
AN EMPIRICAL STUDY ON THE DISCREPANCY

BETWEEN PERFORMANCE TESTING RESULTS FROM

VIRTUAL AND PHYSICAL ENVIRONMENTS

Muhammad Moiz Arif

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Software Engineering

Concordia University

Montréal, Québec, Canada

August 2017

c© Muhammad Moiz Arif, 2017

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Muhammad Moiz Arif

Entitled: An Empirical Study on the Discrepancy between Perfor-

mance Testing Results from Virtual and Physical Envi-

ronments

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Software Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. R. Jayakumar Chair

Dr. T. Eavis Examiner

Dr. J. Rilling Examiner

Dr. E. Shihab Supervisor

Dr. W. Shang Co-supervisor

Approved

Chair of Department or Graduate Program Director

20

Dean

Faculty of Engineering and Computer Science

Abstract

An Empirical Study on the Discrepancy between Performance Testing

Results from Virtual and Physical Environments

Muhammad Moiz Arif

Large software systems often undergo performance tests to ensure their capability

to handle expected loads. These performance tests often consume large amounts

of computing resources and time in order to exercise the system extensively and

build confidence on results. Making it worse, the ever evolving field environments

require frequent updates to the performance testing environment. In practice, virtual

machines (VMs) are widely exploited to provide flexible and less costly environments

for performance tests. However, the use of VMs may introduce confounding overhead

(e.g., a higher than expected memory utilization with unstable I/O traffic) to the

testing environment and lead to unrealistic performance testing results. Yet, little

research has studied the impact on test results of using VMs in performance testing

activities.

In this thesis, we evaluate the discrepancy between the performance testing results

from virtual and physical environments. We perform a case study on two open

source systems – namely Dell DVD Store (DS2) and CloudStore. We conduct the

same performance tests in both virtual and physical environments and compare the

performance testing results based on the three aspects that are typically examined for

performance testing results: 1) single performance metric (e.g. CPU usage from virtual

environment vs. CPU usage from physical environment), 2) the relationship between

two performance metrics (e.g. correlation between CPU usage and I/O traffic) and

iii

3) statistical performance models that are built to predict system performance. Our

results show that 1) A single metric from virtual and physical environments do not

follow the same distribution, hence practitioners cannot simply use a scaling factor to

compare the performance between environments, 2) correlations among performance

metrics in virtual environments are different from those in physical environments and 3)

statistical models built based on the performance metrics from virtual environments are

different from the models built from physical environments suggesting that practitioners

cannot use the performance testing results across virtual and physical environments.

In order to assist the practitioners leverage performance testing results in both

environments, we investigate ways to reduce the discrepancy. We find that such

discrepancy may be reduced by normalizing performance metrics based on deviance.

Overall, we suggest that practitioners should not use the performance testing results

from virtual environment with the simple assumption of a straightforward performance

overhead. Instead, practitioners and future research should investigate leveraging

normalization techniques to reduce the discrepancy before examining performance

testing results from virtual and physical environments.

iv

Acknowledgments

I would like to show my gratitude towards the people whose support and encourage-

ment proved to be colossal throughout this journey. However, first, I thank Allah, for it

is He who provided me with wisdom, health, capabilities, and desire to achieve my goals.

My sincerest and deepest gratitude goes to my academic supervisors, Dr. Emad

Shihab and Dr. Weiyi Shang. From the time of of accepting me as a student to the

never giving up attitude till the end, I thank you. All my work, results, and the

learning experiences would have been meaningless if it was not for your guidance,

mentorship and undying support. I consider myself very lucky to have had the oppor-

tunity to learn from you.

I would like to acknowledge my thesis committee, Dr. Juergen Rilling and Dr.

Todd Eavis for taking the time out to read my thesis and providing valuable and

constructive feedback. I also thank the Department of Engineering and Computer

Science at Concordia University, for making my graduate experience immaculate.

I am grateful to Dr. Thanh Nguyen with whom I worked under at Blackberry. His

work remains the core of my thesis. I am indebted for the opportunity, exposures and

practical suggestions provided.

v

I owe a debt of gratitude to all my fellow colleagues, Rabe Abdalkareem, Davood

Mazinanian, Maaz Hafeez Ur Rehman, Shahriar Rostami, Maxime Lamothe, Guil-

herme Padua, Jinfu Chen, Kundi Yao, Suhaib Mujahid, Giancarlo Sierra, & Olivier

Nourry. It was a pleasure to share the same labs as you guys. I wish you all immense

success in your journeys.

It is a pleasure to thank my friends who inspired and supported me tirelessly

through thick and thin. A especial thanks to Everton da Silva Maldonado, Ahmed

Sukhera, Syed Ali Sattam, Mehran Hassani, & Ahmad Al-Sheikh Hassan. You guys

always fueled me with utmost motivation. I am proud to call you my closest friends.

Finally, to my parents, I do not think I can thank you enough for all that you have

done for me. I thank my sisters, Nada, Aymen, and especially Beenish. I am grateful

for the unfailing support and the continuous encouragement throughout the process

of researching and completing my graduate studies.

vi

Dedication

To my parents.

vii

Related Publications

The following publications are related to this thesis:

1. Muhammad Moiz Arif, Weiyi Shang, & Emad Shihab. Empirical Study

on the Discrepancy between Performance Testing Results from Virtual and

Physical Environments. In Empirical Software Engineering Journal (EMSE),

2017. [Major Revision]

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Introduction . 1

1.2 Research Hypothesis . 4

1.3 Thesis Overview . 4

1.4 Thesis Contributions . 6

2 Background And Literature Review 7

2.1 Background . 7

2.1.1 Performance Testing . 8

2.1.2 What are the differences between load testing, stress testing

and performance testing? . 10

2.2 Literature Review . 12

2.2.1 Analyzing performance testing results 12

2.2.2 Analysis of VM overhead . 15

2.2.3 Performance testing and bug detection 16

3 Studying The Presence Of Discrepancy 17

3.1 Approach . 19

ix

3.1.1 Subject Systems . 19

3.1.2 Environmental Setup . 19

3.1.3 Performance tests . 21

3.1.4 Data collection and preprocessing 21

3.1.5 Are the trend and distribution of a single performance metric

similar across environments? 22

3.1.6 To what extent does the relationship between the performance

metrics change across environments? 29

3.1.7 Can statistical performance models be applied across virtual

and physical environments? 33

4 Discussion On The Impact From Other Factors 43

4.1 Investigating the stability of virtual environments 43

4.2 Investigating the Impact of Specific Virtual Machine Software 44

4.3 Investigating the Impact of Allocated Resources 45

4.4 Threats to Validity . 46

4.4.1 External validity. 46

4.4.2 Internal validity. 46

4.4.3 Construct validity. 47

5 Summary, Contributions And Future Work 49

5.1 Summary of the Addressed Topics . 49

5.2 Contributions . 50

5.3 Actionable Contributions . 51

5.4 Future Work . 52

6 Appendix 53

x

List of Figures

1 Test execution phases . 8

2 Overview of our case study setup. 18

3 Q-Q plots for DS2. 26

4 Q-Q plots for CloudStore. 27

5 Heatmap of correlation changes for DS2. 31

6 Heatmap of correlation changes for CloudStore. 32

7 Q-Q plots for DS2’s Web Server . 54

8 Q-Q plots for DS2’s Web Server . 55

9 Q-Q plots for DS2’s Web Server . 56

10 Q-Q plots for DS2’s Web Server . 57

11 Q-Q plots for DS2’s DB Server . 58

12 Q-Q plots for DS2’s DB Server . 59

13 Q-Q plots for DS2’s DB Server . 60

14 Q-Q plots for DS2’s DB Server . 61

15 Q-Q plots for CloudStore’s Web Server 62

16 Q-Q plots for CloudStore’s Web Server 63

17 Q-Q plots for CloudStore’s Web Server 64

18 Q-Q plots for CloudStore’s Web Server 65

19 Q-Q plots for CloudStore’s DB Server 66

20 Q-Q plots for CloudStore’s DB Server 67

xi

21 Q-Q plots for CloudStore’s DB Server 68

22 Q-Q plots for CloudStore’s DB Server 69

23 Heatmap (complete): DS2 . 70

24 Heatmap (complete): CloudStore . 71

xii

List of Tables

1 Spearman’s rank correlation coefficients and p-values of the highlighted

performance metrics. 29

2 Summary of Spearman’s rank correlation p-values and absolute coef-

ficients of all the performance metrics in DS2 and CloudStore. The

numbers in the table are the number of metrics that fall into each

category. 29

3 Top ten metrics with highest correlation coefficient to system throughput

in the physical environment for DS2. 33

4 Top ten metrics with highest correlation coefficient to system throughput

in the physical environment for CloudStore 34

5 Summary of statistical models built for DS2. The metrics listed in the

table are the significant independent variables. 41

6 Summary of statistical models built for CloudStore. The metrics listed

in the table are the significant independent variables. 41

7 Internal and external prediction errors for both subject systems. . . . 42

8 Median absolute percentage error from building a model using VMWare

data. 45

xiii

Chapter 1

Introduction

1.1 Introduction

Software performance assurance activities play a vital role in the development of

large software systems. These activities ensure that the software meets the desired

performance requirements [WFP07]. Often however, failures in large software systems

are due to performance issues rather than functional bugs [DB13, FJA+10]. Such

failures lead to the eventual decline in quality of the system with reputational and

monetary consequences [Tec]. For instance, Amazon estimates that a one-second

page-load slowdown can cost up to $1.6 billion [Eet].

In order to mitigate performance issues and ensure software reliability, practitioners

often conduct performance tests [WFP07]. Performance tests apply a workload (e.g.,

mimicking users’ behavior in the field) on the software system [Jai90, SSJH16], and

monitor performance metrics, such as CPU usage, that are generated based on the tests.

Practitioners use such metrics to gauge the performance of the software system and

identify potential performance issues (such as memory leaks [SJN+13] and throughput

bottlenecks [MAH10]).

Since performance tests are often performed on large-scale software systems, the

1

performance tests often require many resources [Jai90]. Moreover, performance tests

often need to run for a long period of time in order to build statistical confidence on

the results [Jai90]. Such testing environments need to be easily configurable such that

a specific environment can be mimicked, reducing false performance issues, e.g. issues

that are related to the environment. Hence, due to their flexibility, virtual environments

(VMs) enable practitioners to easily prepare, customize, use and update performance

testing environments in an efficient manner. Therefore, to address such challenges,

virtual environments are often leveraged for performance testing [CN01, VMW]. The

use of VMs in performance testing are widely discussed [Dee14, Kea12, Tin11], and

even well documented [Mer09] by practitioners. In addition, many software systems

are released both on-premise (physical) and on cloud (virtual) environment (e.g.,

SugarCRM [Sug17] and BlackBerry Enterprise Server [Bla14]). Hence, it is important

to conduct performance testing on both the virtual (for cloud deployment) and physical

environments (for on-premise deployment).

Prior studies show that virtual environments are widely exploited in prac-

tice [CLFG15, NAJ+12, XPZG13]. Studies have investigated the overhead that

is associated with virtual environments [MST+05] and concluded that the computa-

tional overhead may effect the system performance in a virtual environment. Such

overheads may not impose effect on the results of performance tests carried out in

physical and virtual environments. For example, if the performance (e.g., throughput)

of the system follows the same trend (or distribution) in both, the physical and virtual

environments, such overhead would not significantly impact the outcome for the

practitioners who examine the performance testing results. Our work is one of the first

works that examine such discrepancy between performance testing results in virtual

and physical environments. Exploring, identifying and minimizing such discrepancy

will help practitioners and researchers understand and leverage performance testing

results from virtual and physical environments. Without knowing if there exists

2

a discrepancy between the performance testing results from the two environments

practitioners cannot rely on the performance assurance activities carried out in the

virtual environment or vice versa. Once the discrepancy is identified, the performance

results could be evaluated more accurately.

We perform a study on two open-source systems, Dell DVD Store (DS2) [DJ] and

CloudStore [Clo], and the performance tests are conducted on virtual and physical

environments. Our study focuses on the discrepancy between the two environments,

the impact of discrepancy on performance testing results and highlights potential

opportunities to minimize the discrepancy. In particular, we compare performance

testing results from virtual and physical environments based on the three widely

examined aspects, i.e., individual performance metric, the relationship between the

performance metrics and models that predict performance.

• single performance metric: the trends and distributions of each performance

metric. Such analysis is to identify the trends and shape of the distributions

of performance metrics. Due to the difference between testing environments,

performance testing results are expected to be different in raw value. However,

the shape of distribution and the trend should be similar. We investigate such

distributions and trends.

• the relationship between the performance metrics : the correlations between every

two performance metrics. Combinations of performance metrics are significantly

more predictive towards performance issues than individual metrics. We believe

that a change in these combinations of relationships can reflect the discrepancy

of performance in the two environments.

• statistical performance models: the models that are built using performance

metrics to predict the overall performance of the system. Our third type of

analysis is used to see the combination of all performance metrics all together

3

by constructing a statistical model.

The goal of the thesis is to empirically demonstrate the evidence of discrepancy

present between the two environments with the data generated by our performance

testing results.

1.2 Research Hypothesis

Prior research and our industrial experience lead us to an investigation based on the

following hypothesis:

For large-scale software systems, performance assurance activities are carried

primarily in virtual environments. There is little research on the presence of

performance discrepancy in a virtual environment compared to physical. We

hypothesize that for software testing activities there exists a discrepancy between

physical and virtual environments.

Furthermore, we believe that the practitioners should be aware and reduce

such existing discrepancies when analyzing software performance in a foreign

environment.

1.3 Thesis Overview

Chapter 2: Literature Review: In this chapter, we discuss the background of

performance assurance activities. We also discuss performance testing carried out in

virtual environments and the associated overhead caused by it. The chapter is divided

in two parts:

Part I: Discusses the role of software performance testing and how a software

performance test is carried out, from setting up the system to the point of data

4

collection and analysis. Furthermore, this part also addresses the differences and

similarities between software performance testing, load testing and stress testing.

Part II: Addresses the methodologies that are used to analyze performance testing

results. We present the work sub divided into three categories: single performance

metric, relationship among performance metrics, statistical modeling based on perfor-

mance metrics. This part also addresses the work that points to the overheads present

in virtual environments. We present the state-of-the-art approaches used to analyze

performance testing results and how such approaches help us in detection of overheads.

Additionally, we also discuss the role of performance testing in bug detection.

From the literature review, we deduced that much prior work has been affiliated to

the generation of performance alarms and the detection of performance issues however

little work has highlighted the testing done in virtual environments.

Chapter 3: Studying The Presence Of Discrepancy: In this chapter, we per-

form case studies on two open source subject systems. We generate the performance

metrics by applying realistic and varying workloads in identically set up physical and

virtual environments. Next, it is followed up by data cleansing. Finally, we analyze

the performance metrics in three possible ways: individually, as a collection, and as

an input to statistical models.

Chapter 4: Discussion On The Impact From Other Factors: Furthermore,

we elaborate and solidify the conclusion drawn by discussing possibilities on how the

use of virtual environments may affect our results: by changing the type of the virtual

machine, by modifying the allocated resources and testing the repeatability(hence the

stability) of our chosen virtual environment. Lastly, we discuss the threats to validity

for this thesis.

5

Chapter 5: Summary, Contributions And Future Work: We conclude the

thesis by summarizing our work. We also highlight how our findings can be leveraged

by the practitioners, serving as the stepping stone towards future work.

1.4 Thesis Contributions

The major contributions of thesis are as follows:

• An extensive review of the state of the art analysis in software performance

activities. Such a review is necessary for the practitioners to be aware of the

discrepancies associated to software performance across different environments.

• We find the performance metrics have different shapes of distributions and trends

in virtual environments compared to physical environments. There are large

differences in correlations among performance metrics measured in virtual and

physical environments.

• We highlight statistical models using performance metrics from virtual environ-

ments do not apply to physical environments (i.e., produce high prediction error)

and vice versa.

• We examined the feasibility of using normalization techniques to help alleviate

the discrepancy between performance metrics. We find that in some cases,

normalizing performance metrics based on deviance may reduce the prediction

error when using performance metrics collected from one environment and

applying it on another.

6

Chapter 2

Background And Literature

Review

Software systems are expected to serve millions of concurrent requests [AJ00]. However,

the systems are first tested to ensure that they are working correctly under a certain

load(s). This load is also known as the rate at which the system is processing the

requests. In this chapter, we discuss the motivation behind our work and similar

studies in the field of performance engineering. We later survey the state-of-the-art

literature that is related to our work.

2.1 Background

Generally, performance assurance activities are carried out by analyzing the system

responses on a variety of workloads. For example, to detect performance issues, the

system performance is analyzed after applying a workload. This workload profile

depicts the normal workload of the system once it is functional in the field [AW95].

7

2.1.1 Performance Testing

Performance testing is mainly focused to detect primarily performance related prob-

lems with the software system, e.g. response time, throughput and resource utiliza-

tion [BLG11a, BLG11b, Gor00].

The goal behind performance testing may be to test performance requirements [PG11]

or exploratory (e.g. to answer questions such as how do various configurations impact

the performance of the system [MV00, MAD94, MA01, PG11]).

What is a test execution?

As shown in Figure 1, the life cycle of a typical performance test execution is made

up of four phases:

• Setup, that is system and test execution setup.

• Testing, that is the actual phase where the test is run and terminated at the

end of the time frame.

• Data and Metrics Collection, that is the phase where the performance metrics

and executions logs are collected [JH15].

• Data Analysis, the data is further analyzed and refined to draw conclusions in

the fourth and final phase (discussed in Section 2.2).

Figure 1: Test execution phases

Before the phase of text execution, practitioners have to develop the test for the

system. It is based on either the realistic usage of the system when functional or with

8

the goal to uncover problems [JH15]. Once the test is developed, it is followed by its

execution.

Setup

The term setup is further divided into two sub-terms. The setup for the system and

the setup for the text execution system. The former deals with making sure that the

system or subject under test (SUT) is operational and fully functional. This may also

include setting up servers and other functionalities attached to the system for example,

database servers. The latter engulfs configuring and using the load test drivers (for

example, WebLoad [Ltd], HP LoadRunner [Dev], Apache Jmeter [Fou]) in addition

to setting up the testing environment. In order to record the performance metrics,

performance monitoring tools , e.g. Perfmon [Mic], and Psutil [Rod] are set up.

Testing

Following the setup, the system is tested by applying load. The results are concurrently

recorded. Practitioners may terminate the load based on the following techniques:

• Continuous: Testing until it is stopped manually by practitioners [Sta06].

• Time-Based: The test runs for a specific duration of time [Sta06].

• Counter-Based: The load is stopped after a certain number of requests sent or

received [Sta06].

• Statistic-Based: A comparatively newer technique where the metric of interest

is captures till it is statistically stable. This serves a high confidence level when

analyzing the metric [MKMS10, SAP11].

9

Data and Metrics Collection

During the course of loading the system and running the tests, performance data is

monitored and recored. The performance data collected is in the form of logs and

performance metrics. These performance metrics may be recorded at a high-level (e.g.

throughput and response time) or at a low-level (e.g. CPU and memory usage). It is

necessary that the monitoring or recording tool does not induce a large overhead on

the system. This may lead to biased results [MDHS10].

Data Analysis

After the performance data is collected, various analysis techniques are used to

understand the performance of the system. We discuss in detail the approaches to

analyze data in Section 2.2.

2.1.2 What are the differences between load testing, stress

testing and performance testing?

Although there are similarities between the three types of testing techniques i.e. load,

stress and performance testing, (for e.g. all of the three are carried out after functional

testing) we now differentiate between the application of the aforementioned tests.

Load Testing

The rate at which the requests are submitted to a system is called the load [Bei84].

This system is more commonly known as system under test or SUT. Load testing

is carried out later than conventional testing in a software’s life. This may be done

on a prototype or a working system than a design or a model. Load testing is used

to detect workload related problems. For example, deadlocks, buffer overflows, high

response times and low throughput [AW95, BLG11a, BLG11b].

10

In some exceptional cases where the non-functional requirements are not present,

one of ways to determine if the test has passed is by comparing it to the results of the

previous version. This is also known as the “no-worse-than-before” principle. As the

name suggests, the version being tested should be, if not better, equal to the previous

version. [DRSS01]

Although there may be some similarities present between performance and load

testing, however performance testing is detailed than load testing as it may be used to

cover designs [CM99, DPE04, DPE05], algorithms [CCW09, CCW07], and system

configurations [HCM05, PG11, SM05].

Stress Testing

Stress testing is testing the application under “stress” or extreme load. This can be

used to detect how resilient the system is or to detect further load-related problems.

For example, memory leaks and deadlocks. These “stressful” conditions for the

system can be either load related (normal [ZC02, KKB11, Cha10] or heavy load

[Dil09, KKB11, HMHR01]) or limited resources allocated/failures (for example, disk

or database failures) [AK09]. We noted that in some cases it may also be used to

detect the competency of the SUT [Gar10, Gar08, GBL06, GBL08].

Having stated all of the above, there are instances where the interest of a perfor-

mance test may overlap with load testing or stress testing and vice-versa. For example,

to check robustness of the system when put in extreme conditions, or to check how an

algorithm works when handling large files. We observe that the terms performance

testing [Dil09, Men02a, Men02b], load testing [ARW96, BC08, Ghe, MFB+] and

stress testing [BC08, YP96, BC06] are also used interchangeably.

We focus on performance testing, which is to detect performance related behavior

of our SUT.

11

2.2 Literature Review

In this section, we discuss the motivation and related work of this thesis in broadly

three subsections: 1) analyzing performance metrics from performance testing, 2)

analysis of VM overhead and 3) performance testing and bug detection.

2.2.1 Analyzing performance testing results

Prior research has proposed a slew of techniques to analyze performance testing results,

i.e. performance metrics. Such techniques typically examine three different aspects of

the metrics: 1) single performance metric, 2) the relationship between performance

metrics, and 3) statistical modeling based on performance metrics.

Single performance metric

Nguyen et al. [NAJ+12] introduce the concept of using control charts [She31] in order

to detect performance regressions. Control charts use a predefined threshold to detect

performance anomalies. However, control charts assume that the output follows a

uni-model distribution, which may be an inappropriate assumption for performance

tests. Nguyen et al. propose an approach to normalize performance metrics between

heterogeneous environments and workloads in order to build robust control charts.

Malik et al. [MJA+10b, MHH13] propose approaches that cluster performance

metrics using Principal Component Analysis (PCA). Each component generated by

PCA is mapped to performance metrics by a weight value. The weight value measures

how much a metric contributes to the component. For every performance metric, a

comparison is performed on the weight value of each component to detect performance

regressions.

Heger et al. [HHF13] present an approach that uses software development history

and unit tests to diagnose the root cause of performance regressions. In the first

12

step of their approach, they leverage Analysis of Variance (ANOVA) to compare the

response time of the system to detect performance regressions. Similarly, Jiang et

al. [JHHF09] extract response time from system logs. Instead of conducting statistical

tests, Jiang et al. visualize the trend of response time during performance tests, in

order to identify performance issues.

Relationship between performance metrics

Malik et al. [MAH10] leverage Spearman’s rank correlation to capture the relationship

between performance metrics. The deviance of correlation is calculated in order to

pinpoint which subsystem should take responsibility of the performance deviation.

Foo et al. [FJA+10] propose an approach that leverages association rules in order

to address the limitations of manually detecting performance regressions in large

scale software systems. Association rules capture the historical relationship among

performance metrics and generate rules based on the results of prior performance tests.

Deviations in the association rules are considered signs of performance regressions.

Jiang et al. [JMRW09a] use normalized mutual information as a similarity measure

to cluster correlated performance metrics. Since metrics in one cluster are highly

correlated, the uncertainty among metrics in the cluster should be low. Jiang et al.

leverage entropy from information theory to monitor the uncertainty of each cluster.

A significant change in the entropy is considered a sign of a performance fault.

Statistical modeling based on performance metrics

Xiong et al. [XPZG13] proposed a model-driven approach named vPerfGuard to detect

software performance regressions in a cloud-environment. The approach builds models

between workload metrics and a performance metric, such as CPU. The models can

be used to detect workload changes and assists in identifying performance bottlenecks.

Since the usage of vPerfGuard is typically in a virtual environment, our study may

13

help the future evaluation of vPerfGuard. Similarly, Shang et al. [SHNF15] propose

an approach of including only a limited number of performance metrics for building

statistical models. The approach leverages an automatic clustering technique in order

to find the number of models to be build for the performance testing results. By

building statistical models for each cluster, their approach is applicable to detect

injected performance regressions.

Cohen et al. [CGK+04] propose an approach that builds probabilistic models, such

as Tree-Augmented Bayesian Networks, to examine the causes that target the changes

in the system’s response time. Cohen et al. [CZG+05] also proposed that system faults

can be detected by building statistical models based on performance metrics. The

approaches of Cohen et al. [CGK+04, CZG+05] were improved by Bodik et al. [BGF08]

by using logistic regression models.

Jiang et al. [JMRW09b] propose an approach that improves the Ordinary Least

Squares regression models that are built from performance metrics and use the model

to detect faults in a system. The authors conclude that their approach is more efficient

in successfully detecting the injected faults than the current linear-model approach.

On one hand, none of the prior research discusses the impact of their approaches

results in virtual and physical environments, which motivates the empirical study that

is conducted in this thesis. On the other hand, since there are hardly two identical

performance testing results, we do no compare the raw data of performance testing

results from virtual and physical environments. Instead, we conduct our case study in

the context of all the above three types of analyses, in order to see the impact when

practitioners use such analyses on performance testing results. Our findings can help

better evaluate and understand the findings from the aforementioned research.

14

2.2.2 Analysis of VM overhead

Kraft et al. [KCK+11] discuss the issues related to disk I/O in a virtual environment.

They examine the performance degradation of disk request response time by recom-

mending a trace-driven approach. Kraft et al. emphasize on the latencies existing in

virtual machine requests for disc IO due to increments in time associated with request

queues.

Aravind et al. [MST+05] audit the performance overhead in Xen virtual machines.

They uncover the origins of overhead that might exist in the network I/O causing a

peculiar system behavior. However, there study is limited to Xen virtual machine

only while mainly focusing on network related performance overhead.

Brosig et al. [BGHK13] predict the performance overhead of virtualized envi-

ronments using Petri-nets in Xen server. The authors focused on the visualization

overhead with respect to queuing networks only. The authors were able to accurately

predict server utilization but had significant errors for multiple VMs.

Huber et al. [HvQHK11] present a study on cloud-like environments. The authors

compare the performance of virtual environments and study the degradation between

the two environments. Huber et al. further categorize factors that influence the

overhead and use regression based models to evaluate the overhead. However, the

modeling only considers CPU and memory.

Luo et al. [LPG16] converge the set of inputs that may cause software regression.

They apply genetic algorithms to detect such combinations. Netto et al. [NMV+11]

present a similar study to compare performance metrics generated via load tests

between the two environments. However, the author did not analyse the results from

a statistical perspective.

Prior research focused on the overhead of virtual environments without considering

the impact of such overhead on performance testing and assurance activities. In this

thesis, we evaluate the discrepancy between virtual and physical environments by

15

focusing on the impact of performance testing results analyses and investigate whether

such impact can be reduced in practice.

2.2.3 Performance testing and bug detection

There exists much research on performance testing and bug detection. Nistor et

al. [NSML13] detect the presence of functional and loop-related performance bugs with

the help of their developed tool. Jin et al. [JSS+12] present a study on a wide range of

performance bugs. The authors examined real-world performance bugs and developed

rule-based performance bug detection tools. Nistor et al. [NJT13] in another study

highlight that automated tool based performance bug detection is limited. The authors

also comment that performance bugs are mostly detected by code reasoning rather

than seeing the effects of the system by the end users. Tsakiltsidis et al. [TMM16] use

prediction models to detect and predict performance bugs based on extractions from

source code repositories. Malik et al. [MJA+10a] present a study to uncover functional

bugs via load testing. The authors propose an approach to reduce the large amount of

performance metrics at the end of a load test by principal component analysis. Zaman

et al. [ZAH12] study the tracking and fixing of performance bugs.

However, none of the above mentioned performance bug detection approach has

been applied in different environments. In most of the cases, the environment is not

explicitly mentioned. Hence, generalizing the findings across environments remains an

open topic.

In chapter 3, we carry out performance tests in virtual and physical environments

and analyze the discrepancy based on the types of analysis we discuss in section 2.2.1.

16

Chapter 3

Studying The Presence Of

Discrepancy

17

Figure 2: Overview of our case study setup.

18

3.1 Approach

The goal of our case study is to evaluate the discrepancy between performance testing

results from virtual and physical environments. We deploy our subject systems in two

identical environments (physical and virtual) with the same hardware. A load driver

is used to exercise our subject systems. After the collection and processing of the

performance metrics we analyze and draw conclusions based on: 1) single performance

metric 2) relationship between performance metrics and 3) statistical models based on

the performance metrics. An overview of our case study setup is shown in Figure 2.

3.1.1 Subject Systems

Dell DVD Store (DS2) [DJ] is an online multi-tier e-commerce web application

that is widely used in performance testing and prior performance engineering re-

search [SHNF15, NAJ+12, JHHF09]. We deploy DS2 (SLOC > 3,200) on an Apache

(Version 3.0.0) web application server with MySQL 5.6 database server [Ora]. Cloud-

Store [Clo], our second subject system, is an open source application based on the

TPC-W benchmark [TPC]. CloudStore (SLOC > 7,600) is widely used to evaluate

the performance of cloud computing infrastructure when hosting web-based software

systems and is leveraged in prior research [ABC+16]. We deploy CloudStore on Apache

Tomcat [Apa] (version 7.0.65) with MySQL 5.6 database server [Ora].

3.1.2 Environmental Setup

The performance tests of the two subject systems are conducted on three machines in

a lab environment. Each machine has an Intel i5 4690 Haswell Quad-Core 3.50 GHz

CPU, with 8 GB of memory, 100GB SATA storage and connected to a local gigabyte

ethernet. The first machine hosts the application servers (Apache and Tomcat). The

second machine hosts the MySQL 5.6 database server. The load drivers were deployed

19

on the third machine. We separate the load driver, the web/application server and

the database server on different machines in order to mimic the real world scenario

and avoid interference among these processes. For example, isolating the application

and database driver would ensure that the processor is not overused. The operating

systems on the three machines are Windows 7. We disable all other processes and

unrelated system services to minimize their performance impact. Since our goal is to

compare performance metrics in virtual and physical environments, we setup the two

different environments, as follows:

Virtual environment. We install one Virtual Box (version 5.0.16) and create only

one virtual machine on one physical machine to avoid any interference between virtual

machines. For each virtual machine, we allocate two cores and three gigabytes of

memory, which is well below capacity to make sure we are not topping out and pushing

our configuration for unrealistic results. Virtual machines typically have an option

of using disk pass-through[Cos15]. However, disk pass-through prevents the quick

deployment of an existing virtual machine image that’s designed for performance

testing and quick execution of performance tests [Sri15]. Hence, we opt to disable disk

pass-through since it is unlikely to be used in practice. The network of the virtual

machine is set up based on network address translation (NAT) configuration[Tys01].

The network traffic of the workload was generated on a dedicated load machine to

keep our experiments as close to the real-world as possible.

Physical environment. We used the same hardware as the virtual environment to

set up our physical environments. To make the physical environment similar to the

virtual environment, we only enable two cores and three gigabytes of memory for each

machine for the physical environment.

20

3.1.3 Performance tests

DS2 is released with a dedicated load driver program that is designed to exercise DS2

for performance testing. We used the load driver to conduct performance testing on

DS2. We used Apache JMeter [Fou] to generate a workload to conduct the performance

tests on CloudStore. For both subject systems, the workload of the performance

tests is varied randomly and periodically in order to avoid bias from a consistent

workload. The variation was identical across environments. The workload variation

was introduced by the number of threads. A higher number of threads represents

a higher number of users accessing the system. Each performance test is run after

a 15 minute warming up period of the system and lasts for 9 hours. We chose to

run the test 9 hours ensuring that our sample sizes have enough data points for our

results to be statistically significant. The nature of our performance tests was based

on our related studies mentioned in section 2.2. To ensure the consistency between the

performance tests, we restored the environments followed by a restart of the systems

after every test.

3.1.4 Data collection and preprocessing

Performance metrics. We used PerfMon [Mic] to record the values of performance

metrics. PerfMon is a performance monitoring tool used to observe and record perfor-

mance metrics such as CPU utilization, memory usage and disk IOs. We run PerfMon

on each of the application server and database server machines. We record all the

available performance metrics that can be monitored on a single process by PerfMon.

In order to minimize the influence of Perfmon, we monitor only the performance of

the two processes of the application server and database server on the two dedicated

machines. We recorded the performance metrics with an interval of 10 seconds. In

total, we recorded 44 performance metrics.

21

System throughput. We used the application server’s access logs from Apache

and Tomcat to calculate the throughput of the system by measuring the number of

requests per minute. The two datasets were then concatenated and mapped against

requests using their respective timestamps.

Since an end user will consider a system as a whole, we combine the performance

datasets from our application and database servers. In order to combine the two

datasets of performance metrics and system throughput, and to minimize noise of

the performance metric recording, we calculate the mean values of the performance

metrics every minute. Then, we combine the datasets of performance metrics and

system throughput based on the time stamp on a per minute basis. A similar approach

has been applied to address mining performance metrics challenges [FJA+10].

The goal of our study is to evaluate the discrepancy between performance testing

results from virtual and physical environments, particularly considering the impact of

discrepancy on the analysis of such results. Our experiments are set in the context of

analyzing performance testing data, based on the related work. Shown in Section 2.2,

prior research and practitioners examine performance testing results in three types of

approaches: 1) examining a single performance metric, 2) examining the relationship

between performance metrics and 3) building statistical models using performance

metrics. Therefore, our experiments are designed to answer three research questions,

where each questions corresponds to one of the types of analysis above.

3.1.5 Are the trend and distribution of a single performance

metric similar across environments?

Motivation. The most intuitive approach of examining performance testing results is

to examine every single performance metric. As shown in Section 2.2.1, prior studies

propose different approaches that typically compare the distribution or trend of each

performance metric from different tests. Due to influences from testing environments,

22

performance testing results are not expected to be identical in raw values. However,

the shape of the distribution and the trend of the metrics should be similar. For

example, if in one environment, we observe that Memory has an increasing trend while

the increasing trend is not seen in another environment, we observe a discrepancy.

In addition, the distribution differences between two test results should not be sta-

tistically significant. Therefore, we use quantile-quantile (Q-Q) plot and normalized

Kolmogorov-Smirnov (KS) tests to examine the differences in trends and shape of the

distributions.

Approach. After running and collecting the performance metrics, we compare every

single performance metric between the virtual and physical environments. Since the

performance tests are conducted in different environments, intuitively the scales of

performance metrics are not the same. For example, the virtual environment may have

higher CPU usage than the physical environment. Therefore, instead of comparing

the values of each performance metric in both environments, we study whether the

performance metric follows the same shape of the distribution and the same trend in

virtual and physical environments.

First, we plot a quantile-quantile (Q-Q) plot [NIS] for every performance metric in

two environments. A Q-Q plot is a plot of the quantiles of the first data set against

the quantiles of the second data set. We also plot a 45-degree reference line on the

Q-Q plots. If the performance metrics in both environments follow the same shape

of the distribution, the points on the Q-Q plots should fall approximately along this

reference (i.e., 45-degree) line. A large departure from the reference line indicates

that the performance metrics in the virtual and physical environments come from

populations with different shapes of distributions, which can lead to a different set of

conclusions. For example, the virtual environment has a CPU’s utilization spike at a

certain time, but the spike is absent in the physical environment.

23

Second, to quantitatively measure the discrepancy, we perform a Kolmogorov-

Smirnov test [Sta08] between every performance metric in the virtual and physical

environments. Since the scales of each performance metric in both environments are

not the same, we first normalize the metrics based on their median values and their

median absolute deviation:

Mnormalized =
M − M̃

MAD(M))
(1)

where Mnormalized is the normalized value of the metric, M is the original value of

the metric, M̃ is the median value of the metric and MAD(M) is the median absolute

deviation of the metric [Wal29]. The Kolmogorov-Smirnov test gives a p-value as the

test outcome. A p-value ≤ 0.05 means that the result is statistically significant, and we

may reject the null hypothesis (i.e., two populations are from the same distribution).

By rejecting the null hypothesis, we can accept the alternative hypothesis, which tells

us the performance metrics in virtual and physical environments do not have the same

distribution. We choose to use the Kolmogorov-Smirnov test since it does not have

any assumption on the distribution of the metrics.

Finally, we calculate Spearman’s rank correlation between every performance

metric in the virtual environment and the corresponding performance metric in the

physical environment, in order to assess whether the same performance metrics in

two environments follow the same trend during the test. Intuitively, two sets of

performance testing results without discrepancy should show a similar trend, i.e.,

when memory keeps increasing in the physical environment (like memory leak), the

memory should also increase in the virtual environment. We choose Spearman’s rank

correlation since it does not have any assumption on the distribution of the metrics.

Results. Most performance metrics do not follow the same shape of the

distribution in virtual and physical environments. Figure 3 and 4 show the

Q-Q plots by comparing the quantiles of performance metrics from virtual and physical

24

environments. We only present Q-Q plots for CPU user time, IO data operations/sec

and memory working set for both application sever and database server. For complete

results please refer Chapter 6.

The results show that the lines on the Q-Q plot are not close to the 45-degree

reference line. By looking closely on the Q-Q plots we find that the patterns of each

performance metric from different subject systems are different. For example, the

application (web) server’s CPU user time for DS2 in the virtual environment shows

higher values than in the physical environment at the median to high range of the

distribution; while the Q-Q plot of CloudStore shows the application (web) server’s

CPU user time with higher values at the low range of the distribution. In addition,

the lines of the Q-Q plots for database memory working set show completely different

shapes in DS2 and in CloudStore. The results imply that the discrepancies between

virtual and physical environments are present between the subject systems. The

impact of the subject systems warrants its own study.

The majority of the performance metrics had statistically significantly different

distributions (p-values lower than 0.05 in Kolmogorov-Smirnov tests). Only 13 and 12

metrics (out of 44 for each environment) have p-values higher than 0.05, for DS2 and

CloudStore, respectively, showing statistically in-significant difference between the

distribution in virtual and physical environments. By looking closely at such metrics,

we find that these metrics either do not highly relate to the execution of the subject

system (e.g., application server CPU privileged time in DS2), or highly relate to the

workload. Since the workload between the two environments is similar, it is expected

that the metrics related to the workload follow the same shape of the distribution.

For example, the I/O operations are highly related with the workload. The metrics

related to I/O operations may show statistically in-significant differences between the

distributions in the virtual and physical environments (e.g., application server I/O

write operations per second in DS2).

25

]

1 2 3 4 5

0.
5

1.
5

2.
5

3.
5

Web Server CPU User Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0 1 2 3 4

6
8

10
12

DB Server CPU User Time(Physical)

D
B

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

10 20 30 40 50

15
20

25
30

35
40

45

Web Server Disk IO Data Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

1000 2000 3000 4000 5000

40
0

60
0

80
0

10
00

DB Server Disk IO Data Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

2e+07 4e+07 6e+07 8e+075.
0e

+
07

8.
0e

+
07

1.
1e

+
08

Web Server Memory Working Set(Physical)

W
eb

 S
er

ve
r

M
em

or
y

W
or

ki
ng

 S
et

(V
ir

tu
al

)

3.60e+08 3.65e+08 3.70e+08

3.
00

e+
08

3.
02

e+
08

3.
04

e+
08

DB Server Memory Working Set(Physical)

D
B

 S
er

ve
r

M
em

or
y

W
or

ki
ng

 S
et

(V
ir

tu
al

)

Figure 3: Q-Q plots for DS2.

26

0 20 40 60 80

5
10

15
20

Web Server CPU User Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0 10 20 30 40

10
20

30
40

50

DB Server CPU User Time(Physical)

D
B

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0 500 1500 2500

10
0

20
0

30
0

40
0

50
0

Web Server Disk IO Data Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

500 1500 2500 3500

20
0

40
0

60
0

80
0

DB Server Disk IO Data Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

5.0e+08 6.0e+08 7.0e+08

4e
+

08
5e

+
08

6e
+

08
7e

+
08

Web Server Memory Working Set(Physical)

W
eb

 S
er

ve
r

M
em

or
y

W
or

ki
ng

 S
et

(V
ir

tu
al

)

2.3e+08 2.5e+08 2.7e+082.
92

e+
08

2.
94

e+
08

2.
96

e+
08

DB Server Memory Working Set(Physical)

D
B

 S
er

ve
r

M
em

or
y

W
or

ki
ng

 S
et

(V
ir

tu
al

)

Figure 4: Q-Q plots for CloudStore.

27

Most performance metrics do not have the same trend in virtual and

physical environments. Table 1 shows the Spearman’s rank correlation coefficient

and corresponding p-value between the selected performance metrics for which we

shared the Q-Q plots. We find that for the application server memory working set in

CloudStore and the database server memory working set in DS2, there exists strong

(0.69) to moderate (0.46) correlation between the virtual and physical environments,

respectively. By examining the metrics, we find that both metrics have an increasing

trend that may be caused by a memory leak. Such increasing trend may be the cause

of the moderate to strong correlation. Instead of showing the selected metrics as the

Q-Q plots, Table 2 shows a summary of the Spearman’s rank correlation of all the

performance metrics. Most of the correlations have an absolute value of 0 to 0.3 (low

correlation), or the correlation is not statistically significant (p-val>0.05).

Impact on the interpretation of examining single performance metric. Prac-

titioners often plot the trend of each important performance metrics, identify when

the outliers exist or calculate the median or mean value of the metric to understand

the performance of the system in general. However, based on our findings in this RQ,

such analysis results may not be useful if they are from a virtual environment. For

example, shown in Figures 3 and 4 many differences between the two distribution are

in the lower and higher ends of the plots, which correspond to the high and low values

of the metrics. Such values are often treated as outliers. However, if such outliers

are due to the virtual environment rather than the system itself, the results may be

misleading. In addition, since the distribution of the metrics are statistically different,

the mean and median value of the metrics may also be misleading.

Findings: Performance metrics typically do not follow the same distribution in

virtual and physical environments.

Actionable implications: Practitioners cannot assume a straightforward overhead

from the virtual environment nor compare single performance metric after applying a

simple scaling factor to the metric.

28

Table 1: Spearman’s rank correlation coefficients and p-values of the highlighted
performance metrics.

Performance Metrics
DS2 CloudStore

coef. p-value coef. p-value

Web Servers’ User Times 0.08 0.07 -0.04 0.33
DB Servers User Times -0.05 0.30 0.10 0.02

Web Servers’ IO Data Ops/sec 0.25 0.00 0.13 0.00
DB Servers’ IO Data Ops/sec -0.14 0.00 0.13 0.00

Web Servers’ Memory Working Set 0.22 0.00 0.69 0.00
DB Servers’ Memory Working Set 0.46 0.00 -0.16 0.00

Table 2: Summary of Spearman’s rank correlation p-values and absolute coefficients
of all the performance metrics in DS2 and CloudStore. The numbers in the table are
the number of metrics that fall into each category.

System p-value>0.05
p-value<0.05

0.0∼0.3 0.3∼0.5 0.5∼0.7 0.7∼1

DS2 8 28 4 0 1
CloudStore 5 25 4 4 3

Three metrics are constant. Therefore, we do not calculate the correlation
on those metrics.

3.1.6 To what extent does the relationship between the per-

formance metrics change across environments?

Motivation. The relationship between two performance metrics may significantly

change between two environments, which may be a hint of performance issues or

system regression. As found by Cohen et al. [CGK+04], combinations of performance

metrics are significantly more predictive towards performance issues than a single

metric. A change in these combinations can reflect the discrepancy of performance

and can help a practitioner identify the behavioral changes of a system between the

two environments. For instance, in one release of the system, the CPU may be highly

correlated with I/O while (e.g., when I/O is high, CPU is also high); while on a

new release of the system, the correlation between CPU and I/O may become low.

Such change to the correlation may expose a performance issue (e.g., the high CPU

29

without I/O operation may be due to a performance bug). However, if there is a

significant difference in correlations simply due to the platform being used, i.e., virtual

vs. physical, then practitioners may need to be warned that a correlation discrepancy

may be false. Therefore, we examine whether the relationship among performance

metrics has a discrepancy between the virtual and physical environments.

Approach. We calculate Spearman’s rank correlation coefficients among all the

metrics from each performance test in each environment. Then we study whether such

correlation coefficients are different between the virtual and physical environments.

First, we compare the changes in correlation between the performance metrics and

the system throughput. For example, in one environment, the system throughput may

be highly correlated with CPU; while in another environment, such correlation is low.

In such a case, we consider there to be a discrepancy in the correlation coefficient

between CPU and the system throughput. Second, for every pair of metrics, we

calculate the absolute difference between the correlation in two environments. For

example, if CPU and Memory have a correlation of 0.3 in the virtual environment

and 0.5 in the physical environment, we report the absolute difference in correlation

as 0.2 (|0.3 − 0.5|). Since we have 44 metrics in total, we plot a heatmap in order

to visualize the 1,936 absolute difference values between every pair of performance

metrics. The lighter the color for each block in the heatmap, the larger the absolute

difference in correlation between a pair of performance metrics. With the heatmap,

we can quickly spot the metrics that have large discrepancy in correlation coefficients.

Results. The correlations between system throughput and performance

metrics change between virtual and physical environments. Tables 3 and 4

present the top ten metrics with the highest correlations to system throughput in

the physical environment for DS2 and CloudStore, respectively. We chose system

30

Figure 5: Heatmap of correlation changes for DS2.

throughput to be our criterion as it was kept identical between the environments.

We find that for these top ten metric sets, the difference in correlation coefficients in

virtual and physical environments is up to 0.78 and the rank changes from #9 to #40

in DS2 and #1 to #10 in CloudStore.

There exist differences in correlation among the performance metrics from

virtual and physical environments. Figures 5 and 6 present the heatmap showing

the changes in correlation coefficient among the performance metrics from virtual and

physical environments. By looking at the heatmap, we find hotspots (with lighter

color), which have larger correlation differences. For the sake of brevity, we do not

show all the metric names in our heatmaps. Instead, we enlarge the heatmap by

showing one of the hotspots for each subject system in Figures 5 and 6. We find

that the hotspots correspond to the changes in correlation among I/O related metrics.

Prior research on virtual machines has similar findings about I/O overhead in virtual

machines [MST+05, KCK+11]. In such a situation, when practitioners observe that

the relationship between I/O metrics and other metrics change, the change may not

indicate a performance regression, but rather the change may be due to the use of a

virtual environment.

31

Figure 6: Heatmap of correlation changes for CloudStore.

Impact on the interpretation of examining correlations between perfor-

mance metric. When a system is reported to have performance issues, correlations

between metrics are often used in practice, as describe in the motivation of this RQ.

However, since such correlation can be inconsistent in virtual and physical environment,

existing knowledge of assumptions of correlation may not exist or new correlation

may emerge, due to the use of virtual environment. For example, practitioners of a

database-centric system may have the knowledge that I/O traffic is correlated with

CPU and system throughput. Examining these three metrics together can help diag-

nose performance issues, while if no such correlation exists in the virtual environment,

these three metrics together may not be as useful in performance issue diagnosis.

Findings: The correlations between performance metrics and system load may

change considerably between virtual and physical environments. The correlation

among performance metrics may also change considerably between virtual and physi-

cal environments. The correlations that are related with I/O metrics have the largest

discrepancy.

Actionable implications: Practitioners should always verify whether the inconsis-

tency of correlations between performance metrics (especially I/O metrics) are due to

virtual environments.

32

Table 3: Top ten metrics with highest correlation coefficient to system throughput in
the physical environment for DS2.

Rank Performance Coef. Coef. Rank in
Metrics PE VE VE

1 Web IO Other Ops/sec 0.91 0.62 10
2 Web IO Other Bytes/sec 0.91 0.62 12
3 Web IO Write Ops/sec 0.91 0.63 9
4 Web IO Data Ops/sec 0.91 0.63 8
5 Web IO Write Bytes/sec 0.90 0.62 11
6 Web IO Data Bytes/sec 0.90 0.61 13
7 DB IO Other Ops/sec 0.84 0.75 3
8 DB IO Data Ops/sec 0.83 0.07 41
9 DB IO Other Bytes/sec 0.83 0.15 40
10 DB IO Read Ops/sec 0.82 0.15 39

PE in the table is short for physical environment; while VE is short
for virtual environment.

3.1.7 Can statistical performance models be applied across

virtual and physical environments?

Motivation. As discussed in the last research question (see Section 3.1.6), the re-

lationship among performance metrics is critical for examining performance testing

results (see Section 2.2.1). However, thus far we have only examined the relationships

between two performance metrics. In order to capture the relationship among a large

number of performance metrics, more complex modeling techniques are needed. Hence,

we use statistical modeling techniques to examine the relationship among a set of

performance metrics [XPZG13, CGK+04]. Moreover, some performance metrics do

not have any impact with system performance, which are still examined. For example,

for a software system that is CPU intensive, I/O operations may be irrelevant. Such

performance metrics may expose large discrepancies between virtual and physical

environments while not contributing to the examination of performance testing results.

It is necessary to remove such performance metrics that are not contributing or im-

pacting the results of the performance analysis. To address the above issues, modeling

33

Table 4: Top ten metrics with highest correlation coefficient to system throughput in
the physical environment for CloudStore

Rank Performance Coef. Coef. Rank in
Metrics PE VE VE

1 DB Server IO Other Bytes/sec 0.98 0.73 10
2 DB Server IO Read Ops/sec 0.98 0.84 7
3 DB Server IO Read Bytes/sec 0.98 0.93 5
4 DB Server IO Write Ops/sec 0.98 0.97 2
5 DB Server IO Data Ops/sec 0.98 0.92 6
6 DB Server IO Data Bytes/sec 0.98 0.96 4
7 DB Server IO Write Bytes/sec 0.98 0.96 3
8 Web Server IO Other Bytes/sec 0.98 0.68 16
9 DB Server IO Other Ops/sec 0.98 0.98 1
10 Web Server IO Other Ops/sec 0.98 0.70 14

PE in the table is short for physical environment; while VE is short for
virtual environment.

techniques are proposed to examine performance testing results (see Section 2.2.1). In

this step, we examine whether the modeling among performance metrics can apply

across virtual and physical environments and whether we can minimize such discrep-

ancy between performance models.

Approach. We follow a model building approach that is similar to the approach

from prior research [SHNF15, CZG+05, XPZG13]. We first build statistical models

using performance metrics from one environment, then we test the accuracy of our

performance model with the metric values from the same environment and also from a

different environment. For example, if the model was built in a physical environment

it was tested in both, physical and virtual environments.

B-1: Reducing metrics

Mathematically, performance metrics that show little or no variation do not contribute

to the statistical models hence we first remove performance metrics that have constant

34

values in the test results. We then perform a correlation analysis on the performance

metrics to remove multicollinearity based on statistical analysis [Kuh08]. We used

the Spearman’s rank correlation coefficient among all performance metrics from one

environment. We find the pair of performance metrics that have a correlation higher

than 0.75, as 0.75 is considered to be a high correlation [SSJH16]. From these two

performance metrics, we remove the metric that has a higher average correlation with

all other metrics. We repeat this step until there exists no correlation higher than

0.75.

We then perform redundancy analysis on the performance metrics. The redundancy

analysis would consider a performance metric redundant if it can be predicted from a

combination of other metrics [Har01]. We use each performance metric as a dependent

variable and use the rest of the metrics as independent variables to build a regression

model. We calculate the R2 of each model. R2, or the coefficient of multicollinearity,

is used to analyze how a change in one of the variables (e.g. predictor) can be

explained by the change in the second variable (e.g. response) [And12]. We consider

multicollinearity to be present if more than one predictor variable can explain the

change in the response variable. If the R2 is larger than a threshold (0.9)[SSJH16],

the current dependent variable (i.e., performance metric) is considered redundant.

We then remove the performance metric with the highest R2 and repeat the process

until no performance metric can be predicted with R2 higher than the threshold. For

example, if CPU can be linearly modeled by the rest of the performance metrics with

R2>0.9, we remove the metric for CPU.

Not all the metrics in the model are statistically significant. Therefore in this step,

we only keep the metrics that have a statistically significant contribution to the model.

We leverage the stepwise function that adds the independent variables one by one to

the model to exclude any metrics that are not contributing to the model [Kab11].

35

B-2: Building statistical models

In the second step, we build a linear regression model [Fre09] using the performance

metrics that are left after the reduction and removal of statistically insignificant

metrics in the previous step as independent variables and use the system throughput

as our dependent variable. We chose the linear regression model over other models

because of its simple explanation. Hence, it is easier to interpret the discrepancy that

is illustrated by the model. Similar models have been built in prior research [CZG+05,

XPZG13, SHNF15].

After removing all the insignificant metrics, we have all the metrics that significantly

contribute to the model. We use these metrics as independent variables to build the

final model.

V-1: Validating model fit

Before we validate the model with internal and external data, we first examine how

good the model fit is. If the model has a poor fit to the data, then our findings from

the model may be biased by the noise from the poor model quality. We calculate

the R2 of each model to measure fit. If the model perfectly fits the data, the R2 of

the model is 1, while a zero R2 value indicates that the model does not explain the

variability of the response data. We would also like to estimate the impact that each

independent variable has on the model fit. We follow a “drop one” approach [CHP90],

which measures the impact of an independent variable on a model by measuring the

difference in the performance of models built using: (1) all independent variables

(the full model), and (2) all independent variables except for the one under test (the

dropped model). A Wald statistic is reported by comparing the performance of these

two models [Har01]. A larger Wald statistic indicates that an independent variable

has a larger impact on the model’s performance, i.e., model fit. A similar approach

has been leveraged by prior research in [MKAH16]. We then rank the independent

36

variables by their impact on model fit.

V-2: Internal validation

We validate our models with the performance testing data that is from the same

environment. We leverage a standard 10-fold cross validation process, which starts by

partitioning the performance data into 10 partitions. We take one partition (fold) at a

time as the test set, and train on the remaining nine partitions [RTL09, Koh95], similar

to prior research [MHH13]. For every data point in the testing data, we calculate the

absolute percentage error. For example, for a data point with a throughput value

of 100 requests per minute, if our predicted value is 110 requests per minute, the

absolute percentage error is 0.1 (|110−100|
100

). After the ten-fold cross validation, we have

a distribution of absolute percentage error (MAPE) for all the data records.

V-3: External validation

To evaluate whether the model built using performance testing data in one environ-

ment (e.g., virtual environment) can apply to another environment (e.g., physical

environment), we test the model using the data from the other environment.

Since the performance testing data is generated from different environments,

directly applying the data on the model would intuitively generate large amounts

of error. We adopt two approaches in order to normalize the data in different

environments: (1) Normalization by deviance. The first approach we use is the

same when we compare the distribution of each single performance metric shown in

Equation 1 from Section 3.1.5 by calculating the relative deviance of a metric value

from its median value. (2) Normalization by load. The second approach that we

adopt is an approach that is proposed by Nguyen et al. [NAJ+12]. The approach uses

the load of the system to normalize the performance metric values across different

environments. As there are varying inputs for the performance tests that we carried

37

out, normalization by load helps in normalizing the multi-modal distribution that

might be because of the trivial tasks like background processes(bookkeeping).

To normalize our metrics, we first build a linear regression model with the one

metric as an independent variable and the throughput of the system as the dependent

variable. With the linear regression model in one environment, the metric values can

be represented by the system throughput. Then we normalize the metric value by the

linear regression from the other environment. The details of the metric transformation

are shown as follows:

throughputp = αp ×Mp + βp

throughputv = αv ×Mv + βv

Mnormalized =
(αv ×Mv) + βv − βp

αp

where throughputp and throughputv are the system throughput in the physical and

virtual environment, respectively. Mp and Mv are the performance metrics from both

environments, while Mnormalized is the metric after normalization. α and β are the

coefficient and intercept values for the linear regression models. After normalization,

we calculate the absolute percentage error for every data record in the testing data.

Identifying model discrepancy

In order to identify the discrepancy between the models built using data from the

virtual and physical environments, we compare the two distributions of absolute

percentage error based on our internal and external validation. If the two distributions

are significantly different (e.g., the absolute percentage error from internal validation

is much lower than that from external validation), the two models are considered to

have a discrepancy. To be more concrete, in total for each subject system, we ended

up with four distributions of absolute percentage error: 1) modeling using the virtual

38

environment and testing internally (on data from the virtual environment), 2) model-

ing using the virtual environment and testing externally (on data from the physical

environment), 3) modeling using the physical environment and testing internally (on

data from the physical environment), 4) modeling using the physical environment and

testing externally (on data from the virtual environment). We compare distributions

1) and 2) and we compare distributions 3) and 4). Since normalization based on

deviance will change the metrics values to be negative when the metric value is lower

than median, such negative values cannot be used to calculate absolute percentage

error. We perform a min-max normalization on the metric values before calculating

the absolute percentage error. In addition, if the observed throughput value after

normalization is zero (when the observed throughput value is the minimum value of

both the observed and predicted throughput values), we cannot calculate the absolute

percentage error for that particular data record. Therefore, we remove the data record

if the throughput value after normalization is zero. In our case study, we only removed

one data record when performing external validation with the model built in the

physical environment.

Results. The statistically significant performance metrics leveraged by

the models in virtual and physical environments are different. Tables 5

and 6 show the summary of the statistical models built for the virtual and physical

environments for the two subject systems. We find that all the models have a good

fit (66.9% to 94.6% R2 values). However, some statistically significant independent

variables in one model do not appear in the other model. For example, Web Server

Virtual Bytes ranks #4 for the model built from the physical environment data of

CloudStore, while the metric is not significant in the model built from the virtual

environment data. In fact, none of the significant variables in the model built from the

virtual environment are related to the application server’s memory (see Table 6). We

39

do observe some performance metrics that are significant in both models even with

the same ranking. For example, Web Server IO Other Bytes/sec is the #1 significant

metric for both models built from the virtual and physical environment data of DS2

(see Table 5).

The prediction error illustrates discrepancies between models built in vir-

tual and physical environments. Although the statistically significant independent

variables in the models built by the performance testing results in the virtual and

physical environments are different, the model may have similar prediction results

due to correlations between metrics. However, we find that the external prediction

errors are higher than internal prediction errors for all four models from the virtual

and physical environments for the two subject systems. In particular, Table 7 shows

the prediction errors using normalization based on load is always higher than that

of the internal validation. For example, the median absolute percentage error for

CloudStore using normalization by load is 632% and 483% for the models built in

the physical environment and virtual environment, respectively; while the median

absolute percentage error in internal validation is only 2% and 10% for the models

built in the physical and virtual environments, respectively. However, in some cases,

the normalization by deviance can produce low absolute percentage error in external

validation. For example, the median absolute percentage error for CloudStore can be

reduced to 9% using normalization by deviance.

One possible reason is that the normalization based on load performs better,

even though it is shown to be effective in prior research [NAJ+12], assumes a linear

relationship between the performance metric and the system load. However, such an

assumption may not be true in some performance testing results. For example, Table 3

shows that some I/O related metrics do have low correlation with the system load in

virtual environments. On the other hand, the normalization based on deviance shows

much lower prediction error. We think the reason is that the virtual environments

40

may introduce metric values with high variance. Normalizing based on the deviance

controls such variance, leading to lower prediction errors.

Table 5: Summary of statistical models built for DS2. The metrics listed in the table
are the significant independent variables.
Environment Physical Virtual

1 Web Server IO Other Bytes/sec Web Server IO Other Bytes/sec
2 Web Server Page Faults/sec DB server Working Set - Peak
3 DB Server Page Faults/sec Web Server Virtual Bytes
4 DB Server IO Write Bytes/sec Web Server Page Faults/sec
5 Web Server IO Read Bytes/sec DB Server Page Faults/sec
6 DB Server User Time DB Server IO Data Ops/sec
7 DB Server Pool Paged Bytes -
8 DB Server Privileged Time -

R2 94.6% 66.90%

Table 6: Summary of statistical models built for CloudStore. The metrics listed in
the table are the significant independent variables.
Environment Physical Virtual

1 Web Server Privileged Time Web Server IO Write Ops/sec
2 DB Server Privileged Time DB Server IO Read Ops/sec
3 Web Server Page Faults/sec Web Server Privileged Time
4 Web Server Virtual Bytes DB Server Privileged Time
5 Web Server Page File Bytes Peak DB Server IO Other Bytes/sec
6 DB Server Pool Nonpaged Bytes DB Server Pool Nonpaged Bytes
7 DB Server Page Faults/sec -
8 DB Server Working Set -

R2 85.30% 90.20%

Impact on the interpretation of examining statistical performance models.

Statistical performance models are often used to interpret relationships among many

system performance metrics. For example, what are the significant metrics that are

associated with system load and what performance metrics are redundant. Since

the statistical performance models have large discrepancy, even after applying nor-

malization techniques that is proposed by prior research, we cannot directly use the

performance models built in the virtual environment. Even though our results show

41

Table 7: Internal and external prediction errors for both subject systems.
DS2

Model Built Validation Min. 1st Quart. Median Mean 3rd Quart. Max

Physical
Internal Validation 0.00 0.01 0.02 0.03 0.05 0.30

External Validation
Normalization by Deviance 0.00 0.08 0.25 0.36 0.49 13.65

Normalization by Load 0.00 0.34 0.44 0.48 0.56 1.56

Virtual
Internal Validation 0.00 0.04 0.09 0.11 0.15 0.54

External Validation
Normalization by Deviance 0.00 0.09 0.20 0.27 0.34 2.82

Normalization by Load 0.00 0.06 0.13 0.17 0.23 0.92

CloudStore
Model Built Validation Min. 1st Quart. Median Mean 3rd Quart. Max

Physical
Internal Validation 0.00 0..05 0.10 0.16 0.18 2.68

External Validation
Normalization by Deviance 0.00 0.04 0.09 0.17 0.17 2.29

Normalization by Load 2.90 5.14 6.32 7.75 8.08 51.33

Virtual
Internal Validation 0.00 0.01 0.03 0.04 0.05 0.50

External Validation
Normalization by Deviance 0.00 0.03 0.07 0.11 0.13 1.00

Normalization by Load 4.07 4.64 4.83 5.13 5.10 33.36

that normalizing by deviance can reduce the discrepancy, practitioners should still be

aware of it when examining the performance models.

Findings: We find that the statistical models built by performance testing results

in an environment cannot advocate for the other environment due to discrepancies

present. Normalization technique for heterogeneous environments and workloads that

is proposed by prior research may not work for virtual and physical environment.

Actionable implications: Normalizing the performance metrics by deviance may

minimize such discrepancy and should be considered by practitioners before examining

performance testing results.

In Chapter 4, we further validate our findings of Chapter 3 by looking at external

factors that may have affected the nature of our performance tests and the subsequent

analysis.

42

Chapter 4

Discussion On The Impact From

Other Factors

In the previous chapter, we find that there is a discrepancy between performance

testing results from the virtual and physical environments. However, such discrepancy

can also be due to other factors such 1) the instability of the virtual environments, 2)

the virtual machine that we used or 3) the hardware resources dedicated to the virtual

environments. Therefore, in this section, we examine the impact of such factors to

better understand our results and discuss the threats to validity for our findings.

4.1 Investigating the stability of virtual environ-

ments

Thus far, we perform our case studies in one virtual environment and compare the

performance metrics to the physical environment. However, the stability of the results

obtained from the virtual environment need to be validated, in particular since VMs

tend to be highly sensitive to the environment that they run in [LC16].

In order to study whether the virtual environment is stable, we repeat the same

43

performance tests, on the virtual environments for both subject systems. We perform

the data analysis in Section 3.1.7 by building statistical models using performance

metrics. As the previously mentioned approach, we build a model based on one of the

runs, serving as our training data for the model, and tested it on another run. In this

case, we define external validation when a model is trained on a different run than it

is tested on. We validate our model by predicting the throughput of a different run.

Prediction error values (see section 4.3.5) closer to 0 indicate that our model was

able to successfully explain the variation of the throughput of a different run. This

also means that the external validation error closer to 1 or higher depicts instability

of the environment. We find the external validation error to be 0.04 and 0.13 for

CloudStore and DS2, respectively. The internal validation error is 0.03 and 0.09 for

CloudStore and DS2, respectively. Such low error values show that the performance

testing results from the virtual environments are rather stable.

4.2 Investigating the Impact of Specific Virtual

Machine Software

In all of our experiments, we used the Virtual Box software to setup our virtual

environment. However, there exists a plethora of VM software (i.e., it can be argued

that our chosen subject systems behave differently in another environment). The

question that arises then is whether the choice of VM software impacts our findings. In

order to address the aforementioned hypothesis, we set up another virtual environment

using VMWare (version 12) with the same allocated computing resources as when we

set up Virtual Box.

To investigate this phenomenon, we repeat the performance tests for both subject

systems. We train statistical models on the performance testing results from VMWare

and test on the results from both the original virtual environment data (Virtual Box)

44

and the results from the physical environments. We could not apply the normalization

by deviance for the data from VMWare since some of the significant metrics in the

model have a median absolute deviance of 0, making the normalized metric value to

be infinite (see Equation 1). We only apply the normalization by load.

Table 8 shows that the performance testing results from the two different virtual

machine software are similar, as supported by the low percentage error when our model

was tested on Virtual Box. In addition, the high error when predicting with physical

environment agrees with the results when testing with the performance testing results

from the Virtual Box (see Table 7). Such results show that the discrepancy observed

during our experiment also exists with the virtual environments that are set up with

VMWare.

Table 8: Median absolute percentage error from building a model using VMWare data.

Validation type
Median absolute percentage error
CloudStore DS2

External validation with Virtual Box results 0.07 0.10
External validation with physical normalization by load 7.52 1.63

4.3 Investigating the Impact of Allocated Resources

Another aspect that may impact our results is the resources allocated and the con-

figuration of the virtual environment. We did not decrease the system resources as

decreasing the resources may lead to crashes in the testing environment.

To investigate the impact of the allocated resources, we increase the computing

resources allocated to the virtual environments by increasing the CPU to be 3 cores and

increasing the memory to be 5GB. We cannot allocate more resources to the virtual

environment since we need to keep resources for the hosting OS. We train statistical

models on the new performance testing results and tested it on the performance testing

results from the physical environment.

45

Similar to the results shown in Table 7, the prediction error is high when we

normalize by the load (1.57 for DS2 and 1.25 for CloudStore), while normalizing based

on deviance can significantly reduce the error (0.09 for DS2 and 0.07 for CloudStore).

We conclude that our findings still hold when the allocated resources are changed and

this change has minimal impact on the results of our case studies.

4.4 Threats to Validity

4.4.1 External validity.

We chose two subject systems, CloudStore and DS2 for our study and two virtual

machine software, VirtualBox and VMware. The two subject systems have years of

history and prior performance engineering research has studied both systems [JHHF09,

NAJ+12, ABC+16]. The virtual machine software that we used is widely used in

practice. Nevertheless more case studies on other subject systems in other domains

with other virtual machine software are needed to evaluate our findings. We also

present our results based on our subject systems only and do not generalize for all

the virtual machines. We also conduct the experiments only on a Windows OS. This

choice was based on monitoring tools and the environments in our labs. We also plan

to replicate this study in environments with other OS.

4.4.2 Internal validity.

Our empirical study is based on the performance testing results on subject systems.

The quality and the way of conducting the performance tests may introduce threats

to the validity of our findings. In particular, our approach is based on the recorded

performance metrics. The quality of recorded performance metrics can have an impact

the internal validity of our study. We followed the approaches in the prior research to

control the workload and to introduce the workload variation on our subject systems.

46

However, we acknowledge that there exist other ways of control and vary workload.

Our performance tests last for 9 hours, while the length of the performance tests

may impact the findings of the case study. Replicating our study by using other

performance monitoring tools, such as psutil [Rod], using other approaches to control

and to vary the workload of the system and running the performance tests for a longer

period of time (for example, 72 hours), may address this threat.

Even though we build a statistical model using performance metrics and system

throughput, we do not assume that there is causal relationship. The use of statistical

models merely aims to capture the relationship among multiple metrics. Similar

approaches have been used in the prior studies [CZG+05, SHNF15, XPZG13].

4.4.3 Construct validity.

We monitor the performance by recording performance metrics every 10 seconds and

combine the performance metrics for every minute together as an average value. There

may exist unfinished system requests when we record the system performance, leading

to noise in our data. We choose a time interval (10 seconds) that is much higher than

the response time of the requests (less than 0.1 second), in order to minimize the noise.

Repeating our study by choosing other time interval sizes would address this threat.

We exploit two approaches to normalize performance data from different environments.

We also see that our R2 value is high. Although a higher R2 determines our model is

accurate but it may also be an indication of overfit. There may exist other advance

approaches to normalize performance data from heterogeneous environment. We plan

to extend our study on other possible normalization approaches. There may exist

other ways of examining performance testing results. We plan to extend our study

by evaluating the discrepancy of using other ways of examining performance testing

results in virtual and physical environments.

In our performance tests, we consider the subject systems as a whole from the users’

47

point of view. We did not conduct isolated performance testing for each feature or

component of the system. Isolated performance testing may unveil more discrepancies

than our results. Future work may consider such isolated performance tests to address

this threat.

In practice, the system performance may be interfered by other environmental

issues. However, in our experiments, we opt for a more controlled environment to

better understand the discrepancy without any environmental interference, hence we

can limit the possibility that the discrepancy is from handling interference rather than

the environments. Future work can be applied to investigate the performance impact

from different environments by handling interference.

We recorded 44 performance metrics that are readily available from PerfMon and

calculated throughput of the subject system. However, there may exist other valuable

performance metrics, such as system load. Prior study shows that most performance

metrics are often correlated to each other[MJA+10b]. Future work may expand our

list of performance metrics to address this threat.

48

Chapter 5

Summary, Contributions And

Future Work

5.1 Summary of the Addressed Topics

Performance assurance activities are vital in ensuring software reliability. Virtual

environments are often used to conduct performance tests. However, the discrepancy

between performance testing results in virtual and physical environments are never

evaluated. In this thesis, we aimed to highlight that whether a discrepancy present

between physical and virtual environments will impact the studies and tests carried

out in the software domain. Following are the summaries of chapters covered in this

thesis.

Chapter 2 contains a detailed literature review and examination of state-of-art

approaches present for software regression detection and modeling. It is important to

include such review as it will help build research gateways while defining the analogies

that we have used in this domain.

Chapter 3 discusses the results of our investigation to find discrepancy between

virtual and physical environments. In this chapter, we analyze our results, based on the

49

performance metrics of two open source subject systems (DS2 and CloudStore). Prior

studies have also used our chosen subject systems in the field of software performance

engineering. We evaluate the aforementioned discrepancy by conducting performance

tests on two open source systems in both, virtual and physical environments. By

examining the performance testing results, we find that there exists a discrepancy

between performance testing results in virtual and physical environments when ex-

amining individual performance metrics, the relationship among performance metrics

and building statistical models from performance metrics, even after we normalize

performance metrics across different environments.

Chapter 4 concludes the work by adding a series of experiments carried out to

address if there is a difference in the choice of virtual environments/configurations.

Here, we sub divide the experiments into three categories: changing the type of

virtual environment, changing the resources allocated to the virtual environment

and investigating the stability of our virtual environment by repeating the set of

our experiments. We evaluate that our virtual environment is stable. We conclude

that altering the external factors has almost insignificant impact on our conclusion

in Chapter 3. It reassures that there exists performance discrepancy even between

different virtual environments and configurations.

5.2 Contributions

The goal of our thesis is to investigate if there exists a discrepancy between virtual

and physical environments. If yes, to what extent it effects the performance assurance

activities analyzed and compared in both environments. We reach our conclusions

after an analysis on the performance metrics based on: 1) individual performance

metrics 2) relationship among performance metrics and 3) statistical models based on

the performance metrics.

50

The major contribution of this work includes:

• A detailed state-of-the art review of the related literature We cover in

detail the performance assurance activities that are adapted to detect perfor-

mance discrepancies and anomalies. We chose the most suitable sources to map

our work to and and showed that the current approaches do not address the

discrepancies present in virtual environments.

• This is the first research attempt to evaluate the discrepancy between

performance testing results in virtual and physical environments. We

show that the current approaches do not consider performance discrepancies

present between virtual and physical environments. We provide a detailed

analysis

• Identifying the performance metrics that contribute most to the dis-

crepancies. We find that relationships among I/O related metrics have large

differences between virtual and physical environments. We prove this with the

help of analyzing performance metrics as a singular entity and also as an input

to regression models.

• Normalization via deviance We find that normalizing performance metrics

based on deviance may reduce the discrepancy. Practitioners may exploit such

normalization techniques when analyzing performance testing results from virtual

environments.

5.3 Actionable Contributions

• Practitioners should investigate the nature of overhead from VMs before assuming

the overhead as straightforward.

• When leveraging existing techniques for performance assurance activities, practi-

tioners should first verify the technique on VMs or in an environment with both

51

VM and physical machines.

• Practitioners should be careful when using historic data for performance as-

surance activities in heterogeneous environments. If there exists a discrepancy,

normalization via deviance may address the discrepancy.

5.4 Future Work

Our results highlight the need to be aware of the discrepancy between performance

testing results in virtual and physical environments, for both practitioners and re-

searchers. Future research effort may focus on minimizing such discrepancy in order

to improve the use of virtual environments in performance engineering and reliability

assurance activities.

Reproducing known performance regressions in heterogeneous environ-

ments: We conducted a set of experiments in a curated environment where there was

no presence of performance regression in our subject systems. We believe that it will

be interesting to see if these results still verify if performance regression is injected in

our subject systems.

Replicating our experiments in cloud environments: Despite the fact that

we carried out our experiments in different types of virtual environments, we also plan

to examine the behavior of our subject systems in cloud environments. Issues like

noise from other systems and how to isolate and monitor our system with and without

regression, which may lead to numerous possibilities.

Designing automating techniques: Lastly, we plan to discover an approach

that can lead us on to a precise normalizing factor between different environments. It

will be appealing to find out a normalizing technique that incorporates the discrepancies

present, dynamically.

52

Chapter 6

Appendix

Following is the complete set of Q-Q plots and heatmaps for both our subject systems.

53

1 2 3 4 5 6 7

4
6

8
10

12
14

Web Server CPU Processor Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 P

ro
ce

ss
or

 T
im

e(
V

ir
tu

al
)

0 1 2 3 4

6
8

10
12

Web Server CPU User Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0.5 1.0 1.5 2.0

4
6

8
10

Web Server CPU Privileged Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 P

riv
ile

ge
d

T
im

e(
V

ir
tu

al
)

1.5e+08 2.5e+08

1.
8e

+
08

2.
4e

+
08

3.
0e

+
08

Web Server Virtual Bytes Peak(Physical)

W
eb

 S
er

ve
r

V
ir

tu
al

 B
yt

es
 P

ea
k(

V
ir

tu
al

)

1.5e+08 2.5e+08

1.
8e

+
08

2.
4e

+
08

3.
0e

+
08

Web Server Virtual Bytes(Physical)

W
eb

 S
er

ve
r

V
ir

tu
al

 B
yt

es
(V

ir
tu

al
)

50 100 150 200 250 300

50
10

0
20

0
30

0

Web Server Page Faults/sec(Physical)

W
eb

 S
er

ve
r

P
ag

e
Fa

ul
ts

/s
ec

(V
ir

tu
al

)

Figure 7: Q-Q plots for DS2’s Web Server

54

2e+07 4e+07 6e+07 8e+075.
0e

+
07

8.
0e

+
07

1.
1e

+
08

Web Server Working Set Peak(Physical)

W
eb

 S
er

ve
r

W
or

ki
ng

 S
et

 P
ea

k(
V

ir
tu

al
)

2e+07 4e+07 6e+07 8e+075.
0e

+
07

8.
0e

+
07

1.
1e

+
08

Web Server Working Set(Physical)

W
eb

 S
er

ve
r

W
or

ki
ng

 S
et

(V
ir

tu
al

)

2.0e+07 6.0e+07 1.0e+08 1.4e+08

8.
0e

+
07

1.
2e

+
08

1.
6e

+
08

Web Server Page File Bytes Peak(Physical)

W
eb

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

 P
ea

k(
V

ir
tu

al
)

2.0e+07 6.0e+07 1.0e+08 1.4e+08

8.
0e

+
07

1.
2e

+
08

1.
6e

+
08

Web Server Page File Bytes(Physical)

W
eb

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

(V
ir

tu
al

)

2.0e+07 6.0e+07 1.0e+08 1.4e+08

8.
0e

+
07

1.
2e

+
08

1.
6e

+
08

Web Server Private Bytes(Physical)

W
eb

 S
er

ve
r

P
riv

at
e

B
yt

es
(V

ir
tu

al
)

160000 200000 240000

20
00

00
24

00
00

Web Server Pool Paged Bytes(Physical)

W
eb

 S
er

ve
r

P
oo

l P
ag

ed
 B

yt
es

(V
ir

tu
al

)

Figure 8: Q-Q plots for DS2’s Web Server

55

40000 80000 120000

80
00

0
12

00
00

Web Server Pool Nonpaged Bytes(Physical)

W
eb

 S
er

ve
r

P
oo

l N
on

pa
ge

d
B

yt
es

(V
ir

tu
al

)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Web Server Disk IO Read Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 R
ea

d
O

ps
/s

ec
(V

ir
tu

al
)

10 20 30 40 50

15
20

25
30

35
40

45

Web Server Disk IO Write Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 W
rit

e
O

ps
/s

ec
(V

ir
tu

al
)

10 20 30 40 50

15
20

25
30

35
40

45

Web Server Disk IO Data Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

500 1500 2500

10
00

15
00

20
00

Web Server Disk IO Other Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 O
th

er
 O

ps
/s

ec
(V

ir
tu

al
)

0 5 10 15 20

0
10

00
20

00
30

00
40

00

Web Server Disk IO Read Bytes/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 R
ea

d
B

yt
es

/s
ec

(V
ir

tu
al

)

Figure 9: Q-Q plots for DS2’s Web Server

56

2000 4000 6000 8000

30
00

50
00

70
00

Web Server Disk IO Write Bytes/sec(Virtual)(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 W
rit

e
B

yt
es

/s
ec

(V
ir

tu
al

)

2000 4000 6000 8000

40
00

60
00

80
00

Web Server Disk IO Data Bytes/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 D
at

a
B

yt
es

/s
ec

(V
ir

tu
al

)

20000 40000 60000 8000020
00

0
40

00
0

60
00

0

Web Server Disk IO Other Bytes/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 O
th

er
 B

yt
es

/s
ec

(V
ir

tu
al

)

2e+07 4e+07 6e+07 8e+074.
0e

+
07

7.
0e

+
07

1.
0e

+
08

Web Server Working Set Private(Physical)

W
eb

 S
er

ve
r

W
or

ki
ng

 S
et

 P
riv

at
e(

V
ir

tu
al

)

Figure 10: Q-Q plots for DS2’s Web Server

57

1 2 3 4 5

10
12

14
16

18
20

DB Server CPU Processor Time(Physical)

D
B

 S
er

ve
r

C
P

U
 P

ro
ce

ss
or

 T
im

e(
V

ir
tu

al
)

0 1 2 3 4

6
8

10
12

DB Server CPU User Time(Physical)

D
B

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

4
5

6
7

8

DB Server CPU Privileged Time(Physical)

D
B

 S
er

ve
r

C
P

U
 P

riv
ile

ge
d

T
im

e(
V

ir
tu

al
)

5.0e+08 8.0e+08 1.1e+095.
20

e+
08

5.
30

e+
08

DB Server Virtual Bytes Peak(Physical)

D
B

 S
er

ve
r

V
ir

tu
al

 B
yt

es
 P

ea
k(

V
ir

tu
al

)

7.6e+08 7.8e+08 8.0e+08

4.
5e

+
08

4.
7e

+
08

4.
9e

+
08

DB Server Virtual Bytes(Physical)

D
B

 S
er

ve
r

V
ir

tu
al

 B
yt

es
(V

ir
tu

al
)

0 5 10 15 20

0
5

10
15

20
25

DB Server Page Faults/sec(Physical)

D
B

 S
er

ve
r

P
ag

e
Fa

ul
ts

/s
ec

(V
ir

tu
al

)

Figure 11: Q-Q plots for DS2’s DB Server

58

4e+08 6e+08 8e+08

30
25

00
00

0
30

40
00

00
0

DB Server Working Set Peak(Physical)

D
B

 S
er

ve
r

W
or

ki
ng

 S
et

 P
ea

k(
V

ir
tu

al
)

3.60e+08 3.65e+08 3.70e+08

3.
00

e+
08

3.
02

e+
08

3.
04

e+
08

DB Server Working Set(Physical)

D
B

 S
er

ve
r

W
or

ki
ng

 S
et

(V
ir

tu
al

)

687240000 687300000

3.
25

e+
08

3.
27

e+
08

3.
29

e+
08

DB Server Page File Bytes Peak(Physical)

D
B

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

 P
ea

k(
V

ir
tu

al
)

6.65e+08 6.75e+08

3.
04

e+
08

3.
10

e+
08

3.
16

e+
08

DB Server Page File Bytes(Physical)

D
B

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

(V
ir

tu
al

)

6.65e+08 6.75e+08

3.
04

e+
08

3.
10

e+
08

3.
16

e+
08

DB Server Private Bytes(Physical)

D
B

 S
er

ve
r

P
riv

at
e

B
yt

es
(V

ir
tu

al
)

205000 210000 215000

27
00

00
29

00
00

31
00

00

DB Server Pool Paged Bytes(Physical)

D
B

 S
er

ve
r

P
oo

l P
ag

ed
 B

yt
es

(V
ir

tu
al

)

Figure 12: Q-Q plots for DS2’s DB Server

59

30000 50000 70000

50
00

0
70

00
0

90
00

0

DB Server Pool Nonpaged Bytes(Physical)

D
B

 S
er

ve
r

P
oo

l N
on

pa
ge

d
B

yt
es

(V
ir

tu
al

)

1000 2000 3000 4000 5000

30
0

40
0

50
0

60
0

70
0

DB Server Disk IO Read Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 R
ea

d
O

ps
/s

ec
(V

ir
tu

al
)

0 5 10 15 20 25 30

10
0

20
0

30
0

40
0

DB Server Disk IO Write Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 W
rit

e
O

ps
/s

ec
(V

ir
tu

al
)

1000 2000 3000 4000 5000

40
0

60
0

80
0

10
00

DB Server Disk IO Data Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

200 400 600 800

20
0

25
0

30
0

35
0

40
0

DB Server Disk IO Other Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 O
th

er
 O

ps
/s

ec
(V

ir
tu

al
)

500000 150000090
00

00
11

00
00

0
14

00
00

0

DB Server Disk IO Read Bytes/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 R
ea

d
B

yt
es

/s
ec

(V
ir

tu
al

)

Figure 13: Q-Q plots for DS2’s DB Server

60

0e+00 4e+05 8e+05

10
00

00
0

14
00

00
0

18
00

00
0

DB Server Disk IO Write Bytes/sec(Virtual)(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 W
rit

e
B

yt
es

/s
ec

(V
ir

tu
al

)

500000 1500000 2500000

20
00

00
0

26
00

00
0

32
00

00
0

DB Server Disk IO Data Bytes/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 D
at

a
B

yt
es

/s
ec

(V
ir

tu
al

)

5000 10000 15000 20000

20
00

30
00

40
00

50
00

60
00

DB Server Disk IO Other Bytes/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 O
th

er
 B

yt
es

/s
ec

(V
ir

tu
al

)

3.50e+08 3.55e+08 3.60e+08

2.
89

e+
08

2.
91

e+
08

2.
93

e+
08

DB Server Working Set Private(Physical)

D
B

 S
er

ve
r

W
or

ki
ng

 S
et

 P
riv

at
e(

V
ir

tu
al

)

Figure 14: Q-Q plots for DS2’s DB Server

61

0 20 40 60 80 100

5
10

15
20

25
30

Web Server CPU Processor Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 P

ro
ce

ss
or

 T
im

e(
V

ir
tu

al
)

0 10 20 30 40

10
20

30
40

50

Web Server CPU User Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0 5 10 15

2
4

6
8

10
12

Web Server CPU Privileged Time(Physical)

W
eb

 S
er

ve
r

C
P

U
 P

riv
ile

ge
d

T
im

e(
V

ir
tu

al
)

1.40e+09 1.42e+09 1.44e+09

1.
41

5e
+

09
1.

42
5e

+
09

1.
43

5e
+

09

Web Server Virtual Bytes Peak(Physical)

W
eb

 S
er

ve
r

V
ir

tu
al

 B
yt

es
 P

ea
k(

V
ir

tu
al

)

1.38e+09 1.41e+09 1.44e+09

1.
32

e+
09

1.
38

e+
09

1.
44

e+
09

Web Server Virtual Bytes(Physical)

W
eb

 S
er

ve
r

V
ir

tu
al

 B
yt

es
(V

ir
tu

al
)

0 200 600 1000

0
20

0
40

0
60

0

Web Server Page Faults/sec(Physical)

W
eb

 S
er

ve
r

P
ag

e
Fa

ul
ts

/s
ec

(V
ir

tu
al

)

Figure 15: Q-Q plots for CloudStore’s Web Server

62

5.0e+08 6.0e+08 7.0e+08 8.0e+08

5.
0e

+
08

6.
0e

+
08

7.
0e

+
08

Web Server Working Set Peak(Physical)

W
eb

 S
er

ve
r

W
or

ki
ng

 S
et

 P
ea

k(
V

ir
tu

al
)

5.0e+08 6.0e+08 7.0e+08

4e
+

08
5e

+
08

6e
+

08
7e

+
08

Web Server Working Set(Physical)

W
eb

 S
er

ve
r

W
or

ki
ng

 S
et

(V
ir

tu
al

)

6.0e+08 7.0e+08 8.0e+085.
5e

+
08

6.
5e

+
08

7.
5e

+
08

Web Server Page File Bytes Peak(Physical)

W
eb

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

 P
ea

k(
V

ir
tu

al
)

5.5e+08 6.5e+08 7.5e+084.
0e

+
08

5.
5e

+
08

7.
0e

+
08

Web Server Page File Bytes(Physical)

W
eb

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

(V
ir

tu
al

)

5.5e+08 6.5e+08 7.5e+084.
0e

+
08

5.
5e

+
08

7.
0e

+
08

Web Server Private Bytes(Physical)

W
eb

 S
er

ve
r

P
riv

at
e

B
yt

es
(V

ir
tu

al
)

170000 180000 19000017
00

00
18

00
00

19
00

00

Web Server Pool Paged Bytes(Physical)

W
eb

 S
er

ve
r

P
oo

l P
ag

ed
 B

yt
es

(V
ir

tu
al

)

Figure 16: Q-Q plots for CloudStore’s Web Server

63

100000 150000 200000 250000

80
00

0
12

00
00

16
00

00

Web Server Pool Nonpaged Bytes(Physical)

W
eb

 S
er

ve
r

P
oo

l N
on

pa
ge

d
B

yt
es

(V
ir

tu
al

)

500 1000 2000

10
0

20
0

30
0

40
0

50
0

Web Server Disk IO Read Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 R
ea

d
O

ps
/s

ec
(V

ir
tu

al
)

0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

Web Server Disk IO Write Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 W
rit

e
O

ps
/s

ec
(V

ir
tu

al
)

500 1000 2000

10
0

20
0

30
0

40
0

50
0

Web Server Disk IO Data Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

1000 3000 5000 7000

20
0

60
0

10
00

14
00

Web Server Disk IO Other Ops/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 O
th

er
 O

ps
/s

ec
(V

ir
tu

al
)

1e+05 2e+05 3e+05 4e+05

20
00

0
60

00
0

10
00

00

Web Server Disk IO Read Bytes/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 R
ea

d
B

yt
es

/s
ec

(V
ir

tu
al

)

Figure 17: Q-Q plots for CloudStore’s Web Server

64

0 10000 30000

20
00

40
00

60
00

80
00

Web Server Disk IO Write Bytes/sec(Virtual)(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 W
rit

e
B

yt
es

/s
ec

(V
ir

tu
al

)

1e+05 3e+05

20
00

0
60

00
0

10
00

00

Web Server Disk IO Data Bytes/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 D
at

a
B

yt
es

/s
ec

(V
ir

tu
al

)

200000 600000 1000000

50
00

0
15

00
00

25
00

00

Web Server Disk IO Other Bytes/sec(Physical)

W
eb

 S
er

ve
r

D
is

k
IO

 O
th

er
 B

yt
es

/s
ec

(V
ir

tu
al

)

5.0e+08 6.0e+08 7.0e+08

4e
+

08
5e

+
08

6e
+

08
7e

+
08

Web Server Working Set Private(Physical)

W
eb

 S
er

ve
r

W
or

ki
ng

 S
et

 P
riv

at
e(

V
ir

tu
al

)

Figure 18: Q-Q plots for CloudStore’s Web Server

65

0 10 20 30 40 50

10
20

30
40

50
60

70

DB Server CPU Processor Time(Physical)

D
B

 S
er

ve
r

C
P

U
 P

ro
ce

ss
or

 T
im

e(
V

ir
tu

al
)

0 10 20 30 40

10
20

30
40

50

DB Server CPU User Time(Physical)

D
B

 S
er

ve
r

C
P

U
 U

se
r

T
im

e(
V

ir
tu

al
)

0 2 4 6 8 10 12

2
4

6
8

10
12

14

DB Server CPU Privileged Time(Physical)

D
B

 S
er

ve
r

C
P

U
 P

riv
ile

ge
d

T
im

e(
V

ir
tu

al
)

5.0e+08 8.0e+08 1.1e+09

4.
65

e+
08

4.
75

e+
08

DB Server Virtual Bytes Peak(Physical)

D
B

 S
er

ve
r

V
ir

tu
al

 B
yt

es
 P

ea
k(

V
ir

tu
al

)

833150000 833300000 833450000

4.
65

e+
08

4.
75

e+
08

DB Server Virtual Bytes(Physical)

D
B

 S
er

ve
r

V
ir

tu
al

 B
yt

es
(V

ir
tu

al
)

0 50 150 250 350

0
5

10
15

20

DB Server Page Faults/sec(Physical)

D
B

 S
er

ve
r

P
ag

e
Fa

ul
ts

/s
ec

(V
ir

tu
al

)

Figure 19: Q-Q plots for CloudStore’s DB Server

66

3e+08 4e+08 5e+08 6e+08

2.
94

e+
08

2.
96

e+
08

2.
98

e+
08

DB Server Working Set Peak(Physical)

D
B

 S
er

ve
r

W
or

ki
ng

 S
et

 P
ea

k(
V

ir
tu

al
)

2.3e+08 2.5e+08 2.7e+082.
92

e+
08

2.
94

e+
08

2.
96

e+
08

DB Server Working Set(Physical)

D
B

 S
er

ve
r

W
or

ki
ng

 S
et

(V
ir

tu
al

)

5e+08 7e+08 9e+08

3.
06

e+
08

3.
08

e+
08

3.
10

e+
08

DB Server Page File Bytes Peak(Physical)

D
B

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

 P
ea

k(
V

ir
tu

al
)

6.84e+08 6.88e+08 6.92e+08

3.
04

e+
08

3.
06

e+
08

3.
08

e+
08

DB Server Page File Bytes(Physical)

D
B

 S
er

ve
r

P
ag

e
F

ile
 B

yt
es

(V
ir

tu
al

)

6.84e+08 6.88e+08 6.92e+08

3.
04

e+
08

3.
06

e+
08

3.
08

e+
08

DB Server Private Bytes(Physical)

D
B

 S
er

ve
r

P
riv

at
e

B
yt

es
(V

ir
tu

al
)

168000 172000 176000 180000

21
40

00
21

80
00

DB Server Pool Paged Bytes(Physical)

D
B

 S
er

ve
r

P
oo

l P
ag

ed
 B

yt
es

(V
ir

tu
al

)

Figure 20: Q-Q plots for CloudStore’s DB Server

67

70000 80000 90000 100000

70
00

0
72

00
0

74
00

0

DB Server Pool Nonpaged Bytes(Physical)

D
B

 S
er

ve
r

P
oo

l N
on

pa
ge

d
B

yt
es

(V
ir

tu
al

)

500 1000 1500

10
0

20
0

30
0

40
0

50
0

60
0

DB Server Disk IO Read Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 R
ea

d
O

ps
/s

ec
(V

ir
tu

al
)

500 1000 1500 2000

50
10

0
20

0
30

0

DB Server Disk IO Write Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 W
rit

e
O

ps
/s

ec
(V

ir
tu

al
)

500 1500 2500 3500

20
0

40
0

60
0

80
0

DB Server Disk IO Data Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 D
at

a
O

ps
/s

ec
(V

ir
tu

al
)

1000 3000 5000

20
0

40
0

60
0

80
0

10
00

DB Server Disk IO Other Ops/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 O
th

er
 O

ps
/s

ec
(V

ir
tu

al
)

1e+07 3e+07 5e+07

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

DB Server Disk IO Read Bytes/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 R
ea

d
B

yt
es

/s
ec

(V
ir

tu
al

)

Figure 21: Q-Q plots for CloudStore’s DB Server

68

2e+07 6e+07 1e+08

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

DB Server Disk IO Write Bytes/sec(Virtual)(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 W
rit

e
B

yt
es

/s
ec

(V
ir

tu
al

)

5.0e+07 1.0e+08 1.5e+08

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

3.
5e

+
07

DB Server Disk IO Data Bytes/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 D
at

a
B

yt
es

/s
ec

(V
ir

tu
al

)

50000 150000

50
00

10
00

0
15

00
0

DB Server Disk IO Other Bytes/sec(Physical)

D
B

 S
er

ve
r

D
is

k
IO

 O
th

er
 B

yt
es

/s
ec

(V
ir

tu
al

)

2.3e+08 2.5e+08 2.7e+08

2.
82

e+
08

2.
84

e+
08

2.
86

e+
08

DB Server Working Set Private(Physical)

D
B

 S
er

ve
r

W
or

ki
ng

 S
et

 P
riv

at
e(

V
ir

tu
al

)

Figure 22: Q-Q plots for CloudStore’s DB Server

69

Figure 23: Heatmap (complete): DS2

70

Figure 24: Heatmap (complete): CloudStore

71

Bibliography

[ABC+16] Tarek M Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E Hassan,

and Weiyi Shang. Studying the effectiveness of application performance

management (apm) tools for detecting performance regressions for web

applications: An experience report. In MSR 2016: Proceedings of the

13th Working Conference on Mining Software Repositories, 2016.

[AJ00] Martin Arlitt and Tai Jin. A workload characterization study of the 1998

world cup web site. IEEE network, 14(3):30–37, 2000.

[AK09] Mithun Acharya and Vamshidhar Kommineni. Mining health models for

performance monitoring of services. In Automated Software Engineering,

2009. ASE’09. 24th IEEE/ACM International Conference on, pages

409–420. IEEE, 2009.

[And12] Andale. Statistics how to - coefficient of determina-

tion (r squared). http://www.statisticshowto.com/

what-is-a-coefficient-of-determination/, 2012. Accessed:

2017-04-04.

[Apa] Apache. Tomcat. http://tomcat.apache.org/. Accessed: 2015-06-01.

[ARW96] A. Avritzer, J. P. Ros, and E. J. Weyuker. Reliability testing of rule-based

systems. IEEE Software, 13(5):76–82, Sep 1996.

72

[AW95] A. Avritzer and E. R. Weyuker. The automatic generation of load test

suites and the assessment of the resulting software. IEEE Transactions

on Software Engineering, 21(9):705–716, 1995.

[BC06] M. S. Bayan and J. W. Cangussu. Automatic stress and load testing

for embedded systems. In 30th Annual International Computer Software

and Applications Conference (COMPSAC’06), volume 2, pages 229–233,

Sept 2006.

[BC08] Mohamad Bayan and João W. Cangussu. Automatic feedback, control-

based, stress and load testing. In Proceedings of the 2008 ACM Symposium

on Applied Computing, SAC ’08, pages 661–666. ACM, 2008.

[Bei84] Boris Beizer. Software System Testing and Quality Assurance. Van

Nostrand Reinhold Co., New York, NY, USA, 1984.

[BGF08] Peter Bod́ık, Moises Goldszmidt, and Armando Fox. Hilighter: Auto-

matically building robust signatures of performance behavior for small-

and large-scale systems. In Proceedings of the Third Conference on

Tackling Computer Systems Problems with Machine Learning Techniques,

SysML’08, pages 3–3, 2008.

[BGHK13] Fabian Brosig, Fabian Gorsler, Nikolaus Huber, and Samuel Kounev.

Evaluating approaches for performance prediction in virtualized envi-

ronments. In 2013 IEEE 21st International Symposium on Modelling,

Analysis and Simulation of Computer and Telecommunication Systems,

pages 404–408. IEEE, 2013.

[Bla14] BlackBerry. Blackberry enterprise server. https://ca.blackberry.com/

enterprise, 2014. Accessed: 2017-04-04.

73

[BLG11a] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Autonomic load-

testing framework. In Proceedings of the 8th ACM International Confer-

ence on Autonomic Computing, ICAC ’11, pages 91–100. ACM, 2011.

[BLG11b] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Model-based per-

formance testing: Nier track. In 2011 33rd International Conference on

Software Engineering (ICSE), pages 872–875, May 2011.

[CCW07] Joao W Cangussu, Kendra Cooper, and W Eric Wong. Reducing the

number of test cases for performance evaluation of components. In SEKE,

pages 145–150. Citeseer, 2007.

[CCW09] JoAO W Cangussu, Kendra Cooper, and W Eric Wong. A segment based

approach for the reduction of the number of test cases for performance

evaluation of components. International Journal of Software Engineering

and Knowledge Engineering, 19(04):481–505, 2009.

[CGK+04] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S.

Chase. Correlating instrumentation data to system states: A building

block for automated diagnosis and control. In Proceedings of the 6th Con-

ference on Symposium on Opearting Systems Design & Implementation -

Volume 6, OSDI’04, pages 16–16, 2004.

[Cha10] Anand Chakravarty. Stress testing an ai based web service: A case study.

In Information Technology: New Generations (ITNG), 2010 Seventh

International Conference on, pages 1004–1008. IEEE, 2010.

[CHP90] J. Chambers, T. Hastie, and D. Pregibon. Compstat: Proceedings in

Computational Statistics, 9th Symposium held at Dubrovnik, Yugoslavia,

1990, chapter Statistical Models in S, pages 317–321. Physica-Verlag HD,

Heidelberg, 1990.

74

[CLFG15] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. The

making of cloud applications: An empirical study on software develop-

ment for the cloud. In Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2015, pages 393–403,

2015.

[Clo] CloudScale-Project. Cloudstore. https://github.com/

CloudScale-Project/CloudStore. Accessed: 2015-06-01.

[CM99] Peter Csurgay and Mazen Malek. Performance testing at early design

phases. In Testing of Communicating Systems, pages 317–328. Springer,

1999.

[CN01] P. M. Chen and B. D. Noble. When virtual is better than real [operating

system relocation to virtual machines]. In Proceedings of the Eighth

Workshop on Hot Topics in Operating Systems, 2001., pages 133–138,

May 2001.

[Cos15] Davide Costantini. How to configure a pass-through disk

with hyper-v. http://thesolving.com/virtualization/

how-to-configure-a-pass-through-disk-with-hyper-v/, 2015.

Accessed: 2017-04-04.

[CZG+05] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly,

and Armando Fox. Capturing, indexing, clustering, and retrieving system

history. In Proceedings of the Twentieth ACM Symposium on Operating

Systems Principles, SOSP ’05, pages 105–118, 2005.

[DB13] Jeffrey Dean and Luiz Andr Barroso. The tail at scale. Communications

of the ACM, 56:74–80, 2013.

75

[Dee14] Dee. performance-testing systems on virtual ma-

chines that normally run on physical machines.

http://sqa.stackexchange.com/questions/7709/

performance-testing-systems-on-virtual-machines-that-normally-run-on-physical-ma,

2014. Accessed: 2017-04-04.

[Dev] Hewlett Packard Enterprise Development. Loadrunner. http://www8.hp.

com/us/en/software-solutions/loadrunner-load-testing/. Ac-

cessed: 2017-02-16.

[Dil09] Bruno Dillenseger. Clif, a framework based on fractal for flexible,

distributed load testing. annals of telecommunications - annales des

télécommunications, 64(1):101–120, 2009.

[DJ] Todd Muirhead Dave Jaffe. Dell dvd store. http://linux.dell.com/

dvdstore/. Accessed: 2015-06-01.

[DPE04] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early perfor-

mance testing of distributed software applications. In Proceedings of the

4th International Workshop on Software and Performance, WOSP ’04,

pages 94–103. ACM, 2004.

[DPE05] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Performance

testing of distributed component architectures. In Testing Commercial-

off-the-Shelf Components and Systems, pages 293–314. Springer, 2005.

[DRSS01] Reiner R. Dumke, Claus Rautenstrauch, Andreas Schmietendorf, and

André Scholz, editors. Performance Engineering, State of the Art and

Current Trends, London, UK, UK, 2001. Springer-Verlag.

[Eet] Kit Eeton. How one second could cost amazon $1.6 bil-

lion in sales. http://www.fastcompany.com/1825005/

76

how-one-second-could-cost-amazon-16-billion-sales. Accessed:

2016-03-11.

[FJA+10] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan,

Ying Zou, and Parminder Flora. Mining performance regression testing

repositories for automated performance analysis. In Quality Software

(QSIC), 2010 10th International Conference on, pages 32–41, 2010.

[Fou] Apache Software Foundation. Apache jmeter. http://jmeter.apache.

org/. Accessed: 2015-06-01.

[Fre09] David Freedman. Statistical models: theory and practice. Cambridge

University Press, 2009.

[Gar08] Vahid Garousi. Empirical analysis of a genetic algorithm-based stress

test technique. In Proceedings of the 10th annual conference on Genetic

and evolutionary computation, pages 1743–1750. ACM, 2008.

[Gar10] Vahid Garousi. A genetic algorithm-based stress test requirements gener-

ator tool and its empirical evaluation. IEEE Transactions on Software

Engineering, 36(6):778–797, 2010.

[GBL06] Vahid Garousi, Lionel C Briand, and Yvan Labiche. Traffic-aware stress

testing of distributed systems based on uml models. In Proceedings of

the 28th international conference on Software engineering, pages 391–400.

ACM, 2006.

[GBL08] Vahid Garousi, Lionel C Briand, and Yvan Labiche. Traffic-aware stress

testing of distributed real-time systems based on uml models using genetic

algorithms. Journal of Systems and Software, 81(2):161–185, 2008.

77

[Ghe] Grig Gheorghiu. Performance vs. load vs. stress

testing. http://agiletesting.blogspot.com/2005/

02/performance-vs-load-vs-stress-testing.html. Accessed:

2017-02-16.

[Gor00] Ian Gorton. Essential Software Architecture. Springer, 2000.

[Har01] Frank E Harrell. Regression modeling strategies: with applications to

linear models, logistic regression, and survival analysis. Springer, 2001.

[HCM05] Dean S Hoskins, Charles J Colbourn, and Douglas C Montgomery. Soft-

ware performance testing using covering arrays: efficient screening designs

with categorical factors. In Proceedings of the 5th international workshop

on Software and performance, pages 131–136. ACM, 2005.

[HHF13] Christoph Heger, Jens Happe, and Roozbeh Farahbod. Automated root

cause isolation of performance regressions during software development. In

ICPE ’13: Proceedings of the 4th ACM/SPEC International Conference

on Performance Engineering, pages 27–38, 2013.

[HMHR01] Frank Huebner, Kathleen Meier-Hellstern, and Paul Reeser. Performance

testing for ip services and systems. In Performance Engineering, pages

283–299. Springer, 2001.

[HvQHK11] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev.

Evaluating and modeling virtualization performance overhead for cloud

environments. In Proceedings of the 1st International Conference on

Cloud Computing and Services Science, pages 563–573, 2011.

[Jai90] R. Jain. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling. Wiley,

1990.

78

[JH15] Zhen Ming Jiang and Ahmed E Hassan. A survey on load testing of

large-scale software systems. IEEE Transactions on Software Engineering,

41(11):1091–1118, 2015.

[JHHF09] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automated

performance analysis of load tests. In IEEE International Conference on

Software Maintenance, 2009. ICSM 2009., pages 125–134, Sept 2009.

[JMRW09a] Miao Jiang, M.A Munawar, T. Reidemeister, and P.AS. Ward. Automatic

fault detection and diagnosis in complex software systems by information-

theoretic monitoring. In Proceedings of 2009 IEEE/IFIP International

Conference on Dependable Systems Networks, pages 285–294, June 2009.

[JMRW09b] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and

Paul A.S. Ward. System monitoring with metric-correlation models:

Problems and solutions. In Proceedings of the 6th International Confer-

ence on Autonomic Computing, pages 13–22, 2009.

[JSS+12] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan

Lu. Understanding and detecting real-world performance bugs. In

Proceedings of the 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’12, pages 77–88. ACM,

2012.

[Kab11] Robert I. Kabacoff. R In Action. In R In Action, pages 207–213. Manning

Publications Co., Staten Island, NY, 2011.

[KCK+11] Stephan Kraft, Giuliano Casale, Diwakar Krishnamurthy, Des Greer, and

Peter Kilpatrick. Io performance prediction in consolidated virtualized

environments. SIGSOFT Softw. Eng. Notes, 36(5):295–306, September

2011.

79

[Kea12] Sean Kearon. Can you use a virtual machine to performance test

an application? http://stackoverflow.com/questions/8906954/

can-you-use-a-virtual-machine-to-performance-test-an-application,

2012. Accessed: 2017-04-04.

[KKB11] Mitashree Kalita, Sanjoy Khanikar, and Tulshi Bezboruah. Investigation

on performance testing and evaluation of prewebn: a java technique for

implementing web application. IET software, 5(5):434–444, 2011.

[Koh95] Ron Kohavi. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Proceedings of the 14th International

Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, pages

1137–1143, 1995.

[Kuh08] Max Kuhn. Building predictive models in r using the caret package.

Journal of Statistical Software, Articles, 28(5):1–26, 2008.

[LC16] Philipp Leitner and Jürgen Cito. Patterns in the chaos—a study

of performance variation and predictability in public iaas clouds. ACM

Trans. Internet Technol., 16(3):15:1–15:23, April 2016.

[LPG16] Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Mining performance

regression inducing code changes in evolving software. In Proceedings

of the 13th International Conference on Mining Software Repositories,

MSR ’16, pages 25–36, 2016.

[Ltd] RadView Software Ltd. Webload. http://www.radview.com/

webload-download/. Accessed: 2017-02-16.

[MA01] Daniel A. Menasce and Virgilio Almeida. Capacity Planning for Web

Services: Metrics, Models, and Methods. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 2001.

80

[MAD94] Daniel A. Menascé, Virǵılio A. F. Almeida, and Larry W. Dowdy. Ca-

pacity Planning and Performance Modeling: From Mainframes to Client-

server Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[MAH10] H. Malik, B. Adams, and A. E. Hassan. Pinpointing the subsystems

responsible for the performance deviations in a load test. In 2010 IEEE

21st International Symposium on Software Reliability Engineering, pages

201–210, Nov 2010.

[MDHS10] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney.

Evaluating the accuracy of java profilers. ACM Sigplan Notices, 45(6):187–

197, 2010.

[Men02a] Daniel A. Menasce. Load testing, benchmarking, and application perfor-

mance management for the web. In Proc. 2002 Computer Management

Group Conference, pages 271–281, 2002.

[Men02b] Daniel A. Menascé. Load testing of web sites. IEEE Internet Computing,

6(4):70–74, July 2002.

[Mer09] Christopher L Merrill. Load testing sugarcrm in a vir-

tual machine. http://www.webperformance.com/library/reports/

Virtualization2/, 2009. Accessed: 2017-04-04.

[MFB+] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Den-

nis Rea. Performance Testing Guidance for Web Applications - pat-

terns and practices. http://msdn.microsoft.com/en-us/library/

bb924375.aspx. Accessed: 2017-02-16.

[MHH13] H. Malik, H. Hemmati, and A. E. Hassan. Automatic detection of

performance deviations in the load testing of large scale systems. In 2013

81

35th International Conference on Software Engineering (ICSE), pages

1012–1021, May 2013.

[Mic] Microsoft Technet. Windows performance counters. https://technet.

microsoft.com/en-us/library/cc780836(v=ws.10).aspx. Accessed:

2015-06-01.

[MJA+10a] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora, and G. Hamann.

Automatic comparison of load tests to support the performance analysis of

large enterprise systems. In 2010 14th European Conference on Software

Maintenance and Reengineering, pages 222–231, March 2010.

[MJA+10b] Haroon Malik, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan,

Parminder Flora, and Gilbert Hamann. Automatic comparison of load

tests to support the performance analysis of large enterprise systems.

In CSMR ’10: Proceedings of the 2010 14th European Conference on

Software Maintenance and Reengineering, pages 222–231, 2010.

[MKAH16] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.

An empirical study of the impact of modern code review practices on

software quality. Empirical Softw. Engg., 21(5):2146–2189, oct 2016.

[MKMS10] Rajesh Mansharamani, Amol Khanapurkar, Benny Mathew, and Rajesh

Subramanyan. Performance testing: Far from steady state. In Computer

Software and Applications Conference Workshops (COMPSACW), 2010

IEEE 34th Annual, pages 341–346. IEEE, 2010.

[MST+05] Aravind Menon, Jose Renato Santos, Yoshio Turner, G John Janaki-

raman, and Willy Zwaenepoel. Diagnosing performance overheads

in the xen virtual machine environment. In Proceedings of the 1st

82

ACM/USENIX international conference on Virtual execution environ-

ments, pages 13–23, 2005.

[MV00] Daniel A. Menasce and A. F. Almeida Virgilio. Scaling for E Business:

Technologies, Models, Performance, and Capacity Planning. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[NAJ+12] Thanh H.D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Has-

san, Mohamed Nasser, and Parminder Flora. Automated detection of

performance regressions using statistical process control techniques. In

Proceedings of the 3rd ACM/SPEC International Conference on Perfor-

mance Engineering, ICPE ’12, pages 299–310, 2012.

[NIS] NIST/SEMATECH. e-Handbook of Statistical Methods. http://www.

itl.nist.gov/div898/handbook/eda/section3/qqplot.htm. Ac-

cessed: 2015-06-01.

[NJT13] A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing

performance bugs. In 2013 10th Working Conference on Mining Software

Repositories (MSR), pages 237–246, May 2013.

[NMV+11] Marco AS Netto, Suzane Menon, Hugo V Vieira, Leandro T Costa,

Flavio M De Oliveira, Rodrigo Saad, and Avelino Zorzo. Evaluating

load generation in virtualized environments for software performance

testing. In Parallel and Distributed Processing Workshops and Phd Forum

(IPDPSW), 2011 IEEE International Symposium on, pages 993–1000.

IEEE, 2011.

[NSML13] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler:

Detecting performance problems via similar memory-access patterns. In

83

Proceedings of the 2013 International Conference on Software Engineering,

ICSE ’13, pages 562–571, Piscataway, NJ, USA, 2013. IEEE Press.

[Ora] Oracle. MYSQL server 5.6. https://www.mysql.com/. Accessed: 2015-

06-01.

[PG11] BA Pozin and Igor V Galakhov. Models in performance testing. Pro-

gramming and Computer Software, 37(1):15–25, 2011.

[Rod] Giampaolo Rodola. Psutil. https://github.com/giampaolo/psutil.

Accessed: 2015-06-01.

[RTL09] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Encyclopedia of Database

Systems, chapter Cross-Validation, pages 532–538. Springer US, Boston,

MA, 2009.

[SAP11] Niclas Snellman, Adnan Ashraf, and Ivan Porres. Towards automatic

performance and scalability testing of rich internet applications in the

cloud. In Software Engineering and Advanced Applications (SEAA), 2011

37th EUROMICRO Conference on, pages 161–169. IEEE, 2011.

[She31] Walter Andrew Shewhart. Economic control of quality of manufactured

product, volume 509. ASQ Quality Press, 1931.

[SHNF15] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora.

Automated detection of performance regressions using regression models

on clustered performance counters. In Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering, ICPE ’15, pages

15–26, 2015.

[SJN+13] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,

and P. Flora. Leveraging performance counters and execution logs to

84

diagnose memory-related performance issues. In 29th IEEE International

Conference on Software Maintenance (ICSM ’13), pages 110–119, Sept

2013.

[SM05] Monchai Sopitkamol and Daniel A Menascé. A method for evaluating the

impact of software configuration parameters on e-commerce sites. In Pro-

ceedings of the 5th international workshop on Software and performance,

pages 53–64. ACM, 2005.

[Sri15] Eric Srion. The time for hyper-v pass-through disks has passed. http://

www.altaro.com/hyper-v/hyper-v-pass-through-disks/, 2015. Ac-

cessed: 2017-04-04.

[SSJH16] Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, and Ahmed E. Hassan.

Continuous validation of performance test workloads. Automated Software

Engineering, pages 1–43, 2016.

[Sta06] N. Stankovic. Patterns and tools for performance testing. In 2006 IEEE

International Conference on Electro/Information Technology, pages 152–

157, May 2006.

[Sta08] James H. Stapleton. Models for Probability and Statistical Inference:

Theory and Applications. WILEY, 2008.

[Sug17] SugarCRM. Sugarcrm. https://www.sugarcrm.com/, 2017. Accessed:

2017-04-04.

[Tec] CA Technologies. The avoidable cost of downtime. http:

//www3.ca.com/~/media/files/articles/avoidable_cost_of_

downtime_part_2_ita.aspx. Accessed: 2016-03-16.

85

[Tin11] Tintin. Performance test is not reliable on virtual ma-

chine? https://social.technet.microsoft.com/Forums/

windowsserver/en-US/06c0e09b-c5b4-4e2c-90e3-61b06483fe5b/

performance-test-is-not-reliable-on-virtual-machine?forum=

winserverhyperv, 2011. Accessed: 2017-04-04.

[TMM16] S. Tsakiltsidis, A. Miranskyy, and E. Mazzawi. On automatic detection of

performance bugs. In 2016 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW), pages 132–139, Oct 2016.

[TPC] TPC. TPC-W. www.tpc.org/tpcw. Accessed: 2015-06-01.

[Tys01] Jeff Tyson. How network address translation works. http://computer.

howstuffworks.com/nat2.htm, 2001. Accessed: 2017-04-04.

[VMW] VMWare. Accelerate software development and testing with the vmware

virtualization platform. http://www.vmware.com/pdf/development_

testing.pdf. Accessed: 2016-03-16.

[Wal29] Helen M Walker. Studies in the history of statistical method: With special

reference to certain educational problems. Williams & Wilkins Co, 1929.

[WFP07] M. Woodside, G. Franks, and D. C. Petriu. The future of software

performance engineering. In Future of Software Engineering, 2007.,

pages 171–187, May 2007.

[XPZG13] Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. vperf-

guard: An automated model-driven framework for application perfor-

mance diagnosis in consolidated cloud environments. In Proceedings of the

4th ACM/SPEC International Conference on Performance Engineering,

ICPE ’13, pages 271–282, 2013.

86

[YP96] Cheer-Sun D. Yang and Lori L. Pollock. Towards a structural load testing

tool. SIGSOFT Softw. Eng. Notes, 21(3):201–208, May 1996.

[ZAH12] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on perfor-

mance bugs. In 2012 9th IEEE Working Conference on Mining Software

Repositories (MSR), pages 199–208, June 2012.

[ZC02] Jian Zhang and Shing Chi Cheung. Automated test case generation

for the stress testing of multimedia systems. Software: Practice and

Experience, 32(15):1411–1435, 2002.

87

