring CSS for removing duplicated code by only using its

internal features is inherently limited, since style declarations with differences in style values (e.g.,

color: red and color: blue) cannot be grouped together. For removing such duplications, we

will need to be able to parameterize style declarations, i.e., we would need function-like constructs

that do not exist in CSS.

Threats to the validity

A threat to the internal validity is that the DOM states collected from each web application may

be insufficient to extract all possible order dependencies between the style rules of the examined

CSS files, since for some dynamic web applications the number of DOM states is practically infi-

nite [MvDL12]. Missing order dependencies from unvisited DOM states could make some of the

applied refactoring opportunities to be non-presentation-preserving for this particular set of unvis-

ited DOM states. This has root in the way we configure the crawler to visit different DOM states.

We used the default configuration of Crawljax for this study.

To avoid selection bias, we selected 14 subjects from the list of web sites analyzed in a related CSS

study[MM12]. To mitigate threats to the external validity and make the results of the experiment as

generalizable as possible, we included 24 additional web sites developed by leading companies in web

technologies applying the current state-of-the-art CSS development practices. Finally, the developed

tool and the collected data are all available online to enable the replication of the experiment by

other researchers.

4.5 Chapter Summary

In this chapter, we presented a technique for the detection of refactoring opportunities that can

eliminate duplicated CSS declarations in a presentation-preserving manner, i.e., without side-effects

in the styling of the target web documents. We performed an experiment on 38 real web applications

and found that (1) code duplication is extensive in CSS files; on average 66% of the style declarations

are repeated at least once, (2) there is a significant number of presentation-preserving refactoring

opportunities in CSS files (62 on average) that is associated positively with the size of the CSS files

and negatively with the number of order dependencies between the style rules of the CSS files, and

(3) on average a 8% reduction in the size of the examined CSS files can be achieved by applying the

detected refactoring opportunities.

As we discussed, some types of duplicated style declarations cannot be refactored directly within

60

CSS. However, CSS preprocessor languages offer several abstraction mechanisms that allow elim-

inating more advanced types of duplicated code, and as a result, higher maintainability might be

gained by using these languages.

Notwithstanding, it is first interesting to see how the features that CSS preprocessor languages

offer on top of pure CSS (e.g., the abstraction mechanisms) are utilized. If developers consistently

take advantage of these features, we are motivated to devise automatic techniques for migrating

existing CSS code bases to gain the maintainability improvements that using CSS preprocessor

languages offer.

In the next chapter, we will describe some of these CSS preprocessor language features, and will

provide the results of a large-scale empirical study on the use of these features by developers.

61

Chapter 5

An Empirical Study on the Use of

CSS Preprocessors

5.1 Introduction

As discussed in the previous chapters, CSS preprocessor languages were introduced by the industry

as a response to the missing features of CSS. The code written in a CSS preprocessor can include

variable and function declarations, which can be used, e.g., inside CSS style rules. The preprocessor

compiler essentially transforms (i.e., transpiles) the function calls and variable uses to pure CSS.

Currently, there is a long list of CSS preprocessors offering very similar features with a different

syntax (e.g., Sass [Cat06], Less [SF10], Google Closure StyleSheets [Goo15], HSS [Ser10]), and their

use is becoming a fast growing trend in the industry. An online survey with more than 13,000 re-

sponses from web developers, conducted by a famous website focusing on CSS development showed

that around 54% of web developers use a CSS preprocessor in their development tasks [Coy12].

United States Federal Government advises front-end web developers who design websites for gov-

ernment services to use Sass as their Style Sheet development language in order to get “resources

such as frameworks, libraries, tutorials, and a comprehensive styleguide as support” [Uni15].

While CSS preprocessors are popular among developers and they include several useful features,

we do not have enough knowledge about how developers take advantage of these features in real web

applications. Having such information can be useful for different reasons:

• A considerable number of web developers is still coding directly in pure CSS. Therefore, migrat-

ing existing CSS code to take advantage of preprocessor features (e.g., extracting duplicated

declarations to a function in a CSS preprocessor) is greatly demanded in the industry. There

are indeed several storied about such migration activities – among others, at GitHub [Ble15]

62

and Etsy [Na15], two leading companies on the web. Knowing the practices applied by web

developers when coding in preprocessors will certainly help in developing more useful and

efficient migration strategies.

• CSS preprocessors might be sub-optimally used, because web developers miss opportunities to

further eliminate existing duplicated code and other bad practices. Therefore, there is a need

for refactoring recommendation systems to help developers in improving the quality of their

CSS preprocessor code. Knowing developers’ practices will help in prioritizing the refactoring

opportunities leading to the most commonly used solutions/patterns.

• Finally, the knowledge of developers’ practices can also guide the CSS preprocessor language

designers to revisit the design of these languages, e.g., by adding support for new features

(which are currently implemented by developers in an ad-hoc manner), or making existing

features easier to use, or eliminating features that are not adopted by developers.

These reasons motivate us for conducting the first empirical study on the use of CSS preproces-

sors. We have analyzed the preprocessor code of 150 websites, having their CSS code written in

Less or Sass. We focused on these two preprocessors because, according to the results of an online

survey [Coy12], Less and Sass are the most popular CSS preprocessors among web developers (92%

of the developers who used a CSS preprocessor in their careers, preferred either Less or Sass). Ad-

ditionally, to achieve more generalizable results, we analyzed Style Sheets written using both of the

two dialects that Sass provides: 1) The initial syntax of Sass, which is closer to Python (decreases

development effort by removing braces and commas, and relying on the indentation to show code

blocks and nesting); and 2) The so-called SCSS syntax, which is more similar to the syntax of pure

CSS. We selected 50 websites for each of these two dialects (accumulating to 100 websites for Sass

preprocessor), in addition to 50 websites for Less.

In our analysis, we took into account the features of CSS preprocessors which are common in

almost all preprocessors. These features include variables, nesting, mixin (i.e., function) calls and

the extend construct.

Overall, in this chapter:

• We conduct the first empirical study on the use of CSS preprocessors and report our findings

on 4 major preprocessor language features. We plan to use these insights to design refactor-

ing/migration techniques for CSS and preprocessors.

• We make publicly available the dataset compiled from 150 websites to enable the validation

and replication of our study, and facilitate future research on CSS preprocessors. We plan

to use this dataset to evaluate the effectiveness and accuracy of our refactoring/migration

techniques.

63

Note: Earlier version of the work done in this chapter has been published in the proceedings

of the 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER

2016) [MT16a].

5.2 CSS Preprocessor Features

In this section, we briefly demonstrate some of the common features of CSS preprocessors, which

are widely used by developers. All code examples are given using the Less syntax; the other CSS

preprocessors use a similar syntax.

5.2.1 Variables

Supporting variables is one of the most basic features of traditional programming languages. At

the time of writing this thesis, the CSS specifications for variables (called custom properties in

CSS jargon) have not reached the “Recommendation” stage, and are not supported by some web

browsers [Con15]. CSS preprocessors, however, have supported variables for a long time. Prepro-

cessor variables can be defined, e.g., to store one or more style values, for instance @color: red

(i.e., a single-value variable), or @margin: 1px 2px 4px 3px (i.e., a multi-value variable). Vari-

ables can be used for various purposes, such as theming (i.e., one style sheet representing different

themes/colors).

Preprocessor variables are type-less; a value representing a color (e.g., #FF00FF) can be assigned

to a variable which currently stores a dimension value (e.g., 2px). Interestingly, some preprocessors

also let developers to manipulate the value of variables by using arithmetic operators or by passing

them to preprocessor built-in functions (e.g., making a color value darker using the darken() function

in Less). Preprocessors also support the notion of variable scope. A variable can be defined in the

global scope (i.e., visible in the entire style sheet), or in some local scope (i.e., visible inside the body

of a style rule or a mixin).

In Figure 20 (left), a piece of Less code from the Semantic-UI1 (version 1.6.2) is shown. The

result of compiling this code is shown in Figure 20 (right).

5.2.2 Nesting

Preprocessors support a feature called nesting , which generates selectors using the following con-

structs in pure CSS:

1Semantic-UI is a CSS library used for building adaptive user interfaces for websites (https://github.com/
Semantic-Org/Semantic-UI).

64

LESS Code Generated CSS Code

...
@chAccordionMargin: 1em 0em 0em;
@chAccordionPadding: 0em;
...

...

.ui.accordion .accordion {
 margin: @chAccordionMargin;
 padding: @chAccordionPadding;
}
...

.ui.accordion .accordion {

 margin: 1em 0em 0em;

 padding: 0em;

}

Figure 20: Variables in Less

Combinators make an existing selector B more specific, with respect to another selector A. As

discussed in Chapter 2, CSS supports four combinators, namely the descendant combinator

(denoted as A B – with a space between the two selectors), the child combinator (A>B), the

general sibling combinator (A∼B), and the adjacent sibling combinator (A+B).

Pseudo-Classes like :hover in the (tr:hover) selector.

Pseudo-Elements like ::first-line in p::first-line.

As a real example of nesting , in Figure 21 (left), a code snippet from the Bootstrap CSS library2

(version 3.3.1) is shown. The generated CSS code is shown in Figure 21 (right). As it can be

observed, nesting avoids the repetition of .navbar-toggle selector and organizes relevant style rules

in a hierarchical manner. The use of nesting leads to a more organized code by keeping relevant

style rules in the same location. As we will see in Section 5.4, nesting is a very popular preprocessor

feature.

.navbar-togglex{
xxxposition:xrelative;
xxxfloat:xright;
xxx...
xxx&:focusx{
xxxxxoutline:x0;
xxx}
xxx...
xxx.icon-barx{
xxxxxdisplay:xblock;
xxxxxwidth:x22px;
xxxxxheight:x2px;
xxxxxborder-radius:x1px;
xxx}
xxx...
}

.navbar-togglex{
xxxposition:xrelative;
xxxfloat:xright;
xxx...
}
.navbar-toggle:focusx{
xxxoutline:x0;
}
.navbar-togglex.icon-barx{
xxxdisplay:xblock;
xxxwidth:x22px;
xxxheight:x2px;
xxxborder-radius:x1px;
}
...

LESS Code Generated CSS Code

Figure 21: Nesting in Less

2The most famous CSS library which includes predefined classes for facilitating designing complex multi-column,
responsive web pages, designed by developers at Twitter (https://github.com/twbs/bootstrap)

65

5.2.3 Mixins

As it was mentioned earlier, pure CSS does not support the notion of functions. CSS preprocessors

have introduced a specific construct, called mixin, to mimic the behavior of functions. A mixin can

be defined as a set of declarations, and can be called inside other constructs (such as a style rule or

another mixin). The construct in which the mixin is called will include all the declarations of the

called mixin. The declarations inside a mixin may have parameterizable values, therefore a mixin

declaration can have parameters (just like a function in traditional languages). These parameters

are preprocessor values, with the characteristics that were explained in Section 5.2.1. Arguments

can be omitted, if default values are provided in the parameter declarations of a mixin.

LESS Code Generated CSS Code

.btnf{
ffdisplay:finline-block;
ffmargin-bottom:f0;
ff...ff
fftext-align:fcenter;ff
ffvertical-align:fmiddle;ff
fftouch-action:fmanipulation;ff
ff...
ffpadding:f6pxf12px;
fffont-size:f14px;
ffline-height:f1.42;
ffborder-radius:f4px;
ff...
}

.btnf{
ffdisplay:finline-block;
ffmargin-bottom:f0;
ff...
fftext-align:fcenter;
ffvertical-align:fmiddle;
fftouch-action:fmanipulation;
ff...
ff.button-sizeH6px;f12px;
fffffffffffffff14px;f1.42;
fffffffffffffff4pxR;
ff...
}

.button-sizeH@pad-v;f@pad-h;
fffffffffffff@fontSize;f
fffffffffffff@lineHeight;
fffffffffffff@borderRadiusRf{f
ffpadding:f@pad-vf@pad-h;
fffont-size:f@fontSize;
ffline-height:f@lineHeight;
ffborder-radius:f@borderRadius;
}

Figure 22: Mixin in Less

In Figure 22, a mixin is shown from the Bootstrap CSS library. As it is observed, after compiling

this code, the declarations inside the mixin body appear in the style rule corresponding to selector

.btn, and the parameters are replaced with the arguments passed to the mixin.

5.2.4 The “Extend” Construct

Remember that pure CSS includes two main mechanisms to avoid duplicated style declarations

across style rules:

Creating classes A set of declarations can be grouped in a style rule with a class selector, associ-

ated with a class name. Such style rule will be applied on the elements in the target document

having the same class name in their class attribute. For instance, the selector .class1 can

select the element <div class="class1"> in the target document.

66

5.3.1 Subject Systems

Within the context of this study, we focused on websites, which make use of preprocessor languages

and have their preprocessor code publicly available. We have deliberately avoided the analysis of

preprocessor libraries and frameworks (such as Bourbon4), because their code is meant to be used

externally by other projects, in the same way that public APIs are used. Adding such libraries in our

analysis would affect negatively the validity of this study, since a large number of mixin declarations

developed to be used externally, would appear as not being used at all (i.e., unreachable or dead

code). Therefore, we decided to focus on websites having their own internal preprocessor codebase,

and study them in isolation from potential external dependencies.

While it is not necessary for websites to make their preprocessor codebase publicly available

to the end users, some web developers intentionally upload the preprocessor code along with the

generated CSS code on the web. This might be done to enable the compilation of the preprocessor

code on demand (either on the server- or client-side). We used Google’s advanced search feature

to find these preprocessor files. Particularly, we searched the Internet for files with the extensions

*.less, *.scss and *.sass. This search query allowed us to find websites satisfying our selection

criteria:

1. the website should have its CSS code generated by Less or Sass/SCSS, and

2. the website should publicly provide its preprocessor code along with the generated CSS code.

When we found a preprocessor file on a website, we manually attempted to extract the contents

of the file’s parent directory. If this directory was accessible, we collected all the preprocessor files

inside it, and recursively all the preprocessor files inside its sub-folders. This was necessary to make

sure that all the files which are imported using the @import directive are also collected. Then

we manually found and marked the main Style Sheet files, i.e., the files that are passed to the

preprocessor compiler to get the generated CSS files. This step is crucial, as we start our analysis

from these main files and recursively parse and analyze the files which are imported from them.

More specifically, we collected 1266 preprocessor files, containing 255 Less, 427 Sass, and 584

SCSS files. The full list of the websites used for this study is given in Table 4.

In Figure 24, we have included box and violin plots of various size metrics for the collected files.

The scale of the figures is logarithmic. Violin plots are useful for presenting the distribution of data.

As it is observed, the examined Less, Sass and SCSS files have similar size characteristics.

5.3.2 Data Collection

After collecting the preprocessor files, we applied the process depicted in Figure 25.
4A simple and lightweight mixin library for Sass (http://bourbon.io)

68

Table 4: List of the websites used in the study

Less Sass SCSS

1 abundance.org addare.ro 3x3mag.com

2 adriel.org alexiadesigns.com acphs.edu

3 aisandbox.com allergycosmos.co.uk ashrammoseleyha.org.uk

4 alexanderradsby.com assets.nilsology.net barajasinformatica.com

5 auroraplatform.com bbonline.ro benjaminclementine.com

6 bcemsvt.org billings365.com blog.davidstea.com

7 binaryvibes.org binaryvibes.org brevini.com

8 brentleemusic.com chemis.org buy.thegenerationofz.com

9 campinglasiesta.com creativepeak.org cavetubing.bz

10 campnewmoon.ca das-deutsche-institut.de ccv.edu

11 chainedelespoir.org denimrefinery.com cpansearch.perl.org

12 chunshuitang.com.tw dnavision.com css-tricks.com

13 colintoh.com dpress.hu demo.workflower.fi

14 colintoh.coms ewcd.org docutrax.com

15 corraldelamoreria.com exclusivo.com.br euvox.eu

16 den-kudryavtsev.com files.kennison.name folioapartments.com

17 eatlocal.org forgetrac.com glocalnumber.com

18 enyojs.com fossamusic.com goiena.eus

19 eseclog.de fpp.net greatjewishmusic.com

20 first-last-always.com giftcompany.de greenmagichomes.com

21 florahanitijo.com glennkessler.com grupaproducts.com

22 gibraltarcompany.ca globalsoftservices.com happy-shala.com

23 greatlakeshybrids.com gschristian.org hotel-berlin.de

24 grind2energy.com hellohanqi.com jayscatering.com

25 hotel-knoblauch.de hopeww.org jintsume.com

26 hotelhorizontal-dogo.com josf.se keysurgical.com

27 infinit.io lab.nicholasfrota.com lab.nicholasfronta.com

28 intertelecom.ua lastfrontierheli.com locomotion.fi

29 jutta-hof.de lawntonac.com.au luminus.org.uk

30 karlen-stavegren.se loftusrecreationcentre.com.au mce.ie

31 kko.com macnet.com.mx meltingelements.com

32 med.uio.no maistrali-apartments.gr mustelgroup.com

33 mjrcg.com maristane.com oceanarraysystems.com

34 naeaapp.com maxslob.website pantonism.com

35 neofuturists.org mf.contropa.com pizzahut.com

36 organowood.com minds-africa.org planeducationnb.ca

37 paulsprangers.com openkh.rubyforge.org purplezack.com

38 proteytemen.com piekutowkis.org sarahcapecci.com

39 qgis.org polonel.com seeability.org

40 reelworld.com projets.nicodeur.fr senseofitaly.com

41 ruzgarguluprogrami.com radiomillenium.ru spyproof.org

42 schwimmschule-spawala.de rpg-x.net thedegenfoundation.org

43 shamsen-assistans.se sologic.com tilde.club

44 sibven.ru storageforyourlife.com ubuntu.com

45 spartanapp.com termalliget.hu udel.edu

46 summit.webrazzi.com tigu.hk.tlu.ee vbarbershop.com

47 theiotrevolution.com timberland-securities.com vidoons.com

48 tinsnailwines.com wallawallaclothing.com vieinternational.com

49 tomsolo.com waltercatter.com web-rev.com

50 trv.ee westantenna.sakura.ne.jp whogetsmyvoteuk.com

69

Less Sass SCSS

1
.7

9
0
.0

2
0
.2

2
0

1
1
8
.8

1

(a) Size (KB)

Less Sass SCSS

2
0

1
8

2
0
0

9
1
6

(b) #Style rules / file

Less Sass SCSS

4
1

0
1
0

5
0
0

2
4
8
6

(c) #Declarations / file

Figure 24: Characteristics of the analyzed preprocessor files

Preprocessor Files

SCSS

000000149 dist:0.0 FILE src/org/apache/
tools/ant/filters/TokenFilter.java
LINE:439:62 NODE_KIND:150 nVARs:28
NUM_NODE:603 TBID:1071 TEID:1296

000000150 dist:7.5 FILE src/org/apache/
tools/ant/filters/TokenFilter.java
LINE:507:65 NODE_KIND:150 nVARs:28
NUM_NODE:627 TBID:1297 TEID:1531

SASS

LESS
.subscribed {

 height: 593px;

 padding: 7px 0;

 margin: 0 14px;

 overflow: hidden;

 border-bottom: 1px dotted #8C8C8C;

 p {

 text-align: justify;

 font-size: 10pt;

 color: #AFAFAF;

 text-decoration: none;

 a {

 font-size: 10pt;

 color: @link_color;

 text-decoration: none;

 }

 .more { color: @link_color; }

 }

 }

AST
Parsing

Query

CSV Files

000000149 dist:0.0 FILE src/org/apache/
tools/ant/filters/TokenFilter.java
LINE:439:62 NODE_KIND:150 nVARs:28
NUM_NODE:603 TBID:1071 TEID:1296

000000150 dist:7.5 FILE src/org/apache/
tools/ant/filters/TokenFilter.java
LINE:507:65 NODE_KIND:150 nVARs:28
NUM_NODE:627 TBID:1297 TEID:1531

CSV

CSV

Websitesadriel.org,layout.less|.drop-shadow|1|0
layout.less|.border-radius|1|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.push|2|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.column|9|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.row|3|0
Websitesauroraplatform.com,auroraplatform.com_css_styles.less|.clearfix|2|0
Websitesbcemsvt.org,font.less|.ie7-restore-right-whitespace|1|0
Websitesbcemsvt.org,mixins.less|.shorthand|3|0
Websitesbcemsvt.org,mixins.less|.border-bottom-left-radius|2|0
Websitesbcemsvt.org,mixins.less|.box-sizing|1|0
Websitesbcemsvt.org,mixins.less|.serif|1|0
Websitesbcemsvt.org,mixins.less|.vertical|1|0
Websitesbcemsvt.org,mixins.less|.reset-filter|1|0
Websitesbcemsvt.org,mixins.less|.monospace|1|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.column|9|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.row|3|0
Websitesbcemsvt.org,mixins.less|.border-top-right-radius|2|0
Websitesbcemsvt.org,mixins.less|.border-bottom-left-radius|2|0
Websitesbcemsvt.org,mixins.less|.box-sizing|1|0
Websitesbcemsvt.org,mixins.less|.serif|1|0
Websitesbcemsvt.org,mixins.less|.vertical|1|0
Websitesbcemsvt.org,mixins.less|.box-sizing|1|0
Websitesbcemsvt.org,mixins.less|.serif|1|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.column|9|0
Websitesbcemsvt.org,mixins.less|.vertical|1|0
Websitesbcemsvt.org,mixins.less|.reset-filter|1|0
Websitesbcemsvt.org,mixins.less|.monospace|1|0
Websitesaisandbox.com,aisandbox.com_landing_launch.less|.row|3|0
Websitesbcemsvt.org,mixins.less|.border-top-right-radius|2|0
Websitesbcemsvt.org,mixins.less|.border-bottom-left-radius|2|0
Websitesbcemsvt.org,mixins.less|.gradientBar|1|0

Analysis

Results

ASTsPreprocessor Code

Figure 25: The workflow applied for the collection and analysis of the experimental data

First, we parsed each preprocessor file to obtain its Abstract Syntax Tree (AST). For parsing,

we used the corresponding compilers for Less and Sass/SCSS. The Less compiler is originally

written in JavaScript, but we used a Java implementation of this compiler, called Less4j5. For

Sass/SCSS, we used the original compiler written in Ruby. In both cases, we developed additional

code for querying the ASTs. The results of the queries were exported to CSV files for further

statistical analysis. In Table 5, we provide an overview of the collected data in the subject systems.

We will refer to this table in Section 5.4 and discuss the numbers in more detail.

For each examined preprocessor feature we create a separate CSV file. Every CSV file contains

the website name, the preprocessor file name, and the line number in which a particular AST

element (e.g., variable declaration, mixin declaration, mixin call) was found. According to the

specific characteristics of the AST element type, we include the following additional information in

the corresponding CSV file:

1. For variable declarations, we include

5https://github.com/SomMeri/less4j

70

Table 5: Overview of the collected data

Less Sass SCSS

Websites 50 50 50

Files 255 427 584

Average number of style rules / file 57 52 40

Average number of defined variables / file 16 14 16

Average number of nesting usages / file† 43 44 35

Average number of mixin calls / file 11 6 12

Average number of mixin declarations / file 4.7 4.7 3.7

Average number of extend construct usages / file 0 5.2 5

Average number of calls to parameterless mixins / file 8 4 6

† Includes all style rules nested under another style rule, or had at least one style

rule nested under them.

(a) the scope of the variable (global or local scope)

(b) the type of the value stored in the variable. This type can take one of these possible

values: color, number, identifier, string, function call, and “other” for all other types of

values, as discussed in Section 5.4.1

2. For mixin calls, we include

(a) the name of the called mixin

(b) the total number of arguments passed to the mixin

3. For mixin declarations, we include

(a) the name of the mixin

(b) the number of times the mixin is called

(c) the number of its parameters

(d) the number of declarations which directly or indirectly (i.e., using nesting) exist inside

the body of the mixin

(e) the number of declarations in the body of the mixin which use at least one of the param-

eters of the mixin

(f) the number of declarations styling vendor-specific properties (e.g., -webkit-column-gap

for Chrome and Safari, -moz-column-gap for Firefox)

71

(g) the number of distinct parameters which are used for two or more different property types

(e.g., a parameter used for styling the top and margin properties)

(h) the number of style declarations using only hard-coded (i.e., literal) values

(i) the number of vendor-specific style declarations which share at least one of the mixin’s

parameters

4. For each nested style rule, we include

(a) the selector (as string) of the nested style rule,

(b) the number of base selectors the style rule’s selector consists of (e.g., the grouping selector

H1, A > B consists of two base selectors, namely H1 and A > B)

(c) the number of combinators in the list of the nested style rule’s base selectors (note that,

the presence of a combinator indicates a missed nesting opportunity)

(d) the nested style rule’s parent selector (as string)

5. For each use of the extend construct, we include the selector (as string) of the target style rule

which is extended.

In order to count the number of times a mixin is called, we analyze the CSV file containing the

mixin calls in order to extract the number of calls having the same name with that of the mixin

declaration. If multiple mixin declarations have the same name (i.e., mixins with an identical name

declared in different preprocessor files), then we count only the number of calls having the same

name and belonging to the same file with that of the mixin declaration.

5.4 Empirical Study

In this study, we investigate the use of the following preprocessor features: variables, nesting, mixin

calls and extend constructs. Targeting the goals mentioned in Section 5.1 (developing better migra-

tion and refactoring recommendation systems and giving feedback to preprocessor language design-

ers), we attempt to answer the following research questions:

RQ1 How do developers use variables in preprocessors?

We aim at investigating whether developers have a particular preference to global or local

scope variables, and the types of style values stored in the variables.

RQ2 Do developer use nesting whenever possible?

We are going to investigate whether developers use nesting in every possible situation, or only

when the benefits to maintainability are stronger (e.g., in deep hierarchies of elements).

72

RQ3 How and why do developers use mixins?

For mixins, several dimensions will be investigated, namely:

a) Are mixins created to be reused in a style sheet?

b) Do mixins tend to have a large number of parameters?

c) Are mixin parameters reused in multiple style properties?

d) What is the nature of declarations inside the body of mixins? For instance, do developers

use mixins for grouping a set of related declarations (e.g., declarations which style the

same property for different web browsers)?

RQ4 Do developers use the extend construct whenever possible?

Given the fact that an extend construct can be used in place of a parameterless mixin (because

they are both used to remove duplication of declarations), we are going to investigate whether

developers have a preference to use parameterless mixins over the extend construct or vice

versa.

In the following subsections, we answer the abovementioned research questions.

5.4.1 Variables

We investigate whether developers declare variables in the global scope (i.e., for the entire style

sheet), or they mostly prefer local variables (e.g., inside a mixin or a style rule). Gaining such

knowledge can be beneficial in devising migration or refactoring techniques, because, as mentioned

before, variables can be used to store one or more style values repeated across different style rule, and

thus facilitate the maintainability of the code. Therefore, a migration (or refactoring) algorithm can

detect such value-level duplications in pure CSS (or preprocessor code) and suggest the introduction

of appropriate variables. Based on our empirical findings, we can align the refactoring recommen-

dations with the practices which are more commonly applied by the developers, when there are

multiple alternative Introduce-Variable refactoring opportunities in the local or global scope.

As shown in Table 6, out of 3,651 total variable declarations in the dataset, there are 3,260

global variables (89.29% of the total variable declarations). On the other hand, only 10.71% of the

variable declarations are in the local scope (note that we do not count mixin parameters as variable

declarations). This clearly shows a preference of the developers to define variables in the global

scope.

In addition, we are interested in understanding the types of the values stored in the variables.

We categorized all possible value types that are allowed in preprocessors, as shown in Table 7, and

counted the instances of the variables belonging to each category.

73

Table 6: Scope of variables

Global (%) Local (%) Total

Less 956 (95.79) 42 (4.21) 998

Sass 917 (84.67) 166 (15.33) 1,083

SCSS 1,387 (88.34) 183 (11.66) 1,570

Total 3,260 (89.29) 391 (10.71) 3,651

In Figure 26, we have demonstrated the percentage of variable instances in each value category,

for each of the analyzed preprocessors. As it can be observed, most of the variable declarations are

used for color values. This accounts for 45.98% of all variables defined in the three datasets. Values

in this category consist of the named and Hexadecimal colors, in addition to color functions, such

as rgb() and rgba(). This observation shows that variables are mostly used for facilitating the

modifications to the theme of web pages (i.e., same structural layout with different color themes).

As it can be observed in Figure 26, there is a considerable use of expressions for the initialization of

preprocessor variables. These expressions are either direct references to previously-defined variables,

or mathematical expressions manipulating the values of existing variables (e.g., @opac2: @opac1

+ 0.2). In this way, the preprocessor developers can easily modify existing themes and layouts.

It should be mentioned that, there was one file in the Sass dataset in which the developer

used variables for all the declarations defined in the file. This practice is definitely uncommon in

developing CSS preprocessor code, and it can negatively affect the results of this study by changing

the number of times a certain value type is used. Thus, we excluded this single file from this specific

analysis for counting variable types.

RQ1 Conclusions: Developers mostly declare global variables (89.29% of

the variable declarations have a global scope), and especially variables storing

color values (45.98% of the variable declarations have a color value). Hence, any

migration/refactoring technique should rank higher the suggestions that

introduce variables for identical values across different style rules and mixins,

leading to the introduction of global variables. Recommendations can also be

prioritized based on the types of the involved values, giving higher priority to

those involving color values.

74

Table 7: Categorization of value types

Category Value Type Example

Number

Angle 45deg

Integer -13

Length 18px

Number 4.01

Percentage 50%

Resolution 72dpi

Time 5ms

Number function floor()

Color

Named color red

Hexadecimal #FF00FF

Color function rgb(50, 0, 0)

Identifier
User-defined nice-animation

CSS keyword top

String
Unicode string enclosed in " " or ‘ ’ "Concordia"

String function replace()

Function call Excluding number, color, string functions svg-gradient()

URL Resource path, using the url() function url()

Expression Expression involving other variable(s) @opac1+0.2

List Space-separated list of the above-mentioned types of variables solid 1px red

5.4.2 Nesting

In this subsection, we examine how developers take advantage of nesting in preprocessors. Our

investigation shows that nesting is a construct that is widely used by the developers. In Table 8, we

present the collected data for nesting usage in the three subject preprocessors.

As it can be observed in Table 8, out of all 49,187 style rules, there were 38,605 style rules which

were either already nested or could be potentially nested. Out of this number, there were 30,120

style rules (78.02%), which were actually involved in some nesting hierarchy, i.e., they had at least

one style rule nested under them, or were nested under another style rule. On the other hand, in

the whole dataset, there were 8,485 style rule which could be nested, but developers did not apply

75

Color Number Identifier List Function String Url Expression

Less Sass SCSS

54.7

34.8

46.4

19.1

15

17.3

2

10.8
12

3.5

6.1
7.1

0.1

7.5

3.4
1.7

6.7

2.4
0.9

3.2

0.4

17.9
15.9

11.1

0
5

1
5

2
5

3
5

4
5

5
5

Figure 26: Variable types distribution (numbers represent percentages)

Table 8: Use of nesting

Less Sass SCSS Total

Number of all style rules 12,390 18,555 18,242 49,187

Number of style rules involved in nesting 6,481 13,370 10,269 30,120

Number of potential nesting opportunities 2,685 1,939 3,861 8,485

Number of all nestable style rules 9,166 15,309 14,130 38,605

nesting for them. These selectors of these style rules are basically combinators, pseudo-classes, and

pseudo-elements (Section 5.2.2), which can be refactored to take advantage of nesting .

To gain more knowledge about nesting practices, we also investigated the nesting depth in pre-

processor files. We define the nesting depth of style rule s, which is nested under style rule p, as

the depth of style rule p plus one. The depth of a top-level style rule (i.e., a style rule which has no

parent in the nesting hierarchy) is equal to zero.

Figure 27 demonstrates the box plots along with the violin plots (for exhibiting the distribution

of values) for the nesting depth of style rules in the examined style sheets. As it can be observed,

the median of the nesting depth is 2 in all three datasets (for the SCSS dataset, the third quartile

is the same as the median, both equal to 2). This means that, in half of the cases, style rules are

nested only one or two levels deep, which is a clear indicator that developers prefer to nest style

rules even for very shallow nesting hierarchies.

76

SCSS

Sass

Less

1 2 3 4 5 6 7 8 9 10

Figure 27: Nesting depth

RQ2 Conclusions: nesting is a very popular preprocessor feature that is

widely used by the developers (78.02% of the style rules are nested), even in very

shallow nesting hierarchies consisting of one or two levels. Given this result,

any migration/refactoring technique should support the recommendation

of nesting refactoring opportunities, wherever it is possible.

5.4.3 Mixin Calls

We examined the use of preprocessor mixins, taking into account four different dimensions.

Number of mixin calls

Our goal is to understand whether mixins are created to be reused (i.e., called by multiple style

rules or other mixins), or whether they are created to decompose style rules by extracting a subset

of relevant declarations from them (i.e., called by only one style rule). In the former case, mixins

are used to eliminate duplication of declarations in the CSS code.

For answering this question, first we counted the mixin calls for each mixin declaration. As

shown in Figure 28, the median value for number of times each mixin is called is 2 for Less and

Sass, and 3 for SCSS. Overall, we found out that 63% of the mixins are called more than once.

In addition, we applied the Wilcoxon Signed-Rank Test on the paired samples of the numbers

of mixins being called just once and of those being called more than once in each website with the

following null hypothesis: “the number of mixins being called once is larger than the number of

mixins being called more than once”. The null hypothesis was rejected with significance at 95%

confidence level (p-value = 0.00003), and thus we can conclude that the mixins being called more

than once are more than the mixins being called only once.

77

2 72

SCSS

Sass

Less

1 2 5 82 753 382

Figure 28: Number of mixin calls

There were some interesting cases that we found during the analysis of the results. In the SCSS

dataset, there was a mixin which was called 382 times. Closer investigation revealed that this case

was a mixin which was used for generating style rules belonging to different @media at-rules (i.e.,

having different Media Queries [Con12]). We discussed that @media at-rules provide the possibility

of defining alternative styles for different media, e.g., a high-resolution monitor, or the display of a

mobile or wearable device. It turned out that the developer called this mixin inside the majority of

the style rules to avoid the effort needed to rewrite the complete @media declaration. On the other

hand, in the Sass dataset, there was a website for which the designers used the same animation for

several elements in the web pages. Consequently, 75 mixin calls referred to a mixin which included

style declarations for these animations. Finally, the maximum number of calls to a mixin in the Less

dataset was 72, which occurred for a mixin that was used for defining the size of fonts in the target

documents. In other words, this mixin was called whenever a font-size was to be defined. These

cases essentially show that mixins can be employed for a wide range of purposes when developing

style sheets.

Size of mixins

We counted the style declarations which were placed directly or indirectly inside each mixin, as a

measure for mixins size. By indirectly, we refer to the declarations which belong to the style rules

being nested under the examined mixin. Here, the goal is to investigate whether developers tend to

keep mixins short, similar to what is suggested for their counterparts in traditional programming,

i.e., functions. As shown in Figure 29, the median of the number of declarations is 3 in all three

datasets. Further analysis shows that only 20% of the mixins include more than 5 declarations in

the whole dataset, suggesting that developers mostly prefer to develop mixins having 5 declarations

or less.

78

68

SCSS

Sass

Less

1 2 3 5 4848

Figure 29: Number of property declarations inside mixins

Number of parameters

We are also interested to investigate whether mixins tend to have a large number of parameters

or not. As it is exhibited in Figure 30, the median value for the number of parameters in mixin

declarations is equal to one in all datasets. We further found that 68% of the mixins have either

one or no parameters. The difference in the number of declarations inside mixins and the number of

mixin parameters possibly shows that, in most of the cases, mixins either have hard-coded values for

the majority of the properties defined inside their body, or their parameters are reused in multiple

property declarations. We will investigate the reuse of parameters in the next subsection.

0 1 2 6

SCSS

Sass

Less

0 1 2 6 15

Figure 30: Number of mixin parameters

Parameter reuse

We attempted to examine the hypothesis that parameters are reused in multiple declarations. We

should first note that style properties in CSS are divided into two categories:

1. Properties which are common across different web browsers;

2. Properties which are specific to one web browser (i.e., vendor-specific properties).

79

RQ3 Conclusions: Two thirds of the mixins are reused two or more times.

Given that, any migration/refactoring technique should suggest extract-

ing mixins even when there is a small number of style rules sharing the same

set of declarations (i.e., to avoid declaration-level duplication). In addition,

such a technique should rank higher the suggestions which have small number

of parameters (i.e., small number of differences in property values), and include

declarations for vendor-specific properties. Moreover, the preprocessor lan-

guage designers should consider creating built-in mixins for vendor-specific

properties, because a considerable amount of mixins (42%) are used for styling

this kind of properties.

5.4.4 The “Extend” Construct

Finally, we examine the usage of the extend construct. As mentioned in Section 5.2, the extend

construct is used to eliminate declaration-level duplication, similar to mixins. While mixins can

have parameterized declarations in their body (in contrast to the extend construct), a parameterless

mixin may be thought to have the same use as the extend construct. However, one should note

that these constructs will result to different CSS code. A use of the extend construct will compile

to a style declaration with a grouping style rule (as shown in Figure 23), while the code inside a

mixin will be duplicated in the generated CSS code in all the places where the mixin is called. In

other words, the use of mixins introduces duplication in the generated CSS code; consequently, the

developer may be tempted to use the extend construct over parameterless mixins.

On the other hand, when using the extend construct, the preprocessor compiler places the re-

sulting style rule with the grouping selector in the position of the style rule being extended in the

generated CSS code (Figure 23). This changes the relative order of the style rules in the style sheet,

which may result in changing the presentation semantics of target documents, due to the existing

order dependencies between the style rules. As a result, developers should take extra caution when

using the extend construct, and make sure that these order dependencies will not break. This might

be a factor that makes developers reluctant to use the extend construct.

As shown in Table 5, on average there were around 5 usages of the extend construct per file, in

the Sass and SCSS datasets (in total 204 and 676 usages, respectively). At the same time, we did

not find any use of the extend construct in the Less dataset. This could be justified by the fact that

the extend construct was more recently introduced in the Less preprocessor (version 1.4 released in

June 2013), so developers might have not started yet using this feature in a systematic way.

81

RQ4 Conclusions: Developers tend to prefer using parameterless mixins over

the extend construct, possibly because mixins do not affect the presentation

semantics of the target documents. As a result, any migration/refactoring

technique should give higher priority to opportunities introducing parameter-

less mixins, especially when the alternative solution using the extend construct

cannot guarantee that the presentation of the target documents will be pre-

served. The preprocessor compilers can be enhanced to warn developers

about potential styling bugs caused by the incautious use of the extend con-

struct.

5.5 Threats to Validity

For minimizing the threats to the external validity of this study, we selected two CSS preprocessors

which are known to be the most widely used by web developers [Coy12], namely Less and Sass.

Additionally, we used the two dialects that Sass preprocessor supports (Sass and SCSS). Moreover,

to make the results of the study as generalizable as possible, we examined 150 websites from a wide

range of application domains.

To avoid selection bias, we included in the list of subjects the top-50 websites for each preprocessor

language/dialect, as returned by the Google search engine. As a result, we were not involved in any

kind of selection process.

To support the reliability of the study, we have made available the artifacts, which are necessary

for replicating the experiment. These include the preprocessor files that we collected, the code we

implemented for parsing Less and Sass/SCSS files and querying their ASTs, the CSV files resulting

from querying the ASTs, and the R scripts that we developed for the statistical analysis [MT16c].

5.6 Chapter Summary

In this study, we examined the preprocessor codebase of 150 websites to investigate the usage

patterns of four language features, namely variables, nesting , mixins and extend constructs. We

found out that developers frequently use all these features whenever possible, and gained some

valuable knowledge which certainly can help us in devising migration/refactoring techniques and

providing feedback to the preprocessor language designers. In summary the take-home messages of

the study are:

1. Developers have a clear preference for global variables (89.28% of the variable declarations

83

have a global scope), and especially variables storing color values (45.98% of the variable

declarations have a color value).

2. Developers widely use the nesting feature (78% of the style rules are nested), even in very

shallow nesting hierarchies consisting of one or two levels.

3. Developers tend to reuse mixins (63% of the mixins are called two or more times). They also

tend to create mixins with a small number of parameters (68% of the mixins have either one or

no parameters), and a relatively small size (80% of the mixins include 5 or less declarations).

Finally, 42% of the mixins are used for styling vendor-specific properties.

4. While both parameterless mixins and the extend construct can be used to eliminate declaration-

level duplication in the preprocessor code, developers tend to prefer using parameterless mixins

to avoid the caveats associated with the extend construct.

The gained knowledge in this chapter is valuable for future research, however, we acknowledge

the need for a qualitative user study with real-world developers, for triangulating the results of

our quantitative study. Unfortunately, as the websites which have been investigated in this study

were collected using a web search engine (Google), we did not have access to the developers of the

analyzed preprocessor files.

As mentioned before, the lessons learned in this study provide us insights for devising techniques

to automatically migrate existing CSS code to preprocessor code. In the next chapter, we propose

a technique that detects declaration-level duplication and extracts mixins to eliminate them.

84

Chapter 6

Migrating CSS to Preprocessors by

Introducing mixins

6.1 Introduction

Despite the gradual adoption of CSS preprocessors in the web development community, there is still

a large portion of front-end developers and web designers using solely “vanilla” CSS. As mentioned

before, an online poll with nearly 13,000 responses from web developers [Coy12] revealed that 54%

of them are using CSS preprocessors. However, the remaining 46% develop only in “vanilla” CSS,

probably because they are not aware of preprocessors and the maintainability improvements that

can be gained, or because they are dealing with legacy CSS that is not easy to be migrated to CSS

preprocessors. Therefore, there is a large community of web developers that could potentially benefit

from tools helping them in automatically migrating “vanilla” CSS code to a preprocessor of their

preference. Indeed, there are several stories about such migrations in the industry [Ble15, Na15].

A representative migration story happened in 2014 at Etsy1. Etsy had more than 400,000 lines

of legacy CSS code spread over 2000 files developed over the course of 10 years. The developers at

Etsy created an in-house tool for migrating the entire CSS code base to Sass automatically [Na15]:

as every CSS file is also a Sass file (since Sass is a superset language for CSS), the migration tool

renamed all *.css files to *.sass, and only took care of syntactical errors existing in CSS files.

This is because Sass compiler catches all the mistakes in the code, unlike web browsers which are

lenient on the mistakes. For example, having background_color instead of background-color in

the CSS code is ignored in web browsers and does not stop the CSS code from being interpreted,

while the Sass compiler would normally throw an error if it encounters such mistake.

1A widely popular peer-to-peer e-commerce website (https://www.etsy.com)

85

Etsy’s migration tool essentially missed the opportunities of using many of the Sass features

(e.g., nesting , variables, and mixins). For example, developers needed to manually introduce mixins

in the code base, and automatic CSS to preprocessor migration tools could effectively save this

manual effort.

This is the first work to investigate the automatic extraction of duplicated style declarations in

CSS into mixins in CSS preprocessors, enabling the reuse of existing CSS code. Using mixins can

also improve the readability of Style Sheets by assigning descriptive names to them. According to

the results of the previous chapter, developers introduce mixins mostly for reusing code in Style

Sheets (63% of the mixins were called more than once in the code base of each project), but also

for breaking long style rules in smaller code fragments, or simply improving code readability. The

proposed approach for abstracting duplicated style declarations to mixins is one of the fundamen-

tal requirements for developing a full-fledged recommendation system that can help developers to

migrate existing CSS code to preprocessors.

As a matter of fact, in this study we found several cases where professional developers that

already use CSS preprocessors also under-utilize them. In other words, there are several missed

opportunities in existing preprocessor code bases. As we will see, the techniques proposed in this

chapter can also be useful for helping developers to utilize mixins more effectively.

This work makes the following contributions:

• We propose a method for detecting opportunities to automatically extract mixins from existing

CSS code. The approach is preprocessor-agnostic, i.e., it is applicable for all CSS preprocessors

supporting the notion of mixins;

• We propose a method for assuring that the presentation semantics of the CSS code are pre-

served after migration;

• We conduct an empirical study with real websites and Style Sheet libraries using preprocessors

to verify the correctness and effectiveness of our approach.

Note: Earlier version of the work done in this chapter has been published in the proceed-

ings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE

2016) [MT16b].

6.2 Abstraction Mechanisms in CSS Preprocessors

Remember that the two main features of CSS preprocessor languages that can be used for eliminating

duplicated style declarations in Style Sheets (additional to using style rules with class and grouping

selectors in pure CSS) are the extend constructs and mixins.

86

Extend enables the reuse of style declarations across style rules. The extending style rule inherits all

style declarations of the extended style rule, and can optionally override some of the inherited

style declarations in order to change their style values, similar to inheritance in the object-

oriented paradigm.

Mixin is a function-like construct containing a set of style declarations, optionally with parameter-

ized style values. A mixin is usually called inside the body of a style rule or another mixin by

passing style values as arguments for its parameters. A mixin parameter may have a default

value, allowing to omit the corresponding argument.

In the case of exactly duplicated style declarations across different style rules, one may use

either the extend construct or a parameterless mixin for eliminating duplication. However, we

showed that developers prefer to use parameterless mixins over the extend construct (28% of the 100

analyzed websites exclusively used parameterless mixins, while only 9% used the extend construct),

probably due to the styling bugs that may be caused by the incautious use of the extend construct.

Additionally, mixins provide a more powerful reuse mechanism by allowing to parameterize the

values of style properties. Therefore, in this work, we propose an approach for detecting mixin

opportunities in CSS code that can help developers to safely migrate to a preprocessor of their

preference.

6.3 Automatic Extraction of Mixins

Our approach for detecting mixin migration opportunities is based on eliminating duplication at

the level of style declarations, and consists of four main steps, which are explained in the following

subsections.

6.3.1 Grouping Declarations for Extraction

The first step of our approach is to find sets of style rules sharing one or more style declarations

styling the same properties. The tuple 〈S, P 〉, where S is a set of style rules sharing a set of style

properties P is considered as a mixin migration opportunity.

Consider, for example, the preprocessor code snippet in Less syntax shown in Figure 33a, that

contains three style rules, namely .s1, .s2 and .s3, and a mixin declaration .m1, which is called in

style rules .s1 and .s2. When the piece of preprocessor code shown in Figure 33a is transpiled to

CSS, the code shown in Figure 33b is generated. As it can be observed, the mixin calls are replaced

with the style declarations of the called mixin, and the parameterized values are replaced with the

arguments passed in the corresponding mixin call.

87

database, and each style rule as a transaction. In contrast to the approach used in Chapter 4,

however, we treat each property corresponding to a style declaration as an item. In other words, we

use a more relaxed version of the algorithm that does not require the style declarations that form

an item to be equivalent.

We set the minimum support count of the algorithm to two again (i.e., the smallest possible

value). We selected this value because we have empirically shown that the median number of times

a mixin is called in real-world CSS preprocessor code is two (Chapter 5).

Once again, the FP-Growth algorithm [HPY00] was adopted, because it is considered efficient

and scalable. Applying the FP-Growth algorithm to the CSS code of Figure 33b will result in the

output shown in Table 9.

Table 9: Frequent itemsets of style properties

|P | S P

1

{.s1, .s2} {-moz-columns}

{.s1, .s2} {columns}

{.s2, .s3} {float}

{.s1, .s2, .s3} {font}

2

{.s1, .s2} {columns, -moz-columns}

{.s1, .s2} {columns, font}

{.s1, .s2} {-moz-columns, font}

{.s2, .s3} {font, float}

3 {.s1, .s2} {font, columns, -moz-columns}

Each row (itemset) in Table 9 constitutes a separate mixin migration opportunity. The mixin

.m1 in Figure 33a corresponds to the last itemset of the table, and it subsumes the first three itemsets

with |P | = 2, which in turn subsume the two first itemsets with |P | = 1.

6.3.2 Detecting Differences in Style Values

For a given mixin migration opportunity 〈S, P 〉, we need to check for every property p ∈ P , if

the corresponding style declarations have different (i.e., non-equivalent) values. For each difference

in the property values, a parameter should be introduced in the resulting mixin. However, the

parameterization of differences can be achieved in several alternative ways.

As an example, consider the CSS code shown in Figure 34a that contains two style rules for

selectors .s1 and .s2, respectively. Both style rules style property border, which is a well-known

89

know very well the CSS documentation regarding the individual style values that are manda-

tory and those that can be omitted (i.e., optional values), or the order of the individual style

values (in case of style properties where the order is important). Inexperienced CSS developers

would need to spend time studying the documentation in order to properly call a mixin with

such parameters.

3. Introduce a parameter for each pair of matching individual properties having non-equivalent

values in the corresponding shorthand property declarations (Figure 34d). In the example

shown in Figure 34a, the matching individual properties between the two style rules are rep-

resented with arrows. The dashed-line arrows indicate properties with equivalent values (e.g.,

the named color red and the hexadecimal color #f00 are not lexically identical, but are al-

ternative representations for the same color). The solid-line arrows indicate properties with

non-equivalent values that should be parameterized. This approach has two main advantages

over the other approaches. First, it introduces a minimal number of parameters compared

to the first approach, when some individual properties are styled with identical or equivalent

values (regardless of the order they appear in the shorthand property declarations). Second,

it allows to introduce parameters with more semantically expressive names compared to the

second approach, since the names of the matching individual properties can be used as param-

eter names (e.g., @style parameter in Figure 34d corresponding to the individual property

border-style).

Inferring Individual Style Properties

In our approach, we adopted the last parameterization strategy discussed in the previous section due

to its advantages over the other two strategies. To implement this strategy, we first need to infer

the individual style property (ISP) corresponding to each style value that appears within the style

declarations for the set of properties P declared in the set of style rules S. An ISP represents the role

of a style value in a style declaration, and corresponds to the actual individual style property this

value is being assigned to. Table 10 shows the ISPs that are assigned to the values of the border style

declarations in the example of Figure 34a. For instance, the pair of values corresponding to colors

(#f00 and red) are both assigned to the same ISP, which is the individual property border-color.

For the style properties that can accept only a single value (e.g., color, float), the ISP assigned

to their values is the same as the style property name. For shorthand properties (e.g., border,

background, columns), we refer to the CSS specifications [Wor17] for assigning an ISP to each

one of their values. In our current implementation, we have coded ISPs for 42 multi-valued and

shorthand CSS properties, which account for all major CSS properties used in Style Sheets. The list

of the currently-supported style properties is given in Table 11. When comparing two declarations

91

Table 10: Individual Style Properties (ISPs)

Declaration Style Value ISP

border: #f00 1px solid

#f00 "border-color"

1px "border-width"

solid "border-style"

border: dotted red thin

dotted "border-style"

red "border-color"

thin "border-width"

for parameterizing the differences in their values, we compare each pair of values corresponding to

the same ISP. We follow the same approach explained in Chapter 4 for examining whether two

values are equivalent.

Optional (omitted) values

We mentioned that some properties can have optional values in CSS. For instance, the property

font can accept 7 style values, while developers may omit 5 of them. In the case of omitted values,

web browsers follow the CSS specifications to compute them. In some cases, they assign initial (i.e.,

default) values to the omitted values. In other cases, the omitted value is calculated based on another

explicitly given value. Following the same approach, for every omitted value we actually compute

a virtual value, and also assign the appropriate ISP to it. This allows parameterizing declarations

having an unequal number of style values, e.g., font: bold 10pt Tahoma and font: 18pt Arial.

In this example, the first declaration is styling the font-weight ISP with the explicitly-defined

value bold, while the second one styles the same ISP with the default value normal.

Shorthand vs. individual properties

Another possible scenario is having some style rules taking advantage of shorthand properties, while

other style rules are instead declaring separately individual properties (this is similar to having type

III CSS duplication, as defined in Chapter 4, with the exception that style values are not considered

in the comparison).

Consider the CSS example shown in Figure 35a. Style rule .s1 contains four separate style decla-

rations for the individual properties margin-top, margin-right, margin-bottom, and margin-left,

while style rule .s2 contains a single style declaration for the shorthand property margin. Note that,

the last value in the margin declaration is omitted (i.e., there are three values instead of four). This

92

Table 11: List of the supported style properties

Non-shorthand properties Shorthand properties

background-position border-radius

background-size margin

background-clip padding

background-origin border-width

background-image border-style

background-repeat border-color

background-attachment border

border-top-left-radius border-bottom

border-top-right-radius border-left

border-bottom-right-radius border-right

border-bottom-left-radius border-top

transform outline

transform-origin column-rule

perspective-origin columns

border-spacing list-style

text-shadow transition

box-shadow font

font-family background

content

transition-property

transition-duration

transition-timing-function

transition-delay

quotes

93

Algorithm 2: Algorithm for introducing a mixin

Input : A mixin migration opportunity MO = 〈S, P 〉

Output: A mixin declaration M = 〈Mp,Md〉

A mapping of selectors to lists of mixin arguments

1 Mp ← ∅ // the ordered set of mixin parameters

2 Md ← ∅ // the ordered set of mixin style declarations

3 foreach s ∈ S do

4 Ma(s) ← ∅ // the list of mixin arguments for s

5 end

6 foreach p ∈ P do

7 differences ← getISPsWithNonEquivalentValues(p, S)

8 template ← generateStyleDeclarationTemplate(p, S)

9 foreach ISP ∈ template.ISPs do

10 if ISP ∈ differences then

11 param ← newMixinParameter(ISP)

12 Mp ← Mp ∪ param

13 ISP 7→ param // map ISP to mixin parameter

14 foreach s ∈ S do

15 d ← getStyleDeclaration(p, s)

16 arg ← getStyleValue(ISP, d)

17 Ma(s) ← Ma(s) ∪ arg

18 end

19 end

20 else

21 s ← S0 // get the first style rule in S

22 d ← getStyleDeclaration(p, s)

23 value ← getStyleValue(ISP, d)

24 ISP 7→ value // map ISP to common value

25 end

26 end

27 Md ← Md ∪ template

28 end

95

Generating mixin declaration

In order to create the mixin declaration, the algorithm generates a style declaration template (line 8)

for each property p in the set of style properties P . Function generateStyleDeclarationTemplate

goes through all declarations styling p in the set of style rules S and finds the union of ISPs that

are assigned with values. This approach can guarantee that all affected ISPs will be present in the

template, even if some style declarations omit the definition of optional values. Next, for each ISP

in the template, the algorithm checks if the assigned style values are equivalent or not. If the values

are different, the ISP is mapped to a new mixin parameter, which is also added to the parameter

list of the mixin declaration. Otherwise, the ISP is mapped to the commonly assigned value in

all style rules. Finally, the resulting template after the mapping of all ISPs is added to the list of

style declarations inside the body of the mixin declaration. It should be emphasized that the order

of the style declarations inside the mixin follows the relative order of the style declarations in the

original style rules from which they were extracted. As it will be explained in Section 6.3.4, this

is essential for preserving the presentation of the target documents, in the case where some style

declarations have order dependencies with each other. In such a case, an ordering that reverses the

original order dependencies between the style declarations would affect the values assigned to the

ISPs, thus changing the presentation.

Unifying mixin parameters

Developers tend to create small number of parameters for mixins, as discovered in our empirical

study (Chapter 5). Consequently, exploring ways to even further minimize the number of introduced

parameters for mixins might help in recommending mixins that are probably more acceptable by

developers.

Consider, for instance, the real code snippet taken from the W3C.CSS framework2 illustrated in

Figure 36a. Suppose that we would like to extract a mixin for the duplicated style declarations in

this code. As it is observed, there are 2 sets of matching style declarations (i.e., style declarations

with the same property names) repeated across the style rules, corresponding to the padding-top

and padding-bottom style properties. In each set, one style value is different across all the style

rules, meaning that it requires parameterization for extracting a mixin. Consequently, if we create

one parameter for each of these sets of matching yet different style values using Algorithm 2, the

mixin will need two parameters (as shown in Figure 36b). Moreover, in all the call sites of the mixin

we would also need to pass two arguments.

It is, however, observed in Figure 36a that the style values are consistently repeated across the

non-matching style declarations. In other words, the values for the padding-top and padding-bottom

2A CSS framework “with built-in responsiveness” (https://www.w3schools.com/w3css/)

96

on the words constituting the ISPs corresponding to a unified parameter, treating each word as a

single unit in the algorithm.

For example, suppose that we would like to unify two parameters, corresponding to the border-left-style

and border-right-style ISPs. The former ISP is treated as ABC, and the latter as ADC – note also

that we use the same letter for the same word to allow the LCS algorithm find the common words.

In this example, the LCS is equal to AC, corresponding to the term border-style, which is selected

as the name of the parameter. In Figure 36c, using this approach has led to selecting @padding as

the name of the introduced, unified parameter.

In the cases that the LCS algorithm cannot find a common subsequence (which, for instance,

happens when unifying two parameters that are not related ISP-wise, like for the left and float

ISPs), the term @argX is selected for the parameter, where X is an integer, increased for each such

parameter in the mixin.

Note that, the same approach can be employed for naming the extracted mixins as well. Here,

we can run the LCS algorithm on the property names of the style declarations defined within the

mixin, with a similar treatment for the constituting words.

In any case, as we will see in Chapter 7, the developer has full control over the suggested

parameter names before applying the refactoring.

Adding mixin calls to style rules

Given the mixin migration opportunity MO = 〈S, P 〉, for each one of the style rules in S, a call

to the generated mixin should be added. Whenever the assigned style values for a given ISP are

not equivalent, the algorithm goes through all style rules in S, and for each style rule s appends to

the corresponding list of mixin arguments Ma(s) the actual value assigned to the ISP by s (lines

14-18). At implementation level, in each style rule s the style declarations corresponding to the set

of properties P are removed, and a mixin call with the argument list Ma(s) is added.

6.3.4 Preserving Presentation

In refactoring, preserving the behavior of the program is very critical [Opd92]: the refactored pro-

gram should have exactly the same behavior as the original program before refactoring. In a similar

manner, any refactoring or migration operation applied to CSS code should preserve the presenta-

tion of the target documents (i.e., the style values applied to the DOM elements after refactoring

should be exactly the same as before refactoring). Therefore, in the context of CSS, program be-

havior corresponds to document presentation, and any CSS refactoring/migration technique should

make sure that document presentation is preserved.

98

border declaration, and we place the mixin call at the end of .a, as shown in Figure 37b. The

preprocessor will then generate the CSS code shown in Figure 37d, where the border declaration is

placed after the border-bottom declaration. This will invert the original overriding relation between

the two declarations, resulting to the undesired presentation shown in Figure 37f (i.e., a styling bug).

Therefore, placing the mixin call in an incorrect position can actually change the presentation of

the target documents.

We define an intra-style rule order dependency from style declaration di to dj (both declared in

the same style rule) due to individual property isp, denoted as 〈di〉
isp
−−→ 〈dj〉, iff:

a) declarations di and dj set a value to individual property isp and have the same importance

(i.e., both or none of the declarations use the !important rule),

b) declaration di precedes dj in the style rule.

To ensure that the presentation of the target documents will be preserved, we define the following

preconditions:

Precondition 1 : The addition of a mixin call in a style rule should preserve all

order dependencies among the style declarations of the rule.

Similar to the approach that we took for finding the right position of the new style rule when

refactoring duplicated code within CSS (Chapter 4), the problem of finding an appropriate position

for calling the extracted mixin m inside the body of a style rule can be also expressed as a Constraint

Satisfaction Problem (CSP) defined as:

Variables The positions of the style declarations involved in order dependencies including m.

Domains The domain for each variable is the set of values {1, 2, ..., N −M + 1}, where N is the

number of style declarations in the original style rule, and M is the number of style declarations

extracted from the style rule to m.

Constraints Assuming that m contains style declarations assigning values to the set of individual

properties ISPs, an order constraint is created in the form of pos(di) < pos(dj) for every order

dependency 〈di〉
isp
−−→ 〈dj〉 where isp ∈ ISPs

In the example of Figure 37c, there is one order dependency:

border: solid 3px red
border-bottom-style
−−−−−−−−−−−−−→ border-bottom: none

resulting to the following constraint:

100

pos(border) < pos(border-bottom)

Based on this constraint, the call to .mixin1 should be placed at any position before the

border-bottom declaration to preserve the presentation of the target document in Figure 37a. If

there are multiple conflicting order dependencies between the mixin call and declarations of the style

rule, it might be necessary to reorder some style declarations in order to comply with the solution

returned by the solver. On the other hand, if the CSP is unsatisfiable (i.e., no solution is found) the

corresponding mixin migration opportunity is excluded as non-presentation-preserving.

Precondition 2 : The ordering of the style declarations inside a mixin should

preserve their original order dependencies in the style rules from which they

are extracted.

This precondition is checked by extracting the original order dependencies between the style

declarations inside mixin m from each style rule where m will be called. Assuming that m contains

style declarations assigning values to the set of individual properties ISPs, if there exist two style

rules si and sj , where an order dependency for the same isp ∈ ISPs is reverse, i.e., 〈si, dk〉
isp
−−→

〈si, dl〉 vs. 〈sj , dl〉
isp
−−→ 〈sj , dk〉, then there is an order dependency conflict between si and sj , and

the corresponding mixin migration opportunity is excluded as non-presentation-preserving.

6.4 Evaluation

To assess the correctness and usefulness of the proposed technique, we designed a study aiming to

answer the following research questions:

RQ1: Does the proposed technique always detect mixin migration opportunities that preserve the

presentation of the web documents?

RQ2: Is the proposed technique able to find and extract mixins that developers have already intro-

duced in existing CSS preprocessor projects?

6.4.1 Experiment Design

Selection of Subjects

To be able to answer the aforementioned research questions, we need to create a dataset of CSS

files, which actually contain opportunities for introducing mixins by grouping style declarations

duplicated among different style rules.

101

We relied on the dataset of our previous study (Chapter 5), which was used to investigate the

practices of CSS preprocessor developers by analyzing the code base of websites using two different

preprocessors, namely Less and Sass. More specifically, out of 50 websites in which style sheets

were developed using Less, we selected the preprocessor code base of 21 websites, in which at

least one mixin declaration was called at least two times, since a mixin called more than once in

the preprocessor code will result in duplicated style declarations in the generated CSS code. Our

approach should be able to reproduce the original mixins declared in the preprocessor files, and

possibly recommend other mixin opportunities that the developers might have missed.

We further extended this dataset with the CSS code generated from the preprocessor source code

of eight popular Style Sheet libraries. We expect that the selected libraries apply the best practices

regarding mixin reuse, since they are developed by very experienced developers. The complete list

of the selected websites and libraries, along with the number of Less files and CSS files (resulting

from transpiling Less files), the number of developer-defined mixins, the total number of style rules

and declarations (representing the size of the analyzed CSS files), and the number of migration

opportunities detected by our approach for each subject are shown in Table 12. The collected data,

in addition to the implemented tools are available on-line [MT16d].

To better demonstrate the size characteristics of the examined CSS files, we show the distribution

of the number of style rules and declarations defined in these files in Figure 38a and Figure 38b,

respectively. The scale of the box plots and the underlaid violin plots is logarithmic, and the

horizontal bars correspond to the median values. The examined libraries tend to have more style

rules and declarations than the examined websites. Figure 38c shows the plots for the number of

mixin migration opportunities detected by our approach per CSS file in the dataset. As it can

be observed, the median number of opportunities is 73 and 163, for the libraries and websites,

respectively. In order to control for the CSS file size, and perform a fair comparison between the

number of mixin migration opportunities in libraries and websites, we further normalized the number

of opportunities detected in each CSS file by the number of style declarations defined in it. The

normalized medians are 0.13 and 0.35 for the libraries and websites, respectively. This result shows

that although the CSS code generated by libraries is larger in size than the code generated by the

examined websites, the libraries tend to have less duplicated style declarations (and thus less mixin

migration opportunities) than the examined websites. We can consider this as an indication that

the preprocessor code of libraries is better designed.

102

Table 12: Overview of the collected data

Name #
L
e
s
s

fi
le

s

#
C

S
S

fi
le

s

#
A

c
t
u
a
l
m

ix
in

s
†

#
S
ty

le
R

u
le

s

#
D

e
c
la

r
a
t
io

n
s

#
D

e
t
e
c
t
e
d

O
p
p
o
r
t
u
n
it
ie

s

W
eb

si
te

s

aisandbox.com 3 2 6 113 443 188

auroraplatform.com 2 1 1 83 247 100

bcemsvt.org 17 2 2 163 327 70

brentleemusic.com 13 1 13 861 2344 944

campnewmoon.ca 2 1 3 218 527 162

chainedelespoir.org 28 1 8 290 1081 528

chunshuitang.com.tw 1 1 1 176 511 165

colintoh.com 9 2 4 59 174 48

first-last-always.com 16 1 6 339 1116 638

florahanitijo.com 4 1 11 189 822 273

greatlakeshybrids.com 1 1 3 104 373 168

hotel-knoblauch.de 1 1 2 199 446 119

intertelecom.ua 1 1 6 393 1329 708

jutta-hof.de 2 1 3 171 560 245

kko.com 1 1 1 98 255 84

med.uio.no 80 1 6 762 1622 436

naeaapp.com 14 1 8 828 1507 382

neofuturists.org 12 3 11 522 1397 593

paulsprangers.com 5 1 3 125 337 64

schwimmschule-spawala.de 2 1 8 171 560 537

summit.webrazzi.com 1 1 1 84 261 96

L
ib

ra
ri

es

base 20 1 2 489 736 114

essence 119 7 11 4571 5939 615

flatui 60 1 15 1139 2631 1346

formstone 36 5 4 145 387 120

kube 16 1 6 374 807 206

schema 22 1 12 536 1524 284

skeleton 1 1 2 95 222 45

turret 83 1 34 1762 2687 307

Total 572 44 193 15059 27811 9585

† includes only the mixins, which are called at least two times

103

The only conditions that could be violated from an erroneous introduction of a mixin are 3b

and 3c. Condition 3b could be violated, if the introduced mixin contains declarations for more, less,

or different individual style properties than those that were removed/extracted from the style rule

calling the mixin. Condition 3c could be violated if the parameterization of the differences in the

style values is not correct, or if the mixin call is not placed in the appropriate position inside a style

rule, or if the style declarations are not ordered correctly inside the mixin (Section 6.3.4).

Therefore, we developed a method to test conditions 3b and 3c that takes as input a CSS file C

and a mixin migration opportunity MO, applies MO on file C to generate the corresponding CSS

preprocessor code CP , then transpiles CP to obtain CSS file C ′, and examines the assertion:

For every pair of matching style rules (s, s′) defined in C and C ′, respectively,

style-map(s) ≡ style-map(s′).

Two style rules are considered as matching if they have an identical selector. Function style-map

takes as input a style rule and extracts a map in which the keys are the individual style properties

(ISPs) defined in the style rule, and each key is mapped to the final style value assigned to the

corresponding ISP, after all possible overrides. Two style maps are equivalent (≡) if their key sets

are equal, and the style values corresponding to each key are equal or equivalent. Two style values

are considered equivalent, when they are lexically different, but constitute alternative representations

for the same style value (e.g., red ≡ #F00).

Results: In total, we detected and applied 9,585 mixin migration opportunities and automatically

tested them using the aforementioned method. It should be emphasized that a large portion of these

opportunities overlap with each other (i.e., they affect common style rules and declarations), and

thus it is not possible to apply them sequentially, since the application of an opportunity will make

infeasible the opportunities it overlaps with. Therefore, we applied each one of them separately on

the original CSS files.

We observed several cases where our testing method found styling bugs, which were due to our

faulty implementation of style value inferencing. As an example, we found cases in which failing

to assign correct ISPs to style values led to their incorrect parameterization and, consequently, the

resulting preprocessor code was transpiled to a CSS file with different styling semantics than the

original CSS file. For instance, when a shorthand property is assigned with the value none, only

one of the ISPs is actually assigned with none, while the remaining ISPs are assigned with default

values. Our implementation was not inferring correctly the default values, and this caused problems

in preserving the presentation of the target documents.

105

Among the detected opportunities, there were 1227 cases, for which precondition #1 had to be

examined, because there were order dependencies between style declarations extracted in the mixin

and declarations remaining in the style rules where the mixin would be called. In one case, finding

a satisfiable solution for positioning the mixin call was not feasible, and thus the migration was not

performed. Moreover, there were 1190 cases, for which precondition #2 had to be examined. In all

these cases, the original order of the declarations inside the extracted mixin could be preserved.

Overall, none of the issues found using our testing method was due to a flaw in the approach we

proposed for detecting and extracting mixins. All issues were caused by implementation bugs that

were eventually fixed, resulting in 100% of the tests being passed. Consequently, we can conclude that

the mixin migration opportunities proposed by our approach are actually presentation-preserving.

RQ2: Detecting Mixins Defined by Developers

Motivation: The goal of RQ2 is to investigate whether our technique is able to recommend mixins

that a human expert (i.e., a developer with expertise in the use of preprocessors) would introduce.

Method: To evaluate this research question we first built an oracle of human-written mixins by

extracting all mixins in our preprocessor dataset being called at least two times. These mixins are

suitable for testing our approach, because they introduce duplicated style declarations in the style

rules where they are called after transpiling the preprocessor code to generate CSS code. The mixins

called only once in the preprocessor code cannot be detected by our approach, because they do not

introduce duplicated style declarations. Next, we transpiled each preprocessor file and applied our

technique to detect all mixin migration opportunities in the resulting CSS files.

A mixin m, created by applying the migration opportunity mo detected by our approach, matches

with a mixin m′ in the oracle, iff:

1. the set of ISPs styled by m is equal to or is a superset of the ISPs styled by m′,

2. m is called in at least all the style rules where m′ is called.

The first condition ensures that m styles the same set of properties as m′. This condition is

relaxed, so that m could style more ISPs than m′. This relaxation is necessary to deal with cases

where the preprocessor developer missed the opportunity to include additional style properties being

duplicated in the style rules from which m′ was extracted. The second condition ensures that m

is called in the same style rules where m′ was called. This condition is also relaxed, so that m

could be called in more style rules than m′. This relaxation is necessary to deal with cases where

the preprocessor developer missed the opportunity to reuse m′ in additional style rules. If m′ is

matched by applying the first relaxed condition, then m′ is not a closed frequent itemset, since there

is at least one superset with the same frequency.

106

Table 13: Threshold-based filtering of opportunities

Filter #Opportunities #Recovered Recall (%)

I None 9585 189 97.9

II #Declarations ≤ 7 8686 180 93.3

III #Parameters ≤ 2 4421 176 91.2

IV II & III 4320 169 87.6

6.4.3 Limitations

The success of a recommendation system is associated with the relevance of the recommendations to

its users, often measured in terms of precision and recall. Assuming that the mixins introduced by

developers (e.g., the oracle used in RQ2) constitute the gold standard, our approach can achieve very

high recall with a small number of undetected actual mixins (i.e., false negatives), but it generates

a large number of mixin opportunities, and some of them might be considered irrelevant by the

developers (i.e., false positives). Although, it is not possible to determine the actual number of false

positives without asking the developers’ opinion about the recommendations, it is certain that the

developers would like to inspect the smallest possible list of mixin opportunities that contains most

of the relevant ones.

Therefore, we investigated whether it is possible to reduce the number of generated mixin op-

portunities (i.e., recommendations) without jeopardizing recall. To achieve this, we filtered out the

mixin opportunities having a number of style declarations, or parameters above certain thresholds.

The threshold values were automatically derived from the box plot upper adjacent values for the

oracle used in RQ2. All data points above the upper adjacent value of the box plots are outliers

that correspond to abnormal mixins introduced by developers. Indeed, defining thresholds based on

box plot outliers is a statistical approach that has been also used in metric-based rules for detecting

design flaws in object-oriented systems [Mar04]. Table 13 shows the number of mixin opportunities

obtained using different filters along with the number of recovered mixins from the oracle. The

results show that it is possible to recover close to 90% of the oracle mixins with less than half of the

original opportunities by applying appropriate threshold-based filters.

Note that, in addition to the aforementioned threshold-based filters, our tool (Chapter 7) provides

other filtering and sorting features to further aid the developers in reducing the number of migration

opportunities and selecting the most appropriate ones to apply. For instance, the developer can hide

all the opportunities that involve a certain style property or a @media at-rule, and sort them based

on the number of style rules from which a mixin is extracted.

108

6.5 Comparison with Charpentier et al.’s Approach [CFR16]

As mentioned in Chapter 3, Charpentier et al. also worked on the similar problem of automated

extraction of mixins for CSS, in parallel to us. We gave a summary of their work in Chapter 3, and

here we compare it with our approach for detecting mixin migration opportunities in more detail.

As the authors implemented their technique in a tool called MOCSS, we call the approach with this

name henceforth.

6.5.1 Summary of the Method

MOCSS uses formal concept analysis (FCA) for identifying duplicated style declarations that can be

extracted as mixins. We mentioned that using FCA with the goal of grouping duplicated declarations

first appeared in a technical report by Federman and Cook in 2010 [Dav10], and thus, is not a novel

idea. The difference of the two approaches is that in MOCSS, for a set of style declarations to

be considered as one FCA attribute, they just need to have the same property names, while in the

Federman and Cook’s approach, both style properties and values should be textually equal. This

is necessary as the former approach introduces mixin parameters whenever the style values are

different, while the latter is designed to refactor duplicated style declarations into style rules having

grouping selectors. Other than this difference, the two approaches work similarly, i.e., MOCSS also

uses a traversal of the concept lattice to extract mixins.

Charpentier et al. report the scalability of MOCSS, in addition to the results of a user study with

four participants, and conclude that their approach is able to suggest relevant mixins for extraction

within a few milliseconds.

6.5.2 Comparison

The opportunities and the human involvement in applying them

Firstly, MOCSS does not allow the developers to choose what mixin migration opportunity to apply,

or in what order they should be applied. In other words, the output of MOCSS is only one solution

and not a set of opportunities, i.e., it is a set of mixins that are applied one after another. The only

freedom that is given to the developer is a set of thresholds, e.g., what is the minimum number of

times that a mixin should be called to be considered for extraction. In any case, we argue that this

single solution is not always the best one.

As discussed, Federman and Cook state that the concept lattice created from CSS file can be

traversed in several different ways, which in turn leads to different refactorings, each of which having

advantages/disadvantages. The same can happen for MOCSS.

109

For example, one traversal of the concept lattice starts by extracting duplicated style declarations

that are repeated in the largest number of style rules, and continues until there is no more extraction

possible. In such cases, the resulting constructs (being either mixins in MOCSS, or style rules with

grouping selectors in the Federman and Cook’s approach) can include as few as one style declaration.

Conversely, another traversal starts from the longest set of duplicated declarations, which can be

repeated in as few as two style rules.

Both these traversals can create mixins that are desired (or undesired) by the developer, depend-

ing on, e.g., the type of the style declarations that are extracted. For instance, the developer might

want to extract a mixin with only one style declaration for the animation property that is repeated

in several style rules. This extraction can happen with the first mentioned type of traversal. At the

same time, there could be a set of style declarations that are repeated only a few times, but are

coherent enough to form a mixin (let’s say, a mixin for grouping font, text-align, and word-wrap

in five style rules). Such mixin can be extracted from the second traversal; however, it is possible

that a larger (and yet, less coherent) set of style declarations have already been extracted, since

the traversal aims at maximizing the size of the mixin being created (for example, the traversal can

first extract a mixin for font, text-align, word-wrap, and color from two style rules, making the

extraction of the mentioned mixin that is desired by the developer impossible).

The approach also does not give the user the freedom for choosing names for the introduced

mixins and the mixin parameters. In general, there is no interaction between the user and the

approach, and the changes are done globally in the code. We already know from the literature that

such global refactorings are less frequent [BMZ+05].

We argue that the developer should be always considered in the loop for any kind of transforma-

tion. Our approach, therefore, is designed as a building block of a recommendation system, which

rather than just giving one solution, attempts to offer the developer several solutions, while helping

her in filtering out the undesired ones. The current implementation, however, is not a complete

recommendation system, as we will discuss in Chapter 8.

Efficacy

In our study, we computed the recall of the approach by mapping the generated mixin migration

opportunities to the mixins that developers manually created. The study by Charpentier el al.,

however, did not compute the recall of MOCSS. We mentioned that, in theory, both FCA and

the frequent pattern mining algorithm are equivalent (as FCA is also used to generate association

rules [Smi09]). However, since MOCSS only provides a single solution (i.e., one set of mixins that

can be refactored together from the CSS file), we hypothesized that it might miss to identify some

of the manually-introduced mixins.

110

Therefore, we run MOCSS on the same dataset that we used in our study, to compare our

results with it. The experiment is run in the same way we evaluated our approach: a set of manually-

developed Less files are first transpiled to CSS, and then MOCSS is used to generate a preprocessor

file from the transpiled CSS files. The introduced mixins in the generated preprocessor code and

the mixins in the original Less files are then compared to see whether MOCSS is able to recover

the original mixins manually introduced by the developers. The details of the comparison are given

in Section 6.4.2 (RQ2).

Note that, we used similar configuration thresholds in both tools for a fair comparison:

The minimum number of calls for mixins is set to two, so that the style declarations that

shared in as low as two style rules are also extracted,

The minimum number of declarations in mixins is set to one, so that mixin having single

style declarations that are repeated across several style rules are also extracted,

The maximum number of parameters defined in mixins set equal to∞, so that the mixins

can group style declarations with any number of differences across style values.

Results: We found that for the whole dataset, MOCSS introduces 4,057 mixins in the migrated

preprocessor files. Out of those 1,887 mixins actually include style declarations, and the rest (i.e.,

2,170) are extra mixins that just delegate to other mixins.

MOCSS introduces these extra mixins in the resulting preprocessor code with the justification

that they are needed to keep the ordering of the style rules intact. These extra mixins, however, are

not normally required: we discussed in this section that the order of style rules are not affected by

introducing mixins. This is indeed one of the advantages of using mixins over the extend construct

(of course, with the cost of creating duplicated style declarations in the generated code). Instead,

the order of the declarations defined inside the style rules could be affected by the location of the

introduced mixin calls.

Out of the 1,887 non-extra mixins, only 70 match the manually-developed mixins in the original

preprocessor files, i.e., 36% recall. This can be explained by the way MOCSS uses the concept

lattice to generate mixins.

For instance, suppose that the style properties text-align and font are repeated across multiple

style declarations. Instead of creating one mixin for merging the two style properties, MOCSS might

generate two mixins (i.e., one for each of the properties), and call both of them in the corresponding

style rules. The advantage of this approach is that each of these mixins can be reused in other style

rules where only one of the text-align or font properties appear (and not both of them). The

disadvantage, however, is that it might generate mixins that are not desired for the developer. This

is indeed supported by the low recall of the tool.

111

MOCSS also cannot recover the mixins that use interpolated style properties (the example of

Figure 39), since it also works with the assumption that the style properties are constant strings

and will not vary. In contrast, it can recover mixins with style values having different use of the

!important keyword (the example of Figure 40). Since MOCSS does not do any parameterization

on the style values, the style declarations color: red !important and color: blue can be

merged. As mentioned, our current implementation does not support this kind of parameterization,

but it can be supported later. Notwithstanding, such cases are exceptional and we did not find many

of those in the dataset.

Remember that we propose to the developer 9,585 mixins for the whole dataset, and we can apply

threshold-based filters on the opportunities to decrease their number to as low as 4,320 while keeping

the recall still pretty high, i.e., 87.6%. This reduced number of opportunities in our approach is

close to what MOCSS actually introduces in the code (which are mostly extra, or undesired by the

developers). Again, this shows why it is crucial to let the developers investigate several opportunities,

while helping them to choose and apply the ones that are more desirable, rather than providing one

set of mixins as the single possible solution to the migration problem.

The proposed mixins

There are several differences in the mixins introduced by MOCSS and our approach, namely:

1. From the alternative ways for mixin introducing parameters discussed in Section 6.3.2, MOCSS

uses the one that introduces mixins with one parameter for all the passed values. We presented

the maintainability issues that arising from using a single parameter for mixins. The approach

that we took, on the other hand, needs more sophisticated analysis of style values and their

assigned individual style properties.

2. MOCSS does not unify mixin parameters, while we discussed our mixin unification technique

and its benefits in Section 6.3.2.

3. MOCSS does not consider style values that are equivalent (e.g., for extracting two style

declarations color: blue and color: #00F, a parameter will be created, while we avoid

this by marking the two style declarations as equivalent). In addition, equivalent shorthand

and individual style declarations are not handled.

4. As mentioned, MOCSS generates extra mixins into the generated preprocessor code. Such

extra mixins will actually hamper the maintainability of preprocessor code base, due to the

unnecessary indirection that they create.

112

Safety of the refactorings

MOCSS neither discusses nor checks any preconditions, i.e., the proposed transformations are not

necessarily presentation-preserving. Even though both MOCSS and our technique follow the same

workflow for testing whether the generated preprocessor codes have the same behavior as the original

one – i.e., I) generating preprocessor code, II) compiling the code back to CSS, III) comparing the

original CSS file with the generated CSS file in II – MOCSS does not take into account the existence

of intra-style rule order dependencies and therefore does not check them when doing the comparison.

As a result, it incorrectly reports a preprocessor code to be behavior preserving while it might not

be.

To attest this, we fed MOCSS with manually-created test cases similar to what is depicted in

Figure 37c, where intra-style rule order dependencies forced a certain ordering for style declarations,

and the approach failed to produce a correct preprocessor code. We showed that in the dataset

there were more than 1200 mixins for which this safety check and reordering of the style rules were

necessary.

Scalability

In Figure 41, we have compared the time (in milliseconds) that our approach takes to detect mixin

migration opportunities with that of MOCSS. This includes the time taken only for creating solu-

tions, not for applying the actual refactorings to the code. We configured the two tools with similar

configurations, with the values that mentioned before.

As it can be observed, while the median of this time is 130.6 milliseconds, for our approach it

is only 42.8 milliseconds. Thus, on the one hand, our approach is on average 4 times faster than

MOCSS. On the other hand, there was a file in the dataset on which our method took around 2

minutes to finish (the CSS file of the brentleemusic.com website). Investigating this file showed

that it actually included a huge number of duplicated declarations around different style rules,

leading to a large number of opportunities to compute. MOCSS, however, quickly computed a

single solution for this file (in 983 milliseconds). Interestingly, when we investigated the file gener-

ated by MOCSS for this case, we observed more than 15 duplicated style declarations in 3 mixins

and 3 style rules, which included individual vendor-specific properties for the transition property

(e.g., transition-timing-function, transition-duration, transition-property, with 5 differ-

ent vendor-prefix definitions). We are unaware of the underlying reasons for this behavior, but this

essentially shows that the tool cannot serve as a reliable migrating technique for removing duplicated

style declarations in CSS code bases.

The longest time that MOCSS spent on a file to compute a solution was 3133.5 milliseconds,

on the CSS file generated for the Flat-UI framework. For our approach, this file took only 709

113

mitigate the threat to the external validity of our study.

The ultimate approach for testing presentation preservation would be to compare the target

documents, before and after applying migration transformations, as they are rendered in the browser.

However, a visual comparison would be time-consuming and error-prone. Additionally, the state-

of-the-art automatic techniques are computationally intensive, e.g., differentiating screen captures

of web pages using image processing methods [RCVO10, MH15, RCPO13]. We instead considered

all possible presentation changes a mixin can impose on a Style Sheet, and developed a lightweight

static analysis method, based on preconditions derived from CSS specifications. This approach was

able to reveal several styling bugs due to our faulty implementation, showing that the method is

promising in testing whether presentation is preserved.

6.7 Chapter Summary

In summary, the main conclusions and lessons learned are:

1. Our approach facilitates the automatic migration of CSS code to preprocessors, by safely

extracting duplicated style declarations from CSS code to preprocessor mixins.

2. Our approach is able to recover the vast majority (98%) of the mixins that professional devel-

opers introduced in websites and Style Sheet libraries.

3. We found that developers mostly under-utilize mixins (i.e., they could reuse the mixins in

more style rules, and/or could eliminate more duplicated style declarations by extracting them

into the mixins).

4. By applying appropriate threshold-based filters, it is possible to drastically reduce the number

of detected mixin opportunities without affecting significantly the recall.

In the next chapter, we briefly demonstrate CSSDev, an Eclipse plug-in that contains our

implementation of the proposed approaches in Sections 4 and 6.

115

Chapter 7

CSSDev: A tool suite for the

analysis and refactoring of CSS

7.1 Introduction

In the previous sections, we stated several reasons for developing and maintaining CSS being a

challenging task, including but not limited to:

• Some more complicated features of CSS, such as cascading, specificity, value propagation

through inheritance, and media queries, make CSS code difficult to comprehend,

• The interplay of CSS with HTML, which can be manipulated by JavaScript or a server-side

language at runtime, makes static analysis tools unable to spot problems at development time,

• The lack of a comprehensive and reliable testing framework for CSS makes regression testing

difficult,

• The inherent shortcomings in the design of the language (e.g., the lack of constructs enabling

code reuse, such as functions), lead to extensive code duplication. We found that more than

60% of style declarations are duplicated in real-world CSS files,

• The lack of best practices has led to low quality CSS code suffering from various CSS-specific

smells [Gha14], and,

• The standardization of CSS is a time-consuming process, causing incompatible implementa-

tions in web browsers, which result in inconsistent presentation (the so-called Cross Browser

Incompatibility or XBI [RCVO10, RCPO13]).

116

This intricacy, however, can be diminished to a large extent, in the presence of adequate tool and

IDE support. Unfortunately, for CSS development and maintenance, tooling is quite immature and

far from being satisfactory for the developers’ needs. While CSS is extensively used in the industry,

the predominant tool for CSS developers is the web browsers’ embedded development facilities (e.g.,

Firebug in Firefox, Developer Tools in Chrome).

In other words, the prevalent workflow for a CSS developer includes:

1. Coding CSS (and possibly making changes to the corresponding HTML, JavaScript, or any

piece of code that generates HTML),

2. Running the web application in one (or, most probably, multiple) web browsers and visually

inspecting whether the design is acceptable,

3. Using the web browser’s development tool, which displays the changes live in the browser, to

manipulate CSS style rules until the desired presentation is achieved, and propagating the

required changes back to the original CSS files.

While this workflow can definitely aid CSS developers, it suffers from various shortcomings. For

instance, the CSS code which is used in development might not be the same code processed by the

web browser. For instance, the code could be developed using a CSS preprocessor, like Less [SF10]

or Sass [Cat06]. In that case, propagating CSS changes from the web browser’s development tool to

the preprocessor code might not be trivial. More importantly, the embedded tools in web browsers

do not offer any support for applying complex changes (e.g., refactorings). State-of-the-art IDEs

(e.g., Eclipse, JetBrain WebStorm) simply offer syntax highlighting, limited coding assistance with

auto-completion, and trivial refactoring support, such as renaming CSS class names. Consequently,

there is certainly a need for developing new tools and improving IDE support for CSS development

and maintenance.

In previous chapters (i.e., Chapters 4 and 6), we proposed approaches for refactoring duplicated

code in CSS in a presentation-preserving manner, by grouping duplicated style declarations into

new selectors, or by migrating CSS code to a preprocessor language by extracting function-like

constructs (i.e., mixins) from duplicated style declarations. The proposed approaches have been

implemented in CSSDev1, which is an IDE-agnostic CSS analysis and refactoring infrastructure.

CSSDev provides a rich set of APIs that, in addition to refactoring duplicated code, can be used for

resolving many of the aforementioned challenges encountered when developing and maintaining CSS

code. As a proof of concept, we have implemented some key features of CSSDev for refactoring

duplicated code in an Eclipse plug-in, which will be demonstrated in the next sections of this chapter.

1In addition to the abbreviation for "developer", Dev is the god of war, and a demon with enormous power, in
Persian mythology.

117

Note: Earlier version of the work done in this chapter has been published in the Proceedings

of the 39th International Conference on Software Engineering (ICSE 2017), Tool Demonstration

Session [MT17].

7.2 Tool Design

CSSDev consists of the following main modules:

7.2.1 CSS Model Generator Module

This module is responsible for generating a lightweight, hierarchical model of CSS, as described in

Chapter 4. This model captures information about CSS code elements, which are crucial for enabling

CSS analysis. For instance, for each CSS style declaration, the model captures the type and role of

each of the style values, i.e., the individual style properties (or ISP) associated with each style value,

as described in Chapter 6. For example, in the style declaration border: dotted 1em \#F0F, for

the value dotted, the model stores that it is a CSS keyword that defines the style of the border

that appears around an element, i.e., ISP(dotted) = "style".

The model also extracts “hidden” properties that are styled in a style declaration; e.g., the

aforementioned border declaration implicitly defines style values for 12 individual style properties

in total, based on CSS language specifications [Wor17]. Such information is used in detecting

dependencies between CSS style declarations.

The lightweight model also enables the separation of analysis algorithms from the ASTs generated

from CSS parsers. This is crucial, mainly for two reasons:

• CSS specifications change rapidly and a parser might become obsolete.

• CSS parsers that are completely W3C-complaint try to skip the invalid portions of CSS code

and continue parsing the CSS file from the first valid CSS rule/declaration that is found.

Parsers in the web browsers are from this category.

On the other hand, there are parsers that fail fast on the invalid input. Based on the usage,

the CSS analysis tool should be flexible enough for changing parsers.

For instance, when analyzing real-world CSS files (e.g., when doing empirical studies on CSS

code), a CSS parser from the first category should be used, as these CSS files might contain

invalid CSS that is not caught and fixed due to the lenience of web browsers in parsing CSS

code. In contrast, when developing CSS (or CSS preprocessor) code, for applying source code

analysis or refactoring it is preferred to use a fast-failing parser, to spot the mistakes early and

avoid potential presentation bugs.

118

Our model provides the necessary abstractions to make easy the replacement of CSS parsers with

different capabilities. In any case following the dependency inversion principle is a good practice in

software development.

7.2.2 Duplication Module

This module is responsible for efficiently detecting different types of duplicated style declarations in

CSS, and identifying opportunities for refactoring. This is where the frequent pattern mining algo-

rithms (mainly the FP-Growth algorithm, while we also provide an implementation of the Apriori

algorithm, which is not recommended as it is not as scalable as FP-Growth) are implemented. The

duplication detection is done on the CSS model.

7.2.3 Crawler Module

This module is responsible for crawling HTML target documents for which the CSS file under

analysis is used. As mentioned, we use Crawljax [MvDL12], a tool for crawling dynamic web

applications relying on JavaScript to handle user interactions.

7.2.4 Dependency Module

It is responsible for generating a dependency graph for CSS. The dependencies are extracted and

used when refactoring CSS, to make sure that the transformations are presentation-preserving to

apply, i.e., the resulting CSS file produces the same presentation after refactoring.

7.2.5 Preprocessor Module

This module deals with CSS preprocessor languages. It allows to safely migrate existing CSS code to

preprocessors by extracting duplicated style declarations to function-like constructs, i.e., it contains

the implementation of the approach described in Chapter 6.

Several preprocessors have been introduced in the industry, and they have been extensively

adopted by developers. The implementation of this module is mostly preprocessor-agnostic, i.e., it

can generate transformations for virtually any CSS preprocessor language.

7.2.6 Refactoring Module

When developing automatic transformations for more mature programming languages (e.g., Java

and C++), there are quite descent implementations for AST rewrite engines, which are responsible

for translating AST-level modifications into low level textual edits. For CSS, however, we were

not able to find such implementation. Consequently, we developed the necessary logic for fulfilling

119

d

e f

g

c ab

h

Figure 42: Duplication view

the task of extracting textual edits from model-level transformations in the Refactoring Module of

CSSDev.

7.3 Tool Features

7.3.1 Clone Detection

CSSDev provides the functionality for detecting three types of equivalent style declarations within

CSS code (type I, II and III duplication, discussed in detail in Chapter 4), in addition to the

duplicated style declarations with differences in style values which can be extracted using CSS

preprocessor mixins (discussed in Chapter 6).

The main plugin’s view is shown in Figure 42. The user can initiate duplication detection by

selecting a CSS file in the workspace, and clicking on the “Detect” command in the view (Fig-

ure 42 a). This can also be done whenever the user saves the CSS file (Figure 42 f). In either

case, the duplicated style declarations are listed in a table, where each of the rows is an opportunity

for refactoring (Figure 42 d). The developer can investigate any opportunity by double clicking on

it, which results in highlighting the duplicated style declarations. For each opportunity, the view

also shows the type of the duplication, i.e., Type I through III, non-equivalent declarations, or a

combination of them (Figure 42 g).

Moreover, for each refactoring opportunity, the user can see the unique style property categories

to which the involved style declarations belong (Figure 42 h). Each category consists of a set of

related style properties; for instance, the Text category includes all CSS properties related to text

manipulation, e.g., hyphens, text-align and word-wrap. The categories are extracted from the

CSS specifications. This information can help the developer to pick the most relevant declarations

120

for refactoring. Intuitively, the opportunity with the smaller number of style property categories is

more coherent, and should be favored for refactoring. We previously showed that developers tend to

group duplicated style declarations that are somewhat coherent, e.g., the ones that style the same

properties for different web browsers (Chapter 5). Indeed, the plugin’s view allows the developer to

sort the detected opportunities based on different criteria, including the number of style property

categories associated with each opportunity.

The developer also has the option to filter out opportunities, so that only the ones involving spe-

cific style declarations and/or selectors are shown (Figure 42 c). The developer may also show/hide

the opportunities that contain duplicated declarations having differences in their style values (Fig-

ure 42 e).

7.3.2 Extracting Order Dependencies

Normally, the relative order of declarations in a CSS file does not matter, unless there exist order

dependencies between different style rules, which force certain constraints in the style rule positions

within the CSS file. As discussed, order dependencies exist with respect to some target documents,

and a refactoring that changes the order of style declarations might break the presentation of the

target documents, if these order dependencies are overlooked and not handled properly.

Order dependencies can be statically extracted from static HTML files that are not manipulated

at runtime. However, real-world scenarios are usually much more complex. For instance, in modern

web applications, often JavaScript manipulates the elements of the HTML documents at run-

time, through the Document Object Model (i.e., DOM) API (e.g., by adding or removing HTML

elements). Thus, a complete CSS analysis tool should deal with this dynamism in order to extract

dependencies even from the hidden states of HTML documents. Indeed, it has been shown that,

on average, 62% of the DOM states in modern web applications are hidden [BM13].

CSSDev uses an automatic crawler, Crawljax [MvDL12], for exploring hidden DOM states in

web applications. The developer needs to define a starting point for crawling. This could be the

address of the first page of a web application hosted locally, or on a web server.

The crawler mimics users’ behavior by firing events (e.g., mouse clicks) on the HTML pages

to explore new states. The developer can define, through a configuration wizard (Figure 43), how

the crawling should be performed (e.g., which elements should not be clicked on, or the maximum

number of states that should be explored). By default, the crawling is done blindly (i.e., the crawler

clicks on all elements, even if it does not yield a state change). Thus, the crawling might take several

minutes; however, the developer’s knowledge of the web pages under analysis can help in providing

appropriate values for the crawling options to significantly reduce the crawling time. Note that,

the crawling is done in background (i.e., using a headless browser), so that the developer is able to

121

Figure 43: Crawler settings

continue working without interruption. Whenever a new state is explored, or the crawling is finished,

the developer is notified. When the crawling is done, the developer can apply presentation-preserving

refactorings.

The developer can also visually investigate the existing dependencies extracted after crawling

the target documents (Figure 44). In the graph shown in the view, the nodes stand for the style

declarations, whereas the edges correspond to the dependencies between the style rules and style

declarations defined within them. There are four types of edges, namely:

1. Cascading overriding dependencies: Dependencies due to the order of style rules having

selectors with the same specificity, that select the same elements in some target document

state, and share one or more style properties,

2. Specificity overriding dependencies: Dependencies between the style rules with different

specificities that style a set of common style properties for the same elements in some target

document state. Remember that, in such cases, the style declarations belonging to the style

rule having the selector with lower specificity will be overridden.

3. Importance dependencies: A special type of dependency between the style rules when

122

Figure 44: Overriding dependencies View

they style the same property for the same elements, but only in one of the style rules the

corresponding style declaration uses the !important keyword (meaning that it overrides the

other style declaration in the other style rule),

4. Media query dependencies: A dependency between the style rules defined inside a specific

@media at-rule, and the style rules defined in (and hence, overridden by) the style rules defined

for the default media. The default media is the media which is applied to all style rules when

there is no explicit @media at-rule defined (one can alternatively declare this media by defining

@media all), and it means any media with any characteristic.

In the dependency visualization view, it is possible to show/hide types of dependencies on de-

mand, which can help in reading the graph when it is too crowded. The intra-style rule order

dependencies, which should be considered when extracting a mixin, can be also identified by the

nodes having self loops.

This view is particularly useful for applying change impact analysis on the CSS code, i.e., to

trace the possible side effects of applying a change in the CSS code. The developer can see the

elements that are selected by each style rule, by clicking on the <> icon in each node. The tool

will in turn display all the selected DOM elements in each of the explored states in the crawling

(Figure 45). The elements can be distinguished by their corresponding HTML code, and an XPath

expression that locates them in the DOM tree. The tool also shows the shortest path in the UI that

can be taken to reach each state (i.e., the chain of clicking specific elements).

123

Figure 45: Affected DOM elements view

7.3.3 Clone Refactoring

Once an opportunity is selected in the Duplication view (i.e., Figure 42), the developer can initiate

a refactoring by right clicking on it. Two scenarios are possible:

1. If the opportunity contains declarations with non-equivalent style values, as mentioned, the

refactoring can be done only by extracting a mixin in a preprocessor language.

2. Otherwise, the declarations can be grouped in a style rule with a grouping selector. Alterna-

tively, a parameterless mixin can be extracted from the duplicated declarations.

In the first case, a dialog will be shown (Figure 46), giving the developer the freedom to change

several options, including:

a The name of the extracted mixin,

b The name of each of the extracted mixin’s parameters,

c The selectors of the style rules from which the mixin should be extracted,

d The declarations that the developer wants the mixin to include. In other words, the user

can select a sub-opportunity to be applied, if she finds that some of the declarations suggested

by CSSDev are not coherent enough to be extracted together.

As it can be observed, this dialog also highlights the differences existing between the correspond-

ing style values. Hovering on each style property and value also gives more information about them.

For instance, for a style value, the tool displays the role of the value in the style declaration.

In case of an opportunity with only equivalent declarations, a similar dialog will be shown, if

the developer selects to extract a parameterless mixin. However, if she chooses to extract a style

rule with a grouping selector, only options c and d will be available, as the two first ones are not

applicable in this case (i.e., a grouping selector is automatically named by separating the individual

124

b

a

c

d

Figure 46: Refactoring options wizard

selectors that are grouped by comma, and there are no parameters to name, because there are no

differences in style values).

After finalizing the options, CSSDev checks the refactoring preconditions (Chapters 4 and 6),

and generates the actual source code transformations. In some cases, CSSDev needs to reorder

some of the style declarations or style rules, in order to make sure that the changes will preserve

the presentation semantics of the resulting code. The developer gets a preview of all the changes

(Figure 47). This allows her to perform a final investigation of the changes to be performed. In any

case, the IDE allows to undo the changes after a refactoring is applied. We have also implemented

the required code for taking advantage of Eclipse Refactoring History feature, so that the developer

can keep track of the applied refactorings.

125

Figure 47: Refactoring preview

7.4 Chapter Summary

In this chapter, we demonstrated the code features of CSSDev, implemented as an Eclipse plugin,

that allows analyzing and refactoring CSS code. The CSSDev infrastructure allows implementing

even more diverse set of analysis on CSS (and CSS preprocessor code) in the future, and it is

possible to create plugins for other IDEs, as the code of CSSDev does not depend on Eclipse. The

source code of both CSSDev and its Eclipse plugin are available on the GitHub page of the author2.

In the next chapter, we conclude the thesis and discuss some possible future works.

2http://github.com/dmazinanian

126

Chapter 8

Conclusions and Future Work

For the past twenty years, Cascading Style Sheets has stabilized its role in the industry as the

standard styling language for web, mobile, and desktop applications. CSS is as widespread as

web, extensively used by developers, constantly evolves, and code bases written using it frequently

undergo maintenance. It, however, still suffers from many shortcomings, e.g., the scarcity of the

empirically-validated and globally-accepted best practices, and immature tool support. This has

worsened by the fact that academia has not put much research effort into it.

In this chapter, we summarize the findings of this thesis, and discuss some promising directions

for the future work.

8.1 Summary of the Findings

In this thesis:

• We looked at the problem of duplicated code in CSS, and found that code duplication is

extensive in CSS files: on average 66% of the style declarations are repeated at least once in

the CSS code bases of the 38 analyzed real web applications.

• We devised a technique, based on frequent pattern mining algorithms, for reducing duplicated

code in CSS, and discussed the preconditions that need to be met, to make sure that the

refactorings are safe.

• We found that there is a significant number of such presentation-preserving refactoring op-

portunities in CSS files (62 on average), and applying them can lead to, on average, 8% size

reduction in the examined CSS files.

127

• We conducted the first empirical study on the use of CSS preprocessors, in the code base

of 150 web sites, to understand how developers take advantage of the features that these

languages provide over CSS, and provided implications for researchers, tool builders, and CSS

preprocessor language designers.

• We found that developers who use CSS preprocessors:

– prefer to use global variables over the local ones (89.28% vs 10.72%),

– especially use variables to store color values (45.98% of all variables are defined to store

color values),

– take advantage of the nesting feature extensively (78% of the style rules are nested), even

in very shallow hierarchies (one or two levels),

– tend to use mixins to avoid duplication (63% of the mixins are called two or more times),

– tend to create mixins with a small number of parameters (68% of the mixins have either

one or no parameters),

– tend to keep mixins relatively small (80% of the mixins include 5 or less declarations),

– significantly introduce mixins for styling vendor-specific style declaration (42% of the

mixins are used for this purpose),

– prefer to use parameterless mixins to avoid the caveats associated with the extend con-

struct, while accepting the duplication that using mixins can create in the resulting CSS

files.

• We proposed an approach, again based on the frequent pattern mining algorithms, to safely

migrate existing CSS code bases to take advantage of CSS preprocessor mixins to avoid

duplicated code, with a high recall (98%).

• We noticed that developers could under-utilize mixins, i.e., they could reuse the mixins in

more style rules, and/or could eliminate more duplicated style declarations by extracting them

into the mixins.

• We found that, while there could be a huge number of opportunities in CSS code bases, apply-

ing appropriate threshold-based filters can drastically reduce the number of these opportunities

without affecting significantly the recall.

• We introduced CSSDev, a tool suite that facilitates analyzing CSS code and applying refac-

toring and migration activities on it.

128

8.2 Future Work

8.2.1 Current Limitations

We should acknowledge that the most notable shortcoming of this thesis is the fact that we did not

incorporate developers’ opinions in our studies.

As an example, the maintainability improvements that can be gained by using our refactor-

ing/migration approaches have not been investigated. Ultimately, the most reasonable way to find

this out is through a controlled user-study, which is usually very difficult to conduct.

For example, the proposed refactoring/migration techniques can blindly group style declarations

that are not semantically coherent, leading to a code that is actually less readable. As a possible

approach for alleviating this problem, we can propose a ranking mechanism that takes into account

other characteristics (e.g., the aforementioned semantic coherence) rather than only size reduction,

when choosing refactoring opportunities to apply. This can help developers in prioritizing opportu-

nities for refactoring and filtering out the ones that will be unlikely to apply. Although we can take

advantage of the knowledge obtained from our empirical study that we conducted to find out how

developers use CSS preprocessor language features (Chapter 5), this knowledge should be further

complemented by a user study, to achieve a deeper understanding of what developers really need

when they refactor duplicated code in CSS.

This can be done, for instance, by conducting a lab study, asking the participating developers to

rate the refactoring opportunities proposed by our approach, and seeking their reasoning behind the

ratings. The developers will also provide feedback on the usability of the CSSDev Eclipse plug-in

and suggest ways to improve it.

One other possible way to find out what affects the refactorings is to conduct a study on the

CSS code collected from projects hosted on repository hosting services (e.g., GitHub), submit the

patches to them where duplicated code is refactored using any of our techniques, and further ask

the developers to explain the reasons for accepting/rejecting the patches.

After a set of characteristics that affect the acceptance/rejection of the refactorings are found,

we can look into machine learning approaches or train statistical models for ranking opportuni-

ties. Eventually, the fact that we have provided CSSDev with an interactive user interface allows

incorporating this ranking mechanism in an effective way.

In addition, developer’s opinions can also be sought to complement our empirical study on the use

of CSS preprocessors. For instance, we found cases where developers did not nest style rules where

nesting was applicable. The reason for this (and for several other similar behaviors) can be only

revealed by asking developers. Again, GitHub developers are an appropriate target for this study:

we can, for instance, follow the firehouse interview research method [MHZBN15, STV16, MKTD17],

129

where developers will be asked right after they push a change that contains an unknown or unexpected

behavior to the repository, to explain the underlying reasons behind it.

Another (yet more specific and smaller) problem that we can see in this thesis is the approach

that we took for assigning correct individual style properties (i.e., ISPs) to the style values. We have

done this by manually studying CSS specifications, and hard-coding the rules for assigning ISPs.

There could be a way to take advantage of the existing tests given by W3C to infer the ISPs. More

ambitiously, we could investigate the possibility of extracting these rules from the text of the CSS

specifications, as there are usually multiple examples for the possible values that each style property

can accept and how they should be interpreted by the web browsers, in the specifications.

8.2.2 Other Possible Opportunities for Future Research

There is a long list of opportunities for future research on CSS; we provide some of them here.

• One very important direction for future research is to study how CSS code bases are main-

tained. As said, previous work shows that CSS code undergoes frequent changes [GZ16]. But

we don’t know how the changes look like. For instance, are the changes mostly bug-fixes, or

addition of new features? To what extent developers add new code to CSS that overrides

the existing code? Is this premise true that CSS is a write-only programming language? (in

other words, both for fixing bugs and adding new features, CSS developers tend to add new

code, making the existing code obsolete. This can be considered as a misuse for the cascading

feature of CSS). Are there refactoring activities other than eliminating duplication in CSS?

How does the amount of duplicated code and other code smells change over time in CSS?

In general, how much do developers care about CSS code quality and try to improve it, or

are there other characteristics of CSS code (e.g., its performance) that matter more to the

developers?

• More interestingly, given that using CSS preprocessors is now a trend in the industry, is there

a significant difference in the answers to the mentioned questions, when developers prefer to

use CSS preprocessors over vanilla CSS? If the code written in a CSS preprocessor language

is more maintainable, do we see migration activities other than introducing mixins in CSS

repositories (i.e., from vanilla CSS to a preprocessor)?

• Another direction is to study the performance (and energy consumption) anti-patterns in

CSS, and to provide refactorings for them. We mentioned one related work to this done by

Jovanovski and Zaytsev [Jov16, JZ16] on critical CSS style rules, but to our knowledge, there

is no other study on this issue.

130

As an example, an incautious use of some CSS properties in specific way can force the web

browser to unnecessarily paint the whole view on each scroll event. Spotting such problems

and suggesting fixes would be very useful for the CSS community.

• It is possible to extend the refactoring capabilities of CSSDev to incorporate eliminating the

code smells that were previously studied (e.g., [Gha14]). However, it is first important to

revisit the code smells and study if developers really see them as bad coding practices that can

lead to future maintenance difficulties.

• As we discussed, the current techniques for testing CSS are very limited and immature. Both

the frozen DOM technique and the methods based on image comparison might capture too

detailed information, resulting in the incorrect failing of assertions, or flaky tests. We believe

that it is possible to propose ways to automatically generate test cases for these approaches to

make them more useful with less false positives. Specifically for the Frozen DOM technique,

we might be able to come up with an approach for automatically extracting the reference (i.e.,

frozen) DOM.

Proposing a full-fledged unit testing framework for CSS is also greatly needed in the industry.

There are, however, several questions that should be answered, for example, what is a unit in

CSS testing? How can we abstract out the details of DOM and visual presentation of web

pages, and how should the developer define oracles?

• CSS evolves very fast, but web applications usually do not keep up with this speed in terms

of adopting the new features. This is partly because not all web browsers implement the new

features at the same pace and in a consistent way, so there is always the chance that a web

application’s user interface breaks in some web browsers, if it adopts a new feature from CSS.

In any case, automatic refactoring tools can help in making the transition smooth. For instance,

existing HTML pages can be refactored to take advantage of the new Grid System in CSS for

the layout, that makes both CSS and HTML code much cleaner and simpler. This will need a

sophisticated analysis to understand the role of the CSS style rules that participate in making

the layout of the web application. As mentioned before, a similar approach was introduced

by Mao et al. [MCD07] for refactoring HTML pages from <table>-based to <div>-based

layouts.

131

Bibliography

[ABRC12] César Acebal, Bert Bos, María Rodríguez, and Juan Manuel Cueva. ALMcss: A

Javascript Implementation of the CSS Template Layout Module. In Proceedings of the

2012 ACM Symposium on Document Engineering (DocEng), pages 23–32, 2012.

[Ace10] César Fernéndez Acebal. ALMcss: Separation between Structure and Presentation on

the Web with CSS Advanced Layout. Ph.D. Thesis, Departamento de Informática,

Universidad de Oviedo, 2010.

[AMIO12] Adewole Adewumi, Sanjay Misra, and Nicholas Ikhu-Omoregbe. Complexity metrics

for cascading style sheets. In 12th International Conference on Computational Science

and Its Applications (ICCSA), pages 248–257, 2012.

[BBMS99] Greg J. Badros, Alan Borning, Kim Marriott, and Peter Stuckey. Constraint Cascading

Style Sheets for the Web. In Proceedings of the 12th Annual ACM Symposium on User

Interface Software and Technology (UIST), pages 73–82, New York, NY, USA, 1999.

ACM.

[BGL14a] Martí Bosch, Pierre Genevès, and Nabil Layaïda. Automated refactoring for size

reduction of css style sheets. In Proceedings of the 2014 ACM Symposium on Document

Engineering (DocEng), pages 13–16, 2014.

[BGL14b] Martí Bosch, Pierre Genevès, and Nabil Layaïda. Automated and Semantics-

Preserving CSS Refactoring. Technical report, HAL - Inria Open Archive, Nov. 2014.

[BGL15] Martí Bosch, Pierre Genevès, and Nabil Layaïda. Reasoning with style. In Proceedings

of the 24th International Conference on Artificial Intelligence (IJCAI), pages 2227–

2233, 2015.

[BK01] Cornelia Boldyreff and Richard Kewish. Reverse engineering to achieve maintainable

WWW sites. In Proceedings of the 8th Working Conference on Reverse Engineering

(WCRE), pages 249–257, 2001.

132

[Ble15] Ben Bleikamp. Sass at GitHub . https://vimeo.com/86700007, 2015. Accessed:

2017-07-31.

[BM13] Zahra Behfarshad and Ali Mesbah. Hidden-Web Induced by Client-side Scripting:

An Empirical Study. In Proceedings of the 13th International Conference on Web

Engineering (ICWE), pages 52–67, 2013.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. Towards

a Taxonomy of Software Change. J. Softw. Maint. Evol., 17(5):309–332, September

2005.

[Car14] Carlo Zapponi. GitHut - Programming Languages and GitHub. http://githut.

info/, 2014. Accessed: 2017-06-06.

[Cat06] Hampton Catlin. SASS: Syntactically Awesome Style Sheets. http://sass-lang.

com/, 2006. Accessed: 2017-06-06.

[CD04] James R Cordy and Thomas R. Dean. Practical language-independent detection of

near-miss clones. In Proceedings of the 14th Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON), pages 1–12, 2004.

[CFR16] Alan Charpentier, Jean-Rémy Falleri, and Laurent Réveillère. Automated Extraction

of Mixins in Cascading Style Sheets. In IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 56–66, Oct 2016.

[CLM04] Fabio Calefato, Filippo Lanubile, and Teresa Mallardo. Function clone detection in

web applications: a semiautomated approach. Journal of Web Engineering, 3(1):3–21,

2004.

[Con11] World Wide Web Consortium. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)

Specification – Syntax and basic data types. Technical report, World Wide Web

Consortium, June 2011.

[Con12] World Wide Web Consortium. Media Queries. Technical report, World Wide Web

Consortium, June 2012.

[Con13] World Wide Web Consortium. CSS Syntax Module Level 3. Technical report, World

Wide Web Consortium, November 2013.

[Con15] World Wide Web Consortium. CSS Custom Properties for Cascading Variables Module

Level 1. Technical report, World Wide Web Consortium, 2015.

133

[Con16a] World Wide Web Consortium. CSS Object Model (CSSOM), W3C Working Draft, 17

March 2016. Technical report, World Wide Web Consortium, 2016.

[Con16b] World Wide Web Consortium. CSS Values and Units Module Level 3 – Absolute

lengths. Technical report, World Wide Web Consortium, September 2016.

[Coy12] Chris Coyier. Popularity of CSS Preprocessors. http://css-tricks.com/

poll-results-popularity-of-css-preprocessors/, 2012. Accessed: 2017-06-06.

[CPO12] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. CrossCheck: Com-

bining Crawling and Differencing to Better Detect Cross-browser Incompatibilities in

Web Applications. In Proceedings of the Fifth International Conference on Software

Testing, Verification and Validation (ICST), pages 171–180, Washington, DC, USA,

2012. IEEE Computer Society.

[CRTR11] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger. How Developers

Use the Dynamic Features of Programming Languages: The Case of Smalltalk. In

Proceedings of the 8th Working Conference on Mining Software Repositories (MSR),

pages 23–32, 2011.

[CtHdt13] James Cryer and the Huddle development team. PhantomCSS: Visual/CSS regression

testing with PhantomJS. https://github.com/Huddle/PhantomCSS, 2013. Accessed:

2017-06-26.

[Dav10] David Federman and William R. Cook. Applying Formal Concept Analysis to Cas-

cading Style Sheets. Technical report, The University of Texas at Austin, 2010.

[DFST04] Andrea De Lucia, Rita Francese, Giuseppe Scanniello, and Genoveffa Tortora. Reengi-

neering web applications based on cloned pattern analysis. In Proceedings of 12th IEEE

International Workshop on Program Comprehension (IWPC), pages 132–141, 2004.

[DFST05] Andrea De Lucia, Rita Francese, Giuseppe Scanniello, and Genoveffa Tortora. Under-

standing cloned patterns in web applications. In Proceedings of the 13th International

Workshop on Program Comprehension (IWPC), pages 333–336, 2005.

[DLDP01] Giuseppe Antonio Di Lucca and Massirniliano Di Penta. Clone analysis in the web era:

an approach to identify cloned web pages. In Proceedings of the 7th IEEE Workshop

on Empirical Studies of Software Maintenance (WESS), pages 107–113, 2001.

134

[DLDPF02] Giuseppe Antonio Di Lucca, Massirniliano Di Penta, and Anna Rita Fasolino. An

approach to identify duplicated web pages. In Proceedings of the 26th Annual Interna-

tional Computer Software and Applications Conference (COMPSAC), pages 481–486,

2002.

[DRNN14] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining Billions

of AST Nodes to Study Actual and Potential Usage of Java Language Features. In

Proceedings of the 36th International Conference on Software Engineering (ICSE),

pages 779–790, 2014.

[DWC04] Shirley Dowdy, Stanley Wearden, and Daniel Chilko. Statistics for research. Wiley-

Interscience, 3rd edition, 2004.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An Empirical Analysis of C

Preprocessor Use. IEEE Transactions On Software Engineering, 28(12), 2002.

[Ede14] Daniel Eden. Move slow and fix things. http://www.thedotpost.com/2015/12/

daniel-eden-move-slow-and-fix-things, 2014. Talk at the dotCSS conference.

Accessed: 2017-06-06.

[FBBO99] Martin Fowler, Kent Beck, John Brant, and William Opdyke. Refactoring: Improving

the Design of Existing Code. Addison-Wesley Professional, 1999.

[FGLD13] Lyle Franklin, Alex Gyori, Jan Lahoda, and Danny Dig. LAMBDAFICATOR: From

Imperative to Functional Programming through Automated Refactoring. In Pro-

ceedings of the 35th International Conference on Software Engineering (ICSE), pages

1286–1289, 2013.

[Gha14] Golnaz Gharachorlu. Code smells in Cascading Style Sheets: an empirical study and

a predictive model. Master’s thesis, University of British Columbia, 2014.

[GL10] Joseph(Yossi) Gil and Keren Lenz. The use of overloading in java programs. In Object-

Oriented Programming (ECOOP), volume 6183 of Lecture Notes in Computer Science,

pages 529–551. 2010.

[GLQ12] Pierre Genevès, Nabil Layaïda, and Vincent Quint. On the analysis of cascading

style sheets. In Proceedings of the 21st International Conference on World Wide Web

(WWW), pages 809–818, 2012.

[GMBCM13] Vahid Garousi, Ali Mesbah, Aysu Betin-Can, and Shabnam Mirshokraie. A systematic

mapping study of web application testing. Information and Software Technology,

55(8):1374 – 1396, 2013.

135

[GMD+10] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Stefano Crespi,

Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo Ghezzi. An Empirical Investi-

gation into a Large-scale Java Open Source Code Repository. In Proceedings of the

2010 International Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 1–10, 2010.

[Gon15] Boryana Goncharenko. Detecting Violations of CSS Code Conventions. Master’s

thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2015.

[Goo15] Google Inc. Google Closure Tools. https://developers.google.com/closure, 2015.

Accessed: 2015-11-05.

[GZ15] Boryana Goncharenko and Vadim Zaytsev. Reverse Engineering CSS Coding Con-

ventions. In Postproceedings of 2015 Seminar on Advanced Techniques and Tools for

Software Evolution (SATToSE), 2015.

[GZ16] Boryana Goncharenko and Vadim Zaytsev. Language design and implementation for

the domain of coding conventions. In Proceedings of the 2016 ACM SIGPLAN Inter-

national Conference on Software Language Engineering (SLE), pages 90–104, 2016.

[HLO15] Matthew Hague, Anthony W. Lin, and C.-H. Luke Ong. Detecting Redundant CSS

Rules in HTML5 Applications: A Tree Rewriting Approach. In Proceedings of the 2015

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 1–19, 2015.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns Without Candidate

Generation. SIGMOD Record, 29(2):1–12, 2000.

[JDHW09] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do

code clones matter? In Proceedings of the 31st International Conference on Software

Engineering (ICSE), pages 485–495, 2009.

[JLM+09] Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste Asanović, and Rastislav

Bodík. Parallelizing the web browser. In Proceedings of the First USENIX Conference

on Hot Topics in Parallelism (HotPar), pages 7–7, 2009.

[JM99] Philip M. Marden Jr. and Ethan V. Munson. Today’s style sheet standards: the great

vision blinded. Computer, 32(11):123–125, Nov 1999.

[Jov16] Gorjan Jovanovski. Critical CSS Rules: Decreasing Time to First Render by Inlining

CSS Rules for Over-the-Fold Elements. Master’s thesis, Universiteit van Amsterdam,

Amsterdam, The Netherlands, July 2016.

136

[JZ16] Gorjan Jovanovski and Vadim Zaytsev. Critical CSS Rules—Decreasing time to first

render by inlining CSS rules for over-the-fold elements. In Postproceedings of 2016

Seminar on Advanced Techniques and Tools for Software Evolution (SATToSE), 2016.

[KETF07] Adam Kieżun, Michael D. Ernst, Frank Tip, and Robert M. Fuhrer. Refactoring for

Parameterizing Java Classes. In Proceedings of the 29th International Conference on

Software Engineering (ICSE), pages 437–446, 2007.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A multilinguistic

token-based code clone detection system for large scale source code. IEEE Transactions

on Software Engineering, 28(7):654–670, 2002.

[KN09] Matthias Keller and Martin Nussbaumer. Cascading Style Sheets: A Novel Approach

Towards Productive Styling with Today’s Standards. In Proceedings of the 18th In-

ternational Conference on World Wide Web (WWW), pages 1161–1162, 2009.

[KN10] Matthias Keller and Martin Nussbaumer. CSS code quality: a metric for abstract-

ness; or why humans beat machines in CSS coding. In Proceedings of the 7th Inter-

national Conference on the Quality of Information and Communications Technology

(QUATIC), pages 116–121, 2010.

[KSR07] Raffi Khatchadourian, Jason Sawin, and Atanas Rountev. Automated Refactoring of

Legacy Java Software to Enumerated Types. In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM), pages 224–233, 2007.

[Kuk13] Sergey Kuksenko. JDK 8: Lambda Performance study. http://www.oracle.com/

technetwork/java/jvmls2013kuksen-2014088.pdf, 2013. Accessed: 2017-07-01.

[Lei07] Antonio Menezes Leitao. Migration of Common Lisp Programs to the Java Platform

- The Linj Approach. In Proceedings of the 11th European Conference on Software

Maintenance and Reengineering (CSMR), pages 243–251, 2007.

[Lie94] Håkon Wium Lie. Cascading HTML Style Sheets; Proposal published 10 Oct 1994.

http://www.w3.org/People/howcome/p/cascade.html, 10 1994. Accessed: 2017-07-

07.

[Lie05] Håkon Wium Lie. Cascading Style Sheets. Ph.D. Thesis, University of Oslo, Norway,

2005.

[LKL+13] Hsiang-Sheng Liang, Kuan-Hung Kuo, Po-Wei Lee, Yu-Chien Chan, Yu-Chin Lin,

and Mike Y. Chen. SeeSS: Seeing What I Broke – Visualizing Change Impact of

137

Cascading Style Sheets (CSS). In Proceedings of the 26th Annual ACM Symposium

on User Interface Software and Technology (UIST), pages 353–356, 2013.

[LM03] Filippo Lanubile and Teresa Mallardo. Finding function clones in web applications.

In Proceedings of the 7th European Conference on Software Maintenance and Reengi-

neering (CSMR), pages 379–386, 2003.

[LW08] Angela Lozano and Michel Wermelinger. Assessing the effect of clones on changeability.

In Proceedings of the 24th IEEE International Conference on Software Maintenance

(ICSM), pages 227–236, 2008.

[Mad13] Simon Madine. Hardy: Automated CSS Testing. https://github.com/

thingsinjars/Hardy, 2013. Accessed: 27 June 2017.

[Mar04] Radu Marinescu. Detection strategies: metrics-based rules for detecting design flaws.

In Proceedings of the 20th IEEE International Conference on Software Maintenance

(ICSM), pages 350–359, 2004.

[MB10] Leo A. Meyerovich and Rastislav Bodik. Fast and parallel webpage layout. In Pro-

ceedings of the 19th International Conference on World Wide Web (WWW), pages

711–720, 2010.

[MCAA15] Douglas H. Martin, James R. Cordy, Bram Adams, and Giulio Antoniol. Make It

Simple - An Empirical Analysis of GNU Make Feature Use in Open Source Projects.

In Proceedings of the 23rd IEEE International Conference on Program Comprehension

(ICPC), 2015.

[MCD07] Andy Y. Mao, James R. Cordy, and Thomas R. Dean. Automated conversion of table-

based websites to structured stylesheets using table recognition and clone detection.

Proceedings of the 17th Conference of the Center for Advanced Studies on Collaborative

Research (CASCON), pages 12–26, 2007.

[MH15] Sonal Mahajan and William G. J. Halfond. WebSee: A Tool for Debugging HTML

Presentation Failures. In Proceedings of the 8th International Conference on Software

Testing, Verification and Validation (ICST), pages 1–8, 2015.

[MHZBN15] Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Nagap-

pan. The design space of bug fixes and how developers navigate it. IEEE Transactions

on Software Engineering, 41(1):65–81, Jan 2015.

138

[MKTD17] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understand-

ing the use of lambda expressions in Java. In Proceedings of the International Confer-

ence on Object Oriented Programming, Systems, Languages, and Applications (OOP-

SLA), 2017.

[MLBH16] Sonal Mahajan, Bailan Li, Pooyan Behnamghader, and William G. J. Halfond. Using

visual symptoms for debugging presentation failures in web applications. In 2016 IEEE

International Conference on Software Testing, Verification and Validation (ICST),

pages 191–201, April 2016.

[MM01] Johannes Martin and Hausi A. Müller. Strategies for migration from C to Java. In

Proceedings of the Fifth European Conference on Software Maintenance and Reengi-

neering (CSMR), pages 200–209, 2001.

[MM12] Ali Mesbah and Shabnam Mirshokraie. Automated analysis of CSS rules to support

style maintenance. In Proceedings of the International Conference on Software Engi-

neering (ICSE), pages 408–418, 2012.

[Moa13] Zach Moazeni. csscss, A CSS redundancy analyzer. http://zmoazeni.github.io/

csscss/, 2013. Accessed: 2017-06-06.

[Moz10] Mozilla Developer Network. Web developer survey research. https://hacks.

mozilla.org/2010/11/its-all-about-web-developers/, 2010. Accessed: 2017-07-

01.

[MP11] Ali Mesbah and Mukul R. Prasad. Automated cross-browser compatibility testing. In

33rd International Conference on Software Engineering (ICSE), pages 561–570, May

2011.

[MRS12] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider. An empirical study

on clone stability. Applied Computing Review, 12(3):20–36, 2012.

[MT16a] Davood Mazinanian and Nikolaos Tsantalis. An Empirical Study on the Use of CSS

Preprocessors. In Proceedings of the 23rd International Conference on Software Anal-

ysis, Evolution, and Reengineering (SANER), pages 168–178, 2016.

[MT16b] Davood Mazinanian and Nikolaos Tsantalis. Migrating Cascading Style Sheets to Pre-

processors by Introducing Mixins. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 672–683, 2016.

139

[MT16c] Davood Mazinanian and Nikolaos Tsantalis. Tool and dataset for replicating the Em-

pirical Study on the Use Of CSS Preprocessors (SANER’16). http://dmazinanian.

me/conference-papers/saner/2015/12/17/saner16.html, 2016.

[MT16d] Davood Mazinanian and Nikolaos Tsantalis. Tool and dataset for replicating the

study of Migrating CSS to Preprocessors by Introducing Mixins (ASE’16). http:

//dmazinanian.me/conference-papers/ase/2016/07/07/ase16.html, 2016.

[MT17] Davood Mazinanian and Nikolaos Tsantalis. CSSDev: Refactoring duplication in Cas-

cading Style Sheets. In Proceedings of the 39th International Conference on Software

Engineering (ICSE) Companion, 2017.

[MTM14a] Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah. Discovering Refactoring

Opportunities in Cascading Style Sheets. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE), pages 496–

506, 2014.

[MTM14b] Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah. Tool and dataset for repli-

cating the study of discovering refactoring opportunities in Cascading Style Sheets

(FSE’14). http://dmazinanian.me/conference-papers/fse/2014/06/16/fse14.

html, 2014.

[MTR07] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing refactoring dependencies

using graph transformation. Software and System Modeling, 6(3):269–285, 2007.

[MvDL12] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-based Web Appli-

cations through Dynamic Analysis of User Interface State Changes. ACM Transactions

on the Web, 6(1):3:1–3:30, 2012.

[MZYR13] Tariq Muhammad, Minhaz F. Zibran, Yosuke Yamamoto, and Chanchal K. Roy. Near-

miss clone patterns in web applications: An empirical study with industrial systems.

In Proceedings of the 26th IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), pages 1–6, 2013.

[Na15] Dan Na. Transitioning to Sass at Scale. https://speakerdeck.com/danielna/

transitioning-to-sass-at-scale-sassconf-2015-austin-tx, 2015. Accessed:

2017-07-31.

[Nei17] Tim Neil. css-wrangler: Frozen DOM/Computed Style testing. https://www.npmjs.

com/package/css-wrangler, 2017. Accessed: 27 June 2017.

140

[Opd92] William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, University

of Illinois at Urbana-Champaign, IL, USA, 1992.

[PJ15] Christian R. Prause and Matthias Jarke. Gamification for enforcing coding conven-

tions. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE), pages 649–660, 2015.

[PVZ16] Leonard Punt, Sjoerd Visscher, and Vadim Zaytsev. The A?B*A Pattern: Undoing

Style in CSS and Refactoring Opportunities It Presents. In 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 67–77, 2016.

[Qua13] Andrew Quan. css-purge. https://npmjs.org/package/css-purge/, 2013. Accessed:

2017-06-06.

[QV04] Vincent Quint and Irône Vatton. Techniques for Authoring Complex XML Documents.

In Proceedings of the 2004 ACM Symposium on Document Engineering (DocEng),

pages 115–123, 2004.

[QV07] Vincent Quint and Irne Vatton. Editing with style. In Proceedings of the 2007 ACM

Symposium on Document Engineering (DocEng), pages 151–160, 2007.

[RBS13] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone detection: A

systematic review. In Information and Software Technology, volume 55, pages 1165–

1199, 2013.

[RC07] Chanchal K. Roy and James R. Cordy. A survey on software clone detection research.

Technical report, Queens University, Kingston, Canada, 2007.

[RC08] Chanchal K. Roy and James R. Cordy. NiCad: Accurate detection of near-miss inten-

tional clones using flexible pretty-printing and code normalization. In Proceedings of

the 16th IEEE International Conference on Program Comprehension (ICPC), pages

172–181, 2008.

[RCPO13] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. X-PERT: Accurate

Identification of Cross-browser Issues in Web Applications. In Proceedings of the 2013

International Conference on Software Engineering (ICSE), pages 702–711, 2013.

[RCVO10] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. WEBDIFF: Auto-

mated identification of cross-browser issues in web applications. In Proceedings of the

26th IEEE International Conference on Software Maintenance (ICSM), pages 1–10,

2010.

141

[RJ05] Damith C. Rajapakse and Stan Jarzabek. An investigation of cloning in web applica-

tions. In Proceedings of the 5th International Conference of Web Engineering (ICWE),

pages 252–262, 2005.

[RJ07] Damith C. Rajapakse and Stan Jarzabek. Using server pages to unify clones in web

applications: A trade-off analysis. In Proceedings of the 29th International Conference

on Software Engineering (ICSE), pages 116–126, 2007.

[RLBV10] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the

dynamic behavior of JavaScript programs. In Proceedings of the 31th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), pages 1–

12, 2010.

[SBD16] M. Serdar Biçer and Banu Diri. Defect prediction for cascading style sheets. Appl.

Soft Comput., 49(C):1078–1084, December 2016.

[SCD03] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. Resolution of static clones

in dynamic Web pages. In Proceedings of the 5th IEEE International Workshop on

Web Site Evolution (WSE), pages 49–56, 2003.

[SDKS14] Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko. Cross-browser

testing in browserbite. In Proceedings of the 14th International Conference on Web

Engineering, (ICWE), pages 503–506, 2014.

[SDS13] Nataliia Semenenko, Marlon Dumas, and Tõnis Saar. Browserbite: Accurate cross-

browser testing via machine learning over image features. In Proceedings of the 29th

IEEE International Conference on Software Maintenance (ICSM), pages 528–531,

2013.

[Ser10] Manuel Serrano. HSS: A Compiler for Cascading Style Sheets. In Proceedings of the

12th International ACM SIGPLAN Symposium on Principles and Practice of Declar-

ative Programming (PPDP), pages 109–118, 2010.

[SF10] Alexis Sellier and Dmitry Fadeyev. LESS - The dynamic stylesheet language. http:

//lesscss.org/, 2010. Accessed: 2017-06-06.

[Smi09] David T. Smith. A Formal Concept Analysis Approach to Association Rule Mining:

The Quicl Algorithms. PhD thesis, Nova Southeastern University, 2009.

[Spi11] Diomidis Spinellis. elytS edoC. IEEE Software, 28(2):104–104, March 2011.

142

[STV16] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? confes-

sions of github contributors. In Proceedings of the 2016 24th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (FSE), pages 858–870,

2016.

[Sul13] Nicole Sullivan. Object Oriented CSS V2.0.0. https://github.com/stubbornella/

oocss/releases/tag/v2.0.0, July 2013. Accessed: 27 June 2017.

[TFN+12] Marco Trudel, Carlo A. Furia, Martin Nordio, Bertrand Meyer, and Manuel Oriol.

C to O-O Translation: Beyond the Easy Stuff. In Proceedings of the 19th Working

Conference on Reverse Engineering (WCRE), pages 19–28, Oct 2012.

[TNM08] Ewan Tempero, James Noble, and Hayden Melton. How Do Java Programs Use

Inheritance? An Empirical Study of Inheritance in Java Software. In Object-Oriented

Programming (ECOOP), volume 5142 of Lecture Notes in Computer Science, pages

667–691. 2008.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.

Addison-Wesley, 2005.

[Uni15] United States General Services Administration. CSS coding styleguide. https://

frontend.18f.gov/#css-preprocessors, 2015. Accessed: 2017-06-06.

[Web16] Web Technology Surveys. Usage of CSS for websites. http://w3techs.com/

technologies/details/ce-css/all/all, 2016. Accessed: 2016-06-12.

[Wie06] Christoph Wieser. CSSNG: An Extension of the Cascading Styles Sheets Language

(CSS) with Dynamic Document Rendering Features. Diploma thesis, Institute for

Informatics, LMU, 2006.

[Wor17] World Wide Web Consortium. CSS specifications. http://www.w3.org/Style/CSS/

current-work, 2017. Accessed: 2014-11-09.

[Zhi15] Alex Zhitnitsky. Benchmark: How Misusing Streams Can

Make Your Code 5 Times Slower. http://blog.takipi.com/

benchmark-how-java-8-lambdas-and-streams-can-make-your-code-5-times-slower/,

2015. Accessed: 2017-07-14.

[ZK01] Ying Zou and K. Kontogiannis. A framework for migrating procedural code to object-

oriented platforms. In Proceedings of the Eighth Asia-Pacific Software Engineering

Conference (APSEC), pages 390–399, 2001.

143

[ZKJ08] Achim Zeileis, Christian Kleiber, and Simon Jackman. Regression models for count

data in R. Journal of Statistical Software, 27(8):1–25, 2008.

[ZWSS14] Xiaoyan Zhu, E. James Whitehead, Caitlin Sadowski, and Qinbao Song. An analysis

of programming language statement frequency in C, C++, and Java source code.

Software: Practice and Experience, 45:1479–1495, 2014.

144

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Thesis Contributions
	Thesis Organization
	Related Publications

	Background
	The History
	The CSS Language
	CSS Syntax
	Value Propagation
	At-rules
	CSS Specifications
	CSS Versions
	CSS Specification Standardization Stages

	Chapter Summary

	Related Work
	The Analysis and Maintenance of CSS Code
	General Studies
	Code Quality
	Alternative Language Proposals for CSS
	Clone Detection in CSS
	Migrating CSS to Preprocessor Languages
	Other Related Studies

	Clone Detection in Web Applications
	Empirical Studies on Language Features Usage
	Automated Code Migration
	Migration of the Legacy Systems
	Migration of Web Systems

	Chapter Summary

	Refactoring Duplication Within CSS
	Introduction
	Duplication in CSS
	Duplication Types
	Eliminating Duplications

	Method
	Abstract Model Generation
	Preprocessing
	Duplication Detection
	Extracting Refactoring Opportunities
	Ranking Refactoring Opportunities
	Preserving Order Dependencies

	Evaluation
	Experiment Design
	Results
	Comparison with Federman and Cook's approach Federman:2010:FCAtoCSS
	Discussion

	Chapter Summary

	An Empirical Study on the Use of CSS Preprocessors
	Introduction
	CSS Preprocessor Features
	Variables
	Nesting
	Mixins
	The ``Extend'' Construct

	Experiment Setup
	Subject Systems
	Data Collection

	Empirical Study
	Variables
	Nesting
	Mixin Calls
	The ``Extend'' Construct

	Threats to Validity
	Chapter Summary

	Migrating CSS to Preprocessors by Introducing mixins
	Introduction
	Abstraction Mechanisms in CSS Preprocessors
	Automatic Extraction of Mixins
	Grouping Declarations for Extraction
	Detecting Differences in Style Values
	Introducing a Mixin in the Style Sheet
	Preserving Presentation

	Evaluation
	Experiment Design
	Results
	Limitations

	Comparison with Charpentier et al.'s Approach Charpentier:2016:AutomatedExtractionOfCSS
	Summary of the Method
	Comparison

	Threats to Validity
	Chapter Summary

	CSSDev: A tool suite for the analysis and refactoring of CSS
	Introduction
	Tool Design
	CSS Model Generator Module
	Duplication Module
	Crawler Module
	Dependency Module
	Preprocessor Module
	Refactoring Module

	Tool Features
	Clone Detection
	Extracting Order Dependencies
	Clone Refactoring

	Chapter Summary

	Conclusions and Future Work
	Summary of the Findings
	Future Work
	Current Limitations
	Other Possible Opportunities for Future Research

	Bibliography

