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Abstract 

This short review paper revisits the progress achieved in the last 10-15 years in the field of 
hybrid electrochromic materials, synthesized through sol-gel methods.During the recent decade, 
new avenues have been opened, exploring new concepts and particularly interesting applications 
of electrochromism.  In this paper, we will discusssome of the new research directions in the 
field of electrochromism, together with novel applications of many electrochromic hybrid 
oxides.   The most important incentive for enhanced properties of traditional materials has been 
the advent of nanotechnology. The discoveries in the field of synthesis of nanomaterials enabled 
to expand the materials and connect the morphological features of nanoparticles to the 
electrochromic properties at the macro level. This was possible because of the emergence of the 
new and more elaborate characterization methods, enabling to unveil hitherto unknown structural 
and morphological properties of electrochromic materials.It is important to mention the 
development of novel hybrid materials with significantly improved EC properties, where 
tungsten oxide is associated with carbonaceous materials such as MWCNT or graphene. These 
hybrid materials with enhanced EC properties, compared to the inorganic hybrids, will be 
remarkable in the future,for a series of novel applications.Retracing briefly the history of EC 
hybrid materials and summarizing the principal achievements will be useful not only for 
researchers in the field but for a wider readership as well. 

Keywords: Hybrid electrochromic materials, sol-gel methods, electrochromism, hybrid oxides, 

nanomaterials 
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1. Introduction 

Electrochromism is a reversible change in the optical properties (color, transparency) of a 

material,in response to an applied voltage. Since its discovery (Deb called electrochromism (EC) 

a “novel electrophotographic system”)[1, 2], substantial efforts have been made to study the 

electrochromic (EC) materials, their properties and applications in devices, principally, in smart 

windows. In the beginning, the electrochromic materials were mostly transition metal oxides and 

their thin films were prepared by costly physical vapor deposition methods [3, 4].  

Later on, hybrid materials consisting of two transition metal oxides, a transition metal oxide and 

organic molecules, or conducting polymers, often displaying multi-electrochromism, have been 

developed. At the same time, the fabrication methods have been diversified and new, less costly 

methods have been discovered and, among them, a prominent place is occupied by the sol-gel 

methods. 

EC characteristics of transition metal oxides arise from the reversible redox reactions of the 

transition metal ions, that is, the electron-ion double injection/extraction, under the applied 

voltage. In the inorganic materials, the EC performances are mainly governed by the redox 

reaction characteristics, that is, the amount of reduced/oxidized metal ion (i.e.coloration center) 

and the switching kinetics [5, 6]. During the recent decade, new avenues have been opened, 

exploring new concepts and particularly interesting applications of electrochromism.   

Tremendous progress has been achieved in the last 10-15 years. Not only that many new 

materials have been developed, by using a great variety of methods, but, somehow, the 

applications of EC materials shifted, from “smart windows” applications to entirely new fields. 

There are a number of invaluable research and review papers well worth to revisit in order to 

have a better idea about the developments in the field [7-15]. It is felt that it is worth 

summarizing some of the new research directions in the field of electrochromism such as, for 

example, tungsten oxide – graphene (and derivatives) nanocomposites, tungsten oxide – multi-

walled carbon nanotube hybrids, described in section 4 of this review.      In this short review 

paper, we will discuss these, together with some of the better known properties and applications 
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of EC hybrid oxides. Retracing briefly the history of EC hybrid materials and summarizing the 

principal achievements will be useful for researchers in the field. 

As this review is focused on electrochromic materials prepared through sol-gel methods, a short 

introduction to sol-gel chemistry it is believed to be useful. 

The sol-gel chemistry was developed more than forty years ago and the new technology 

gradually replaced the tedious, high-temperature processes used for thousands of years for the 

fabrication of ceramic and glassy materials.A number of very good review papers [16-18] cover 

the science of the sol-gel process as well as the most important aspects of its development, 

starting with the sol-gel fabrication of silicon oxide and transition metal oxides and hybrids, and 

the discovery of inorganic-organic hybrids, having today extremely important applications. 

In the present paper, dedicated to hybrid metal oxide electrochromic materials, only short 

background information on the sol-gel process will be given. The interested reader can gather 

more information by consulting the review papers [16-18].   

2. Synthesis of transition metal oxides and hybrids by the sol-gel process 

The sol-gel process is based on the hydrolysis and condensation of molecular precursors, 

performed under mild conditions. Two chemical ways are presently used to form the solid phase 

network: the metal-organic route, using metal alkoxides in organic solvents and the inorganic 

route, using metal salts (chlorides, nitrates, sulfides, etc.) in aqueous solutions. The route using 

alkoxide precursors appears as the most versatile one. Mixed inorganic and organic precursors 

can also be used to fabricate hybrid materials.The sol-gel process starts generally with the 

alcoholic solution of a metal alkoxide precursor, M(OR)n , were R is an alkyl group. Hydrolysis 

of metal alkoxides produces hydroxyl groups, and by their poly-condensation a three-

dimensional network is formed. The two reactions – hydrolysis and poly-condensation occur 

simultaneously and generate low molecular weight by-products such as alcohol and water. Both 

reactions occur by nucleophilic substitution (SN) which involves three steps: nucleophilic 

addition (AN), proton transfer within the transition states, and removal of the protonated species 

(alcohol, water).The process ends with the formation of a tetrahedral SiO2 or MOx network [19]  
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Due to their high reactivity, the sol-gel process in the case of metal alkoxides can be carried out 

without using a catalyst. The condensed species are forming oligomers, oxo polymers, colloids, 

gels or precipitates. Oxo polymers and colloidal particles give rise to sols which can be gelled, 

dried and densified in order to get powders, films or monolithic glasses. A schematic of the sol-

gel process, leading to the different end products is shown in Figure 1. The figure shows the 

different products that can be obtained through the sol-gel process.  Once the sol is formed by 

hydrolysis and poly-condensation of the starting material, depending on the intermediate 

processes (coating, gelling, precipitating, etc.), a variety of end product can be obtained. The rate 

of condensation (poly-condensation or polymerization) of inorganic precursors can be controlled 

via the chemical modification of alkoxides with complexing ligands such as, for example, 

acetylacetone. Using complexing ligands is very important in the sol-gel process as they can 

moderate the rate of the hydrolysis and condensation reactions. Drying under normal conditions 

gives a xerogel that have a high surface area and porosity and can be densified. Depending on the 

post-processing, monoliths, films, fibers or powders can be obtained directly from the gel state. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Fig.  1.  Possible end products of the sol-gel processes (Reproduced with permission from 

reference [16]). 

In addition to the fabrication of electrochromic materials, sol-gel methods have today numerous 

applications such as the synthesis of ferroelectric coatings for condensers, waveguides, the 

fabrication of optical fibers for optical telecommunication, ceramic superconductors, protection 

of metals, etc. A fascinating new field of research in materials science is the sol-gel fabrications 

of hybrid structures such as ormosils, a new type of nanocrystalline material, containing 

luminescent dyes and SiO2 for self-tuning lasers, solar collectors, elements for nonlinear optics, 

sensors, biological markers, etc. More applications are included in Figure 2.  

 

Fig.2. Applications of sol-gel method according to Sakka (Reproduced with permission from ref. 

[17]).  

Mixed metal alkoxide systems are of great interest because of the potential properties and 

applications they provide. The structure and morphology of the resulting network depend on the 

relative chemical reactivity of the two metal alkoxides that is a function of degree of 
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unsaturation. The extent of unsaturation is given as (N-Z) where N is the coordination number of 

the atom in the stable oxide network and Z is the oxidation state [18].  

Elements such as Ti, Zr, Al and B with high unsaturation have much higher reactivities.  The 

sequence of reactivity is as follows: 

Zr(OR)4, Al(OR)3>Ti(OR)4> Sn(OR)4> Si(OR)4 

Chelating additives such as glycols, acetic acid, etc. have been used to slow down the rate of the 

hydrolysis and condensation reactions.  

Inorganic precursors in aqueous solution are less expensive than metal alkoxides and more 

appropriate for industrial applications. 

In the following section, the most important hybrid (composite) electrochromic oxides, their 

preparation through a sol-gel process, and their most important properties are described.  

3. Hybrid electrochromic inorganic oxides 

3.1 Hybrid electrochromic materials based on tungsten oxide 

The transition metals whose oxides display electrochromic properties are shown in the 

periodic table of elements below. 
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Fig 3. Electrochromic oxides showing both cathodic and anodic coloration (Reproduced with 

permission from Ref. [20]). 

EC oxides are classified as cathodically and anodically coloring, depending whether they are 

colored (or transparent) in their reduced (or oxidized) states as shown below. The most 

representative cathodically coloring oxide is WO3, while NiO is the most used anodically 

coloring material [20]: 

[WO3 + H+ + e- ] transparent  ↔ [HWO3] colored       cathodic coloration 

and:  

 [Ni(OH)2]  transparent  ↔ [NiOOH + H+ + e-] colored   anodic coloration 

Many other inorganic materials have been studied for their electrochromic properties such as 

Prussian Blue, oxides of V, Mo, Nb, and Ti (cathodically coloring), and oxides of Ni, Co, and Ir 

(anodically coloring) The most commonly used oxides are based on tungsten and nickel, which 

exhibit cathodic and anodic electrochromism, respectively, according to the highly schematic 

reactions for the case of proton insertion/extraction. 

Tungsten oxide is still the best electrochromic material, the most studied for devices such as 

smart windows, rear and side view mirrors, sunroofs, etc., and most hybrid materials were, and 

still are prepared by doping WO3 with other transition metals. This section is devoted to hybrid 

transition metal oxides based on WO3. Hybrid materials can be designated in two ways, either by 

showing the main component, for example WO3 and separately the dopant, WO3 : X (X = doping 

transition metal), or, showing, distinctly, the two transition metal oxides, for example WO3.XO. 

Sometimes, hybrid oxides are called composite oxides or binary combination of oxides as well. 

Transition metal oxides have similar electronic structures, with empty d bands that will be 

populated when cathodic charge injection takes place. The color change happens by inter-band 

transitions [21].  

The first comprehensive review on inorganic electrochromic materials, prepared through a sol-

gel process, was published in 1997 by Aegerter et al [22] and it is today still a good reference for 
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the hybrid materials known at the end of the last century. In order to show the progress in this 

field, a table that contains the pure and hybrid materials known at that time, is reproduced here. 

Table 1 Electrochromic materials prepared through a sol-gel process (Reproduced with 

permission from reference [22]). 

Material State Color 
WO3 
WO3-TiO2 
WO3-MoO3 
MoO3 
CeO2 
CeO2-SnO2 
CeO2-TiO2 
TiO2 
TiO2-Al2O3 
TiO2-Cr2O3 
TiO2-WO3 
TiO2-viologen 
Nb2O5 
Fe2O3 
Fe2O3-TiO2 
SnO2 
V2O5 
V2O5-Na2O 
V2O5-Ta2O5 
V2O5-Nb2O5 
V2O5-TiO2 

a, c 
a 
 
a, c 
 
 
c, * 
 
 
 
 
 
a, c 
 
 
 
c 
 
Powder 
Powder 
a 
 

Blue 
Blue 
 
 
UV 
 
UV 
Grey 
Blue 
Blue 
 
 
a-brown, c-blue 
 
 
 
Green, yellow, red 
 
Grey 
Grey 
Blue, green, yellow, 
reddish-brown 

a-amorphous, c-crystalline, * - material used for counter-electrode 

 

In the 80s, the sol-gel routes for the fabrication of WO3 were based on sodium tungstate as a 

precursor material, but there is today a plethora of precursor molecules both organic and 

inorganic, and, generally, the chemistry of the reactions is well established. [23,24].Very soon, 

new precursors have been tested such as peroxopolytungstic acid, in the beginning, prepared 

from metallic tungsten and tungsten carbide, dissolved in a solution of hydrogen peroxide 

[25,26] and later, from tungsten , hydrogen peroxide solution and acetic or propionic acid 

[27,28]. The method based on peroxopolytungstic acid (PTA) remains one of the best methods to 

prepare tungsten oxide and hybrid oxides, as PTA can easily be mixed with the ethanolic 
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solutions of alkoxides of different transition metals. The ease of doping and the facile control of 

the chemical composition are among the most important advantages of the sol-gel technique. 

Sodium tungstate was also used as a precursor, by preparing first the tungstic acid and stabilizing 

it with oxalic acid [29]. This quite recent work is interesting as, for the first time, the sol-gel 

method for the preparation of tungsten oxide was combined with a physical method, thermal 

evaporation, used for the deposition of MoO3. In this case, the mixing and formation of hybrid 

oxide, happens during the annealing process. The improved coloration efficiency and the short 

response time were accounted for by the disorder created by mixing. The authors don`t discuss 

the possible role of the MoO3 nanorods. 

It is interesting to note that, from the very beginning, the sol-gel method was associated with 

nanotechnology [30].  This idea was validated by the varying synthetic methods that led to a 

diversity of morphologies of electrochromic nano-materials. Generally, it has been shown that 

transition metal oxides in a nanomaterial form exhibit shorter response times and, sometimes, 

enhanced coloration efficiency. However, some authors argue that nanostructuring doesn`t bring 

new functionalities, compared to their bulk counterparts [31- 35]. In the opinion of Wang et al. 

the ideal nanostructures for EC materials may include ultrathin crystalline nanorods, nanowires 

or nanotubes, crystalline mesoporous structures, etc. These nanostructures with large specific 

surface areas are expected to possess fast and stable EC switching. Different kinds of materials 

have to be combined in order to exhibit multi-colors and to enhance the coloration efficiency and 

the stability of devices.  

The connection of electrochromism to the nanostructural features will be emphasized in the case 

of specific examples. In the case of hybrid oxides, the shape of the nanoparticles, corresponding 

to the two materials may be pivotal for determining the EC properties. 

In this section, instead of describing the individual procedures utilized to fabricate the WO3-

based hybrid EC materials, we will show some of the emerging general tendencies, by focusing 

on the mechanisms accounting for improved, or, on the contrary, deteriorated EC properties by 

doping.The mechanisms became more comprehensible as novel data became available, after the 

introduction in the field of new characterization methods. We should note here that the 

emergence of new characterization methods such as XRD, XPS, SEM, EDX, AFM, DTA etc., 

brought about the major advancement in the field of EC materials during the last decades. 
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Many of the studies on hybrid EC materials have shown that, generally, the EC properties of 

tungsten oxide are improved only when doping is carried out by small amounts of dopant (5-

10%) and, when the ionic radii of the two metals are close. It is thought that the improvement is 

the result of the preserving of the amorphous phase of WO3 in the hybrid material, even at 

annealing temperatures when it would, normally, crystallize. For example, when investigating 

the optical and EC properties of sol-gel made anti-reflective WO3-TiO2 films, Zayim, by using 

XRD and XPS, found that even small titania contents can delay the crystallization of WO3 and 

can lead to important structural changes in the tungsten oxide films [36]. Heat-treated sample of 

WO3–TiO2 films (1 and 5 mol %) are crystalline at 4000C, while samples with 10 and 15 mol% 

remain amorphous up to 4000C as shown in Fig. 4. 

 

Fig.4.WO3–TiO2 thin films, heat treated at 4000C for 2 h (Reproduced with permission from 

Ref.36]). 

It was found that the higher the percentage of titanium, the larger the disorder, which leads to a 

delay of the crystallization. [36,37]. For the same hybrid material (WO3-TiO2), it has been 

suggested that, in the presence of TiO2, the polymerization of polytungstate polyanion is delayed. 

The authors believe that replacing the WO6 octahedron by the TiO6 one, led to an increased 

disorder [38]. However, the ionic radius of Ti+4 (0.62Å) is very close to that of W6+ (0.60 Å) and 
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the monoclinic structure of WO3 should be preserved by doping [39]. In the case of mixed films, 

SEM images show an increase in porosity [40].The same general observations can be made in 

the case of WO3 films doped with Mo.  Indeed, hybrid amorphous WO3-MoO3 films with 5-10% 

MoO3 have been prepared via a sol-gel dip coating method [41]. It is believed that MoO3 inhibits 

the growth of the WO3crystal grains from the solid solution as the ionic radius of the Mo6+ 

(0.59Å) is very close to that of the W6+ ions (0.60Å). Moreover, the surface morphologies of the 

hybrid 5-10% MoO3 in the WO3 films studied by SEM illustrated the high roughness, compared 

with the pure WO3 film, leading to a high interface between the electrochromic hybrid film and 

Li-based electrolyte. However, when the spray pyrolysis method was used for the deposition, the 

WO3 films with 2% molybdenum oxide exhibited the maximum optical density at 633 nm and 

showed high coloration efficiency and short response time, compared to the pure WO3 film. The 

results were explained in term of the defects in the two metals [42]. 

Ternary hybrid films based on WO3 have also been prepared and tested. Luo et al. prepared 

TiO2, and MoO3-doped WO3 films by a sol-gel method. The optimum molar ratio of the 

components was found to be WO3:MoO3:TiO2 93:7:5. This particular hybrid oxide has shown 

high coloration efficiency, short response time, and high cyclic stability [43]. 

Gold-doped tungsten oxide films have been included in this class of hybrid oxides for their 

interesting electrochromic properties as well as because of a novel mechanism of coloration due 

to the plasmonic properties of gold nanoparticles.  

A special case of hybrid oxides is that of gold-doped WO3.More recently, preliminary results 

regarding the effect of goldnanoparticles on the electrochromic properties have been reported by 

two groups [44, 45]. Gold was added in the form of a gold precursor (hydrogen chloroauric 

acid) on the surface of the film and, in some cases, the coloration efficiency was found 

improved; however, the mechanism of the involvement of gold is still unclear.  

Macro-porous gold-doped tungsten oxide films have been prepared by our group by a sol-gel 

method [46]. The results have shown that the properties of the gold – WO3 composite films 

depend significantly on the doping method. The films having gold nanoparticles on the surface 

of the film, have shown the best electrochromic behavior, especially regarding the coloration 
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efficiency. The macro-porous films, with, or without gold, show higher coloration efficiencies 

than the compact films, fabricated without a template. 

 

Fig.5. Flow-chart showing the fabrication of the Au – doped WO3 film (Reproduced with 

permission from Ref. [46]). 

Recently, very small gold nanoparticles were synthesized and added to the tungsten oxide 

precursor solution [47]. The EC performance obtained with very small gold nanoparticles (3-5 

nm) was found much improved compared to pure WO3 specifically, in terms of the response 

time. The authors attributed the improved electrochromic properties to an increase in 

conductivity due to gold nanoparticles as well as to Surface Plasmon Resonance (SPR) - based 

absorption.  

Hybrid EC oxides with tungsten oxide used as a dopant, have been prepared as well. For 

example, Pehlivan et al. prepared the niobium oxide-tungsten oxide hybrid film, using niobium 

ethoxide and tungsten chloride as precursors [48]. The authors were interested to see the effect of 
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W doping (5 and 10%, respectively), on the EC properties of Nb2O5. Doping with WO3 was 

found to increase the smoothness of the film surface, that is, the grain size of niobium oxide 

decreases when WO3 is introduced in the film.The total charge injection in Nb2O5 films was 

found improved by WO3doping.It was also observed that crystallized films showed faster 

coloring kinetics than the amorphous films. Larger amounts of tungsten oxide were introduced in 

niobium oxide by Mujawar et al. [49].The authors found that, with the increase in the percentage 

of tungsten oxide, the negative effect on the crystallization of composite WO3–Nb2O5 thin film 

has been observed. Preservation of amorphous structure improves the EC properties of the 

composite WO3–Nb2O5, by offering more conducive channels for the intercalation–de-

intercalation of H+ ions in the thin films. 

It should be reiterated that in the case of all WO3 – based hybrid films, preserving the amorphous 

structure, by using small amounts of dopants, results in improved EC properties.  

 3.2 Hybrid materials based on vanadium pentoxide 

Due to the large lithium intercalation capacity, sol-gel derived vanadium pentoxide (V2O5) has 

generated a significant research interest.V2O5 gels can be used in energy storage/conversion 

devices such as electrochromic (EC) devices, rechargeable lithium ion battery technologies, and 

pseudo capacitor applications. In addition, vanadium pentoxide showed good sensing and 

catalytic properties. Among the different nanostructures for lithium intercalation applications, 

vanadium pentoxide nanotubes and nanorods have been found to be the most promising, 

especially as electrode material for lithium ion batteries.V2O5 shows both anodic and cathodic 

EC properties. However, there are many disadvantages such as poor cycle reversibility and quite 

narrow optical modulation and low coloration efficiency. 

Aiming to improve the low conductivity and the narrow optical modulation of vanadium 

pentoxide and, at the same time, to take advantage of its layered structure, Jin et al. prepared Mo-

doped V2O5 thin films by a combined sol-gel and hydrothermal method [50]. In this work, the 

V2O5 sol was prepared by quenching the melted material in deionized water, while the Mo sol 

was prepared from a peroxopolymolybdate solution and the hybrid sols through a hydrothermal 

reaction. The results have shown that the partial replacement of V by Mo having a larger ionic 

radius, results in an increase in the interlayer distance. The change in the structure of the hybrid 

material was confirmed by FTIR and Raman spectroscopy by small shifts of the vanadium 
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pentoxide bands, as the doping level is too low to see the spectrum of MoO3.The results reveal 

that Mo incorporation remarkably increases the current density and the inserted/extractedcharge 

capacity of Li+ ions.The best EC properties correspond to a 5mole% doping level and in this 

case, multi-electrochromism has been observed (orange → green → blue). The authors explain 

the improved EC properties by the donor defects introduced by doping. 

By doping with TiO2, the doping level of vanadium pentoxide can be increased substantially. As 

shown in Figure 6, the doping level of V2O5 could be increased up to 30% [51,52].  

 

Fig.6. SEM micrographs showing the surface morphology of mixed V2O5-TiO2 system with 

various V/Ti mol ratios, after heat treatment at 500°C for 1 h. (a) V/Ti) 100:0, (b) V/Ti ) 95:5, (c) 

V/Ti ) 90:10, (d) V/Ti ) 80:20, and (e) V/Ti ) 70:30, respectively (The scale bar on all the images 

is 1 µm) (Reproduced with permission from ref.[51]). 

The authors found the presence of randomly oriented rod-like particles in the hybrid films. Ti-

doped V2O5 films were found very strong mechanically. They were found to be amorphous with 

a uniform surface texture. Most importantly, they had a very high coloration efficiency (76 

cm2/C) at 550 nm [52].  

The enhanced intercalation properties (100% corresponding to a 20% doping level) of the hybrid 

is explained by a reduced Li+ diffusion distance as well as by the reduced crystallinity. When 

V2O5 is added to TiO2 or ZrO2 (10% doping level) thin films, the authors found a slight decrease 
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in transmission, increased refractive indices, and improved EC properties. The increase in the 

refractive index can be used to make antireflective and reflective filters. For some of the mixed 

films, the contrast between the colored and bleached states was found improved [53]. 

In a recent paper, He et al. suggested the preparation of the hybrid V2O5-TiO2 by 

electrodeposition of vanadium pentoxide on TiO2 nanorod arrays [54]. The authors combined the 

electrochemical deposition of vanadium pentoxide with a hydrothermal method for the 

fabrication of nanorod arrays of TiO2 using titanium n-butoxide as a precursor (method reported 

in [55]. TiO2 nanorod arrays uniformly covered the surface of the substrate. The array consisted 

of a large collection of one-dimensional nanorods, growing vertically on the substrate. The result 

shows that the hybrid films have a more stable electrochemical response up to 500 cycles and 

good cyclic stability, which suggests the improved performance of V2O5 as an electrochromic 

material in a hybrid structure. The authors explain the improved electrochromic properties by the 

TiO2 nanorod array structure, which contributes to improve the structural stability of the V2O5 

and the intercalation/de-intercalation process of Li+ ions within the V2O5 film. 
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Fig.7.Surface and cross-section SEM images of (a) V2O5, (b) TiO2, (c)TiO2/1cir-V2O5, (d) 

TiO2/4cir-V2O5, and (e) TiO2/8-cirV2O5 (Reproduced with permission from Ref.[54]). 

Layered silver vanadium oxide nanowires have been synthesized by the hydrothermal 

polycondensation of ammonium metavanadate [56]. Figure 8 shows the SEM images of silver 

vanadium oxide nanowires at different magnifications. The top view scanning electron SEM 

images (Figure 2a, b) of the SVO film on ITO glass show that the film is formed by entangled 

nanowires. The film was 500 nm thick, as shown in the image of the cross section in Figure 2c. 

The authors attributed the improved EC properties to the increased electrical conductivity as well 

as to the enlarged interlayer spacing.  
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Fig.8 (a,b)Top-view SEM images of a SVO nanowire thin film on ITO glass. (c) SEM image of 

a cross section of the SVO nanowire thin film on glass. (d,e) Top-view SEM images of a V2O5 

nanowire thin film on ITO glass. (f) SEM image of a cross section of the V2O5 nanowire thin 

film on glass (Reproduced with permission from Ref. [56]). 

The fast response time in the Ag-doped vanadium oxide is accounted for by the faster diffusion 

of Li ion in the film. 

3.3.Other hybrid oxides. 
 
Among other hybrid systems, CeO2  – TiO2 films have been prepared early in the 90s and 

suggested to be used as a passive transparent counter electrode material in electrochromic 

devices [57- 60]. The highest charge intercalation capacity (10 mC/cm2) was found when the 

hybrid oxide had a CeO2-TiO2 ratio of 1:1 [60]. The precursors used for the fabrication of the 

mixed oxides were based, either on cerium and titanium alkoxides, or titanium alkoxide 

combined with inorganic precursors for CeO2   such as ceric ammonium nitrate and the 

deposition of the films was done by spin- or dip-coating. Generally, it was found that the 

microstructure of the hybrid films for low contents of CeO2 consisted of small CeO2 crystallites 

embedded in a TiO2 matrix. For compositions with more than 50% CeO2 in the film, the size of 

crystallite was found much larger (10 to 50 Å).This hybrid oxide appears to be very attractive as 

a transparent counter-electrode in a device using lithium conductors. 
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The CeO2 – TiO2 counter electrode was used in an EC device, in conjunction with WO3/Prussian 

blue and a gel polymer electrolyte [61].  The device revealed a good optical modulation and 

faster coloration/bleaching kinetics of the primary EC electrode than the CeO2 films.  

Plasmonic transparent conductive oxide nanocrystals for selective optical modulation in the near-

infrared region of the solar spectrum have recently emerged as a new type of electrochromic 

materials Among these non-conventional EC materials that use capacitive charge injection in 

nanocrystals, are antimony-doped tin dioxide (Sb: SnO2, ATO) on conductive substrates, tin-

doped indium oxide (ITO) and aluminium-doped zinc oxide (AZO) having plasma frequencies in 

the NIR (1600 nm to 4000 nm) [62].  

The operation of a nanocrystal-based plasmonic EC film and the capacitive nature of the EC 

effect are shown in Figure 9. 

 

 

 

 

 

Fig.9. Depiction of the microscopic operation of a nanocrystal-based plasmonic electrochromic 

film, along with the associated optical changes. (a) In the OFF state, positive potential is applied 

to the nanocrystals, which are depleted of electrons and lithium ions are repelled. (b) In the ON 

state, a negative potential is applied to the nanocrystals, which injects electrons. Lithium ions are 
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attracted to the nanocrystal surface to compensate the injected charge capacitively. (c) Optical 

density changes resulting from electron injection. The increase in carrier density causes a blue 

shift in the LSPR and absorption. (d) Corresponding changes in transmission of the film. Parts 

(c) and (d) adapted with permission from Ref. [63].  

 

4. Novel hybrid EC materials 

In this section, some of the novel, advanced hybrid EC materials are shortly reviewed. “Novel” 

materials are those where traditional EC materials are associated with new materials, discovered 

more recently, materials with remarkable properties. These materials have improved EC 

properties, because of the very good electrical and mechanical characteristics of the compounds 

involved in the hybrids. The novel EC materials represent a new stage in the history of EC 

materials and it is worthwhile to include them in the present review. 

Monolayer graphene has attracted great attention recently due to its high conductivity, good 

transmittance, excellent mechanical strength, high chemical stability and flexibility. The tradeoff 

between high contrast ratio and broad spectral response is another challenge. High contrast ratio 

requires strong optical absorption which limits the efficiency of the bleaching process. The full 

potential of flexible electrochromic devices is not yet realized. These technologies would benefit 

from a material which is mechanically flexible, electrically conductive and optically tunable in a 

broad spectrum. Multilayer graphene (MLG) provides all these requirements and yields a new 

perspective for optoelectronic device simplicity, high optical contrast and broad band operation.  

 

4.1 Tungsten oxide – graphene (and derivatives) nanocomposites. 

Novel hybrid electrochromic composites, based on graphene and its derivatives such as graphene 

oxide (GO) and chemically reduced graphene oxide (RGO) with very good electrochromic 

performance, have been synthesized by using different approaches [64-66].   One dimensional 

tungsten oxide nanomaterials such as nanowires and nanorods and arrays on conductive 

substrates are especially promising platforms for practical EC applications. 

Sandwich-structured tungsten oxide-reduced graphene oxide composites have been obtained by 

using a simple solvothermal synthesis [64]. The authors show that, in spite of a lower electrical 

conductivity of the reduced graphene oxide, compared to graphene, the EC properties of the 

composite have been found considerably enhanced. The fast switching time, good cyclic 
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stability, and high coloration efficiency are due to the covalent bonding between the tungsten 

oxide nanowires and the oxygen containing groups on the reduced graphene oxide sheets. 

Very high coloration efficiency (96.1  cm2/C) and good response time have also been obtained 

by using an electrochemical deposition method [65]. An advantage of the proposed method is to 

provide a one step reduction of both the tungsten oxide precursor and the graphene oxide. It has 

to be noted that all the  graphene and derivatives composites can be identified by the two 

characteristic  Raman bands at 1363 cm-1 (D band) and 1595 cm-1(G band). 

-5 

 

Fig.10. Schematic of formation mechanismof  tungsten nanowire-RGO composite (Reproduced 

with permission from Ref. [64]). 

A simple sol-gel method using a mixture of peroxotungstic acid with reduced graphine oxide has 

been devised by Zhao et al. [67].The porosity of the material originates from the pyrolysis of 

ethylene glycol used to reduce the graphene oxide. The composite was deposited on the ITO 

substrate by spin-coating. Because of the porous structure and the increased conductivity, the EC 

properties are considerably improved in the composite material. As it can be seen in Figure 11, 

the optical modulation is increased and the cyclic stability and response times are improved as 

well. 
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Fig.11.The UV-Vis transmittance spectra of the WO3 and WO3/rGO composite films 

(Reproduced with permission from Ref. [67]). 

4.2 Tungsten oxide – Multi-walled carbon nanotube hybrids. 

Nanostructured WO3 thin films have been prepared by a sol-gel method, mixing multiwall 

carbon nanotubes (MWNTs) with peroxotungstic acid [68]. Lithium dodecyl sulfate (LDS) (1%) 

was added to the MWCNT suspension and the tubes were dispersed ultrasonically. MWCNTs 

provided the mechanical reinforcement of electrochromic films, enhancement of electronic 

conductivity, and a significant improvement of the lithium ions diffusion rate. However, the 

bleaching time was found long (380 s) because some of the Li ions were entrapped in the WO3 – 

MWCNT network as seen in the figure. 

 

Fig.12. Schematic representation of the combination of carbon nanotubes with electrochromic 

materials (Reproduced with permission from Ref. [68]). 
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The quality and EC properties of the WO3-MWCNT hybrid were found much improved by using 

only small amounts (0.1-0.2 wt.% ) carbon nanotubes [69].The authors have demonstrated that 

the improved properties, especially, the very fast response times, are due to the amorphous, 

highly porous structure of the composite (see Figure 13). 

 

Fig. 13. Surface morphology of  as-prepared films. (a) Pristine, (b) 0.05 wt. %, (c) 0.10 wt.%, 

and (d) 0.20 wt.% MWCNT additions (Reproduced with permission from Ref.[69]).  

4.3 Hybrid mesostructured electrochromic materials prepared by a sol-gel method in presence of 

structure-directing agents. 

It can be argued that mesostructured tungsten oxide is not really a composite material. However, 

as mesoporous (or macro-porous) materials result from composites of tungsten oxide with 

polymers or amphiphilic block copolymers that would generate the mesoporous structure, 

including them in the category of composites is justified. 

Mesoporous tungsten oxide with pores in the size range of 2 to 20 nm has been prepared by 

using various structure-directing agents and strategies [70-72]. 
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After the preparation of the composite, solvent extraction and calcination methods are used to 

remove the templating agent. The TEM images show clearly the mesoporous structure of 

tungsten oxide: 

 

Fig.14.TEM image of mesoporous tungsten oxide, after ethanol extraction (Reproduced with 

permission from Ref. [70]). 

The improved EC performance, especially, the higher rates of coloring and bleaching, compared 

to the “standard” sol-gel tungsten oxide, is accounted for by the high surface area of the structure 

that allows a better access of the electrolyte to the tungsten oxide. 

Both amorphous and highly crystalline monoclinic mesoporous tungsten oxide have been 

prepared by using a novel block copolymer, poly (ethylene-co-butylene)-block-poly (ethylene 

oxide, possessing superior templating properties [73]. The authors achieved 3D mesoporosity by 

using the evaporation-induced self-assembly method. They show that a combination of 

mesoporosity and crystallinity leads to an improved reversibility of the insertion/extraction 

process, a parameter critical for device application. 

Kattouf et al. have integrated the mesoporous tungsten oxide film into a proton-based all-solid-

state device [74]. Mesoporosity was created into the tungsten oxide network by using a 
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commercially available tri-block copolymer, Pluronic P123. Mesoporous WO3 films were 

infiltrated with Nafion and a thick Nafion layer on the top of the electrode was used as a proton 

reservoir for the device. The authors found a dramatic reduction of the switching times (5.9 s for 

coloring and only 1.6 s for the bleaching time). 

Our group has recently reported the preparation of porous vanadium pentoxide nanorods by 

using templating methods [75, 76]. The effect of meso- and macroporosity on the optical and EC 

properties of sol-gel prepared V2O5 films was examined. Polystyrene microspheres were used for 

the fabrication of the macroporous film and a tri-block copolymer template for generating 

mesoporosity.  The preparation of the porous films is shown in Figure 15 and the SEM image of 

the film heat-treated at 5000C is given in Figure 16. 

 

Fig.15. Flow-chart showing the fabrication of the V2O5xerogel and the porous films (Reproduced 

with permission from Ref. [75]). 
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Fig.16. SEM image of one nanorod obtained  after annealing the film at 5000C (Reproduced with 

permission from Ref. [75]). 

 

Fig.17.Macroporous structure of the V2O5 film (Reproduced with permission from Ref. [75]). 

The electrochromic properties of the vanadium oxide nanorods proved to be different from the 

layered film: the cyclic voltammogram displayed additional redox peaks, the optical 

modulationwas found to be larger in the near-infrared region than in the visible, giving 
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surprisingly high coloration efficiency. It is believedthat the morphological transformation takes 

place under the effect of a prolonged heating, through a rolling up mechanism, starting with the 

layer in direct contact with the surface of the substrate. 

4.4 Electrochromic “paper-quality” self-supporting displays. 

Electrochromic displays with comparable optical qualities to paper-based display media must 

approach the optical qualities of paper (contrast ratio, high diffusively reflective properties)    

and   meet key requirements in terms of readability, switching speed, and stability. 

The structure of these devices isshown below in Fig. 18. 

 

Fig.18. Device cross-section of a Nano Chromick display device (Reproduced with permission 

from Ref. [77]). 

The working electrode is composed of a nanocrystalline n-type metal oxide, modified with 

electrochromophoric molecular species, usually a redox active viologen derivative, chemically 

tethered to the surface of the nanocrystalline electrode [78]. It colors when an applied potential 

causes the accumulation of electrons in the bandgap of the semiconductor and the transfer of the 

electrons to the adsorbed viologen. The adsorption of the viologens enhances the switching 

speed.  

The general structure of the viologen molecule is shown in Figure 19. 
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Fig.19.General structure for the viologens modifying the titania surface. 

The chromophores diffuse or migrate to the electrode, forming a monolayer on the electrode 

surface, where they undergo oxidation or reduction with an associated color change. 

For paper-quality display applications, a black-on-white contrast would be ideal and can be 

obtained by synthesizing viologens with different R substituents. The device using a viologen 

giving the darkest black coloration is shown in Figure 20: 

 

Fig.20.Picture of coloured Nano Chromics device (Reproduced with permission from Ref. [78]). 
 
Such systems exhibit superior reversibility, relative to that of thin film-type devices, because the 

coloration and decoloration processes occur without ionic intercalation. 

 
Viologen-based ECDs, incorporating ITO nanorods as electrodes exhibited much higher optical 

contrast ratios than those of devices incorporating only plain ITO electrodes [79].  The ITO 

nanorods functioned as optical amplifiers in the viologen-based ECDs, increasing the color 

contrast   ∆T (%)] from 38% to 61%. 

For a review on the different types of EC devices, the interested reader can see the Invited review 

article for ‘Displays’ special issue on Organic/Polymeric Displays [80]. 
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In summary, materials such as graphene, reduced graphene oxide, carbon nanotubes as well as 

composite materials, leading to meso- or macro-porous materials, when associated to tungsten 

oxide, enhance significantly the EC characteristics. It is extremely important to understand the 

mechanism by which the EC properties are improved as this will allow to expand and diversify 

more and more these novel hybrids for a variety of applications. 

 
 

5. Conclusion and outlook 
 
In summary, the work done for the past two decades had brought many novelties in the field of 

hybrid EC materials. The most important incentive, for enhanced properties of traditional EC 

materials, has been the advent of nanotechnology. Indeed, the morphological features of newly 

discovered nanomaterials, by increasing the surface area and reducing the diffusion path(s) of Li 

ions, led to increased coloration efficiency, shorter coloration and bleaching times, and increased 

cyclic stability.  The discoveries in the field of synthesis of nanomaterials enabled to expand the 

EC materials and connect the morphological features of nanoparticles to EC properties at the 

macro level. This was possible because of the emergence of the new and more elaborate 

characterization methods, enabling to unveil hitherto unknown structural and morphological 

properties of electrochromic materials. 

Sol-gel methods of synthesis of nanomaterials present many advantages, the preparation of 

hybrid oxides taking advantage from the ease of doping. However, it has to be mentioned that 

during the last decade, it has proved beneficial to combine sol-gel synthesis with other solution-

based methods, especially the hydrothermal synthesis. Moreover, sol-gel methods have been 

often used in combination with physical deposition techniques, the formation of the hybrid 

oxide, occurring during the annealing step.  

It is important to mention the development of novel hybrid materials with significantly improved 

EC properties, where tungsten oxide is associated with carbonaceous materials such as MWCNT 

or graphene. These hybrid materials with enhanced EC properties, compared to the inorganic 

hybrids, will be in the future remarkable for a series of novel applications. It can be foreseen that 

the applications of these novel hybrids will move away from the more traditional energy efficient 

smart windows.  Instead of using the traditional materials for smart windows applications, a new 

type of electrochromism, based on NIR-selective plasmonic nanocrystals, is advancing the field. 
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