
Performance Evaluation for Secure Internet Group
Management Protocol and Group Security Association

Management Protocol

Lin Chen

A Thesis

in

The Department

of

Computer Science & Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

Montréal, Québec, Canada

September 2017

c© Lin Chen, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211520016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Lin Chen

Entitled: Performance Evaluation for Secure Internet Group Management Proto-

col and Group Security Association Management Protocol

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Marta Kersten-Oertel

Examiner
Dr. Hovhannes A. Harutyunyan

Examiner
Dr. Jaroslav Opatrny

Supervisor
Dr. J. William Atwood

Approved by
Volker Haarslev, Graduate Program (Research) Director
Department of Computer Science & Software Engineering

2017
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Performance Evaluation for Secure Internet Group Management Protocol and Group
Security Association Management Protocol

Lin Chen

Multicast distribution employs the model of many-to-many so that it is a more efficient way of

data delivery compared to traditional one-to-one unicast distribution, which can benefit many appli-

cations such as media streaming. However, the lack of security features in its nature makes multicast

technology much less popular in an open environment such as the Internet. Internet Service Providers

(ISPs) take advantage of IP multicast technology’s high efficiency of data delivery to provide Internet

Protocol Television (IPTV) to their users. But without the full control on their networks, ISPs can not

collect revenue for the services they provide. Secure Internet Group Management Protocol (SIGMP),

an extension of Internet Group Management Protocol (IGMP), and Group Security Association

Management Protocol (GSAM) have been proposed to enforce receiver access control at the network

level of IP multicast. In this thesis, we analyze operational detail and issues of both SIGMP and

GSAM. An examination of performance of both protocols is also conducted.

Keywords: IP Multicast security, Receiver access control, Secure IGMP, Group security association.

iii

Acknowledgments

First of all, I would like to thank my supervisor for the great amount of knowledge and guidance

he gave me. Secondly, I want to thank my parents. I would not be able to achieve what I have

achieved without their unconditional support. Finally, I am also grateful for every help I have got.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 2

2 Internet Group Management Protocol 4

2.1 IGMPv1 . 4

2.2 IGMPv2 . 6

2.3 IGMPv3 . 8

2.4 Security and Performance . 12

3 IPsec 14

3.1 Security Protocols . 14

3.2 Key Management Protocols . 16

3.3 Databases . 17

4 ns-3 19

4.1 Programming Model . 19

4.2 Abstraction of a Host . 20

4.3 Abstraction of IP Network Stack . 20

5 SIGMP and GSAM 22

5.1 SIGMP . 22

v

5.2 GSAM . 23

5.3 Summary . 28

6 Problem Statement 30

7 Implementation of SIGMP and GSAM on ns-3 31

7.1 UML . 32

7.2 IGMPv3 and SIGMP Protocols Module . 33

7.3 IGMPv3 Data Structures and Databases Module 33

7.4 IPsec and GSAM Databases Module . 35

7.5 GSAM Protocol Module . 37

7.6 GSAM and Simple AH Data Structures Module 37

8 Analysis and Evaluation of Performance 40

8.1 Message Sequences in Different SPI Conflicts . 40

8.2 Factors that Influence Performance . 45

8.3 Assumptions . 46

8.4 Initial Simulation . 46

8.5 Revision of Message Exchanges and its Result . 48

8.6 Simulations with Different Numbers of NQs and GMs 49

9 Conclusion and Future Work 53

9.1 Conclusion . 53

9.2 Future Work . 54

Appendix A Class Diagrams of the Implemention 55

Bibliography 70

vi

List of Figures

Figure 2.1 State Transistions in IGMPv1 . 5

Figure 2.2 State Transistions in IGMPv2 . 7

Figure 4.1 An Object of ns3::Node . 20

Figure 4.2 ns-3 IP Stack . 21

Figure 7.1 Notation of Lines and Arrows in UML . 32

Figure 7.2 Implementation of IGMPv3 and SIGMP Protocols 33

Figure 7.3 Implementation of IGMPv3 Data Structures 34

Figure 7.4 Implementation of IGMPv3 Databases . 35

Figure 7.5 Implementation of IPsec and GSAM Databases 36

Figure 7.6 Implementation of GSAM Protocol . 37

Figure 7.7 Implementation of Simple AH . 37

Figure 7.8 Implementation of Data Structures of GSAM Packets 39

Figure 8.1 Packet Sequence When No SPI Conflict Happens 41

Figure 8.2 Packet Sequence When GSA Q Is Rejected by the GM 42

Figure 8.3 Packet Sequence When GSA R Is Rejected by NQs 42

Figure 8.4 Packet Sequence When GSA Q or Both GSAs Are Rejected by NQs 43

Figure 8.5 Packet Sequence When There Are SPI conflicts from both GM and NQs . . 43

Figure 8.6 The Result of Initial Simulation . 47

Figure 8.7 Revised Packet Sequence When No SPI Conflict Happens 48

Figure 8.8 The Result after Revising Packet Sequence When No SPI Conflict Happens 49

Figure 8.9 The Result of Second Simulation . 50

vii

Figure 8.10 The First Result of Third Simulation . 51

Figure 8.11 The Second Result of Third Simulation . 52

Figure A.1 The Class Diagrams of IGMPv3 and SIGMP Protocols Implementation . . . 56

Figure A.2 The Class Diagrams of IGMPv3 Packet Data Structures Implementation . . 57

Figure A.3 The Class Diagrams of IGMPv3 Databases Implementation Overview . . . 58

Figure A.4 The Class Diagrams of IGMPv3 Socket State Database Implementation . . 59

Figure A.5 The Class Diagrams of IGMPv3 Interface State and Reception State Databases

Implementation . 60

Figure A.6 The Class Diagrams of GSAM Database Implementation 61

Figure A.7 The Class Diagrams of IPsec Databases Implementation Overview 62

Figure A.8 The Class Diagrams of SPD Implementation 63

Figure A.9 The Class Diagrams of SAD Implementation 64

Figure A.10 The Class Diagrams of GSAM Protocol Implementation 65

Figure A.11 The Class Diagram of Simple AH Implementation 66

Figure A.12 The Class Diagrams of IKEv2 and GSAM Packet Data Structures Implemen-

tation Overview . 67

Figure A.13 The Class Diagrams of IKEv2 and GSAM Packet Payload Substructures

Implementation . 68

Figure A.14 The Class Diagrams of SA and GSA Payloads Substructures Implementation 69

viii

List of Tables

Table 2.1 The Format of IGMPv1 Messages . 6

Table 2.2 The Format of IGMPv2 Messages . 8

Table 2.3 The Format of Socket State . 9

Table 2.4 The Format of Interface State . 9

Table 2.5 The Format of Reception State . 9

Table 2.6 The Format of IGMPv3’s Query Messages 10

Table 2.7 The Format of IGMPv3’s Report Messages 10

Table 2.8 The Format of IGMPv3’s Group Recrods 11

Table 3.1 Before Applying AH . 15

Table 3.2 After Applying AH in Transport Mode . 15

Table 3.3 After Applying AH in Tunnel Mode . 15

Table 3.4 Before Applying ESP . 15

Table 3.5 After Applying ESP in Transport Mode . 15

Table 3.6 After Applying ESP in Tunnel Mode . 15

Table 3.7 The Format of AH . 16

Table 3.8 Top-Level Format of an ESP Packet . 16

Table 5.1 IGMPv3 Message vs SIGMP Message . 23

Table 5.2 The Format of IKEv2 Messages . 25

Table 5.3 The Format of IKEv2 Header . 25

Table 5.4 The Defined Values of Exchange Type . 26

Table 5.5 The Format of IKEv2 Generic Payload Header 26

ix

Table 5.6 The Format of IKEv2 Security Association Payload Substructure 26

Table 5.7 The Format of IKEv2 Proposal Substructure 26

Table 5.8 The Defined Values of Protocol ID . 27

Table 5.9 The Format of IKEv2 Identification Payload Substructure 27

Table 5.10 The Format of IKEv2 Authentication Payload Substructure 27

Table 5.11 The Format of IKEv2 Nonce Payload Substructure 27

Table 5.12 The Format of IKEv2 Traffic Selectors Payload Substructure 27

Table 5.13 The Format of IKEv2 Traffic Selectors Substructure 27

Table 5.14 The Format of GSAM Group Security Association Payload Substructure . . 28

Table 5.15 The Format of GSAM Group Proposal Substructure 28

Table 5.16 The Format of GSAM Group Notify Payload Substructure 28

Table 7.1 The Format of SPD Entries . 36

Table 7.2 The Format of SAD Entries . 36

x

Acronyms

AH Authentication Header. 14, 15, 17, 18, 31, 37

API Application Programming Interface. 12

CSMA/CD Carrier Sense Multiple Access with Collision Detection. 46

ESP Encapsulating Security Payload. 14, 15, 17, 18, 22, 23, 31

G-IKEv2 Group Key Management using IKEv2. 16

GDOI Group Domain of Interpretation. 16

GM Group Member. 23, 24, 25, 40, 41, 44, 45, 46, 49, 50, 52, 53, 54

GPL GNU General Public License. 19

GSA Group Security Association. 3, 16, 22, 23, 24, 38, 40, 44, 48

GSAD Group Security Association Database. 35

GSAM Group Security Association Management Protocol. iii, x, 3, 22, 23, 24, 25, 27, 28, 30, 31,

35, 36, 37, 38, 40, 43, 44, 45, 48, 49, 50, 53

GSPD Group Security Policy Database. 16, 17, 18

ICMP Internet Control Message Protocol. 4, 31

IETF Internet Engineering Task Force. 4, 6, 16, 46

xi

IGMP Internet Group Management Protocol. iii, 2, 3, 4, 6, 8, 12, 13, 22, 23, 28, 30, 40, 44, 45, 46,

48, 53

IGMPv1 Internet Group Management Protocol Version 1. 4, 5, 6, 7, 8, 9, 10, 11, 23

IGMPv2 Internet Group Management Protocol Version 2. 4, 6, 7, 8, 9, 10, 11, 22, 23

IGMPv3 Internet Group Management Protocol Version 3. 3, 4, 8, 9, 10, 11, 12, 22, 23, 31, 32, 33,

34, 40, 43, 46, 48, 49, 52, 53

IKE Internet Key Exchange. 16, 17

IKEv2 Internet Key Exchange Version 2. 16, 23, 24, 25, 37

IPsec Internet Protocol Security. vii, 3, 14, 15, 16, 17, 18, 22, 23, 28, 31, 35, 36, 37, 46, 48

IPTV Internet Protocol Television. iii, 2, 12, 30

ISP Internet Service Provider. iii, 2

MLD Multicast Listener Discovery. 3, 22, 28

MTU Maximum Transmission Unit. 10

NQ Non-Querier. 23, 24, 27, 40, 41, 44, 45, 46, 49, 50, 52, 53, 54

PAD Peer Authorization Database. 16, 17, 35

Q Querier. 22, 23, 24, 27, 40, 45, 46, 48, 54

QoE Quality of Experience. 30

SA Security Association. 15, 16, 17, 18, 25, 27, 38

SAD Security Association Database. 16, 17, 35

SIGMP Secure Internet Group Management Protocol. iii, vii, 3, 22, 23, 24, 28, 30, 31, 32, 33, 40,

43, 44, 45, 46, 48, 50, 53

xii

SPD Security Policy Database. 16, 17, 18, 35

SPI Security Parameters Index. 15, 17, 18, 24, 25, 35, 38, 40, 41, 44, 45, 46, 48, 54

STB Set-top Box. 2

TCP Transmission Control Protocol. 20

UDP User Datagram Protocol. 19, 20, 36

UML Unified Modeling Language. 31, 32

1

Chapter 1

Introduction

IP multicast uses a one-to-many or many-to-many model for communication. A multicast packet

is only sent by the source once and it would be replicated on the nodes of the network and reach

multiple receivers. On the contrary, the other method of delivery: IP unicast employs the one-to-one

model. Although IP unicast is less efficient compared to IP multicast, it is more popularly used on

the Internet because of easier access control. Since a unicast packet will only reach one receiver and

it is specified by the sender, end-to-end encryption can be achieved. While a multicast packet is seen

as being sent away from the source and replicated on the way, the information of the receivers is

hidden from the sender so that the sender has no control on who will receive the packet.

For example, IPTV uses IP multicast to deliver television content to subscribers, in contrast to

traditional video streaming services that use IP unicast such as Youtube and Netflix. Although, IPTV

services have been used across the world and generate a large amount of revenue (Zion, 2016), due to

the fact that IP multicast has no built-in security feature, it is difficult to provide an IPTV service by

someone who does not have the full control of the network. In the case of IPTV service provided by

ISP, the multicast packets of the video stream are sent by servers controlled by them, replicated on

multicast router controlled by them and arrive to the Set-top Box (STB) provided before the content

of the video stream is shown on the TV. Because the ISPs control every waypoint of their IPTV

delivery, they are able to account for the amount of content watched by the users and collect revenue

from them.

Before the very first frame of video of IPTV is shown, several processes of communication must

2

be done over the network between the subscriber’s STB and the sources of video stream. Joining a

multicast group using IGMP is the first process.

SIGMP and GSAM (Li & Atwood, 2016) are two protocols under the architecture (Atwood,

2007) for multicasting to provide security features for IGMP and Multicast Listener Discovery

(MLD) by using Internet Protocol Security (IPsec) to protect their messages. SIGMP is an extension

to Internet Group Management Protocol Version 3 (IGMPv3) and MLD. GSAM is a key management

protocol for Group Security Associations (GSAs) used to protect SIGMP messages. Unlike IP unicast

places access control on that only the receivers with proper credential can understand the content of

the packet, SIGMP and GSAM take an alternative approach of controlling the interaction between

hosts and routers so that multicast packets will only reach the ones with proper credential.

However, the security features provided by SIGMP and GSAM introduces additional latency. In

this thesis, we present the operational details of the SIGMP and GSAM protocol bundle as well as its

performance evaluation on ns-3 network simulator. The rest of the thesis is organized as follows. For

Chapters 2, 3, 4, we introduce some background information of IGMP, IPsec and ns-3. Then we

demonstrate the operation details of SIGMP and GSAM in Chapter 5. The problem statement and

the objective are presented in Chapter 6. In Chapter 7, we illustrate our implementation of GSAM,

SIGMP and IPsec on ns-3 simulator. Furthermore, we compare the performance between the protocol

bundle and IGMPv3 in Chapter 8. Finally, in Chapter 9, we come to a conclusion and offer future

work.

3

Chapter 2

Internet Group Management Protocol

IGMPv1 (Deering, 1988), IGMPv2 (Fenner, 1997) and IGMPv3 (Kouvelas, Cain, Fenner,

Deering, & Thyagarajan, 2002) are currently the three versions of IGMP standardized by the Internet

Engineering Task Force (IETF). Like Internet Control Message Protocol (ICMP), IGMP is an integral

part of Internet Protocol. It is required to be implemented by all hosts wishing to receive IP multicasts.

Although the three versions work differently, they are backward compatible. In this chapter, we

introduce all three versions of standard IGMP from the perspective of hosts, which means components

that do not concern the operation of hosts may not be covered in detail.

2.1 IGMPv1

IGMPv1 is the first IGMP protocol standardized by IETF, introduced along with many other

base notions of Host Extensions of IP Multicasting (Deering, 1988). There are only two types of

messages in IGMPv1: Host Membership Queries and Host Membership Report. Query messages are

sent by multicast routers to the local network and addressed to all-hosts group (address 224.0.0.1).

Hosts respond to a Query message by replying a report to IP address of the specific host group on the

network interface from which the query was received.

A single network interface of IGMPv1 host may transit among three possible states, with respect

to any single IP host group: Non-Member State, Delaying Member State and Idle Member State

respectively:

4

(1) Non-Member State: When the host does not belong to the group on the interface. This is initial

state for all memberships on all network interfaces; it requires no storage in the host.

(2) Delaying Member State: When the host belongs to group on the interface and has a report

delay timer running for that membership.

(3) Idle Member State: When the host belongs to the group on the interface and does not have a

report delay timer running for that membership.

The following Figure 2.1 shows the relation of messages generation and transition of states:

Delaying Member

leave group
(stop timer)

join group
(send report,
start timer)

leave group

query received (start timer)

report received (stop timer)

timer expired (send report)

Idel Member

Non-Member

Figure 2.1: State Transistions in IGMPv1

Query messages are sent periodically by multicast routers. Report messages are generated when

changes of interface state occur on hosts. Both Queryand Report messages of concern to hosts have

time-to-live of 1 and share the exact format shown below in Table 2.1:

The Version field must be 1 for both IGMPv1 Query and Report messages. The Type field

indicates whether a message is a Query message or a Report message. It is set to 1 for Query

5

Version (4-bit) Type (4-bit) Unused (8-bit) Checksum (16-bit)
Group Address (32-bit)

Table 2.1: The Format of IGMPv1 Messages

messages and set to 2 for Report messages. The Group Address field holds the host group address of

the group being reported and it is only valid in Report message. In Query messages, it should be set

to 0 when sent and ignored when received.

In order to avoid an implosion of concurrent Report messages and to reduce the total number of

Report messages transmitted hosts may not send reports immediately when receiving a Query and

suppress its own action of sending Report message when it receives a report to the host group it is

interested in from other hosts on the interface. To achieve the goal of avoiding report implosion, a

delay timer per group is used by hosts. When a host receives a Query message, the timer for each of

its group memberships is set to a random value between 0 and D seconds. (D is the maximum report

delay, a parameter of the IGMPv1 that can be configured). When a timer expired, a Report message

is generated for the corresponding host group. Report messages from other hosts causes hosts to stop

their own timers for the reported host group upon reception and not to generate their reports for that

group, with the result that only one report will be generated simultaneously on the network in the

normal case.

2.2 IGMPv2

IGMPv2 is the second IGMP protocol standardized by IETF, with some changes and additional

features. Firstly, a new type of message, Leave Group message, is added to IGMPv2, allowing

hosts explicitly to leave a host group by sending the message rather than just stop responding to

Membership Query message in IGMPv1. The group a host wishes to leave is specified by the

group address in the Leave Group message. Leave Group messages are sent to IP address 224.0.0.2.

Secondly, there are two kinds of Query messages in IGMPv2: General Query and Group-Specific

Query. Group-Specific Query messages are used to inquire about membership to one specific host

group on the attached network while General Query messages are for inquiring about membership in

6

any host group. Group-Specific Query messages are sent to the IP address of the host group instead

of 224.0.0.2 in the case of General Query.

Furthermore, the role of a multicast router is divided into Querier and Non-Querier. A Querier

is a multicast router that handles Report messages and sends Query messages. ANon-Querier router

acts as a backup for a Querier router. It handles Report messages but does not send Query messages.

There can only be one Querier existing in a local network. An Querier election is performed when

there is more than one multicast router residing in the local network.

Hosts may belong to the same three kinds of states in IGMPv2 as they do in IGMPv1. However,

due to the new types of message, there are two new events that trigger state transition of a network

interface on a host in addition to five in IGMPv1. The following Figure 2.2 shows messages

generation and the transition of states of hosts in IGMPv2:

Delaying Member

query received (start timer)

report received (stop timer, clear flag)

timer expired (send report, set flag)

Idel Member

Non-Member

query received
(reset timer if
Max Resp Time
< current Time)

leave group
(stop timer,
send leave if
flag set) join group

(send report,
set flag,
start timer)

leave group
(send leave
if flag set)

Figure 2.2: State Transistions in IGMPv2

7

Moreover, the format of IGMPv2 messages is also changed stighly, as shown below in Table 2.2

Type (8-bit) Max Resp Time (8-bit) Checksum (16-bit)
Group Address (32-bit)

Table 2.2: The Format of IGMPv2 Messages

Firstly, IGMPv2 messages are very similar to IGMPv1 messages. Both are 8 octets in normal

cases. In the case of General Query, they are almost identical except that Query message in IGMPv2

has an additional Max Resp Time field defined in the unused part of IGMPv1 message. The field

specifies the maximum allowed time before sending a responding report in units of 1/10 second.

This waiting time is a part of techniques used for avoiding report implosion.

Secondly, the first 8− bit field of IGMPv2 packet is differently defined from IGMPv1. The first

4− bit Version field and the following 4− bit Type field of IGMPv1 is merged into the first single

8− bit Type field in IGMPv2 packets. In IGMPv2, there are four types of message: Membership

Query (Type 0x11), Version 2 Membership Report (Type 0x16), Leave Group (Type 0x17). As we can

see, IGMPv1 Membership Query message and IGMPv2 Membership Query message are identical.

Though, IGMPv1 Membership Report (Type 0x12 with respect to IGMPv2 packet format) will not

be issued by IGMPv2, it can be recognized by IGMPv2 as backwards-compatibility.

Finally, new defined Leave Group messages are sent to 224.0.0.2 and Group-Specific Query

messages are sent to the multicast address of the host group.

2.3 IGMPv3

IGMPv3 is the latest standardized version of the IGMP. It is very different from but also

compatible with the previous two versions of IGMP. Features and differences will be introduced

below.

The main added feature of IGMPv3 is the support of source filtering, giving a system the ability

to report interest of a host group in receiving packets only from or all but not from specific source

addresses, which is required to support Source-Specific Multicast. Source-Specific Multicast allows

a receiver to specify the sources of IP packets, in contrast to the model of Any-source multicast,

8

where any host can transmit to an host group (Bhattacharyya, 2003).

IGMPv3 databases maintain three kinds of records: Socket State 2.3, Interface State 2.4 and

Reception State 2.5. Entries of Socket State and Interface State are used to record group memberships

on IGMPv3 system on hosts. Entries of Reception State are used by IGMPv3 system on multicast

routers for recording group memberships reported by hosts attached to the local networks.

An entry of Socket State is maintained for each socket and it conceptually consists of a set of

records of the following form:

Interface Multicast-address Filter-mode Source-list

Table 2.3: The Format of Socket State

An entry of Interface State is maintained for each interface and it conceptually consists of a set

of the following form:

Multicast-address Filter-mode Source-list

Table 2.4: The Format of Interface State

An entry of Reception State is maintained for each group per attached network and it conceptually

consists of a set of records of the following form:

Multicast-address Group Timer Filter-mode Source Records (source address, source timer)

Table 2.5: The Format of Reception State

IGMPv3 is backward-compatible to IGMPv1 and IGMPv2, through downgrading the version

of the protocol when IGMPv3 multicast routers receive messages of lower version protocol. The

backward-compatibility requires IGMPv3 multicast routers to have implementations of IGMPv1 and

IGMPv2.

Though IGMPv3 has only one main added feature and is backward-compatible to the previous

versions of the protocol, it is almost completely different under the hood. Firstly, Query messages

and Report messages have different formats, which are completely different from what they are in

IGMPv1 and IGMPv2. Secondly, systems on hosts maintain reception states per socket in addition

9

to Interface State. Finally, multiple timers and counters are used in IGMPv3 for source-filtering,

compared with is only one timer in IGMPv1 and IGMPv2.

The following Table 2.6 shows the format of IGMPv3’s Query messages:

Type = 0x11 (8-bit) Max Resp Code (8-bit) Checksum (16-bit)
Group Address (32-bit)

Resv|S|QRV (8-bit) QQIC (8-bit) Number of Sources (N) (16-bit)
Source Address [1] (32-bit)
Source Address [2] (32-bit)

•
•
•

Source Address [N] (32-bit)

Table 2.6: The Format of IGMPv3’s Query Messages

IGMPv3 adds a third kind of Query message: Group-and-Source-Specific Query, in additional to

General Query and Group-Specific Query. A Group-and-Source-Specific Query message is also sent

to the IP address of the host group, as it is for Group-Specific Query messages. An IGMPv3 Query

message may have length larger than eight octets. The length of a message depends on how many

Source Addresses are presented. The first 8 octets of IGMPv3 Query messages are similar to those in

IGMPv2. The Type field for IGMPv3 Query is fixed to 0x11 as it is in IGMPv2.

The following Table 2.7 shows the format of IGMPv3’s Report messages:

Type = 0x22 (8-bit) Reserved (8-bit) Checksum (16-bit)
Reserved (16-bit) Number of Group Records (M) (16-bit)

Group Record [1] (variable length)
Group Record [2] (variable length)

•
•
•

Group Record [N] (variable length)

Table 2.7: The Format of IGMPv3’s Report Messages

In IGMPv1 and IGMPv2, a host can only express its interest in membership for one group per

report. In IGMPv3, however, the change of Report’s format allows a host to express its interest in

multiple groups in one report. The destination IP address of Report messages is also changed to

10

244.0.0.22 instead of the IP address of host groups in previous two versions. The size of Report

message is also limited by MTU of the network. If the size of a single Report message exceeds the

limit because of too many Group Records, the host needs to split the Report message to be sent.

In IGMPv3 Report messages, only the first 4 octets resemble to Report messages in IGMPv1

and IGMPv2. Other than that, the Number of Group Records field and a vector of Group Records

are presented. The Number of Records field must agree with the number of Group Records in the

message.

The following Table 2.8 shows the format of IGMPv3’s Group Record substructure in Report

messages:

Record Type (8-bit) Aux Data Len (8-bit) Number of Sources (N) (16-bit)
Multicast Address (32-bit)
Source Address [1] (32-bit)
Source Address [2] (32-bit)

•
•
•

Source Address [N] (32-bit)
Auxiliary Data (variable length)

Table 2.8: The Format of IGMPv3’s Group Recrods

The fields in Group Records are specified in the following:

(1) Record Type: there are three categories of Group Record: Current-State Record, Filter-Mode-

Change Record, Source-List-Change Record respectively. Each category has two types of

Group Record so that there are six kinds of Group Record in total. Different types of Group

Record report not only the membership of a host group but also the source addresses the group

members wish to listen to due to source-filtering feature added in IGMPv3. All six kinds will

be introduced in detail later along with changes and maintenance of reception states of host

groups in IGMPv3 multicast routers.

(2) Aux Data Len: the length, in bytes, of Auxiliary Data presented after the vector of Source

Addresses. This field may contain 0.

11

(3) Number of Sources: it indicates how many Source Addresses are presented in the Group

Record.

(4) Multicast Address: it contains the IP multicast address of the host group to which the Group

Record pertains.

(5) Source Address: the vector of Source Addresses lists IP unicast addresses of the sources of the

multicast data stream.

(6) Auxiliary Data: this field contains additional information related to the Group Record, for

future use. It is not defined in the IGMPv3 document and must be set to 0 when sent and

ignored when received.

As there is a size limit of one single Report message, when a single Group Record contains too

many source addresses that will not fit into the Report message, those source addresses need to be

split into different Group Records.

Query messages are sent by a special multicast router called the Querier. General Query

messages are periodically sent to request membership information from hosts in an attached network.

In addition, Group-Specific Query and Group-and-Source-Specific Query messages may be sent

when the router receives Filter-Mode-Change or Source-List-Change records based on how the router

state is changed.

Report messages, containing group records, are sent by hosts. When an invocation of IPMulti-

castListen API by applications changes the state of an Interface, a Source-List-Change Record or

Filter-Mode-Change Record is generated. When a host receives a Query messages, a Current-State

Record is generated. Group Records are carried in Report messages and may be retransmitted in later

reports to cover the possibility of reports being missed by multicast routers.

2.4 Security and Performance

Every IGMP message is directly attached to a IPv4 header and delivered to neighboring local

network in plaintext. Therefore, anyone attached to the local network can receive every IGMP

12

message. Furthermore, the Querier will process all the Report messages it receives meaning that

anyone on the local network can join any group.

The process of joining a member group in IGMP is essential to IPTV process and it contributes

a certain amount of latency to Channel Zapping Time of IPTV. In commercial IPTV, the delay of

channel switching consists of three components (Manzato & da Fonseca, 2013) :

(1) Network Delay (including IGMP delay): usually shorter than 100-200ms

(2) Synchronization Delay: 500-2000ms

(3) Buffering Delay: 1-2s

As we can see, the latency caused by IGMP only occupies a small portion of Channel Zapping

Time.

13

Chapter 3

IPsec

IPsec (Seo & Kent, 2005) is a suite of protocols used to protect communications over IP network,

providing confidentiality, data integrity, access control, and data source authentication to IP datagrams.

An IPsec system usually consists of following components:

(1) Security Protocols (Protocols which protect the IP traffic)

(2) Key Management Protocols

(3) Databases

An IPsec system acts as a boundary that filters all IP packets. When passing the boundary, an IP

packet can be discarded, bypassed or be reprocessed according the rules stored in IPsec databases.

3.1 Security Protocols

Authentication Header (AH) (Kent, 2005a) and Encapsulating Security Payload (ESP) (Kent,

2005b) are the two protocols. Both AH and ESP provide their security services by either wrapping

the payload of the IP packet or the entire IP packet, depending on which mode, Transport Mode or

Tunnel Mode, is used. In Transport Mode, only the payload of the IP packet is modified and protected.

In Tunnel Mode, the whole IP packet becomes the payload of the protect IPsec packet and a new

IP header is constructed for the packet. The methods of packet transformation of AH and ESP are

introduced below:

14

The following tables 3.1, 3.2, 3.3 show how an IPv4 packet is modified before and after applying

AH in Transport Mode as well as in Tunnel Mode:

original IP header TCP Data

Table 3.1: Before Applying AH

original IP header AH TCP Data
<-mutable field processing-><-immutable fields->
<- authenticated except for mutable fields ->

Table 3.2: After Applying AH in Transport Mode

new IP header AH original IP header TCP Data
<-mutable field processing-><- immutable fields ->
<- authenticated except for mutable fields in new IP header ->

Table 3.3: After Applying AH in Tunnel Mode

The following tables 3.4, 3.5, 3.6 show how an IPv4 packet is modified before and after applying

ESP in Transport Mode as well as in Tunnel Mode:

original IP header TCP Data

Table 3.4: Before Applying ESP

original IP header ESP header TCP Data ESP trailer ESP ICV
<- encryption ->

<- integrity ->

Table 3.5: After Applying ESP in Transport Mode

new IP header ESP original IP header TCP Data ESP trailer ESP ICV
<- encryption ->

<- integrity ->

Table 3.6: After Applying ESP in Tunnel Mode

The following tables 3.7, 3.8 show the data structures of AH and ESP mentioned above:

15

Next Header (8-bit) Payload Len (8-bit) RESERVED (16-bit)
Security Parameters Index (SPI) (32-bit)

Sequence Number Field (32-bit)
Integrity Check Value-ICV (variable length)

Table 3.7: The Format of AH

Security Parameters Index (SPI) (32-bit)
Sequence Number Field (32-bit)
Payload Data (variable length)

Padding (0-255 bytes)
Pad Length (8-bit) Next Header (8-bit)

Integrity Check Value-ICV (variable length)

Table 3.8: Top-Level Format of an ESP Packet

For the IPsec system to process an incoming AH or ESP packet, the field of Security Parameters

Index (SPI) is used along with other fields in the IP header of a packet to identify the Security

Association (SA) in the IPsec system.

3.2 Key Management Protocols

Internet Key Exchange (IKE), Internet Key Exchange Version 2 (IKEv2), Group Domain of

Interpretation (GDOI) and Group Key Management using IKEv2 (G-IKEv2) are a series of protocols

that are used create to and manage SA in an IPsec system. IKE and IKEv2 are used to create manage

unicast SA while GDOI and G-IKEv2 are used to create and manage GSA for protecting the multicast

traffic.

Take IKEv2 as an example, IKEv2 is used between two entities to negotiate and create one or

more pairs of unidirectional IPsec SA. The process of creating the first SA pair consists of two phases.

In phase one, IKEv2 creates a bidirectional IKE SA and establishes a secure and authenticated

channel for IKEv2 communication in phase two. In the second phase, the two entities negotiate what

encryption method and cryptographic keys to be used, what traffic to protect. The result of such

negotiation is a pair of unidirectional IPsec SAs created on both entities. In addition, more child SA

pairs can be negotiated afterward.

16

3.3 Databases

There are three kinds of major conceptional databases in an IPsec system: The Security Policy

Database (SPD) for unicast or Group Security Policy Database (GSPD) for multicast, the Security

Association Database (SAD) and the Peer Authorization Database (PAD). These databases and their

interfaces allow system administrators to control the processing details of all inbound and outbound

IP traffic. IETF defines the general model for these databases, however, their implementations are

largely a local matter.

The SPD is an ordered database. It specifies the policies that determine the disposition of all IP

traffic bound or outbound from a host or security gateway. Each IPsec system must have at least

one SPD. The format of SPD entries depends on implementation. Each SPD entry specifies packet

disposition as BYPASS, DISCARD or PROTECT and it is keyed by one or more selectors such as

packet’s local address, remote address, next layer protocol number, etc. GSPD entries employ a

different structure of IP address selectors due to the fact the symmetric relationship associated with

local and remote address values is not enough. In an IPsec enabled system, SPD (or GSPD for

multicast) must be consulted during processing of all IP traffic.

SAD contains parameters that are associated with each established (keyed) SA. Each SA entry

defines the parameters to provide security service of either AH or ESP. For outbound processing,

each SAD entry is pointed by the SPD cache. For inbound processing, the SPI alone or in conjunction

with other fields in IP header is used to look up an SA.

PAD provides a link between an SA management protocol (such as IKE) and the SPD. It embodies

several critical functions:

(1) Identifies the peers or groups of peers that authorized to communicate with this IPsec entity

(2) Specifies the protocol and method used to authenticate each peer

(3) Provides the authentication data for each peer

(4) Constrains the types and value of IDs that can be asserted

(5) Constrains the types and values of IDs that can be asserted by a peer with regard to child SA

17

creation, to ensure that the peer does not assert identities for lookup in the SPD that it is not

authorized to represent, when child SAs are created

(6) Peer gateway location info

For an outbound packet, SPD (or GSPD for multicast) is consulted for looking up a matched

policy entry. If no matched policy entry found or the matched match specifies the disposition of the

packet is DISCARD, the packet would not pass through the IPsec boundary and would be dropped. If

a matched policy is found and it states the disposition of the packet is BYPASS, the packet would pass

through the IPsec boundary without any additional processing. If a matched policy is found and it

states the disposition of the packet is PROTECT, a look up of SA entry would be performed using the

link to SPD contained in the policy entry. If a matched SA entry is found, transformation of the packet

would be performed and a AH or ESP header would be added to the packet. Otherwise, the packet

would either be dropped or a SA negotiation process would start depending on the implementation

and configuration of the IPsec system. For an inbound packet, the same processing of consulting with

SPD is performed. In the case where a matched policy entry is found and the policy entry specifies

the disposition of the packet is PROTECT, a look up of SA entry is performed using the SPI value

provided in the IPsec header alone or in conjunction with other information in the IP header. If a

matched SA is found and the packet is genuine, the IPsec header would be removed and the reverse

transformation would be performed. Otherwise, the packet would be dropped.

18

Chapter 4

ns-3

We choose ns-3 as our simulation platform. On its introduction webpage: “ns-3 is a discrete-event

network simulator, targeted primarily for research and educational use. ns-3 is free software, licensed

under the GNU GPLv2 license, and is publicly available for research, development, and use. The

goal of the ns-3 project is to develop a preferred, open simulation environment for networking

research: it should be aligned with the simulation needs of modern networking research and should

encourage community contribution, peer review, and validation of the software. The ns-3 project is

committed to building a solid simulation core that is well documented, easy to use and debug, and

that caters to the needs of the entire simulation workflow, from simulation configuration to trace

collection and analysis. Furthermore, the ns-3 software infrastructure encourages the development

of simulation models that are sufficiently realistic to allow ns-3 to be used as a real-time network

emulator, interconnected with the real world and that allows many existing real-world protocol

implementations to be reused within ns-3.” (Nsnam, 2015)

4.1 Programming Model

ns-3 employs the model of Object-oriented programming. Similar entities, processes and

functions are categorized into an ns-3 module. A module of ns-3 contains definition and declaration

of one or more C++ classes that compose a protocol in the network stack, abstraction of a physical

entity or a software component in a network system or a utility for simulation. For example, the

19

UDP modules contains classes of UDP header, UDP protocol as well as data structures of UDP

sockets. There are three most frequently used classes of ns-3 infrastructure in this project: ns3::Ptr,

ns3::Object and ns3::Header. Firstly, ns3:Ptr is ns-3’s built-in smart point class, providing functions

of auto resource recycling and bounds checking. Secondly, objects of classes that inherit ns3::Object

class can be referred to by ns3::Ptr pointers. Thirdly, objects of classes that inherit ns3::Header class

can be easily aggregated to objects of ns3::Packet class using ns3::Packet::AddHeader() method.

4.2 Abstraction of a Host

As shown in Figure 4.1, in ns-3, a network host is modeled as an object of ns3::Node class.

Installing a network stack on a network host means aggregating various objects of classes representing

different components of the network stack into an object of ns3::Node.

ns3::Node

Network
Stack

Figure 4.1: An Object of ns3::Node

4.3 Abstraction of IP Network Stack

As we can see from Figure 4.2, ns-3 has a well layered model of IPv4 communication. Each

compartment holds the name of a ns-3 built-in class that represents a component of network system of

an entity. Firstly, class ns3::Socket represents Socket of operating system. Class ns3::Ipv4L4Protocol

presents forth layer’s protocols in the network stack. For example, the built-in classes for TCP,

UDP and ICMPv4 are all subclasses of ns3::Ipv4L4Protocol. Class ns3::Ipv4L3Protocol and class

20

ns3::Ipv4Interface represent Internet Protocol itself and the descriptor of interface in operating system

respectively. Furthermore, class ns3::NetDevice represents physical devices. Finally, network packets

or data-link frames are represented by class ns3::Packet. The physical link that packets transmit

through are modeled as class ns3::Channel. ns3::Socket, ns3::Ipv4L4Protocol and ns3::NetDevice

are abstract classes. Classes derived from these three classes can be seamlessly integrated into the

communication model.

ns3::NetDevice

ns3::Ipv4Interface

ns3::Ipv4L3Protocol

ns3::Ipv4L4Protocol

ns3::Socket

ns3::NetDevice

ns3::Ipv4Interface

ns3::Ipv4L3Protocol

ns3::Ipv4L4Protocol

ns3::Socket

ns3::Channel

ns3::Packet

Figure 4.2: ns-3 IP Stack

21

Chapter 5

SIGMP and GSAM

SIGMP and GSAM is an approach (Li & Atwood, 2016), within the Secure Architecture (Atwood,

2007), to provide security service for IGMP/MLD messages so that revenue collection is possible.

The generation of the delivery tree of a multicast stream depends on information of multicast

group memberships in the IGMP/MLD database. The SIGMP and GSAM protocol bundle uses

IPsec to provide per group access control over IGMP/MLD messages without modifying any existing

protocol. A user with a proper credential for a given secure group can negotiate a GSA pair with Q .

Then a SIGMP Report message for that group protected by such GSA from the user can safely pass

through the IPsec boundary on Q , so that the user can successfully join the group. Although SIGMP

and GSAM can be applied to both IGMP and MLD , the rest of this chapter focuses on IGMP.

5.1 SIGMP

SIGMP is an extension based on IPsec for IGMPv2, IGMPv3 and MLD , offering the following

additional services:

(1) Compatibility: As an extension of IGMP, SIGMP employs identical packet format of regular

IGMP message so that it can communicate to entitles that do not have SIGMP support. SIGMP

also does not affect the operation of IGMP databases.

(2) Confidentiality: SIGMP messages are protected by an ESP header.

22

(3) Authentication: Corresponding GSAs used by ESP is correlated with an application-level

credential by GSAM so that protected SIGMP messages are authenticated.

Identical to IGMP, there are three kinds of roles in SIGMP, Q , NQ and GM . Q and NQ are

multicast routers. As an IGMP extension, SIGMP enabled hosts should provide functionalities of

IGMPv1, IGMPv2 and IGMPv3. Every SIGMP message is an enveloped ESP message of IPsec

and protected by a pair of GSAs. This means performance overhead will be introduced because the

process of GSAM must be done before sending the SIGMP message. Therefore, an SIGMP enabled

host should not include membership of secure groups in any Report message for responding to a

General Query message. The differences between IGMPv3 Message and SIGMP Message are shown

in following Table 5.1

IGMPv3 SIGMP
GQ Sender Q Identical with IGMPv3

Receiver All EUs and NQs
Destination Address 244.0.0.1

GSA Sender Q Identical with IGMPv3
Receiver EUs that have joined the group and NQs

Destination Address IP Address of the Group
GSSQ Sender Q Identical with IGMPv3

Receiver EUs that have joined the group and NQs
Destination Address IP Address of the Group

Report Sender EU EU
Receiver Q and NQs Q and NQs

Destination Address 224.0.0.22 IP Address of the Group

Table 5.1: IGMPv3 Message vs SIGMP Message

5.2 GSAM

GSAM is a key management protocol to establish the parameters for the GSA s used by SIGMP

participants. The operation of GSAM is divided into two phases of message exchanges. Like IKEv2

(Kivinen, Hoffman, Kaufman, Nir, & Eronen, 2014), a message exchange in GSAM consists of a pair

of messages: a request and a response. Considering a message can be lost during the transmission,

retransmission of a request message might take place. One must reply with a response message upon

23

receiving a request message. However, a response message should never be transmitted twice.

The first phase consists of two message exchanges:

(1) Init Exchange: The purpose of this exchange is negotiation of SPI values and cryptographic

keys. A single Init SA of GSAM is established on each endpoint by this exchange.

(2) Auth Exchange: Using the secure channel protected by the Init SAs, two endpoints further

negotiate other parameters and exchange id information. Additional to Init SA, an Auth SA of

GSAM is established on each endpoint by this exchange.

By the end of the first phase, an secure and authenticated channel for communication is established

between two participants, which can either be a Q and a GM or a Q and an NQ . The channel protected

by the Auth SA is used for communication in phase two.

The second phase consists of the following exchanges and messages:

(1) GSA Distribution Exchange: The Q distributes a pair of GSAs it generates to the GM that

is joining the group and all NQs through a GSA Push message. Whoever receives it should

respond a GSA with Ack message or SPI Rejection message if there is a SPI conflict.

(2) SPI Resolve Exchange: If there is a SPI conflict, Q will send a SPI Request message to the

GM and all NQs to gather their currently occupied SPI values. Whoever receives it should

respond with a SPI Report message containing their used SPI values.

(3) GSA Repush Message: After the SPI Resolve Exchange, the Q sends a GSA Repush message

containing a pair of GSAs with revised SPI values.

The purpose of phase two message exchanges is distribution of GSAs. Since the SPI values of

GSAs are solely determined by the Q, they might conflict with the ones being used on other hosts. A

pair of GSAs consists of a GSA Q and GSA R. GSA Qs is used to protect Query messages of SIGMP

and GSA Rs is used for Report messages. Therefore, a GSA Q may be rejected by a GM or an NQ

while a GSA R can only be rejected by an NQ.

In this thesis, the format of GSAM messages are very similar to IKEv2’s shown in Table 5.2.

GSAM reuses the following data structures of IKEv2 messages. Important fields will be explained

below:

24

IKEv2 Header (28-byte)
Generic Payload Header (4-byte)

Payload Substructure (variable length)

Table 5.2: The Format of IKEv2 Messages

(1) The header of IKEv2 messages:

IKE SA Initiator’s SPI (64-bit)
IKE SA Responder’s SPI (64-bit)

Next Payload (8-bit) MjVer (4-bit) MnVer (4-bit) Exchange Type (8-bit) Flags (8-bit)
Message ID (32-bit)

Length (32-bit)

Table 5.3: The Format of IKEv2 Header

Fields IKE SA Initiator’s SPI and IKE SA Responder’s SPI specify the pair of SPI values

to be used to indentify a unique IKEv2/GSAM SA. The Initiator’s SPI is chosen by the

intiator of a certain phase of the process, for example, the GM during the first phase of GSAM

negotiation. Then, the Responder’s SPI is chosen by the responder. Because the messages

of IKEv2 and GSAM employ a chain-like structure of payloads, the field Next Payload is

used to indicate the type of payload that immediately follows the current data structure. In

the case of message header, it indicates the type of first payload of the message. MjVer is

major Version and MnVer is short for Minor Version. These two fields indicate the version of

the protocol. Exchange Type indicates the type of exchange being used. IKEv2 defines four

values for this field, shown in Table 5.4. In the case of GSAM, messages’ Exchange Type are

set to: IKE SA INIT in Init Exchange during phase one, IKE AUTH in Auth Exchange during

phase one, CREATE CHILD SA for GSA Push and INFORMATIONAL during the rest of the

period of the process. The field Flags specifies whether the message is from the initiator or

is a respose, as well as indicates that the transmitter is capable of speaking a higher major

version of the protocol. Message ID is the message identifier used to control retransmission of

lost packets and matching of requests and responses. Length indicates the length of the total

message including the header.

(2) The data structure Generic Payload Header:

25

Exchange Type Value
IKE SA INIT 34
IKE AUTH 35

CREATE CHILD SA 36
INFORMATIONAL 37

Table 5.4: The Defined Values of Exchange Type

Next Payload (8-bit) Critical (1-bit) RESERVED (7-bit) Payload Length (16-bit)

Table 5.5: The Format of IKEv2 Generic Payload Header

The field Next Payload here has the indentical meaning as it is in the header of the message.

The Critical bit is set by the sender to let the recipient know whether it wants the payload

skipped if unrecognized.

(3) The data structure of the Security Association Payload Substructure. The Proposals also use a

chain-like structure as the payloads of the message do:

<Proposals >(variable length)

Table 5.6: The Format of IKEv2 Security Association Payload Substructure

(4) The data structure of the Proposal Substructure in Security Association Payload Substructure:

Last Substruc (8-bit) RESERVED (8-bit) Payload Length (16-bit)
Proposal Num (8-bit) Protocol ID (8-bit) SPI Size (8-bit) Num Transforms (8-bit)

SPI (variable length)
<Transforms >(variable length)

Table 5.7: The Format of IKEv2 Proposal Substructure

The Last Substruc field is set to 0 if this was the last Proposal Substructure, and a value of 2 if

there are more Proposal Substructures. The Protocol ID has three possible values, listed in

Table 5.8.

(5) The data structure of the Identification Payload Substructure:

(6) The data structure of the Authentication Payload Substructure:

26

Protocol Protocol ID
IKE 1
AH 2
ESP 3

Table 5.8: The Defined Values of Protocol ID

ID Type (8-bit) RESERVED (24-bit)
Identification Data (variable length)

Table 5.9: The Format of IKEv2 Identification Payload Substructure

Auth Method (8-bit) RESERVED (24-bit)
Authentication Data (variable length)

Table 5.10: The Format of IKEv2 Authentication Payload Substructure

(7) The data structure of the Nonce Payload Substructure:

Nonce Data (variable length)

Table 5.11: The Format of IKEv2 Nonce Payload Substructure

(8) The data structure of the Traffic Selector Payload Substructure:

Number of TSs (8-bit) RESERVED (24-bit)
<Traffic Selectors >(variable length)

Table 5.12: The Format of IKEv2 Traffic Selectors Payload Substructure

(9) The data structure of the Traffic Selector Substructure in Traffic Selector Payload Substructure:

TS Type (8-bit) IP Protocol ID (8-bit) Selector Length (16-bit)
Start Port (16-bit) End Port (16-bit)

Starting Address (variable length)
Ending Address (variable length)

Table 5.13: The Format of IKEv2 Traffic Selectors Substructure

Moreover, the following new data structures are defined for GSAM messages:

(1) The data structure of the Group Security Association Payload Substructure:

27

GSA Push Id (32-bit)
<Source Traffic Selector >(variable length)

<Destination Traffic Selector >(variable length)
<Proposals >(variable length)

Table 5.14: The Format of GSAM Group Security Association Payload Substructure

GSA Push Id is used to indentify a specific phase two exchange because all phase two exchanges

between the Q and an NQ are protected by the same pair of GSAM SA.

(2) The data structure of the Group Proposal Substructure in Group Security Association Payload

Substructure:

0 (last) or 2 (not last) (8-bit) GSA Type (8-bit) Payload Length (16-bit)
Proposal Num (8-bit) Protocol ID (8-bit) SPI Size (8-bit) Num Transforms (8-bit)

SPI (variable length)
<Transforms >(variable length)

Table 5.15: The Format of GSAM Group Proposal Substructure

(3) The data structure of the Group Notify Payload Substructure:

Protocol ID (8-bit) SPI Size (8-bit) Notify Msg Type (8-bit) Number of SPIs (8-bit)
GSA Push Id (32-bit)

<Source Traffic Selector >(variable length)
<Destination Traffic Selector >(variable length)

<SPIs >(variable length)

Table 5.16: The Format of GSAM Group Notify Payload Substructure

5.3 Summary

In summary, the SIGMP and GSAM protocol bundle is an approach that provides security

features for IGMP/MLD. In addition to the provided security features, the protocol bundle also has

the following performance advantages:

(1) No modification to existing protocols: By using IPsec, the additional security features are

transparent to IGMP/MLD.

28

(2) Integration: Although an extra key management protocol is introduced, no addition physical

entity is required for the operation of the protocol bundle because the roles in key management

are mapped to roles in IGMP/MLD.

29

Chapter 6

Problem Statement

The SIGMP and GSAM protocol bundle works within the secure IP multicast architecture to

enforce receiver access control, and more importantly to allow the generation of revenue. The

security of SIGMP and GSAM protocol bundle has been validated (Li & Atwood, 2016). However,

this security feature adds extra latency to the process of joining a group. Latency is one of the

factors of Quality of Experience (QoE). QoE affects a customer’s decision about purchasing a service.

Therefore, the performance of SIGMP and GSAM protocol bundle needs to be evaluated.

IGMP is one of the primary underlying protocols of IPTV service. IPTV is a very good

commercial use case to evaluate the performance of the protocol bundle because it is a paid service

and a user is sensitive to the time of channel changing. Changing channels in IPTV requires IGMP

to join multicast groups, which contributes a certain amount of latency to the total time of channel

changing.

The goals of this work are to analyze and evaluate the performance through simulation on ns-3

and to propose improvement based on analysis and results of simulation.

30

Chapter 7

Implementation of SIGMP and GSAM

on ns-3

Although ns-3 provides a solid pack of infrastructure modules for simulation, it lacks implemen-

tation of IGMPv3 and IPsec. Therefore, modules of IGMPv3 and IPsec need to be developed prior to

implementation of SIGMP and GSAM. Although encryption and authentication is used to protect

SIGMP and GSAM messages, it is not vital in simulation. In this implementation, all messages are

transmitted in plain text. Moreover, we use a simplified AH instead of the required ESP for simplicity.

In this chapter, we will introduce the model of implementation of the protocol bundle on ns-3 with

Unified Modeling Language (UML). The implementation consists of the following five modules:

(1) IGMPv3 and SIGMP protocols module 7.2

(2) IGMPv3 data structures and databases module 7.3

(3) IPsec and GSAM databases module 7.4

(4) GSAM protocol module 7.5

(5) GSAM and simple AH data structures module 7.6

ns-3’s website provides a tutorial for using the simulator and a complementary wiki for related

contents including some How-to articles and links for development. However, the resource for

31

developers is limited. In this thesis, we use the exisiting ns-3 modules , like ICMP, as examples for

developing our own modules. Moreover, to examine the correctness of our custom modules, we use

debugging tools to check intermediate outputs and log files for final outputs.

7.1 UML

UML (Unified Modeling Language, 2017) is a general-purpose, developmental, modeling lan-

guage in the field of software engineering, which is intended to provide a standard way to visualize

the design of a system.

In object oriented programming, UML class diagram (Class diagram, 2017) is a type of static

structure diagram that describes the structure of a system by showing the system’s classes, their

attributes, operations (or methods), and the relationships among objects.

In the diagram, classes are represented with boxes that contain three compartments:

(1) The top compartment contains the name of the class. It is printed in bold and centered, and the

first letter is capitalized.

(2) The middle compartment contains the attributes of the class. They are left-aligned and the first

letter is lowercase.

(3) The bottom compartment contains the operations the class can execute. They are also left-

aligned and the first letter is lowercase.

Lines and arrows represent relationship between classes, Figure 7.1 shows the representations:

Association

Inheritance

Realization /

Implementation

Dependency

Aggregation

Composition

Figure 7.1: Notation of Lines and Arrows in UML

32

In the rest of this chapter, for readability, we only show the top compartment of UML figures of

classes of the implementation. Full versions of those figures are included in Appendix A.

7.2 IGMPv3 and SIGMP Protocols Module

The module of IGMPv3 and SIGMP protocols shown in Figure 7.2 only has one class:

ns3::Igmpv3L4Protocol. It defines the operation of sending and receiving IGMPv3 as well as

SIGMP messages. Since SIGMP only provides functions of sending secure report to the group

address and not responding to general query, several extra class member methods are sufficient. The

class ns3::Igmpv3L4Protocol inherits the ns3::IpL4Protocol class so that objects of this class can be

integrated into IP network stack on hosts in simulation. Each IP network stack has exactly one object

of class ns3::Igmpv3L4Protocol.

ns3::Igmpv3L4Protocol

IpL4Protocol

Figure 7.2: Implementation of IGMPv3 and SIGMP Protocols

7.3 IGMPv3 Data Structures and Databases Module

This module can be divided into two parts. The first part consists of classes of IGMPv3 data

structures. The second part of the module includes the classes of IGMPv3 databases. There are

four classes, shown in Figure 7.3, in the first part of the module, which represent the corresponding

data structures: Query (Table 2.6), Report (section 2.7) and Group Record (Table 2.8) as well as the

header of messages in IGMPv3. All of them inherit ns3::Header class of ns-3 infrastructure so that

objects of these classes can be aggregated into objects of ns3::Packet during the simulation.

33

ns3::Igmpv3Query

ns3::Igmpv3Report

ns3::Igmpv3Header

ns3::Igmpv3GrpRecord

ns3::Header

Figure 7.3: Implementation of IGMPv3 Data Structures

Figure 7.4 shows implementation of IGMPv3 databases in UML.

Firstly, each object of class ns3::IGMPv3InterfaceStateManager represents a per interface

database of IGMPv3’s Interface State. Each object of class ns3::IGMPv3SocketStateManager rep-

resents a per socket database of IGMPv3’s Socket State. An object of class ns3::Igmpv3Manager

on each IGMPv3 system provides the functionality of an access interface. Each objects of

class ns3::IGMPv3SocketState represents the multicast reception state (Table 2.3) for a specific

socket on a host. Each object of ns3::IGMPv3InterfaceState represents a per-interface multi-

cast reception state (Table 2.4) on a host. Objects of classes ns3::IGMPv3MaintenanceState and

ns3::IGMPv3MaintenanceSrcRecord represent the desired reception states (Table 2.5) for attached

networks by a multicast router. Secondly, these states and actions caused by changes of these states

are managed by ns3::IGMPv3InterfaceStateManager. These manager and state classes also contain

various timers defined in IGMPv3. Finally, all aforementioned classes inherit ns3::Object class so

that objects of them can be referenced by ns-3 internal smart pointers of ns3::Ptr.

34

ns3::Igmpv3Manager

ns3::IGMPv3InterfaceStateManager

ns3::IGMPv3InterfaceState

ns3::IGMPv3MaintenanceState

ns3::IGMPv3MaintenanceSrcRecord

ns3::IGMPv3SocketStateManager

ns3::IGMPv3SocketState

ns3::Object

Figure 7.4: Implementation of IGMPv3 Databases

7.4 IPsec and GSAM Databases Module

Figure 7.5 shows the implementation of IPsec and GSAM databases.

For IPsec, we implement three databases, SPD, SAD and PAD respectively. For simplicity, our

implementation of SAD also provides the functions of Group Security Association Database (GSAD).

Each network host has one object of ns3::IpSecDatabase class, one object of ns3::IpSecPolicyDatabase

class and multiple object of ns3::IpSecSADatabase class. The object of ns3::IpSecPolicyDatabase

represents the SPD on the system. The ones of ns3::IpSecSADatbase represent the SADs. While

the PAD is not modeled as an object of an independent class, its functions are integrated into the

object of ns3::IpSecDatabase. Furthermore, the object of ns3:IpSecDatabase also provides access

interfaces to the objects that represent the SPD and SADs. Objects of classes ns3::IpSecPolicyEntry

and ns3::IpSecSAEntry represents the entries of policies and security associations. Their formats are

shown in Table 7.1 and Table 7.2.

The functions of GSAM databases are provided by the object of ns3:IpSecDatabase. Ob-

jects of ns3::GsamInitSession class store information of init exchange of phase one. Objects of

35

ns3::GsamSession store the information of auth exchange in phase one and message exchanges in

phase two. Several objects of ns3::GsamSession can be derived from one object of ns3::GsamInitSession

because the per group control takes place in auth exchange and message exchanges in the second

phase and we want to reuse the channels established in init exchanges in phase one. Each object

of ns3::GsamInitSession and ns3::GsamSession has one pair of objects of ns3::GsamSa storing

the SPI pair generated in init and auth exchanges and other relevant information. Objects of

ns3::GsamSessionGroup are used to provide access interface to sessions related to the same multicast

group on hosts.

ns3::IpSecDatabase

ns3::IpSecPolicyDatabase

ns3::IpSecPolicyEntry

ns3::IpSecSADatabase

ns3::IpSecSAEntry

ns3::GsamSessionGroup

ns3::GsamInitSession

ns3::GsamSa

ns3::Object

ns3::GsamSession

Figure 7.5: Implementation of IPsec and GSAM Databases

range of source addresses range of destination addresses IP protocol number
bypass, discard or protect range of source ports range destination ports

IPsec mode link to incoming SAD link to outgoing SAD

Table 7.1: The Format of SPD Entries

direction of the packet SPI value encrption function

Table 7.2: The Format of SAD Entries

36

7.5 GSAM Protocol Module

Figure 7.6 shows the implementation of this module. This module also has only one class

ns3::GsamL4Protocol, which defines the operation of message exchanges in GSAM. The class

ns3::GsamL4Protocol inherits ns3::Object but not ns3::IpL4Protocol because GSAM is an applica-

tion protocol and it uses UDP.

ns3::Object ns3::GsamL4Protocol

Figure 7.6: Implementation of GSAM Protocol

7.6 GSAM and Simple AH Data Structures Module

This module consists of classes of various data structures of GSAM packets as well as the data

structure of a simplified AH.

Figure 7.7 shows the implementation a simplified AH. The class ns3::SimpleAuthenticationHeader

also inherits ns-3 infrastructure class ns3::Header. An object of ns3::SimpleAuthenticationHeader

will be added to or removed from the packet when a protected packet passes through the IPsec

boundary.

ns3::SimpleAuthenticationHeader
ns3::Header

Figure 7.7: Implementation of Simple AH

Figure 7.8 shows the implementation of data structures of GSAM packets as well as IKEv2’s,

because GSAM reuses some of IKEv2’s data structures. A GSAM/IKEv2 packet consists of an

object of ns3::IkeHeader and an object of ns3::IkePayload. They can be directly aggregated into an

ns-3 packet since both of the classes inherit ns3::Header infrastructure class. Each ns3::IkePayload

object is composed by an ns3::IkePayload object and an object of ns3::IkePayloadSubstructure,

37

which has several derived classes used for different message exchanges (sectiion 5.2):

(1) Objects of ns3::IkeSaPayloadSubstructure are used to carry the information of GSAM SA in

phase one of GSAM.

(2) Objects of ns3::IkeIdSubstructure are used to carry the identity information during the auth

exchange in phase one of GSAM.

(3) Objects of ns3::IkeAuthSubstructure are used to carry authentication information during auth

exchange in first phase of GSAM.

(4) Objects of ns3::IkeNonceSubstructure are used to carry a random number during the init

exchange in phase one of GSAM.

(5) Objects of ns3::IkeTrafficSelectorSubstructure are used to carry information of traffic selectors

in both phase of GSAM.

(6) Objects of ns3::IkeGsaPayloadSubstructure are used to carry the information of GSA during

the GSA Distribution in the second phase of GSAM.

(7) Objects of ns3::IkeGroupNotifySubstructure are used to carry the list of SPIs used on hosts in

the second phase of GSAM.

Moreover, the following data structures are also used:

(1) Objects of ns3::IkeSaProposal represent the SA Proposals attached to Security Association

Payloads.

(2) Objects of ns3::IkeGsaProposal represent the Group SA Proposals attached to Group Security

Association Payloads.

(3) Objects of ns3::IkeTrafficSelector are used to store infomation of traffic selectors in Traffic

Selector Payloads, Group Security Association Payloads and Group Notify Payloads.

Because of the similarity of format between Security Association Payload and Group Security As-

sociation Payload as well as between SA Proposal and GSA Proposal. ns3::IkeSaPayloadSubstructure

is the base class of ns3::IkeGsaPayloadSubstructure and so as ns3::IkeSaProposal to ns3::IkeGsaProposal.

38

-m_header

-m_src_ts-m_dest_ts-m_ts_src-m_ts_dest

ns3::Header

ns3::IkePayloadSubstructure

IkePayloadHeader

IkeHeader

ns3::IkeIdSubstructure

ns3::IkeNonceSubstructure

ns3::IkeSaProposal

ns3::IkeTrafficSelectorSubstructure

ns3::IkeTrafficSelector

ns3::IkeGsaPayloadSubstructure

ns3::IkeGsaProposal

ns3::IkeGroupNotifySubstructure

ns3::IkeAuthSubstructure

ns3::IkeSaPayloadSubstructure

ns3::IkePayload

Figure 7.8: Implementation of Data Structures of GSAM Packets

39

Chapter 8

Analysis and Evaluation of Performance

8.1 Message Sequences in Different SPI Conflicts

There are three kinds of role in IGMP: Q, NQ and GM. A Q periodically sends General Query

messages and processes incoming Report messages from attached networks. There should always

be one Q in a network segment. NQs act as backups of the Q. An NQ also receives and processes

incoming Report messages but never sends any Query messages. A GM sends a Report message

when it wishes to join a group.

Moreover, the Q is also responsible for distributing GSA pairs and resolving SPI conflicts. To

join a secure group in SIGMP, a GM must do a series of message exchanges of GSAM with the Q

before sending the IGMP Report message.

We compare the process of joining an open group in IGMPv3 and the process of joining a secure

group in SIGMP. Though there can be multiple GMs and NQs, the scenario of the comparison is

set as the following: In a simple network segment, there are one Q, one NQ and two GMs. One

GM (GM1) performs a regular IGMPv3 join and the other one performs an SIGMP join. Moreover,

depending on the location of SPI conflict, there are five different cases of sequences of message

exchanges in our comparison:

(1) No SPI conflict takes place after GSA Distribution, shown in Figure 8.1

(2) SPI conflict from GM, shown in Figure 8.2

40

(3) SPI conflict of only GSA R from NQs, shown in Figure 8.3

(4) SPI conflict of GSA Q or both from NQs, shown in Figure 8.4

(5) SPI conflict from both GM and NQs, shown in Figure 8.5

GM1 Q NQ GM2

Init Request

Init Response

Auth Request

Auth Response

GSA Push

GSA Ack

IGMP Report

GSA Push

GSA Ack

IGMP Report

GM3

Figure 8.1: Packet Sequence When No SPI Conflict Happens

41

GM1 Q NQ GM2

Init Request

Init Response

Auth Request

Auth Response

GSA Push

GSA Rejection

IGMP Report

GSA Push

GSA Ack

IGMP Report

SPI Request

SPI Report

SPI Request

SPI Report

GSA Repush GSA Repush

GM3

SPI Request

SPI Report

GSA Repush

Figure 8.2: Packet Sequence When GSA Q Is Rejected by the GM

GM1 Q NQ GM2

Init Request

Init Response

Auth Request

Auth Response

GSA Push

GSA Ack

IGMP Report

GSA Push

GSA R Rejection

IGMP Report

SPI Request

SPI Report

SPI Request

SPI Report

GSA Repush GSA Repush

GM3

Figure 8.3: Packet Sequence When GSA R Is Rejected by NQs

42

GM1 Q NQ GM2

Init Request

Init Response

Auth Request

Auth Response

GSA Push

GSA Ack

IGMP Report

GSA Push

GSA Q Rejection

IGMP Report

SPI Request

SPI Report

SPI Request

SPI Report

GSA Repush GSA Repush

GM3

SPI Request

SPI Report

GSA Repush

Figure 8.4: Packet Sequence When GSA Q or Both GSAs Are Rejected by NQs

GM1 Q NQ GM2

Init Request

Init Response

Auth Request

Auth Response

GSA Push

GSA Rejection

IGMP Report

GSA Push

GSA Rejection

IGMP Report

SPI Request

SPI Report

SPI Request

SPI Report

GSA Repush GSA Repush

GM3

SPI Request

SPI Report

GSA Repush

Figure 8.5: Packet Sequence When There Are SPI conflicts from both GM and NQs

There are five roles in these figures of our comparison:

(1) GM1 represents a host who wishes to join a secure group through SIGMP and GSAM.

(2) GM2 represents a host who wishes to join an open group through regular IGMPv3.

43

(3) Q represents the Querier.

(4) NQ represents a Non-Querier.

(5) GM3 represents a group member who has already joined a group which GM1 is joining.

Assuming no packet loss and GM1 never joined any secure group, in all cases, the message

sequence for GM1’s joining starts with two pairs of phase one message exchanges, followed by phase

two exchanges, and ends with reception of GM1’s Report message by Q. GM2’s message sequence

starts with sending the IGMP Report message and ends when Q receives that message. Phase one

exchanges only involve Q and GM1. In all four cases of our comparison, message exchanges in phase

one between GM1 and Q always consists of a pair of Init messages and a pair of Auth messages. The

sending of Auth Response message marks the ending of phase one. The GSA Push messages sent

after it mark the beginning of phase two.

Phase two exchanges involve Q, GM1, NQ and GM3. Between Q and another participant, a GM

or a NQ, it starts with a pair of GSA Distribution messages. Particularly, in case one, the pair of

GSA Distribution messages consists of a GSA Push message and an GSA Ack message. In case two,

three, four and five, there will be three additional messages, which consist of a pair of SPI Resolve

messages and a GSA Repush message, if either GM1 or NQ rejects the GSA pair from Q because of

SPI conflict. In cases of SPI conflict, Q will initiate the SPI Resolve Exchange whenever it receives a

GSA Rejection message. However, Q will not generate a new resolved SPI for the GSA or send GSA

Repush message until it receives SPI Report messages from all members involved in the process.

Generally, GM1 sends the IGMP (SIGMP) Report to the network segment after finishing message

exchanges of GSAM. Specifically, in case one, GM1 sends the IGMP Report message following the

transmission of the GSA Ack message. In case two, three, four, the IGMP Report message is sent

when GM1 receives the GSA Repush message.

As to GM2, its group joining process remains identical in all four cases.

44

8.2 Factors that Influence Performance

In the best-case scenario (case 1, shown in Figure 8.1), there is a total of seven messages during

the joining process, consisting of four first phase messages, two second phase messages between

GM1 and the Q, two second phase messages between the Q and NQ and one IGMP message. In the

worst-case scenario (case 4, shown in Figure 8.4 and case 5, shown in Figure 8.5), the combination

of messages is four first phase messages, five second phase messages between GM1 and the Q, five

second phase messages between the Q and NQ, three second phase messages between the Q and

GM3 and one IGMP message, which is eighteen messages in total.

In summary, when a host joins a secure multicast group in a network segment that has m NQs

and n GMs that have joined the same group, the minimal number of messages needed in the whole

process is seven and the maximal number is 10 + 5m+ 3n.

For performance evaluation, we measure the additional delay for joining a secure group using

SIGMP and GSAM. The additional delay consists of:

(1) Transmission time of messages, which can be affected by:

(a) The number of NQs

(b) The number of GMs that joined the group

(c) The probability of SPI conflict

(2) Transition time between two phases of GSAM and the one between SIGMP and GSAM

Firstly, transmission time of messages is affected by:

(1) The number of messages

(2) The speed and latency of the link

Secondly, since the Q is the ending point of phase one and the starting point of phase two, a

parameter in GSAM is needed to determine when phase two starts. Similarly, another parameter is

also needed for the transition between receiving GSA Repush message and sending IGMP Report.

We name these parameters:

45

(1) TIME TRANSISTION P1P2

(2) TIME TRANSISTION ACKREPORT

8.3 Assumptions

While we model the boundary mechanism of IPsec, the duration of running encryption is not

implemented because ns-3 is an event driven simulator and it can not measure the how long a function

runs. Furthermore, studies (CALOMEL, 2017) (IoT Business Unit, ARM, 2015) show the duration

of running encryption is negligible compared to the factors we analyzed above. Additionally, we

make the following settings and assumptions:

(1) All hosts reside in a CSMA/CD ethernet segment with 100Mbps speed and 10ms latency,

which is reasonable to home environment.

(2) TIME TRANSISTION P1P2 and TIME TRANSISTION ACKREPORT is set to 0

(3) IGMPv3’s parameters are set to default values by IETF

(4) GMs periodically join a random group every second, which we assume it is large enough to

avoid congestion.

8.4 Initial Simulation

In ns-3, we run an initial simulation of comparing join time between IGMPv3 and SIGMP with

different probability of SPI conflict in following additional settings and assumptions:

(1) In the network segment, there are one Q, two NQs and 10 GMs.

(2) No IGMP packet loss: A GM may have to wait for a long general query interval for reporting

membership if loss of IGMP Report messages.

Figure 8.6 shows the result of initial simulation:

46

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

D
e

la
y
 i
n

 S
e

c
o

n
d

s

Percentage of Rejection

Average Latency VS Rejection, Histogram

IGMPv3

GSAM_SIGMP

Figure 8.6: The Result of Initial Simulation

47

As we can see from the result, the average delay of joining a group using IGMPv3 is low. And the

average latency when joining a secure group using SIGMP and GSAM is many times more no matter

what the rejection percentage is. Moreover, we can observe an abnormality here. The transmission

time of messages in SIGMP and GSAM should increase when there are more SPI conflicts. However,

the result shows the opposite trend.

After examining the log of packet transmission, we found the cause to this abnormality. Since

the Q would only install a GSA after receiving GSA Ack messages from everyone, if the IGMP

Report message reaches the Q before the GSA Ack message does, the IGMP Report message would

be discarded by the IPsec system. Then the Q has to wait for retransmission of the IGMP Report

message or a Report message in response to a General Query message. Either of them takes up to

several seconds.

8.5 Revision of Message Exchanges and its Result

We simply fix this issue by making the Q send an IGMP Group Specific Report message for the

secure group that GM1 is joining when it receives all the GSA Ack messages and finishes installing

the GSA. The revised message sequence of case 1 is shown in Figure 8.7:

GM1 Q NQ GM2

Init Request

Init Response

Auth Request

Auth Response

GSA Push

GSA Ack

IGMP Report

GSA Push

GSA Ack

IGMP Report

GM3

IGMP GSQIGMP GSQ IGMP GSQ IGMP GSQ

Figure 8.7: Revised Packet Sequence When No SPI Conflict Happens

48

The simulation result after the revision of message exchanges is shown in Figure 8.8:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100

D
e

la
y
 i
n

 S
e

c
o

n
d

s

Percentage of Rejection

Average Latency VS Rejection, Histogram

IGMPv3

GSAM_SIGMP

Figure 8.8: The Result after Revising Packet Sequence When No SPI Conflict Happens

As we can see from Figure 8.8, compared to the previous simulation, the average latency is greatly

improved in cases of low percentage of SPI Rejection, from seconds to hundreds of milliseconds.

However, it is still much higher than the one in IGMPv3.

8.6 Simulations with Different Numbers of NQs and GMs

After fixing the abnormality of the protocol, we continue the evaluation of the performance. As

we analyzed that the numbers of NQs and GMs also impact the number of messages to be exchanged

during the process of GSAM, we conduct two more experiment with different sets of numbers of

NQs and GMs.

49

Firstly, we show the result of the second simulation with different numbers of NQs in Figure 8.9:

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

D
e

la
y
 i
n

 S
e

c
o

n
d

s

The Number of NQs

Average Latency VS Different Numbers of NQs, Histogram

IGMPv3

GSAM_SIGMP

Figure 8.9: The Result of Second Simulation

In the experiment, the number of GMs is set to 10, an the SPI Rejection Rate is set to 20%. The

rest of the parameters are identically set as they are in the initial simulation. As we can see from

Figure 8.9, the average latency of joining a group in SIGMP and GSAM protocols bundle drastically

increases as the number of NQs grows, specially when the number is larger than 4.

The first result of third experiment is shown in Figure 8.10:

50

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90 100

D
e

la
y
 i
n

 S
e

c
o

n
d

s

The Number of GMs

Average Latency VS Different Numbers of GMs, Histogram

IGMPv3

GSAM_SIGMP

Figure 8.10: The First Result of Third Simulation

51

In the experiment, the number of NQs is set to 2. The rest of the paraments remain unchanged.

As we can see from Figure 8.10. The average latency fluctuates as the number of GMs increases. We

can also observe that the latency of joining groups in IGMPv3 also greatly increased. Therefore, we

speculate it is caused by the congestion of the network. In above shown tests, each GM joins a group

every one second. We increase the interval between joining events to 10 seconds and the result is

shown in Figure 8.11:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 20 30 40 50 60 70 80 90 100

D
e

la
y
 i
n

 S
e

c
o

n
d

s

The Number of GMs

Average Latency VS Different Numbers of GMs, larger join-interval, Histogram

IGMPv3

GSAM_SIGMP

Figure 8.11: The Second Result of Third Simulation

As we can see from Figure 8.11, the average latency stays around 200ms to 400ms before the

network starts becoming overcrowd when the number of GMs is larger than 60.

52

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, we analyze the performance of SIGMP and GSAM protocol bundle and compare

its latency of joining a group with the one of IGMPv3 by simulation in ns-3. In our analysis, we

present all possible cases of packet sequence and the factors that affect the performance. The first

simulation result shows SIGMP and GSAM protocol bundle has much inferior performance when

compared to IGMPv3. Moreover, the result also shows abnormal performance, which is that its

average latency decreases as SPI Rejection Rate increases.

Therefore, we analyze the log file of the first simulation and discover the cause of the issue.

Furthermore, we revise the packet sequence of a specific case of GSAM’s operation and conduct a

second simulation. The result of the revised approach of SIGMP and GSAM protocol bundle shows

the anticipated behavior from our performance analysis. Yet, its performance is still many times

worse than IGMPv3, an average latency of hundreds of milliseconds versus dozens of milliseconds

in IGMPv3.

Then, we conduct two more expriments with other two factors that influence the performance:

the number of NQs and the number of GMs. The results show that the average latency will become

very high when the number of NQs is large. When the network is not congested, the number of GMs

has very limited impact on the performance.

At last, taking video streaming as the use case, the latency of the IGMP process is relatively

53

smaller compared to others such as video streaming buffering and synchronization, which can take

up to two seconds. For better revenue collection, we conclude from the results of our simulations that

when the number of NQs is small and the local network is not congested, the additional hundreds of

milliseconds latency is a reasonable overhead for the security and access control provided by SIGMP

and GSAM.

9.2 Future Work

Though the performance of the protocol bundle has been measured, there are details undefined

and space for improvement. Firstly, a secure but not authenticated channel established in Init

exchange of phase one between Q and NQ will be shared during joining processes of multiple groups

by multiple GMs. That is to say, the Q may issue simultaneous requests to NQ using a single Init

SA. Therefore, it requires a sliding-window mechanism for processing multiple incoming requests

and their retransmissions on the endpoint of NQs. Currently, in the simulation of this thesis, NQ

always treats incoming requests as new requests and increase its counters of message id accordingly.

Secondly, the issue of what content should be included in the SPI Report messages. To generate a

new SPI value whenever there is a SPI conflict, the Q needs to gather used SPI values from everyone

who is involved in joining process of the group by sending SPI Request messages. Whoever receives

such message should respond accordingly. In the current simulation, a host will enclose every SPI

valus used in its database. This is not efficient when the list of SPI values is large.

54

Appendix A

Class Diagrams of the Implemention

55

ns3::Igmpv3L4Protocol

+ PROT_NUMBER : const uint8_t

- m_node : Ptr< Node >

- m_downTarget : IpL4Protocol::DownTargetCallback

- m_GenQueAddress : Ipv4Address

- m_RptAddress : Ipv4Address

- m_role : ROLE

- m_event_robustness_retransmission : EventId

- m_gsam : Ptr< GsamL4Protocol >

- m_igmp_manager : Ptr< Igmpv3Manager >

+ ListUnion()

+ ListSubtraction()

+ ListIntersection()

+ GetTypeId()

+ Igmpv3L4Protocol() «constructor»

+ ~ Igmpv3L4Protocol() «destructor»

+ SetNode()

+ GetStaticProtocolNumber()

+ GetIgmp()

+ GetProtocolNumber()

+ GetManager()

+ Receive()

+ Receive()

+ SetDownTarget()

+ SetDownTarget6()

+ GetDownTarget()

+ GetDownTarget6()

+ SetRole()

+ GetRole()

+ Initialization()

+ SendDefaultGeneralQuery()

+ SendSecureGroupSpecificQuery()

+ SendStateChangesReport()

+ SendSecureStateChangesReport()

+ HandleQuery()

+ NonQHandleQuery()

+ HandleV1MemReport()

+ HandleV2MemReport()

+ HandleV3MemReport()

+ HandleGroupSpecificQuery()

+ IPMulticastListen()

+ SendReport()

+ SendSecureReport()

+ GetStateChangeReportRetransmissionInterval()

+ GetRobustnessValue()

+ GetMaxRespCode()

+ GetRandomTime()

+ GetMaxRespTime()

+ GetQueryInterval()

+ GetQueryReponseInterval()

+ GetGroupMembershipIntervalGMI()

+ GetLastMemberQueryTimeLMQT()

+ GetLastMemberQueryInterval()

+ GetOtherQuerierPresentInterval()

+ GetStartupQueryInterval()

+ GetLastMemberQueryCount()

+ GetQQIC()

+ GetQRV()

+ GetStartupQueryCount()

+ SendQuery()

+ DoSendQuery()

+ SetGsam()

+ GetGsam()

NotifyNewAggregate()

- SendMessage()

- DoDispose()

IpL4Protocol

Figure A.1: The Class Diagrams of IGMPv3 and SIGMP Protocols Implementation

56

ns3::Igmpv3Query

- m_group_address : Ipv4Address

- m_resv_s_qrv : Resv_S_Qrv

- m_qqic : uint8_t

- m_num_srcs : uint16_t

- m_lst_src_addresses : std::list< Ipv4Address >

+ GetTypeId()

+ Igmpv3Query() «constructor»

+ ~ Igmpv3Query() «destructor»

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ SetGroupAddress()

+ SetGroupAddress()

+ SetSFlag()

+ SetQRV()

+ SetQQIC()

+ PushBackSrcAddress()

+ PushBackSrcAddresses()

+ GetGroupAddress()

+ isSFlagSet()

+ GetQRV()

+ GetQQIC()

+ GetNumSrc()

+ GetSrcAddresses()

ns3::Igmpv3Report

- m_reserved : uint16_t

- m_num_grp_record : uint16_t

- m_lst_grp_records : std::list< Igmpv3GrpRecord >

+ GetTypeId()

+ Igmpv3Report() «constructor»

+ ~ Igmpv3Report() «destructor»

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ GetNumGrpRecords()

+ PushBackGrpRecord()

+ PushBackGrpRecords()

+ GetGrpRecords()

+ MergeReports()

ns3::Igmpv3Header

- m_type : uint8_t

- m_max_resp_code : uint8_t

- m_checksum : uint16_t

- m_calcChecksum : bool

+ GetTypeId()

+ Igmpv3Header() «constructor»

+ ~ Igmpv3Header() «destructor»

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ SetType()

+ GetType()

+ SetMaxRespCode()

+ GetMaxRespCode()

+ EnableChecksum()

ns3::Igmpv3GrpRecord

- m_record_type : uint8_t

- m_aux_data_len : uint8_t

- m_num_srcs : uint16_t

- m_mul_address : Ipv4Address

- m_lst_src_addresses : std::list< Ipv4Address >

- m_lst_aux_data : std::list< uint32_t >

+ CreateBlockRecord()

+ CreateBlockRecord()

+ CreateAllowRecord()

+ CreateAllowRecord()

+ CreateStateChangeRecord()

+ CreateStateChangeRecord()

+ GenerateGrpRecords()

+ GenerateGrpRecord()

+ GenerateGrpRecord()

+ GetTypeId()

+ Igmpv3GrpRecord() «constructor»

+ ~ Igmpv3GrpRecord() «destructor»

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ SetType()

+ SetMulticastAddress()

+ PushBackSrcAddress()

+ PushBackSrcAddresses()

+ PushBackAuxData()

+ PushBackAuxdata()

+ GetType()

+ GetAuxDataLen()

+ GetNumSrcs()

+ GetMulticastAddress()

+ GetSrcAddresses()

+ GetAuxData()

ns3::Header

Figure A.2: The Class Diagrams of IGMPv3 Packet Data Structures Implementation

57

ns3::Igmpv3Manager

- m_map_socketstate_managers : std::map< Ptr < Socket >, Ptr < IGMPv3SocketStateManager > >

- m_map_ifstate_managers : std::map< Ptr < Ipv4InterfaceMulticast >, Ptr < IGMPv3InterfaceStateManager > >

+ GetTypeId()

+ Igmpv3Manager() «constructor»

+ ~ Igmpv3Manager() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetSocketStateManager()

+ GetIfStateManager()

+ StopEverything()

ns3::IGMPv3InterfaceStateManager

- m_interface : Ptr< Ipv4InterfaceMulticast >

- m_lst_interfacestates : std::list< Ptr < IGMPv3InterfaceState > >

- m_event_robustness_retransmission : EventId

- m_timer_gen_query : Timer

- m_lst_per_group_interface_timers : std::list< Ptr < PerGroupInterfaceTimer > >

- m_lst_maintenance_states : std::list< Ptr < IGMPv3MaintenanceState > >

+ GetTypeId()

+ IGMPv3InterfaceStateManager() «constructor»

+ IGMPv3InterfaceStateManager() «constructor»

+ ~ IGMPv3InterfaceStateManager() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetInterface()

+ GetIfState()

+ GetInterfaceStates()

+ HasPendingRecords()

+ IsReportStateChangesRunning()

+ CreateIfState()

+ PushBackIfState()

+ RemoveIfState()

+ CreateMaintenanceState()

+ Sort()

+ UnSubscribeIGMP()

+ AddPendingRecordsToReport()

+ AddPendingRecordsToReport()

+ ReportStateChanges()

+ ReportStateChanges()

+ DoReportStateChanges()

+ DoSecureReportStateChanges()

+ ReportCurrentStates()

+ ReportCurrentGrpStates()

+ ReportCurrentGrpNSrcStates()

+ CancelReportStateChanges()

+ RemovePerGroupTimer()

+ HandleGeneralQuery()

+ HandleGroupSpecificQuery()

+ DoHandleGroupSpecificQuery()

+ HandleGroupNSrcSpecificQuery()

+ DoHandleGroupNSrcSpecificQuery()

+ HandleV3Records()

+ NonQHandleGroupSpecificQuery()

+ NonQHandleGroupNSrcSpecificQuery()

+ SendQuery()

+ SendQuery()

+ StopEverything()

ns3::IGMPv3SocketStateManager

- m_socket : Ptr< Socket >

- m_lst_socket_states : std::list< Ptr < IGMPv3SocketState > >

+ GetTypeId()

+ IGMPv3SocketStateManager() «constructor»

+ IGMPv3SocketStateManager() «constructor»

+ ~ IGMPv3SocketStateManager() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetSocketState()

+ GetSocketStates()

+ GetSocket()

+ CreateSocketState()

+ UnSubscribeIGMP()

+ Sort()

+ Remove()

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

Figure A.3: The Class Diagrams of IGMPv3 Databases Implementation Overview

58

ns3::IGMPv3SocketStateManager

- m_socket : Ptr< Socket >

- m_lst_socket_states : std::list< Ptr < IGMPv3SocketState > >

+ GetTypeId()

+ IGMPv3SocketStateManager() «constructor»

+ IGMPv3SocketStateManager() «constructor»

+ ~ IGMPv3SocketStateManager() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetSocketState()

+ GetSocketStates()

+ GetSocket()

+ CreateSocketState()

+ UnSubscribeIGMP()

+ Sort()

+ Remove()

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

ns3::Igmpv3Manager

- m_map_socketstate_managers : std::map< Ptr < Socket >, Ptr < IGMPv3SocketStateManager > >

- m_map_ifstate_managers : std::map< Ptr < Ipv4InterfaceMulticast >, Ptr < IGMPv3InterfaceStateManager > >

+ GetTypeId()

+ Igmpv3Manager() «constructor»

+ ~ Igmpv3Manager() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetSocketStateManager()

+ GetIfStateManager()

+ StopEverything()

Figure A.4: The Class Diagrams of IGMPv3 Socket State Database Implementation

59

0..1

-m_manager

0..1

-m_old_if_state

0..1

-m_group_state

0..1
-m_manager

ns3::IGMPv3MaintenanceSrcRecord

- m_group_state : Ptr< IGMPv3MaintenanceState >

- m_source_address : Ipv4Address

- m_srcTimer : Timer

- m_uint_retransmission_state : uint8_t

+ GetTypeId()

+ IGMPv3MaintenanceSrcRecord() «constructor»

+ ~ IGMPv3MaintenanceSrcRecord() «destructor»

+ GetMulticastAddress()

+ GetRetransmissionState()

+ DecreaseRetransmissionState()

+ SetRetransmissionState()

+ Initialize()

+ UpdateTimer()

+ GetDelayLeft()

+ IsTimerRunning()

+ StopEverything()

- TimerExpire()

T

ns3::Ptr

- m_ptr : T*

- Acquire()

+ Ptr() «constructor»

+ Ptr() «constructor»

+ Ptr() «constructor»

+ Ptr() «constructor»

+ Ptr() «constructor»

+ ~ Ptr() «destructor»

+ operator =()

+ operator ->()

+ operator *()

+ operator !()

+ operator Tester *() «constructor»

ns3::IGMPv3InterfaceStateManager

- m_interface : Ptr< Ipv4InterfaceMulticast >

- m_lst_interfacestates : std::list< Ptr < IGMPv3InterfaceState > >

- m_event_robustness_retransmission : EventId

- m_timer_gen_query : Timer

- m_lst_per_group_interface_timers : std::list< Ptr < PerGroupInterfaceTimer > >

- m_lst_maintenance_states : std::list< Ptr < IGMPv3MaintenanceState > >

+ GetTypeId()

+ IGMPv3InterfaceStateManager() «constructor»

+ IGMPv3InterfaceStateManager() «constructor»

+ ~ IGMPv3InterfaceStateManager() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetInterface()

+ GetIfState()

+ GetInterfaceStates()

+ HasPendingRecords()

+ IsReportStateChangesRunning()

+ CreateIfState()

+ PushBackIfState()

+ RemoveIfState()

+ CreateMaintenanceState()

+ Sort()

+ UnSubscribeIGMP()

+ AddPendingRecordsToReport()

+ AddPendingRecordsToReport()

+ ReportStateChanges()

+ ReportStateChanges()

+ DoReportStateChanges()

+ DoSecureReportStateChanges()

+ ReportCurrentStates()

+ ReportCurrentGrpStates()

+ ReportCurrentGrpNSrcStates()

+ CancelReportStateChanges()

+ RemovePerGroupTimer()

+ HandleGeneralQuery()

+ HandleGroupSpecificQuery()

+ DoHandleGroupSpecificQuery()

+ HandleGroupNSrcSpecificQuery()

+ DoHandleGroupNSrcSpecificQuery()

+ HandleV3Records()

+ NonQHandleGroupSpecificQuery()

+ NonQHandleGroupNSrcSpecificQuery()

+ SendQuery()

+ SendQuery()

+ StopEverything()

ns3::IGMPv3InterfaceState

- m_manager : Ptr< IGMPv3InterfaceStateManager >

- m_multicast_address : Ipv4Address

- m_flag_secure_group : bool

- m_filter_mode : FILTER_MODE

- m_lst_source_list : std::list< Ipv4Address >

- m_lst_associated_socket_state : std::list< Ptr < IGMPv3SocketState > >

- m_old_if_state : Ptr< IGMPv3InterfaceState >

- m_que_pending_block_src_chg_records : std::queue< Igmpv3GrpRecord >

- m_que_pending_allow_src_chg_records : std::queue< Igmpv3GrpRecord >

- m_que_pending_filter_mode_chg_records : std::queue< Igmpv3GrpRecord >

+ GetTypeId()

+ IGMPv3InterfaceState() «constructor»

+ Initialize()

+ ~ IGMPv3InterfaceState() «destructor»

+ GetInterface()

+ GetGroupAddress()

+ GetSrcList()

+ GetSrcNum()

+ SetSrcList()

+ GetFilterMode()

+ UnSubscribeIGMP()

+ IsFilterModeChanged()

+ IsFilterModeChanged()

+ IsFilterModeChanged()

+ IsSrcLstChanged()

+ IsSrcLstChanged()

+ IsSrcLstChanged()

+ HasPendingRecords()

+ IsSecureGroup()

+ GenerateRecord()

+ GenerateRecord()

+ ComputeState()

+ ReportFilterModeChange()

+ ReportSrcLstChange()

+ AddPendingRecordsToReport()

+ GetNonExistentState()

+ AssociateSocketStateInterfaceState()

- Invoke()

- IsSocketStateExist()

- CheckSubscribedAllSocketsIncludeMode()

- SaveOldInterfaceState()

- GetOldInterfaceState()

- GetIgmp()

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

ns3::IGMPv3MaintenanceState

- m_manager : Ptr< IGMPv3InterfaceStateManager >

- m_multicast_address : Ipv4Address

- m_groupTimer : Timer

- m_filter_mode : FILTER_MODE

- m_lst_src_records : std::list< Ptr < IGMPv3MaintenanceSrcRecord > >

- m_uint_retransmission_state : uint8_t

- m_event_retranmission : EventId

+ GetTypeId()

+ IGMPv3MaintenanceState() «constructor»

+ ~ IGMPv3MaintenanceState() «destructor»

+ Initialize()

+ GetMulticastAddress()

+ GetCurrentSrcLst()

+ GetCurrentSrcLstTimerGreaterThanZero()

+ GetCurrentSrcLstTimerEqualToZero()

+ GetFilterMode()

+ AddSrcRecord()

+ HandleGrpRecord()

+ HandleQuery()

+ HandleQuery()

+ DeleteSrcRecord()

+ StopEverything()

- SetFilterMode()

- GetGroupMembershipIntervalGMI()

- GetLastMemberQueryTimeLMQT()

- GetLastMemberQueryInterval()

- GetLastMemberQueryCount()

- UpdateSrcTimers()

- DeleteSrcRecords()

- AddSrcRecord()

- AddSrcRecords()

- UpdateGrpTimer()

- UpdateSrcRecords()

- SendQuery()

- DoSendGroupNSrcSpecificQuery()

- SendQuery()

- DoSendGroupSpecificQuery()

- TimerExpire()

- DeleteExpiredSrcRecords()

- LowerGrpTimer()

- LowerSrcTimer()

- SetSrcRecordsRetransmissionStates()

- DecreaseSrcRecordsRetransmissionStates()

- GetSrcRetransWTimerGreaterThanLMQT()

- GetSrcRetransWTimerLowerOrEqualToLMQT()

- GetIgmp()

Figure A.5: The Class Diagrams of IGMPv3 Interface State and Reception State Databases Imple-
mentation

60

ns3::GsamSessionGroup

- m_group_address : Ipv4Address

- m_ptr_database : Ptr< IpSecDatabase >

- m_ptr_related_gsa_q : Ptr< IpSecSAEntry >

- m_lst_sessions : std::list< Ptr < GsamSession > >

- m_ptr_related_policy : Ptr< IpSecPolicyEntry >

+ GetTypeId()

+ GsamSessionGroup() «constructor»

+ ~ GsamSessionGroup() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ SetGroupAddress()

+ SetDatabase()

+ AssociateWithGsaQ()

+ AssociateWithPolicy()

+ PushBackSession()

+ RemoveSession()

+ GetSessions()

+ EtablishPolicy()

+ EtablishPolicy()

+ InstallGsaQ()

+ InstallGsaR()

+ GetRelatedPolicy()

+ GetGroupAddress()

+ GetDatabase()

+ GetRelatedGsaQ()

+ GetSessionsConst()

+ GetSessionByGsaRSpi()

- InstallInboundGsa()

- InstallOutboundGsa()

ns3::GsamInitSession

m_current_message_id : uint32_t

m_ptr_database : Ptr< IpSecDatabase >

m_session_role : SESSION_ROLE

m_timer_retransmit : Timer

m_timer_timeout : Timer

m_last_sent_packet : Ptr< Packet >

m_number_retranmission : uint16_t

- m_peer_address : Ipv4Address

- m_ptr_init_sa : Ptr< GsamSa >

- m_ptr_first_join_session : Ptr< GsamSessio

+ GetTypeId()

+ GsamInitSession() «constructor»

+ ~ GsamInitSession() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetLocalRole()

+ SetSessionRole()

+ SetInitSaInitiatorSpi()

+ SetInitSaResponderSpi()

+ SetDatabase()

+ SetPeerAddress()

+ SetMessageId()

+ EtablishGsamInitSa()

+ GetRetransmitTimer()

+ SceduleTimeout()

+ SetCachePacket()

+ SetNumberRetransmission()

+ DecrementNumberRetransmission()

+ SetFirstJoinSession()

+ HaveInitSa()

+ GetInfo()

+ GetDatabase()

+ GetInitSaResponderSpi()

+ GetInitSaInitiatorSpi()

+ GetSessionRole()

+ GetExchangeMessageId()

+ GetCurrentMessageId()

+ GetPeerAddress()

+ IsHostQuerier()

+ IsHostGroupMember()

+ IsHostNonQuerier()

+ GetCachePacket()

+ IsRetransmit()

+ GetRemainingRetransmissionCount()

+ GetFirstJoinSession()

TimeoutAction()

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

ns3::GsamSession

- m_ptr_init_session : Ptr< GsamInitSession >

- m_ptr_session_group : Ptr< GsamSessionGroup >

- m_group_address : Ipv4Address

- m_ptr_kek_sa : Ptr< GsamSa >

- m_ptr_related_gsa_r : Ptr< IpSecSAEntry >

- m_ptr_push_session : Ptr< GsaPushSession >

- m_set_ptr_push_sessions : std::set< Ptr < GsaPushSession > >

- m_ptr_igmp_interface : Ptr< Ipv4InterfaceMulticast >

+ GetTypeId()

+ GsamSession() «constructor»

+ ~ GsamSession() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ SetKekSaInitiatorSpi()

+ SetKekSaResponderSpi()

+ SetInitSession()

+ EtablishGsamKekSa()

+ IncrementMessageId()

+ SetGroupAddress()

+ SetRelatedGsaR()

+ AssociateGsaQ()

+ AssociateWithSessionGroup()

+ AssociateWithPolicy()

+ SetGsaPushSession()

+ InsertGsaPushSession()

+ ClearGsaPushSession()

+ ClearGsaPushSession()

+ CreateAndSetGsaPushSession()

+ SetNumberRetransmission()

+ DecrementNumberRetransmission()

+ SetIgmpInterface()

+ HaveKekSa()

+ GetInfo()

+ GetDatabase()

+ GetInitSession()

+ GetKekSaResponderSpi()

+ GetKekSaInitiatorSpi()

+ GetInitSaResponderSpi()

+ GetInitSaInitiatorSpi()

+ GetPeerAddress()

+ GetGroupAddress()

+ GetRelatedGsaR()

+ GetRelatedGsaQ()

+ GetRelatedPolicy()

+ IsHostNonQuerier()

+ GetGsaPushSession()

+ GetGsaPushSession()

+ GetSessionGroup()

+ GetIgmpInterface()

- TimeoutAction()

ns3::GsamSa

- m_type : SA_TYPE

- m_initiator_spi : uint64_t

- m_responder_spi : uint64_t

- m_ptr_init_session : Ptr< GsamInitSession >

- m_ptr_encrypt_fn : Ptr< EncryptionFunction >

+ GetTypeId()

+ GsamSa() «constructor»

+ ~ GsamSa() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ SetSession()

+ SetType()

+ SetInitiatorSpi()

+ SetResponderSpi()

+ IsHalfOpen()

+ GetType()

+ GetInitiatorSpi()

+ GetResponderSpi()

- FreeLocalSpi()

ns3::IpSecDatabase

- m_lst_ptr_all_sessions : std::list< Ptr < GsamSession > >

- m_lst_init_sessions : std::list< Ptr < GsamInitSession > >

- m_lst_ptr_session_groups : std::list< Ptr < GsamSessionGroup > >

- m_set_ptr_gsa_push_sessions : std::set< Ptr < GsaPushSession > >

- m_window_size : uint32_t

- m_ptr_spd : Ptr< IpSecPolicyDatabase >

- m_ptr_sad : Ptr< IpSecSADatabase >

- m_ptr_info : Ptr< GsamInfo >

- m_ptr_gsam : Ptr< GsamL4Protocol >

+ GetTypeId()

+ IpSecDatabase() «constructor»

+ ~ IpSecDatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ CreateSession()

+ CreateSession()

+ CreateInitSession()

+ CreateInitSession()

+ CreateGsaPushSession()

+ GetSessionGroup()

+ GetSessionGroups()

+ RemoveSession()

+ RemoveInitSession()

+ RemoveSessionGroup()

+ RemoveGsaPushSession()

+ GetRetransmissionDelay()

+ GetSPD()

+ GetSAD()

+ SetGsam()

+ GetInfo()

+ GetPhaseTwoSession()

+ GetSession()

+ GetSession()

+ GetSession()

+ GetInitSession()

+ GetInitSession()

+ GetPolicyDatabase()

+ GetIpSecSaDatabase()

+ GetIgmp()

+ GetGsam()

+ IsHostQuerier()

+ IsHostGroupMember()

+ IsHostNonQuerier()

- CreateSessionGroup()

Figure A.6: The Class Diagrams of GSAM Database Implementation

61

ns3::IpSecSADatabase

- m_direction : DIRECTION

- m_ptr_root_database : Ptr< IpSecDatabase >

- m_ptr_policy_entry : Ptr< IpSecPolicyEntry >

- m_lst_entries : std::list< Ptr < IpSecSAEntry > >

+ GetTypeId()

+ IpSecSADatabase() «constructor»

+ ~ IpSecSADatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ CreateIpSecSAEntry()

+ RemoveEntry()

+ AssociatePolicyEntry()

+ SetRootDatabase()

+ SetDirection()

+ GetRootDatabase()

+ GetIpsecSAEntry()

+ GetInfo()

+ GetSpis()

+ GetDirection()

- PushBackEntry()

ns3::IpSecDatabase

- m_lst_ptr_all_sessions : std::list< Ptr < GsamSession > >

- m_lst_init_sessions : std::list< Ptr < GsamInitSession > >

- m_lst_ptr_session_groups : std::list< Ptr < GsamSessionGroup > >

- m_set_ptr_gsa_push_sessions : std::set< Ptr < GsaPushSession > >

- m_window_size : uint32_t

- m_ptr_spd : Ptr< IpSecPolicyDatabase >

- m_ptr_sad : Ptr< IpSecSADatabase >

- m_ptr_info : Ptr< GsamInfo >

- m_ptr_gsam : Ptr< GsamL4Protocol >

+ GetTypeId()

+ IpSecDatabase() «constructor»

+ ~ IpSecDatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ CreateSession()

+ CreateSession()

+ CreateInitSession()

+ CreateInitSession()

+ CreateGsaPushSession()

+ GetSessionGroup()

+ GetSessionGroups()

+ RemoveSession()

+ RemoveInitSession()

+ RemoveSessionGroup()

+ RemoveGsaPushSession()

+ GetRetransmissionDelay()

+ GetSPD()

+ GetSAD()

+ SetGsam()

+ GetInfo()

+ GetPhaseTwoSession()

+ GetSession()

+ GetSession()

+ GetSession()

+ GetInitSession()

+ GetInitSession()

+ GetPolicyDatabase()

+ GetIpSecSaDatabase()

+ GetIgmp()

+ GetGsam()

+ IsHostQuerier()

+ IsHostGroupMember()

+ IsHostNonQuerier()

- CreateSessionGroup()

ns3::IpSecPolicyDatabase

- m_ptr_root_database : Ptr< IpSecDatabase >

- m_lst_entries : std::list< Ptr < IpSecPolicyEntry > >

+ GetTypeId()

+ IpSecPolicyDatabase() «constructor»

+ ~ IpSecPolicyDatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ RemoveEntry()

+ CreatePolicyEntry()

+ SetRootDatabase()

+ GetRootDatabase()

+ GetInfo()

+ GetInboundSpis()

+ GetExactMatchedPolicy()

+ GetExactMatchedPolicy()

+ GetFallInRangeMatchedPolicy()

- PushBackEntry()

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

Figure A.7: The Class Diagrams of IPsec Databases Implementation Overview

62

ns3::IpSecDatabase

- m_lst_ptr_all_sessions : std::list< Ptr < GsamSession > >

- m_lst_init_sessions : std::list< Ptr < GsamInitSession > >

- m_lst_ptr_session_groups : std::list< Ptr < GsamSessionGroup > >

- m_set_ptr_gsa_push_sessions : std::set< Ptr < GsaPushSession > >

- m_window_size : uint32_t

- m_ptr_spd : Ptr< IpSecPolicyDatabase >

- m_ptr_sad : Ptr< IpSecSADatabase >

- m_ptr_info : Ptr< GsamInfo >

- m_ptr_gsam : Ptr< GsamL4Protocol >

+ GetTypeId()

+ IpSecDatabase() «constructor»

+ ~ IpSecDatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ CreateSession()

+ CreateSession()

+ CreateInitSession()

+ CreateInitSession()

+ CreateGsaPushSession()

+ GetSessionGroup()

+ GetSessionGroups()

+ RemoveSession()

+ RemoveInitSession()

+ RemoveSessionGroup()

+ RemoveGsaPushSession()

+ GetRetransmissionDelay()

+ GetSPD()

+ GetSAD()

+ SetGsam()

+ GetInfo()

+ GetPhaseTwoSession()

+ GetSession()

+ GetSession()

+ GetSession()

+ GetInitSession()

+ GetInitSession()

+ GetPolicyDatabase()

+ GetIpSecSaDatabase()

+ GetIgmp()

+ GetGsam()

+ IsHostQuerier()

+ IsHostGroupMember()

+ IsHostNonQuerier()

- CreateSessionGroup()

ns3::IpSecPolicyEntry

- m_src_starting_address : Ipv4Address

- m_src_ending_address : Ipv4Address

- m_dest_starting_address : Ipv4Address

- m_dest_ending_address : Ipv4Address

- m_ip_protocol_num : uint8_t

- m_ipsec_mode : ns3::IpSec::MODE

- m_src_transport_protocol_starting_num : uint16_t

- m_src_transport_protocol_ending_num : uint16_t

- m_dest_transport_protocol_starting_num : uint16_t

- m_dest_transport_protocol_ending_num : uint16_t

- m_process_choise : ns3::IpSec::PROCESS_CHOICE

- m_ptr_spd : Ptr< IpSecPolicyDatabase >

- m_ptr_outbound_sad : Ptr< IpSecSADatabase >

- m_ptr_inbound_sad : Ptr< IpSecSADatabase >

+ GetTypeId()

+ IpSecPolicyEntry() «constructor»

+ ~ IpSecPolicyEntry() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ GetProcessChoice()

+ GetProtocolNum()

+ GetIpsecMode()

+ GetTranSrcStartingPort()

+ GetTranSrcEndingPort()

+ GetTranDestStartingPort()

+ GetTranDestEndingPort()

+ GetSrcAddressRangeStart()

+ GetSrcAddressRangeEnd()

+ GetDestAddressRangeStart()

+ GetDestAddressRangeEnd()

+ GetSrcAddress()

+ GetDestAddress()

+ GetSPD()

+ GetTrafficSelectorSrc()

+ GetTrafficSelectorDest()

+ GetInboundSpis()

+ SetProcessChoice()

+ SetProtocolNum()

+ SetIpsecMode()

+ SetTranSrcStartingPort()

+ SetTranSrcEndingPort()

+ SetTranDestStartingPort()

+ SetTranDestEndingPort()

+ SetTranSrcPortRange()

+ SetTranDestPortRange()

+ SetSrcAddressRange()

+ SetDestAddressRange()

+ SetSingleSrcAddress()

+ SetSingleDestAddress()

+ SetTrafficSelectors()

+ SetSPD()

+ GetOutboundSAD()

+ GetInboundSAD()

ns3::IpSecSADatabase

- m_direction : DIRECTION

- m_ptr_root_database : Ptr< IpSecDatabase >

- m_ptr_policy_entry : Ptr< IpSecPolicyEntry >

- m_lst_entries : std::list< Ptr < IpSecSAEntry > >

+ GetTypeId()

+ IpSecSADatabase() «constructor»

+ ~ IpSecSADatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ CreateIpSecSAEntry()

+ RemoveEntry()

+ AssociatePolicyEntry()

+ SetRootDatabase()

+ SetDirection()

+ GetRootDatabase()

+ GetIpsecSAEntry()

+ GetInfo()

+ GetSpis()

+ GetDirection()

- PushBackEntry()

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

Figure A.8: The Class Diagrams of SPD Implementation

63

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

ns3::IpSecSAEntry

- m_direction : DIRECTION

- m_spi : uint32_t

- m_ptr_encrypt_fn : Ptr< EncryptionFunction

- m_ptr_sad : Ptr< IpSecSADatabase >

- m_ptr_policy : Ptr< IpSecPolicyEntry >

+ GetTypeId()

+ IpSecSAEntry() «constructor»

+ ~ IpSecSAEntry() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ SetSpi()

+ SetSAD()

+ AssociatePolicy()

+ SetInbound()

+ SetOutbound()

+ GetSpi()

+ GetPolicyEntry()

+ IsInbound()

+ IsOutbound()

ns3::IpSecSADatabase

- m_direction : DIRECTION

- m_ptr_root_database : Ptr< IpSecDatabase >

- m_ptr_policy_entry : Ptr< IpSecPolicyEntry >

- m_lst_entries : std::list< Ptr < IpSecSAEntry > >

+ GetTypeId()

+ IpSecSADatabase() «constructor»

+ ~ IpSecSADatabase() «destructor»

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ CreateIpSecSAEntry()

+ RemoveEntry()

+ AssociatePolicyEntry()

+ SetRootDatabase()

+ SetDirection()

+ GetRootDatabase()

+ GetIpsecSAEntry()

+ GetInfo()

+ GetSpis()

+ GetDirection()

- PushBackEntry()

Figure A.9: The Class Diagrams of SAD Implementation

64

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

ns3::GsamL4Protocol

+ PROT_NUMBER : const uint16_t

- m_node : Ptr< Node >

- m_socket : Ptr< Socket >

- m_ptr_database : Ptr< IpSecDatabase >

- m_ptr_gsam_filter : Ptr< GsamFilter >

+ GetTypeId()

+ GsamL4Protocol() «constructor»

+ ~ GsamL4Protocol() «destructor»

+ SetNode()

+ GetInstanceTypeId()

NotifyNewAggregate()

- DoDispose()

+ HandleRead()

+ Send_IKE_SA_INIT()

+ Send_IKE_SA_AUTH()

- SendPhaseOneMessage()

- SendPhaseOneMessage()

- SendPhaseTwoMessage()

- DoSendMessage()

- DoSendInitMessage()

- HandleIkeSaInitResponse()

- HandleIkeSaAuthResponse()

- ProcessIkeSaAuthResponse()

- HandleIkeSaInit()

- HandleIkeSaInitInvitation()

- RespondIkeSaInit()

- HandleIkeSaAuth()

- HandleIkeSaAuthInvitation()

- ProcessIkeSaAuthInvitation()

- RespondIkeSaAuth()

- Send_GSA_PUSH()

- Send_GSA_PUSH_GM()

- Send_GSA_RE_PUSH()

- Send_GSA_PUSH_NQ()

- Send_SPI_REQUEST()

- HandleGsaAckRejectSpiResponse()

- HandleGsaAckRejectSpiResponseFromGM()

- HandleGsaAckFromGM()

- HandleGsaRejectionFromGM()

- HandleGsaSpiNotificationFromGM()

- HandleGsaAckRejectSpiResponseFromNQ()

- HandleGsaAckFromNQ()

- HandleGsaAckFromNQ()

- HandleGsaRejectionFromNQ()

- HandleGsaRejectionFromNQ()

- HandleGsaSpiNotificationFromNQ()

- ProcessGsaSpiNotificationFromNQ()

- DeliverToNQs()

- DeliverToNQs()

- HandleGsaInformational()

- HandleGsaPushSpiRequest()

- HandleSpiRequestGMNQ()

- SendSpiReportGMNQ()

- HandleCreateChildSa()

- HandleGsaRepush()

- HandleGsaRepushGM()

- HandleGsaRepushNQ()

- HandleGsaPushSpiRequestGM()

- HandleGsaPushGM()

- ProcessGsaPushGM()

- RejectGsaQ()

- AcceptGsaPair()

- InstallGsaPair()

- SendAcceptAck()

- HandleGsaPushSpiRequestNQ()

- HandleGsaPushNQ()

- ProcessGsaPushNQForOneGrp()

- RejectGsaR()

- ProcessNQRejectResult()

- SendAcceptAck()

- FakeRejection()

+ GetIgmp()

+ GetIpSecDatabase()

- ChooseSAProposalOffer()

- NarrowTrafficSelectors()

- Initialization()

- CreateIpSecPolicy()

- CreateIpSecPolicy()

+ GetNode()

+ GetGsamFilter()

+ GetGsam()

Figure A.10: The Class Diagrams of GSAM Protocol Implementation

65

ns3::SimpleAuthenticationHeader

- m_next_header : uint8_t

- m_payload_len : uint8_t

- m_spi : uint32_t

- m_seq_number : uint32_t

+ GetTypeId()

+ SimpleAuthenticationHeader() «constructor»

+ SimpleAuthenticationHeader() «constructor»

+ ~ SimpleAuthenticationHeader() «destructor»

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ GetSpi()

+ GetSeqNumber()

+ GetNextHeader()

ns3::Header

Figure A.11: The Class Diagram of Simple AH Implementation

66

-m_header

ns3::IkePayloadSubstructure

m_length : uint16_t

+ GetTypeId()

+ IkePayloadSubstructure() «constructor»

+ ~ IkePayloadSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ SetLength()

+ Deserialize()

+ GetPayloadType()

IkePayloadHeader

- m_next_payload : PAYLOAD_TYPE

- m_flag_critical : bool

- m_payload_length : uint16_t

+ GetTypeId()

+ IkePayloadHeader() «constructor»

+ ~ IkePayloadHeader() «destructor»

+ PayloadTypeToUnit8()

+ Uint8ToPayloadType()

+ Serialize()

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ GetPayloadLength()

+ GetNextPayloadType()

+ SetNextPayloadType()

+ SetPayloadLength()

ns3::Header

ns3::Object

- m_tid : TypeId

- m_disposed : bool

- m_initialized : bool

- m_aggregates : struct Aggregates*

- m_getObjectCount : uint32_t

+ GetTypeId()

+ Object() «constructor»

+ ~ Object() «destructor»

+ GetInstanceTypeId()

+ GetObject()

+ GetObject()

+ Dispose()

+ AggregateObject()

+ GetAggregateIterator()

+ Initialize()

NotifyNewAggregate()

DoInitialize()

DoDispose()

Object() «constructor»

- DoGetObject()

- Check()

- CheckLoose()

- SetTypeId()

- Construct()

- UpdateSortedArray()

- DoDelete()

IkeHeader

- m_initiator_spi : uint64_t

- m_responder_spi : uint64_t

- m_next_payload : IkePayloadHeader::PAYLOAD_TYPE

- m_version : Version

- m_exchange_type : EXCHANGE_TYPE

- m_flag_response : bool

- m_flag_version : bool

- m_flag_initiator : bool

- m_message_id : uint32_t

- m_length : uint32_t

+ GetTypeId()

+ IkeHeader() «constructor»

+ ~ IkeHeader() «destructor»

+ ExchangeTypeToUint8()

+ Uint8ToExchangeType()

+ Serialize()

+ Deserialize()

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Print()

+ SetIkev2Version()

+ SetInitiatorSpi()

+ GetInitiatorSpi()

+ SetResponderSpi()

+ GetResponderSpi()

+ SetNextPayloadType()

+ GetNextPayloadType()

+ SetExchangeType()

+ GetExchangeType()

+ SetAsInitiator()

+ IsInitiator()

+ SetAsResponder()

+ IsResponder()

+ SetMessageId()

+ GetMessageId()

+ SetLength()

- FlagsToU8()

- U8ToFlags()

ns3::IkePayload

- m_header : IkePayloadHeader

- m_ptr_substructure : Ptr< IkePayloadSubstructure >

+ GetTypeId()

+ IkePayload() «constructor»

+ ~ IkePayload() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ IsInitialized()

+ GetPayloadType()

+ GetNextPayloadType()

+ GetSubstructure()

+ HasPayloadSubstructure()

+ SetSubstructure()

+ SetNextPayloadType()

+ GetEmptyPayloadFromPayloadType()

- ClearPayloadSubstructure()

Figure A.12: The Class Diagrams of IKEv2 and GSAM Packet Data Structures Implementation
Overview

67

ns3::IkePayloadSubstructure

m_length : uint16_t

+ GetTypeId()

+ IkePayloadSubstructure() «constructor»

+ ~ IkePayloadSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ SetLength()

+ Deserialize()

+ GetPayloadType()

ns3::IkeIdSubstructure

- m_id_type : uint8_t

- m_flag_initiator_responder : bool

- m_lst_id_data : std::list< uint8_t >

+ GetTypeId()

+ IkeIdSubstructure() «constructor»

+ ~ IkeIdSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ SetIpv4AddressData()

+ SetResponder()

+ GetIpv4AddressFromData()

+ IsResponder()

+ GetPayloadType()

+ GenerateIpv4Substructure()

ns3::IkeSaPayloadSubstructure

m_lst_proposal : std::list< Ptr < IkeSaProposal > >

+ GetTypeId()

+ IkeSaPayloadSubstructure() «constructor»

+ ~ IkeSaPayloadSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GenerateInitIkePayload()

+ GenerateAuthIkePayload()

+ PushBackProposal()

+ PushBackProposals()

+ GetProposals()

+ GetPayloadType()

+ GetFirstProposalProtocolId()

SetLastProposal()

ClearLastProposal()

SetProposalNum()

ns3::IkeGsaPayloadSubstructure

- m_flag_repush : bool

- m_gsa_push_id : uint32_t

- m_src_ts : IkeTrafficSelector

- m_dest_ts : IkeTrafficSelector

+ GetTypeId()

+ IkeGsaPayloadSubstructure() «constructor»

+ ~ IkeGsaPayloadSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GenerateEmptyGsaPayload()

+ GenerateEmptyGsaPayload()

+ SetRepush()

- SetPushId()

+ GetPayloadType()

+ GetSourceTrafficSelector()

+ GetDestTrafficSelector()

+ GetGsaPushId()

+ IsRepush()

ns3::IkeGroupNotifySubstructure

- m_protocol_id : uint8_t

- m_spi_size : uint8_t

- m_notify_message_type : uint8_t

- m_num_spis : uint8_t

- m_gsa_push_id : uint32_t

- m_ts_src : IkeTrafficSelector

- m_ts_dest : IkeTrafficSelector

- m_set_u32_spis : std::set< uint32_t >

+ GetTypeId()

+ IkeGroupNotifySubstructure() «constructor»

+ ~ IkeGroupNotifySubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ InsertSpi()

+ InsertSpi()

+ InertSpis()

+ InsertSpis()

+ InsertSpis()

+ GetProtocolId()

+ GetSpiSize()

+ GetNotifyMessageType()

+ GetSpiNum()

+ GetGsaPushId()

+ GetTrafficSelectorSrc()

+ GetTrafficSelectorDest()

+ GetSpis()

+ GetPayloadType()

+ GenerateEmptyGroupNotifySubstructure()

SetProtocolId()

SetNotifyMessageType()

SetSpiSize()

SetGsaPushId()

ns3::IkeTrafficSelectorSubstructure

- m_num_of_tss : uint8_t

- m_flag_initiator_responder : bool

- m_lst_traffic_selectors : std::list< IkeTrafficSelector >

+ GetTypeId()

+ IkeTrafficSelectorSubstructure() «constructor»

+ ~ IkeTrafficSelectorSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GenerateEmptySubstructure()

+ GetSecureGroupSubstructure()

+ SetResponder()

+ IsResponder()

+ GetTrafficSelectors()

+ GetPayloadType()

+ PushBackTrafficSelector()

+ PushBackTrafficSelectors()

ns3::IkeNonceSubstructure

- m_lst_nonce_data : std::list< uint8_t >

+ GetTypeId()

+ IkeNonceSubstructure() «constructor»

+ ~ IkeNonceSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GetPayloadType()

+ GenerateRandomNonceSubstructure()

+ GenerateNonceSubstructure()

+ GetDataToU64()

- SetU64ToData()

ns3::IkeAuthSubstructure

- m_auth_method : uint8_t

- m_lst_id_data : std::list< uint8_t >

+ AuthMethodToUint8()

+ Uint8ToAuthMethod()

+ GetTypeId()

+ IkeAuthSubstructure() «constructor»

+ ~ IkeAuthSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GetPayloadType()

+ GenerateEmptyAuthSubstructure()

Figure A.13: The Class Diagrams of IKEv2 and GSAM Packet Payload Substructures Implementation

68

ns3::IkeGsaPayloadSubstructure

- m_flag_repush : bool

- m_gsa_push_id : uint32_t

- m_src_ts : IkeTrafficSelector

- m_dest_ts : IkeTrafficSelector

+ GetTypeId()

+ IkeGsaPayloadSubstructure() «constructor»

+ ~ IkeGsaPayloadSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GenerateEmptyGsaPayload()

+ GenerateEmptyGsaPayload()

+ SetRepush()

- SetPushId()

+ GetPayloadType()

+ GetSourceTrafficSelector()

+ GetDestTrafficSelector()

+ GetGsaPushId()

+ IsRepush()

ns3::IkeGsaProposal

- m_gsa_type : GSA_TYPE

+ GetTypeId()

+ IkeGsaProposal() «constructor»

+ ~ IkeGsaProposal() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ SetAsNewGsaQ()

+ SetAsNewGsaR()

+ SetGsaType()

+ IsNewGsaQ()

+ IsNewGsaR()

+ GetGsaType()

+ GenerateGsaProposal()

ns3::IkeSaPayloadSubstructure

m_lst_proposal : std::list< Ptr < IkeSaProposal > >

+ GetTypeId()

+ IkeSaPayloadSubstructure() «constructor»

+ ~ IkeSaPayloadSubstructure() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ GenerateInitIkePayload()

+ GenerateAuthIkePayload()

+ PushBackProposal()

+ PushBackProposals()

+ GetProposals()

+ GetPayloadType()

+ GetFirstProposalProtocolId()

SetLastProposal()

ClearLastProposal()

SetProposalNum()

ns3::IkeSaProposal

m_flag_last : bool

m_proposal_length : uint16_t

m_proposal_num : uint8_t

m_protocol_id : uint8_t

m_ptr_spi : Ptr< Spi >

m_spi_size : uint8_t

m_num_transforms : uint8_t

m_lst_transforms : std::list< IkeTransformSubStructure >

+ GetTypeId()

+ IkeSaProposal() «constructor»

+ ~ IkeSaProposal() «destructor»

+ GetSerializedSize()

+ GetInstanceTypeId()

+ Serialize()

+ Deserialize()

+ Print()

+ SetLast()

+ ClearLast()

+ SetProposalNumber()

+ SetProtocolId()

+ SetSPI()

+ PushBackTransform()

+ IsLast()

+ GetSpi()

+ GetProtocolId()

GetSPISizeByProtocolId()

SetLastTransform()

ClearLastTranform()

+ GenerateInitIkeProposal()

+ GenerateAuthIkeProposal()

Figure A.14: The Class Diagrams of SA and GSA Payloads Substructures Implementation

69

References

Atwood, J. W. (2007). An architecture for secure and accountable multicasting. In Local computer

networks, 2007. lcn 2007. 32nd ieee conference on (pp. 73–78).

Bhattacharyya, S. (2003). An overview of source-specific multicast (SSM), RFC 3569.

CALOMEL. (2017). AES-NI SSL Performance. Retrieved from https://calomel.org/

aesni ssl performance.html ([Online; accessed 2017])

Class diagram. (2017). Class diagram — Wikipedia, the free encyclopedia. Retrieved from

https://en.wikipedia.org/wiki/Class diagram ([Online; accessed 2017])

Deering, S. E. (1988). Host extensions for IP multicasting, RFC 1112.

Fenner, W. C. (1997). Internet group management protocol, version 2, RFC 2236.

IoT Business Unit, ARM. (2015). Performance of State-of-the-Art Cryptography on ARM-

based Microprocessors. Retrieved from http://csrc.nist.gov/groups/ST/lwc

-workshop2015/presentations/session7-vincent.pdf ([Online; accessed

2017])

Kent, S. (2005a). IP authentication header (AH), RFC 4302.

Kent, S. (2005b). IP encapsulating security payload (ESP), RFC 4303.

Kivinen, T., Hoffman, P., Kaufman, C., Nir, Y., & Eronen, P. (2014). Internet Key Exchange Protocol

Version 2 (IKEv2), RFC 7296.

Kouvelas, I., Cain, B., Fenner, B., Deering, S., & Thyagarajan, A. (2002). Internet group management

protocol, version 3, RFC 3376.

Li, B., & Atwood, J. W. (2016). Secure receiver access control for IP multicast at the network level:

Design and validation. Computer Networks, 102, 109–128.

70

https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html
https://en.wikipedia.org/wiki/Class_diagram
http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf

Manzato, D. A., & da Fonseca, N. L. (2013). A survey of channel switching schemes for IPTV.

IEEE Communications Magazine, 51(8), 120–127.

Nsnam. (2015). WHAT IS NS-3. https://www.nsnam.org/overview/what-is-ns-3/.

([Online; accessed 2017])

Seo, K., & Kent, S. (2005). Security architecture for the internet protocol, RFC 4301.

Unified Modeling Language. (2017). Unified modeling language — Wikipedia, the free encyclo-

pedia. Retrieved from https://en.wikipedia.org/wiki/Unified Modeling

Language ([Online; accessed 2017])

Zion. (2016). IPTV Market for Advertising and Marketing, Media and Entertainment, Gam-

ing, E-Commerce, Healthcare and Medical, Telecommunication & It and Others - Global

Industry Perspective, Comprehensive Analysis, and Forecast, 2015 2021. http://

www.marketresearchstore.com/report/iptv-market-z59822. ([Online; ac-

cessed 2017])

71

https://www.nsnam.org/overview/what-is-ns-3/
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language
http://www.marketresearchstore.com/report/iptv-market-z59822
http://www.marketresearchstore.com/report/iptv-market-z59822

	List of Figures
	List of Tables
	Introduction
	Internet Group Management Protocol
	IGMPv1
	IGMPv2
	IGMPv3
	Security and Performance

	IPsec
	Security Protocols
	Key Management Protocols
	Databases

	ns-3
	Programming Model
	Abstraction of a Host
	Abstraction of IP Network Stack

	SIGMP and GSAM
	SIGMP
	GSAM
	Summary

	Problem Statement
	Implementation of SIGMP and GSAM on ns-3
	UML
	IGMPv3 and SIGMP Protocols Module
	IGMPv3 Data Structures and Databases Module
	IPsec and GSAM Databases Module
	GSAM Protocol Module
	GSAM and Simple AH Data Structures Module

	Analysis and Evaluation of Performance
	Message Sequences in Different SPI Conflicts
	Factors that Influence Performance
	Assumptions
	Initial Simulation
	Revision of Message Exchanges and its Result
	Simulations with Different Numbers of NQs and GMs

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix Class Diagrams of the Implemention
	Bibliography

