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Abstract

Higgs vacuum stability in Standard Model extensions

Ashley C. Arsenault

After 40 years of searching, the Higgs boson was finally found at CERN’s Large Hadron

Collider in 2012 and weighed in at 125 GeV. However, this small mass gives rise to a vacuum

stability problem, namely that the Standard Model Higgs quartic self-coupling becomes

negative below the Planck scale, necessitating new physics beyond the Standard Model.

In this thesis, we study four minimal extensions of the Standard Model which solve the

Higgs vacuum stability problem by adding a second Higgs-like scalar boson. In addition to

the new scalar boson, we study the effects of adding new fermion singlets and doublets. It is

shown that while new fermion generations only decrease the Higgs quartic coupling at high

energies—only exacerbating the problem—the addition of a new Higgs-like scalar provides

a positive contribution which is enough to overcome the vacuum stability limit.

We consider four Standard Model extensions containing different combinations of new

fermions with this extended Higgs sector, and identify the allowed masses and mass mixing

angles of these hypothetical particles that satisfy the vacuum stability condition. The al-

lowed masses surround the 1 TeV range approximately, explaining why such particles have

not yet been found.
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Chapter 1

Introduction

The field of particle physics is a very dynamic area of research, with over fifty Nobel Prizes

awarded in the field to date. The term “particle physics” is interchangeable with “high

energy physics”, because many elementary particles do not occur naturally, but rather are

created only during high energy collisions with other particles, as can be detected by particle

accelerators. For this reason, as technological advances allow us to reach higher and higher

energies, our knowledge in this field is expanding all the time.

The idea that all matter is made up of elementary particles has been in existence since 460

BC. Aristotle, along with the majority of Greek philosophers at the time, believed that all

matter could be divided infinitely without changing its properties. However, Democritus

postulated that there reached a point when matter could no longer be broken up any

further, and that all matter was made up of these small indivisible fragments called atoms.

In principle, he believed that there were an infinite number of elementary atoms: iron was

made of iron atoms, clay was made of clay atoms, and cheese was made of cheese atoms.

Later, Hindu philosophers proposed that atoms came in only four flavours: earth, air,

fire, and water. However, this idea of the atom was purely intuitive and had no scientific

credibility for many years.
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In fact, it was not until 1803 that John Dalton, an English chemist, observed atoms while

experimenting with gases. Dalton’s atomic model is often referred to as the “billiard ball”

model, because he assumed that atoms were merely hard spheres that could not be divided

into smaller pieces. He postulated that there exists a different atom for each element of the

periodic table, and formulated a theory which states that all matter is made of atoms, that

atoms are indivisible and indestructible, that all atoms of a given element are identical,

and that compounds are made from combinations of these atoms. Dalton’s atomic theory

quickly became well-respected in chemistry and even today, while modern atomic theory is

much more involved, the essence of his theory still remains valid.

In 1897, J.J. Thomson showed that cathode rays were composed of electrically charged

particles, which he called corpuscles (now known as electrons). He calculated that these

electrons must have a mass a thousand times lighter than a hydrogen atom, which was the

lightest known atom at the time. Thomson knew that the atom had an overall neutral

charge, and concluded that atoms were actually positively charged cores that contained

negatively charged electrons within them. This model of the atom is known as the “plum

pudding” model, because the electrons were thought to be floating freely throughout the

positively charged core, like plums scattered throughout plum pudding.

In 1909, Ernest Rutherford, a student of Thomson’s, designed an experiment in which

alpha particles—small positively charged particles which remained mostly a mystery at

the time, but are now understood to be the helium nucleus—were fired at a piece of foil,

with a detector screen placed in a circular fashion around it. Assuming the plum pudding

model was correct and that the charges were scattered throughout the gold atoms, the

alpha radiation should have passed directly through the gold foil as the charge was thought

to be scattered sparsely throughout the atom. However, he observed that while most

alpha particles did pass directly through the foil, several were also scattered away from

the foil at various angles. This proved to Rutherford that atoms had to possess a heavy,

positively charged nucleus (i.e. the positive charge was concentrated in a much smaller

volume than predicted by Thomson’s model) in order to produce a force great enough to
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repel the heavy, positively charged alpha particles in such a fashion. This solar system

model with electrons orbiting the nucleus is known as the Rutherford model. Rutherford

later bombarded nitrogen with alpha particles, producing hydrogen ions, which he identified

as fundamental particles that he called protons.

In 1913, Neils Bohr furthered Rutherford’s work and presented us with the Bohr model. He

pointed out that the electron’s centripetal force and Coulomb force must be equal in order

to hold the electron in its stable orbit about the nucleus, and derived the discrete energy

values allowed, along with their corresponding orbital distances. He surmised that electrons

were only allowed to jump from one orbital to a higher or lower orbital by absorbing or

emitting photons, respectively.

The modern quantum mechanical atomic model was established in 1927 by theoretical physi-

cist Werner Heisenberg. According to Heisenberg’s uncertainty principle, it is impossible

to know both a particle’s position and momentum simultaneously—the more precisely the

position is determined, the less precisely its momentum can be known, and vice versa. This

is due to the wavelike nature of matter. As a result of this formulation, rather than trav-

eling in orbits, electrons exist as “clouds” within these orbitals, the clouds defining regions

of space with a high probability of containing the electron.

Figure 1.1: A timeline of the atomic model, beginning with Dalton’s “billiard ball” model
and ending with the modern quantum mechanical model.

As we now know, particles are not only responsible for matter, but for forces as well.

This discovery came surprisingly early in 1905 when Albert Einstein cleverly predicted the

existence of the photon. He surmised that electromagnetic radiation was in fact particulate

and that we live in a quantum universe, built from discrete chunks of matter and energy.

3



Also in 1905, he published his idea of mass-energy equivalence, suggesting that matter is

simply a form of energy. In 1909, he showed that photons have momentum and energy and

established the concept of wave-particle duality. Later in 1923, this photon momentum was

observed experimentally by Arthur Compton [1].

Later, in 1927, Paul Dirac formulated quantum electrodynamics [2], which was essentially

the first quantum field theory, describing the electromagnetic force in terms of fundamen-

tal particle interactions involving the photon. This gave birth to the modern idea that

elementary particle fields are responsible for fundamental forces as well as matter.

In the early 1960s, Sheldon Glashow, Abdus Salam and Steven Weinberg furthered the

early foundations of the Standard Model by merging electromagnetic and weak interactions,

giving rise to what we now call electroweak theory [3]. This was the early foundation of the

Standard Model, or SM, upon which other interactions built upon.

In 1964, Peter Higgs theorized the existence of a field responsible for giving particles mass.

This field bears his name, and the excitement of this field gives rise to the Higgs boson [4].

The Higgs mechanism was then bridged into electroweak theory in 1967 by Steven Weinberg

[5]. Finally, the last known piece of the Standard Model, known as the theory of quantum

chromodynamics (QCD), which describes the strong force in terms of elementary particle

interactions, was fine-tuned around 1973 and had several contributors [6, 7].

It was only recently, in 2012, that the Higgs boson was discovered experimentally at CERN’s

Large Hadron Collider, confirming at last the long-standing Higgs theory [8, 9]. However,

the observed mass of the Higgs boson, at 125 GeV, surprised physicists, as it violates Higgs

vacuum stability [10, 11, 12], which will be explained in greater detail later in this thesis.

The result of this unexpectedly low mass is that either the Standard Model must be incorrect

or flawed in some way, or at the very least, that new physics must exist at higher energies.

Minimal extensions of the Standard Model which stabilize the Higgs vacuum are the most
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common theories which attempt to solve the Higgs mass problem. The correlation be-

tween the Higgs mass and vacuum stability is highly dependent on the particles involved

in bosonic interactions. For this reason, models proposing as few as one additional particle

in the Standard Model are capable of stabilizing the electroweak vacuum. Supersymmetry

and extra dimensions are also Higgs vacuum stabilizing candidates and they predict new

particles and interactions. However, these theories have so far proven difficult to confirm ex-

perimentally. In addition, extra particles not only provide a simple solution to the vacuum

stability problem, but so do they have the potential to answer other remaining questions

that the Standard Model neglects, such as dark matter [13, 14, 15, 16, 17].

One simple type of extension of the Standard Model which takes care of vacuum stability is

additional Higgs-like particle models, such as the two Higgs doublet model, which introduces

a second, heavier, Higgs-like scalar boson [18] and the Higgs triplet model [19, 20, 21, 22].

The two-Higgs model stands by itself, but it is also sometimes studied in dark matter

exploration, where the added scalar is introduced as a dark matter candidate. This model

along with some variations are the focus of this thesis, the simplest of which includes an

extra fermion as well as the extra scalar boson [23, 24].

Other recently explored minimal extensions include new types of particles altogether, such as

the leptoquark model [25], which introduces a hypothetical boson which carries both colour

and weak isospin, allowing it to exchange information between leptons and quarks. It carries

a fractional electric charge and is an unstable particle which quickly decays into a lepton and

quark of the same generation. Yet another model known as the seesaw mechanism explores

the implications of the hypothetical existence of right-handed neutrinos which have very

large mass (SM neutrinos are all left-handed and virtually massless) [22, 26, 27, 28].

In this thesis, we will study several extensions involving an extra Higgs-like scalar boson,

along with different combinations of extra fermions. More specifically, we will examine the

vacuum stability bound and determine the mass restraints placed on these hypothetical
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particles by the vacuum stability condition. We will begin with a revision of the Stan-

dard Model and the extra scalar boson and fermion model, as presented by Ming-Lei Xiao

and Jiang-Hao Yu [23], and then examine two further extensions involving new fermion

generations rather than single fermions.
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Chapter 2

The Standard Model

2.1 Introduction

The Standard Model of particle physics is the theory which outlines all of the known el-

ementary particles in our universe. In addition to describing all of the known subatomic

elementary particles, the Standard Model describes their interactions. These interactions

come in different forms, known as three of the four fundamental forces—electromagnetic,

weak, and strong interactions. The fourth fundamental force, gravity, has yet to find its

place in the Standard Model, and physicists are still working diligently to merge the two.

The elementary particles contained within the Standard Model can be classified into two

broad categories: fermions, the particles that make up matter; and bosons, the force-

carrying particles. These two types of particles can also be identified by their spin: all

fermions carry half-integer spin, while all bosons carry integer spin.
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2.2 Fermions

Fermions are the fundamental building blocks of all matter. The name was chosen because

these particles obey Fermi-Dirac statistics, or alternatively, the Pauli exclusion principle.

The Pauli exclusion principle states that no two identical fermions can occupy the same

quantum state simultaneously. Fermi-Dirac statistics describe the distribution of such par-

ticles over energy states.

For example, this property explains the distribution of an atom’s electrons in their orbitals.

All electrons carry a spin of 1/2, and as a result, the ground state energy can only contain

two electrons—one spin up (+1/2), and one spin down (−1/2). The higher the energy

state, the higher the number of possible angular momentum states, which is why the outer

electron shells contain more and more electrons. Nevertheless, each electron shell can only

contain two electrons for each momentum state.

In the Standard Model, fermions themselves can be broken up into two subcategories:

quarks and leptons.

2.2.1 Leptons

There are a total of six leptons (or twelve, if we take into account their antimatter coun-

terparts), made up of three generations each containing a charged lepton (of charge −1)

and a very light, neutrally charged neutrino that shares its name. The first generation is

made up of the electron and the electron neutrino; the second generation corresponds to the

muon, which is heavier than the electron, and the muon neutrino; and the third generation

contains the tau, the heaviest lepton, and the tau neutrino (see Figure 2.1).

The leptons participate in all interactions except strong interactions. However, the weak

force is a very short-range interaction, so neutrinos (which have a neutral charge and thus

are also unaffected by the electromagnetic force) rarely interact with anything and typically
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Figure 2.1: The Standard Model.

pass right through matter undetected.

2.2.2 Quarks

Quarks, like leptons, come in six flavours divided into three successively heavier generations.

However, unlike leptons, quarks have never been directly observed on their own—they are

bound together by the strong force in nature, and as a result, their individual charges come

in fractions of e. The up, charm, and top quarks each have a charge of +2/3, while the

down, strange, and bottom quarks have a charge of −1/3.

As participants of strong interactions, quarks possess a property that we call “colour”,

which comes in three distinct values labeled red, green, and blue. Anti-quarks, on the

other hand, come in anti-red, anti-green, and anti-blue. In order to explain the possible

9



groupings of quarks, we require all physical particles to be colourless. As such, we can

mix three differently coloured quarks or anti-quarks together (one red, one green, and one

blue—or, conversely, one anti-red, one anti-green, and one anti-blue) to form a composite

particle called a baryon (examples include protons and neutrons), or we can mix one quark

and one anti-quark of the same colour (red and anti-red, for example) to form mesons, such

as pions and kaons. Collectively, we refer to baryons and mesons as hadrons.

2.3 Bosons

Bosons are named after Bose-Einstein statistics, which govern their distribution across

discrete energy states. The number of bosons which can occupy the same state, unlike

fermions, varies with temperature.

Bosons are the particles responsible for the four fundamental forces. The photon is re-

sponsible for the electromagnetic force, the gluon for the strong force, and the W± and Z

bosons (three different particles carrying charges of −1, 0, and 1) for the weak force (the

graviton is thought to mediate the gravitational force, but such a particle has still not yet

been discovered experimentally). These four forces and their associated mediator particles

are listed below in order of decreasing approximate strength, as given in a popular particle

physics textbook, “Introduction to Elementary Particles,” by David J. Griffiths [29]. Note

that gravity is not part of the Standard Model, and we list it for comparison only.
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Force Strength Theory Mediator

Strong 10 Quantum Chromodynamics (QCD) Gluon

Electromagnetic 10−2 Quantum Electrodynamics (QED) Photon

Weak 10−13 Flavordynamics W and Z

Gravitational 10−42 Geometrodynamics Graviton

2.4 Feynman diagrams

We illustrate particle interactions using Feynman diagrams, as illustrated in Figure 2.2. The

vertices joining bosons with fermions or other bosons in such diagrams represent the various

individual interactions. All particle interactions must involve the presence of at least one

of the force-mediating bosons. However, they are often short-lived, and as a result, they

are sometimes referred to as “virtual particles”, which are not physical particles, but mere

disturbances in the particle fields.

When making use of Feynman diagrams, it is important to note that momentum and charge

must be conserved at every vertex. Furthermore, fermions always appear in pairs of the same

type at any given vertex with arrows always pointing in the same direction, as illustrated

above. The number of fermions entering and exiting an interaction is conserved.

2.5 The Higgs boson

It is important to understand that all fundamental particle interactions involve at least

one boson, and that the four fundamental forces observed in nature (if we assume the

existence of the graviton) are described by such interactions. An interaction with one or
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(a) Two electrons exchange a photon
(the originating electron is irrelevant).
This exchange of momentum allows for
the electrons to repel one another.

(b) An electron and a positron annihi-
late one another to create a virtual pho-
ton, which then produces an electron-
positron pair.

Figure 2.2: An example of two Feynman diagrams illustrating typical electromagnetic in-
teractions. The horizontal axis represents position, while the vertical axis represents time
(However, this convention is arbitrary and is reversed in many textbooks). The arrows that
appear to point backwards in time represent anti-particles.

more photons gives rise to the electromagnetic force; one with W and Z bosons gives rise

to the weak force; those with gluons, the strong force; and an interaction involving the

hypothetical graviton would describe the gravitational force. Feynman diagrams are used

to illustrate these interactions on their smallest, most fundamental scale. These diagrams

often include virtual particles, which can be described simply as particles that exist within

the diagram for a brief moment in time as an intermediate step—whether or not the particle

physically existed as part of the process is irrelevant. Every particle interaction can then

be described by an infinite number of Feynman diagrams, each one containing more virtual

particles than the last. Lower-order Feynman diagrams are far more likely to occur as a

physical process than those described by higher-order Feynman diagrams; however there is

no way to differentiate these physical occurrences, as quantum particles must be treated in

terms of probabilities. In order to accurately describe a gauge interaction, then, we must

in theory account for an infinite number of Feynman diagrams. However, the higher-order

diagrams become less probable and thus more negligible in mathematical considerations as
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they represent higher order terms in perturbation theory.

Now, we have established that boson interactions give rise to the fundamental forces. One

might then wonder why the Higgs mechanism is not considered a fifth fundamental force.

We already know that fermions possess half-integer spin, while bosons possess integer spin.

More specifically, the gauge bosons, which earn their name from being a direct consequence

of observed symmetries, have a spin equal to 1. The component of such a particle’s spin

along any axis has three eigenvalues: −~, 0, and +~. In other words, any measurement

of the spin can yield any of these three values. These 1-spin bosons are known as vector

bosons. The Higgs boson, on the other hand, is the only known fundamental particle with

0-spin. The measured spin component then has only one eigenvalue: 0. Because of this, the

Higgs is called a scalar boson. Our intuitive definition of force is a vector which imparts

momentum, however the Higgs field is a scalar field which imparts scalar mass. Furthermore,

the gauge bosons are a direct consequence of gauge symmetries and fall into place within

the Standard Model naturally, while the scalar Higgs boson was inserted into the Model in

order to explain electroweak symmetry breaking which allows all particles in the Standard

Model to acquire mass, and which we will explore further in the next chapter. For these

reasons, the Higgs is categorized alone, apart from the gauge bosons, and we do not define

the Higgs mechanism as a fundamental force.
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Chapter 3

Background Theory

3.1 The Higgs Mechanism

The Higgs mechanism, defined as the process which gives mass to particles in the Standard

Model, is introduced in a very comprehensible manner in [30], which will be summarized

here.

The need for the Higgs mechanism arises purely from our desire for symmetry in nature as

physicists. To put it differently, we use the Higgs mechanism to explain why an observation

does not match a recurring pattern.

We begin by studying the classical formula for potential energy. Just as in [30], let us

consider a charged particle in an electric field in vacuum as an example. The potential

energy of the particle is

U = qV, (1)

where q is the charge of the particle and V is the potential, which is a function of the electric

field ~E. This potential energy represents the interaction of the particle with the electric

field.
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The potential energy of the electric field in a volume V, on the other hand, is

U = ε0
2

∫
| ~E|2dV , (2)

where ε0 is the dielectric constant of the vacuum. This potential energy arises from the

electric field’s interaction with itself.

The total potential energy inside the volume V is then

U = qV + ε0
2

∫
| ~E|2dV . (3)

Alternatively, we may look at the energy density,

u ≡ dU

dV
= d

dV
qV + ε0

2 |
~E|2. (4)

When studying such energy densities, we typically observe a certain symmetry. The energy

density is always written as a sum of terms, each representing an interaction of some field

with matter (a boson with a fermion), or of a field with a field (a boson with another boson).

In our example, the first term is a product of

(1) a coupling constant, q,

(2) an operator, d
dV , representing the “density” of the matter in the volume, and

(3) the potential, V , of the field.

Similarly, in the second term, we have

(1) a coupling constant, ε0/2, and

(2) the field, ~E.

In general, each term contains a coupling constant which quantifies the strength of the

15



coupling between the two interacting objects in question, as well as an operator for each of

these objects, whether it be

• d
dV (matter) and a potential Φ (field), or

• φ1 (field) and φ2 (another field).

However, a problem arises when we attempt to introduce special relativity, for special

relativity appears to break this apparent symmetry. Allowing the particle in our example

(of some mass m) to be relativistic, we must now introduce Einstein’s expression for the

rest energy, E = mc2. The total energy density then becomes

u = d

dV
qV + ε0

2 |
~E|2 + d

dV
mc2. (5)

The problem with this new term is obvious. It does not reflect an interaction in the same

way as the first two terms. It contains the operator associated with matter, the mass m

(which could function as a coupling constant just like q in the first term), and finally c2,

which is simply a universal constant. If we are to treat this term as any other energy density

term, we must describe it as an interaction between the particle and some new field, which

we call the Higgs field.

Let us denote the Higgs field φ. Since we know that fields can interact with sources as well as

other fields, we can expect the Higgs field to interact with the charged particle, the electric

field, as well as itself in our example. Then, taking each of these possible interactions into

account and following the observed symmetry, a more general expression for the energy

density is

u = d

dV
qV + ε0

2 |
~E|2 + d

dV
aΦ + g ~Eφ+ κφ2, (6)

where Φ and φ are the Higgs potential and field respectively, and a, g, and κ are arbitrary

coupling constants.

Let us now take a step back and focus on the definition of “vacuum”. Intuitively, a vacuum
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is a space in which no matter nor field exists. For example, returning to Eq.(5), we would

have m = 0 and ~E = 0 in a vacuum. However, the proper definition of a vacuum in physics

is not necessarily a complete lack of matter or fields, but rather the state in which the

energy reaches its minimum. For example, in the above example, we define the state at

which the energy density u reaches its minimum, i.e. u = 0, as the vacuum state. In this

particular case, this corresponds to the absence of matter and fields (m = 0 and ~E = 0),

however in general this is not necessarily the case. Now that the proper definition of the

vacuum state is established, we use this definition in conjunction with the requirement for

any system to seek stability in the vacuum state (like a ball rolling to the lowest point on

an uneven surface) to make the following ansatz:

u = d

dV
qV + ε0

2 |
~E|2 + d

dV
aΦ + g ~Eφ− κ2φ2 + λφ4 (7)

This expression of the energy density is identical to the previous one, except that we have

forced the Higgs self-coupling constant to be negative and added an extra higher order term,

|φ|4. These higher order terms may be interpreted as combinations of the usual second-order

terms, describing more complex higher order interactions.

This ansatz is made because the vacuum state (energy minimum) occurs at a nonzero value

of φ. Near the origin, the negative term proportional to φ2 dominates, and the potential

is negative. However, as 〈φ〉 increases, the term proportional to φ4 dominates and causes

the potential to increase, creating a local minimum at some nonzero value of 〈φ〉. This

potential, known as the Higgs potential, is illustrated in Figure 3.1.

We are interested in the vacuum state of the energy function presented in Eq.(7) because

this represents the natural state of our universe—we understand that any system prefers

to occupy its ground state. The ansatz presented above describes a ground state in which

the interaction between the Higgs field and matter (fermion fields) is nonzero, giving rise to

the familiar mass terms that we observe in relativistic energy functions. Let us now take a

closer look at this vacuum state in which we live.
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Figure 3.1: The Higgs potential, commonly referred to as the “Mexican hat” potential,
U(φ) = −1

2κ
2φ2 + 1

4λφ
4.

Firstly, it is clear that ~E = 0 in the vacuum state, as this minimizes the energy function

presented in Eq.(7). In other words, the vacuum expectation value of the electromagnetic

field is zero. This takes care of the first, second, and fourth terms in the energy density

function. We are then left with

u = d

dV
aΦ− κ2φ2 + λφ4. (8)

But for what Higgs field value is the remainder of this energy function minimized? Let

us briefly examine the Higgs potential illustrated in Figure 3.1, describing the omnipresent

Higgs field. This function, which only focuses on the Higgs field, only contains Higgs self-

interactions, and does not include interactions with fermions. The Higgs potential and its

derivative are as follows:

V (φ) = −1
2κ

2φ2 + 1
4λφ

4; (9)

V ′(φ) = −κ2φ+ λφ3

= φ(−κ2 + λφ2). (10)
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Note that we have added constants before each term without loss of generality to simplify

the expression of the derivative. Now, setting the derivative to zero in order to obtain the

function’s minimum, and recognizing that the field’s vacuum expectation value is nonzero,

we obtain

−κ2 + λφ2
0 = 0 (11)

⇒ 〈φ0〉 = κ√
λ
. (12)

Thus, the minimum of the Higgs potential illustrated in Figure 3.1 occurs at 〈φ0〉 = κ/
√
λ.

Let us now return to the energy density function for a particle in a Higgs field and express

the Higgs field as the ground state with a perturbative term.

u = d

dV
a(Φ0 + Φ′)− κ2(φ0 + φ′)2 + λ(φ0 + φ′)4 (13)

Physically, the ground state φ0 represents the Higgs field which surrounds us, while a

perturbation φ′ of this field represents a physical Higgs particle.

Let us now focus our attention on the first term in Eq.(13). This generalized term represents

the interaction between the particle (a fermionic particle, represented by d
dV ) with the

Higgs field—represented by Φ0—and with any Higgs particles, represented by Φ′. If we try

to explain Einstein’s mass term now as an interaction with the Higgs field, we draw the

following conclusion:
d

dV
mc2 = d

dV
aΦ0 (14)

Equivalently,

a = mc2

Φ0
. (15)

Conventionally, the Higgs vacuum expectation value is denoted v =
√

2Φ0, and its ap-

proximate value is v = 246 GeV. Furthermore, we absorb c2 into the coupling constant a.
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Therefore, the coupling constant of an arbitrary fermion to the Higgs field directly relates

to its mass, with

g =
√

2m
v

. (16)

However, the story does not end there. As we will soon see, higher energies allow for more

complex interactions with more virtual particles (which can be thought of as intermediate

steps). This complicates matters, as this changes the value of the coupling “constants”. For

this reason, this relationship is merely approximate. When we are interested in processes

which allow for very large energies, the coupling parameters are no longer constant, but

rather “run” with the energy scale. We must therefore modify our methods, just as we do

when accounting for general relativity when allowing for very large velocities. The formulas

describing these coupling parameters at large energy scales are referred to as renormalization

group equations, and are discussed in greater detail in section 3.3.

3.2 The Standard Model as a gauge field theory

The Standard Model is a quantum field theory—it defines quantum fields which exist

throughout space. Observable particles are manifestations of excited states of these quan-

tum fields.

The quantum fields contained within the Standard Model are:

• electroweak boson fields W1, W2, W3 and B;

• the gluon field Ga,

• the Higgs field φ, and

• fermion fields ψ.

Because the Higgs mechanism breaks electroweak symmetry, the electroweak boson states
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that we observe physically are a “mix” of W1, W2, W3 and B. The observable electroweak

bosons are

W± = 1√
2

(W1 ∓W2), (17)

Z = W3 cos θW −B sin θW , (18)

γ = W3 sin θW +B cos θW , (19)

where θW is the Weinberg angle.

As well as being described as a quantum field theory, the Standard Model is a gauge theory.

The model is defined by an internal symmetry that governs the forces of the model. The

local gauge symmetry is defined mathematically as

G = SU(3)C × SU(2)W × U(1)Y . (20)

Each of these three symmetry groups acts on fermions, but only selectively on the gauge

bosons. For example, only SU(2)W and U(1)Y act on φ—this is what causes the Higgs

mechanism to break electroweak symmetry.

The SU(3)C “colour” group acts on G, which forms a 3 by 3 rotation matrix whose deter-

minant must be equal to one. This results in 8 gluons. Quarks, on the other hand, are

three-component vectors in this SU(3) colour space. The gluons transform these vectors

by acting on them; the SU(3)C gauge is then said to rotate these vectors in colour space.

Anti-quarks carry the conjugate colours.

The SU(2)W “weak isospin” group acts on both W and φ, while the U(1)Y “weak hyper-

charge” group acts on B and φ. The mixing of these gauge fields results in the electroweak

theory.
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One important feature of the fermion fields is that they are split into two “chirality” com-

ponents that we call left-handed and right-handed fermions

ψL = 1
2(1− γ5)ψ, (21)

ψR = 1
2(1 + γ5)ψ, (22)

where

γ5 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


(23)

is the fifth gamma matrix.

These left-handed and right-handed fermions transform differently under the gauge sym-

metries: left-handed fermions transform as doublets under SU(2)W , while right-handed

fermions transform as singlets (their weak isospin is always zero). This means that the

weak interaction could rotate a left-handed lepton into a muon—with the emission of a

W−—or one flavor of quark into another, but such interactions are impossible with right-

handed fermions.

As outlined above, the electroweak gauge that we observe results from the “mixing” of the

weak isospin and weak hypercharge gauges. The non-zero Higgs field vacuum expectation

value results in the constant interaction of φ with the W and B fields, even in vacuum,

contributing an inherent “offset” to the weak isospin and weak hypercharge. The relation

between the eigenvalue that we observe from this electroweak gauge (electric charge), and

the weak isospin and weak hypercharge quantum numbers is

Q = T3 + Y

2 , (24)
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where Q is the electric charge, T3 is the third component of the weak isospin (+1/2 for left-

handed up-type quarks and charged leptons, -1/2 for left-handed down-type quarks and

neutrinos, +1 for W+ and -1 for W−) and Y is the weak hypercharge.

Having now described all of the fields and interactions of the Standard Model, we can

write the Lagrangian in order to mathematically describe the Standard Model in only one

formula. The simplified Lagrangian takes on the following form [31]:

L = −1
4

8∑
C=1

GCµνG
Cµν − 1

4

3∑
α=1

Wα
µνW

αµν − 1
4BµνB

µν

+Dµφ†Dµφ− V (φ†φ)

+
∑
n,i,α

iQ†niασ̄
µDµQ

iα
n +

∑
n,i

iK†in σ̄
µDµKni

+
∑
n,α

iL†nασ̄
µDµL

α
n +

∑
n

iN †nσ̄
µDµNn

+LY ukawa + Lneutrino masses, (25)

where

V (φ†φ) = −1
2κ

2φ†φ+ 1
4λ(φ†φ)2, (26)

Dµ stands for the covariant derivative, Qn are the left-handed quark multiplets (their her-

mitian conjugates Q†n form the right-handed antiquarks), Kn are the left-handed antiquark

multiplets (their hermitian conjugates K†n form the right-handed quarks), Ln and L†n are

the left-handed leptons and right-handed antileptons respectively, and Nn and N †n are the

left-handed antileptons and right-handed leptons respectively. The LY ukawa term refers to

the mass terms of the quarks and leptons, while the Lneutrino masses term refers to neu-

trino mass terms, which involve interactions with two Higgs fields, such as allowed by the

two-Higgs models explored in this thesis.
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3.3 Renormalization Group Equations

The Feynman diagrams introduced in Chapter 2 are complemented by a rather complex

mathematical formalism known as the Feynman rules. Given any Feynman diagram, the

Feynman rules can then be used to calculate things such as decay rates and scattering

amplitudes and cross-sections. In essence, each vertex and propagator in the Feynman

diagram adds a factor following an explicit set of rules. Vertices, which represent interactions

between particles, provide factors containing coupling constants, while propagators give rise

to integrations over the momenta of the traveling particles.

Because we will be looking at coupling constants, which tell us a lot about a particle and

how it interacts with other particles, and because these coupling constants are properties

of Feynman diagrams, we must in principle consider all the relevant (one-loop) diagrams to

the particles of interest. For more precision but at the cost of more lengthy and complex

calculations, one can account for more “loops” (particle decays and annihilations contained

within a Feynman diagram that do not affect the outcome of the interaction).

It is important to acknowledge that the term “coupling constant” is a bit of a misnomer, as

in fact coupling constants have an energy dependence, and therefore they are not fixed for

every given pair of particle types. However, when we deal with typical interaction problems,

we are only interested in a narrow energy scale. Therefore, for this purpose, coupling

constants are fixed. However, because the aim of this thesis deals with the generalization

of all interactions within the Standard Model as a whole and effectively with probing the

broad range of energies allowed by the Standard Model, we must consider the “running” of

coupling parameters with the energy scale.

This running of couplings is described in the form of renormalization group equations

(RGEs). The underlying process consists of repeatedly separating finite quantities from

divergences caused by infinities resulting from integrating over all possible momenta for the

loop and setting these divergences to zero. This process is known as renormalization. The
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result is a differential equation describing the running of the coupling constant with the

energy scale.

The RGEs associated with the models discussed in this thesis arise from the framework

established in a three-part paper written by Marie E. Machacek and Michael T. Vaughn,

which details the procedure for formulating RGEs for a general quantum theory [32, 33, 34].

3.4 Problems with the Standard Model

Despite the Standard Model being the most successful theory in particle physics to date,

having predicted the existence of the Higgs boson, the W± and Z bosons, the gluon, and

the top and charm quarks, the Standard Model does have a few major shortcomings. These

deficiencies have enticed many particle physicists to study extensions of the Standard Model

containing new particles and new physics, and others still to formulate entirely new models

such as string theory.

Arguably the most troubling failure of the Standard Model is the complete absence of grav-

ity. The Standard Model has so far been able to describe all of the known forces in terms

of particle interactions with the exception of gravity. Not only has the graviton never been

proven to exist, but particle physics and general relativity are entirely incompatible, forcing

us to treat the microscopic and macroscopic scales completely differently. When faced with

microscopic particles, we deal in quantum mechanics and probabilities and uncertainties,

whereas with macroscopic celestial bodies, interactions are governed by smooth and well-

defined spatial geometry. The ways in which systems behave at these two vastly different

scales seem entirely independent of one another. The most successful quantum gravity the-

ory candidates typically consist of different veins of string theory [35], however these theories

are purely theoretical and prove difficult, if not impossible, to confirm experimentally.

Another major shortcoming of the Standard Model is its inability to explain the nature of

dark matter and dark energy. According to the laws of gravity, the solar systems closest
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to the centre of our galaxy should orbit the centre at a higher speed than those on the

outer edges, however in reality, they all travel at roughly the same speed. This is what

lead cosmologists to formulate the existence of a halo of “dark matter” surrounding our

galaxy—some unknown source of gravitation exerting an extra pull on solar systems within

the outer reaches of the galaxy. While dark matter attracts celestial bodies within galaxies,

dark energy repels on a much larger cosmic scale. It is responsible for the expansion of

the universe, which, like dark matter, has remained yet unexplained. Of all the particles

contained in the Standard Model, none have the properties of dark matter nor dark energy.

To reconcile this, many physicists simply theorize the existence of undiscovered particles

bearing the properties of dark matter [22, 36], while others have formulated a theory in

which dark matter is actually a consequence of a hidden multiverse interacting with our

own universe, and that gravity can in fact “leak” between universes [37].

Another percepted problem arises from symmetry. The Standard Model presents several

seemingly arbitrary asymmetries that remain unexplained. While not all physicists take

issue with this, many others have an intuition-based desire to observe symmetries in nature

and insist that such asymmetries must have logical explanations waiting to be discovered.

One such asymmetry that remains a mystery is the matter-antimatter asymmetry; it is

widely assumed that the Big Bang should have produced matter and antimatter in equal

amounts, however there is an obvious imbalance in favour of matter. Analyses have been

performed which consider whether or not matter and antimatter could be simply separated

into different regions of the universe [38], however it is deemed unlikely that such regions

dominated by antimatter exist. The general consensus on this matter is that charge, par-

ity, and time-reversal symmetry violations in certain weak interactions are responsible for

creating different decay rates for opposing reactions, resulting in the production of more

matter than antimatter after the Big Bang [39, 40, 41].

Finally, vacuum instability, the flaw that serves as a primary motivation and focus of this

thesis, stems from the recent discovery of the Higgs boson, or more specifically, with its

mass, as we will show in the following chapter. The result of this flaw, however, is that
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the Standard Model fails at energies above 106GeV, requiring new physics at this scale. In

order to be satisfied that we have a complete theory of physics, we require coverage up to

Planck scale, which is considered the universal physical limit.

27



Chapter 4

Vacuum stability in the Standard

Model

Gaining much public attention after its discovery at CERN in 2012, the Higgs boson’s role

is to act as a mediator of the Higgs field, which is responsible for assigning mass to all of the

elementary particles described by the Standard Model. These particle masses are directly

proportional to the strength of their interactions with the Higgs boson:

mi = yiv√
2
, (27)

where v = 246GeV is the Higgs vacuum expectation value and yi is the coupling constant

of the interaction of the Higgs with the elementary particle in question.

Interactions with the Higgs field are specified by the Higgs potential, which has the form

V (φ) = −1
2κ

2φ2 + 1
4λφ

4 +O(φ6), (28)

where κ and λ are renormalized quantities and φ is the value of the Higgs field. Vacuum

stability requires the Higgs field in vacuum to be located at a global minimum in the
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Figure 4.1: The Higgs potential as a function of the value of the Higgs field.

potential, or, alternatively, λ(µ) > 0, where λ is the “running” quadratic Higgs self-coupling

parameter, which varies with the energy scale µ at which the Standard Model breaks down.

Figure 4.1 illustrates the energy of the Higgs field as a function of the field value φ. If the

ground state of our universe (labeled φ1) exists in a global minimum (all other minimums,

if they exist, are at higher energies, as illustrated by local minimum S), then the vacuum

is said to be stable, and the physical implication is that the universe will keep inflating

eternally. However, if, on the other hand, there exists a lower minimum as illustrated by

local minima M+, M0 and M− in Figure 4.1, then there is a very small chance at any given

moment that our vacuum expectation value could quantum tunnel through the potential to

the other vacuum expectation value φ2. The probability of this occurring depends on the

height and width of the “hill” in the potential energy function between the two minima, and

given the age of our universe, this probability would be very low, meaning that our universe

would continue to exist as it is for trillions of years, however eventually, over a long enough

time, the nonzero probability of this collapse would ensure the inevitable total destruction

and rebirth of our universe, beginning at a particular point in space and propagating at

the speed of light. This scenario in which there exists a lower energy minimum is referred

to as meta-stability, as the universe is long-lived, however not infinitely. It is furthermore
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interesting to note that should the energy in the other state be negative, as indicated by

M−, the fabric of our spacetime will collapse into a Big Crunch, as opposed to inflating as

with M+. In the zero-energy case of M0, the universe will neither expand nor collapse, and

this also has other major implications with regards to the Standard Model as the Higgs

mechanism is not possible with a zero Higgs vacuum expectation value.

We now return our focus to the SM Higgs potential. Whether stable or meta-stable, we

require λ > 0 locally in order to give us the local minimum in which the vacuum state of

our universe exists. The only question is, at what scale does the Standard Model break

down? In order for the Standard Model to be a complete physical theory, we require it to

be valid up to Planck scale, or 1018 GeV, as this is the universal limit of physical relevance.

If the Standard Model is not valid up to Planck scale, then we require new physics and the

SM can only serve as an approximation, and not a completely accurate theory. However,

the simpler solution that we will offer here is the existence of new particles rather than

new physics. With this simple solution comes the assumption that the Standard Model is

effective up to Planck scale, i.e. λ > 0 for µ ≤ 1018 GeV.

We will now study what this vacuum stability means for the Higgs mass. In order to study

the self-coupling parameter λ across all energy scales, we must make use of the RGE given

in [42] as follows:

dλ(µ)
dlnµ = 1

16π2

[
4λ2 + 12λy2

t − 36y4
t − 9λg2

1 − 3λg2
2 + 9

4g
4
2 + 9

2g
2
1g

2
2 + 27

4 g
4
1

]
(29)

Here and in the future, gi = {g1, g2, g3} are coupling parameters of the Higgs to the U(1),

SU(2), and SU(3) gauges respectively, each of these symmetry groups representing the three

fundamental forces described by the SM. yt, on the other hand, represents the coupling of

the Higgs to the top quark. We refer to couplings involving the Higgs boson collectively as

Yukawa couplings. All coupling parameters depend on the possible intermediate interac-

tions, which in turn depend on the upper energy limit. For this reason, coupling parameters

are renormalized and can be thought of as “running” as a function of the energy scale µ and
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as such, we must consider their renormalization group equations, such as the one presented

in Eq.(29).

The renormalization group equations for the gauge bosons and top quark in the SM are

well-known and can be found in [43]. For the top quark Yukawa coupling, we have

dyt(µ)
dlnµ = yt

16π2

[9
2y

2
t −

9
4g

2
2 −

17
12g

2
1 − 8g2

3

]
, (30)

and for the gauge couplings gi = {g1, g2, g3}, we have

dgi(µ)
dlnµ = 1

16π2 big
3
i , b = (41/6,−19/6,−7). (31)

At small energy scales, the gauge couplings may be thought of as coupling constants, and

the top Yukawa coupling in particular can be expressed in terms of the top mass. Since

these coupling parameters run at increasing energies, these constant values serve as initial

conditions to the renormalization group equations. They are written explicitly as

g2
1(µ0) = 4πα, (32)

g2
2(µ0) = 4πα

( 1
sin θW

+ 1
)
, (33)

g2
3(µ0) = 4παs, (34)

yt(µ0) =
√

2mt

v
, (35)

λ(µ0) = 3m2
H

v2 [1 + δλ(µ0)], (36)

The relevant constants in the above equations are all well-known: the fine-structure constant

is α = e2/4πε0~c = 1/137, the strong coupling is αs = 0.118, the Weinberg angle or weak

mixing angle is sin θW = 0.2312, the Higgs vacuum expectation value is v = 246.22 GeV,

and the top quark and Higgs boson masses are 174 GeV and 125 GeV, respectively. We set

the beginning of the running of the couplings at µ0 = mZ = 91.188 GeV.

By solving this set of differential equations and initial conditions, we may obtain λ(µ) at
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any given energy scale. The radiative correction term δλ is defined in [44] as

δλ(µ) = GF√
2
m2
Z

8π2

[
ξf1(ξ, µ) + f0(ξ, µ) + ξ−1f−1(ξ, µ)

]
, (37)

where GF = 1.16635× 10−5GeV−2 is the muon decay coupling constant, ξ ≡ m2
H/m

2
Z , and

f1(ξ, µ) = 6ln µ2

m2
H

+ 3
2lnξ − 1

2Z
(1
ξ

)
− Z

(
c2

ξ

)
− lnc2 + 9

2

(
25
9 −

√
1
3π
)
, (38)

f0(ξ, µ) = −6ln µ2

m2
Z

[
1 + 2c2 − 2m

2
t

m2
Z

]
+ 3c2ξ

ξ − c2 ln ξ
c2 + 2Z

(1
ξ

)

+4c2Z

(
c2

ξ

)
+ 3c2lnc2

s2 + 12c2lnc2 − 15
2 (1 + 2c2)

−3m
2
t

m2
Z

[
2Z
(
m2
t

m2
Zξ

)
+ 4lnm

2
t

m2
Z

− 5
]
, (39)

f−1(ξ, µ) = 6ln µ2

m2
Z

[
1 + 2c4 − 4m

4
t

m4
Z

]
− 6Z

(1
ξ

)
− 12c4Z

(
c2

ξ

)
− 12c4lnc2

+8(1 + 2c4) + 24m
4
t

m4
Z

[
lnm

2
t

m2
z

− 2 + Z

(
m2
t

m2
Zξ

)]
, (40)

Z(z) =


2Atan−1(1/A), (z > 1/4)

Aln [(1 + A)/(1−A)] , (z < 1/4),

A ≡ |1− 4z|1/2, (41)

where c2, s2 are abbreviations for cos2θW and sin2θW . The functions f−1, f0, and f1 are

defined in [44].

The dependence of the Higgs coupling λ as a function of the energy scale µ is plotted in

Figure 4.2 for different values of mH . Furthermore, if we fix λ = 0 and instead leave mH

unspecified, we examine the lower limit on the Higgs mass as a function of µ, illustrated

for different values of mt in Figure 4.3. It is apparent that the exact mass of the top quark

greatly affects the bound on the Higgs mass. Since the top quark is the heaviest quark

known to the SM, we expect its interaction with the Higgs to be proportionally large from
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Figure 4.2: The Higgs coupling as a function of µ for different values of mH . The Higgs
mass of 125 GeV as measured experimentally by CERN is given in bold.

Eq.(27).

Both Figures 4.2 and 4.3 compare quite well with the results illustrated in [42], however the

Higgs bound for mt = 210 GeV could not be computed explicitly for larger values of µ due

to a singularity in λ near mH = 155 GeV and instead, extrapolation was used, explaining

the discrepancy in Figure 4.3.

It is clear from Figure 4.2 that the Higgs potential de-stabilizes around 106 GeV, and

that this instability disappears at larger Higgs mass values. It is for this reason that the

expected mass of the Higgs before its experimental discovery was significantly higher than

the observed value. This stability problem requires additional particles in the SM, or new

physics before Planck scale (just as, for example, Einstein’s theory of special relativity came

to the rescue of Newtonian physics).
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Figure 4.3: Lower limits on mH as a function of µ for different values of mt. The ex-
periementally determined mass of the top quark of 174 GeV is given in bold.
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Chapter 5

Vacuum stability in minimal

two-Higgs extensions

5.1 Vacuum stability in a two-Higgs model

In this section, we consider an extension of the SM containing an extra scalar boson singlet

(a new Higgs-like particle) which interacts solely with the SM Higgs, and we examine the

constraints placed on the mass and mixing angle of this hypothetical particle by the Higgs

vacuum stability condition. It is worth mentioning that the addition of fermions to the

SM has a negative contribution to the Higgs quartic coupling as we will show in the next

chapter, thus exacerbating the Higgs vacuum instability problem. The addition of bosons,

on the other hand, provides a positive boost to the coupling parameter, and so all of the

SM extensions that we will study in this thesis will contain an extra scalar boson, with

the goal of repairing the Higgs vacuum stability. We begin with the simplest case, namely

the sole addition of this extra boson, and in the following sections we consider extensions

containing this extra boson as well as different fermion generations.

In this model, the Higgs doublet Φ and the new singlet scalar boson χ interact with one
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another in addition to themselves, and thus the Higgs sector potential, to the fourth order,

has the following form:

V (Φ, χ) = −µ2
HΦ†Φ + λH(Φ†Φ)2 − µ2

S

2 χ2 + λS
4 χ4 + λSH

2 (Φ†Φ)χ2. (42)

Just as in the SM case, we require λH > 0 in order to obtain the “Mexican hat” potential

allowing for a stable vacuum. In addition, we require λS > 0 so that the potential associated

with the new particle may have the same form. In fact, requiring the potential to be positive

for asymptotically large values of the fields, we obtain the following conditions:

λH > 0, 0 < λS < 4π, |λSH | < 4π. (43)

As we have seen earlier, the mass of a particle is intimately related to these coupling

parameters. As a result of the electroweak symmetry breaking, there is mass mixing between

the SM Higgs φ and the new scalar χ. The mixing matrix, given in [23], is

M2
S =

2λHv2 λSHvu

λSHvu 2λSu2

 , (44)

where v is the vacuum expectation value of the SM Higgs field, and u is that of the new

Higgs-like scalar field. The mass eigenvalues can then be obtained by diagonalizing the

mixing matrix. This yields

m2
H,S = λHv

2 + λSu
2 ∓

√
(λSu2 − λHv2)2 + λ2

SHu
2v2, (45)

and the eigenvectors are

H
S

 =

cosφ − sinφ

sinφ cosφ


Φ

χ

 , (46)
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where the mass mixing angle is given by

tan 2φ = λSHuv

λSu2 − λHv2 . (47)

From Eqs. (45) & (47), we can express the coupling parameters in terms of the masses,

λH = m2
H cos2 φ+m2

S sin2 φ

2v2 , (48)

λS = m2
S cos2 φ+m2

H sin2 φ

2u2 , (49)

λSH = m2
S −m2

H

2uv sin 2φ. (50)

Of course, we wish for these conditions to hold true for all scales up to Planck scale (1018

GeV). So, in order to know these coupling parameters at higher energy scales, we require

the RGEs for the model, which are given in [23]. Just like Xiao and Yu, we have taken the

starting point of the running to be µ0 = mt.

The Yukawa and Higgs sector RGEs are

dy2
t

dlnµ2 = y2
t

(4π)2

(
9y2
t

2 −
17g2

1
20 −

9g2
2

4 − 8g2
3

)
, (51)

dλH
dlnµ2 = 1

(4π)2

[
λH

(
12λH + 6y2

t −
9g2

1
10 −

9g2
2

2

)

+
(
λ2
SH

4 − 3y4
t + 27g4

1
400 + 9g4

2
16 + 9g2

1g
2
2

40

)]
, (52)

dλS
dlnµ2 = 1

(4π)2

(
9λ2

S + λ2
SH

)
, (53)

dλSH
dlnµ2 = λSH

(4π)2

(
2λSH + 6λH + 3λS + 3y2

t −
9g2

1
20 −

9g2
2

4

)
, (54)

where λH and λS are the Higgs and new scalar quartic self-couplings, respectively, and λSH

is the coupling of the two together. Eqs. (48)–(50) describe the coupling parameters at

relatively small energy scales, and therefore serve as initial conditions to these RGEs. Note

that just as with the SM, we ignore the contributions of all Yukawa couplings except for
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that of the top quark, due to their negligible masses and thus negligible contributions to

the Higgs sector couplings.

Just as in the SM, and as we will continue to do for each of the models studied in this thesis,

we include electroweak radiative correction terms for increased accuracy. To this end, we

replace the top Yukawa coupling and Higgs self-coupling boundary conditions with

yt =
√

2mt

v
[1 + ∆t(µ0)], (55)

λH = m2
H cos2 φ+m2

S sin2 φ

2v2 [1 + ∆H(µ0)], (56)

where ∆H(µ) is the same correction term used in the SM case obtained from [44], and ∆t(µ)

is given in [45] as a sum of terms corresponding to a contribution of each of the bosonic

interactions (weak, electromagnetic, and strong), i.e.

∆t(µ0) = ∆W (µ0) + ∆QED(µ0) + ∆QCD(µ0), (57)

∆QED(µ0) = α

9π

(
3lnm

2
t

µ2
0
− 4

)
, (58)

∆QCD(µ0) = αs
3π

(
3lnm

2
t

µ2
0
− 4

)
, (59)

∆W (µ0) = GFm
2
t

16π2
√

2

(
−9lnm

2
t

µ2
0
− 4πmH

mt
+ 11

)
, (60)

where we recall that α = 1/137 is the fine-structure constant, αs = 0.118 is the strong-

coupling constant, and GF = 1.16635× 10−5GeV−2 is the Fermi coupling constant. These

initial conditions are again evaluated at µ0 = mt.

The gauge couplings, responsible for the force-carrying boson interactions, run with the
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energy scale according to the gauge coupling RGEs

dg2
1

dlnµ2 = g4
1

(4π)2

(41
10

)
, (61)

dg2
2

dlnµ2 = g4
2

(4π)2

(
−19

6

)
, (62)

dg2
3

dlnµ2 = g4
3

(4π)2 (−7). (63)

These gauge coupling RGEs are identical to those that describe the SM; they are unaffected

by the addition of the new boson since we assume no coupling between the scalar boson

and the SM gauge bosons.

Figure 5.1: The RGE running of the top Yukawa coupling and scalar couplings for the
scalar boson model with mS = 1 TeV, sinφ = 0.1, u = 2 TeV, and the starting point of the
running is at µ0 = mt.

Figure 5.1 illustrates the running of the coupling parameters for a typical set of parameter

values. Notice that in this model and for this particular selection of parameter values, the

scalar couplings increase with increasing energy scales. Recall that in the SM, the Higgs

coupling decreased, becoming negative at ∼ 1010 GeV. If the SM is indeed meant to describe

processes at energies up to Planck scale, then the Higgs coupling must remain positive at

all energy scales within this range. Therefore, the addition of an extra scalar boson to the
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SM rescues the theory from vacuum instability.

Of course, we may only speculate the mass and mixing angle of this hypothetical particle.

We can guess that its mass might be larger than that of the Higgs, as particles with smaller

masses are more easily observed experimentally, however we have no other intuitive direc-

tion that might illuminate an experimental search for such a particle. We may, however,

eliminate all parameter values that do not satisfy Higgs vacuum stability. To do so, we

perform a scan over a broad parameter space and check which parameter values satisfy the

vacuum stability conditions outlined in Eq.(43). The resulting allowed parameter space is

illustrated in Figure 5.2.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 5.2: The allowed parameter space for the additional scalar boson model for different
vacuum expectation values.

We remark that there is necessarily mass mixing between the SM Higgs boson and the new

scalar boson, as the region surrounding the axis corresponding to zero mass mixing lies

outside of the permitted region. Furthermore, the allowed range for the mass is quite large,

particularly if we allow a larger vacuum expectation value. A large mass, of course, would

explain why such a particle has not yet been found, as producing heavier particles requires

higher energies. Even the Higgs at only 125 GeV, for example, had not been observed

until recently in 2012. Fortunately, we may anticipate higher energy collisions at the Large

Hadron Collider in the years to come.
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5.2 Vacuum stability in a vectorlike fermion two-Higgs model

We now consider an extension of the SM containing a new scalar boson as well as a new

vectorlike fermion; this model is the primary focus in [23].

The Yukawa couplings involving this vectorlike fermion ψ and the top quark τ provide the

Lagrangian with the following terms:

−LY ukawa = yM√
2
χψ̄LψR + λT√

2
χψ̄LτR + ytQ̄LH̃τR + yT Q̄LH̃ψR + h.c. (64)

Here, H̃ = iσ2H* represents the Higgs field and QL is the left-handed third-generation

quark doublet QL =

τL
bL

. Recall that the right-handed SM quarks transform as singlets.

Vectorlike fermions, on the other hand, transform in the same way regardless of chirality.

For this reason, they obtain a Dirac mass term which, unlike with SM fermions, is not

forbidden by any symmetry:

−Lmass = mDψ̄LψR + h.c. (65)

Unlike SM fermions which act as doublets under SU(2)W if left-handed and as singlets if

right-handed, vectorlike fermions have the same interactions regardless of chirality. They

appear in many new physics models, such as models with extra dimensions. Unlike SM

fermions, these are not ruled out by measurements of the Higgs mass and production cross-

section.

Vectorlike fermions, which decay into SM fermions and a gauge boson or a Higgs particle,

are predicted by extra-dimensional models [46], little Higgs models [47], string theories and

D-brane theories [48] and by some composite Higgs models [49] and they may provide a

better fit to the LHC Higgs data [50]. A great deal of literature is dedicated to analyses of

vectorlike fermions in the SM [51, 52, 53], as well as in model-independent scenarios [54].
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Vectorlike fermions do not acquire mass through Yukawa couplings: In fact, Yukawa inter-

actions involve the presence of both left-handed and right-handed SM fermions. This can

be interpreted as a chiral fermion “bumping into” the Higgs field and producing a fermion

with the opposite chirality, and so on, so that any given observable fermion represents a

mass mixing of two different chiral states. At any given moment, an SM fermion can be

measured to be either left-handed or right-handed. It is due to the nature of these Higgs

interactions that vectorlike fermions do not acquire mass through the Higgs mechanism like

the SM fermions. Instead, non-chiral pairs of fermions are able to achieve mass explicitly

through interactions involving only their mirror counterparts [52]. For this reason, their

mass scale remains thus far largely unknown.

It is important to note that when we consider the addition of a vectorlike fermion to the

Standard Model, the addition of a new scalar boson is necessary to ensure the stability of

the Higgs potential. If we try to add the new vectorlike fermion without a new scalar boson,

this results in the singular divergence of the Higgs quartic coupling. This is the motivation

behind this model as presented by Xiao and Yu. Just as in the previous model, we require

the Higgs sector potential given in Eq.(42) to be positive at asymptotically large values of

the fields, up to Planck scale.

The gauge coupling renormalization group equations, which describe the interactions be-

tween the force-carrying bosons and fermions, gain additional terms in this model due to

the new fermion as follows:

dg2
1

dlnµ2 = g4
1

(4π)2

(41
10 + 16

15

)
, (66)

dg2
2

dlnµ2 = g4
2

(4π)2

(
−19

6

)
, (67)

dg2
3

dlnµ2 = g4
3

(4π)2

(
−7 + 2

3

)
. (68)

Here, the second terms in Eqs. (66) and (68) are new terms that come from the added

fermion. The SM gauge coupling RGEs are identical to these RGEs minus these two terms.
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In this model, we must consider three Yukawa coupling RGEs—where we define Yukawa

couplings as the interaction between fermions and either of the two scalar bosons. Here, yt

is the coupling of the top quark to the Higgs field. We call the Higgs coupling of the new

vectorlike fermion yT , and that of the new fermion with the new scalar yM . We assume that

the new scalar does not interact with the top quark for the sake of the model’s simplicity,

but the top and new fermion mix. Again, we omit the Yukawa couplings of the lighter

fermions due to their negligible masses. The relevent Yukawa coupling RGEs are then

dy2
t

dlnµ2 = y2
t

(4π)2

(
9y2
t

2 + 9y2
T

2 − 17g2
1

20 −
9g2

2
4 − 8g2

3

)
, (69)

dy2
T

dlnµ2 = y2
T

(4π)2

(
9y2
t

2 + 9y2
T

2 + y2
M

4 −
17g2

1
20 −

9g2
2

4 − 8g2
3

)
, (70)

dy2
M

dlnµ2 = y2
M

(4π)2

(
y2
T + 9y2

M

2 − 8g2
1

5 − 8g2
3

)
. (71)

And finally, the Higgs sector RGEs (describing interactions involving only the two scalar

bosons) are

dλH
dlnµ2 = 1

(4π)2

[
λH

(
12λH + 6y2

t + 6y2
T −

9g2
1

10 −
9g2

2
2

)

+λ2
SH

4 − 3y4
t − 3y4

T − 6y2
t y

2
T + 27g4

1
100 + 9g4

2
16 + 9g2

1g
2
2

40

]
, (72)

dλS
dlnµ2 = 1

(4π)2

(
9λ2

S + λ2
SH + 6y2

MλS − 3y4
M

)
, (73)

dλSH
dlnµ2 = 1

(4π)2

[
λSH

(
6λH + 3λS + 2λSH + 3y2

t + 3y2
T + 3y2

M −
9g2

1
20 −

9g2
2

4

)
−6y2

T y
2
M

]
. (74)

The initial conditions of the Higgs sector couplings are obtained by diagonalization of the

mixing matrix in exactly the same way as in the previous model as seen in Eqs.(48)–(50).

Along the same vein, we may obtain expressions for the various Yukawa couplings in terms

of the mass mixing between the top quark t and the new fermion T , which we call θL. The
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mass mixing matrix for the vectorlike fermion T and top quark t, as given in [23], is

MF =

ytv√
2

yT v√
2

0 yMu√
2

 . (75)

It yields eigenvalues

M2
t,T = 1

4
(
y2
t v

2 + y2
T v

2 + y2
Mu

2
)1∓

√√√√1−
(

2ytyMvu
y2
t v

2 + y2
T v

2 + y2
Mu

2

)2
 (76)

and eigenvectors  tL,R
TL,R

 =

cos θL,R − sin θL,R

sin θL,R cos θL,R


 τL,R

ΥL,R

 , (77)

where the mixing angles

tan 2θL = 2yT yMvu
y2
Mu

2 − y2
T v

2 − y2
t v

2 , (78)

tan 2θR = 2ytyT v2

y2
Mu

2 + y2
T v

2 − y2
t v

2 (79)

are related by

tan θR = mt

mT
tan θL. (80)

The expressions for the coupling parameters resulting from Eqs. (76) & (78) are

yt(µ0) =
√

2mt

v

1√
cos2 θL + x2

t sin2 θL
, (81)

yT (µ0) =
√

2mT

v

sin θL cos θL(1− x2
t )√

cos2 θL + x2
t sin2 θL

, (82)

yM (µ0) =
√

2mT

u

√
cos2 θL + x2

t sin2 θL, (83)

where xt = mt/mT . We use these expressions to describe the coupling parameters at

smaller scales than those at which the parameters are running. As such, these serve as

initial conditions to the differential equations listed above.
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Now that we have all of the RGEs and boundary conditions, we may illustrate the RGE

running of the Yukawa and scalar couplings for a typical set of parameter values. Figures

5.3, 5.4, and 5.5 illustrate these couplings for different vacuum expectation values of the

new scalar boson field (1 TeV, 2 TeV, and 4 TeV, respectively). In the case of u = 1 TeV, we

have taken the mass of the scalar boson to be 0.8 TeV, because at 1 TeV, the Higgs sector

couplings diverge, leading to singularities. However, on the other hand, in the case of u =

2 TeV and u = 4 TeV, we take mS = 1 TeV because a smaller mass of 0.8 TeV is not large

enough to ensure a positive Higgs quartic coupling.

Figure 5.3: The RGE running of the Yukawa and scalar couplings for the vectorlike fermion
model. We have set mT = 0.8 TeV, mS = 0.8 TeV, sin θL = 0.08, sinφ = 0.1, u = 1 TeV,
and the starting point is at µ0 = mt.

Just as in the previous model, we require

λH > 0, 0 < λS < 4π, |λSH | < 4π (84)

for increasing field values in order to ensure a positive potential and thus a stable vacuum.

We may then study the allowed parameter values corresponding to each hypothetical parti-

cle. In order to achieve this, we perform a scan over random values of mS and mT between

45



Figure 5.4: The RGE running of the Yukawa and scalar couplings for the vectorlike fermion
model. We have set mT = 0.8 TeV, mS = 1 TeV, sin θL = 0.08, sinφ = 0.1, u = 2 TeV, and
the starting point is at µ0 = mt.

Figure 5.5: The RGE running of the Yukawa and scalar couplings for the vectorlike fermion
model. We have set mT = 0.8 TeV, mS = 1 TeV, sin θL = 0.08, sinφ = 0.1, u = 4 TeV, and
the starting point is at µ0 = mt.

46



300 and 2200 GeV, and sin φ and sin θL between -1 and 1. Parameter values satisfying the

conditions outlined in Eq.(84) are conserved and plotted below, while those that do not are

discarded. The allowed values of mS are then plotted against the allowed values of sin φ in

Figure 5.6 for different vacuum expectation values u, providing us with an illustration of

the possible quantitative properties of the scalar boson in this model. Similarly, the allowed

values of mT are plotted against those of sin θL in Figure 5.7, giving us insight about the

extra fermion in this model.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 5.6: The allowed parameter space for the scalar boson mass and mixing angle in the
additional fermion two-Higgs model for different vacuum expectation values.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 5.7: The allowed parameter space for the vectorlike fermion mass and mixing angle
in the additional fermion and scalar model for different vacuum expectation values.

We remark from Figure 5.6 that just as in the SM extension containing only an extra scalar

boson, considered in the previous chapter, there is necessarily mass mixing between the

two scalar bosons. However, when we consider the fermions t and T , we conclude that the

mixing between the two must be minimal, or possibly even nonexistent, as evidenced by

the cluster of allowed values near the zero mixing axis in Figure 5.7.
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Chapter 6

Vacuum stability in quark doublet

two-Higgs models

6.1 Vacuum stability in a Y = 1
6 quark doublet two-Higgs

model

In this chapter, we explore yet another extension of the SM containing again the extra

scalar boson, however we now replace the one extra fermion of the previous model with

a fermion doublet, or generation. In the SM, the quarks are separated into three pairs

called “generations”, separated by their masses. Like these SM doublets, the extra doublet

considered in this extension will consist of a quark with a charge of +2/3 and the other,

a charge of −1/3. We will call these quarks T and B respectively, as they can be thought

of simply as heavier top and bottom quarks, but with same left-handed and right-handed

interactions.

The Yukawa couplings involving this vectorlike fermion doublet ψ =

T
B

 and the third
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generation quarks QL =

τL
bL

, τR and bR provide the Lagrangian with the following terms:

−LY ukawa = yM√
2
χψ̄LψR+ λT√

2
χQ̄LψR+ytQ̄LH̃τR+ybQ̄LH̃bR+yT ψ̄LH̃τR+yBψ̄LH̃bR+h.c.

(85)

and the additional Dirac mass term in Eq.(65) remains unchanged.

We begin by considering how an extra quark generation will affect the gauge couplings. Since

this quark doublet will interact with the gauge bosons (in other words, it will experience

the fundamental forces), it will add contributions to these gauge coupling parameters. The

corresponding gauge coupling RGEs are

dg2
1

dlnµ2 = g4
1

(4π)2

(41
10 + 2

15

)
, (86)

dg2
2

dlnµ2 = g4
2

(4π)2

(
−19

6 + 2
)
, (87)

dg2
3

dlnµ2 = g4
3

(4π)2

(
−7 + 4

3

)
. (88)

Again, the first terms represent the SM RGEs, while the second terms are the contributions

from the extra generation considered in this model.

As for the Yukawa couplings, we now must consider the top Yukawa coupling yt (which is

modified by the presence of the additional doublet), as well as the new Yukawa couplings, yT

and yB. In addition, for the sake of simplicity, we will assume that the new fermion doublet

interacts with the new scalar together as a single entity and call this coupling yM . Before

presenting the running coupling parameters, let us first establish the Yukawa couplings at

low energy scales, which will serve as initial conditions for the running RGEs. Just as in

the previous model, we do this by diagonlizing the mass matrices. The low energy scale

Yukawa couplings are obtained in the same way as the previous model. In fact, the mass

mixing between b and B is exactly identical to that between t and T , with t → b, T → B
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and θL,R → βL,R, yielding

yt(µ0) =
√

2mt

v

1√
cos2 θL + x2

t sin2 θL
, (89)

yT (µ0) =
√

2mT

v

sin θL cos θL(1− x2
t )√

cos2 θL + x2
t sin2 θL

, (90)

yB(µ0) =
√

2mB

v

sin βL cosβ(1− x2
b)√

cos2 βL + x2
b sin2 βL

, (91)

yM (µ0) = mT +mB√
2u

√
cos2 θL + x2

t sin2 θL. (92)

Recall that xt is the ratio of the top mass and the T mass. Similarly, xb = mb/mB, and

θL is the mass mixing angle between t and T, while βL is the mass mixing angle between b

and B. The above-noted initial conditions are again evaluated at µ0 = mt.

The RGEs for the running of these Yukawa couplings are as follows:

dy2
t

dlnµ2 = y2
t

(4π)2

(
9y2
t

2 + 9y2
T

2 + 3y2
B

2 + y2
M

4 −
17g2

1
20 −

9g2
2

4 − 8g2
3

)
, (93)

dy2
T

dlnµ2 = y2
T

(4π)2

(
9y2
t

2 + 9y2
T

2 + 3y2
B

2 + y2
M

4 −
17g2

1
20 −

9g2
2

4 − 8g2
3

)
, (94)

dy2
B

dlnµ2 = y2
B

(4π)2

(
3y2
t

2 + 3y2
T

2 + 9y2
B

2 + y2
M

4 −
g2

1
4 −

9g2
2

4 − 8g2
3

)
, (95)

dy2
M

dlnµ2 = y2
M

(4π)2

(
y2
T + y2

B + 9y2
M

2 − 8g2
1

5 − 8g2
3

)
. (96)

Now, directing our attention to the final possible type of coupling, namely the Higgs sector

couplings, we find that the initial conditions evaluated at µ0 = mt are of course identical

to those presented in the previous model in Eqs. (48)-(50), since couplings are considered

constant at such small energy scales.

However, with the added possible interactions arising from the presence of the new fermion

doublet, more loop contributions must be considered at higher energies, and the RGEs must

be modified to reflect these possible interactions. As we restrict the new scalar boson’s
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interactions to the Higgs boson and the additional quark doublet to be unique, the Higgs-

like scalar quartic coupling RGE will not contain any explicit dependence on any of the

individual quarks (t, T, and B), but rather only with the Higgs sector.

The Higgs sector RGEs for this model are

dλH
dlnµ2 = 1

(4π)2

[
λH

(
12λH + 6y2

t + 6y2
T + 6y2

B −
9g2

1
10 −

9g2
2

2

)

+λ2
SH

4 − 3y4
t − 3y4
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dλS
dlnµ2 = 1

(4π)2
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9λ2

S + λ2
SH + 6y2

MλS − 6y4
M

)
, (98)

dλSH
dlnµ2 = 1

(4π)2

[
λSH

(
6λH + 3λS + 2λSH + 3y2
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T + 3y2

B + 6y2
M −

9g2
1
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9g2

2
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)
−6y2

T y
2
M − 6y2

By
2
M

]
. (99)

Figure 6.1 illustrates the running of all the relevant coupling parameters presented in this

model for a typical set of parameter values. As required, all of the Higgs sector couplings

remain positive up to Planck scale (1018 GeV). We notice a trend with respect to the previous

models presented in this thesis; the Yukawa couplings are generally affected negatively by

the added loops at higher energy scales, while the Higgs sector couplings are generally

affected positively (they tend to increase with increasing energy). The obvious exception

here is the Higgs coupling, which strays dangerously close to zero at high energy scales.

This, of course, depends on the parameter values chosen, however this general trend serves

us well as this allows us to impose limits on these parameter values.

This leads us to wonder about the allowed masses and mass mixing angles of the hypothetical

scalar boson and fermion doublet that will yield a positive Higgs coupling and thus a stable

Higgs vacuum (i.e. a successful Standard Model) up to Planck scale. To this end, we

perform a scan over a broad parameter region just as we did in the previous models and

illustrate the successful parameter value combinations.
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Figure 6.1: The RGE running of the Yukawa and Higgs sector couplings for the fermion
doublet model. We have set mT = 0.8TeV, mB = 1 TeV, mS = 1 TeV, sin θL = sin βL =
0.08, sinφ = 0.1, u = 2 TeV, and the starting point is at µ0 = mt.

Figure 6.2 illustrates the permitted mass and mixing angle values for the scalar boson in this

model for a few different scalar vacuum expectation values u. Figures 6.3 and 6.4 illustrate

the allowed masses and mixing angles for the fermion doublet T and B, respectively.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 6.2: The allowed parameter space for the scalar boson mass and mixing angle in the
additional fermion doublet model for different vacuum expectation values.

52



(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 6.3: The allowed parameter space for the T fermion mass and mixing angle in the
additional fermion doublet model for different vacuum expectation values.

We see that the allowed parameter spaces in this additional fermion doublet model look

similar to those obtained in the additional fermion singlet model. As expected from previous

observations, the permitted parameter spaces appear very similar for different scalar VEVs

u, with the larger VEVs merely allowing for larger masses. Just as in the fermion singlet

model, there is necessarily a mass mixing between the two Higgs sector scalars, illustrated

by the empty space along the central axis in Figure 6.2, while there is little to no mass

mixing between the fermion doublets (t,b) and (T,B).

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 6.4: The allowed parameter space for the B fermion mass and mixing angle in the
additional fermion doublet model for different vacuum expectation values.

6.2 Vacuum stability in a Y = 7
6 quark doublet in the two-

Higgs model

Finally, the final model we will consider, much like the previous model, contains a fourth

quark doublet, however rather than this quark doublet containing electric charges of +2/3
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and −1/3 like the three existing quark generations, we will consider a fourth generation in

which the quarks have electric charges of +2/3 and +5/3 (which we will label T and X,

respectively). In other words, we will entertain the possibility of a Y = 7/6 doublet, in con-

trast with the three familiar generations containing each a positive and negative quark pair.

The motivation for this is twofold: firstly, purely for investigating new possibilities consis-

tent with extra symmetries and their implications, and secondly, because it is allowed by

the observed symmetries governing electric charge (QED) and colour (QCD), and interacts

with the gauge bosons of the SM.

All stable particles observed experimentally possess electric charges which are integer multi-

ples of the electron’s charge. Only quarks possess fractional charges, however quarks cannot

be observed directly on their own, as this is forbidden by chromodynamics. We know from

chromodynamics that quarks can only form “colourless” combinations. As we have seen,

this leaves room for triplets of quarks or anti-quarks (baryons), as well as quark/anti-quark

pairs (mesons). Verifying that such combinations always yield an integer charge value is a

simple exercise in arithmetic. The six quarks within the SM are known to have charges of

+2/3 and −1/3—any combination of three of which will yield an integer value. The same

applies for any set of three anti-quarks, which simply have opposite charges of −2/3 and

+1/3. Likewise, any pairing of one quark and one anti-quark results in an integer charge

meson.

Upon introducing the aforementioned new quark generation, the possible quark and anti-

quark charges become +5/3, +2/3, −1/3, and −5/3, −2/3, +1/3, respectively. It is easy

to check that again, any baryon or meson combination yields an integer charge result.

The Yukawa couplings involving this vectorlike fermion doublet ψ =

X
T

 and the top

quark τ provide the Lagrangian with the following terms:

−LY ukawa = yM√
2
χψ̄LψR + λT√

2
χQ̄LψR + ytQ̄LH̃τR + yT ψ̄LH̃τR + h.c. (100)
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And, again, the additional Dirac mass term in Eq.(65) remains unchanged.

We now turn our attention to the RGEs and Higgs bound for this model. Beginning with

the foundations, we consider how the running of the gauge couplings will change. Note

that the gauge coupling runnings will remain mostly identical to those in the traditional

doublet model, as both models contain the same number of fermions. However, the only

gauge coupling which must be modified is the U(1) gauge behind the QED elecric charges,

which is to be expected given the new charge of 5/3. The gauge coupling RGEs are

dg2
1

dlnµ2 = g4
1

(4π)2

(41
10 + 98

15

)
, (101)

dg2
2

dlnµ2 = g4
2

(4π)2

(
−19

6 + 2
)
, (102)

dg2
3

dlnµ2 = g4
3

(4π)2

(
−7 + 4

3

)
. (103)

We now implement the Yukawa Higgs couplings. Beginning at the low energy limit, we

can extrapolate the Yukawa coupling constants from the single fermion model in the same

manner as we did for the previous fermion doublet model. The only significant change here

is that the quark that we label X—bearing the charge of +5/3—will not mix with another

quark, as no other quarks have this electric charge, and the electroweak gauge requires this

symmetry to be obeyed with respect to mass mixing. We will, however, continue to allow

for mass mixing between the T and top quarks. The resulting low energy limit Yukawa

couplings, or Yukawa RGE initial conditions, are as follows:
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√

2mt

v

1√
cos2 θL + x2

t sin2 θL
, (104)

yX(µ0) =
√

2mX

v
, (105)

yT (µ0) =
√

2mT

v

sin θL cos θL(1− x2
t )√

cos2 θL + x2
t sin2 θL

, (106)

yM (µ0) = mX +mT√
2u

√
cos2 θL + x2

t sin2 θL. (107)

As for the Yukawa RGEs themselves, they too are modified slightly, becoming

dy2
t

dlnµ2 = y2
t

(4π)2

(
9y2
t

2 + 9y2
X

2 + 3y2
T

2 − 17g2
1

20 −
9g2

2
4 − 8g2

3

)
, (108)

dy2
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dy2
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dy2
M

dlnµ2 = y2
M

(4π)2

(
y2
X + y2

T + 9y2
M

2 − 8g2
1

5 − 8g2
3

)
. (111)

The most notable difference here compared to the generic fourth quark doublet model is

the lack of yM dependence in Eq.(108): The break in electroweak symmetry, that is to say,

the shifted electric charges, results in the decoupling of the Yukawa couplings of the third

quark generation with that of this symmetry-breaking fourth generation.

Finally, we require the Higgs sector RGEs. Just as with the previous extra doublet model,

we will limit the new scalar boson’s interactions to involve strictly the Higgs as well as

the new doublet, excluding all individual quarks. The scalar self-coupling λS then depends

again only on yM and not the individual quark Yukawa couplings.

The Higgs sector RGEs for this model are similar to those presented in the previous doublet

model, only with the B quark replaced by the X quark. The complete array of Higgs sector
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RGEs is then
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Having established all of the necessary running couplings, we now have a complete picture

of the coupling parameters at all energy scales up to Planck scale, as illustrated in Figure

6.5.

Figure 6.5: The RGE running of the Yukawa and Higgs sector couplings for the Y = 7/6
fermion doublet model. We have set mX = mT = 0.8 TeV, mS = 1 TeV, sin θL = sinφ = 0.1,
u = 2 TeV, and the starting point is at µ0 = mt.

We see again that the fermion Yukawa couplings tend to decrease with increasing energy,

while the scalar bosonic couplings tend to increase. This loosely explains why the addition of
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extra scalar bosons to the SM helps maintain a positive Higgs self-coupling at larger energy

scales, while the addition of extra fermions only aids in dropping it further. The Higgs

self-coupling, which dips dangerously close to zero, is weighed down by the large number of

fermions that it interacts with. This is the vacuum stability bound that we are particularly

interested in; for the conditions under which the quartic coupling remains positive up to

Planck scale are somewhat limited and thus very telling. The quartic coupling of the new

scalar does not exhibit a behavior of lying close to the origin due to limiting its fermionic

interactions. This choice, while admittedly somewhat arbitrary, does not impede the goal

of studying the Higgs vacuum stability bound specifically. We are less interested in the new

scalar vacuum stability bound since we can only speculate about the mass and VEV of such

a field, and thus we cannot obtain much concrete information from a detailed study of its

vacuum stability bound.

We will now look at what the positive quartic coupling, or vacuum stability, requirement

implies about the model’s parameters.

Figure 6.6 illustrates the allowed parameter space for the new scalar boson’s mass and mass

mixing angle with the Higgs for different VEVs. We see that the parameter space is quite

similar to that of the regular additional doublet model, with only a reduced maximum mass.

This implies that should this model be a reflection of extra particles, as we reach higher

energies and masses, the mass cutoff occurs sooner than in the regular doublet model. In

other words, this model is experimentally more restricted and easier to rule out. This model

is of course less likely intuitively and theoretically as well, given our desire for symmetry

and the lack of such a generation in the SM to date.

In Figure 6.7, we examine the allowed masses of the X & T quark doublet (recall that there

is no mass mixing associated with the X quark). We see that both particles have an allowed

mass of approximately 900–1040 GeV.

Finally, in Figure 6.8, we study the allowed parameter space for the T quark mass and mass

mixing angle with the top quark for different VEVs. We again confirm that the mass of the
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(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 6.6: The allowed parameter space for the scalar boson mass and mixing angle in the
positively charged quark doublet model for different vacuum expectation values.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 6.7: The allowed parameter space for the X and T quark masses in the Y = 7/6
quark doublet model for different vacuum expectation values.

T quark is around 900–1000 GeV, and interestingly, we see that with a low VEV, there is

forced mass mixing between T and t, however there is more freedom for larger VEVs.

(a) u = 1 TeV. (b) u = 2 TeV. (c) u = 4 TeV.

Figure 6.8: The allowed parameter space for the T fermion mass and mixing angle in the
Y = 7/6 fermion doublet model for different vacuum expectation values.
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Chapter 7

Conclusions

At observable energies, The Standard Model is a very successful theory, as it precisely

describes the matter and interactions known to us. The experimental discovery of the

Higgs boson in 2012 was at once a major affirmation of the theory and a glaring problem.

On one hand, its existence was a major theoretical necessity of the SM, and so its discovery

after a forty-year search suggests that the theory is correct. However, on the other hand, its

mass of 125 GeV is troublesome, as this implies one of three things: firstly, that the Higgs is

trapped in a false vacuum, and that a sufficiently high-energy event could, in principle, cause

it to decay and move into a true vacuum state. This would have an effect analogous to a

superheated fluid, in that bubbles of true vacuum would form, and then expand, incinerating

the universe as it decays its false vacuum at the speed of light. The second possible result is

that the SM simply is not valid up to Planck scale, or Unification scale. This implies that

the SM is merely an approximation of a more fundamental theory, much like Newtonian

mechanics is a good low-energy approximation of general relativity. Finally, the third and

simplest explanation lies in SM extensions, taking the form of any of the models considered

in this thesis or any of the infinite number of other possible arrangements. This vacuum

stability solution is preferable to the previous two because it does not require a great amount

of reshaping of our understanding of particle physics. In fact, given the large number of
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elementary particles discovered to date and how spaced out these discoveries have been over

time, with the Higgs having been discovered only a few short years ago, the prospect of new

particles does not demand a great stretch of the imagination. Plus, this simple explanation

is a great candidate for explaining other missing gaps in the SM, especially dark matter.

In regards to vacuum stabilizing, in this thesis we have proposed a number of simple exten-

sions which stabilize the Higgs vacuum, by adding another heavier Higgs-like scalar boson

in each case. It has been tested and verified that additional fermions only exacerbate the

stability problem, however additional scalar bosons offer a very easy fix, even when com-

bined with these problematic fermions. We have studied the limits imposed by the vacuum

stability condition on the masses and mass mixing angles of the elementary particles in

each model. We observe that for the SM presumed valid up to Planck scale, a lower limit

of approximately 135 GeV is imposed on the Higgs mass, contradicting the confirmed ex-

perimental value of 125 GeV. In SM extensions containing additional scalar bosons and

fermions, this Higgs mass is acceptable provided there is another scalar boson which light-

ens the load of the Higgs, so to speak. Any additional quarks are required to mix with

previous generations, as is the case for the SM quarks. The additional Higgs-like boson,

however, is required to have little or no mixing with the Higgs.

There exist other motivations independent of vacuum stability to extend the SM Higgs

sectorâĂŤextra scalar bosons are often introduced as dark matter candidates [15, 16, 27,

22, 14], and the convergence of the electromagnetic, weak and strong coupling constants at

high energies can be achieved through additional Higgs representations [55, 56].

The models introduced in this thesis, while focused on the extension of the Higgs sector,

simultaneously explore additional fermionic particles, for the SM can be extended by both

scalar and fermionic fields. However, unlike the chiral SM fermions, all of the fermionic

extensions presented in these models are vectorlike fermions. This is because extra chiral

generations are ruled out by the experimental data with respect to cross-section and dipho-

ton decay of the SM Higgs boson [57]. The addition of non-chiral fermionic representations,
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on the other hand, is much less constrained.

In this thesis, we have reproduced results presented in the literature for the SM, the two-

Higgs model and the vectorlike fermion two-Higgs model. Furthermore, we have presented

a more thorough analysis of these models by producing graphs of the running couplings and

the mass bounds for the two-Higgs model, as well as additional graphs for the vectorlike

fermion model to illustrate the running couplings for u = 1 TeV and u = 4 TeV. We then

diverged from the literature in order to analyze the implications of vacuum stability in the

Y = 1/6 and Y = 7/6 fermion doublet models.

As evidenced in this thesis, minimal SM extensions involving a second scalar boson very

elegantly unravel the glaring problem of vacuum instability in the SM. However, such spec-

ulations can only be confirmed by experimental observations, such as high-energy collisions

in particle accelerators, like CERN’s Large Hadron Collider. With higher energies, it is

possible to produce particles bearing larger masses in collision events (due to Einstein’s

mass-energy equivalence). With the Higgs being discovered only during the last run, it is

not unreasonable to expect another, more massive, scalar boson to emerge from even higher-

energy collisions, for although the Standard Model predicted the existence of at least one

scalar boson, in extended models more bosons are predicted. No matter the types or masses

of particles that might emerge from these experiments, however, we can be sure that they

hold the promise of answering our long-standing questions about vacuum stability, dark

matter and perhaps more.
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Appendix A

Mathematica computations

Below is an example of the computations performed using Mathematica for the Y = 1/6

quark doublet two-Higgs model with u = 2 TeV.
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