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Abstract

Three Essays in Theoretical and Empirical Derivative Pricing

Hamed Ghanbari, Ph.D.

Concordia University, 2017

The first essay investigates the option-implied investor preferences by comparing equilibrium

option pricing models under jump-diffusion to option bounds extracted from discrete-time

stochastic dominance (SD). We show that the bounds converge to two prices that define

an interval comparable to the observed option bid-ask spreads for S&P 500 index options.

Further, the bounds’ implied distributions exhibit tail risk comparable to that of the return

data and thus shed light on the dark matter of the divergence between option-implied and

underlying tail risks. Moreover, the bounds can better accommodate reasonable values of

the ex-dividend expected excess return than the equilibrium models’ prices. We examine

the relative risk aversion coefficients compatible with the boundary distributions extracted

from index return data. We find that the SD-restricted range of admissible RRA values

is consistent with the macro-finance studies of the equity premium puzzle and with several

anomalous results that have appeared in earlier option market studies.

The second essay examines theoretically and empirically a two-factor stochastic volatility

model. We adopt an affine two-factor stochastic volatility model, where aggregate market

volatility is decomposed into two independent factors; a persistent factor and a transient

factor. We introduce a pricing kernel that links the physical and risk neutral distributions,

where investor’s equity risk preference is distinguished from her variance risk preference. Us-

ing simultaneous data from the S&P 500 index and options markets, we find a consistent set

of parameters that characterizes the index dynamics under physical and risk-neutral distri-

butions. We show that the proposed decomposition of variance factors can be characterized

by a different persistence and different sensitivity of the variance factors to the volatility

shocks. We obtain negative prices for both variance factors, implying that investors are

willing to pay for insurance against increases in volatility risk, even if those increases have

little persistence. We also obtain negative correlations between shocks to the market returns

and each volatility factor, where correlation is less significant in transient factor and there-

fore has a less significant effect on the index skewness. Our empirical results indicate that

unlike stochastic volatility model, join restrictions do not lead to the poor performance of

two-factor SV model, measured by Vega-weighted root mean squared errors.
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In the third essay, we develop a closed-form equity option valuation model where equity

returns are related to market returns with two distinct systematic components; one of which

captures transient variations in returns and the other one captures persistent variations

in returns. Our proposed factor structure and closed-form option pricing equations yield

separate expressions for the exposure of equity options to both volatility components and

overall market returns. These expressions allow a portfolio manager to hedge her portfolio’s

exposure to the underlying risk factors. In cross-sectional analysis our model predicts that

firms with higher transient beta have a steeper term structure of implied volatility and

a steeper implied volatility moneyness slope. Our model also predicts that variances risk

premiums have more significant effect on the equity option skew when the transient beta

is higher. On the empirical front, for the firms listed on the Dow Jones index, our model

provides a good fit to the observed equity option prices.
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Chapter 1

Shedding Light on a Dark Matter:

Jump Diffusion and Option-Implied

Investor Preferences
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1.1 Introduction

The “dark matter” in finance was recently defined by Ross [2015, Page 616] as the “very

low probability of a catastrophic event and the impact that changes in that perceived prob-

ability can have on asset prices”. More specifically, it is the inability of virtually the entire

empirical research dealing with the pricing of rare events in the option markets to achieve

a “reasonable” reconciliation of the implied rare event probabilities extracted from options

to the observed historical frequency of such events in the underlying market. Note that

the study’s proposed recovery method of the option-implied distribution did not solve the

problem, since the recovered probability of extreme drops in underlying returns of the S&P

500 index was more than 10 times the one extracted from the historical record of the index.1

Although the option-implied return distribution is supposedly forward-looking and need not

be the same as the one extracted from historical returns, it should not imply implausible

statistical behavior that has never been observed in the real world.

In this paper we address these issues by presenting a model of the derivation of the risk neu-

tral or Q-distribution for an asset whose returns follow jump diffusion asset dynamics based

on stochastic dominance (SD). Unlike previous studies that relied on general equilibrium con-

siderations and data from both the underlying and the option market, our model relies only

on underlying market data and uses the much weaker assumption of a monotone decreasing

pricing kernel to derive its results; this assumption has not been contradicted empirically by

direct tests.2 Using model parameter values derived from several empirical jump diffusion

studies in the S&P 500 market and reverse engineering of the equilibrium models implied

by our derived option prices, we show that SD produces “reasonable” estimates of the key

implied risk aversion and equity premium for most cases, thus shedding light into the dark

matter. We also show that the SD-implied Q-distribution, unlike the ones recovered from

observed option prices, has comparable left tail risk as the one extracted from observed in-

dex returns, with the option-implied probability of extreme events virtually indistinguishable

from the one estimated from the underlying market.

The main motivation for abandoning the general equilibrium approach is the fact that it

refers to the frictionless economy, which is by definition unobservable. While frictions in the

form of a bid-ask spread in observed prices are immaterial for the underlying market, where

they are very low, their magnitude in the option market makes the extraction of the true

1See Ross [2015, Pages 642-643].

2See Barone-Adesi et al. [2012], Barone-Adesi et al. [2008] and Beare and Schmidt [2016].
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equilibrium option price a highly uncertain prospect. For instance on January 19, 2017, at

around 13.30 EST, the S&P 500 index was trading at 2267 and the close to ATM February

puts and calls with strikes at 2265 and 2270 were trading at spreads of 6.8% and 6.15%

of their respective midpoints. These spreads escalated dramatically, especially for calls, for

OTM options in the same cross section: for a strike of 2100 the corresponding put had an

18.2% spread, and the spread for the 2400 strike call was a stunning 60.87%.3 With this

kind of uncertainty over the proper data to use in fitting the model it becomes virtually

impossible to assess the source of the dark matter.

Equilibrium models are established either based on the production economy or on the ex-

change economy. In a production setting a representative investor, almost always assumed

to be of the Constant Relative Risk Aversion (CRRA) type, chooses her optimal level of

consumption in each period and invests the rest in the production for future consumption,

where the production technology grows stochastically and the initial endowment is constant.

The large literature on this model includes Brock [1982], Cox et al. [1985], Cochrane [1991],

and Cochrane [1996]. Studies that consider jumps in the production process are Ahn and

Thompson [1988] and Bates [1988, 1991]. Pan [2002] and Liu and Pan [2003] also include

jumps in a production economy but in a partial equilibrium setting as they only study the

price of derivatives and disregard the price of assets. In addition, there are several equilib-

rium studies in an exchange economy based on consumption asset pricing, where aggregate

endowment is stochastic such as, among others, Lucas Jr [1978], Breeden [1979], and more

recently Bates [2008], and Santa-Clara and Yan [2010].

By contrast, the stochastic dominance literature is slimmer, even though it appeared more

than 30 years ago. It was first introduced by Perrakis and Ryan [1984], Levy [1985], Ritchken

[1985], and subsequently extended by Perrakis [1986] and Ritchken and Kuo [1988, 1989].

More recently Constantinides and Perrakis [2002, 2007] extended it to incorporate propor-

tional transaction costs, an extension that was tested empirically in Constantinides et al.

[2009] and Constantinides et al. [2011]. Jump diffusion valuation elements for a specific type

of insurance derivatives were applied in the SD context in Perrakis and Boloorforoosh [2013],

while Oancea and Perrakis [2014](OP, 2014) established the formal equivalence of SD to the

Black and Scholes [1973] model under simple diffusion asset dynamics for both index and

equity options.

3Note that these numbers are probably underestimates: the VIX volatility on that particular date was

more than 7% below its historical average of around 19%. It is well-known that the bid-ask spreads rise

when volatility is high, which in turn is associated with low returns and tail risk.
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This paper presents the SD theory for index options in a general jump diffusion context

and examines the equilibrium models’ results within the framework of SD. We derive upper

and lower bounds on option prices based on the parameters of the physical distribution of

the underlying return process, whose width is comparable to the observed bid-ask spread in

the option market. We then compare these bounds to equilibrium models’ predicted option

values and the associated risk neutral volatility and mean return of the underlying asset as

functions of the relative risk aversion (RRA) parameter.

We use jump diffusion asset dynamics parameters extracted from available econometric stud-

ies in the S&P 500 underlying index market. We rely on the fact that the SD bounds are

independent of RRA but rely, on the other hand, on the ex-dividend mean return of the

underlying asset; as we point out, for the most frequently used underlying, the S&P 500

index, that range is widely assumed to lie within known limits. Further, we observe that the

derived bounds are relatively insensitive to the parameters of the jump component provided

the total volatility is kept constant; this is important because there is a large variability in

the estimates of these parameters depending on the time span of the data.4

By contrast, the econometric literature has presented widely divergent values of the RRA

coefficient. Even within the option pricing models and associated empirical research the

RRA coefficient varies widely between studies and even within the same study.5 As we show

in this paper, many of these RRA values yield economically meaningless results within any

equilibrium model, since either the option price or the implied mean return are beyond any

reasonable values. This is true even a fortiori for RRA estimates extracted out of the equity

premium puzzle literature, which can be more than five times as large.6

We provide expressions for the pricing kernels implied by the SD bounds in equilibrium

analysis and for the implied RRA values, when they exist. We show that the SD lower bound

implies a monotone decreasing pricing kernel and a risk neutral distribution that do not have

a representative investor counterpart but are consistent with empirical evidence that shows a

negative RRA. We also show that the SD upper bounds extracted from several econometric

estimations of jump diffusion parameters for the S&P 500 index are consistent with RRA

estimates as high as the equity premium ones, the only option price-implied estimates to

4See, for instance, Andersen et al. [2002, Tables 3 and 6] and Tauchen and Zhou [2011, Table 4].

5See, for instance, Rosenberg and Engle [2002] and Bliss and Panigirtzoglou [2004], who find coefficients

ranging from 2 to 12 and 1.97 to 7.91 respectively.

6The reported RRA estimates are 41 for Mehra and Prescott [1985], 40 to 50 for Cochrane and Hansen

[1992], and more than 35 for Campbell and Cochrane [1999].
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possess this property; in fact, the puzzle disappears in SD-implied RRA parameters and

associated mean returns. We show that the SD upper bounds’ implied RRA is also consistent

with the more recent stylized models in the equity premium studies that include rare events

in a representative investor’s consumption growth in an attempt to reconcile the estimates

with observed quantities and solve the puzzle.7 Hence, the SD approach allows us to include

option market considerations in these macro-finance studies, an inclusion that is not feasible

with the traditional option market equilibrium models.

We also note that, although in principle the equilibrium analysis is consistent with a gen-

eral set of assumptions, its application to option pricing models with jump diffusion asset

dynamics follows a very stylized framework that makes its results a subset of the SD anal-

ysis. Indeed, the representative investor assumption with time-additive preferences implies

a monotone decreasing pricing kernel in the underlying asset return which, when combined

with a given RRA value, yields endogenously the option price, the underlying mean return

and the riskless rate. Assuming that the latter variable is exogenously given,8 the derived

SD bounds define a range of admissible values of the option price whose width is a func-

tion of the mean return and otherwise relies only on the kernel monotonicity; they should,

therefore, contain all “reasonably valued” option-mean return pairs and the RRA values that

produce them. Our results show that this happens only for a very narrow range of results

that is extremely sensitive to the return distribution parameters, a failure of the equilibrium

analysis consistent with Ross [2015] “dark matter” remark.

This chapter proceeds as follows. Section (1.2) presents the jump diffusion stochastic domi-

nance bounds as the limits of the discrete time SD bounds following a modified version of the

approach in Oancea and Perrakis [2014]. Section (1.3) presents a summary of the dominant

equilibrium approach and extracts the implied bounds on the RRA parameter from the SD

option bounds. Section (1.4) applies these results in several empirically important cases and

shows that the SD bounds can reconcile several of the apparently puzzling results derived by

earlier studies. Section (1.5) concludes. In the Appendix (1.E) we discuss the implications

of combining jump processes with stochastic volatility (SV) diffusion, which can be handled

7See, for instance, Barro [2009], Wachter [2013], Backus et al. [2011] and Martin [2013].

8As discussed in Oancea and Perrakis [2014], although the constant riskless rate may not be justified

in practice, its effect on option values is generally recognized as minor in short- and medium-lived options.

It has been adopted without any exception in all equilibrium based jump-diffusion option valuation models

that have appeared in the literature. See the comments in Bates [1991, note 30] and Amin and Ng [1993,

page 891]. Bakshi et al. [1997] found that stochastic interest rates do not improve the goodness of fit in a

model featuring stochastic volatility and jumps.
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with SD as long as the pricing of the systematic risk of SV is done independently.9

1.2 Jump Diffusion Option Pricing Under Stochastic

Dominance

The SD approach derives upper and lower bounds on the option prices in a multiperiod

discrete time context and then finds the limits of these bounds as the time partition tends to

zero. The derivation of the bounds was done in earlier studies, most recently in Oancea and

Perrakis [2014] and will not be repeated here. We summarize the results and assumptions

of the SD model before applying them to jump diffusion.

In a discrete time model trading occurs at a finite number of trading dates t = 0, 1, ..., T of

length ∆t. We consider an index as the underlying asset with current price St and return

(St+∆t − St) /St ≡ zt+∆t in each time interval. We also consider a riskless asset with return

equal to R in each time period with r as a continuous time counterpart of return, where

(1 + R) = er∆t = 1 + r∆t + o(∆t). The SD bounds are derived under the following set of

assumptions.

1. There exists at least one utility-maximizing risk averse investor (the trader) in the

economy who holds only the index and the riskless asset;10

2. This particular investor is marginal in the option market;

3. The riskless rate is non-random.11

These market equilibrium assumptions are quite general, insofar as they do not require

that all agents have the properties that we assign to traders, thus allowing a market with

heterogeneous agents and the existence of other investors with different portfolio holdings

than the trader.

Let P (zj,t+∆t) denotes the physical return distribution, assumed continuous without loss of

9In this respect the SD approach is no different from the alternative equilibrium approach. See, for

instance, Liu et al. [2005, footnote 9].

10This assumption implies that the pricing kernel in any multiperiod equilibrium model is a monotone

decreasing function of the return.

11See footnote 8.
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generality. By assumption, E [zt+∆t |St ] > R.12 Similarly, let zmin,t+∆t denotes the lowest

possible return, which is initially assumed to be strictly greater than −1. In our equilibrium,

we also define the upper (lower) bounds, Ct(St) (Ct(St)), on the admissible call option

prices as the reservation write (purchase) prices of the option under market equilibrium

that excludes the presence of stochastically dominant strategies. Violations of the bounds

trigger investment strategies that increase the expected utility of any trader by introducing

a corresponding short (long) option in her portfolio.

To derive the bounds Ct(St) and Ct(St) we recursively apply the Lemma 1 and Proposition

1 in Oancea and Perrakis [2014]. Note that the derivation of the bounds depends on the

convexity of the call option prices and payoff, a property which clearly holds for the jump-

diffusion dynamics as well.13

Lemma 1.1. If the option price Ct(St) is convex for any t then it lies within the following

bounds:

1

1 + R
ELt [Ct+∆t (St(1 + zt+∆t))] ≤ Ct(St) ≤

1

1 + R
EUt [Ct+∆t (St(1 + zt+∆t))] , (1.2.1)

where EUt and ELt denote respectively expectations taken with respect to the distributions

U(zt+∆t) =


P (zt+∆t |St ) with probability

R−zmin,t+∆t

E(zt+∆t)−zmin,t+∆t

1zmin,t+∆t
with probability E(zt+∆t)−R

E(zt+∆t)−zmin,t+∆t
≡ Q

L(zt+∆t) = P (zt+∆t|St, zt+∆t ≤ z∗t )

(1.2.2)

such that E (zt+∆t|St, zt+∆t ≤ z∗t ) = R.

12When the underlying asset is the index, as Section (1.2), this assumption is always true. However, when

we have stocks with negative beta and non-decreasing pricing kernel, the equivalent assumption would be

ẑn,t+∆t < R.

13The convexity of the option with respect to the underlying stock price holds in all cases in which the

return distribution has i.i.d. time increments, in all univariate state-dependent diffusion processes, and in

bi-variate (stochastic volatility) diffusions under most assumed conditions; see Merton [1973] and Bergman

et al. [1996]. The SD approach also applies to non-convex option payoffs but no closed form exists for the

limiting distributions.
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Proof. See Lemma 1 in Oancea and Perrakis [2014].

Remark 1.1. Note that Ut and Lt are risk neutral as EUt (1 + zt+∆t) = ELt (1 + zt+∆t) =

R, that is the distributions Ut and Lt are the incomplete market counterparts of the risk

neutral probabilities of the binomial model, in the sense that when the underlying asset tends

to diffusion at the continuous time limit both distributions tend to the same risk neutral

diffusion.

Remark 1.2. Note that the upper bound pricing kernel, which is related to Ut, spikes at

zmin,t+∆t and is constant thereafter while the lower bound pricing kernel, which is related to

Lt, is zero for zt+∆t > z∗t and constant positive elsewhere. We will discuss more about these

two pricing kernels in Section ((1.3)).

Proposition 1.1. Under the monotonicity of the pricing kernel assumption and for a dis-

crete distribution of the stock return zt, all admissible option prices lie between the upper and

lower bounds Ct(St) and Ct(St), evaluated by the following recursive expressions

CT (ST ) = CT (ST ) = (ST −K)+

Ct(St) =
1

1 + R
EUt

[
Ct+∆t (St(1 + zt+∆t)) |St

]
Ct(St) =

1

1 + R
ELt

[
Ct+∆t (St(1 + zt+∆t)) |St

] (1.2.3)

where EUt and ELt denote expectations taken with respect to the distributions given in (1.2.2).

Proof. See Proposition 1 in Oancea and Perrakis [2014].

Remark 1.3. Note that in the special case where a stock can become worthless within a single

elementary time period (t, t+∆t) we have zmin,t+∆t = −1, irrespective of the underlying index

dynamics. In such a case the upper bound distribution is no longer risk neutral and can be

extracted by (1.2.4) where the expectation is taken with respect to the actual distribution

P (zt+∆t |St ) rather than the upper bound distribution in (1.2.2).

CT (ST ) = (ST −K)+

Ct(St) =
EP
[
Ct+∆t (St(1 + zt+∆t)) |St

]
E [1 + zt+∆t |St ]

(1.2.4)
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This important special case yields a looser upper bound on the call option prices but also a

convenient closed form solution when the underlying return follows jump-diffusion dynamics.

It also holds when multiplied by the round-trip transaction cost in an economy with frictions

in the form of proportional transaction costs in the underlying asset; see Constantinides and

Perrakis [2002, Proposition 1].

Now, we turn our attention to the case where the underlying asset returns follow a jump-

diffusion dynamic. We model the returns as a sum of two components, one of which will tend

to a diffusion with a probability of 1 − λt∆t, and the other to a jump process. Therefore,

the return dynamic has the following form.14

zt+∆t =


[µ(St, t)− λtk] ∆t+ σ(St, t)ε

√
∆t with probability (1− λt∆t)

[µ(St, t)− λtk] ∆t+ σ(St, t)ε
√

∆t+ (jt − 1) with probability (λt∆t)

(1.2.5)

In this expression ε has a bounded distribution of mean zero and variance one, ε ∼ D(0, 1)

and εmin ≤ ε ≤ εmax, but otherwise unrestricted. With probability λt∆t there is a jump

with amplitude equal to jt. This amplitude is a random variable with distribution jt ∼
Djt(µjt, σjt). Although our results may be extended to allow for dependence of both jump

intensity and jump amplitude distributions on St, we shall adopt the common assumption

in the literature that the jump process is state- and time-independent, with λt = λ, jt =

j. Similarly, it is commonly assumed that jump amplitude is log-normally distributed,15

implying that J = ln(j) ∼ N(µj − 1
2
σ2
j , σ

2
j ) with µj = ln (E [j]) and k = eµj − 1. In our case

we adopt more general assumptions, with the distribution Dj restricted to a non-negative

support, so that the variable j takes values with 0 ≤ jmin but otherwise unrestricted; it

can, therefore, accommodate all types of continuous or discrete distributions, as in Fu et al.

[2016]. With this specification we set in (1.2.5), µ(St, t) ≡ µt, σ(St, t) ≡ σt, λt = λ, jt = j,

and represent the discrete time by

zt+∆t = (µt − λk)∆t+ σtε
√

∆t+ (j − 1)∆N, (1.2.6)

14For simplicity dividends are ignored throughout this paper. All results can be easily extended to the

case where the stock has a known and constant dividend yield, as in index options. In the latter case the

instantaneous mean in (1.2.6) and (1.2.7) is net of the dividend yield.

15Kou [2002] and Kou and Wang [2004] use a double exponential jump size distribution, which is analyt-

ically convenient in computing the first passage time to an option exercise barrier.
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where N is a Poisson counting process with intensity λ.

In the remainder of this section we first present conditions that establish the convergence

of the return process described in (1.2.5) and (1.2.6) to a mixed jump-diffusion process.

We then extract the two option bound distributions from (1.2.1) and (1.2.2) and find their

convergence to continuous time expressions following the approach in Oancea and Perrakis

[2014] for convergence of (1.2.6) to a diffusion process in the absence of jumps. That approach

defines a sequence of stock prices and associated probability measures and proves that the

proposed sequence converges16 in distribution to a diffusion and its probability converges

weakly to the respected probability measure. Therefore, the mean and the variance of the

discrete process converge weakly to the equivalent parameters of the diffusion process. Then

we close this section by numerical analysis regarding the proposed upper and lower bounds

on the option prices. In the case of jump diffusion we may prove the following lemma.

Lemma 1.2. The discrete process described by (1.2.6) converges weakly to the jump-diffusion

process (1.2.7) as the time interval approaches to zero.

dSt/St = (µt − λk) dt+ σtdW + (j − 1) dN (1.2.7)

Proof. See Appendix (1.A).

For the discrete time process (1.2.6), which tends to a jump-diffusion (1.2.7), a unique option

price can be derived by arbitrage methods alone only if we have zero volatility and the jump

amplitude takes exactly one value when a jump occurs. In such a case (1.2.6) is binomial

and it can be readily verified that the upper bound distributions, Ut, and the lower bound

distribution, Lt, coincide and the stochastic dominance approach yields the same unique

option price as the binomial jump process in Cox et al. [1979]. Otherwise, we must examine

the two bounds separately.

For the option upper bound we apply the transformation (1.2.2) to the discretization (1.2.6),

assuming first that jmin > 0. For such a process we note that as ∆t decreases, there exists

h, such that for any ∆t ≤ h, the minimum outcome of the jump component is less than

the minimum outcome of the diffusion component, (jmin − 1) < (µt∆t + σtεmin

√
∆t). Con-

sequently, for any ∆t ≤ h, the minimum outcome of the return distribution is (jmin − 1),

16More details on the weak convergence and its properties for Markov processes can be found at Ethier

and Kurtz [2009], or Stroock and Varadhan [2007].
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which is the value that we substitute for the minimum return, zmin,t+∆t, in the transformation

(1.2.2). With such a substitution we have now the following result for the jump diffusion

upper bound on the call option price.

Proposition 1.2. When the underlying asset follows a jump-diffusion process described by

(1.2.7) the upper option bound is the expected payoff discounted by the riskless rate of an

option on an asset whose dynamics are described by the jump-diffusion process

dSt/St =
(
r − (λ+ λUt) k

U
)
dt+ σtdW

Q
t +

(
jUt − 1

)
dNQ

t , (1.2.8)

where the upper bound risk-neutral jump intensity is λU = λ+ λUt and

λUt = − µt − r
jmin − 1

, (1.2.9)

and jUt is a mixture of jumps with intensity λ+ λUt and distribution and mean

jUt =


j with probability λ

λ+λUt

jmin with probability λUt
λ+λUt

E
[
jUt − 1

]
= kU = (

λ

λ+ λUt
)k + (

λUt
λ+ λUt

) (jmin − 1)

(1.2.10)

Proof. See Appendix (1.B).

By definition of the convergence of the discrete time process, Proposition (1.2) states that

the call upper bound is the discounted expectation of the call payoff under the risk neu-

tral jump-diffusion process given by (1.2.8). We may, therefore, use the results derived by

Merton [1976] for options on assets following jump-diffusion processes with the jump risk

fully diversifiable.17 Applying Merton’s approach to the jump-diffusion process given by

(1.2.8), we find that the upper bound on call option prices for the jump-diffusion process

(1.2.7) must satisfy the following partial differential equation (PDE), with terminal condition

C(ST , T ) = max {ST −K, 0}:

17Note that we do not assume here that the jump risk is diversifiable.
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1

2
σ2
tS

2∂
2C

∂S2
+
[
r − (λ+ λUt)k

U
]
S
∂C

∂S
− ∂C

∂T
+ (λ+ λUt)E

U
[
C(SjUt )− C(S)

]
= rC

(1.2.11)

An important special case of the upper bound is when the lower limit of the jump amplitude

is equal to 0, in which case jmin = 0 and the return distribution has an absorbing state

in which the stock becomes worthless and so the lowest possible return would be z1,t+∆t =

zmin,t+∆t = −1; this is the case described in Remark (1.3) and equation (1.2.4), in which as we

saw the option upper bound is the expected payoff with the actual distribution, discounted

by the expected return on the stock. Hence, this is identical to the Merton [1976, Equation

14] case with r replaced by µ, yielding

1

2
σ2
tS

2∂
2C

∂S2
+ [µt − λk]S

∂C

∂S
− ∂C

∂T
+ λEU

[
C(SjUt )− C(S)

]
= µtC. (1.2.12)

If (1.2.12) holds and as in Bates [1991] we assume, in addition, that the diffusion parameters

are constant and the jump amplitude has a lognormal distribution with ln(j) ∼ N(µj −
1
2
σ2
j , σ

2
j ) where k = E [j − 1] = eµj − 1, then the distribution of the asset prices given that n

jumps occurred is conditionally normal, with the following mean and variance.

µn = µ− λk +
n

T
µj

σ2
n = σ2 +

n

T
σ2
j

(1.2.13)

Hence, if n jumps occurred, the option price would be a Black-Scholes expression with µn

replacing the riskless rate r, or BS (S,X, T, µn, σn). Integrating (1.2.12) would then yield

the following upper bound, which can be obtained directly from Merton [1976] by replacing

r by µ.

C̄ (S,X, T, µn, σn) =
∞∑
n=0

eλ
′T (λ′T )n

n!

[
SN (d1n)−Xe−µnTN(d2n)

]
d1n =

ln (S/X) + (µn + 0.5σ2
n)T√

σ2
nT

, d2n = d1n −
√
σ2
nT

ln (j) ∼ N
[
µj − 0.5σ2

j , σ
2
j

]
, j ∼ lognormal

[
eµj , e2µj

(
eσ

2
j − 1

)]
k = E [j − 1] , k = eµj − 1, ln (1 + k) = µj, λ

′ = λ (1 + k)

(1.2.14)
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When the jump distribution is not normal, the conditional asset distribution given n jumps

is the convolution of a normal and n jumps distribution. The upper bound cannot be

obtained in closed form, but it is possible to obtain the characteristic function of the bounds

distribution. We will extract the boundary distribution’s characteristic function, its pricing

kernel, and the respected properties in the Appendix (1.D). Similar approaches can be applied

to the integration of equation (1.2.12), which holds whenever −1 < (jmin − 1) < 0. Closed

form solutions can also be found whenever the amplitude of the jumps is fixed as, for instance,

when there is only an up or a down jump of a fixed size. A PDE similar to (1.2.12) also

holds if the process has only “up” jumps, in which case (jmin− 1) = 0 and the lowest return

zmin in (1.2.2) comes from the diffusion component. In such a case the key probability Q

of (1.2.2) is the same as in the case of diffusion, discussed in the proof of Proposition 2 of

Oancea and Perrakis [2014]. In that situation, equation (1.2.11) still holds with λUt = 0,

implying that the option upper bound is the Merton [1976] bound, with the jump risk fully

diversifiable.

The option lower bound for the jump-diffusion process given by (1.2.7) and its discretization

(1.2.6) is found by a similar procedure. We apply L(zt+∆t) from (1.2.2) to the process (1.2.6)

and we prove in the Appendix ((1.C)) the following result.

Proposition 1.3. When the underlying asset follows a jump-diffusion process described by

(1.2.7), the lower option bound is the expected payoff discounted by the riskless rate of an

option on an asset whose dynamics is described by the jump-diffusion process

dSt/St =
[
r − λkL

]
dt+ σtdW

Q
t +

(
jLt − 1

)
dNQ

t (1.2.15)

where the lower bound’s jump intensity remains the same, λL = λ, and jLt is absolute jump

size with the truncated distribution j|j ≤ j̄t.

The mean of the relative jump size, kL, and the value of truncation boundary, j̄t, can be

obtained by solving the following equations.

µt − r = λk − λkL

kL = E (j − 1|j ≤ j̄t)
(1.2.16)

Proof. See Appendix (1.C).

Observe that (1.2.16) always has a solution since µt > r by assumption. The limiting dis-
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tribution includes the whole diffusion component and a truncated jump component. Unlike

simple diffusion, the truncation does not disappear as ∆t → 0. As with the upper bound,

we can apply the Merton [1976] approach to derive the PDE satisfied by the option lower

bound, which is given by

1

2
σ2
tS

2∂
2C

∂S2
+
[
r − λkL

]
S
∂C

∂S
− ∂C

∂T
+ λEL

[
C(SjLt )− C(S)

]
= rC (1.2.17)

with terminal condition CT = C(ST , T ) = max {ST −K, 0}. The solution of (1.2.17) can

be obtained in closed form only when the jump amplitudes are fixed, since even when the

jumps are normally distributed, the lower bound jump distribution is truncated.

Observe that the jump components in both Ct(St) and Ct(St) are now state-dependent if

µt, the diffusion component of the instantaneous expected return on the stock, is state-

dependent, even though the actual jump process is independent of the diffusion. In many

empirical applications of jump-diffusion processes, which were on the S&P 500 index options,

the unconditional estimates are considered unreliable. On the other hand there is consensus

that the unconditional mean is in the 4−6% range;18 this is reflected in the numerical results.

Observe also that for normally distributed jumps the only parameters that enter into the

computation of the bounds are the mean of the process, the volatility of the diffusion and

the parameters of the jump component. Hence, the information requirements are the same

as in the more traditional approaches, with the important difference that the mean of the

process replaces the risk aversion parameter. This difference favors the SD approach, as the

consensus that exists for the values of the mean of the process does not extend to the risk

aversion parameter, as we shall see in the next section.

We illustrate in Table (1.1) and Figure (1.1), the convergence of the bounds under a jump-

diffusion process for an ATM option with X = 100, time to maturity T = 0.25 years, and

the annual parameters: r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%. In

our numerical analysis, the diffusion process was approximated by a sequence of trinomial

trees constructed according to the algorithm of Kamrad and Ritchken [1991]. The jump

process was approximated by a sequence of multinomial trees with up to 1000 time periods,

which is based on the algorithm of Amin [1993], where the jump amplitude distribution is

lognormal. For each tree, the upper and lower bound risk-neutral probability distributions

were computed by applying equation (1.2.2) respectively to the single-period distribution.

18See Fama and French [2002], Constantinides [2002] and Dimson et al. [2006].

14



The two option bounds were evaluated as discounted expectations of the option payoff under

the two risk neutral distributions described in Propositions (1.2) and (1.3). In order to

evaluate the bounded jump amplitudes discussed in the case where jmin > 0, the distribution

was truncated to a worst-case jump return of −20%. The truncation limit is chosen to meet

the observed jump amplitude in econometric studies of jump diffusion. We also computed

the upper bound under the assumption that the return distribution is unbounded. As a

reference point and for ease of comparisons, we report the Merton [1976] price, the jump-

diffusion dynamic with diversified jump risk.

[Table (1.1) about here]

[Figure (1.1) about here]

The results presented in Table (1.1) show the jump-diffusion upper and lower bounds on the

call options price. The maximum spread between the bounds is about 4.6% of the midpoint,

lower than the observed bid-ask spread for at-the-money call options on the S&P 500 index

noted in the Introduction. As expected from Proposition (1.2), equations (1.2.8)-(1.2.10),

the upper bound is directly related to the diffusion risk premium and therefore the spread is

an increasing function of µ− r while the lower bound is almost constant: unreported results

show that the upper bound rises from 4.59 to 4.75 and to 4.91 for a risk premium equal to

4% and 6% respectively, while the lower bound stays approximately constant around 4.38.

Unreported results also show that the bounds are much tighter for in-the-money options

and the spread decreases to less than 2% for the base case. Similar unreported results show

that the spread rises to 9.1% for the base case parameters when the options are 10% out-of-

the-money, much lower than the observed spread noted in the introduction. Note that the

range of values of µ implies an ex-dividend risk premium range from 2% to 6%; a range that

covers what most people would consider the appropriate value of such a premium in many

important indexes. For the most commonly chosen risk premium of 4%, corresponding to

µ = 6%, the spread of at-the-money options is about 8.1%, a tight bound if we consider the

average bid-ask spread for at-the-money call options on the S&P 500 index.

The range of allowable option prices in the stochastic dominance approach is the exact

counterpart of the inability of the “traditional” arbitrage-based approaches to produce a

single option price for jump diffusion processes without an arbitrarily chosen risk aversion

parameter, even when the models have been augmented in that case by general equilibrium

considerations. Recall also that for any partition of the time to expiration, and by extension
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at the continuous time limit the SD bounds behave like no arbitrage bounds, in the sense

that if the option prices fail to lie between the bounds any risk-averse investor can increase

her expected utility by choosing a dominant portfolio containing the underlying, the riskless

asset and a long or short option position.19 We further address this issue in the next section.

A major advantage of the stochastic dominance bounds in the jump-diffusion case is their

relative insensitivity in the jump parameters, provided the total volatility is kept constant.

Table (1.2) shows the value of the bounds for the ATM options for various values of the inten-

sity parameter λ ranging from 0 to 1.9, with the total volatility σ2 + λ
[(
µj − 0.5σ2

j

)2
+ σ2

j

]
kept constant to the base case value of 0.04444 by adjusting σj and the remaining parameters

are kept constant as in the base case.20 As we can see, the bounds are tight and relatively

insensitive to λ, while the spread decreases in λ from 5.24% to 4.1%. This weak dependence

of the bounds on λ is particularly important, given the difficulty of estimating the parameters

and the impossibility of estimating meaningful option prices by the “traditional” method for

all but the lowest values of the ranges of λ and the admissible risk aversion parameters.21

[Table (1.2) about here]

1.3 Equilibrium Analysis

In this section we consider the traditional approach to the extraction of the risk neutral dis-

tribution based on general equilibrium in the production or exchange economy, in which the

underlying returns follow a jump-diffusion process, and compare its results to the stochastic

dominance bounds of the previous section. Since the pricing kernel links the physical and

risk-neutral densities in a general equilibrium setup, we derive the upper and lower bounds’

pricing kernels in the SD approach, which are independent of investor’s preferences. We

then use these kernels to restrict the preferences of the representative investor in the general

equilibrium approach and extract appropriate bounds on the preference of the representative

investor, which depend on option moneyness and time to maturity. Finally, we compare the

19See Oancea and Perrakis [2014].

20We discuss the choice of the range of intensity values in the next section.

21For instance, for a risk aversion coefficient of 7, the mid-range of the Rosenberg and Engle [2002]

estimates, and for λ = 10 the total volatility of the option rises from 26.3% to 93% and becoming explosive

on higher values.
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SD implied bounds on the relative risk aversion (RRA) coefficient with those commonly used

in the option pricing literature and those extracted from macroeconomic data, mostly based

on consumptions and market return data.

We follow the general equilibrium analysis with asset return dynamics given by (1.2.7) and a

representative investor of the CRRA-type, with γ denoting the RRA coefficient. Of particular

interest for our purposes are the expressions for the equilibrium pricing kernel πt under

the CRRA assumption, and the corresponding parameter mapping from the physical or P -

distribution to the risk neutral Q-distribution. These mappings satisfy the requirements that

Et [d (πtSt)] = 0 and Et [dπt/πt] = −rdt. The derivation of the following expressions can be

found in several studies.22

The general expression for the pricing kernel process in a general equilibrium model with

a CRRA representative investor with RRA equal to γ follows the dynamics in equations

(1.3.1) and (1.3.2).

dπt/πt = (−r − λE [jπt − 1]) dt− ηdWt + (jπt − 1) dNt, (1.3.1)

η = γσ, jπt = j−γt . (1.3.2)

where η, the market price of diffusive risk, is proportional to volatility and jπt − 1 is the

relative jump amplitude of the pricing kernel process.

The correspondence between the physical and risk neutral jump distribution parameters for

the CRRA investor is given by

λQ = λE
[
j−γt
]
, kQ =

E
[
(jt − 1) j−γt

]
E
[
j−γt
] . (1.3.3)

Note also that in this model the total equilibrium risk premium must be equal to the sum

of the diffusive risk premium and the jump risk premium, µt − r = γσ2 + λk − λQkQ.

For a lognormal jump amplitude ln (jt) ∼ N
[
µj − 0.5σ2

j , σ
2
j

]
, we have the following trans-

formations.

22See, for instance, Bates [1991, 2006], Pan [2002], and Liu et al. [2005].
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λQ = λ exp
[
− γµj +

1

2
γ (γ + 1) σ2

j

]
(1.3.4)

kQ = EQ
[
jQt − 1

]
= exp

[
µj − γσ2

j

]
− 1 = exp

[
µQj
]
− 1 (1.3.5)

With these relations the risk neutral jump diffusion dynamics become now

dSt/St =
[
r − λQEQ

[
jQt − 1

]]
dt+ σtdW

Q
t +

[
jQt − 1

]
dNQ

t (1.3.6)

Equations (1.3.1)-(1.3.6) summarize and describe completely the mapping from the P - to

the risk neutral Q-distribution for a general equilibrium analysis of jump diffusion deriva-

tives pricing given the existence of a representative CRRA investor, the only case that has

appeared so far in the literature. It can be seen easily from these expressions that the equi-

librium pricing kernel is monotone decreasing in the underlying asset return and that the

total risk premium is endogenously given as a function of the RRA parameter. Since the

stochastic dominance bounds include all option prices consistent with a decreasing pricing

kernel and with expected risk premium smaller than or equal to the one used in deriving

the bounds, we may now derive the limits on γ implied by the SD bounds of the previous

section.

To embed the SD bounds in an equilibrium model we first note that the pricing kernel

equation (1.3.1) should still hold but that in the absence of a representative CRRA investor

(1.3.2) no longer holds. On the other hand, Propositions (1.2) and (1.3) introduce two risk-

neutral distributions that yield the upper and lower option bounds when the underlying asset

follows the jump-diffusion process. The violation of any of these two bounds implies that

any trader can improve her utility by introducing the corresponding short or long option

positions in her portfolio. Since utility maximization given the P -distribution (including the

total risk premium) is a first step in the equilibrium approach, the SD bounds should be

satisfied by the option price derived in an equilibrium model. The next result, part of which

is obvious from (1.2.8)-(1.2.10) and (1.2.15)-(1.2.16) and the rest is proven in the Appendix

(1.D), helps establish bounds on the admissible equilibrium model values of γ given the

P -distribution.

Proposition 1.4. When the underlying asset follows a jump-diffusion process described by

(1.3.6) the option bounds’ corresponding risk neutral parameters are:
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For the upper bound:

λQ = λU ⇒ λE [jπt ] = λ+ λUt = λ− µt − r
jmin − 1

,

kQ = kU ⇒ EQ
[
jQt − 1

]
=

1

E [jπt ]
× E [(jt − 1)× jπt ] =

λ

λ+ λUt
k +

λUt
λ+ λUt

(jmin − 1) .

(1.3.7)

For the lower bound:

λQ = λL = λ,

kQ = kL ⇒ EQ
[
jQt − 1

]
=

1

E [jπt ]
× E [(jt − 1)× jπt ] = E (jt − 1|j ≤ j̄t) .

(1.3.8)

If the jump amplitude is a truncated lognormal, the characteristic function of the jump com-

ponent’s distribution is eλT (fj(ϕ)−1), where fj(ϕ) ≡ E(jiϕ) is the characteristic function of

the jump amplitude. In such a case the means and variances of the return distributions un-

der the upper and lower bounds’ Q-distributions are given by expressions (1.D.9)-(1.D.10)

and (1.D.17)-(1.D.18) of the Appendix (1.D) and their truncated counterparts are given by

(1.D.11)-(1.D.12) and (1.D.19)-(1.D.20). �

In the next section we use the equilibrium expressions summarized and/or derived in this

section in order to find implicit bounds on the admissible values of the RRA parameter γ

given the SD bounds estimated from the P -distribution parameters. These estimates are

from option pricing studies containing jump diffusion and studies associated with the equity

premium puzzle initially identified by Mehra and Prescott [1985].

1.4 RRA Values Implied by Stochastic Dominance Op-

tion Bounds

An exact expression giving the limits of the RRA compatible with the boundary risk neu-

tral distributions of Propositions (refprop2) and (refprop3) is not available in closed form,

especially in view of the fact that the transformed jump amplitudes are not lognormal. Such

limits can only be defined numerically for a given set of parameters. In what follows we

first find these limits for our base case and then examine several parameter values extracted

from existing econometric studies of the S&P 500 returns’ P -distribution. Figure (1.2) shows
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the admissible range of values of γ in the case of ATM options for our base case parameter

values and for two alternative upper bounds, one based on the entire lognormal distribution

jmin = 0 and the other on a lognormal distribution truncated at a worst-case return of −20%,

i.e. jmin = 0.8. We find the implied RRA using the Bates [1991] jump-diffusion model to

derive the equilibrium call option prices for a continuum of relative risk aversion coefficients

up to 10.

[Figure (1.2) about here]

With respect to the SD lower bound, the only admissible value of a relative risk aversion

coefficient for CRRA investor in Figure (1.2) is negative and equal to −1.72 for our base

case, violating the risk aversion principle for the representative investor. This is not a

surprising SD result, given that the bound lies below the Merton value, where the jump

risk is unsystematic, which is also the Bates [1991] jump-diffusion price if the representative

investor’s RRA is zero. More to the point, several econometric studies of S&P 500 index

options based on the equilibrium approach and CRRA utilities have persistently documented

negative values of γ, starting with Jackwerth [2000] and including Aı̈t-Sahalia and Lo [2000]

and especially Ziegler [2007]. The latter study examined various potential explanations of

this perverse result without reaching any definitive conclusion.23 The SD lower bound results

are possible explanations of these negative γ findings, even though the implied pricing kernel

is increasing. What they imply is that the equilibrium model cannot account for several

risk neutral jump diffusion distributions compatible with the underlying P -distribution and

the much weaker SD assumption of a declining pricing kernel. Since our purpose is the

analysis of the admissible equilibrium model solutions within the SD framework, we shall

ignore hereafter the SD lower bound and assume that the lowest SD-compatible value of γ

is 0.

From the SD upper bound, in our base case the maximum SD-admissible γ is 5.49 for the

truncated lognormal, rising to almost 7 for the case of jmin = 0, as illustrated in Figure

(1.2). Note that, unlike the equilibrium model, the SD upper bound does not imply the

same γ for all degrees of moneyness, as shown in Figure (1.3). Nonetheless, the range of

upper bound-implied γ is relatively narrow, starting from 7.1 for 2% OTM up to 7.7 for

23Ziegler [2007] considers several potential explanations for the U-shaped and negative implied risk aver-

sion patterns: (I) preference aggregation, both with and without stochastic volatility and jumps in returns;

(II) misestimation of investors’ beliefs caused by stochastic volatility, jumps, or a Peso problem; (III) het-

erogeneous beliefs.
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2% ITM. Unreported results show a similar narrow range of relative risk aversion also holds

when the moneyness is kept constant but the time to expiration is varied from 0.083 to 1

year for the base case parameters.

[Figure (1.3) about here]

[Table (1.3) about here]

Table (1.3) shows the equilibrium option prices for our base case parameters and for the

RRA range of Figures Figure (1.2) and Figure (1.3). The table also shows the corresponding

implied mean µ and the risk neutral parameters of the jump component λQ and kQ from

(1.3.4)-(1.3.5) for the continuum of RRA.24 It is clear that the SD-restricted range of admis-

sible RRA values needs to be tightened even further in order to accommodate reasonable

values of the ex-dividend expected excess return, which is taken equal to 2% in our SD base

case but rises to unreasonably high values when the RRA exceeds 2.

[Table (1.4) about here]

[Table (1.5) about here]

The SD implied upper bound on the relative risk aversion varies relatively slowly for a wide

range of moneyness and time to maturity, as shown in Figure (1.3) and Tables (1.4) and

(1.5). Following the base case scenario, the 2% OTM call option reduces the SD implied

upper bound on the RRA from 7.37 to 7.11 and the 2% ITM call option increases the upper

bound on the RRA from 7.37 to 7.72. Similarly, as we increase time to maturity from one

month to six months, the SD upper bounds on the call option prices increase by a factor of

more than 2, from 2.56 to 6.97, but the implied upper bound on the risk aversion increases

only from 6 to 8.56. On the other hand, the sensitivity of the implied RRA to changes in

risk premium is significantly higher than that of the option bound, as can be seen in Tables

(1.4) and (1.5) when the ex-dividend risk-premium increases from 2% to 4%

Since the SD-implied RRA is parameter dependent, we examine it for the parameter val-

ues that were estimated in earlier studies. Such studies fall into two categories, option

market-based and macro-finance studies attempting to explain the equity premium puzzle.

24Implied mean return is calculated based on the jump diffusion equilibrium risk premium, µt − r =

γσ2 + λk − λQkQ, in Section (1.3).
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In empirical tests of the former category, a jump diffusion model is often included in a nested

model that also includes stochastic volatility;25 only a few of these studies are reviewed here.

Bates [1991] applied the nested models to Deutsche mark currency options, and in a subse-

quent study Bates [2000] to S&P 500 futures options, while Pan [2002] and Rosenberg and

Engle [2002] examined S&P 500 index options, and Bliss and Panigirtzoglou [2004] FTSE

100 and S&P 500 index futures options. In these tests the parameters of the implied risk

neutral distribution are extracted from cross sections of observed option prices and attempts

are made to reconcile these option-based distributions with data from the market of the un-

derlying asset. All studies stress the importance of jump risk premia in these reconciliation

attempts.

Such reconciliations have not always been crowned with success, with the result that reported

estimates of γ vary widely between studies. They range from an arbitrarily chosen value

of 2 for Bates [1991] to 3.94 estimated by the same author in Bates [2006] using both

return and option data, to a value up to 10 by Liu and Pan [2003], where they quantify the

gain of including derivatives in portfolio optimization in the presence of jumps. Bliss and

Panigirtzoglou [2004] choose the risk aversion parameter between 3.37 and 9.52 to produce

subjective densities that best fit the distributions of realized values. In a bootstrap estimate

of the RRA based on observed 5-week S&P 500 options they report a minimum of −1.34 and

a maximum of 8.17 for the relative risk aversion; note the approximate consistency of these

varying estimates with the γ limits implied from our SD bounds shown in Figure (1.2) and

Table (1.5) for the same maturity and a 4% risk premium. Liu et al. [2005] adjust the risk

aversion coefficient to 3.49 to match an observed total equity premium when the underlying

process follow jump-diffusion dynamic while the representative agent is averse not only to

diffusive and jump risk but also to uncertainty aversion. However, as they point out, the

data implied RRA coefficient has to be considerably larger than 3.49 if they only incorporate

diffusive risk and jump risk in justifying the pronounced smirk pattern.

Although the risk aversion values in these studies are mostly consistent with the SD implied

bounds on RRA, the SD results are extracted uniquely from estimates of the underlying

returns P -distribution. Compared to the equilibrium approach’s estimates, they require

an additional parameter, the total risk premium µt − r, but do not require knowledge of

25The equilibrium model does not allow stochastic volatility and jumps in linking the P− and Q-

distributions. Although Duffie et al. [2000] have presented option prices under general Q-distributions

containing both stochastic volatility and jumps, to our knowledge the only stochastic volatility pricing ker-

nel was derived by Christoffersen et al. [2013] in the context of the Heston [1993]. For stochastic volatility

in the SD context see the Appendix (1.E).
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γ. Unlike γ, there are reliable historical estimates of µt, even the largest of which defines

tighter bounds on γ than those available from empirical studies that rely on the option

market. They can, therefore, verify the consistency of the two markets in a more reliable

manner than the equilibrium approach. Note that the inconsistencies and inability of the

equilibrium approach to reconcile the evidence of the underlying and option markets has

already been mentioned in several earlier studies.26

A key issue in all the jump diffusion option pricing models is the accurate estimation of the

parameters, since the Q-distributions for the option market fluctuate widely even for small

differences in the parameter estimates. Further, the total risk premium does not appear

explicitly and must be estimated from γ and the P -parameters, equal to γσ2 + λk − λQkQ

as in (1.3.4) and (1.3.5). Since this premium is also a byproduct of the P -estimation, a

successful reconciliation of the two markets must also verify the consistency of the premium

with the value of γ used in the option market valuation. This is generally not done in most

studies.

[Table (1.6) about here]

[Figure (1.4) about here]

We carry out this exercise for several econometric estimations of jump diffusion parameters

shown in Table (1.6), whose results differ substantially not only between studies but also

between different data series within the same study. From the parameter estimates, we

extract the appropriate RRA coefficient to match the reported P -distribution excess return

in Column 3 of Table (1.6). We find that γ should be below 2 in Andersen et al. [2002],

and Eraker et al. [2003], and below 2.5 in Ramezani and Zeng [2007] and Honore [1998].

Therefore, none of the extracted underlying jump diffusion parameters can accommodate

relative risk aversion coefficient above 2.5. Figure (1.4) shows the relationship between γ

and the corresponding jump diffusion equilibrium risk premium γσ2 + λk − λQkQ.

The SD implied bounds on the relative risk aversion can also provide information on the

RRA coefficient extracted in macro finance studies. The RRA coefficients used in the option

pricing literature are much lower than those of the equity premium puzzle studies, where

Mehra and Prescott [1985] report a coefficient of 41, Cochrane and Hansen [1992] report

RRA in the range of 40-50, and Campbell and Cochrane [1999] expects a value more than

26See Eraker et al. [2003, P. 1294], Broadie et al. [2007], Broadie et al. [2009], and Ross [2015].
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35,27 although some argue that risk aversion this large implies implausible behavior along

other dimensions;28 note that these studies relied on pure diffusion dynamics of consumption

growth. Table (1.7) provides a partial explanation for this discrepancy.

[Table (1.7) about here]

In Table (1.7) we use the jump diffusion parameters of Table (1.6) to estimate the SD upper

bound option prices (Column 3) and then extract the implied upper bound relative risk aver-

sion (Column 4) by equating these option upper bounds with the equilibrium option prices

from the Bates [1991] model. Observe that for all of these parameter estimates the upper

bound RRA values are similar to the ones found in the equity premium puzzle literature,

the only option pricing model that can achieve such high γ values. Since the SD upper

bound gives the highest admissible option price implied by the P -distribution parameters,

this price is equivalent to, ceteris paribus, the largest possible RRA coefficient compatible

with the preferences of the representative option trader in an equilibrium model.

From the upper bound γ in Column 4 we estimate the implied equity premium (Column

5), using the Mehra and Prescott [1985] estimates, which were derived in the absence of

rare events affecting consumption for CRRA investors. We have ln (Et [Re,t+1]) − lnRf =

γσ2
∆ lnC ,29 where the implied riskless rate Rf is found from the equation lnRf = − ln β +

γµ∆ lnC − 0.5γ2σ2
∆ lnC , and where β = 0.99, µ∆ lnC = 0.01919 and σ2

∆ lnC = 0.0011767.30 As

we see, such a risk premium estimate is significantly lower than the observed risk premium

(Column 6) in four out of the six cases. Thus we still observe the equity premium puzzle

as extensively addressed by different authors,31 as the corresponding equilibrium premium

is lower than the observed one in most cases. Since the SD implied upper bound is like a no

arbitrage bound, one possible explanation for the above puzzle may be that index options

are overpriced from the option trader’s perspective, as claimed in several empirical studies.

27See also the survey article by Kocherlakota [1996]

28See Campanale et al. [2010]

29These estimates remained essentially unchanged when the data was extended to 2005 and then to 2009.

See Barro [2006, Section 1.F] and Backus et al. [2011]. This dataset has been used widely in most recent

studies of the equity premium.

30This is equivalent to the distribution of real consumer expenditure with mean of 0.02 and standard

deviation of 0.035.

31A good summary of the puzzle and its possible resolutions is in Mehra and Prescott [2003]. The

expressions are in Mehra and Prescott [2003].
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Alternatively, the equity premium estimated from the extracted value of the RRA and an

equation applicable only to diffusion dynamics is incorrect and needs to be adjusted for rare

event risk.

We examine this alternative explanation by exploring the consistency of the upper bound-

implied RRA with the results of more recent equity premium puzzle studies that go beyond

simple diffusion and consider the presence of fat tails in the consumption distribution.32 In

particular Barro [2006] has shown that rare disasters may account for high equity risk premia

by using the international consumption dataset while maintaining a tractable framework of

a representative agent with time-additive isoelastic preferences.33 In his model the equity

premium is given by ln (Et [Re,t+1])− lnRf = φγσ2
∆ lnC +λEt

[(
e−γJ − 1

) (
1− eφJ

)]
,34 where

φ = 1 is the leverage effect that used to model dividends as a levered consumption and J is

again the amplitude of the consumption disaster risk, assumed lognormal, ln J ∼ N(µj, σ
2
j ).

We apply the above equity premium equation using the upper bound RRA for the jump

diffusion parameter estimates of Eraker et al. [2003], reported in Table (1.6). The implied

equity premium in the presence of consumption disaster is 8.95, a level of premium that is

above the observed 7.5% premium evaluated under the assumption that the risk free rate is

5%, but is close to the observed 8.5% premium if that rate is assumed to be a more realistic

4%.35 More to the point, we verify the tail risk of the upper bound-implied bootstrapped

Q-distribution and compare it to that of the corresponding P -distribution with the study’s

parameter estimates. The two distributions are shown in Figure (1.5).

[Figure (1.5) about here]

As we see, the two distributions have virtually identical tails: the probability of a three-

month decline in return in excess of 20% is equal to 0.00065 and 0.00099 on the basis of

the P and Q distributions respectively. By comparison, in the reported results of Ross

[2015, Pages 642-643] the latter has 10 times higher tail risk as the former. The SD upper

bound distribution corresponding to the lognormal distribution truncated at 80% yields a

32See, for instance, Barro [2006], Wachter [2013] and Martin [2013].

33See Barro and Ursua [2008], Gabaix [2008], and Wachter [2013] to name a few.

34This is the continuous-time counterpart of Barro [2006] reproduced in Wachter [2013, Section I.G and

Appendix C].

35We assume that the consumption disaster has the mean, volatility, and intensity equal to 0.3, 0.15, and

0.01 respectively, following Backus et al. [2011].
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virtually identical result. These demonstrations are perhaps the most powerful evidence

of the advantage of the SD method vis-à-vis the equilibrium approach in equity premium

studies if we want to extract the appropriate RRA value from the option market, insofar as

it can illuminate the “dark matter” that motivates this paper.

1.5 Extensions and Conclusions

The results presented in Section (1.2) yield bounds for jump-diffusion index option prices

that are relatively simple to compute and reasonably tight for most empirically important

cases. In addition, the bounds can also accommodate state-dependent diffusion parameters,

even though their computation would be difficult. Last but not least, the SD approach does

not assume simultaneous equilibrium in the options and the underlying asset markets, an

equilibrium that is not realistic if the options do not trade in an organized or a liquid market,

as with catastrophe derivative instruments, where the instruments trade over the counter

and the underlying process follows rare-event dynamics.36

The discrete time approach of the bounds estimation allows several significant extensions to

jump-diffusion option pricing. Thus, the valuation of American options is obvious, due to the

discrete nature of the bounds. Further, the incorporation of proportional transaction costs

is available for some (but not all) European or American option cases following the general

results of Constantinides and Perrakis [2002, 2007]. Most important, a comparison of the

SD jump diffusion bounds with the dominant equilibrium model’s results that are nested by

it showed that several empirical puzzles of that model are consistent with the more general

SD context.

36See Perrakis and Boloorforoosh [2013].
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1.A Proof of Lemma (1.2)

We prove the convergence of the discretization (1.2.6) in the i.i.d. case37 where µt−λk = µ,

σt = σ, jt = j. Convergence in the non-i.i.d. case follows from the convergence criteria

for stochastic integrals, presented in Duffie and Protter [1992]. It is shown in an appendix,

available from the authors on request.

The characteristic function of the terminal stock price at time T for a $1 initial price under

the jump-diffusion process (1.2.7) is

ϕjD(ω) = exp
[
iωµT − ω2σ2T

2

]
exp (−λT )

∞∑
N=0

(λT )N

N !
[ϕj(ω)]N

= exp
[
iωµT − ω2σ2T

2

]
exp [λT (ϕj(ω)− 1)] ,

(1.A.1)

where ϕj(ω) is the characteristic function of the jump distribution. The first exponential

corresponds to the diffusion component and the second to the jump component.

The characteristic function of the discretization (1.2.6) is

ϕ(ω) = (λ∆tϕj(ω) + 1− λ∆t)
[
exp(iωµ∆t)ϕε(ωσ

√
∆t)
]
, (1.A.2)

where ϕε(ω) is the characteristic function of ε.38 Since the distribution of ε has mean 0 and

variance 1, we have

E [ε] = 0 = iϕ′ε(0),

E
[
ε2
]

= 1 = −ϕ′′ε (0).

By the Taylor expansion of ϕε(ω), we get

37The proof is similar to that of Theorem 21.1 in Jacod and Protter [2003]. An alternative proofs is in

Fu et al. [2016].

38If instead of (1.2.6) we have a mixture of the diffusion and jump components then the characteristic

function becomes ϕ(ω) = λ∆tϕj(ω) + (1 − λ∆t)
[
exp(iωµ∆t)ϕε(ωσ

√
∆t)

]
. The multiperiod convolution,

however, still converges to (1.A.3).
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ϕ(ω) = (λ∆tϕj(ω) + 1− λ∆t)

[
exp(iωµ∆t)

[
1− ω2σ2∆t

2
+ ω2σ2∆t h

(
ωσ
√

∆t
)]]

,

where h(ω) → 0 as ω → 0. The multi-period convolution has the characteristic function

ϕ(ω)(T/∆t). Taking the limit, we have

lim
∆t→0

[ϕ(ω)]T/∆t = lim
∆t→0

exp

[
T

∆t
ln (λ∆tϕj(ω) + 1− λ∆t)

+
T

∆t
ln

[
exp(iωµ∆t)

[
1− ω2σ2∆t

2
+ ω2σ2∆t h

(
ωσ
√

∆t
)]]]

= exp

[
λT (ϕj(ω)− 1) + iωµT − ω2σ2T

2

]
(1.A.3)

after applying l′Hôpital′s rule. Equation (1.A.3) is, however, the same as equation (1.A.1),

the characteristic function of (1.2.7). So, Levy’s continuity theorem 39 proves the weak

convergence of (1.2.6) to (1.2.7), QED. �

Another way to characterize the limit process is its generator. Denote by ZD,t the diffusion

component and by Zj,t the jump component of the return process. Therefore, we have

lim
∆t→0

E [f(St+∆ t, t+ ∆t)]− f(St, t)

∆t
=

= lim∆t→0
E[f(St(1+ZD, t+∆t), t+∆t)]−f(St, t)

∆t
+ λ∆t

E[f(St(1+Zj, t+∆t), t+∆t)]−f(St, t)

∆t

= (µt − λk)S ∂f
∂S

+ 1
2
σ2
tS

2 ∂2f
∂S2 + λE [f(Sj)− f(S)] ,

(1.A.4)

which gives us the generator of the price process described by (1.2.7), QED. �

39See for instance Jacod and Protter [2003, Theorem 19.1].
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1.B Proof of Proposition (1.2)

We follow the proof of Proposition 2 in Oancea and Perrakis [2014] and consider the same

multiperiod discrete time option bounds, obtained by successive expectations under the risk-

neutral upper bound distribution. We then seek the limit of this distribution as ∆t → 0.

The multiperiod upper bound distribution is given by

U(zt+∆t) =


P (zt+∆t |St ) with probability

R−zmin,t+∆t

E(zt+∆t)−zmin,t+∆t

1zmin,t+∆t
with probability E(zt+∆t)−R

E(zt+∆t)−zmin,t+∆t
≡ Q

, (1.B.1)

where P (zt+∆t |St ) is the physical probability of return at each state at time t + ∆t and

1zmin,t+∆t
is the physical probability for the lowest possible return. Assuming jump-diffusion

dynamics as (1.2.7), the minimum outcome of the returns distribution is jmin − 1, as dis-

cussed in Section (1.2). Since zmin,t+∆t = jmin − 1 the martingale transformation for the

U -distribution clearly does not involve the diffusion component, which stays the same. The

U -distribution is now a convolution of the diffusion component and a jump component with

amplitude equal to jmin − 1 and j − 1 with corresponding probabilities of Q and 1 − Q

respectively, where Q is defined by the following equation.

Q ≡ E(zt+∆t)−R
E(zt+∆t)− zmin,t+∆t

=
E(zt+∆t)− r∆t

E(zt+∆t)− (jmin − 1)

=
µt∆t− r∆t

µt∆t− σmax(|ε|)
√

∆t− (jmin − 1)
= − µt − r

(jmin − 1)
∆t = λUt∆t,

(1.B.2)

where λUt is defined in Proposition (1.2).

Observe that λUt is always positive since (jmin − 1) < 0 and E(zt+∆t) > r∆t. Hence, con-

sidering the multiperiod upper bound distribution (1.B.1) and equation (1.2.6), the discrete

time upper bound process is as follows:

zt+∆t =


zD,t+∆t + (j − 1)∆N with probability 1− λUt∆t

zD,t+∆t + (jmin − 1)∆N with probability λUt∆t

. (1.B.3)

The outcomes of this process and their probabilities are as follows:
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zt+∆t =


zD,t+∆t with probability (1− λ∆t)(1− λUt∆t)

zD,t+∆t + (j − 1) with probability λ∆t(1− λUt∆t)

zD,t+∆t + (jmin − 1) with probability λUt∆t

. (1.B.4)

By removing the terms in o(∆t), the upper bound process outcomes become

zt+∆t =


zD,t+∆t with probability 1− (λ+ λUt)∆t

zD,t+∆t + (jUt − 1) with probability (λ + λUt)∆t

. (1.B.5)

where jUt is given by (1.2.10). This process, however, corresponds to (1.2.8), QED. �

The generator of the price process, which is also reflected in equation (1.2.11), is

AUf =
1

2
σ2
tS

2 ∂
2f

∂S2
+
[
r − (λ+ λUt)k

U
]
S
∂f

∂S
+
∂f

∂T
+ (λ+ λUt)E

U
[
f(SjUt )− f(S)

]
(1.B.6)

,QED. �

1.C Proof of Proposition (1.3)

The proof is very similar to those of Lemma (1.2) and Proposition (1.2). Assuming, for

simplicity, that both ε and j have continuous distributions, we may apply the multiperiod

lower bound distribution, given by

L(zt+∆t) = P (zt+∆t |St , zt+∆t ≤ z∗t ) such that E (zt+∆t |St , zt+∆t ≤ z∗t ) = R. (1.C.1)

From the convergence of the return process without the jump component to the diffusion
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process as in (1.2.6) and (1.2.7),40 it is clear that as ∆t→ 0 all the outcomes of the diffusion

component will be lower in absolute value than |jt|. Therefore, the limiting distribution will

include the whole diffusion component and a truncated jump component. The maximum

jump outcome in this truncated distribution is obtained from the condition that the dis-

tribution is risk neutral, which is expressed in (1.2.16). We observe that the lower bound

distribution over (t, t + ∆t) is the sum of the diffusion component and a jump of intensity

λ and log-amplitude distribution jLt , the truncated distribution {j|j ≤ j̄t}.

zt+∆t =


zD,t+∆t with probability 1− λ∆t

zD,t+∆t + (jLt − 1)∆N with probability λ∆t

(1.C.2)

By Lemma (1.2) this process converges weakly for to the jump-diffusion process (1.2.15),

QED. �

The generator of the price process is

ALf =
1

2
σ2
tS

2 ∂
2f

∂S2
+
[
r − λkL

]
S
∂f

∂S
+
∂f

∂T
+ λEL

[
f(SjLt )− f(S)

]
(1.C.3)

which appears in equation (1.2.17), QED. �

1.D Characteristic Function and Moments of Return

Dynamics

When the underlying process under P is defined by equation (1.2.7), then the log return

process is

Ln (St/S0) =
[(
µ− 1

2
σ2 − λk

)
t+ σWt +

Nt∑
i=1

Ji

]
=
[(
µ− 1

2
σ2 − λk

)
t+ σWt +

Nt∑
i=1

ln(ji)
] (1.D.1)

40More detail can be find in Oancea and Perrakis [2014].
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The characteristic function of the log return process can be defined as the following expec-

tation of the log-return density function.

fϕ (ln(St/S0)) = E [exp (iϕ ln(St/S0))]

= E
[

exp
[
iϕ
(
µ− 1

2
σ2 − λk

)
t
]]
E [exp (iϕσWt)] E

[
exp

( Nt∑
i=1

iϕJi
)]

= exp
[
iϕ
(
µ− 1

2
σ2 − λk

)
t
]

exp
[1
2

(iϕσ)2 t
]
E
[

exp
( Nt∑
i=1

iϕ ln(ji)
)]

= exp
[
iϕ
(
µ− 1

2
σ2 − λk

)
t− 1

2
ϕσ2t

] [
exp

(
λtE(jiϕ − 1)

)]
= exp

[
iϕµt− 1

2
iϕσ2t− iϕλtk − 1

2
ϕ2σ2t+ λtE

(
jiϕ − 1

) ]

fϕ (ln(St/S0)) = exp
[
iϕµt− 1

2
iϕ (1− iϕ) σ2t+ λ

[
E
(
jiϕ − 1

)
− iϕk

]
t
]

(1.D.2)

Using the above characteristic function, the mean and the volatility of the log return process

can be defined with the derivatives of the characteristic function.

E
[

ln(St/S0)
]

= (−i)∂f
∂ϕ
|ϕ=0 =

(
µ− 1

2
σ2 + λE [ln j]− λk

)
t

V ar
[

ln(St/S0)
]

= (−i)2 ∂
2f

∂ϕ2
|ϕ=0 =

(
σ2 + λ (E [ln j])2 + λ (V ar [ln j])

)
t

When the jump size is log normal, Ln(j) ∼ N
(
µj − 1

2
σ2
j , σ

2
j

)
or j ∼ LogN (eµj , e2µj (eσj − 1)),

E [ln(St/S0)] = µt− 1

2
σ2t+ λ

(
µj −

1

2
σ2
j

)
t− λkt (1.D.3)

V ar [ln(St/S0)] = σ2t+ λ
[(
µj −

1

2
σ2
j

)2
+ σ2

j

]
t (1.D.4)

For the risk-neutral process JQ = ln(jQ) ∼ N
(
µj − γσ2

j − 1
2
σ2
j , σ

2
j

)
fQϕ

[
ln
St
S0

]
= exp

[
iϕrt− 1

2
iϕ (1− iϕ) σ2t+ λQt

[
EQ
(
jiϕ − 1

)
− iϕkQ

] ]
(1.D.5)
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EQ [ln(St/S0)] = rt− 1

2
σ2t+ λQ

[
µj − γσ2

j −
1

2
σ2
j

]
t− λQkQt (1.D.6)

V arQ [ln(St/S0)] = σ2t+ λQ
[(
µj − γσ2

j −
1

2
σ2
j

)2
+ σ2

j

]
t (1.D.7)

Following Proposition (1.2), when the underlying asset follows the dynamic of (1.2.8), the

upper bound characteristic function and its first two central moments can be defined similarly

by equations (1.D.8), (1.D.9), and (1.D.10) respectively.

fUϕ

[
ln
St
S0

]
= exp

[
iϕrt− 1

2
iϕ (1− iϕ) σ2t+ (λ+ λUt)

[
EU
(
jiϕ − 1

)
− iϕkU

]
t
]

(1.D.8)

EU
[

ln
St
S0

]
= rt− 1

2
σ2t+ (λ+ λUt)E

U
[
ln(jU)

]
t− (λ+ λUt) k

U t

= rt− 1

2
σ2t+ λ

(
µj −

1

2
σ2
j

)
t+ λUt (ln jmin) t− (λ+ λUt) k

U t

(1.D.9)

V arU
[

ln
St
S0

]
= σ2t+ (λ+ λUt)

(
EU
[
ln(jU)

])2
t+ (λ+ λUt)

(
V arU

[
ln(jU)

])
t

= σ2t+
1

λ+ λUt

[
λ
(
µj −

1

2
σ2
j

)
+ λUt (ln (jmin))

]2

t+ λσ2
j t

(1.D.10)

In our analysis of the upper bound, we discuss the limiting distribution that includes the

diffusion component and a truncated jump component with truncation limit chosen to meet

the observed jump amplitude in econometric studies of jump diffusion.41 In this case the

first and second central moments can be defined by equations (1.D.11) and (1.D.12) where

Φ is the normal cumulative function and φ is the normal probability function.

41See Lien [1985].

33



EU
[

ln
St
S0

|j > jmin

]
= rt− 1

2
σ2t

+

[
λ
(
µj −

1

2
σ2
j

)
+ λUt (ln jmin) +

√
λ (λ+ λUt)σj

φ (a0)

1− Φ (a0)

]
t

− (λ+ λUt) k
U × Φ (σj − a0)

Φ (−a0)
t

(1.D.11)

V arU
[
ln
St
S0

|j > jmin

]
= σ2t+ (λ+ λUt)×[

λ

λ+ λUt

(
µj −

1

2
σ2
j

)
+

λUt
λ+ λUt

(ln jmin) +

√
λ

λ+ λUt
σj

φ (a0)

1− Φ (a0)

]2

t

+ λσ2
j

[
1 +

a0φ (a0)

1− Φ (a0)
−
( φ (a0)

1− Φ (a0)

)2
]

(1.D.12)

where a0 =
[
ln (jmin)−

(
µj − 0.5× σ2

j

)]
/σj.

Another important special case discussed in Remark (1.3) and equation (1.2.12) where the

lower limit of the jump amplitude is equal to 0. Therefore, jmin = 0 and the return distri-

bution has an absorbing state in which the stock becomes worthless. In this case the upper

bound characteristic function and its central moments are as follow.

f jmin=−1
ϕ

[
ln
St
S0

]
= exp

[
iϕµt− 1

2
iϕ (1− iϕ) σ2t+ λ

[
E
(
jiϕ − 1

)
− iϕk

]
t
]

(1.D.13)

Ejmin=−1 [ln(St/S0)] = µt− 1

2
σ2t+ λ

(
µj −

1

2
σ2
j

)
t− λkt (1.D.14)

V arjmin=−1 [ln(St/S0)] = σ2t+ λ
[(
µj −

1

2
σ2
j

)2
+ σ2

j

]
t (1.D.15)

Similarly, we introduce the lower bound characteristic function and its central moments when

the underlying asset follows the dynamic of (1.2.15), as in Proposition (1.3).

fLϕ

[
ln
St
S0

]
= exp

[
iϕrt− 1

2
iϕ (1− iϕ) σ2t+ λ

[
EL
(
jiϕ − 1

)
− iϕkL

]
t
]

(1.D.16)
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EL [ln(St/S0)] = rt− 1

2
σ2t+ λEL

[
ln(jL)

]
t− λkLt (1.D.17)

V arL [ln(St/S0)] = σ2t+ λ
(
EL
[
ln(jL)

])2
t+ λ

(
V arL

[
ln(jL)

])
t (1.D.18)

Accordingly, if the distribution of J = ln(j) is normal and truncated at the upper bound ln (j̄)

then the central moments are given by (1.D.19) and (1.D.20) where b0 =
[
ln (j̄)−

(
µj − 0.5σ2

j

)]
/σj.

EL
[

ln
St
S0

|j < j̄
]

= rt− 1

2
σ2t+ λEL

[
ln(jL) |j < j̄

]
− λEL

[
jL − 1 |j < j̄

]
t

= rt− 1

2
σ2t+ λ

[(
µj −

1

2
σ2
j

)
+ σj

φ (b0)

Φ (b0)

]
− λk × Φ (−σj + b0)

Φ (b0)
t

(1.D.19)

V arL
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ln
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EL
[
ln(jL) |j < j̄

] ]2

t+ λ
[
V arL

[
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2
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j + σj
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+ λσ2
j

[
1− b0φ (b0)

Φ (b0)
−
(φ (b0)

Φ (b0)

)2
]
t

(1.D.20)

1.E Stochastic Volatility and Jumps Under Stochastic

Dominance

Here we discuss how the incorporation of stochastic volatility (SV) will affect the jump

diffusion SD bounds on index options. SV introduces an additional source of systematic

risk, which can be handled either by arbitrage or by equilibrium considerations. We sketch

below an extension of our approach to the pricing of jump risk that can incorporate SV,

provided its systematic risk implications are handled outside our model.

In a combined SV and jump-diffusion process, the stock returns are still given by (1.2.7) but

the volatility σt is random and follows a general diffusion, often a mean-reverting Ornstein-
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Uhlenbeck process.42 In our case we use a general form with an unspecified instantaneous

mean m(σ2
t ) and volatility s(σ2

t ). The asset dynamics then become

dSt/St = (µt − λk)dt+ σtdW1 + (j − 1)dN

dσ2
t = m(σ2

t )dt+ s(σ2
t )dW2,

(1.E.1)

where the two Brownian motions are correlated as dW1.dW2 = ρσ2
t dt. The following discrete

representation (1.E.2) can be easily shown by applying Lemma (1.2) to converge to (1.E.1):43

(St+∆t − St) /St ≡ zt+∆t = µ(St)∆t+ σtε
√

∆t+ (j − 1)∆N

σ2
t+∆t − σ2

t = m(σ2
t )∆t+ s(σ2

t )ς
√

∆t

(1.E.2)

Where ς is an error term of mean 0 and variance 1, and with correlation ρ(σ2
t ) between ε

and ς. In what follows we shall assume that this correlation is constant.

Under reasonable regularity conditions the pricing kernel at time t conditional on the state

variable vector (St, σt) is monotone decreasing. Similarly, for any given σt the option price

is convex in the stock price.44 Hence, for any given volatility path over the interval [0, T ]

to option expiration the option prices at any time t are bound by the expressions Ct(St, σt)

and Ct(St, σt) given in (1.2.3). Since both of these expressions are expected option payoffs

under risk neutral distributions, we can apply arbitrage methods as in Merton [1976] to

price the options given a price ξ(St, σt, t) for the volatility risk. Propositions (1.2) and (1.3),

therefore, hold and the admissible option’s upper bound satisfies the PDE in (1.E.3) and its

lower counterpart satisfies the PDE in equation (1.E.4).

42See Heston [1993].

43We also use the proof of the convergence of the diffusion process discussed in Oancea and Perrakis

[2014]. In the extension of the proof to stochastic volatility, the only difference is related to the vector φt in

applying the Lindeberg condition, which is now a two-dimensional (St, σ
2
t ) vector.

44The pricing kernel monotonicity holds if the kernel does not include a separate variance preference

parameter; see Christoffersen et al. [2013, Pages 1966-1967]. For the convexity see the results of Bergman

et al. [1996].
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(1.E.4)

The estimation of (1.E.3)-(1.E.4) under general conditions presents computational challenges

that lie outside the scope of this paper and remains a topic for future research.
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Table 1.1: The Convergence of the Stochastic Dominance Upper and Lower Option Bounds

Periods Lower Bound Merton Price
Upper
Bound

(jmin−1 > −1)

Upper
Bound

(jmin−1 = −1)

5 4.3443 4.4455 4.5521 4.6920
10 4.3764 4.4455 4.5972 4.6964
15 4.3606 4.4455 4.5671 4.6983
20 4.3694 4.4455 4.5784 4.6990
25 4.3757 4.4455 4.5878 4.6994
30 4.3800 4.4455 4.5955 4.6996
35 4.3752 4.4455 4.5851 4.7000
40 4.3802 4.4455 4.5938 4.7001
45 4.3763 4.4455 4.5858 4.7003
50 4.3811 4.4455 4.5943 4.7003
60 4.3743 4.4455 4.5815 4.7006
70 4.3772 4.4455 4.5854 4.7007
80 4.3797 4.4455 4.5892 4.7007
90 4.3820 4.4455 4.5929 4.7008

100 4.3781 4.4455 4.5856 4.7009
150 4.3804 4.4455 4.5881 4.7010
200 4.3838 4.4455 4.5931 4.7011
250 4.3837 4.4455 4.5922 4.7011
300 4.3842 4.4455 4.5927 4.7011
350 4.3851 4.4455 4.5939 4.7012
400 4.3834 4.4455 4.5904 4.7012
450 4.3849 4.4455 4.5928 4.7012
500 4.3838 4.4455 4.5906 4.7012
600 4.3848 4.4455 4.5920 4.7012
700 4.3860 4.4455 4.5940 4.7012
800 4.3855 4.4455 4.5926 4.7013
900 4.3852 4.4455 4.5920 4.7013

1,000 4.3852 4.4455 4.5918 4.7013

The table shows the convergence of the jump-diffusion bounds for an ATM option with

X = 100 and time to maturity T = 0.25 years with r = 2%, µ = 4%, σ = 20%,

λ = 0.6, µj = −0.05, σj = 7%, annual parameters. The jump amplitude distri-

bution is lognormal. In the case jmin − 1 > −1, the distribution was truncated to

a worst-case jump return of −20%. In the last column we present the case when

the lower limit of the jump amplitude is equal to 0, in which jmin − 1 = −1, that

is the return distribution has an absorbing state where the stock becomes worthless.
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Table 1.2: Sensitivity of the SD Option Bounds to the Jump Parameters

Lambda
Jump Vol.

(σj)
Lower
Bound

Merton
Price

Upper
Bound

(jmin−1 > −1)

Upper
Bound

(jmin−1 = −1)

0.0 0.0000 4.2275 4.2312 4.2348 4.4842
0.1 0.1996 4.2601 4.3417 4.4832 4.5966
0.2 0.1377 4.2927 4.3991 4.5332 4.6548
0.3 0.1093 4.3226 4.4253 4.5603 4.6813
0.4 0.0918 4.3482 4.4364 4.5755 4.6924
0.5 0.0794 4.3689 4.4417 4.5849 4.6976
0.6 0.0700 4.3852 4.4455 4.5918 4.7013
0.7 0.0624 4.3977 4.4491 4.5973 4.7048
0.8 0.0560 4.4074 4.4529 4.6020 4.7086
0.9 0.0505 4.4151 4.4568 4.6061 4.7124
1.0 0.0456 4.4214 4.4606 4.6099 4.7161
1.1 0.0412 4.4267 4.4643 4.6134 4.7197
1.2 0.0371 4.4314 4.4679 4.6166 4.7231
1.3 0.0332 4.4356 4.4713 4.6198 4.7264
1.4 0.0295 4.4393 4.4745 4.6228 4.7296
1.5 0.0258 4.4427 4.4777 4.6257 4.7326
1.6 0.0221 4.4457 4.4808 4.6285 4.7356
1.7 0.0183 4.4486 4.4838 4.6313 4.7385
1.8 0.0140 4.4514 4.4868 4.6340 4.7413
1.9 0.0085 4.4541 4.4897 4.6366 4.7441

The table shows the jump-diffusion bounds for an ATM option with X = 100 and time to

maturity T = 0.25 years, and annual parameters r = 2%, µ = 4%, σ = 20%, µj = −0.05,

for various values of the intensity parameter and the jump amplitude volatility σj. We

vary the jump volatility and intensity, keeping the overall volatility of the jump-diffusion

constant equal to 0.04444. The jump amplitude distribution is lognormal. In the case,

jmin − 1 > −1 the distribution was truncated to a worst-case jump return of −20%.
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Table 1.3: Sensitivity of the SD Option Bounds to the Jump Parameters

Risk
Aversion

Call
Price

Implied
Mean

Risk Neutral
Jump Intensity

Risk Neutral
Jump Size

−1.00 4.4007 −0.0240 0.5721 −0.0418
0.00 4.4198 0.0200 0.6000 −0.0464
0.50 4.4307 0.0422 0.6156 −0.0488
1.00 4.4425 0.0644 0.6323 −0.0511
1.50 4.4554 0.0869 0.6503 −0.0534
2.00 4.4694 0.1095 0.6696 −0.0557
2.50 4.4847 0.1322 0.6904 −0.0580
3.00 4.5012 0.1551 0.7126 −0.0604
3.25 4.5101 0.1667 0.7244 −0.0615
4.00 4.5388 0.2016 0.7621 −0.0649
6.00 4.6359 0.2977 0.8846 −0.0741
8.00 4.7723 0.3991 1.0470 −0.0831
10.00 4.9648 0.5085 1.2639 −0.0920
20.00 7.9741 1.3808 4.3456 −0.1355
40.00 65.6746 49.8924 223.4470 −0.2162

This table shows the sensitivity of the equilibrium jump-diffusion call option prices to the

coefficient of relative risk aversion γ for a continuum of coefficients up to 40. The base

case parameters are S = 100, X = 100, T = 0.25, r = 2%, µ = 4%, σ = 20%, λ = 0.6,

µj = −0.05, σj = 7%. The call option prices are based on the Bates [1991] jump-diffusion

model. Implied mean return is calculated based on the jump diffusion equilibrium risk pre-

mium in Section (1.3) as µt−r = γσ2 +λk−λQkQ. Risk neutral jump intensity and risk neu-

tral jump size are based on the equilibrium transformation in equations (1.3.4) and (1.3.5).
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Table 1.4: Sensitivity of the SD-implied RRA Bounds to the Market Risk Premium

2% Risk Premium 4% Risk Premium

Money
ness

(X/S)

Implied
Relative

Risk
Aversion

Upper
Bound

(Truncated)

Upper
Bound

Implied
Relative

Risk
Aversion

Upper
Bound

(Truncated)

Upper
Bound

0.95 8.36 7.5917 7.7691 11.46 7.7681 8.1059
0.96 8.13 6.9206 7.0831 11.20 7.0968 7.4072
0.97 7.92 6.2842 6.4325 10.97 6.4588 6.7427
0.98 7.72 5.6835 5.8182 10.74 5.8551 6.1137
0.99 7.54 5.1193 5.2410 10.54 5.2867 5.5210
1.00 7.37 4.5918 4.7013 10.34 4.7538 4.9653
1.01 7.24 4.1030 4.2011 10.18 4.2587 4.4487
1.02 7.11 3.6508 3.7384 10.03 3.7994 3.9693
1.03 6.99 3.2345 3.3122 9.88 3.3752 3.5265
1.04 6.87 2.8530 2.9216 9.74 2.9854 3.1194
1.05 6.77 2.5060 2.5664 9.62 2.6297 2.7480

This table shows the sensitivity of the SD implied upper bound relative risk aversion

to the moneyness and unconditional mean return. SD upper bound on call option

prices are calculated for jmin − 1 = −0.8 (columns 3 and 6) and for the full sup-

port of jump distribution (columns 4 and 8). The parameters are S = 100, T =

0.25, r = 2%, µ = 4% − 6%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%.
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Table 1.5: The Sensitivity of the SD-implied Upper Bound RRA to the Time-to-Maturity

Time to
Maturity

Implied
Relative Risk

Aversion

Upper
Bound

Implied
Relative Risk

Aversion

Upper
Bound

0.08 6.00 2.5685 8.72 2.6554
0.10 6.17 2.8358 8.93 2.9402
0.15 6.64 3.5404 9.48 3.6978
0.20 7.03 4.1509 9.94 4.3616
0.25 7.37 4.7013 10.34 4.9653
0.30 7.67 5.2081 10.70 5.5255
0.35 7.95 5.6830 11.02 6.0540
0.40 8.19 6.1315 11.31 6.5560
0.45 8.43 6.5594 11.58 7.0376
0.50 8.65 6.9705 11.83 7.5025
0.55 8.84 7.3643 12.05 7.9499
0.60 9.02 7.7453 12.26 8.3844
0.65 9.20 8.1151 12.46 8.8078
0.70 9.36 8.4752 12.65 9.2215
0.75 9.52 8.8267 12.83 9.6267
0.80 9.68 9.1708 13.01 10.0245
0.85 9.80 9.5005 13.15 10.4072
0.90 9.95 9.8310 13.31 10.7913
0.95 10.10 10.1568 13.47 11.1708
1.00 10.20 10.4667 13.60 11.5336

This table shows the sensitivity of the SD implied upper bound relative risk aversion to

the time to maturity of the options from one-month expiration until one year to expi-

ration and unconditional mean return. The SD upper bound on the call option prices

is for the whole support of jump distribution. The base case parameters are S = 100,

X = 100, r = 2%, µ = 4% − 6%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%.
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Table 1.6: The Empirical Jump Diffusion Parameter Estimates of the S&P 500 Index

Paper Dates
Equity

Premium
Vol.(σ)

Jump
Intensity

Mean
Jump

Jump
Vol.

Risk
Free

Honore [1998] 1928-1988 7.94% 10.04% 62.15 -0.13% 1.9% 5.0%

Andersen et al.
[2002]

1953-1996 3.22% 9.91% 12.63 0.00% 2.6% 5.1%

Andersen et al.
[2002]

1980-1996 10.80% 11.38% 14.89 0.00% 3.4% 5.1%

Ramezani and
Zeng [2007]a

1926-2003 2.56% 13.49% 10.63 0.08% 2.4% 5.0%∗

Ramezani and
Zeng [2007]b

1926-2003 5.08% 12.70% 18.57 0.05% 2.0% 5.0%∗

Eraker et al.
[2003]

1980-1999 7.50% 12.91% 1.51 -2.59% 4.1% 5.0%∗

a Based on raw returns.
b Based on dividend-adjusted returns.

This table shows the empirical jump diffusion parameters for the S&P 500 Index as measured

in the corresponding econometric studies that assume that the underlying process is jump dif-

fusion. All the reported parameters are annual. * indicates cases where the reported studies

did not estimate the risk-free rate, arbitrarily set at 5%. The differences in jump parame-

ters between Eraker et al. [2003] and the other studies stems from the fact that Eraker et al.

[2003] captures small jumps with stochastic volatility, which leads to a lower jump intensity

and higher mean and volatility of the jumps.
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Table 1.7: The SD-implied Bounds on the Relative Risk Aversion Coefficient

Underlying
Parameters

Dates

JD Upper
Bound
Option
Prices

Implied
Upper Bound
Relative Risk

Aversion

Implied
Equity

Premium

Observed
Equity

Premium

Base Case
Parameters

4.70 7.0 0.93% 2.00%

Honore [1998]
1928-1988 5.49 37.5 4.10% 7.94%

Andersen et al.
[2002]

1953-1996 3.89 26.5 3.52% 3.32%

Andersen et al.
[2002]

1980-1996 5.82 28.5 3.69% 10.80%

Ramezani and
Zeng [2007]a

1926-2003 4.13 33.5 3.99% 2.56%

Ramezani and
Zeng [2007]b

1926-2003 4.47 47.5 3.84% 5.08%

Eraker et al.
[2003]

1980-1999 4.62 22.5 3.10% 7.50%

a Based on raw returns.
b Based on dividend-adjusted returns.

This table shows the implied upper bound RRA and corresponding implied equity premium for

the studies reported in Table (1.6). Implied upper bound relative risk aversion (column 4) is de-

fined by using the upper bound option prices (column 3) together with the equilibrium option

prices from Bates [1991]. Implied equity premium is calculated following Mehra and Prescott

[1985]. The consumption data is annual U.S. data from 1890 to 2004 from Barro [2006], where

the growth rate of real consumer expenditure per person has a mean of 0.020 and its standard

deviation is 0.035.
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Figure 1.1: The Convergence of Jump-Diffusion Stochastic Dominance Option Bounds
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This figure illustrates the convergence of the option bounds under a jump-diffusion process for

an ATM option with X = 100, time to maturity T = 0.25 years, and with the following annual

parameters: r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%. The jump size dis-

tribution is lognormal. In the case jmin − 1 > −1, the distribution was truncated to a worst

case jump return of −20%. When jmin− 1 = −1, the return distribution has an absorbing state

where the stock becomes worthless.
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Figure 1.2: The Sensitivity of JD Call Option Prices to the Coefficient of RRA
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This figure shows the sensitivity of the equilibrium jump-diffusion call option prices to the

coefficient of relative risk aversion for a continuum of coefficients up to 10. The parameters

are S = 100, X = 100, T = 0.25, r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05,

σj = 7%. The price of call option is based on the Bates [1991] jump-diffusion model. In case

jmin−1 > −1, the upper bounds distribution is truncated to a worst-case jump return of −20%.

When jmin − 1 = −1, the lower limit of the jump amplitude is set to 0 and the return distribu-

tion has an absorbing state where the stock becomes worthless.
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Figure 1.3: The SD-implied Upper Bound on the RRA Coefficient Versus Option Moneyness
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This figure describes the sensitivity of the SD-implied upper bound on the relative risk aversion

to the moneyness. SD bound is defined based on the base case parameters S = 100, T = 0.25,

r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7% on the entire support of the jump

distribution.
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Figure 1.4: The Equilibrium Mean Return Versus the Coefficient of Relative Risk Aversion
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This figure shows the sensitivity of the equilibrium mean of the jump-diffusion return process

to the coefficient of relative risk aversion for a continuum of coefficients up to 10. The base case

parameters are r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%. This relation is

based on the well-known equilibrium risk premium where µt − r = ϕσ + ϕj and ϕσ = γσ2 and

ϕj = λk−λQkQ. We draw the equilibrium mean return based on the parameters estimated from

underlying S&P 500 index returns in Honore [1998], Andersen et al. [2002], Ramezani and Zeng

[2007], and Eraker et al. [2003]. More details regarding the underlying parameters are given in

Table (4.4).
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Figure 1.5: The Bootstrapped Densities - SD Upper Bound Versus Physical Distributions
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This figure shows the bootstrapped density for the physical distribution and upper bound SD

distribution based on the parameters estimated from underlying S&P 500 index returns in Er-

aker et al. [2003].
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Chapter 2

The Transient and The Persistent

Variance Risk Premium
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2.1 Introduction

The dynamics of index return volatility and their role in pricing options have had a long

history following the classic early works by Wiggins [1987] and Heston [1993], that recognized

the volatility’s stochastic nature and managed to derive closed form expressions for the

resulting European options. Related early contributions were also by Duan [1995], Duan

et al. [1999], and Heston and Nandi [2000] under GARCH return dynamics, with option

prices derived either by numerical methods or with closed form expressions. More recent

studies, however, have pointed out that a single factor stochastic volatility (SV) or GARCH

is not sufficient to represent both the underlying (P ) and the risk neutral (Q) measures of

the joint dynamics of returns and variances for the key S&P 500 index and its options.1 In

particular, these studies show that one-factor models are incapable of simultaneously fitting

the persistence of volatility and the volatility of volatility, and that two volatility factors

(one with persistent dynamics and one with transient dynamics) are needed to explain return

volatility dynamics; similar considerations apply also to option-based risk neutral returns.

This paper examines index option pricing under two SV factors, where aggregate market

volatility is decomposed into a more persistent volatility component, which has nearly a unit

root, and a transitory volatility component, which has more rapid time decay. Building up on

Christoffersen et al. [2009] model, we adopt an affine two-factor SV process for the underlying

index returns and introduce an admissible pricing kernel to find the risk-neutral returns

dynamics and to price European options.2 As in the one-factor volatility of Christoffersen

et al. [2013], we also introduce an associated component volatility model (bivariate GARCH

model) and derive the corresponding pricing kernel linking the P - and Q-distributions.

We investigate empirically the pricing performance of our two-factor SV model in S&P

500 options by estimating the joint dynamics of returns and variances under the P and Q

measures.3 First, we filter two vectors of daily spot variances using the Particle Filter (PF)

1See, for instance, Bollerslev and Zhou [2002], Alizadeh et al. [2002], and Chernov et al. [2003] for the

P -returns and Bates [2000], Christoffersen et al. [2008], and Christoffersen et al. [2009] for the option-based

Q-distribution.

2Note that the extracted risk-neutral dynamics are not restricted to the introduced admissible pricing

kernel, where investor’s variance risk preference is distinguished from her equity risk preference. In other

words, we can obtain the risk-neutral dynamics without completely characterizing the equilibrium in econ-

omy. To do so, we specify a class of Radon-Nikodym derivatives and derive restrictions that ensure the

existence of equivalent martingale measure, which makes the discounted stock price process a martingale.

3Joint estimation appropriately weights returns and option data and simultaneously address the model’s
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method.4,5 We follow the conventional filtration procedure of similar studies but provide a

novel and methodologically important solution for the challenging issue of how to separate

the two variance components’ paths. We then use a likelihood-based loss function that

combines a return-based and an option-based likelihood functions to obtain a consistent set

of structural parameters for the two-factor SV model; a parameter set that simultaneously

captures the information contents embedded in the time-series of index returns and cross-

sections of options prices.6,7 In other words, the resulting estimates are therefore consistent

with the return data and option data. Further, joint estimation allow us to obtain two

separate variance risk premiums; a transient variance risk premium and a persistent variance

risk premium. To the best of our knowledge, this is the first study that estimates consistent

P - and Q-parameters from underlying index return and option data and reports variance

risk premium for a persistent and a transient component.

In empirical analysis, using the data from index and option market, we find that one of the

volatility factors is highly persistent (persistent component) while the immediate impact of

volatility shocks on the other volatility factor is bigger but short-lived (transient component).

We also find the same level of persistence in the transient and persistent variance components

when we only use option data, which is consistent with previous studies in option market.

The unconditional transient and persistent variances are consistent with the average filtered

spot transient and persistent variance components. Consistent with our intuition, we observe

that the transient volatility component is much more volatile than the persistent volatility

component. The same result holds when we use only option data.

ability to fit the time-series of returns and cross-section of option prices. The importance of joint estimation

of the structural parameters of the underlying returns and volatility dynamics has been addressed in Bates

[1996], Chernov and Ghysels [2000], Pan [2002], Eraker [2004], and Broadie et al. [2007] among others.

4For the application of PF in estimating the model parameters see Gordon et al. [1993], Johannes et al.

[2009], Johannes and Polson [2009], Christoffersen et al. [2010], and Boloorforoosh [2014].

5Note that unlike discrete-time GARCH model, filtering spot volatility in continuous-time stochastic

volatility is a cumbersome task because volatility is a latent variable.

6According to Christoffersen et al. [2009, Section 6], “an integrated analysis of multifactor models using

option data as well as underlying returns out to be done.”

7The main challenge in such an efficient joint estimation procedure is its heavy computational burden. To

overcome this challenge, previous studies mostly focused on a very short time-series and/or weekly/monthly

option dataset, See Pan [2002] and Eraker [2004]. However, we managed to keep a large time-series of returns

and the entire cross-section of daily option prices over the same time span using high performance computing

techniques as well as parallel computing techniques.
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We find negative prices for both variance components, namely λ1 = −1.0798 and λ2 =

−1.0355. Our finding implies that investors are willing to pay for an insurance against an

increase in volatility risk, even if that increase has little persistence. To the best of our

knowledge none of the previous studies of two-factor stochastic volatility models reports

the price of the variance risk factors as they either focused on the options market data or

the underlying returns data. The negative variance risk premium for both transient and

persistent variance components are consistent with the findings in Adrian and Rosenberg

[2008]. Using a large cross-section of stock returns data, they find negative and significant

prices for both short-run and long-run volatility components.8

We obtain negative correlation between shocks to the market returns and each variance com-

ponent, implying that both components are important in capturing the so-called leverage

effect. We find that the point estimate of the transient correlation parameter is less nega-

tive (ρ2 = −0.2173) compared to the persistent correlation parameter (ρ1 = −0.6918) and

therefore, it has a less significant effect on the skewness and kurtosis of the return dynamics

and thus on the volatility smirk. In other words, the persistent correlation factor has more

significant effect on the return skewness and on the price of out-of-money put options. We

observe the same pattern between correlation parameters when we estimate the model only

with option data.

Extensive empirical evidence supports the presence of two volatility components in the dy-

namics of the market returns. In the P -distribution domain the relative performance of the

two-factor SV structure compared to its one-factor counterpart in capturing the dynamics of

the exchange rate and equity returns has been examined in several studies.9,10 These studies

document that two volatility factors, one with a persistent dynamic and one with a transient

dynamic, are needed to characterize volatility dynamics, since one-factor models are inca-

pable of simultaneously fitting the persistence of volatility and the volatility of volatility.

For instance, Chernov et al. [2003] suggest that the addition of a second volatility factor

breaks the link between tail thickness and volatility persistence. They show that the second

SV factor in affine models leads to a significant improvement relative to a single SV models

in capturing the return dynamics. They also find that when the second volatility factor

8Note that Adrian and Rosenberg [2008] introduce a discrete-time model where short-run and long-

run volatility components are distinguished by construction whereas in our models we do not impose any

restrictions on the variance dynamics other than variance shocks are independent.

9See, for instance, Bollerslev and Zhou [2002], Alizadeh et al. [2002], and Chernov et al. [2003].

10There is also widespread evidence that multifactor volatility model is needed to capture the term

structure of the interest rate. See Dai and Singleton [2000, 2002] among others.
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is allowed to have its own correlation with returns, the correlation parameters can take on

both positive and negative values, contrary to the findings in single factor volatility models,

where the correlation parameter is always found to be negative.

Similar considerations also hold for the Q-distribution. Previous studies in the option mar-

kets document that SV models are helpful in the modeling of the volatility smirk by in-

corporating a leverage effect11 and in the modeling of the volatility term structure effect

by incorporating mean reversion in variance dynamics.12 Empirical studies observe that

the shape of the volatility smirk can be either flat or steep at a given volatility level, how-

ever stochastic volatility models cannot accommodate both at the same time for a given

parametrization.13 This so called structural problem in one factor SV models is more re-

straining especially when estimating the model parameters using multiple cross-sections of

options data. Such a restriction is mostly related to the fact that in one-factor SV models

the correlation between stock returns and variance is constant across all cross-sections of

option contracts regardless of the level and shape of the volatility. Multiple SV models, on

the other hand, can better capture the time-varying nature of the smirk as the correlation

between stock returns and total volatility is stochastic.14 Such models, therefore, have more

flexibility to fit the term structure of the volatility and to control the level and the slope of

volatility smirk in cross-sections of option prices.15 Moreover, the conditional skewness and

kurtosis are more flexible for given levels of conditional variance. Our own empirical results

confirm that these important characteristics lead to superior performance of multifactor SV

model compared to its single factor counterpart.

Similar inconsistencies in the joint estimation of the SV model are illustrated by Broadie

et al. [2007]. They note the failure of SV model to reconcile the P - and Q-estimates of certain

structural parameters of the SV model, namely the correlation coefficient and volatility of

volatility, and conclude that the SV model is basically misspecified. They also show that

the joint restrictions on the returns and volatility dynamics under the P and Q measures

11See, among others, Bakshi et al. [1997], Bates [2000], and Jones [2003].

12Egloff et al. [2010, Page 1289] show that the upward sloping autocorrelation term structure of variance

swap rate quotes points to the existence of multiple variance risk factors. They also find that upward sloping

mean term structure of variance swap rate quotes is evidence for non-zero market prices for variance risk

factors.

13See Derman [1999].

14Christoffersen et al. [2009, Equation 15] show that the correlation between returns and total volatility

in a two-factor SV model is stochastic.

15See, for instance, Egloff et al. [2010] and Menćıa and Sentana [2013].
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leads to the poor performance of the SV model, measured by the high level of IVRMSE.

They indicate that due to the joint-restriction, SV model cannot generate sufficient amounts

of conditional skewness and kurtosis. However, in our empirical analysis, we find that joint

restrictions on the P and Q dynamics does not lead to the poor performance of our two-factor

SV model.

Although our study is not the first one to examine multifactor SV and GARCH models, it is

the only one to present consistent P - and Q-parameter estimates both theoretically and em-

pirically. For instance Bates [2000] examined a multifactor specification in option pricing by

relying on the Q-distribution only. Christoffersen et al. [2008] introduced a two-component

GARCH model, which can generate more flexible skewness and volatility of volatility dynam-

ics in capturing the dynamics of the S&P 500 index returns and in pricing European S&P

500 call options. They document that the empirical performance of the volatility component

model is significantly better than that of the benchmark GARCH(1,1) model, both in-sample

and out-of-sample. They also find that the proposed volatility component specification could

better capture the volatility term structure. Nonetheless, the absence of an explicit pricing

kernel linking the P - and Q-distributions in that study necessitated either the use of an ar-

bitrary price of volatility risk or the estimation of the risk neutral parameters by relying on

the Q-distribution only. Christoffersen et al. [2009] further explore multiple variance factors

model Q-distribution only and find that it can generate stochastic correlation between total

instantaneous volatility and stock returns. They also illustrate the importance of multiple

variance factors by analyzing the principal components of Black-Scholes implied volatility of

of S&P 500 index options.

This chapter proceeds as follows. Section (2.2) presents the theoretical model for pricing

index options. Section (2.3) contains the description of the data sets. In Section (2.4)

we discuss the methodology for estimation of the structural parameters that characterize

the dynamics of index return and variance components under both P and Q distributions.

Section (2.5) presents the estimation results. In section (2.6) we investigate the performance

of the model and report in-sample goodness-of-fit statistics. Section (2.7) examines the

stability of the model and measures the out-of-sample performance of the model. Section

(2.8) concludes. The appendix provides the proofs of the theoretical results.
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2.2 Model Setup

We start by a multiple-factor stochastic volatility dynamics that governs the market index

returns under the P -distributions and then introduce a pricing kernel that links the P -

dynamics to their risk-neutral counterparts by imposing appropriate martingale’s restrictions

on pricing kernel. We complete the the index model by deriving a closed-form pricing

equation for index options. We then introduce a GARCH model under physical distribution

which is similar to our multiple-factor stochastic volatility model with two independent

volatility dynamics. The risk neutral GARCH dynamics is also defined using a discrete-time

analog of our continuous-time pricing kernel.

2.2.1 The Multifactor Stochastic Volatility Model

We assume the following two-factor stochastic volatility process governing the dynamics of

the market index returns and variance under the physical distributions.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t

(2.2.1)

where, as in Christoffersen et al. [2009] we assume the stochastic structure (2.2.2).

dw1,t · dz1,t = ρ1dt, −1≤ρ1≤ +1

dw2,t · dz2,t = ρ2dt, −1≤ρ2≤ +1

dw1,t · dw2,t = 0

ρ2
1 + ρ2

2 ≤ +1

(2.2.2)

As in Heston [1993], θ1 and θ2 are unconditional average variance components, κ1 and κ2

capture the speed of mean reversion in each variance components, and σ1 and σ2 measure the

volatility of variance components. The market equity risk premiums are denoted by µ1v1,t

and µ2v2,t. Following Bollerslev and Zhou [2006] we expect that µ1 and µ2 measure the

persistent and transient “continuous-time” volatility feedback effects or risk-return trade-

offs. The instantaneous correlation between shocks to the market returns and shocks to the
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persistent variance component is measured by ρ1 and the instantaneous correlations between

market returns and the transient variance component is given by ρ2. As in Bollerslev and

Zhou [2006], we expect that ρ1 and ρ2 account for persistent and transient “continuous-time”

leverage (asymmetry) effect.

Note that (2.2.2) implies that the total return variance and the correlation between return

and total variance are as follows.

Vart[dSt/St] = v1,tdt+ v2,tdt = vtdt

Corrt[dSt/St, dVt] =
ρ1σ1v1,t + ρ2σ2v2,t√

σ2
1v1,t + σ2

2v2,t
√
v1,t + v2,t

dt
(2.2.3)

We may then prove the following result.

Proposition 2.1. The market index has the following dynamics under the risk-neutral mea-

sure:

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t ,

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t ,

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t ,

(2.2.4)

where, κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

. The market price of risk factors

are

ψ1,t =
σ1µ1 − ρ1λ1

σ1(1− ρ2
1)

√
v1,t , ψ2,t =

σ2µ2 − ρ2λ2

σ2(1− ρ2
2)

√
v2,t ,

ψ3,t =
λ1 − ρ1σ1µ1

σ1(1− ρ2
1)

√
v1,t , ψ4,t =

λ2 − ρ2σ2µ2

σ2(1− ρ2
2)

√
v2,t .

(2.2.5)

One admissible pricing kernel that links the physical dynamics in (2.2.1) to the risk-neutral

dynamics in (2.2.4) takes the following exponential affine form.

Mt

M0

=
(St
S0

)φ
exp

[
δt+ η1

∫ t

0

v1,sds+ η2

∫ t

0

v2,sds+ ζ1(v1,t − v1,0) + ζ2(v2,t − v2,0)
]
(2.2.6)
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As in Christoffersen et al. [2013], {δ, η1, η2} governs the time-preferences, while {φ, ζ1, ζ2}
governs the respected risk aversion to the index and variance risk factors, all of which are

defined in the appendix.

Proof. See Appendix (2.A).

We note that the introduced nonlinear log pricing kernel in (2.2.6) is one way of “completing

the market” and linking P - to Q- dynamics, where ζ1, ζ2 capture the nonlinearity of the

log pricing kernel.16 Transforming the physical dynamics in (2.2.1) into the risk neutral

dynamics in (2.2.4) can also be done by assuming the following standard stochastic discount

factor and without explicit assumptions about the investor’s variance preferences. The proof

of such a transformation can be found in Appendix (2.B).

dMt

Mt

= −rdt− ψ′tdWt , (2.2.7)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t] is the vector of market price of risk factors and Wt ≡
[z1,t, z2,t, w1,t, w2,t] is the vector of innovations in return and variance.

To embed the options market data into the estimation of structural parameters, we determine

a closed-from expression for the price of the European call options, with strike price K and

time to maturity τ , by inverting the conditional characteristic function of the log spot index

prices, xt = ln(St).

Ct(St, K, v1,t, v2,t, τ) = StP1 −Ke−rτP2 , (2.2.8)

where,

P1 =
1

2
+

1

π

1

Sterτ

∫ ∞
0

<
[e−iφ lnK f̃(v1,t, v2,t, τ, φ− i)

iφ

]
dφ ,

P2 =
1

2
+

1

π

∫ ∞
0

<
[e−iφ lnK f̃(v1,t, v2,t, τ, φ)

iφ

]
dφ ,

(2.2.9)

16Note also that ζ1, ζ2 affect a wedge between physical and risk neutral structural parameters of volatility

dynamics.
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and where the risk-neutral conditional characteristic function of the natural logarithm of the

index price at expiration, xt+τ , is

f̃(v1,t, v2,t, τ, φ) ≡ EQ
t [exp(iφxt+τ ) | xt] . (2.2.10)

Since the two-factor SV model in (2.2.4) is an affine process, following Heston [1993], the

conditional risk-neutral characteristic function in (2.2.10) has the following affine exponential

form.17

f̃(v1,t, v2,t, τ, φ) = exp
[
iφxt + iφrτ + A1(τ, φ) + A2(τ, φ) + B1(τ, φ)v1,t +B2(τ, φ)v2,t

]
,

(2.2.11)

where18 for every j = {1, 2}

Aj(τ, φ) =
κ̃j θ̃j
σ2
j

[
(κ̃j − ρjσjiφ− dj)τ − 2 ln

[1− cje−djτ
1− cj

]]
Bj =

κ̃j − ρjσjiφ− dj
σ2
j

[ 1− e−djτ

1− cje−djτ
]

cj =
κ̃j − ρjσjiφ− dj
κ̃j − ρjσjiφ+ dj

dj =
√

(κ̃j − ρjσjiφ)2 + σ2
jφ(φ+ i) .

(2.2.12)

2.2.2 The Component Volatility Model (Bivariate GARCH)

Since the seminal papers of Engle [1982] and Bollerslev [1986] several ARCH-type mod-

els have been proposed where the main difference is in parametrization of the conditional

17Note that the conditional risk-neutral characteristic function of the natural logarithm of return,

xt+τ − xt = ln(St+τ/St), can be defined with the same expression as (2.2.11) but without the first com-

ponent, iφxt.

18Following Duffie et al. [2000], the coefficients A1, A2, B1, and B2 are the solutions of a system of

Riccati equations subject to appropriate boundary conditions. For the ease of computation we modify these

solutions based on the little Heston trap formulation of Albrecher et al. [2006].
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variance and asymmetry effect. Extensive empirical evidence examine the importance of

conditional heteroskedasticity and variance mean reversion in modeling index returns and

index options.

Note that in ARCH-type models volatility is considered as a deterministic process, whereas

in case of SV models volatility has a fully stochastic nature.

Engle and Lee [1999] introduce a component extension to the simple GARCH(1,1) model

where the unconditional mean of the conditional variance process is time-varying and pro-

vide empirical evidence that the component model provides a very good fit to return data.

Christoffersen et al. [2008] consider an affine version of component volatility model of Engle

and Lee [1999] by generalizing the affine Gaussian GARCH(1,1) Heston and Nandi [2000] as

follows.

Rt ≡ ln(
St
St−1

) = r + (µ− 1

2
)ht +

√
htzt

ht = qt + βh(ht−1 − qt−1) + αh
(
(zt−1 − γh

√
ht−1)2 − (1 + γ2

hqt−1)
)

qt = wq + βqqt−1 + αq
(
(zt−1 − 1)2 − 2γq

√
ht−1zt−1)2

)
,

(2.2.13)

where ht is referred to as the total conditional variance, qt as the long-run component of

conditional variance, and therefore ht − qt as the short-run component conditional variance

with zero unconditional mean. This volatility component model is relatively simple since

both of the volatility components, ht and qt, are characterized by nonlinear functions of a

single innovation zt−1. A richer model of return volatility includes multiple innovations.19

We introduce a component volatility model (bivariate GARCH model) which is similar to our

two-factor stochastic volatility model in the sense that volatility components are independent.

We extend the Heston and Nandi [2000] affine Gaussian GARCH(1,1) model that yields a

closed-form option valuation formula similar to our SV model. Note that several studies

investigate the limits of GARCH models as the time intervals become small and find that for

a given GARCH model, there could be a several continuous-time limits and several GARCH

models could converge to a continuous-time stochastic volatility model.20 A discrete time

analog of our SV model under the physical measure can be defined as follows.

19See for instance Feunou and Tédongap [2012], Christoffersen et al. [2010], and Khrapov and Renault

[2016].

20See Corradi [2000].
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Rt ≡ ln(
St
St−1

) = r + (µ1 −
1

2
)h1,t + (µ2 −

1

2
)h2,t + ε1,t + ε2,t

h1,t = w1 + β1h1,t−1 + α1(z1,t−1 − γ1

√
h1,t−1)2

h2,t = w2 + β2h2,t−1 + α2(z2,t−1 − γ2

√
h2,t−1)2

(2.2.14)

where r is the daily continuously compounded interest rate, ε1,t =
√
h1,tz1,t, ε2,t =

√
h2,tz2,t,

and z1,t and z2,t are standard normal distributions. h1,t+h2,t is the conditional variance of the

log return in period t. The autoregressive parameters β1 and β2 determine the persistence

of the each variance component and the innovation parameters α1 and α2 determine the

variance of variance and thus kurtosis in each variance component. γ1 and γ2 capture the

so-called leverage effect, asymmetry in the response of each volatility component to positive

versus negative return shocks. Note that in our specification, the conditional mean return is

Et−1[St/St−1] = Et−1[exp(Rt)] = exp(r + µ1h1,t + µ2h2,t) . (2.2.15)

The expected future variance is a linear function of current variance and long-run average

(unconditional) variance.

Et−1[ht+1] = Et−1[h1,t+1 + h2,t+1]

= (β1 + α1γ
2
1)h1,t + (1− β1 − α1γ

2
1) E[h1,t]

+ (β2 + α2γ
2
2)h2,t + (1− β2 − α2γ

2
2) E[h2,t]

(2.2.16)

where E[h1,t] ≡ σ2
1 = (w1 +α1)/(1−β1−α1γ

2
1) and E[h2,t] ≡ σ2

2 = (w2 +α2)/(1−β2−α2γ
2
2)

are long-run average (unconditional) component variance. We refer to (β1 + α1γ
2
1) and

(β2 + α2γ
2
2) as the persistence of the variance component. A high level of persistence (close

to one) implies that shocks that push variance away from its long-run average will persist

for a long time. The conditional variance of ht+1 is also linear in past variance.

Vart−1[ht+1] = Vart−1[h1,t+1 + h2,t+1] = 2α2
1 + 4α2

1γ
2
1h1,t + 2α2

2 + 4α2
2γ

2
2h2,t (2.2.17)

The conditional covariance between stock returns and variance is
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Covt−1(Rt, ht+1) = Covt−1(Rt, h1,t+1 + h2,t+1) = −2α1γ1h1,t − 2α2γ2h2,t . (2.2.18)

We transform the physical stock price process (2.2.14) to the corresponding risk neutral

process using a discrete-time analog of the continuous-time pricing kernel (2.2.6).

Mt

M0

=
(St
S0

)φ
exp

[
δt+ η1

t∑
s=1

h1,s + η2

t∑
s=1

h2,s + ζ1(h1,t+1 − h1,1) + ζ2(h2,t+1 − h2,1)
]

(2.2.19)

where parameters {δ, η1, η2} govern the time-preference, and parameters {φ, ζ1, ζ2} govern

the respected risk aversion to equity risk and to variance risk factors. Note that ζ1 and ζ2

capture the non-linearity of the log pricing kernel.

Proposition 2.2. Given the physical GARCH process (2.2.14) and the pricing kernel (2.2.19),

the risk neutral innovations may be characterized by the following transformations.

z∗1,t =
√

1− 2α1ζ1

(
z1,t + (µ1 +

α1ζ1

1− 2α1ζ1

)
√
h1,t

)
z∗2,t =

√
1− 2α2ζ2

(
z2,t + (µ2 +

α2ζ2

1− 2α2ζ2

)
√
h2,t

) (2.2.20)

Hence, the corresponding risk-neutral GARCH process may be characterized as follows

Rt ≡ ln(
St
St−1

) = r − 1

2
h∗1,t −

1

2
h∗2,t +

√
h∗1,tz

∗
1,t +

√
h∗2,tz

∗
2,t

h∗1,t = w∗1 + β1h
∗
1,t−1 + α∗1(z∗1,t−1 − γ∗1

√
h∗1,t−1)2

h∗2,t = w∗2 + β2h
∗
2,t−1 + α∗2(z∗2,t−1 − γ∗2

√
h∗2,t−1)2

(2.2.21)

where conditional variance under physical and risk-neutral distributions are linked as

h∗1,t =
h1,t

1− 2α1ζ1

, h∗2,t =
h2,t

1− 2α2ζ2

(2.2.22)
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and for every j = {1, 2} the parameters mapping may be given by

α∗j =
αj

(1− 2αjζj)2

w∗j =
wj

1− 2αjζj

γ∗j = (µj −
1

2
+ γj)(1− 2αjζj) +

1

2

(2.2.23)

Proof. The proof of this proposition is very similar to its continuous-time counterpart. We

show that the GARCH model under physical measure (2.2.14) is linked to the GARCH model

under risk-neutral measure (2.2.21) with the proposed pricing kernel (2.2.19) by specifying

a set of sufficient conditions (2.2.20), (2.2.22), and (2.2.23). We first impose Euler equation

for the risk-free asset and subsequently impose Euler equation for the underlying asset to

find this parameters mapping. See Appendix (2.C).

Note that linking P - to Q- dynamics can also be done through a log-linear pricing kernel.

But, log-linear pricing kernel within GARCH models does not incorporate directly the effect

of variance premium on risk neutralization. However, variance dependent pricing kernel

allows to directly incorporate the effect of variance premium as −2αζ in risk neutralization.

A negative variance premium yields higher level of risk-neutral variances compared to the

physical variances as h∗1,t exceeds h1,t and h∗2,t exceeds h2,t. Negative variance premium also

yields higher level of risk neutral innovation parameters α∗1 and α∗2 and hence increases the

risk neutral variance persistence, (β1 + α∗1γ
∗
1

2) and (β2 + α∗2γ
∗
2

2).

2.3 Data

We obtain daily prices of S&P 500 index options from the OptionMetrics volatility surface

data set, which is based on the midpoint of bid-ask quotes. Our sample of S&P 500 index

options is from January 4, 1996 through December 29, 2011. We follow the data cleaning

routine commonly used in the empirical option pricing literature: we remove options with

implied volatility less than 5% and greater than 150%; we also follow the filtering rules in

Bakshi et al. [1997] to remove options that violate various no-arbitrage conditions. We focus

on out-of-the-money (OTM) options with maturity up to and including one-year and with
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10% moneyness (spot price over strike price).21,22 Our option-based optimization function

minimizes the squared deviations between model and market option prices and therefore may

put greater weight on expensive in-the-money (ITM) and long-maturity options.23 Moreover,

ITM S&P 500 call options are less liquid than OTM call options. To prevent such biases

in our optimization, we discard all ITM options and use OTM S&P 500 put options and

convert them into ITM call options. After cleaning, we have 345,710 S&P 500 index option

quotes together with daily underlying returns. This is the dataset that we use to filter daily

spot variances and to estimate a set of structural parameters.

Table (2.1) presents the descriptive statistics of the call option contracts in our sample

sorted by moneyness (stock price over strike price) and day-to-maturity (DTM). Note that

we focus on OTM option contracts, which means S/K is below 1 for OTM call contracts.

After cleaning, we have 208,098 out-of-the-money call option contracts with an average day-

to-maturity of 143 days, an average price of $35.59, an average implied volatility of 20.64%,

and an average delta of 0.37. Table (2.2) reports the descriptive statistics of the put option

contracts in our sample sorted by moneyness and day-to-maturity. After cleaning, we use

137,612 out-of-the-money (S/K is above 1) put option contracts with an average day-to-

maturity of 136 days, an average price of $32.11, an average implied volatility of 24.34%,

and an average delta of -0.29. Note that Panel C in Tables (2.1) and (2.2) reflect the well-

known volatility smirk in index options, as implied volatility is larger for OTM put options

(Table (2.2), Panel C) compared to the OTM call options (Table (2.1), Panel C).

[Table (2.1) about here]

[Table (2.2) about here]

21This range of moneyness implies that we keep OTM call options with moneyness less than 1.1 and OTM

put options with moneyness greater than 0.9.

22As discussed in previous section, multiple-factor SV models could better capture the slope and the

level of smirk compare to single-factor SV models. Therefore, unlike similar analysis, we undertake a more

extensive calibration exercise by incorporating the information content of options on longer maturity horizons

and wider moneyness ranges. For instance, Ait-Sahalia and Kimmel [2007, Section 7] only include short-

maturity at-the-money S&P 500 Index Options; Eraker [2004] use 3,270 call options contracts recorded over

1,006 trading days; Jones [2003] models are estimated using a sample of 3537 S&P 100 index options from

January 1986 to June 2000.

23See Huang and Wu [2004].
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The data for daily index level, index return, and the dividend yields are from CRSP. In

our analysis we first adjust daily index level with dividend yields and then compute the

option prices using the dividends adjusted returns. Risk-free interest rates for all maturities

are estimated by linear interpolation between the closest zero-coupon rates using the Zero

Coupon Yield Curve data from OptionMetrics.

2.4 Estimation Methodology

To estimate the parameters of two-factor stochastic volatility model of the index we follow

the literature on the estimation of stochastic volatility models, where the main challenge is

the estimation of unobserved latent volatilities. There are several approaches to estimate

stochastic volatility model. Our own approach combines the information from underlying

index and option markets to impose consistency between structural parameters under P

and Q distributions, known as joint estimation. Therefore, we use a likelihood function

that contains a return-based component and an option-based component, as in Santa-Clara

and Yan [2010] and Christoffersen et al. [2013].24 Here we do a joint-estimation by filtering

the two vectors of daily spot variances, {v1,t, v2,t}, and simultaneously estimating a set of

structural parameters of the dynamics of index returns and variances, including the market

price of each variance component, Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ2, ρ1, ρ2, λ1, λ2}. Note that joint

estimation allow us to have reliable prices of variance risk factors, as we can get a consistent

set of structural parameters between the P and Q distributions.

Since the market variances are unobserved state variables, we first extract daily instantaneous

persistent and transient variance components using the Particle Filter (PF) method. This

optimal filtering methodology provides a tool for learning about unobserved shocks and

states from discretely observed prices generated by continuous-time models.25 Although we

generally follow the conventional filtration procedure in the literature, we provide a novel

approach to the challenge of filtering the two separate variance paths. Our proposed solution

is not trivial and to the best of our knowledge is novel and constitutes a methodological

24Consistency can also be imposed through moment-based and simulation-based methods; see Ait-Sahalia

and Kimmel [2007], Eraker [2004], Jones [2003], Chernov and Ghysels [2000], and Pan [2002]. Other ap-

proaches use only option-based data to estimate only the Q distribution; Bakshi et al. [1997], Bates [2000],

Huang and Wu [2004], and Christoffersen et al. [2009].

25For the application of PF in estimating the model parameters see Gordon et al. [1993], Johannes et al.

[2009], Johannes and Polson [2009], Christoffersen et al. [2010], and Boloorforoosh [2014].
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contribution to the option pricing literature.

2.4.1 The Return Based Likelihood Function

To define the return-based likelihood function and filter spot variances, we start by dis-

cretizing the returns dynamics (2.2.1). Applying Ito’s lemma to equation (2.2.1), gives the

dynamics of logarithm of stock prices as follows.

d ln(St) = (µ− 1

2
(v1,t + v2,t))dt+

√
v1,tdz1,t +

√
v2,tdz2,t ,

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t ,

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(2.4.1)

where, µ ≡ r + µ1v1,t + µ2v2,t. We discretize (2.4.1) using the Euler scheme.26 Equation

(2.4.2) models the relation between observed index prices and unobserved variances at time

t+ ∆t conditional on the time t variances.

ln(St+∆t)− ln(St) = (µ− 1

2
(v1,t + v2,t))∆t+

√
v1,t∆t z1,t+∆t +

√
v2,t∆t z2,t+∆t ,

v1,t+∆t = v1,t + κ1(θ1 − v1,t)∆t+ σ1

√
v1,t∆t w1,t+∆t ,

v2,t+∆t = v2,t + κ2(θ2 − v2,t)∆t+ σ2

√
v2,t∆t w2,t+∆t .

(2.4.2)

Brownian shocks z1,t+∆t, z2,t+∆t, w1,t+∆t, and w2,t+∆t are normal random variables with mean

zero and variance one. From the first equation in (2.4.2) we use the observed daily index

log-prices (ln(St), ln(St+∆t)) to first filter the daily return’s shocks (z1,t+∆t, z2,t+∆t) and

then, using the filtered shocks in returns and the last two equation in (2.4.2), we filter daily

spot variances (v1,t+∆t, v2,t+∆t). Note that we filter filter the summation of return shocks

z1,t+∆t+z2,t+∆t as we cannot separate the daily observed shocks into two components, z1,t+∆t

and z2,t+∆t. Therefore, we rewrite the underlying dynamics as (2.4.3), given that the return

shocks are uncorrelated and then discretize this dynamics.

26According to Eraker [2004] and Li et al. [2008] the discretization bias of the Euler scheme is negligible

for daily data.
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d ln(St) = (µ− 1

2
(v1,t + v2,t))dt+

√
v1,t + v2,tdzt ,

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t ,

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(2.4.3)

with the correlation structure:

dw1,t · dzt = ρ1dt, −1≤ρ1≤ +1 ,

dw2,t · dzt = ρ2dt, −1≤ρ2≤ +1 ,

dw1,t · dw2,t = 0 .

(2.4.4)

We decompose the variance shocks into orthogonal components as in (2.4.5) and then

discretize the return dynamics (2.4.3) using the Euler scheme and shock’s decomposition

(2.4.5).27

dw1,t = ρ1dzt +
√

1− ρ2
1 dB1,t

dw2,t = ρ2dzt −
ρ1ρ2√
1− ρ2

1

dB1,t +

√
1− ρ2

1 − ρ2
2

1− ρ2
1

dB2,t

〈dB1,t , dB2,t〉 = 0

(2.4.5)

ln(St+∆t)− ln(St) = (µ− 1

2
(v1,t + v2,t))∆t+

√
(v1,t + v2,t)∆t zt+∆t ,

v1,t+∆t = v1,t + κ1(θ1 − v1,t)∆t+ σ1

√
v1,t∆t w1,t+∆t ,

v2,t+∆t = v1,t + κ2(θ2 − v2,t)∆t+ σ2

√
v2,t∆t w2,t+∆t ,

(2.4.6)

where, zt+∆t, w1,t+∆t, and w2,t+∆t are all N(0, 1). Now, using daily index log-returns, we

proceed to filter the spot variances from the discretized model in (2.4.6) given the correlation

structure in (2.4.5).

We follow Pitt [2002]28 and adopt a particular implementation of the PF, which is referred

27Note that the quadratic variations of the transformed using the proposed shocks decomposition (2.4.5)

should remain the same as
√
dt.

28See Pitt [2002], Christoffersen et al. [2010], and Boloorforoosh [2014] for a detailed description of the

PF algorithm.
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to as the sampling-importance-resampling (SIR) PF. This implementation of PF method

allow us to approximate the true density of the persistent variance component (v1,t) and the

transient variance component (v2,t) using two sets of particles that are updated recursively

through equations (2.4.6). In other words, we recursively simulate next period particles of

each variance component until we have the empirical distributions of each variance factor

over the entire sample. That is, given N particles of {vj1,t}Nj=1, N particles of {vj2,t}Nj=1,

simulated return shocks, and w1,t+∆t and w2,t+∆t we generate the next period particles, N

particles {vj1,t+∆t}Nj=1 and another N particles {vj2,t+∆t}Nj=1 at any time t+ ∆t.

We start by simulating return’s shocks zjt+∆t given the initial value of structural param-

eters Θ0 and current variance particles {vj1,t, v
j
2,t}, on every day t and for every particle

j = 1, 2, ..., N , according to (2.4.7). Then using (2.4.8) we simulate volatility shocks wj1,t+∆t

and wj1,t+∆t. Note that εj1,t+∆t and εj2,t+∆t are independent standard normal random variables.

zjt+∆t =
[

ln(St+∆t/St)− (µ− 1

2
(vj1,t + vj2,t))∆t

]
/
√

(vj1,t + vj2,t)∆t (2.4.7)

wj1,t+∆t = ρ1z
j
t+∆t +

√
1− ρ2

1 ε
j
1,t+∆t

wj2,t+∆t = ρ2z
j
t+∆t −

ρ1ρ2√
1− ρ2

1

εj1,t+∆t +

√
1− ρ2

1 − ρ2
2

1− ρ2
1

εj2,t+∆t

(2.4.8)

Then, given the simulated return’s shocks {zjt+∆t}Nj=1 and simulated shocks to the persistent

and transient variance components {wj1,t+∆t}Nj=1 and {wj2,t+∆t}Nj=1, we simulate next period

variance particles {ṽj1,t+∆t} and {ṽj2,t+∆t}, for every day t according to (2.4.9).

ṽj1,t+∆t = vj1,t + κ1(θ1 − v1,t)∆t+ σ1

√
v1,t∆t w1,t+∆t

ṽj2,t+∆t = vj2,t + κ2(θ2 − v2,t)∆t+ σ2

√
v2,t∆t w2,t+∆t

(2.4.9)

This is the “Sampling Step,” at the end of which we generate N possible daily values for the

persistent variance component v1,t+∆t and another N possible daily values for the transient

variance component v2,t+∆t over the entire sample. In the next step, “Importance Step,” we

evaluate importance of the sampled daily particles by assigning appropriate weights W̃ j
t+∆t

to the simulated daily particles using a multivariate normal distribution. Intuitively, these

weights, W̃ j
t+∆t, are likelihood that the next day return at t + 2∆t is generated by this set
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of particles. Then, the probability of each daily particle can be defined by normalizing the

weights within each day according to (2.4.12). Note that these weights are the basis of our

likelihood function under the P distribution.

(rt+2∆t|{ṽ1,t+∆t , ṽ2,t+∆t}) ∼ N
[
(µ− 1

2
(ṽ1,t+∆t + ṽ2,t+∆t))∆t , (ṽ1,t+∆t + ṽ2,t+∆t)∆t

]
(2.4.10)

W̃ j
t+∆t =

1√
2π(ṽj1,t+∆t + ṽj2,t+∆t)∆t

· exp
(
− 1

2

(
ln(St+2∆t

St+∆t
)− (µ− 1

2
(ṽj1,t+∆t + ṽj2,t+∆t))∆t

)2

(ṽj1,t+∆t + ṽj2,t+∆t)∆t

)
(2.4.11)

W̆ j
t+∆t =

W̃ j
t+∆t∑N

j=1 W̃
j
t+∆t

(2.4.12)

Note that combining independent shocks z1,t and z2,t in (2.4.3) imposes a restriction on the

weights of daily variance particles. Therefore, the importance probability is assigned to the

summation of return’s shocks. However, estimation results show that the path of filtered

spot persistent variance component and transient variance component in our two-factor SV

model are not sensitive to this assumption. We investigate the sensitivity of our result to

this weighting assumption by estimating daily spot variances using the two-step iterative

approach, following Huang and Wu [2004]. We do not observe significant difference between

filtered spot variances in two-step iterative approach and those filtered with particle filter

method.

In the last step, “Resampling Step,” we find the empirical distribution of smoothly resampled

daily particles. Following the Pitt [2002] algorithm, we draw smoothed daily particles by

assigning uniform distributions to the raw daily particles for persistent and transient variance

components. As in the sampling step, we start from the beginning of the sample period

and recursively simulate the next period daily particles using the smoothly resampled daily

particles. The procedure continues until we have the empirical distributions of the persistent

and transient variance components over the entire sample.

Given the appropriate weights (2.4.12), we define the return-based likelihood function as
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follows.

LLR ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̆ j
t (Θ)

)
(2.4.13)

Our implementation uses the maximum likelihood importance sampling (MLIS) methodology

to maximize LLR criterion. Note that return-based likelihood function (2.4.13) is a function

of the structural parameters of the market model under P measure, Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ1, ρ1,

ρ2}. Note also that the filtered daily spot persistent variance component vP1,t and transient

variance component vP2,t can be defined as the average of the smoothly resampled particles.

v̂P1,t =
1

N

N∑
j=1

vj1,t , v̂P2,t =
1

N

N∑
j=1

vj2,t (2.4.14)

2.4.2 The Option Based Likelihood Function

In order to fully specify the market dynamics under the Q measure, we need to estimate a set

of structural parameters for the market model under Q measure Θ̃ ≡ {κ1, κ2, θ1, θ2, σ1, σ1, ρ1,

ρ2, λ1, λ2}, a vector of daily spot persistent variance component v̂Q1,t, and a vector of daily spot

transient variance component v̂Q2,t. Unobserved daily spot persistent and transient variance

components under the Q measure can be filtered using the PF method. We follow the

same procedure as described in (2.4.7)-(2.4.12) for the market variances under P measure

while using structural parameters under Q measure, {κ̃1, κ̃2, θ̃1, θ̃2, σ1, σ1, ρ1, ρ2}. Note that

κ̃i = κi + λi and θ̃i = κiθi

κi+λi
for i = {1, 2} according to the Proposition (2.1). We may obtain

daily spot persistent and transient variance components under Q measure as the average of

the smoothly resampled daily particles for each component of market variance.

v̂Q1,t =
1

N

N∑
j=1,Q

vj1,t , v̂Q2,t =
1

N

N∑
j=1,Q

vj2,t (2.4.15)

Define the option-based likelihood function using a Vega-weighted loss function for the index

options, where Vega is the Black-Scholes sensitivity of the option price with respect to
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volatility.29 The Vega- weighted option pricing errors serves as an approximation to the

implied volatility root mean squared errors,30 which is a very popular loss function. This

Vega-weighted loss function does not require a numerical inversion of the Black and Scholes

[1973] model price and thus is helpful in large scale optimization problems such as ours.

Define normalized option pricing errors as follows.

ηn = (CO
n − CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ))/V egan , n = 1, . . . ,M (2.4.16)

where CO
n is the observed daily option prices and CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ) is the model price

of index option n, according to pricing equation (2.2.8), given the filtered spot persistent and

transient variance component and structural parameters under Q measure. M is the total

number of index option contracts and V egan is the Black and Scholes [1973] option Vega for

the option n. Then we may obtain the option-based likelihood as follows.31

LLO ∝ −1

2

(
M ln(2π) +

M∑
n=1

(
ln(s2) + η2

n/s
2
))

, (2.4.17)

Combining the returns-based likelihood function (2.4.13) and the options-based likelihood

function (2.4.17), we have the total likelihood function. Our implementation usses the nonlin-

ear least squares importance sampling (NLSIS) estimation mythology to solve the following

optimization and to estimate the structural parameters of the market model Θ̂ and ˆ̃Θ and

daily spot persistent and transient variance components.

max
Θ,Θ̃

(
LLR + LLO

)
. (2.4.18)

It is important to note that our optimization algorithm is iterative. Each iteration starts

with an initial set of structural parameters, which then will be used to filter daily spot

volatilities using the information content of index returns. Then, given spot volatilities and

29Note that while several loss functions have been used in option pricing literature, option theory does not

suggest an specific loss function as pricing equations do not contain an error term. Therefore, the appropriate

loss functions are defined according to econometric considerations as well as convenience.

30See for example Carr and Wu [2007] and Christoffersen et al. [2009].

31Note that we replace s2 by its sample analog ŝ2 = 1
M

∑N
n=1 η

2
n.
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observed option prices, next set of optimal parameters can be reached by minimizing the

option pricing errors over the entire sample. The procedure iterates until an optimal set of

structural parameters is reached and thereby we obtain final vectors of transient and variance

spot variance components.

2.5 Parameter Estimation Results

This section reports the filtered daily spot variance components together with the structural

parameter estimates for the two-factor SV model. As described in the Data Section, we

use a long time-series of daily S&P 500 index returns and the entire cross-section of S&P

500 option prices over the period from January 4, 1996 to December 29, 2011. Given the

slow mean-reversion in the dynamic of market volatility, it is important to let the data set

span a long time series. This is in particular important in our analysis as we decompose the

overall market volatility into two independent components and would like to characterize

the dynamics of transient and persistent variance components.

In what follows we set the market risk premium µ equal to the sample average daily index

returns. We use 10% OTM index options and then put-call-parity to convert OTM puts

into ITM calls. Table (2.3) reports structural parameter estimates (under P measure) that

characterize the dynamics of index returns and its persistent and transient variance compo-

nents. Panel A provides result of the joint estimation; a consistent set of parameters under

P and Q measures. Therefore, the speeds of mean reversion and the unconditional mean

of the persistent and transient variance components under Q-measure are linked to their

P -measure equivalents through the market prices of the volatility risk factors (κ̃1 = κ1 + λ1,

κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

).32 To provide a basis for further comparison and to

examine the goodness of fit of the two-factor SV model under the joint-estimation, we also

estimate structural parameters using only option data. This result is provided in Panel C.

[Table (2.3) about here]

As discussed, the purpose of two-factor stochastic volatility model is to capture independent

movements in the underlying returns and option prices over time. Consistent with previous

studies in both discrete time GARCH models and continuous time stochastic volatility mod-

32see Proposition (2.1).
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els, we find that one of the volatility factors is highly persistent and the other one is highly

mean-reverting. In joint-estimation, we find that the first variance component is slowly

mean-reverting with κ1 = 1.4271 under physical measure while the rate of mean reversion

in the second variance component is much higher with κ2 = 3.5874 under the physical mea-

sure.33 The point estimate of mean reversion parameters from option-based estimation is

similar to those from joint estimation. Using options data only, we find that κ̃1 = 0.2267

and κ̃2 = 2.9137, which is consistent with the speed of mean reversion from joint estimation

where under Q-measure κ̃1 = 0.3473 and κ̃2 = 2.5520.

To gain a better intuition about persistent and transient variance components we define

the half-life (T1/2) of a variance component as the number of weeks that it takes for auto-

correlation of each variance component to decay to half of its weekly autocorrelation level.

Half-life can be computed as T1/2 = ln(φ/2)/ ln(φ) where ∆t = 7/365 and φ = exp(−κ∆t),

denoting weekly autocorrelation of time-series each variance component. The risk neutral

point estimate of mean reversion speed in transient variance component implies a half-life

around 15 weeks while it is 105 weeks in the persistent variance component, almost 7 times

larger than its transient counterpart. These values confirm that first variance component

is highly persistent while the second one is highly auto-correlated and thus the immediate

impact of variance shocks on this component is larger but short-lived.

We observe that the unconditional persistent variance under P -measure is θ1 = 0.0026, which

is much less than the unconditional transient variance θ2 = 0.0171. The unconditional risk

neutral persistent and transient variance components are θ̃1 = 0.0106 and θ̃2 = 0.0240 which

correspond to 10.30% and 15.49% volatility per year. Note that the unconditional variance

of both components are consistent with the average filtered daily spot persistent variance

and daily spot transient variance over the entire sample.

Consistent with our intuition, we observe a wide spread between the volatility of variance

in the persistent and transient variance components. As a result of joint estimation we find

that σ1 = 0.0855 and σ2 = 0.3496. This result is consistent with the option-based estimation

where we find that transient variance component is much more volatile with σ2 = 0.5678

compared to the persistent variance component with σ1 = 0.0958. Higher level of volatility

of variance in option-based estimation compared to the joint estimation is consistent with

previous studies34

33These value correspond to a daily variance persistence of 1 − 1.4271/365 = 0.9961 for the first component

and 1− 3.5874/365 = 0.9901 for the second component.

34For instance, Bates [2000] reports that option-based estimates of volatility of variance is larger than the
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We find negative prices for both variance components where λ1 = −1.0798 and λ2 = −1.0355.

These negative prices imply that investors are willing to pay for an insurance against an

increase in volatility risk, even if that increase has little persistence. To the best of our

knowledge none of the previous studies of two-factor stochastic volatility models in option

market reports the prices of the variance risk factors as they either focused on the options

market data or the underlying index returns data. Our negative prices for both variance

components is consistent with asset pricing studies where the short-run and the long-run

volatility components are priced cross-sectional asset pricing factors. Adrian and Rosenberg

[2008]use a large cross-section of individual stocks over a very long period and find that prices

of both short-run and long-run variance components are negative and highly significant.

Therefore, our join estimation result confirm that there is a consensus of opinions about

the price of transient and persistent variance components among option traders and equity

traders.

Our joint estimation results show that correlation between shocks to the index returns and

shocks to the persistent variance component is ρ1 = −0.6918. The correlation between shocks

to the index returns and shocks to the transient variance component is ρ2 = −0.2173. ρ1 and

ρ2 captures asymmetry in the response of persistent and transient variance components to

positive versus negative return shocks and can be considered as the persistent and transient

continuous time leverage (asymmetry) effect. The leverage effect induces negative skewness

in index returns and thus yields a volatility smirk. Our results show that that leverage effect

is more significant in the persistent variance component compared to the transient variance

component. Therefore, persistent variance component has more significant effect on the

dynamic of index skewness. Using the data from option market only, we find that ρ1 = −0.91

and ρ1 = −0.49. The higher absolute level of option implied correlation coefficients compared

to those of joint estimation is partly related to the well documented fact that risk neutral

distribution is more negatively skewed.

Our persistent and transient correlation coefficients are almost consistent with those of pre-

vious studies in option market. The average correlation coefficients in Christoffersen et al.

[2009, Table 3] are ρ1 = −0.96 for their first variance component and ρ2 = −0.83 for their

second variance component.35 Bates [2000] also reports the structural parameter estimates

of a two-factor SV model using 1988-1993 S&P 500 futures option prices. He obtains one

one obtained from time-series-based estimates.

35Christoffersen et al. [2009] use data on European S&P 500 call option quotes over the period 1990-2004.

Note that they estimate a separate set of structural parameters for every year in their sample.
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set of structural parameters over the entire sample where ρ1 = −0.78 and ρ2 = −0.38. To

provide a basis for comparison, we also estimate structural parameters using options data

only over the same sample period and find ρ1 = −0.91 and ρ2 = −0.49. There are potential

explanations for differences between the reported estimates of the correlation coefficients in

these studies, not in the least, the very different data set and the very different time span.

Despite differences in the magnitude of the coefficients, the point estimates for the correla-

tion coefficients are negative for both persistent and transient variance components across

all these studies. Further, the transient variance component has lower (in absolute value)

level of correlation compared to the persistent variance components in all these studies.

To provide some empirical evidence on the difference between persistent and transient vari-

ance components over time, we plot the paths of filtered variance components. Figure (2.1)

plots filtered time series of risk-neutral spot variance components of S&P 500 index based on

our two-factor stochastic volatility model. Panel A shows time series of persistent variance

component and Panel B shows time series of transient variance component. The blue plots

are based on the Particle Filter method using data from both S&P 500 index and option

markets (joint estimation) and the red plots are filtered spot variances using only S&P 500

options data.

[Figure (2.1) about here]

Naturally, the overall patterns of persistent and transient variance components filtered from

joint estimation are consistent with those filtered from options data only. However, option

implied variance components are more volatile in the sense that when variance increases,

it tends to do more sharply compared to the one filtered based on joint estimation and

thus exhibit more spikes. In particular, this pattern in more pronounced in the transient

variance component (Panel B). The observed sharper spikes in option-based filtered variance

in the two-factor SV model is consistent with previous studies of one-factor SV model. The

smoother variance paths in joint-estimation is partly due to smooth resampling procedure in

SIR PF method and partly due to imposed consistency between parameter estimates under

P and Q measures.

To provide more intuition about the total risk neutral variance in our two-factor SV model,

Figure (2.2) combines persistent and transient variance components and plots time series

of total spot variance versus model-free option-implied VIX volatility index. As we expect,

the time series of option implied total spot variance is closely related to the VIX volatility
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index. Further, the time series of total spot variance from joint estimation follow the same

pattern as the VIX volatility index. However, due to joint restrictions, the total spot variance

from joint estimation do not exhibits volatility spikes as large as those observed in the VIX

volatility index.

[Figure (2.2) about here]

2.6 Model Performance and In-Sample Fit

We measure the goodness of fit using the following Vega-weighted root mean squared option

pricing errors (Vega RMSE) as it is consistent with the loss function that we used in the the

optimization routine.

Vega RMSE ≡

√√√√ 1

N

M∑
n,t

(CO
n,t − CM

n,t(
ˆ̃Θ, v̂Q1,t, v̂

Q
2,t)

V egan,t

)2
, (2.6.1)

where, CO
n,t is the observed price of index option n on day t, CM

n,t is the model price for the

same index option on the same day, and V egan,t is the Black-Scholes option Vega for the

same option contract on the same day. To provide a reference for comparison, we also report

the implied volatility root mean squared error (IVRMSE).

IVRMSE ≡

√√√√ 1

N

M∑
n,t

(
IV O

n,t − IV (CM
n,t(

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t))

)2
, (2.6.2)

where, IV O
n,t is the Black-Scholes implied volatility of observed option n on day t and

IV (CM
n,t(

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t)) is the Black-Scholes implied volatility of the model option price for

the same index option on the same day.

Table (2.4) reports in-sample goodness-of-fit for the two-factor stochastic volatility model

over the entire sample, 1996 through 2011 for various maturities. Panels A and B report

in-sample fit for calls and puts separately. The right panel reports model fit based on the

joint estimation while the left panel gives reports option-based fit. We find that the overall
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Vega-weighted RMSE of joint estimation and option-based estimation are 2.56% and 0.98%

respectively. Note that the overall IVRMSE are 2.59% and 0.99% respectively, which means

that Vega-weighted RMSE could be used as an approximation of IVRMSE. Overall, our

two-factor SV model provides a better fit to call option contracts compared to put option

contracts, which is consistent with the findings in one-factor stochastic volatility model.

Note that joint estimation imposes a consistency between physical and risk neutral param-

eters which are otherwise not identical. Such a restriction is not required in option-based

estimation which could partly explain the better in-sample fit of option-based estimation

compared to joint estimation. However, the reported RMSEs confirms that unlike stochastic

volatility model, joint restrictions on return and variance dynamics under P and Q measures

does not lead to the poor performance of the two-factor SV model.

Broadie et al. [2007] refer to the inconsistency between the option-based estimates of certain

structural parameters in SV model and the parameter estimates from underlying time-series

of returns and indicate that the SV model is basically misspecified. In particular, they

state that the point estimates of the correlation coefficient and volatility of volatility are

incompatible under the P and Q measures. They also show that the joint restrictions on the

returns and volatility dynamics under the P and Q measures lead to the poor performance

of the stochastic volatility model, measured by high level of RMSE. Using S&P 500 returns

and futures options data over the period of 1987 through 2003, they find IVRMSE of 1.1%

for the option-based estimation and 8.73% while imposing time-series consistency.

They note that this poor performance of SV model indicates the inability of the SV models to

generate sufficient amounts of conditional skewness and kurtosis. This drawback in standard

SV models is mainly attributed to the fact that the estimated conditional higher moments

are highly correlated with the estimated conditional variance. By contrast, in-sample fit of

our two-factor SV model is significantly improved relative to the Heston SV model. Further,

the spread between Vega-weighted RMSE of joint estimation and option-based estimation is

reduced significantly in the two-factor SV model versus the Heston SV model. The better

performance of two-factor SV model is due to the fact that it can generate stochastic cor-

relation between volatility and stock returns. This feature enables the two-factor SV model

to better capture the conditional skewness and kurtosis.36

36Previous studies show that using the option data only two factor SV model improves on the benchmark

SV model both in-sample and out-of-sample, see Christoffersen et al. [2009, Section 3.1].
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2.7 Model Stability and Out-of-Sample Performance

In order to examine the stability of the two-factor SV model of index and its out-of-sample

performance, we divide the dataset into two subsample periods. The first subsample is from

January 1996 through December 2003 and contains 169,800 daily option contracts. The

second one is from January 2004 to December 2011 which contains 175,910 daily option

contracts. Using both daily returns and option data we filter spot daily persistent variance

path and transient variance path and repeat the joint estimation routine within each sub-

sample. Table (2.5) reports the parameter estimates within each subsample (Panels A and

B). For the sake of comparison, Panels C and D also report the parameter estimates from

option-based estimation. The main results of the subsample tests are as follows.

First, we find that PF is a reliable filtering technique even within shorter sample period of

8 years. We observe that the time series of total spot daily variances under risk neutral

measure is largely consistent with the time series of the VIX option implied volatility index

within each subsample period.

Second, the parameter estimates within each subsample period is largely inline with those

obtained from whole-sample estimates. Moreover, within each subsample period, the joint

estimation results is also consistent with option-based parameter estimates. We find that

point estimate for the transient mean reversion parameter is higher in the second subsample

period while the opposite is true for the persistent mean reversion speed. Overall, the level

and order of parameter estimates are almost consistent within both subsample periods and

also across both estimation methods (joint estimation and option-based estimation).37

Third, the correlation coefficients between transient and persistent variance shocks and re-

turn shocks within subsample periods remain consistent with the ones estimated over the

entire sample period and those reported in previous studies38 in the sense that the magni-

tude of persistent correlation coefficient is higher than its transient counterpart. Further,

the transient and persistent remain negative with the same order within two subsample pe-

37Christoffersen et al. [2009, Table 3] report annual risk neutral parameter estimates for the two-factor

SV model over the period 1990 through 2004 using data from S&P 500 index option data. Our option-based

subsample parameter estimates are mostly consistent with their average annual result except for the volatility

of volatility parameter. Apart from differences in the size of sample, this difference in point estimates may

partly be explained by the fact that the annual parameter estimates in Christoffersen et al. [2009] does not

satisfy the Feller condition. Feller [1951] shows that a square root process is strictly positive if 2κθ > σ2.

38See Section 6.
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riods, confirming our previous findings that investors are willing to pay to avoid transient

and highly mean reverting volatility shocks.

Fourth, we evaluate our model fit within both subsample periods and report Vega RMSEs

and IVRMSEs separately for calls and puts and for different maturities. Entries in Table (2.6)

and Table (2.7) are inline with model fit over the entire sample period, reported in Table

(2.4). Our joint estimation result show a better in-sample fit over the second subsample

period as Vega RMSEs and IVRMSEs are reduced.

Last, in order to measure the out-of-sample performance of the two-factor SV model in

capturing the behaviour of S&P 500 index options, we use the parameter estimates form

the first subsample (1996-2003). Given the parameter estimates from the first subsample

period, we use Particle Filter methods to filter risk neutral spot daily persistent and transient

variance components over the second subsample period and then compute the IVRMSEs

and Vega RMSE over the second subsample (2004-2011). Table (2.8) reports the summary

statistics of the out-of-sample performance for different maturities and for calls and puts

separately. Comparing out-of-sample entries in (2.8) with those of in-sample in (2.7) over

the same period supports the stable performance of the two-factor SV model either in joint-

estimation or in option-based estimation.

2.8 Concluding Remarks

In this paper we investigate a two-factor stochastic volatility model where the aggregate

market volatility is decomposed into a persistent and a transient volatility components. We

extend the pricing kernel in Christoffersen et al. [2013], where investor’s equity preference is

distinguished from her variance preference, and introduce an admissible pricing kernel that

links the proposed market dynamics under P and Q measures. We also discuss alternative

pricing kernel for risk neutralization without separating equity and variance preferences. As

the proposed two-factor specification is affine, we obtain a closed-from pricing expression

for European call options. We use a long time-series of daily S&P 500 index returns and

the entire cross-section of S&P 500 option prices over the same time span. We filter time

series of persistent and transient spot variance components and simultaneously estimate a

set of structural parameters that characterizes the dynamics of index return and variance

components.

In empirical analysis, we show that the proposed decomposition of volatility can be character-
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ized by different sensitivity of the variance components to the volatility shocks and different

persistence in variance components. Consistent with the previous studies in both discrete

time GARCH models and continuous time stochastic volatility models, we find that one of

the volatility component is highly persistent and the other one is highly mean-reverting,

where immediate impact of volatility shocks on the transient volatility component is bigger

but short-lived. We obtain negative risk premium for both variance components, implying

that investors are willing to pay for insurance against increases in volatility risk, even if

such increases have little persistence. The negative risk premiums of both variance compo-

nents are consistent with the findings in equity market where Adrian and Rosenberg [2008]

find that short-run and long-run variance components are priced factors with negative risk

premium. We also obtain negative correlations between shocks to the index returns and

shocks to the transient and persistent variance components. In particular, we observe that

the persistent correlation coefficient has more significant effect on the dynamics of index

skewness.

Our model provides good fit to observed option prices both in- and out-of-sample, measured

by Vega-weighted root mean squared option pricing errors and implied volatility root mean

squared errors. More to the point, we find that unlike stochastic volatility model, joint

restrictions on return and variance dynamics under P and Q measures does not lead to the

poor performance of our two-factor SV model.
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2.A Proof of Proposition 2.1

We impose the condition that the product of the price of any traded asset and the pricing ker-

nel under physical measure is a martingale. We also impose the condition that the discounted

price of any traded asset under risk neutral measure is also a martingale. We show that the

two-factor stochastic volatility process under physical measure in (2.2.1) are linked to its risk-

neutral counterpart in (2.2.4) by the unique arbitrage free pricing kernel introduced in (2.2.6)

and deduce restrictions on the time-preference parameters, {δ, η1, η2}, risk-aversion (equity

aversion) parameter, φ, and variance preference parameters (variance aversion), {ζ1, ζ2}. We

close this proof by showing how physical Wiener processes {z1,t, z2,t, w1,t, w2,t} are linked to

risk neutral Wiener processes {z̃1,t, z̃2,t, w̃1,t, w̃2,t} by equity premium {µ1, µ2} and variance

premium {λ1, λ2} parameters.

Consider that index return under physical and risk-neutral measures follows the dynamics

(2.A.1) and (2.A.2).

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(ρ1dz1,t +

√
1− ρ2

1dB1,t)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(ρ2dz2,t +

√
1− ρ2

2dB2,t)

(2.A.1)

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,t(ρ1dz̃1,t +

√
1− ρ2

1dB̃1,t)

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,t(ρ2dz̃2,t +

√
1− ρ2

2dB̃2,t)

(2.A.2)

Then, following Christoffersen et al. [2013], we show that the pricing kernel links the physical

and risk neutral measures has the following exponential affine form.

Mt

M0

=
(St
S0

)φ
exp

[
δt+ η1

∫ t

0

v1,sds+ η2

∫ t

0

v2,sds+ ζ1(v1,t − v1,0) + ζ2(v2,t − v2,0)
]

(2.A.3)
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Note that in the sprite of Cox et al. [1985] and Heston [1993] we assume that the market

price of each variance risk factor is proportional to spot variance. Therefore, the risk neutral

process in (2.A.2) can be defined as follows.

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = (κ1(θ1 − v1,t)− λ1v1)dt+ σ1
√
v1,tdw̃1,t

dv2,t = (κ2(θ2 − v2,t)− λ2v2)dt+ σ2
√
v2,tdw̃2,t

(2.A.4)

The log stock price process under physical measure and log pricing kernel process have the

following dynamics respectively.

d(log(St)) = (r + µ1v1,t + µ2v2,t −
1

2
v1,t −

1

2
v2,t)dt+

√
v1,tdz1,t +

√
v2,tdz2,t (2.A.5)

d(log(Mt)) = φ · d(log(St)) + (δ + η1v1,t + η2v2,t)dt+ ζ1dv1,t + ζ2dv2,t (2.A.6)

Replacing (2.A.5) and (2.A.1) into (2.A.6) we have:

d(log(Mt)) =
[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t

+ ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t)
]
dt

+
[
φ
√
v1,t + ζ1ρ1σ1

√
v1,t

]
dz1,t +

[
φ
√
v2,t + ζ2ρ2σ2

√
v2,t

]
dz2,t

+
[
ζ1σ1
√
v1,t

√
1− ρ2

1

]
dB1,t +

[
ζ2σ2
√
v2,t

√
1− ρ2

2

]
dB2,t.

(2.A.7)

As dMt/Mt = d(log(Mt)) + 1
2
[d(log(Mt))]

2 we have
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dMt/Mt =
[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t

+ ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t) +
1

2
φ2(v1,t + v2,t)

+ φ(ζ1ρ1σ1v1,t + ζ2ρ2σ2v2,t) +
1

2
ζ2

1σ
2
1v

2
1,t +

1

2
ζ2

2σ
2
2v

2
2,t

]
dt

+
[
φ
√
v1,t + ζ1ρ1σ1

√
v1,t

]
dz1,t +

[
φ
√
v2,t + ζ2ρ2σ2

√
v2,t

]
dz2,t

+
[
ζ1σ1
√
v1,t

√
1− ρ2

1

]
dB1,t +

[
ζ2σ2
√
v2,t

√
1− ρ2

2

]
dB2,t.

(2.A.8)

The first restriction on the pricing kernel is that the product of the money market account,

Bt = B0 exp(rt), and the pricing kernel, Mt, should be a martingale under physical measure.

Therefore, E[d(Bt ·Mt)] = 0 or E[dMt/Mt] = −rdt.

[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t + ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t)

+
1

2
φ2(v1,t + v2,t) + φ(ζ1ρ1σ1v1,t + ζ2ρ2σ2v2,t) +

1

2
ζ2

1σ
2
1v

2
1,t +

1

2
ζ2

2σ
2
2v

2
2,t

]
dt = −rdt

(2.A.9)

As (2.A.9) holds for v1,t = v2,t = 0,

δ = −r(φ+ 1)− ζ1κ1θ1 − ζ2κ2θ2. (2.A.10)

(2.A.9) also holds for v1,t = v2,t =∞.

η1 = −φµ1 + 1/2φ+ ζ1κ1 − 1/2(φ2 + ζ2
1σ

2
1 + 2φζ1σ1ρ1)

η2 = −φµ2 + 1/2φ+ ζ2κ2 − 1/2(φ2 + ζ2
2σ

2
2 + 2φζ2σ2ρ2)

(2.A.11)

The second restriction on the pricing kernel is based on the fact that [St.Mt] is also a mar-

tingale under physical measure. Therefore, E[d(St ·Mt)] = 0. As a result of this restriction

we have
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v1,t(µ1 + φ+ ζ1σ1ρ1) + v2,t(µ2 + φ+ ζ2σ2ρ2) = 0,

φ =
−1

v1,t + v2,t

[
(µ1 + ζ1σ1ρ1)v1,t + (µ2 + ζ2σ2ρ2)v2,t

]
.

(2.A.12)

If we impose the restriction that µ1 + ζ1σ1ρ1 ≡ µ2 + ζ2σ2ρ2, then (2.A.12) can be simplified

as follows.

φ = −(µ1 + ζ1σ1ρ1) = −(µ2 + ζ2σ2ρ2) (2.A.13)

We impose the third restriction on pricing kernel so that for any asset U ≡ U(S, v1, v2, t),

[U(t).Mt] is also a martingale under P -distribution. Therefore, E[d(U ·Mt)] = E[dU.Mt +

U.dMt+dU.dMt] = 0. Replacing Mt and dMt into this equation we have the following restric-

tion where US = ∂U(S, v1, v2, t)/∂S, Uv1 = ∂U(S, v1, v2, t)/∂v1, and Uv2 = ∂U(S, v1, v2, t)/∂v2.

− rU + Ut + US(r + µ1v1,t + µ2v2,t)S + Uv1,tκ1(θ1 − v1,t) + Uv2,tκ2(θ2 − v2,t)

+
1

2
USS(v1,t + v2,t) +

1

2
Uv1,tv1,tσ

2
1v1,t +

1

2
Uv2,tv2,tσ

2
2v2,t + USv1,tρ1σ1v1,t + USv2,tρ2σ2v2,t

+ (USS
√
v1,t + Uv1,tρ1σ1

√
v1,t)(φ

√
v1,t + ζ1ρ1σ1

√
v1,t)

+ (USS
√
v2,t + Uv2,tρ2σ2

√
v2,t)(φ

√
v2,t + ζ2ρ2σ2

√
v2,t)

+ Uv1,tζ1σ
2
1v1,t(1− ρ2

1) + Uv2,tζ2σ
2
2v2,t(1− ρ2

2) = 0

(2.A.14)

The last restriction is based on the fact that discounted price process should be a martingale

under risk neutral measure. Therefore, for any asset, U(S, v1, v2, t), whose payoff depends

on the state variables {S, v1, v2}, U/Bt is a Q-martingale. This restriction implies that

EQ[d(U/Bt)] = 0 or equivalently EQ[d(U(S, v1, v2, t))] = rU(S, v1, v2, t).

Ut + rSUS + Uv1,t(κ1(θ1 − v1,t)− λ1v1,t) + Uv2,t(κ1(θ1 − v1,t)− λ2v2,t) +
1

2
USS(v1,t + v1,t)

+
1

2
Uv1,tv1,tσ

2
1v1,t +

1

2
Uv2,tv2,tσ

2
2v2,t + USv1,tρ1σ1v1,t + USv2,tρ2σ2v2,t = rU.

(2.A.15)
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Replace (2.A.15) from the last restriction into (2.A.14) from the third restriction.

US(µ1v1,t + µ2v2,t)S + Uv1,tλ1v1,t + Uv2,tλ2v2,t

+ (USS
√
v1,t + Uv1,tρ1σ1

√
v1,t)(φ

√
v1,t + ζ1ρ1σ1

√
v1,t)

+ (USS
√
v2,t + Uv2,tρ2σ2

√
v2,t)(φ

√
v2,t + ζ2ρ2σ2

√
v2,t)

+ Uv1,tζ1σ
2
1v1,t(1− ρ2

1) + Uv2,tζ2σ
2
2v2,t(1− ρ2

2) = 0

US(µ1v1,t + µ2v2,t)S + Uv1,tλ1v1,t + Uv2,tλ2v2,t

+ USSφv1,t + USSζ1ρ1σ1v1,t + Uv1,tρ1σ1φv1,t + Uv1,tζ1σ
2
1v1,t

+ USSφv2,t + USSζ2ρ2σ2v2,t + Uv2,tρ2σ2φv2,t + Uv2,tζ2σ
2
2v2,t = 0

(2.A.16)

From the second restriction in (2.A.12) we know that µ1v1,t + µ2v2,t = −φv1,t − ζ1ρ1σ1v1,t −
φv2,t − ζ2ρ2σ2v2,t. Therefore, we can further simplify (2.A.16).

Uv1,t

(
ρ1σ1φ+ λ1 + ζ1σ

2
1

)
v1,t + Uv2,t

(
ρ2σ2φ+ λ2 + ζ2σ

2
2

)
v2,t = 0 (2.A.17)

One admissible solution for (2.A.17) would be:

ρ1σ1φ+ λ1 + ζ1σ
2
1 = 0

ρ2σ2φ+ λ2 + ζ2σ
2
2 = 0

(2.A.18)

If we combine restrictions in (2.A.18) with those introduced in (2.A.13) and replace them

back into (2.A.13) we have φ, ζ1, and ζ2.

ζ1 =
ρ1σ1µ1 − λ1

σ2
1(1− ρ2

1)

ζ2 =
ρ2σ2µ2 − λ2

σ2
2(1− ρ2

2)

(2.A.19)
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φ = −µ1 −
ρ2

1σ
2
1µ1 − λ1ρ1σ1

σ2
1(1− ρ2

1)
= −µ2 −

ρ2
2σ

2
2µ2 − λ2ρ2σ2

σ2
2(1− ρ2

2)
(2.A.20)

Therefore, an admissible pricing kernel linking the P and Q dynamics in (2.A.1) and (2.A.2)

is as follows.

dMt

Mt

= −rdt− µ1
√
v1,tdz1,t − µ2

√
v2,tdz2,t +

ρ1σ1µ1 − λ1

σ2
1(1− ρ2

1)
dB1,t +

ρ2σ2µ2 − λ2

σ2
2(1− ρ2

2)
dB2,t

(2.A.21)

This is the pricing kernel introduced in (2.1).

Now, we show that how physical shocks are linked to risk neutral shocks through equity

premium {µ1, µ2} and variance premium {λ1, λ2} parameters.

dz̃1,t = dz1,t + (ψ1,t + ρ1ψ3,t)dt

dz̃2,t = dz2,t + (ψ2,t + ρ2ψ4,t)dt

dw̃1,t = dw1,t + (ψ3,t + ρ1ψ1,t)dt

dw̃2,t = dw2,t + (ψ4,t + ρ2ψ2,t)dt

(2.A.22)

Replace physical shocks in return dynamics (2.2.1) by risk neutral shocks introduced in

(2.A.22).

dSt/St = (r + µ1v1,t + µ2v2,t)dt

+
√
v1,tdz̃1,t − (ψ1,t + ρ1ψ3,t)

√
v1,tdt+

√
v2,tdz̃2,t − (ψ2,t + ρ2ψ4,t)

√
v2,tdt

(2.A.23)

As a result of risk neutralization in (2.A.23), the expected stock returns in (2.A.23) should

be equal to the risk free rate of returns. Therefore, we have the following restriction.
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(µ1v1,t + µ2v2,t)dt = (ψ1,t + ρ1ψ3,t)
√
v1,tdt+ (ψ2,t + ρ2ψ4,t)

√
v2,tdt (2.A.24)

One possible solution of (2.A.24) is as follows.

µ1
√
v1,t = ψ1,t + ρ1ψ3,t

µ2
√
v2,t = ψ2,t + ρ2ψ4,t

(2.A.25)

Similarly, we replace the proposed transformation in (2.A.22) into the dynamics of volatilities

in (2.2.1).

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw̃1,t − σ1

√
v1,t(ψ3,t + ρ1ψ1,t)dt

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw̃2,t − σ2

√
v2,t(ψ4,t + ρ2ψ2,t)dt

(2.A.26)

The risk-neutral variance dynamics in (2.A.26) should be equivalent to those in (2.A.4),

where the market price of variance risk factors is proportional to spot variance. Therefore,

we have following restrictions:

σ1
√
v1,t(ψ3,t + ρ1ψ1,t) = λ1v1,t

σ2
√
v2,t(ψ4,t + ρ2ψ2,t) = λ2v2,t

(2.A.27)

Combining the restrictions in (2.A.25) and (2.A.27), we have the following results, which

link the physical distribution (2.2.1) to the risk neutral distribution (2.2.4).
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ψ1,t =
σ1µ1 − ρ1λ1

σ1(1− ρ2
1)

√
v1,t

ψ2,t =
σ2µ2 − ρ2λ2

σ2(1− ρ2
2)

√
v2,t

ψ3,t =
λ1 − ρ1σ1µ1

σ1(1− ρ2
1)

√
v1,t

ψ4,t =
λ2 − ρ2σ2µ2

σ2(1− ρ2
2)

√
v2,t

(2.A.28)

2.B Risk Neutral Distribution

Risk neutral distribution in (2.2.4) can also be extracted by assuming the following stan-

dard stochastic discount factor, without explicit assumptions about the investor’s variance

preferences.

dMt

Mt

= −rdt− ψ′tdWt , (2.B.1)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t] is the vector of market price of risk factors and Wt ≡
[z1,t, z2,t, w1,t, w2,t] is the vector of innovations in market index return and variance com-

ponents. Given the SDF in (2.B.1), the change-of-measure from P to Q distribution has the

following exponential form.

dQ

dP
(t) ≡Mt exp(rt) = exp

[
−
∫ t

0

ψ
′

udWu −
1

2

∫ t

0

ψ
′

ud〈W,W
′〉uψu

]
(2.B.2)

where 〈W,W ′〉 is the covariance operator.

We follow the notion of Doléans-Dade exponential (stochastic exponential) and define the

stochastic exponential ε(·) as follow.

ε
(∫ t

0

ϑ
′

udWu

)
≡ exp

[ ∫ t

0

ϑ
′

udWu −
1

2

∫ t

0

ϑ
′

ud〈W,W
′〉uϑu

]
(2.B.3)

Therefore, the change-of-measure (2.B.2) can be expressed in term of stochastic exponential
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as

dQ

dP
(t) = ε

(∫ t

0

−ψ′

udWu

)
(2.B.4)

Applying Ito’s lemma, we get the following dynamic for the log stock price process under

physical measure.

log
(St
S0

)
= (r + µ1v1,t + µ2v2,t)t−

1

2
v1,tt+

∫ t

0

√
v1,udz1,u −

1

2
v2,t +

∫ t

0

√
v2,udz2,u (2.B.5)

Given (2.B.5) and definition of stochastic exponential (2.B.3) we have

St
S0

= exp
[
(r + µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

√
v1,udz1,u

)
ε
(∫ t

0

√
v2,udz2,u

)
(2.B.6)

To find the market prices of risk we impose the restriction that the product of the price of

any traded asset and the pricing kernel under physical measure is a P -martingale. Given

the change-of-measure (2.B.2), the following process, N(t), should be a P -martingale.

N(t) ≡ St
S0

dQ

dP
(t) exp (−rt) (2.B.7)

where

N(t) = exp
[
(µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

√
v1,udz1,u

)
ε
(
−
∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

√
v2,udz2,u

)
ε
(
−
∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

) (2.B.8)

Using the properties of a stochastic exponential ε(·), ε(Xt)ε(Yt) = ε(Xt + Yt) exp(〈X, Y 〉t)
we can rewrite the process of N(t) as follows.
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N(t) = exp
[
(µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

(√
v1,u − ψ1,u

)
dz1,u −

∫ t

0

ψ3,udw1,u

)
exp

[
−
∫ t

0

√
v1,u(ψ1,u + ρ1ψ3,u)du

]
ε
(∫ t

0

(√
v2,u − ψ2,u

)
dz2,u −

∫ t

0

ψ4,udw2,u

)
exp

[
−
∫ t

0

√
v2,u(ψ2,u + ρ2ψ4,u)du

]
(2.B.9)

From the definition of a stochastic exponential we know that ε(·) are P -martingales. Thus,

the process N(t) is a P -martingale when the following restriction holds.

exp
[
(µ1v1,t + µ2v2,t)t

]
exp

[
−
∫ t

0

√
v1,u(ψ1,u + ρ1ψ3,u)du

]
exp

[
−
∫ t

0

√
v2,u(ψ2,u + ρ2ψ4,u)du

]
= 1

(2.B.10)

The restriction in (2.B.10) can be satisfied if

µ1v1,tt−
√
v1,t(ψ1,t + ρ1ψ3,t)t = 0

µ2v2,tt−
√
v2,t(ψ3,t + ρ2ψ4,t)t = 0

(2.B.11)

To fully specify the market prices of risk we assume that market price of variance risk factors

are proportional to spot volatilites, following Heston [1993].

(ψ3,t + ρ1ψ1,t) =
v1,t

σ1
√
v1,t

λ1

(ψ4,t + ρ2ψ2,t) =
v2,t

σ2
√
v2,t

λ2

(2.B.12)

Combining the restrictions in (2.B.11) and (2.B.12), we have the following market price of

risk factors. Note that these prices are the same as those we find in Proposition (2.1).
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ψ1,t =
σ1µ1 − ρ1λ1

(1− ρ2
1)

√
v1,t

σ1

ψ2,t =
σ2µ2 − ρ2λ2

(1− ρ2
2)

√
v2,t

σ2

ψ3,t =
λ1 − ρ1σ1µ1

(1− ρ2
1)

√
v1,t

σ1

ψ4,t =
λ2 − ρ2σ2µ2

(1− ρ2
2)

√
v2,t

σ2

(2.B.13)

Given the market price of risk factors (2.B.13), we can apply Girsanov’s theorem to find

transform physical innovations in (2.2.1) to its risk neutral counterpart in (2.2.4).

dz̃1,t = dz1,t + ψ1,tdt+ ρ1ψ3,tdt

dz̃2,t = dz2,t + ψ2,tdt+ ρ2ψ4,tdt

dw̃1,t = dw1,t + ψ3,tdt+ ρ1ψ1,tdt

dw̃2,t = dw2,t + ψ4,tdt+ ρ2ψ2,tdt

(2.B.14)

With some algebra we have the following transformations.

dz̃1,t = dz1,t + µ1
√
v1,tdt

dz̃2,t = dz2,t + µ2
√
v2,tdt

dw̃1,t = dw1,t + (λ1/σ1)
√
v1,tdt

dw̃2,t = dw2,t + (λ2/σ2)
√
v2,tdt

(2.B.15)

Replacing dz1,t, dz2,t, dw1,t, dw2,t from (2.B.15) into the physical dynamics in (2.2.1) and

knowing that κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

we obtain risk neutral

return and variance dynamics.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

= (r + µ1v1,t + µ2v2,t)dt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt) +

√
v2,t(dz̃2,t − µ2

√
v2,tdt)

= rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

(2.B.16)
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dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(dw̃1,t − (λ1/σ1)

√
v1,tdt)

= (κ1θ1 − (κ1 + λ1)v1,t)dt+ σ1
√
v1,tdw̃1,t

= κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t

(2.B.17)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(dw̃2,t − (λ2/σ2)

√
v2,tdt)

= (κ2θ2 − (κ2 + λ2)v2,t)dt+ σ2
√
v2,tdw̃2,t

= κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t

(2.B.18)

2.C Proof of Proposition 2.2

We show that the GARCH model under physical measure (2.2.14) is linked to the GARCH

model under risk-neutral measure (2.2.21) with the proposed pricing kernel (2.2.19) by spec-

ifying a set of sufficient conditions (2.2.20), (2.2.22), and (2.2.23). We first impose Euler

equation for the risk-free asset and subsequently impose Euler equation for the underlying

asset to find this parameters mapping.

Given the pricing kernel (2.2.19), we have

Mt

Mt−1

=
( St
St−1

)φ
exp

[
δ + η1h1,t + η2h2,t + ζ1(h1,t+1 − h1,t) + ζ2(h2,t+1 − h2,t)

]
(2.C.1)

Rewrite the physical GRACH dynamics (2.2.14) as follows.

St/St−1 = exp
[
r + (µ1 −

1

2
)h1,t + (µ2 −

1

2
)h2,t +

√
h1,tz1,t +

√
h2,tz2,t

]
h1,t+1 − h1,t = w1 + (β1 − 1)h1,t + α1(z1,t − γ1

√
h1,t)

2

h2,t+1 − h2,t = w2 + (β2 − 1)h2,t + α2(z2,t − γ2

√
h2,t)

2

(2.C.2)

Substitute the dynamics (2.C.2) into (2.C.1)
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Mt

Mt−1

= exp
[
rφ+ (µ1 −

1

2
)φh1,t + (µ2 −

1

2
)φh2,t +

√
h1,tφz1,t +

√
h2,tφz2,t

+ δ + η1h1,t + η2h2,t

+ w1ζ1 + (β1 − 1)ζ1h1,t + α1ζ1(z1,t − γ1

√
h1,t)

2

+ w2ζ2 + (β2 − 1)ζ2h2,t + α2ζ2(z2,t − γ2

√
h2,t)

2
]
.

(2.C.3)

Expanding squares and collecting some terms yield the following expression for a one-day

pricing kernel.

Mt

Mt−1

= exp
[
rφ+ δ + w1ζ1 + w2ζ2

+
(
(µ1 −

1

2
)φ+ η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
h1,t

+
(
(µ2 −

1

2
)φ+ η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
h2,t

+ (φ− 2α1γ1ζ1)
√
h1,tz1,t + (α1ζ1)z2

1,t

+ (φ− 2α2γ2ζ2)
√
h2,tz2,t + (α2ζ2)z2

2,t

]
(2.C.4)

Before imposing the Euler equation, we introduce the expectations (2.C.5), where z1,t and

z2,t follow a standard normal distribution.

E
[

exp(2a1b1z1,t + a1z
2
1,t)
]

= exp
[
− 1

2
ln(1− 2a1) +

2a2
1b

2
1

1− 2a1

]
E
[

exp(2a2b2z2,t + a2z
2
2,t)
]

= exp
[
− 1

2
ln(1− 2a2) +

2a2
2b

2
2

1− 2a2

] (2.C.5)

where in our case

a1 = α1ζ1 , b1 =
φ− 2α1γ1ζ1

2α1ζ1

√
h1,t

a2 = α2ζ2 , b2 =
φ− 2α2γ2ζ2

2α2ζ2

√
h2,t

(2.C.6)

and thus

99



2a2
1b

2
1 = 2α2

1ζ
2
1

(φ− 2α1γ1ζ1

2α1ζ1

)2
h1,t =

1

2

(
φ− 2α1γ1ζ1

)2
h1,t

2a2
2b

2
2 = 2α2

2ζ
2
2

(φ− 2α2γ2ζ2

2α2ζ2

)2
h2,t =

1

2

(
φ− 2α2γ2ζ2

)2
h2,t

(2.C.7)

Therefore, conditional expectations of the last two lines of pricing kernel (2.C.4) may be

simplified as follows.

Et−1

[
exp

[
(φ− 2α1γ1ζ1)

√
h1,tz1,t + α1ζ1z

2
1,t

]]
= exp

[
− 1

2
ln(1− 2α1ζ1) +

φ− 2α1γ1ζ1

2(1− 2α1ζ1)
h1,t

]
Et−1

[
exp

[
(φ− 2α2γ2ζ2)

√
h2,tz2,t + α2ζ2z

2
2,t

]]
= exp

[
− 1

2
ln(1− 2α2ζ2) +

φ− 2α2γ2ζ2

2(1− 2α2ζ2)
h2,t

]
(2.C.8)

We begin the proof by imposing the Euler equation for the risk-free asset.

Et−1

[ Mt

Mt−1

]
= exp(−r) (2.C.9)

Substituting (2.C.4) into (2.C.9), taking conditional expectation, and using the results

(2.C.8) yield

Et−1

[ Mt

Mt−1

]
= exp

[
rφ+ δ + w1ζ1 + w2ζ2

+
(
(µ1 −

1

2
)φ+ η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
h1,t

+
(
(µ2 −

1

2
)φ+ η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
h2,t

− 1

2
ln(1− 2α1ζ1) +

φ− 2α1γ1ζ1

2(1− 2α1ζ1)
h1,t

− 1

2
ln(1− 2α2ζ2) +

φ− 2α2γ2ζ2

2(1− 2α2ζ2)
h2,t

]
= exp(−r)

(2.C.10)

Taking logs requires
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(1 + φ)r + δ + w1ζ1 + w2ζ2 −
1

2
ln(1− 2α1ζ1)− 1

2
ln(1− 2α2ζ2)

+
[(

(µ1 −
1

2
)φ+ η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
+
φ− 2α1γ1ζ1

2(1− 2α1ζ1)

]
h1,t

+
[(

(µ2 −
1

2
)φ+ η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
+
φ− 2α2γ2ζ2

2(1− 2α2ζ2)

]
h2,t = 0

(2.C.11)

Therefore, one possible solution of (2.C.11) can be defined as follows.

δ = −(φ+ 1)r − ζ1w1 − ζ2w2 +
1

2
ln(1− 2ζ1α1) +

1

2
(1− 2ζ2α2)

η1 = −(µ1 −
1

2
)φ− ζ1α1γ

2
1 + (1− β1)ζ1 −

(φ− 2ζ1α1γ1)2

2(1− 2ζ1α1)

η2 = −(µ2 −
1

2
)φ− ζ1α2γ

2
2 + (1− β2)ζ2 −

(φ− 2ζ2α2γ2)2

2(1− 2ζ2α2)

(2.C.12)

Then, we impose the Euler equation for the underlying index.

Et−1

[ St
St−1

× Mt

Mt−1

]
= 1 (2.C.13)

where

Mt

Mt−1

× St
St−1

=
( St
St−1

)(φ+1)
exp

[
δ + η1h1,t + η2h2,t + ζ1(h1,t+1 − h1,t) + ζ2(h2,t+1 − h2,t)

]
.

(2.C.14)

Following the results in (2.C.10), we replace φ by φ+ 1 and we have
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Et−1

[ Mt

Mt−1

× St
St−1

]
= exp

[
r(φ+ 1) + δ + w1ζ1 + w2ζ2

+
(
(µ1 −

1

2
)(φ+ 1) + η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
h1,t

+
(
(µ2 −

1

2
)(φ+ 1) + η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
h2,t

− 1

2
ln(1− 2α1ζ1) +

(φ+ 1)− 2α1γ1ζ1

2(1− 2α1ζ1)
h1,t

− 1

2
ln(1− 2α2ζ2) +

(φ+ 1)− 2α2γ2ζ2

2(1− 2α2ζ2)
h2,t

]
= exp(−r)

(2.C.15)

Taking logs and substituting δ, η1 and η2 from (2.C.12) yield the following restriction.

(µ1 −
1

2
) + (µ2 −

1

2
) +

1 + 2φ− 4α1γ1ζ1

2(1− 2α1ζ1)
h1,t +

1− 2φ− 4α2γ2ζ2

2(1− 2α2ζ2)
h2,t = 0 (2.C.16)

Therefore, one admissible solution for the risk aversion parameter would be

φ = −(µ1 −
1

2
+ γ1)(1− 2α1ζ1) + γ1 −

1

2
= −(µ2 −

1

2
+ γ2)(1− 2α2ζ2) + γ2 −

1

2
(2.C.17)

To complete the proof, we need to specify how physical shocks z1,t and z2,t are transformed

to risk-neutral shocks z∗1,t and z∗2,t. We use the fact that the risk-neutral distribution is

proportional to the physical distribution times pricing kernel. We also use the fact that z1,t

and z2,t are independent.

f ∗t−1(St) =
Mt

Et−1[Mt]
× ft−1(St) (2.C.18)

Using the proposed pricing kernel and physical dynamics and after some algebra, we find

that the mean and variance may shift according to the following transformations.

102



z∗1,t =
√

1− 2α1ζ1

(
z1,t + (µ1 +

α1ζ1

1− 2α1ζ1

)
√
h1,t

)
z∗2,t =

√
1− 2α2ζ2

(
z2,t + (µ2 +

α2ζ2

1− 2α2ζ2

)
√
h2,t

) (2.C.19)

Note that the risk-neutral (2.2.21) dynamics can be derived by replacing the risk-neutral

shocks (2.C.19) into the physical dynamics (2.2.14).
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Table 2.1: S&P 500 Index Call Option Data Characteristics by Moneyness and Maturity

Panel A: Number of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 152 3,371 12,690 8,782 24,995
0.92<S/K≤0.94 642 8,220 17,345 8,342 34,549
0.94<S/K≤0.96 4,033 14,436 18,557 8,096 45,122
0.96<S/K≤0.98 10,761 17,202 17,000 7,167 52,130
S/K>0.98 13,052 16,137 15,628 6,485 51,302
All 28,640 59,366 81,220 38,872 208,098

Panel B: Average price of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 13.6200 15.5478 23.0998 47.0797 24.8368
0.92<S/K≤0.94 11.7434 16.1440 26.2574 56.2993 27.6110
0.94<S/K≤0.96 9.9935 18.0151 34.2459 69.4400 32.9236
0.96<S/K≤0.98 11.5532 24.4015 44.6126 82.1867 40.6885
S/K>0.98 18.5235 35.5330 57.9296 95.6642 51.9126
All 13.0867 21.9283 37.2290 70.1340 35.5945

Panel C: Average implied volatility of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 0.4071 0.2299 0.1894 0.1791 0.2514
0.92<S/K≤0.94 0.3163 0.2034 0.1760 0.1831 0.2197
0.94<S/K≤0.96 0.2213 0.1792 0.1770 0.1881 0.1914
0.96<S/K≤0.98 0.1784 0.1741 0.1833 0.1958 0.1829
S/K>0.98 0.1715 0.1829 0.1900 0.2028 0.1868
All 0.2589 0.1939 0.1831 0.1898 0.2064

Panel D: Average delta of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 0.2316 0.2302 0.2724 0.3726 0.2767
0.92<S/K≤0.94 0.2329 0.2549 0.3121 0.4268 0.3067
0.94<S/K≤0.96 0.2381 0.2984 0.3832 0.4827 0.3506
0.96<S/K≤0.98 0.2996 0.3843 0.4608 0.5319 0.4191
S/K>0.98 0.4422 0.4976 0.5377 0.5771 0.5136
All 0.2889 0.3331 0.3932 0.4782 0.3733

Note to Table: This table reports the summary statistics of out-of-the-money S&P 500 call option
contracts in our sample, from January 1, 1996 to December 31, 2011. The implied volatilities and
the deltas are from the OptionMetrics volatility surface data set. S denotes the price of the S&P
500 index, K the option strike price, and DTM denotes the number of calandar days to maturity.
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Table 2.2: S&P 500 Index Put Option Data Characteristics by Moneyness and Maturity

Panel A: Number of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 10,776 13,499 13,463 5,904 43,642
1.02<S/K≤1.04 7,163 10,951 12,018 5,008 35,140
1.04<S/K≤1.06 3,699 8,083 10,399 5,317 27,498
1.06<S/K≤1.08 1,248 5,334 8,105 3,908 18,595
S/K>1.08 385 3,173 5,591 3,588 12,737
All 23,271 41,040 49,576 23,725 137,612

Panel B: Average price of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 18.7121 30.3521 44.9423 63.5550 39.3904
1.02<S/K≤1.04 13.9689 25.4113 40.1731 59.5418 34.7738
1.04<S/K≤1.06 12.7334 21.7862 34.1231 55.3294 30.9930
1.06<S/K≤1.08 14.0224 20.8254 30.5229 44.3883 27.4397
S/K>1.08 16.1005 20.9994 30.9259 43.7921 27.9545
All 15.1075 23.8749 36.1375 53.3213 32.1103

Panel C: Average implied volatility of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 0.1929 0.1933 0.1992 0.2121 0.1994
1.02<S/K≤1.04 0.2194 0.2134 0.2158 0.2127 0.2153
1.04<S/K≤1.06 0.2646 0.2314 0.2233 0.2313 0.2376
1.06<S/K≤1.08 0.3342 0.2599 0.2367 0.2200 0.2627
S/K>1.08 0.4255 0.2904 0.2583 0.2343 0.3021
All 0.2873 0.2377 0.2266 0.2221 0.2434

Panel D: Average delta of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 -0.3931 -0.3988 -0.3931 -0.3631 -0.3870
1.02<S/K≤1.04 -0.2860 -0.3221 -0.3403 -0.3334 -0.3204
1.04<S/K≤1.06 -0.2348 -0.2699 -0.2932 -0.3060 -0.2760
1.06<S/K≤1.08 -0.2194 -0.2395 -0.2579 -0.2612 -0.2445
S/K>1.08 -0.2175 -0.2209 -0.2431 -0.2547 -0.2341
All -0.2702 -0.2902 -0.3055 -0.3037 -0.2924

Note to Table: This table reports the summary statistics of out-of-the-money S&P 500 put option
contracts in our sample, from January 1, 1996 to December 31, 2011. The implied volatilities and
delta are from the OptionMetrics volatility surface data set. S denotes the price of the S&P 500
index, K the option strike price, and DTM denotes the number of calandar days to maturity.
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Table 2.3: Market Parameter Estimates

Panel A: Parameter Estimates (Physical) - Joint Estimation

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

1.4271 3.5874 0.0026 0.0171 0.0855 0.3496 -0.6918 -0.2173 -1.0798 -1.0355

Panel B: Parameter Estimates (Risk Neutral) - Options-based Estimation

κ̃1κ̃1κ̃1 κ̃2κ̃2κ̃2 θ̃1̃θ1̃θ1 θ̃2̃θ2̃θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2

0.2267 2.9137 0.0590 0.0100 0.0958 0.5678 -0.9135 -0.4934

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index
for the two-factor stochastic volatility model. The reported results in Panel A are from
the joint estimation using the daily S&P 500 index returns and options data. Structural
parameters in Panel B are estimated using only options data. In both panels, we use 10%
OTM call and put options over the period 1996-2011. As in Proposition (2.1), κ̃1 = κ1 +λ1,
κ̃2 = κ2 +λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
. Therefore, risk neutral parameters from joint estima-

tion are κ̃1 = 0.3473, κ̃2 = 2.5520, θ̃1 = 0.0106, θ̃2 = 0.0240.
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Table 2.4: Goodness of Fit

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Goodness of Fit - Call Option Contracts

DTM≤30 28,640 1.2956 2.7171

30<DTM≤91 59,366 0.8695 2.5104

91<DTM≤182 81,220 0.6913 2.3505

DTM>182 38,872 0.8943 2.6032

All 208,098 0.8846 0.9132 4.4244 2.5299 2.5637 12.4210

Panel B: Goodness of Fit - Put Option Contracts

DTM≤30 23,271 1.6193 2.8857

30<DTM≤91 41,040 1.0712 2.4509

91<DTM≤182 49,576 0.8342 2.4941

DTM>182 23,725 1.0440 2.5256

All 137,612 1.1064 1.1167 4.5879 2.5877 2.6389 10.8418

Panel C: Goodness of Fit - All Option Contracts

DTM≤30 51,911 1.4497 2.7946

30<DTM≤91 100,406 0.9571 2.4835

91<DTM≤182 130,796 0.7486 2.4180

DTM>182 62,597 0.9538 2.5665

All 345,710 0.9790 0.9992 4.4428 2.5566 2.5939 11.5335

Note to Table: This table reports in-sample goodness-of-fit for our two-factor stochastic volatil-
ity model over the entire sample, 1996 through 2011 for various maturities. We also report
in-sample fit for calls and puts separately. All numbers are in percentage points. We compute
the Vega-weighted root mean squared error (Vega RMSE) along with the implied volatility root
mean squared error (IVRMSE). We also report the ratio of IVRMSE over the average implied
volatility. To provide a basis for caparison the left panel reports pricing errors based on the
option data and the right panel reports those of joint estimation.
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Table 2.5: Subsample Parameter Estimates

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

Panel A: Joint Estimation:1996 - 2003

1.2138 3.2780 0.0033 0.0195 0.0855 0.3220 -0.6514 -0.2985 -1.1008 -0.9755

Panel B: Joint Estimation (2003 - 2011)

1.1274 4.2337 0.0069 0.0289 0.0793 0.4675 -0.5102 -0.3086 -1.0684 -1.0351

Panel C: Options-based Estimation (1996-2003)

0.1794 2.6176 0.0437 0.0104 0.0912 0.3732 -0.8891 -0.4434

Panel D: Options-based Estimation (2003-2011)

0.1117 3.4731 0.0623 0.0247 0.0837 0.6692 -0.7550 -0.6497

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index
for the two-factor stochastic volatility model over two subsample period. The first sub-
sample is from January 1996 to December 2003 and the second one is from January 2004
to December 2011. The point estimates in Panel A and Panel B are from the joint esti-
mation using the daily S&P 500 index returns and options data. Entries in Panel C and
Panel D are estimated using only options data. In both panels, we use 10% OTM call and
put options over the period 1996-2011.
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Table 2.6: Subsample Goodness of Fit (1996-2003)

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Subsample Goodness of Fit (1996-2003) - Call Option Contracts

DTM≤30 14,267 1.2355 2.9061

30<DTM≤91 30,414 0.8397 2.8784

91<DTM≤182 39,160 0.7194 2.7826

DTM>182 18,237 0.7593 3.0274

All 102,078 0.8514 0.8846 4.5041 2.8787 2.9137 12.8697

Panel B: Subsample Goodness of Fit (1996-2003) - Put Option Contracts

DTM≤30 11,775 1.5167 3.3108

30<DTM≤91 20,282 1.1038 2.9729

91<DTM≤182 24,137 0.8742 2.9596

DTM>182 11,528 1.0111 2.9025

All 67,722 1.1006 1.1067 4.7416 3.0462 3.1389 11.9169

Panel C: Subsample Goodness of Fit (1996-2003) - All Option Contracts

DTM≤30 26,042 1.3698 3.1091

30<DTM≤91 50,696 0.9542 2.9218

91<DTM≤182 63,297 0.7820 2.8691

DTM>182 29,765 0.8655 2.9682

All 169,800 0.9586 0.9792 4.5567 2.9592 3.0055 12.2725

Note to Table: This table reports in-sample goodness-of-fit for our two-factor stochastic volatil-
ity model over the entire sample, 1996 through 2011 for various maturities. We also report
in-sample fit for calls and puts separately. All numbers are in percentage points. We compute
the Vega-weighted root mean squared error (Vega RMSE) along with the implied volatility
root mean squared error (IVRMSE). We also report the ration of IVRMSE over the average
implied volatility. To provide a basis for caparison the left panel reports pricing errors based
on the option data and the right panel reports those of joint estimation.
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Table 2.7: Subsample Goodness of Fit (2004-2011)

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Subsample Goodness of Fit (2004-2011) - Call Option Contracts

DTM≤30 14,373 1.3526 2.5715

30<DTM≤91 28,952 0.8998 2.1570

91<DTM≤182 42,060 0.6640 1.9298

DTM>182 20,635 0.9985 2.0532

All 106,020 0.9155 0.9471 4.1833 2.2014 2.3017 10.1665

Panel B: Subsample Goodness of Fit (2004-2011) - Put Option Contracts

DTM≤30 11,496 1.7181 2.4266

30<DTM≤91 20,758 1.0383 1.9112

91<DTM≤182 25,439 0.7944 1.9656

DTM>182 12,197 1.0741 2.0348

All 69,890 1.1121 1.1437 4.3421 2.0802 2.1294 8.0843

Panel C: Subsample Goodness of Fit (2004-2011) - All Option Contracts

DTM≤30 25,869 1.5259 2.5109

30<DTM≤91 49,710 0.9601 2.0487

91<DTM≤182 67,499 0.7159 1.9459

DTM>182 32,832 1.0273 2.0445

All 175,910 0.9982 1.0297 4.2046 2.1480 2.2348 9.1255

Note to Table: This table reports goodness-of-fit for our two-factor stochastic volatility model
over the subsample from January 2004 through December 2011 for various maturities. We also
report in-sample fit for calls and puts separately. All numbers are in percentage points. We
compute vega-weighted root mean squared error (Vega RMSE) along with implied volatility
root mean squared error (IVRMSE). We also report the ration of IVRMSE over the average
implied volatility. To provide a basis for caparison the left panel reports pricing errors based
on the option data and the right panel reports those of joint estimation.
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Table 2.8: Out of Sample Goodness of Fit (2004-2011)

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Out of Sample Goodness of Fit (2004-2011) - Call Option Contracts

DTM≤30 14,373 1.4764 2.7853

30<DTM≤91 28,952 0.9372 2.2801

91<DTM≤182 42,060 0.6902 1.9978

DTM>182 20,635 1.0797 2.1189

All 106,020 0.9753 0.9985 4.4103 2.2201 2.3907 10.5596

Panel B: Out of Sample Goodness of Fit (2004-2011) - Put Option Contracts

DTM≤30 11,496 1.8064 2.5780

30<DTM≤91 20,758 1.1048 1.9984

91<DTM≤182 25,439 0.8359 1.9856

DTM>182 12,197 1.1153 2.1478

All 69,890 1.1708 1.2142 4.6097 2.1259 2.2087 8.3853

Panel C: Out of Sample Goodness of Fit (2004-2011) - All Option Contracts

DTM≤30 25,869 1.6313 2.6952

30<DTM≤91 49,710 1.0105 2.1670

91<DTM≤182 67,499 0.7485 1.9932

DTM>182 32,832 1.0931 2.1297

All 175,910 1.0573 1.0893 4.4480 2.1831 2.3201 9.4737

Note to Table: This table reports out-of-sample goodness-of-fit for our two-factor stochastic
volatility model over the period from January 2004 through December 2011 for various ma-
turities. We also report out-of-sample fit for calls and puts separately. All numbers are in
percentage points. Out-of-sample daily spot persistent and transient variance components are
filtered with Particle Filter method given the in-sample structural parameter estimates over
the period January 1996 through December 2003. The Vega RMSE along with the IVRMSE
are computed given in-sample structural parameters and filtered variance components. We also
report the ratio of IVRMSE over the average implied volatility. To provide a basis for capari-
son the left panel reports pricing errors based on the option data and the right panel reports
those of joint estimation.
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Figure 2.1: The S&P 500 Index Spot Variance Components Paths
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Note to Figure: We plot time series of risk-neutral spot variances for the S&P 500 index in
the two-factor stochastic volatility model. Panel A shows time series of persistent variance
component and Panel B shows time series of transient variance component. The blue plots
are based on the Particle Filter method using data from both S&P 500 index and option
markets (joint estimation). The red plots are filtered spot variances using data from S&P
500 option market only.
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Figure 2.2: The S&P 500 Index Total Spot Variance Path Versus VIX
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Note to Figure: We plot time series of risk-neutral total spot variance for the S&P 500
index by combining persistent and transient variance components of the two-factor stochastic
volatility model. The blue plots in Panel A is based on the Particle Filter method using data
from both S&P 500 index and option markets (joint estimation). The blue plot in Panel B
is based on data from S&P 500 option market only. Red plots in both panels are time series
of the VIX option implied volatility index.
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Chapter 3

The Transient and The Persistent

Factor Structure in Equity Options
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3.1 Introduction

This paper extend two factor stochastic volatility models to the equilibrium pricing of equity

options and find that the existence of multiple volatility components in the dynamics of index

has significant implications for equity option prices. Extensive empirical evidence supports

the presence of two volatility components in the dynamics of the market index. These

studies document that a single factor stochastic volatility (SV) is not sufficient to represent

both the underlying (P) and the risk neutral (Q) measures of the joint dynamics of returns

and variances for the key S&P 500 index and its options. In the P -distribution domain two

volatility components are required to simultaneously capture the persistence of volatility and

the volatility of volatility.1 In the Q-distribution domain, multiple SV models have more

flexibility to fit the term structure of the volatility and to control the level and the slope

of the volatility smirk in cross-sections of options.2 Given the performance of two volatility

components in capturing the stylized facts relative to one-factor SV models, we examine how

equity options respond to the existence of two volatility components in the dynamics of the

market index.

We extend the one-volatility-factor model in Christoffersen et al. [2015] and assume that indi-

vidual equity returns are related to the market index with two distinct systematic components

(two constant factor loadings), as well as an idiosyncratic component which is stochastic and

follows the standard square root process. Hence, equity returns are related to the market

index with two distinct betas, one of which captures the transient variations in market re-

turns and the other one captures its persistent counterpart. We obtain a closed-form option

pricing equation for individual equity options as the proposed model belongs to the affine

class of models. We show that instantaneous expected returns of equity options depend on

both transient and persistent betas.

In empirical analysis, we estimate the structural parameters and filter spot idiosyncratic

variance for the firms listed in the Dow Jones index. We find that proposed option pricing

model provides a good fit to the observed equity option prices across all of the 27 firms,

both in-sample and out-of-sample. Further, the in-sample performance of our model over

the one-factor structure of Christoffersen et al. [2015] together with its cross-sectional im-

1See, for instance, Chernov et al. [2003].

2See Christoffersen et al. [2009], Egloff et al. [2010], and Menćıa and Sentana [2013] among others. Egloff

et al. [2010, Page 1289] show that the upward slope of autocorrelation term structure of variance swap rate

quotes points to the existence of multiple variance risk factors.
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plications regarding IV term-structure, moneyness slope, and equity option skew support

the importance of transient and persistent factor loadings in pricing equity options. Our

estimation results show that the transient and persistent betas have quite different values

across all the firms: in our sample of 27 firms, the transient beta has values ranging from

1.01 to 1.35, while the persistent beta is about half the value, range from 0.34 to 0.68. Our

empirical investigation of this model using individual equity option prices finds support for

the proposed factor structure in equity options.

Our models’ framework is especially important for a portfolio manager who hedges her

portfolio’s exposure to the systematic risk factors in the portfolio of stocks and options.3

Our proposed factor structure and closed-form option pricing equation make this analysis

readily available and yields similar closed-form expressions for the exposure of equity options

to the transient and persistent market variance components in addition to its exposure

to the overall market returns. We also obtain a closed-form expression for the expected

equity option returns and show that exposures to the level of market index and market

variance components affect the expected equity option returns. In other words, we are

able to disentangle the effect of market risk premium from those of persistent and transient

variance risk premiums on the expected equity option returns.

The proposed factor structure has a number of important cross-sectional implications for

equity options. Our model predicts that firms with higher transient betas have higher im-

plied volatilities. It also predicts that firms with higher transient betas have steeper term

structures of implied volatility while the persistent betas have a marginal effect on the im-

plied volatility term structures. It also predicts that the implied volatility moneyness slopes

are steeper for the firms with the higher transient betas while the persistent betas have a

much less significant effect on the moneyness slopes. Consistent with previous studies, we

find that the variance risk premium has a significant effect on the equity option skew. More

to the point, our model predicts that it is the transient variance risk premium that mainly

drives the slope of equity implied volatility smile for individual equities.

Our proposed factor structure in equity options is motivated by the extensive empirical evi-

dence that supports the presence of two variance components in the dynamics of the market

index.4 In the P -distribution domain, they document that two volatility factors are needed

to explain the volatility dynamics, since one-factor models are incapable of simultaneously

3The proposed framework is equally important for risk managers and dispersion traders.

4The aggregate market volatility is decomposed into two independent components, one with persistent

dynamics and the other one with transient dynamics.
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fitting the persistence of volatility and the volatility of volatility in the dynamics of the

market index. Chernov et al. [2003] suggest that the addition of a second volatility factor

breaks the link between tail thickness and volatility persistence and leads to a significant

improvement relative to a single SV models in capturing the return dynamics. Bollerslev

and Zhou [2002] and Alizadeh et al. [2002] documents the importance of two volatility com-

ponents in capturing the dynamics of exchange rates. According to Dai and Singleton [2000,

2002] multifcator volatility models are needed to model the term structure of the interest

rate.

Extensive empirical evidence in the Q-distribution domain also point toward the existence

of two variance components. Egloff et al. [2010] and Menćıa and Sentana [2013] find that

two-factor SV models have more flexibility to fit the term structure of the volatility and

to control the level and the slope of the volatility smirk in cross-sections of option prices.

Christoffersen et al. [2009] show that multiple SV models can better capture the time-varying

nature of the smirk as the correlation between stock returns and total volatility is stochastic

and thus can generate sufficient amounts of conditional skewness and kurtosis. Egloff et al.

[2010, Page 1289] show that the upward sloping autocorrelation term structure of variance

swap rate quotes points to the existence of multiple variance risk factors. In a model free

framework, Christoffersen et al. [2009] find that the first two principal components of the

Black-Scholes implied variances on a sample of S&P 500 index options together explain more

than 95% of the variation in the implied variances.

Within the asset pricing models, when market volatility is stochastic, the classical Intertem-

poral CAPM (ICAPM) model of Merton [1973] and Merton [1980] implies that in the pres-

ence of two state variables, namely return and volatility, the excess returns on the market

portfolio should also be related to the volatility of the market. In other words, the asset

risk premiums are not only determined by the covariation of asset returns with the market

returns, but also by its covariation with the state variables that govern the market volatil-

ity.5 More recently, Adrian and Rosenberg [2008] show that the equilibrium pricing kernel

depends on both the short- and long-run volatility components as well as the excess market

returns. Using a large cross section of data from individual equity returns, they find negative

and highly significant risk premiums for both volatility components. Our paper extends the

insights of these earlier studies into the pricing of equity options, formulates the simultaneous

equilibrium of both equity underlying and option markets, and tests empirically the derived

5See also Ang et al. [2006], who show that the show that the aggregate market volatility is a significant

cross-sectional asset pricing factor.
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results.

This chapter proceeds as follows. Section (3.2) presents the theoretical model for pricing

individual equity options. In Section (3.3) we discuss the properties and implications of

the model. Section (3.4) contains the description of the data sets. In Section (3.5) we

discuss the estimation methodologies and then present the estimation results in Section

(3.6). Section (3.7) investigate the performance of the model and its goodness-of-fit. Section

(3.8) concludes. The appendix provides the proofs of the theoretical results.

3.2 Model Setup

We start by a multiple-factor stochastic volatility dynamics that governs the market index

returns under the P -distributions and then introduce its risk neutral counterparts as in

Ghanbari [2016]. We then describe the dynamics of individual equity returns under P -

distribution and introduce an appropriate stochastic discount factor (SDF) to find the equity

dynamics under Q-distribution. Last, we derive a closed-form equation that gives the price

of individual equity options.

We assume the following two-factor stochastic volatility process governing the dynamics of

the market index returns and variance under the physical distributions.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(3.2.1)

with two independent variance components as described in the following stochastic structure

(3.2.2).

〈dw1,t, dz1,t〉 = ρ1dt, −1≤ρ1≤ +1

〈dw2,t, dz2,t〉 = ρ2dt, −1≤ρ2≤ +1

〈dw1,t, dw2,t〉 = 0

ρ2
1 + ρ2

2 ≤ +1

(3.2.2)

The model parameters have the conventional definition as in the Heston [1993] SV model:
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κ1 and κ2 capture the speed of mean reversion of each variance component, θ1 and θ2 are the

unconditional average variances of persistent and transient variance components, and σ1 and

σ2 measure the volatility of variance components. The instantaneous correlation between

shocks to market returns and shocks to the persistent variance component is described by

ρ1 and the instantaneous correlation between shocks to market returns and shocks to the

transient variance component is given by ρ2, known as “continuous-time” leverage effect.

Note that µ1v1,t + µ2v2,t is the index equity risk premium.6

Following Ghanbari [2016], the market index has the following dynamics under the risk-

neutral measure.7

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t ,

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t ,

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t ,

(3.2.3)

where, κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, and θ̃2 = k2θ2
k2+λ2

, and where λ1 and λ2 are the

prices of the variances risk factors as in the single factor SV model.

For individual equities, we assume that equity returns are related to the market returns with

two distinct systematic risk factors and two constant factor loadings βi1 and βi2. Following

Bakshi et al. [2003] we assume that idiosyncratic shocks to equity returns ξit follows a stan-

dard square-root process. This assumption allows us to characterize the differences in the

moments’ dynamics of individual equity and index options.8

dSit/S
i
t = µidt+ βi1(µ1v1,tdt+

√
v1,tdz1,t) + βi2(µ2v2,tdt+

√
v2,tdz2,t) +

√
ξitdz

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(3.2.4)

where κi, θi, and σi can be defined as for their market counterparts. ρi is the correlation

6Note that (3.2.2) implies that the total return variance Vart[dSt/St] = v1,tdt+ v2,tdt ≡ vtdt.
7A complete derivations of risk neutral dynamics of two-factor SV model together with appropriate

pricing kernel that links P - and Q-dynamics are in Ghanbari [2016].

8Our model can be extended to examine the idiosyncratic variance risk premium while incorporating

two-factor structure in the dynamics of equity returns. We discuss the implications of priced idiosyncratic

variance in the following section.
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coefficient between idiosyncratic return innovations and idiosyncratic variance innovations

for every individual equity i. This parameter captures an asymmetry in the relation between

idiosyncratic volatility and individual equity returns.9 Given the specification (3.2.4) the

total instantaneous variance for stock i at time t under physical measure is given by

vit ≡ (βi1)2v1,t + (βi2)2v2,t + ξit (3.2.5)

In order to price options on individual equities, Proposition (3.1) gives the risk neutral

dynamics of an individual equity i by assuming a conventional stochastic discount factor,

given the physical dynamics (3.2.2) and (3.2.4). We also assume that the prices of market

variance components are proportional to the spot volatility components.10

Proposition 3.1. Using a conventional stochastic discount factor and given the dynamics

of the individual equity returns under P -measure (3.2.4), the following dynamics govern its

Q-measure counterparts.

dSit/S
i
t = rdt+ βi1

√
v1,tdz̃1,t + βi2

√
v2,tdz̃2,t +

√
ξitdz̃

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(3.2.6)

The market prices of risk factors are

ψ1,t =
σ1µ1 − ρ1λ1

σ1(1− ρ2
1)

√
v1,t , ψ2,t =

σ2µ2 − ρ2λ2

σ2(1− ρ2
2)

√
v2,t ,

ψi1,t =
µi − r√

ξit(1− (ρi)2)
, ψi2,t = −µ

i − r√
ξit

ρi

1− (ρi)2
.

(3.2.7)

Proof. See Appendix (3.A).

As the dynamics of individual equities are affine, the conditional risk-neutral characteristic

function of the natural logarithm of the equity price i is derived analytically in the following

9Following Andersen et al. [2001] we expect that the observed asymmetry should be weaker but still

present for individual equities.

10We can simply extend our model and consider the priced idiosyncratic variance risk by assuming that

idiosyncratic variance risk is also proportional to the spot idiosyncratic volatility. In this case, κ̃i = κi + λi,

θ̃i = kiθi

ki+λi . Further details are provided in the proof of the Proposition (3.1).
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proposition. We may then compute the closed-from pricing equation for European equity

call options with strike price K and time to maturity τ . See also Appendix B.

Proposition 3.2. Given the dynamics of the individual equity returns under the Q-measure

(3.2.6), the risk-neutral conditional characteristic function of the natural logarithm of indi-

vidual equity price i, xit+τ = ln(Sit+τ ), is:

f̃ i(xit, v1,t, v2,t, ξ
i, βi1, β

i
2, τ, φ) ≡ EQ

t

[
exp(iφxit+τ ) | xit

]
= exp

[
iφxit + iφrτ − A1(τ, φ)− A2(τ, φ)− B(τ, φ)

+ C1(τ, φ)v1,t + C2(τ, φ)v2,t +D(τ, φ)ξit
]
,

(3.2.8)

where, the expressions for A1(τ, φ), A2(τ, φ), B(τ, φ), C1(τ, φ), C2(τ, φ), and D(τ, φ) are

provided within the proof. Then, individual equity option prices may be found as follows.

C i
t(S

i
t , K, τ) = SitP

i
1 −Ke−rτP i

2 , (3.2.9)

where,

P i
1 =

1

2
+

1

π

1

Site
rτ

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ− i)

iφ

]
dφ ,

P i
2 =

1

2
+

1

π

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ)

iφ

]
dφ .

(3.2.10)

Proof. See Appendix (3.B).

3.3 Model Properties and Implications

This section explores, both theoretically and numerically, some of the implications of the

proposed two-factor structure in the dynamics of equity returns. In particular, we examine

the relative importance of the transient and persistent volatility components on the sensitiv-

ity of the equity option prices with respect to the level of the market index and with respect

to each variance component. We also investigate the effects of factor loadings βi1 and βi2 and
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their importance on the instantaneous expected returns of individual equity options. We

close this section by exploring a number of important cross-sectional implications of two-

factor structure in equity options, some of which shed some lights on the relations between

the systematic risk factors and moments of the conditional distribution of equity returns.

In the numerical analysis, we fix parameters as follows; structural parameters for the market

index model are from Christoffersen et al. [2009], for individual equities the parameters are

set to replicate the observed patterns in the one-factor model of Christoffersen et al. [2015].

Further, these parameter values highlight the importance of two-factor structure relative to

one-factor structure in examining the properties and cross-sectional implications of factor

structure in equity options. Since we are interested in the role of the persistent beta, βi1,

and the transient beta, βi2, we explore the model properties for different sets of betas while

keeping the total unconditional risk-neutral equity variance constant.

The total unconditional risk-neutral equity variance is evaluated at its mean reverting value

equal to ṽi ≡ (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note that we fix the total unconditional risk-

neutral market variance to 0.05, with its persistent component θ̃1 = 0.006 and transient

component θ̃2 = 0.044. Therefore, for every set of betas, the unconditional idiosyncratic

equity variance can be defined by θi = ṽi − (βi1)2θ̃1 − (βi2)2θ̃2. The spot market persistent

and transient variance components are set to v1,t = 0.012 and v2,t = 0.048 respectively and

the total spot equity variance is set to vit = 0.05. Consequently, for different sets of betas,

the spot idiosyncratic variance under the physical measure can be defined as ξit = vit −
(βi1)2v1,t−(βi2)2v2,t. We choose the remaining structural parameters of the market and equity

dynamics as follows: {κ̃1 = 0.18, κ̃2 = 2.8, σ1 = 3.6, σ2 = 0.29, ρ1 = −0.96, ρ2 = −0.83} and

{κ̃i = 0.8, σi = 0.2, ρi = 0}. We fix the risk-free rate at 4% per year and examine at-the-

money equity options with 3 months to maturity. We explore the model properties and their

cross-sectional implications by assuming the ratio of spot index price over spot equity price

as Sit/St = 0.1.

The proposed two-factor structure explicitly shows how changes in the level of the spot

market index are translated into the equivalent changes in the equity option prices. It also

allow us to examine how equity option prices respond to variations in the persistent and

transient market variance components. The following proposition establishes these relations

and creates a basis for further sensitivity analysis.

Proposition 3.3. Given the closed-form equity option pricing expression in Proposition

(3.2), the sensitivity of the individual equity call option prices C i
t with respect to the level of
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the market index St may be given by:

∂C i
t

∂St
=
∂C i

t

∂Sit

Sit
St

(βi1 + βi2) . (3.3.1)

Further, the sensitivity of the individual equity call option prices C i
t with respect to the market

variance components v1,t and v2,t are:

∂C i
t

∂v1,t

=
∂C i

t

∂vit
(βi1)2 ,

∂C i
t

∂v2,t

=
∂C i

t

∂vit
(βi2)2 .

(3.3.2)

where the total spot variance for equity i is vit = (βi1)2v1,t + (βi2)2v2,t + ξit.

Proof. See Appendix (3.C).

We interpret the expression (3.3.1) as the “market delta” and the expressions (3.3.2) as the

“persistent market vega” and “transient market vega” for call options on equity i. Figure

(3.1) shows the market sensitivity of the model-implied equity call option prices given the

structural parameter values defined above. We plot the market delta for different sets of

betas to examine the relative importance of transient and persistent factors. Consistent

with Christoffersen et al. [2015], we find that firms with different sets of betas have different

sensitivities to changes in the level of the market index. Consistent with Proposition (3.3), we

observe that firm’s with higher transient (persistent) beta are more sensitive to the changes

in the level of the market index when we keep persistent (transient) beta constant. The same

is also true for firms with higher average beta. Although, we cannot distinguish between the

effect of transient and persistent betas on market delta per se, we observe that at-the-money

equity call option prices are relatively more sensitive to the transient beta. Note that the top

panel of figure (3.1) replicates the market delta following the calibration in the one-factor

model of Christoffersen et al. [2015].

[Figure (3.1) about here]
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Figures (3.2) and (3.3) plot the sensitivity of the model-implied equity call option prices with

respect to the persistent and transient market variance components using the parameter

values described above. Christoffersen et al. [2015] find that firms with higher betas are

more sensitive to changes in the market volatility. Our model predicts the same pattern

with respect to the total market volatility. More to the point, we find that firms with higher

persistent betas are more sensitive to changes in the persistent variance component while the

effect of the transient beta on the persistent market vega is marginal but reverse. Further,

firms with higher transient betas are more sensitive to changes in the transient variance factor

while the effect of the persistent beta on the transient market vega is reverse but significant.

In other words, persistent beta has an important effect on the transient market vega across

different level of moneyness (See Figure (3.3)). This distinctive property of our model allows

a portfolio manager to better examine the exposure of her portfolio to the variations in

market returns,11 a feature that is absent in the single factor structure of Christoffersen

et al. [2015]. Comparing the level of transient market vega and persistent market vega, our

model predicts that equity call option prices are more sensitive to the transient volatility

component compared to the persistent volatility component.

[Figure (3.2) about here]

[Figure (3.3) about here]

Our two-factor structure and closed-form equity option pricing formula allow us to shed

some light on the relation between the expected returns of individual equity options and

the characteristics of market returns and variance components as expressed in Proposition

(3.4) below. This result allows us to disentangle the effect of the market risk premium from

those of variance component risk premiums on the equity call option returns. It also shows

how equity betas play a direct role on the equity call option returns. In particular, the

second component in the right-hand-side (RHS) of equation (3.3.3), which is related to the

market risk premium, affects the equity call option returns through the market delta by an

adjustment factor which includes the persistent and transient betas. Moreover, the third

component in the RHS of (3.3.3), which is related to variances risk premiums, shows how

equity betas affect the equity call option returns through the total market vega of equity call

11Remember that market vega is the amount of money per underlying share that the option value will

gain or loose as market volatilities rise or fall by 1%. It is also important as value of some option strategies

are partially sensitive to changes in volatility.
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options. Note that ∂C i
t/∂vt measures the total market vega of equity call options.

Proposition 3.4. Given the closed-form equity option pricing expression (3.B.12)-(3.B.13),

the dynamics of the market index (3.2.1) and individual equity returns (3.2.4), the instan-

taneous expected excess returns on individual equity call options under the physical measure

can be characterized as follows.

1

dt
EP
t

[dC i
t

C i
t

− rdt
]

=
[
(µi − r)S

i
t

C i
t

]∂C i
t

∂Sit

+
[βi1µ1v1,t + βi2µ2v1,t

βi1 + βi2

St
C i
t

]∂C i
t

∂St

+
[(βi1)2λ1v1,t + (βi2)2λ2v2,t

(βi1)2 + (βi2)2

1

C i
t

]∂C i
t

∂vt

(3.3.3)

Proof. See Appendix (3.D).

Our proposed two-factor structure has also important cross-sectional implications for equity

options. Christoffersen et al. [2015] document that firms with higher betas have a steeper

term structure of implied volatility. However, our model moves further and provides a novel

term structure effect. In particular, we show how the term structure of implied volatility

responds differently to the transient and persistent variations in market returns. Using the

parameter values introduced at the beginning of this section, we show how βi1 and βi2 have

different and non-trivial effects on the implied volatility term structures of individual equity

options. Figure (3.4) plots the model implied volatility for at-the-money equity call options

with respect to time-to-maturity for different sets of betas. Consistent with the finding in

Christoffersen et al. [2015] (the top LHS panel), the higher the average betas the steeper the

term structures of the implied volatility of equity options (the top RHS panel). In particular,

our model predicts that the term structures of implied volatility of equity options is more

sensitive to the transient beta (the bottom LHS panel) while the impact of the persistent

beta on the term structures of implied volatility of equity options is marginal (the bottom

RHS panel).12 In other words, firms with higher transient betas have a term structure of

implied volatility that co-moves more with the market term structure of IV.

12Note that in all the graphs the total unconditional equity variance under the risk neutral measure is

fixed at ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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[Figure (3.4) about here]

Figure (3.5) plots the model implied volatility for three-month equity call options with

respect to the moneyness (S/K) for different sets of betas. Consistent with Christoffersen

et al. [2015], reported in the top left-hand-side panel, our model predicts that the higher

the beta of a firm, the steeper the implied volatility moneyness slope of its equity options

(reported in the top panel). More to the point, our factor structure separates the effect of

transient and persistent betas and predicts that the persistent beta has a marginal effect on

the slope of implied volatility of equity options across moneyness (the bottom right panel).

We note that the observed moneyness slope in Christoffersen et al. [2015] is mainly driven by

the transient beta (the bottom LHS panel). This important result links our findings to those

of Bakshi et al. [2003] who show that the market index distribution is more negatively skewed

than the idiosyncratic equity return distribution. Given our proposed factor structure, our

model predicts that firms with higher transient beta exhibit more negative skewness, which

is consistent with previous studies.

[Figure (3.5) about here]

We close this section by discussing the implications of two-factor structure on the relation

between the market variance risk premiums and the equity option skew. Figure (3.6) plots

the difference between the model implied volatility for three-month equity call options with

respect to the moneyness (S/K) for different sets of betas. The implied volatility difference

is computed as the difference between equity call option IV when we increase variance com-

ponent risk premiums from λ1 = λ2 = −0.5 to λ1 = λ2 = 0. As expected, the variance

risk premiums have a more significant effect on the implied volatility of equity call options

when the beta is higher (the top RHS panel). In particular, we observe that the transient

beta has a more significant effect on the slope of equity implied volatility smile (the bot-

tom LHS panel) compared to the persistent beta (the bottom RHS panel). In other words,

in-the-money equity call options are getting relatively more expensive for firms with higher

transient betas when we increase variance risk premiums. Note that for all the graphs the

total unconditional equity variance is fixed ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note also that

the top LHS panel replicates the same pattern following the calibration in the one-factor

model of Christoffersen et al. [2015].

[Figure (3.6) about here]
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3.4 Data

For individual equities, we choose all the firms listed in the Dow Jones Industrial Average

index and collect equity options data from OptionMetrics.13 We keep all options up to 10%

moneyness and with maturity up to and including 1 year. Note that options on individual

equities are American, the price of which could be affected by early exercise premium. To

prevent any bias in the estimation of the structural parameters of equities and daily spot

idiosyncratic variance, the loss function needs to be defined based on the implied volatility as

implied volatilities and deltas for the equity options reported in OptionMetrics are computed

by the Cox et al. [1979] binomial tree model. Otherwise, if the loss function is based on

mean-squared option pricing errors, we either need to restrict our sample to out-of-the-

money equity options that are less sensitive to early exercise premium or have to covert

the American-style equity options into European-style equity options by taking into account

the early exercise premium. Due to the computational burden of such adjustments and

considering the closed-from European option pricing equation in Proposition (3.2), we focus

on OTM equity options.14

To filter daily spot market transient and persistent variance components, we use data from

S&P 500 index and option markets. We obtain S&P 500 index option prices from the

OptionMetrics volatility surface data set from January 4, 1996 through December 29, 2011.

We follow the data cleaning routine commonly used in the empirical option pricing literature:

we remove options with implied volatility less than 5% and greater than 150%; we also follow

the filtering rules in Bakshi et al. [1997] to remove options that violate various no-arbitrage

conditions. We focus on out-of-the-money (OTM) option contract with maturity up to and

including one-year and with moneyness (spot over strike price) up to 10%.15 After cleaning,

our sample contains 345,710 S&P 500 index option contracts.

The data for daily equity prices, equity returns, daily index level, index returns, and the div-

idend yields are from CRSP. In the empirical analysis, we first adjust daily equity prices and

index level with dividend yields and then compute option prices using the dividend-adjusted

returns. Risk-free interest rates for all maturities are estimated by linear interpolation be-

13Note that we drop the Bank of America, the Kraft Foods Incorporation, and the Travelers Companies

Incorporation.

14See Bakshi et al. [2003] and Christoffersen et al. [2015].

15See Ghanbari [2016] for detailed description of the S&P 500 index options data set and its summary

statistics.
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tween the closest zero-coupon rates of the Zero Coupon Yield Curve from OptionMetrics.

Table (3.1) presents the descriptive statistics of the option contracts that are used to filter

daily spot market variances and daily spot idiosyncratic variance, and to estimate the struc-

tural parameters for individual equities and market index. This table reports the number of

available call and put option contracts for each firm after data cleaning. For every firm, we

also report the average number of days-to-maturity and average implied volatility of option

contracts in our sample. Overall, we have 4,241,990 equity call options and 3,209,990 equity

put options with an average days-to-maturity of 135 days. On average, for every firm we

have 275,999 option contracts with an average implied volatility of 28.52%.

[Table (3.1) about here]

Tables (3.2) and (3.3) provide further details regarding equity call options and put options.

On average we observe that equity call options in our sample are more expensive (2.688 for

calls versus 2.344 for puts), more sensitive to underlying equity prices and volatilties, have

lower implied volatility (27.32% for calls and 29.73% for puts), and have a greater number

of days-to-maturity (137 days for calls and 134 days for puts.)

[Table (3.2) about here]

[Table (3.3) about here]

3.5 Estimation Methodology

Our estimation methodology is twofold. At the market index level, we do a joint-estimation

to filter the vectors of daily spot variance components and to estimate a set of structural

parameters. Then, for every individual equity i, we filter daily spot idiosyncratic variance and

structural parameters, given the filtered transient and persistent spot variance components

of the market index.
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3.5.1 Estimation of the Index Model

To estimate the structural parameters and filter daily spot idiosyncratic variance for the firms

listed in our sample, we first filter the time-series of the transient and persistent spot market

variance components. We follow the approach in Ghanbari [2016] for the estimation of the

two-factor stochastic volatility model of the market index which combines information from

underlying index and option markets. We use a two-component likelihood function, a return-

based component and an option-based component, to impose consistency between structural

parameters under P and Q distributions. To filter unobserved transient and persistent spot

variance components, we use the sampling-importance-resampling (SIR) implementation of

the Particle Filter (PF) methods.16

Our optimization function is as follows.

max
Θ,Θ̃

(
LLR + LLO

)
, (3.5.1)

where LLR is the return-based and LLO is the option-based likelihood functions and Θ is

the set of structural parameters of the market index model under P -measure and Θ̃ is the

equivalent set under Q-measure.

LLR ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̆ j
t (Θ)

)
′ (3.5.2)

where W̆ j
t is the normalized weight of particle j at time t, N is the number of daily particles,

and Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ2, ρ1, ρ2, λ1, λ2}.

LLO ∝ −1

2

(
M ln(2π) +

M∑
n=1

(
ln(s2) + η2

n/s
2
))

, (3.5.3)

where M is the total number of index option contracts and ηn is the Vega-weighted loss

function for index option n.

16See Ghanbari [2016] for implantation of PF in the context of two-factor stochastic volatility model. See

Pitt [2002] for a detailed description of the PF algorithm.
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ηn = (CO
n − CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ))/V egan , n = 1, . . . ,M , (3.5.4)

where CO
n is the observed price of call option n and CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ) is the model price

of call option n.17 V egan is the Black and Scholes [1973] option Vega for the same option

contract. Note that we obtain daily persistent (v̂Q1,t) and transient (v̂Q2,t) spot variance com-

ponents under Q measure as the average of smoothly re-sampled particles of daily variance

components.

v̂Q1,t =
1

N

N∑
j=1

vj1,t , v̂Q2,t =
1

N

N∑
j=1

vj2,t (3.5.5)

Our index optimization algorithm is iterative. Each iteration starts with an initial set of

structural parameters, which then will be used to filter transient and persistent daily spot

variance components using the information content of index returns. Then, given spot

variance components, structural parameters of the index, and observed option prices, the

next set of optimal parameters can be reached by minimizing the option pricing errors over

the entire sample. The procedure iterates until an optimal set of structural parameters is

reached and thereby we obtain the final vectors of transient and persistent spot variance

components.

3.5.2 Estimation of the Individual Equity Model

We estimate a set of structural parameters Θ̃i ≡ {κi, θi, σi, ρi, βi1, βi2} and a vector of daily

spot idiosyncratic variances {ξit} for each individual equity in our sample following the two-

step iterative approach of Bates [2000] and Huang and Wu [2004]. In the first step, given

a set of initial structural parameters for each equity, Θ̃i
0, we estimate a vector of daily

spot idiosyncratic variance conditional on a set of risk-neutral structural parameters of the

market model, ˆ̃Θ, and filtered daily risk-neutral spot variance components, {v̂Q1,t, v̂
Q
2,t}. Using

a Vega-weighted loss function, the set of daily spot idiosyncratic variance ξ̂it for every firm i

can be obtained as the solution to the following optimization problem, which minimizes the

Vega-weighted daily mean-squared option pricing errors.

17See Ghanbari [2016] for option pricing equation under two-factor stochastic volatility model.
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ξ̂it = arg min
ξit

M i
t∑

n=1

(C i,O
n,t − C

i,M i
t

n,t (Θ̃i
0,

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ

i
t))

2/(V egain,t)
2 , t = 1, . . . , T , (3.5.6)

where M i
t is the total number of available option contracts for the equity i on day t, C i,O

n,t is

the observed price of equity option n for stock i on day t, C
i,M i

t
n,t is the model price for the

same option obtained from equity pricing equation (3.2.9), and V egain,t is the Black-Scholes

option Vega for the same equity option contract. Note that we repeat the optimization in

(3.5.6) every day and for every equity to estimate a vector of spot idiosyncratic variances

over the entire sample.

The second step estimates the structural parameters Θ̃i for firm i, by minimizing sum of

daily Vega-weighted mean-squared option pricing errors over the entire sample, given filtered

daily spot idiosyncratic variance obtained in the first step, the dynamics of the market index

and the filtered daily spot variance components. We may then solve the the following

optimization problem.

ˆ̃Θi = arg min
ξit

M i∑
n=1

(C i,O
n − C i,M i

n (Θ̃i, ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ̂

i
t))

2/(V egain)2 , (3.5.7)

where M i ≡
∑T

t=1 M
i
t is the total number of available option contracts for equity i. For every

equity, the procedure iterates between the optimizations in (3.5.6) and (3.5.7) to minimize

the pricing error until the change in the RMSE of the estimation in the second step is no

longer significant. Note that every new iteration starts based on the structural parameters

of the previous iteration, Θ̃i
0 = ˆ̃Θi.

3.6 Parameter Estimation Results

This section first reports the filtered daily spot variance components together with the struc-

tural parameter estimates for the S&P 500 Index. We use a long time-series of daily S&P

500 index returns and the entire cross-section of S&P 500 option prices that span the period

from January 4, 1996 to December 29, 2011. The market risk premium is set to the sample

average daily index returns. We use OTM index options with up to 10% moneyness and
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then convert the OTM puts into ITM calls through put-call parity.18 To provide a basis for

further comparison and to examine the model fit under the joint-estimation, we also report

the structural parameters of the market model, estimated only from option data.

Table (3.4) reports the parameter estimates (under P measure) that characterize the dy-

namics of the S&P 500 index returns and its variance components from the joint estimation.

Therefore, we obtain the same value for correlation coefficients ρ and volatility of variance

components σ under P and Q measures while the speed of mean reversion and the uncon-

ditional mean of the variance components under P and Q measures are linked through the

market prices of the transient and persistent variance components risk factors (κ̃1 = κ1 +λ1,

κ̃2 = κ2 + λ2, θ̃1 = κ1θ1
κ1+λ1

, and θ̃2 = κ2θ2
κ2+λ2

).19 Note that we assume that the transient and

persistent beta coefficients are the same under P and Q measures following Serban et al.

[2008].

[Table (3.4) about here]

We also report structural parameters and daily spot idiosyncratic variance for 27 firms listed

in the Dow Jones Industrial Average Index. The parameter estimates and latent idiosyncratic

variance are conditional on the transient and persistent spot variance components v̂Q1,t and

v̂Q2,t and structural parameters ˆ̃Θ reported in Table (3.4). The data for individual equities

starts from June 1, 1996 rather than January 1, 1996. Note that we drop the first 5 months

of each equity’s data set to prevent any estimation bias, as the filtered spot market variance

components are noisy in the first months of the estimation period. Note also that S&P 500

Index options are European style while the individual equity options are American style,

the price of which might be affected by early exercise premium. To reduce the bias in the

calculation of equity option prices using the closed-form pricing equation in Proposition (3.2)

18See Ghanbari [2016] for the descriptive statistics of the index data set.

19See Ghanbari [2016] for further discussion of the parameter estimates from joint estimation. The study

also reports parameter values from option-based estimation.

136



we focus on OTM options.20,21

Table (3.5) reports the structural parameter estimates that characterize the dynamics of the

individual equity returns and idiosyncratic variance under the Q measure. The table also

contains the point estimates of the persistent and transient betas for 27 firms in our sample.

[Table (3.5) about here]

The speed of mean reversion for risk-neutral idiosyncratic variance ranges from κ̃i = 0.3920

for Coca Cola to κ̃i = 1.7078 for 3M. This range of κ̃i is implies that most of the firms in our

sample have highly persistent idiosyncratic variance with average speed of mean reversion

0.8055. In other words, the average half-life of idiosyncratic variance for the firms in our

sample is almost 46 weeks, implying that it takes 46 weeks for the idiosyncratic variance

autocorrelation to decay to half of its weekly autocorrelation. We also find that most of the

firms in our sample have an idiosyncratic variance that is more persistent than the overall

market variance.

The unconditional risk neutral idiosyncratic variance of the firms in our sample starts from

θ̃i = 0.0093 for General Electric and increases up to θ̃i = 0.0756 for Hewlett-Packard. The

point estimates for the volatility of the idiosyncratic variance range from σi = 0.0670 for

General Electric to σi = 0.3967 for Hewlett-Packard. For all the firms in our sample, the

average point estimates for the volatility of the idiosyncratic variance is 0.1823. The corre-

lation between shocks to equity returns and shocks to idiosyncratic variance is negative for

all the equities (except for Verizon) and ranges from ρi = −0.99 for JP Morgan to ρi = 0.512

for Verizon.

20Bakshi et al. [2003] show that for OTM S&P 100 American options the early exercise premium is

negligible. They estimate two separate implied volatilities: the implied volatility that equates the option

price to the American option price from binomial tree model, and the implied volatility that equates the

option price to the Black-Scholes price where the discounted dividends are subtracted from the spot price.

They find that although American option implied volatility is smaller than its Black-Scholes counterparts,

the difference is negligible and within the bid-ask spread.

21Using the data of the firms listed on Dow Jones Index, Christoffersen et al. [2015] show that the early

exercise premium is negligible for equity call options. As a robustness test, we also estimate the equity model

by using only the equity call options rather than OTM calls and puts. We find that the point estimates of

structural parameters are quite similar to our base case estimation where we use OTM put and call option

contracts. This result is available from the author upon request.
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The betas estimates are novel and to the best of our knowledge this is the first study that

reports the option-implied persistent beta and transient beta for individual equities and

thus there is no benchmark for further comparisons. However, we find that firms respond

differently to transient and persistent variations in market index returns. The persistent beta

ranges from βi1 = 0.3430 for American Express to βi1 = 0.6798 for IBM. The transient beta

starts from βi2 = 1.0125 for Procter & Gamble and increases to βi2 = 1.3466 for JP Morgan.

The average persistent beta is 0.4899 and the average transient beta is 1.2284. Across all 27

firms in our sample the transient beta is always greater than the persistent beta, implying

that for the large capitalization firms listed in the Dow Jones index, transient and larger

variations in the market tend to be related to the proportionally larger systematic price

reactions across equities than persistent and smaller variations in the market index.

Our point estimates of the transient and persistent option-implied betas are similar to the

continuous beta and jump beta of Todorov and Bollerslev [2010] who introduce a framework

to separate and identify continuous and discontinuous systematic risks. Using high frequency

data from a large cross-section of forty large-capitalized individual stocks, they find that the

average jump betas are larger than the continuous betas with few exceptions. Although we

only use option data and estimate ad-hoc constant beta over the entire sample, we observe

a similar pattern as theirs between our transient and persistent betas.22

As discussed in Section 3, the proposed two-factor structure has important implications for

equity option market deltas, market Vegas, and instantaneous expected returns of equity

options. We also show how this two-factor structure affects the slope of the term structure

and moneyness of implied volatility of individual equity options. Along these lines, our

findings of different sensitivities to the systematic transient and persistent risk factors may

corroborate the theoretical implications of our model. The beta estimates have further

implications for portfolio management, suggesting the importance of different strategies for

hedging transient versus persistent systematic market variations.

We close this section by providing more intuition about the idiosyncratic variance across the

firms in our sample by presenting the distributional properties of the filtered spot idiosyn-

22The assumption of constant transient and persistent betas allow us to keep the affine specification of

the dynamics of individual equity and derive a closed-form equity option pricing equation. We can, however,

estimate time-varying betas by modifying our estimation procedure. We can fix the structural parameters

of the market and individual equities and estimate conditional betas and spot idiosyncratic variance on a

daily basis, given the transient and persistent spot variance components using a loss function very similar

to 3.5.7.
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cratic variance. Table (3.6) reports the mean, median, standard deviation, and the maximum

of the filtered spot idiosyncratic variances for every firm conditional on the structural param-

eters of the two-factor SV model of index and the filtered market spot variance components.

We observe that for all the firms the median is significantly lower than the mean, implying

that the mean estimates of the filtered spot idiosyncratic volatilities are driven by outliers

that may be common to all firms.

[Table (3.6) about here]

3.7 In-Sample Fit and Out-of-Sample Performance

The Goodness of fit of the proposed tow-factor structure in equity options is measured by

the Vega-weighted root mean squared option pricing errors (Vega RMSE) as it is consistent

with the loss function that was used in the model estimation.

Vega RMSEi ≡

√√√√ 1

N

M i∑
n,t

(CO,i
n,t − C

i,M i

n,t (Θ̃i, ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ̂

i
t)

V egain,t

)2
, (3.7.1)

where, CO,i
n,t is the observed price of option n on day t written on individual equity i, C i,M i

n,t

is the model price of the same option written on individual equity i on the same day, and

V egain,t is the Black-Scholes option Vega for the same equity option contract on the same

day. We also report the implied volatility root mean squared error (IVRMSE) measured as

follows.

IVRMSEi ≡

√√√√ 1

N

M∑
n,t

(
IV O,i

n,t − IV (C i,M i

n,t (Θ̃i, ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ̂

i
t))
)2
, (3.7.2)

where, IV O,i
n,t is the Black-Scholes implied volatility of observed option n written on individual

equity i on day t and IV (C i,M i

n,t (Θ̃i, ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ̂

i
t)) is the Black-Scholes implied volatility of

the model price for the same equity option on the same day.

Table (3.7) provides goodness-of-fit statistics for 27 the firms in our sample, both in-sample
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and out-of-sample. Using option data over the period 1996-2011, we find that all the firms

in our sample has a Vega RMSE below 2 except for Cisco and Chevron. We find similar

in-sample performance when the goodness-of-fit is measure by IVRMSE. The average Vega

RMSEs and IVRMSEs across all the firms are 1.61% and 1.59% respectively. The average

relative IVRMSE, measured as the ratio of IVRMSE over the average Black-Scholes IV, is

5.66%. We find that Boeing has the best fit with IVRMSE of 1.35% and Cisco has the worst

fit with IVRMSE of 2.12%; however, the fit is quite similar across the firms. Overall we

conclude that the model provides a reasonably good fit for all 27 firms.

We find that our model has a relatively better in-sample fit compared to the one-factor

structure model. For the firms listed on Dow Jones index, Christoffersen et al. [2015, Table 4]

find that the average IVRMSE is 1.66%.23 Further, comparing goodness-of-fits in our model

with those of Heston model for the same firms, reported in Christoffersen et al. [2015, Table

A.2], also supports the performance of our model. Overall, the in-sample performance of our

model over the one-factor structure together with its cross-sectional implications regarding

IV term-structure, moneyness slope, and equity option skew support the importance of

transient and persistent factor loadings in pricing equity options.

Entries in the last column of Table (3.7) reports out-of-sample performance of the equity

model. We divide the data set into two subsample periods. using data from 1996 to 2003

we estimate structural parameters for the index model, for every individual equity, and

filter persistent and transient daily spot index variance components, and spot idiosyncratic

variance for all the firms. In the next step we filter spot idiosyncratic variance for all the firms

over the period 2004 to 2011, given spot variance components and structural parameters in

the first subsample period. Note that we use an optimization function similar to (3.5.6). We

find that the model provides good out-of-sample fit. For most of the firms, the out-of-sample

Vega RMSEs are consistent with their in-sample Vega RMSEs. Overall, the average Vega

RMSE is 1.81% across all 27 firms.24

23Note that their sample span the period 1996 to 2010.

24The out-of-sample performance can also be examined with spot idiosyncratic variance obtained from

one-day ahead (t+ 1) forecast of idiosyncratic variance for individual equity i given the in-sample structural

parameter estimates and time t spot idiosyncratic variance. One-day ahead (t+ 1) forecast of idiosyncratic

variance may be computed as ξ̂it+1|t ≡ Et[ξ
i
t+1] = θi + (ξit − θi)(1− exp(− κi

252 )). However, this approach may

be more suitable for instance if in-sample fit is based on a Wednesday options and then out-of-sample fit can

be examined based on the Thursday options.
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3.8 Concluding Remarks

Motivated by the extensive empirical evidence that supports the existence of two volatility

components in the dynamics of index, we examine how individual equity option prices re-

spond to transient and persistent factor loadings. We adopt a two-factor stochastic volatility

model as in Ghanbari [2016] where aggregate market volatility is decomposed into two in-

dependent volatility components, a transient component and a persistent component. Then

we extend the model in Christoffersen et al. [2015] and assume that individual equity re-

turns are related to market index returns with two distinct systematic components and an

idiosyncratic component, which is stochastic and follows a standard square root process. We

derive a closed form pricing equation for individual equity call options where equity option

prices depend on two constant factor loadings, a transient beta and a persistent beta.

For the firms listed on Dow Jones Index, we estimate structural parameters and filter spot

idiosyncratic variances, which together characterize the dynamics of the individual equity

under the risk-neutral measure. Given the level of IVRMSEs, we find that our model provides

a good-fit both in-sample and out-of-sample. We also report the point estimates of transient

and persistent betas for 27 firms. We find that for all the firms, the transient beta is always

greater than the persistent beta, implying that for large capitalization firms listed in the

Dow Jones index, transient and larger variations in the market tends to be related to the

proportionally larger systematic price reactions across equities than persistent and smaller

variations in the market index. It also supports the presence of a two-factor structure

in our model. Along this line, the different sensitivities to the systematic transient and

persistent risks may corroborate the theoretical implication of our model. The beta estimates

have further implications for portfolio management, suggesting the importance of different

strategies for hedging transient versus persistent systematic market variations.

Our equity option pricing model sheds some lights on the impact of systematic price changes

on the equity option prices. We find closed-form expressions for the sensitivity of the equity

option prices to the changes in the index level (market delta) and changes in the persistent

and transient variance components (persistent and transient market vega) and show how

transient and persistent betas may affect the expected returns of individual equity options

through market delta and vegas. Our closed-form pricing equation and proposed factor

structure allow a portfolio manager to hedge her portfolio exposure to the level of the market

index, and to the persistent and transient variations in the market index.

We show that the proposed two-factor structure has important cross-sectional implications
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for equity options. Consistent with the findings of Duan and Wei [2009], our model predicts

that firms with a higher beta have a higher implied volatility. More to the point, we find that

firms with a higher transient beta have a steeper term structure of implied volatility and a

steeper implied volatility moneyness slope. We also observe that the variance risk premium

has a more significant effect on the implied volatility smile of equity options (equity option

skew) when the transient beta is higher. Overall, the in-sample performance of our model

over the one-factor structure, its out-of-sample performance, together with its cross-sectional

implications regarding IV term structure, moneyness slope, and equity option skew support

the importance of transient and persistent factor loadings in pricing equity options.
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3.A Proof of Proposition 3.1

We transform the physical dynamics of individual equity returns (3.A.1) to its risk neutral

counterparts (3.A.2) by assuming an appropriate stochastic discount factor (SDF).

dSit/S
i
t = µidt+ βi1(µ1v1,tdt+

√
v1,tdz1,t) + βi2(µ2v2,tdt+

√
v2,tdz2,t) +

√
ξitdz

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(3.A.1)

dSit/S
i
t = rdt+ βi1

√
v1,tdz̃1,t + βi2

√
v2,tdz̃2,t +

√
ξitdz̃

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(3.A.2)

where

〈dzit, dwit〉 = ρidt

〈dzit, dw
j
t 〉 = 0 ∀(i 6= j)

(3.A.3)

As individual equity returns are linked to the market index returns with a two-factor model

and two constant factor loadings β1 and β2, the proposed SDF should jointly specify the risk

neutral distributions of the market index and individual equity returns. Remember that the

dynamics of market index returns under the P - and Q-measure are as follows.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(ρ1dz1,t +

√
1− ρ2

1dB1,t)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(ρ2dz2,t +

√
1− ρ2

2dB2,t)

(3.A.4)

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,t(ρ1dz̃1,t +

√
1− ρ2

1dB̃1,t)

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,t(ρ2dz̃2,t +

√
1− ρ2

2dB̃2,t)

(3.A.5)

where
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〈dw1,t, dz1,t〉 = ρ1dt, −1≤ρ1≤ +1

〈dw2,t, dz2,t〉 = ρ2dt, −1≤ρ2≤ +1

〈dw1,t, dw2,t〉 = 0

ρ2
1 + ρ2

2 ≤ +1

(3.A.6)

We assume the following standard SDF.

dMt

Mt

= −rdt− ψ′tdWt , (3.A.7)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t, ψ
i
1,t, ψ

i
2,t] i = {1, 2, · · ·, n} is the vector of market price of

risk factors and Wt ≡ [z1,t, z2,t, w1,t, w2,t, z
i
t, w

i
t] i = {1, 2, · · ·, n} is the vector of innovations

in market return, market variance components, equity i return, and equity i idiosyncratic

variance. Given the SDF in (3.A.7), the change-of-measure from P - to Q-distribution has

the following exponential form.

dQ

dP
(t) ≡Mt exp(rt) = exp

[
−
∫ t

0

ψ
′

udWu −
1

2

∫ t

0

ψ
′

ud〈W,W
′〉uψu

]
(3.A.8)

where 〈W,W ′〉 is the covariance operator.

We follow the notion of Doléans-Dade exponential (stochastic exponential) and define the

stochastic exponential ε(·) as follow.

ε
(∫ t

0

ϑ
′

udWu

)
≡ exp

[ ∫ t

0

ϑ
′

udWu −
1

2

∫ t

0

ϑ
′

ud〈W,W
′〉uϑu

]
(3.A.9)

Therefore, the change-of-measure (3.A.8) can be expressed in term of stochastic exponential

as

dQ

dP
(t) = ε

(∫ t

0

−ψ′

udWu

)
(3.A.10)

Applying Ito’s lemma, for every individual equity i, we have the following dynamic under

the physical measure.
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log
(Sit
Si0

)
=
[
µi + βi1µ1v1,t + βi2µ2v2,t −

1

2
(βi1)2v1,t −

1

2
(βi2)2v2,t −

1

2
ξit
]
t

+ βi1

∫ t

0

√
v1,udz1,u + βi2

∫ t

0

√
v2,udz2,u +

∫ t

0

√
ξiudz

i
u

(3.A.11)

Given (3.A.11) and definition of stochastic exponential (3.A.9) we have

Sit
Si0

= exp
[
(µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

βi1
√
v1,udz1,u +

∫ t

0

βi2
√
v2,udz2,u +

∫ t

0

√
ξiudz

i
u

)
(3.A.12)

Note that

ε
(∫ t

0

βi1
√
v1,udz1,u

)
= exp

[ ∫ t

0

βi1
√
v1,udz1,u −

1

2

∫ t

0

(βi1)2v1,udu
]

(3.A.13)

To find the market prices of risk we impose the restriction that the product of the price

of any individual equity and the pricing kernel under physical measure is a P -martingale.

Given the change-of-measure (3.A.10), for every individual equity i, the following process

N(t) should be a P -martingale.

N(t) ≡ Sit
Si0

dQ

dP
(t) exp (−rt) (3.A.14)

where

N(t) = exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

βi1
√
v1,udz1,u

)
ε
(
−
∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

βi2
√
v2,udz2,u

)
ε
(
−
∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

)
ε
(∫ t

0

√
ξiudz

i
u

)
ε
(
−
∫ t

0

ψi1,udz
i
u −

∫ t

0

ψi2,udw
i
u

)
ε
(
−
∑
j /∈i

∫ t

0

ψj1,udz
j
u −

∑
j /∈i

∫ t

0

ψj2,udw
j
u

)
(3.A.15)
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We decompose N(t) into two orthogonal components N(t) ≡ I(t)L(t) and then make sure

that I(t) and L(t) are a P -martingale.

I(t) = exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

βi1
√
v1,udz1,u

)
ε
(
−
∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

βi2
√
v2,udz2,u

)
ε
(
−
∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

)
ε
(∫ t

0

√
ξiudz

i
u

)
ε
(
−
∫ t

0

ψi1,udz
i
u −

∫ t

0

ψi2,udw
i
u

)
(3.A.16)

L(t) =ε
(
−
∑
j /∈i

∫ t

0

ψj1,udz
j
u −

∑
j /∈i

∫ t

0

ψj2,udw
j
u

)
(3.A.17)

From the definition of a stochastic exponential we know that ε(·) are P -martingales and so

does L(t). Therefore, we only need to make sure that I(t) is also a P -martingale. Using

the properties of a stochastic exponential ε(·), ε(Xt)ε(Yt) = ε(Xt + Yt) exp(〈X, Y 〉t) and the

correlation structure (3.A.3) and (3.A.6) we can rewrite the process of I(t) as follows.

I(t) = exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

(
βi1
√
v1,u − ψ1,u

)
dz1,u −

∫ t

0

ψ3,udw1,u

)
exp

[
−
∫ t

0

βi1
√
v1,u(ψ1,u + ρ1ψ3,u)du

]
ε
(∫ t

0

(
βi2
√
v2,u − ψ2,u

)
dz2,u −

∫ t

0

ψ4,udw2,u

)
exp

[
−
∫ t

0

βi2
√
v2,u(ψ2,u + ρ2ψ4,u)du

]
ε
(∫ t

0

(√
ξiu − ψi1,u

)
dziu −

∫ t

0

ψi2,udw
i
u

)
exp

[
−
∫ t

0

√
ξiu(ψ

i
1,u + ρiψi2,u)du

]
(3.A.18)

Thus, given ε(·) are P -martingales, the process I(t) is a P -martingale when the following

restriction holds.
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exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
exp

[
−
∫ t

0

βi1
√
v1,u(ψ1,u + ρ1ψ3,u)du

]
exp

[
−
∫ t

0

βi2
√
v2,u(ψ2,u + ρ2ψ4,u)du

]
exp

[
−
∫ t

0

√
ξiu(ψ

i
1,u + ρiψi2,u)du

]
= 1

(3.A.19)

The restriction (3.A.19) holds if the following conditions for the market index, (3.A.20), and

for every individual equity i, (3.A.21), hold.

µ1v1,tt−
√
v1,t(ψ1,t + ρ1ψ3,t)t = 0

µ2v2,tt−
√
v2,t(ψ3,t + ρ2ψ4,t)t = 0

(3.A.20)

−rt+ µit−
√
ξit(ψ

i
1,t + ρiψi2,t)t = 0 (3.A.21)

To fully specify the market prices of risk we assume that market price of variance risk factors

are proportional to spot volatility components, following Heston [1993].

(ψ3,t + ρ1ψ1,t) =
v1,t

σ1
√
v1,t

λ1

(ψ4,t + ρ2ψ2,t) =
v2,t

σ2
√
v2,t

λ2

(3.A.22)

If we assume that the idiosyncratic variance is also a priced risk factor, then its price is also

proportional to the spot idiosyncratic volatility for every individual equity i. Otherwise,

λi = 0.

(ψi2,t + ρiψi1,t) =
ξit

σi
√
ξit
λi (3.A.23)

Combining the restrictions in (3.A.20) and (3.A.22), we have the following market price of

risk factors.
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ψ1,t =
σ1µ1 − ρ1λ1

(1− ρ2
1)

√
v1,t

σ1

ψ2,t =
σ2µ2 − ρ2λ2

(1− ρ2
2)

√
v2,t

σ2

ψ3,t =
λ1 − ρ1σ1µ1

(1− ρ2
1)

√
v1,t

σ1

ψ4,t =
λ2 − ρ2σ2µ2

(1− ρ2
2)

√
v2,t

σ2

(3.A.24)

Combining the restrictions in (3.A.21) and (3.A.23) and given that idiosyncratic variance is

not priced, we have the following results for every individual equity.

ψi1,t =
µi − r√

ξit(1− (ρi)2)

ψi2,t = (−µ
i − r√
ξit

+
ξiλi

σi
)

ρi

1− (ρi)2

(3.A.25)

Given the market prices of risk factors (3.A.24) (3.A.25), we apply the Girsanov’s theorem to

transform physical innovations of the market index dynamics (3.A.4) and individual equity

dynamics (3.A.1) to their risk neutral counterparts in (3.A.5) and (3.A.2). Note that we

assume idiosyncratic variance is not priced and thus λi = 0.

dz̃it = dzit + ψi1,tdt+ ρiψi2,tdt

dz̃1,t = dz1,t + ψ1,tdt+ ρ1ψ3,tdt

dz̃2,t = dz2,t + ψ2,tdt+ ρ2ψ4,tdt

dw̃1,t = dw1,t + ψ3,tdt+ ρ1ψ1,tdt

dw̃2,t = dw2,t + ψ4,tdt+ ρ2ψ2,tdt

(3.A.26)

With some algebra we have the following transformations.

148



dz̃it = dzit + (µi − r)dt/
√
ξit

dz̃1,t = dz1,t + µ1
√
v1,tdt

dz̃2,t = dz2,t + µ2
√
v2,tdt

dw̃1,t = dw1,t + (λ1/σ1)
√
v1,tdt

dw̃2,t = dw2,t + (λ2/σ2)
√
v2,tdt

(3.A.27)

Replacing dzit, dw
i
t, dz1,t, dz2,t, dw1,t, dw2,t from (3.A.27) into the physical dynamics in (3.A.1)

and (3.A.4) and knowing that κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

we obtain

risk neutral return and variance components dynamics.

dSit/S
i
t = µidt+ βi1(µ1v1,tdt+

√
v1,tdz1,t) + βi2(µ2v2,tdt+

√
v2,tdz2,t) +

√
ξitdz

i
t

= µidt+ βi1(µ1v1,tdt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt))

+ βi2(µ2v2,tdt+
√
v2,t(dz̃2,t − µ2

√
v2,tdt)) +

√
ξit(dz̃

i
t − (µi − r)dt/

√
ξit)

= rdt+ βi1
√
v1,tdz̃1,t + βi2

√
v2,tdz̃2,t +

√
ξitdz̃

i
t

(3.A.28)

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

= (r + µ1v1,t + µ2v2,t)dt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt) +

√
v2,t(dz̃2,t − µ2

√
v2,tdt)

= rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

(3.A.29)

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(dw̃1,t − (λ1/σ1)

√
v1,tdt)

= (κ1θ1 − (κ1 + λ1)v1,t)dt+ σ1
√
v1,tdw̃1,t

= κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t

(3.A.30)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(dw̃2,t − (λ2/σ2)

√
v2,tdt)

= (κ2θ2 − (κ2 + λ2)v2,t)dt+ σ2
√
v2,tdw̃2,t

= κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t

(3.A.31)
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3.B Proof of Proposition 3.2

Given the Q dynamics of index returns and individual equities returns in (3.2.3) and (3.2.6),

applying Ito’s lemma on xit, delivers the following expression.

xit+τ − xit = rτ − 1

2

[
βi1

2
v1,t:t+τ + βi2

2
v2,t:t+τ + ξit:t+τ

]
τ

+ βi1

∫ t+τ

t

√
v1,udz̃1,u + βi2

∫ t+τ

t

√
v2,udz̃2,u +

∫ t+τ

t

√
ξitdz̃

i
u

(3.B.1)

For the ease of notations we define:

z̃v1,τ ≡
∫ t+τ

t

√
v1,udz̃1,u ,

z̃v2,τ ≡
∫ t+τ

t

√
v2,udz̃2,u ,

z̃ξiτ ≡
∫ t+τ

t

√
ξiudz̃

i
u .

By the definition of risk-neutral conditional characteristic function of log-returns in (3.2.8)

we have:25

f̃ i(τ, φ) = EQ
t

[
exp

[
iφ(rτ − 1

2

(
βi1

2
v1,t:t+τ + βi2

2
v2,t:t+τ + ξit:t+τ

)
τ + βi1z̃v1,τ + βi2z̃v2,τ + z̃ξiτ )

]]
.

(3.B.2)

Define the stochastic exponential ζ(·) as follows.

ζ
( ∫ t

0

w′udWu

)
≡ exp

[ ∫ t

0

w′udWu −
1

2

∫ t

0

w′ud〈W,W ′〉wu
]

(3.B.3)

Therefore,

25For compactness, the dependence of risk-neutral conditional characteristic function to xit, v1,t, v2,t, ξ
i
t,

βi1, and βi2 is suppressed in (3.B.2).
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ζ
(
iφβi1 z̃v1,τ

)
= exp

[
iφβi1 z̃v1,τ −

1

2
(iφβi1)2〈z̃v1,τ , z̃v1,τ 〉

]
= exp

[
iφβi1 z̃v1,τ +

1

2
φ2βi1

2
v1,t:1+τ

]
.

(3.B.4)

Similar to (3.B.4), define ζ
(
iφβi2 z̃v2,τ

)
and ζ

(
iφ z̃ξiτ

)
and then combine these three stochastic

exponential with (3.B.2) to get the following risk-neutral conditional characteristic function.

f̃ i(τ, φ) = eiφrτEQ
t

[
ζ
(
iφβi1 z̃v1,τ

)
ζ
(
iφβi2 z̃v2,τ

)
ζ
(
iφ z̃ξiτ

)
exp

[
− g1v1,t:t+τ − g2v2,t:t+τ − g3ξ

i
t:t+τ

]]
(3.B.5)

where, g1 = 1
2
iφβi1

2
(1− iφ), g2 = 1

2
iφβi2

2
(1− iφ), and g3 = 1

2
iφ(1− iφ). Following Carr and

Wu [2004], we define a new change-of-measure from Q-measure to C-measure as follows.26

dC

dQ
(t) ≡ ζ

(
iφβi1 z̃v1,τ

)
ζ
(
iφβi2 z̃v2,τ

)
ζ
(
iφ z̃ξiτ

)
(3.B.6)

The Radon-Nikodym derivatives of C with respect to Q in (3.B.6) allows to write (3.B.5) as

f̃ i(τ, φ) = eiφrτEQ
t

[ dC
dQ

(T )
dC
dQ

(t)
exp

[
− g1v1,t:t+τ − g2v2,t:t+τ − g3ξ

i
t:t+τ

]]
= eiφrτEC

t

[
exp

[
− g1v1,t:t+τ − g2v2,t:t+τ − g3ξ

i
t:t+τ

]]
.

(3.B.7)

Accordingly, we transform the risk-neutral shocks to index returns volatlities and to the

idiosyncratic returns volatility to their C-measure counterparts by applying the extension of

Grisanov’s theorem within the complex plane.

dw̃1,t = dwC1,t + (iφρ1β
i
1

√
v1,t)dt

dw̃2,t = dwC2,t + (iφρ2β
i
2

√
v2,t)dt

dw̃it = dwi,Ct + (iφρi
√
ξit)dt

(3.B.8)

As a results, the index volatilities dynamics and idiosyncratic volatility dynamics of individ-

26As the Radon-Nikodym derivatives in(3.B.6) is defined based on the stochastic exponential ζ(·), it is

Martingale by definition.
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ual equity under the C-measure are

dv1,t = κC1 (θC1 − v1,t)dt+ σ1
√
v1,tdw

C
1,t ,

dv2,t = κC2 (θC2 − v2,t)dt+ σ2
√
v2,tdw

C
2,t ,

dξit = κi,C(θi,C − ξit)dt+ σi
√
ξitdw

i,C
t ,

(3.B.9)

where,

κC1 = κ̃1 − iφρ1β
i
1σ1 θC1 = κ̃1θ̃1/κ

C
1 ,

κC2 = κ̃2 − iφρ2β
i
2σ2 θC2 = κ̃2θ̃2/κ

C
2 ,

κi,C = κi − iφρiσi θi,C = κiθi/κi,C .

Using the closed-form solution of the moment generating functions of EC
t [exp(−g1v1,t:t+τ )],

and EC
t [exp(−g2v2,t:t+τ )], and EC

t [exp(−g3ξ
i
t:t+τ )], the risk-neutral conditional characteristic

function of log individual equity prices has the following affine form.

f̃ i(v1,t, v2,t, ξ
i
t, τ, φ) = exp

[
iφxit + iφrτ − A1(τ, φ)− A2(τ, φ)− B(τ, φ)

− C1(τ, φ)v1,t − C2(τ, φ)v2,t −D(τ, φ)ξit
]
,

(3.B.10)
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A1(τ, φ) =
κ̃1θ̃1

σ2
1

[
2 ln

[
1− d1 − κC1

2d1

(1− e−d1τ )
]

+ (d1 − κC1 )τ
]
,

A2(τ, φ) =
κ̃2θ̃2

σ2
2

[
2 ln

[
1− d2 − κC2

2d2

(1− e−d2τ )
]

+ (d2 − κC2 )τ
]
,

B(τ, φ) =
κ̃iθ̃i

σi2

[
2 ln

[
1− di − κi,C

2di
(1− e−diτ )

]
+ (di − κi,C)τ

]
,

C1(τ, φ) =
2g1(1− e−d1τ )

2d1 − (d1 − κC1 )(1− e−d1τ )
,

C2(τ, φ) =
2g2(1− e−d2τ )

2d2 − (d2 − κC2 )(1− e−d2τ )
,

D(τ, φ) =
2gi(1− e−diτ )

2di − (di − κi,C)(1− e−diτ )
,

d1 =
√

(κC1 )2 + 2σ2
1g1 ,

d2 =
√

(κC2 )2 + 2σ2
2g2 ,

di =

√
(κi,C)2 + 2σi2gi ,

g1 =
1

2
iφβi1

2
(1− iφ) ,

g2 =
1

2
iφβi2

2
(1− iφ) ,

gi =
1

2
iφ(1− iφ) .

(3.B.11)

We determine the price of a European call option on an individual equity with the strike

price K and the time-to-maturity τ by inverting the risk-neutral conditional characteristic

function of log-returns.27

C i
t(S

i
t , K, τ) = SitP

i
1 −Ke−rτP i

2 , (3.B.12)

27Note that the risk-neutral conditional characteristic function of the logarithm of individual equity

returns, xit+τ − xit = ln(Sit+τ/S
i
t), can be defined with the same expression as (3.B.10) but without the

first component, iφxit.

153



where,

P i
1 =

1

2
+

1

π

1

Site
rτ

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ− i)

iφ

]
dφ ,

P i
2 =

1

2
+

1

π

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ)

iφ

]
dφ .

(3.B.13)

3.C Proof of Proposition 3.3

Proof of the Proposition (3.3) is available upon request.

3.D Proof of Proposition 3.4

Proof of the Proposition (3.4) is available upon request.
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Menćıa, J. and E. Sentana (2013). Valuation of vix derivatives. Journal of Financial Eco-

nomics 108 (2), 367–391.

Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica 41 (5),

867–887.

Merton, R. C. (1980). On estimating the expected return on the market: An exploratory

investigation. Journal of Financial Economics 8 (4), 323–361.

Pitt, M. K. (2002). Smooth particle filters for likelihood evaluation and maximisation.

the warwick economics research paper series. University of Warwick, Department of

Economics.

Serban, M., J. P. Lehoczky, and D. J. Seppi (2008). Cross-sectional stock option pricing and

factor models of returns. Working Paper .

Todorov, V. and T. Bollerslev (2010). Jumps and betas: A new framework for disentangling

and estimating systematic risks. Journal of Econometrics 157 (2), 220–235.

156



Table 3.1: Data Sample Summary

Company Ticker Call Put
All

Options
Avg

DTM
Avg
IV

S&P 500 Index SPX 208,098 137,612 345,710 141 22.49%

Alcoa AA 134,112 106,732 240,844 130 35.16%
American Express AXP 143,880 109,422 253,302 132 31.62%
Boeing BA 149,949 116,967 266,916 131 30.52%
Caterpillar CAT 145,951 113,189 259,140 130 32.04%
Cisco CSCO 127,223 100,605 227,828 128 36.92%
Chevron CVX 178,737 132,901 311,638 135 24.56%
Dupont DD 162,592 122,417 285,009 135 27.43%
Disney DIS 145,656 114,062 259,718 138 29.84%
General Electric GE 151,825 112,771 264,596 141 27.74%
Home Depot HD 145,260 113,691 258,951 134 30.92%
Hewlett-Packard HPQ 127,524 101,302 228,826 131 35.36%
IBM IBM 164,543 125,043 289,586 135 27.09%
Intel INTC 123,444 98,783 222,227 135 36.09%
Johnson & Johnson JNJ 189,496 137,546 327,042 140 21.83%
JP Morgan JPM 149,895 110,342 260,237 132 31.60%
Coca Cola KO 178,611 131,747 310,358 141 23.03%
McDonald’s MCD 163,946 126,156 290,102 138 26.05%
3M MMM 176,339 131,127 307,466 135 24.82%
Merck MRK 160,622 120,662 281,284 134 27.68%
Microsoft MSFT 138,523 106,266 244,789 140 30.69%
Pfizer PFE 145,288 112,830 258,118 141 28.63%
Procter & Gamble PG 186,969 137,111 324,080 139 22.12%
AT&T T 174,932 123,359 298,291 135 25.85%
United Technologies UTX 166,534 126,111 292,645 134 26.64%
Verizon VZ 167,457 117,498 284,955 138 26.02%
Walmart WMT 165,015 127,833 292,848 138 25.74%
Exxon Mobil XOM 177,667 133,517 311,184 137 24.07%

Average 157,111 118,889 275,999 135 28.52%
Minimum 123,444 98,783 222,227 128 21.83%
Maximum 189,496 137,546 327,042 141 36.92%

Note to Table: This table reports the number of available call and put options for index and for
each firm in our sample. Our sample contains options with moneyness up to 10% and maturity up
to and including 1 year over the period 1996-2011. We rely on the implied volatility surface data set
provided by OptionMetrics. For each firm, we also report the average number of days-to-maturity
(Avg DTM) and the average Black-Scholes implied volatility (Avg IV) of available contracts.
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Table 3.2: Data Sample Summary - Call Options

Ticker
Avg
Price

Min
Price

Max
Price

Avg
IV

Min.
IV

Max
IV

Avg
Delta

Avg
Vega

Avg
DTM

SPX 35.59 1.876 195.53 20.64% 7.03% 74.98% 0.373 251.02 143

AA 2.256 0.110 14.121 34.20% 16.93% 153.65% 0.442 8.385 130
AXP 3.218 0.375 27.372 30.28% 12.72% 148.17% 0.436 12.612 133
BA 3.022 0.375 14.928 29.57% 16.06% 89.57% 0.429 13.062 131
CAT 3.351 0.376 15.375 30.98% 16.01% 103.28% 0.432 13.882 131
CSCO 2.364 0.093 32.268 35.87% 15.93% 107.08% 0.441 7.251 129
CVX 3.196 0.375 15.509 23.45% 12.79% 94.43% 0.416 16.718 137
DD 2.319 0.375 13.407 26.25% 12.29% 92.26% 0.427 10.961 136
DIS 1.899 0.375 17.498 28.56% 6.95% 95.86% 0.441 8.422 139
GE 2.385 0.375 27.865 26.38% 6.90% 148.93% 0.438 10.855 143
HD 2.215 0.375 15.933 29.72% 14.84% 100.91% 0.435 9.111 136
HPQ 2.869 0.375 46.162 34.47% 15.32% 97.89% 0.445 9.303 132
IBM 4.976 0.361 36.790 25.83% 11.93% 86.82% 0.416 23.901 136
INTC 2.946 0.375 28.764 35.20% 17.34% 90.86% 0.455 9.389 136
JNJ 2.391 0.375 14.911 20.44% 9.66% 70.84% 0.409 14.260 142
JPM 2.759 0.131 19.016 30.02% 11.19% 160.94% 0.431 11.158 133
KO 2.080 0.375 10.651 21.73% 8.27% 69.30% 0.416 11.767 143
MCD 2.008 0.375 13.560 24.80% 11.58% 78.87% 0.429 10.308 139
MMM 3.608 0.375 17.730 23.66% 12.51% 79.62% 0.413 18.890 136
MRK 2.797 0.375 23.758 26.56% 14.29% 85.20% 0.432 12.354 136
MSFT 3.143 0.375 29.554 29.44% 12.22% 87.86% 0.450 11.448 141
PFE 2.175 0.375 22.262 27.57% 14.20% 100.98% 0.441 8.982 143
PG 2.770 0.375 19.779 20.77% 9.28% 64.34% 0.409 16.262 142
T 1.611 0.075 9.373 24.41% 10.04% 82.25% 0.432 7.657 137
UTX 3.247 0.375 22.284 25.34% 13.16% 82.34% 0.417 16.273 135
VZ 2.078 0.375 12.448 24.58% 9.22% 86.98% 0.444 9.779 141
WMT 2.199 0.375 17.836 24.52% 11.16% 67.26% 0.418 11.103 140
XOM 2.688 0.375 15.079 22.92% 12.58% 84.79% 0.414 14.474 139

Avg. 2.688 0.334 20.527 27.32% 12.42% 96.71% 0.430 12.169 137

Note to Table: This table reports the number of available call option contracts for the index and
for each firm in our sample. Our sample contains call options with moneyness up to 10% and matu-
rity up to and including 1 year over the period 1996-2011. We rely on the implied volatility surface
data set provided by OptionMetrics. For each firm, we also report the average number of days-to-
maturity (Avg DTM), the average Black-Scholes implied volatility (Avg IV), the average Black-
Scholes delta (Avg Delta), and the average Black-Scholes vega (Avg Vega) of available contracts.
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Table 3.3: Data Sample Summary - Put Options

Ticker
Avg
Price

Min
Price

Max
Price

Avg
IV

Min
IV

Max
IV

Avg
Delta

Avg
Vega

Avg
DTM

SPX 32.11 2.640 195.53 24.34% 8.90% 82.74% -0.292 227.67 136

AA 1.908 0.110 14.121 36.13% 17.39% 159.25% -0.342 7.840 129
AXP 2.821 0.375 27.372 32.95% 12.20% 149.37% -0.340 11.851 130
BA 2.604 0.375 14.928 31.47% 17.43% 93.33% -0.339 12.114 130
CAT 2.981 0.376 15.375 33.11% 17.86% 104.41% -0.340 12.959 130
CSCO 2.120 0.093 32.268 37.97% 16.34% 112.08% -0.351 6.862 128
CVX 2.754 0.375 15.509 25.67% 11.68% 98.59% -0.327 15.499 134
DD 1.978 0.375 13.407 28.61% 13.70% 94.19% -0.333 10.133 133
DIS 1.618 0.375 17.498 31.11% 14.31% 99.48% -0.343 7.738 137
GE 2.018 0.375 27.865 29.09% 7.10% 149.59% -0.337 10.048 140
HD 1.946 0.375 15.933 32.12% 14.03% 103.50% -0.343 8.508 133
HPQ 2.368 0.375 46.162 36.25% 16.45% 94.06% -0.350 8.721 129
IBM 4.535 0.361 36.790 28.35% 12.38% 90.96% -0.336 22.422 134
INTC 2.596 0.375 28.764 36.97% 16.35% 92.03% -0.353 9.103 134
JNJ 2.081 0.375 14.911 23.22% 9.61% 77.42% -0.327 13.112 137
JPM 2.471 0.131 19.016 33.19% 11.99% 169.06% -0.337 10.568 131
KO 1.827 0.375 10.651 24.34% 9.52% 67.51% -0.330 10.878 139
MCD 1.727 0.375 13.560 27.30% 12.47% 74.29% -0.336 9.455 136
MMM 3.175 0.375 17.730 25.99% 13.82% 86.39% -0.329 17.609 134
MRK 2.316 0.375 23.758 28.80% 9.07% 88.64% -0.334 11.504 132
MSFT 2.821 0.375 29.554 31.94% 11.20% 94.44% -0.349 11.241 139
PFE 1.864 0.375 22.262 29.68% 13.95% 75.78% -0.343 8.501 140
PG 2.435 0.375 19.779 23.47% 9.58% 74.12% -0.327 15.103 137
T 1.400 0.075 9.373 27.30% 10.25% 86.45% -0.334 7.206 134
UTX 2.904 0.375 22.284 27.94% 13.62% 87.87% -0.333 15.167 133
VZ 1.728 0.375 12.448 27.45% 10.94% 89.81% -0.330 9.118 135
WMT 1.979 0.375 17.836 26.97% 11.44% 72.69% -0.335 10.324 136
XOM 2.309 0.375 15.079 25.22% 12.79% 97.18% -0.329 13.299 136

Avg. 2.344 0.334 20.527 29.73% 12.87% 99.35% -0.337 11.366 134

Note to Table: This table reports the number of available put option contracts for the index and
for each firm in our sample. Our sample contains put options with moneyness up to 10% and matu-
rity up to and including 1 year over the period 1996-2011. We rely on the implied volatility surface
data set provided by OptionMetrics. For each firm, we also report the average number of days-to-
maturity (Avg DTM), the average Black-Scholes implied volatility (Avg IV), the average Black-
Scholes delta (Avg Delta), and the average Black-Scholes vega (Avg Vega) of available contracts.
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Table 3.4: Market Parameter Estimates

Panel A: Parameter Estimates (Physical) - Joint Estimation

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

1.4271 3.5874 0.0026 0.0171 0.0855 0.3496 -0.6918 -0.2173 -1.0798 -1.0355

Panel B: Parameter Estimates (Risk Neutral) - Options-based Estimation

κ̃1κ̃1κ̃1 κ̃2κ̃2κ̃2 θ̃1̃θ1̃θ1 θ̃2̃θ2̃θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2

0.2267 2.9137 0.0590 0.0100 0.0958 0.5678 -0.9135 -0.4934

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index
for the two-factor stochastic volatility model. The reported results in Panel A are from the
joint estimation using the daily S&P 500 index returns and options data. Structural param-
eters in Panel B are estimated using only options data. In both panels, we use OTM call
and put options with moneyness up to 10% over the period 1996-2011. As in Proposition
(3.1), κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
. Therefore, risk neutral parameters

from the joint estimation are κ̃1 = 0.3473, κ̃2 = 2.5520, θ̃1 = 0.0106, θ̃2 = 0.0240.
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Table 3.5: Individual Equity Parameter Estimates

Company Ticker κ̃̃κ̃κ θ̃̃θ̃θ σσσ ρρρ β1β1β1 β2β2β2

Alcoa AA 0.7253 0.0202 0.1612 -0.87 0.3850 1.3159
American Express AXP 0.7663 0.0128 0.1009 -0.91 0.3430 1.3203
Boeing BA 0.7692 0.0235 0.1757 -0.97 0.4108 1.3046
Caterpillar CAT 0.6354 0.0291 0.1984 -0.84 0.3608 1.3215
Cisco CSCO 0.6804 0.0653 0.3599 -0.81 0.4420 1.2508
Chevron CVX 0.9390 0.0097 0.0913 -0.88 0.5816 1.1538
Dupont DD 0.8702 0.0137 0.1310 -0.92 0.4949 1.2888
Disney DIS 0.6995 0.0247 0.1841 -0.89 0.4462 1.2854
General Electric GE 0.5694 0.0093 0.0670 -0.85 0.4968 1.3111
Home Depot HD 0.6912 0.0340 0.2379 -0.83 0.4278 1.3097
Hewlett-Packard HPQ 0.6159 0.0756 0.3967 -0.64 0.4432 1.2458
IBM IBM 0.7717 0.0186 0.1676 -0.78 0.6798 1.2853
Intel INTC 0.8160 0.0295 0.2123 -0.84 0.4322 1.2652
Johnson & Johnson JNJ 0.6492 0.0238 0.2015 -0.95 0.5574 1.0197
JP Morgan JPM 0.8606 0.0193 0.1836 -0.99 0.4483 1.3466
Coca Cola KO 0.3920 0.0291 0.1895 -0.87 0.6077 1.0897
McDonald’s MCD 0.9305 0.0262 0.2109 -0.97 0.4754 1.1359
3M MMM 1.7078 0.0107 0.1569 -0.86 0.5886 1.1752
Merck MRK 1.2259 0.0105 0.1073 -0.89 0.5018 1.2276
Microsoft MSFT 0.7777 0.0108 0.0710 -0.81 0.4513 1.2739
Pfizer PFE 0.8957 0.0210 0.1724 -0.88 0.5067 1.2166
Procter & Gamble PG 0.5107 0.0470 0.3056 -0.85 0.5782 1.0125
AT&T T 0.6972 0.0098 0.0830 -0.93 0.5116 1.2126
United Technologies UTX 0.9778 0.0271 0.2606 -0.83 0.5221 1.2668
Verizon VZ 0.8423 0.0102 0.0970 0.51 0.4719 1.1838
Walmart WMT 0.6533 0.0314 0.2136 -0.86 0.4695 1.1724
Exxon Mobil XOM 1.0785 0.0148 0.1849 -0.94 0.5925 1.1764

Average 0.8055 0.0244 0.1823 -0.820 0.4899 1.2284
Min 0.3920 0.0093 0.0670 -0.990 0.3430 1.0125
Max 1.7078 0.0756 0.3967 0.512 0.6798 1.3466

Note to Table: This table reports the risk-neutral structural parameter estimates for indi-
vidual equities conditional on the structural parameters of the S&P 500 index and the vec-
tors of filtered spot market variance components. This table also reports the persistent beta
βi1 and the transient beta βi2 for individual equity i. The market parameters and spot vari-
ance components are estimated using OTM call and put options over the period 1996-2011
with moneyness up to 10%. For individual equities, we use OTM call and put options with
moneyness up to 10% over the period 1996-2011, where we drop the first five months.
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Table 3.6: Distributional Properties of Spot Idiosyncratic Volatility

Company Ticker Mean Std dev Max Median

Alcoa AA 0.1259 0.1387 0.6879 0.0900

American Express AXP 0.1068 0.1489 0.7138 0.0692

Boeing BA 0.0633 0.0442 0.2484 0.0521

Caterpillar CAT 0.0783 0.0628 0.4395 0.0587

Cisco CSCO 0.1497 0.1328 0.8274 0.0987

Chevron CVX 0.0293 0.0267 0.2126 0.0260

Dupont DD 0.0460 0.0476 0.2526 0.0292

Disney DIS 0.0636 0.0515 0.2661 0.0460

General Electric GE 0.0618 0.0938 0.6134 0.0413

Home Depot HD 0.0741 0.0600 0.3230 0.0510

Hewlett-Packard HPQ 0.1250 0.1231 0.4893 0.0903

IBM IBM 0.0439 0.0482 0.2620 0.0260

Intel INTC 0.1206 0.0882 0.6408 0.0927

Johnson & Johnson JNJ 0.0225 0.0257 0.2340 0.0116

JP Morgan JPM 0.1070 0.1325 0.9138 0.0786

Coca Cola KO 0.0268 0.0308 0.1729 0.0133

McDonald’s MCD 0.0389 0.0345 0.1638 0.0277

3M MMM 0.0297 0.0304 0.1645 0.0180

Merck MRK 0.0438 0.0367 0.2189 0.0358

Microsoft MSFT 0.0749 0.0614 0.4605 0.0647

Pfizer PFE 0.0490 0.0425 0.2021 0.0356

Procter & Gamble PG 0.0256 0.0326 0.2411 0.0103

AT&T T 0.0522 0.0532 0.5365 0.0359

United Technologies UTX 0.0399 0.0374 0.2126 0.0258

Verizon VZ 0.0428 0.0438 0.3520 0.0280

Walmart WMT 0.0436 0.0550 0.2870 0.0193

Exxon Mobil XOM 0.0234 0.0210 0.1556 0.0204

Average 0.0633 0.0631 0.3812 0.0443

Minimum 0.0225 0.0210 0.1556 0.0103

Maximum 0.1497 0.1489 0.9138 0.0987

Note to Table: This table reports the mean, median, standard deviation, and maximum of spot
idiosyncratic variance for every firm i conditional on the structural parameters of the S&P 500 in-
dex and filtered spot market variance components. The reported results are based on OTM call
and put index option and individual equity option contracts with moneyness up to 10% over the
period 1996-2011.
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Table 3.7: Goodness of Fit

In-Sample Out-of-Sample

Ticker Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

AA 1.84 1.87 5.32 2.24
AXP 1.82 1.79 5.66 2.14
BA 1.41 1.35 4.42 1.97
CAT 1.50 1.47 4.59 1.68
CSCO 2.14 2.12 5.74 2.23
CVX 2.02 1.95 7.94 2.24
DD 1.42 1.41 5.14 1.53
DIS 1.75 1.69 5.66 1.97
GE 1.84 1.86 6.71 1.93
HD 1.58 1.54 4.98 1.72
HPQ 1.53 1.53 4.33 1.87
IBM 1.46 1.42 5.24 1.61
INTC 1.56 1.58 4.38 1.68
JNJ 1.42 1.40 6.41 1.65
JPM 1.85 1.82 5.76 2.08
KO 1.54 1.46 6.34 1.62
MCD 1.34 1.33 5.11 1.59
MMM 1.41 1.39 5.60 1.74
MRK 1.36 1.41 5.09 1.46
MSFT 1.67 1.64 5.34 1.75
PFE 1.49 1.46 5.10 1.73
PG 1.39 1.37 6.19 1.39
T 1.98 1.96 7.58 2.21
UTX 1.48 1.44 5.41 1.54
VZ 1.56 1.55 5.96 1.59
WMT 1.57 1.55 6.02 1.76
XOM 1.66 1.63 6.77 1.82

Average 1.61 1.59 5.66 1.81

Note to Table: This table reports goodness-of-fit statistics for individual equity options. In-sample
statistics are computed using options over the entire sample, 1996-2011. All numbers are in per-
centage points. We compute the Vega-weighted root mean squared error (Vega RMSE) along with
the implied volatility root mean squared error (IVRMSE). We also report the ratio of IVRMSE
over the average Black-Scholes implied volatility. We also report out-of-sample Vega RMSE over
the period 2004-2011, given the in-sample parameter estimates, market spot variance components,
and spot idiosyncratic variance over the period 1996-2003.
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Figure 3.1: Market Delta of Equity Call Options
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Note to Figure: This figure plots the sensitivity of the model-implied equity call option prices with respect to
the level of market index for different sets of betas. Panel A shows this sensitivity following the calibration
in in one-factor structure model of Christoffersen et al. [2015] while Panels B and C are the sensitivity in
our two-factor structure model. Panel B, shows market delta when persistent beta is constant and Panel C
is market delta when transient beta is constant.
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Figure 3.2: Persistent Market Vega of Equity Call Options
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Note to Figure: This figure plots the sensitivity of the model-implied equity call option prices with respect
to the persistent variance component for different sets of betas. Panel A shows this sensitivity following
the calibration in in one-factor structure model while Panels B and C are the sensitivity in our two-factor
structure model. Panel B, shows the persistent market vega when transient beta is constant and Panel C
is the persistent market vega when persistent beta is constant. Note also that for all the graphs the total
unconditional equity variance is fixed, ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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Figure 3.3: Transient Market Vega of Equity Call Options
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Note to Figure: This figure plots the sensitivity of the model-implied equity call option prices with respect
to the transient variance component for different sets of betas. Panel A shows this sensitivity following
the calibration in in one-factor structure model while Panels B and C are the sensitivity in our two-factor
structure model. Panel B, shows the transient market vega when persistent beta is constant and Panel C
is the transient market vega when transient beta is constant. Note also that for all the graphs the total
unconditional equity variance is fixed, ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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Figure 3.4: Persistent and Transient Betas and Implied Volatility Term Structure
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Note to Figure: This figure plots the model-implied volatility for at-the-money equity call options with
respect to the time-to-maturity for different sets of betas. Panel A shows the term-structure effect following
the one-factor structure model and Panel B replicates the same IV structure with our two-factor structure
model. Panels C shows IV term structure when persistent beta βi1 is constant and Panel D shows IV term
structure when transient beta βi2 is constant. Note that for all the graphs the total unconditional equity
variance is fixed, ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. We also fix the total unconditional risk-neutral
market variances to 0.05, with θ̃1 = 0.006 and θ̃2 = 0.044. Therefore, the unconditional idiosyncratic equity
variance for every set of betas can be defined by θi = ṽi − (βi1)2θ̃1 − (βi2)2θ̃2. The spot market variance
components are set equal to v1,t = 0.012 and v2,t = 0.048 and the total spot equity variance is vit = 0.05.
Consequently, we define the spot idiosyncratic variance for different sets of betas as ξit = vit − (βi1)2v1,t −
(βi2)2v2,t. We choose the remaining structural parameters of the market and equity dynamics as follows:
{κ̃1 = 0.18, κ̃2 = 2.8, σ1 = 3.6, σ2 = 0.29, ρ1 = −0.96, ρ2 = −0.83} and {κ̃i = 0.8, σi = 0.2, ρi = 0}. We keep
the risk-free rate at 4% per year and the ratio of spot index price over spot equity price is equal to Sit/St = 0.1.
Note that the Y axis is Implied Volatility
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Figure 3.5: Persistent and Transient Betas and Implied Volatility Across Moneyness
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Note to Figure: This figure plots the model-implied volatility for three-month equity call options with respect
to the moneyness (S/K) for different sets of betas. Panel A shows the IV moneyness slope following the one-
factor structure model and Panel B replicates the same IV moneyness slope with our two-factor structure
model. Panels C shows IV moneyness slope when persistent beta βi1 is constant and Panel D shows IV
moneyness slope when transient beta βi2 is constant. Note that for all the graphs the total unconditional
equity variance is fixed at ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note also that the Y axis is Implied Volatility.
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Figure 3.6: Persistent and Transient Variances Risk Premiums and Implied Volatility Smile
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Note to Figure: This figure plots the difference between model-implied volatility for three-month equity call
options with respect to the moneyness (S/K) for different sets of betas. The implied volatility difference
is the difference between IV when λ1 = λ2 = −0.5 and when λ1 = λ2 = 0. Panel A shows the effect of
market variance risk premium on equity option skew (slope of IV curve) following the calibration in one-
factor structure model while Panel B replicates the same effect in our two-factor structure model. Panels
C shows IV difference when persistent beta βi1 is constant and Panel D shows IV difference when transient
beta βi2 is constant. Note that for all the graphs the total unconditional equity variance is fixed, ṽi =
(βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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