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Abstract

Automatic 2D to Stereoscopic Video Conversion for 3DTV

Xichen Zhou

In this thesis we address the problem of automatically converting a video filmed with a single

camera to stereoscopic content tailored for viewing using 3D TVs. We present two techniques: (a)

a non-parametric approach which does not require extensive training and produces good results

for simple rigid scenes and, (b) a deep learning approach able to handle dynamic changes in the

scene. The proposed solutions both include two stages: depth generation and rendering. For the

first stage, for the non-parametric approach we utilize an energy-based optimization, and for the

deep learning approach a multi-scale convolutional neural network to address the complex problem

of depth estimation from a single image. Depth maps are generated based on the input RGB images.

We reformulate and simplify the process of generating the virtual camera’s depth map and present

how this can be used to render an anaglyph image. Anaglyph stereo was used for demonstration

only because of the easy and wide availability of red/cyan glasses however, this does not limit the

applicability of the proposed technique to other stereo forms. Finally, we have extensively tested

the proposed approaches and present the results.
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Chapter 1

Introduction

It has been more than a century since the first video of human history; the earliest surviving film

recording is from 1888 and it shows traffic crossing the Leeds bridge in England. Since then a

enormous amount of videos have been recorded, including amateur recordings as well as professional

films, the majority of which were filmed using a single camera.

Recently the enormous progress in the field of virtual reality and particularly the release of

affordable VR headsets e.g. Google cardboard, Facebook Occulus, HTC Vive, Samsung Gear has

made it possible for the general public to directly experience and interact with 3D content. Stereo

video cameras are starting to become popular for recording 3D videos and many recent films have

already used them. However, videos captured with a single camera cannot be easily converted to

3D. There are commercial films which were originally shot in 2D converted into 3D films later on as

an post processing step. For example, IMAX provides such service to the film industry. The process

takes massive human effort and a limited number of human-in-the-loop software [evil twin, etc] are

written in order to aid this specific task. Nevertheless, converting a 2D video into 3D requires

extensive human interaction which makes the process time-consuming and expensive. An attempt

in automating this process was made by Google’s Youtube with the ”3D converter” which briefly

appeared as new functionality but has now been removed likely because of the poor performance.

The method to produce stereo image or content is called stereoscopy, it has years of history.

In the next chapter, we will briefly present the capturing, displaying, rendering techniques which

exist so far. Then rendering part is the major focus in the thesis. It can be treated as a computer

vision problem as an application of depth perception from images. A handful of other solutions

such as [SSN09b] [RVCK16a] [LSH14] have been proposed to extract depth from images and videos.

Essentially these methods are for retrieving depth information from monocluar or binocular images.

We will spend some explaining those cues and related studies utilizing those cues on chapter 2 as

well.

With the study of previous works, in this thesis we address the complex problem of automatically

converting a video filmed with a single camera to stereoscopic content tailored for viewing in a 3DTV

environment. Similar to other techniques we create a plausible depth interpretation of the scene and

we focus on generating stereoscopic videos which does not cause depth perception inconsistencies

1



to the viewer. In the thesis two different methods will be discussed. The first one is an energy

minimization optimization based approach on superpixels [ASS+12a]. The method takes rgb images

as input, breaking them into superpixels then finding the superpixel with similar appearance features

inside the database and label the superpixel with different depth. However this optimization based

method has its inherited limitation as it is bind to the database, so we adopted the second method, as

opposed to first, it employs a Convolutional Neural Network, which, given an RGB image generates

a depth map. The rendering part comes next. We used two different stereo setup to render RGB

images with the depth map to generate the virtual view for the second camera. Using the two views

and the disparities between the pixels, an anaglyph image is then rendered. Common artifacts due

to rendering from depth are addressed using in-painting. The proposed technique has been tested

on several videos and the results are reported.
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Chapter 2

Literature Review

This chapter, literature review goes as in following order. Firstly we discuss the brief history of

3D video, followed by a short review on existing 2D to 3D converting techniques. Then we will

focus on depth based methods and the depth cues available in 2D images and videos, and finally

state-of-the-art depth extraction methods.

2.1 3D video Production

The so called 3D videos are the media content people view with a stereoscope. A stereoscope

is essentially a pair of glasses. As shown in Figure 1, each lens passes through a image from

different view port [Wik17]. It utilizes the parallax of human eyes to produce 3D depth perception.

The techniques used in creating or enhancing such 3D videos is called stereoscopics. It was firstly

introduced by Sir Charles Wheatstone[Wel78] in 1838 and he showed that depth effect appears in

the brain when viewing two pictures stereoscopically.

Figure 1: Left image is a pocket stereoscope with original test image. Used by military to exam-
ine stereoscopic pairs of aerial photographs. Right image is a view of Boston, c. 1860; an early
stereoscopic card for viewing a scene from nature.

Stereoscopics involves topics such as capturing and displaying and rendering. Capturing stereo

photos usually requires two images captured by two parallel lenses. In special cases, if the scene to be

captured is static, it can be achieved by moving the camera by certain offset along an axis. Capturing

3D video, however, requires synchronized cameras. Existing devices like ZED stereo cameras[Zed] or
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more professional gear such as IMAX 3D cameras can capture two views synchronously. However,

the cost of a such gear is usually high and it is not well accessible to public.

3D video displaying technology has evolved from stereoscope to many different new techniques.

The principle is presenting a different view for each eye. Side-by-side displaying is one of the earliest

method which presents the pair of images right on the glasses and each eye can only access one view,

an sample image is figure 1.

Figure 2: A sample Red-Cyan Anaglyph image taken at Concordia’s EV building. To composite an
anaglyph image, one can take one photo, then shift the camera along a direction for a short distance,
then take another picture, and fuse them together

Another type is free-viewing techniques, which blend two images into a single image using a

fusing equation, called “Anaglyph”. It is a simple blending function and we used it in the thesis.

It is suitable for displaying large images or videos thus suitable for cinema experience. Although

the 3D projected images are not 3D ready directly to the human eye, it can be “re-separated”

through stereo glasses. There are different variants of fusing equation. For example, the Red-Cyan

anaglyph follows the equation

Rfinal =Rleft

Gfinal =Gright

Bfinal =Bright

It uses Red channel of the left view, Green and Blue channel of the right view thus the

4



left view only passes through left lens and right view passes the other. This method is called Red-

Cyan anaglyph. It has good color perception of green and blue, not red, and it is currently the most

popular one in use. Aside from that, other methods exist as well. Such as Red-Blue, Anachrome,

Trioscopic, etc. Figure 2 is an example of of Red-Cyan anaglyph image.

2.2 Stereo Rendering

As mentioned above, 3D content can also be generated through rendering. It is the main topic of

this thesis. The traditional way is through the graphics pipeline. One starts from 3D meshes and

materials, using lighting model, ray tracing, shadow mapping, etc and finally render the 3D geome-

tries into stereo views through two different camera matrices. Such technology is called single pass

stereo rendering, which is supported by modern graphic cards. It vastly reduced the computation

complexity thus catalysed the expansion of VR gaming. Figure 3 illustrates such graphics rendering

technique

Figure 3: Stereo rendering through 3D geometries, image from [pag]

If the images or video are produced beforehand, one need to post-process such media into (pseudo)

3D, either manually or automatically. Post-processing a 2D video frame-by-frame requires massive

human labour. Automating such processes is an open research area. In this section, we are reviewing

several proposed 3DTV technologies, their highlights and limitations.
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2.2.1 Stereo rendering by perspective transform

In the work of [LRKL13], a rendering techniques which based on fundamental matrix is proposed.

It explores the research in using homography to rectify the image for generating stereoscopic 3D.

Supported by their experiments, pseudo stereo effects is archived by rectifying two images into the

same image plane. The method is effective for generating 3D anaglyph for personal photos, but it

was not stable in generating 3D anaglyph from consecutive frames.

The inherited problem with this approach is that the homography is a special case for image

space transform. This is because usually images from different views do not have pixel-wise mapping.

Figure 4 is an illustration. In general cases, one can only find the fundamental matrix from one

image to another as shown on the right. The special case is the mapping from one plane to another,

where point-to-point correspondence can be recovered.

Figure 4: Homography Matrix vs Fundamental Matrix, homography matrix(left) map pixel to pixel
and fundamental matrix(right) map pixels to a line. Images are from OpenMVG project

Visually it is still plausible even if we are finding the homography matrix for non-flat scenes, but

in videos when we move the camera, at every frame, the homography matrix is changing as well,

which causes noticeable non-smoothness. Another downside of homography mapping reported in

the paper is the randomness of RANSAC algorithm, recently there are improvements in conquering

this factor[KTS11].

In the method [LRKL13], the pipeline starts with (SfM) Structure from Motion. The poses of

camera is vital to the approach. After breaking a video into frames and estimating camera poses,

two of all frames from the video are selected and a fundamental matrix is estimated between the

two. The fundamental matrix is then transferred to a homography matrix to reconstruct sythesis

views for anaglyph 3D. The transferring technique is based on the following equation:

Fij ≈ [eij ]×Hij (1)

The F is created from homography and epipolar line eij between two frames. They assume the

projective matrix for the first camera is P = K[I|0] and the second is P ′ = K[R|t]. The second view

is generated from H = K[R1R2t]. R1, R2 is from the SfM pose estimation and t is from fundamental

matrix. They normalized the t to archive more stable result. An examples of their result is shown

in figure 5

Although this work provides a simple, elegant solution to stereoscopic rendering, its limitation

are also apparent.

6



Figure 5: Here are 10 frames of anaglyph generated for a sample video from fundamental matrix for
consecutive frames using the approach which is discussed in this section, the images are from the
paper of their work [LRKL13]

• Firstly, the solution needs a moving camera in the scene

• The scene has also be static

If the environment does not satisfy the two conditions, the result is undefined. For the first require-

ment, a recent work was done to improve on bundle adjustment [HIP+16] for small camera motion,

such improvements may be used to relax the first condition.

2.2.2 Depth Based Rendering

The main stream of stereo rendering techniques is DIBR(Depth based stereo rendering)[Feh04].

It was introduced in “Advanced Three-Dimensional Television System Technologies”(ATTEST)

project. In the thesis we derived the rendering formula on our own. The full deduction of the

rendering formula is described in section 3.3.

Briefly, the work in [Feh04] concluded that one can simulate the depth of field effects in synthe-

sized images with image-plus-depth stream without un-projecting the pixels from image space to 3D

spaces. Camera positions(extrinsic matrix) and focal lens(intrinsic matrix) are not required. Since

it is one of our major work, we will continue the discussion in section 3.3.

In our case, the depth map is not available with RGB image stream. We need depth perception

techniques in order to render anaglyph 3D. In section 2.3, we will discuss various depth cues available

in images as well videos and in section 2.4, we will present related depth estimation methods.

2.2.3 Cue fusion based rendering

The section discusses the work of [LKR+17], they proposed a system to infer binocular display from

monocular video streams in 2016 based on fusing different depth cues together. Visually plausible

results are generated at the end of processing.

Their pipeline consists of two main stages, a pre-processing step and a runtime step. In the

beginning of the approach, the system extracts the priors of the video by classifying the video into

different classes. The prior model is based on gaussian model with certain mean μ0 and variance

7



σ0 for different scenes, different colours and different pixel locations in the images. For example, in

forest scenes, lower green pixels have a medium depth. In scenes with water, blue pixels in the top

part of the image have far depth and as a contrary, in the lower part of image, blue pixels have low

depth.

The next step in the pipeline utilizes multiple depth cues in order to infer disparity and associate

confidence. In the work, six depth cues are used. Aerial perspective, defocus, vanishing points,

occlusion, motion and user input. However, they [LKR+17] did not mention how those depth cues

are equationrized in the paper.

The last step of the approach is fusing different cues together and estimating the disparities. For

every pixel x, a MLE(maximum likelihood estimation) method is used with the equation

μMLE
(
x
)
=

1

Z
Σnc

i=1

(
μiβi,c, σ

−2
i (x)

)
(2)

where x is the disparity to estimate, μi are the cues, β and σ are the parameters and Z is the

normalizing partition function. The equation is an average of disparity means. If prior is included,

the estimation becomes a Bayesian estimation and MAP(maximum a posterior) is used with the

following equation

μMLE
(
x
)
=

1

Z
Σnc

i=1

(
μ0(x)β0,cσ

−2
0 (x) + μiβi,c, σ

−2
i (x)

)
(3)

This equation is similar to equation 2, difference is adding of priors μ0, β0,c, σ0.

2.3 Depth Cues

This section we discuss a few depth cues available in monocular images.

2.3.1 Depth from Parallax

Parallax forms when viewing a object from two different locations and it is stable. The depth cue

is available as long as two different camera views are available. Parallax can be visualized when

driving a car. When drivers or passengers look outside, the nearby objects moves quickly, where the

far objects move relatively slower.

Capturing parallax is a well developed process as well. If binocular vision is available, for example,

stereo cameras can be used. One can calibrate the relative location of the stereo camera, then match

the feature points available in both images using the triangulation to determine the absolute depth.

If binocular vision is not available, parallax can also be found by moving the camera. The Structure

from Motion(SfM) method uses such technique to determine the camera location as well as determine

the scene depth. The limitation in such cases, however, is the static scene requirement. SfM also

requires user to try a few times to capture enough views. Bundle adjustment is a common step after

SfM to reduce the projection error. Accurate Camera parameters can be used in 3D reconstructions.
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2.3.2 Depth from Linear Perspective

Human eyes see the world in a perspective geometry, unlike its orthogonal geometry counterpart,

it is such a space where parallel lines merge together at infinity. The only property kept is the

“straightness”. Perspective is not always available, an object that does not expand over a long

range of depth may just not have perspective. In man-made scenes, perspective is easier to detect

than natural scenes since the architectural scenes often contain many straight lines and shape angles.

Those straight lines can be found by line accumulation algorithms. This process is called vanishing

point detection. To address such problem, one must consider the two sub-problems: 1) How to

cluster line segments going to a single vanishing point and 2) how to estimate an accurate vanishing

point. Hough transform is one of such methods for finding line segments. An important application

of vanishing point detection is auto driving. To keep the vehicle at the centre of the road, it should

drive towards the vanishing point of the road. Note that even without perspective, depth detection

can also be found using other techniques.

2.3.3 Depth from Occlusion

Occlusion happens when nearby objects occlude far object. and can be a strong cue for determining

relative depth. It can be found by detecting T-junctions of edges and lines. Like the previous

cue, occlusion may or may not be available. Moreover, occlusion often causes difficulty in 3D

reconstructions[HWB12], because camera cannot capture the shape of objects occluded by others.

For the same reason, occlusion also brings difficulties in rendering views.

2.3.4 Other depth cues

Besides parallax, perspective, occlusions, depth cues like defocus, similar size, texture can also be

helpful in determining depth changes or absolute depth.

2.4 Depth Map Estimation

Depth perception is a basic human aptitude. Giving machines the same ability, however, involved

a long history of efforts. Currently, techniques like Structured Light Scanning, stereo matching

triangulation and structure from motion are already mature and they work well in their own specific

conditions. For example, structure light scanning method projects patterns onto STATIC objects

and then finds the matches based on patterns, it is basically a two-view-stereo method and the result

is accurate enough for 3D mesh reconstruction. Structure from Motion(SfM), on the other hand,

is a multiple-view stereo algorithm and it requires users to be patient, move the camera smoothly

and sufficient camera motion is required. Stereo matching requires two synchronized cameras and

matching two views frame by frame, the matching result may be noisy if the baseline of two cameras

is not well set up. Both Structure from motion and Stereo matching can only produce sparse XYZ

points clouds. These methods are binocular vision, and these techniques are mature because it

utilized a very reliable depth cue, parallax.
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Monocular depth perception, on the other hand, is still an open research problem. In recent

years the attention is shifting from model based approaches towards data driven approaches. In this

chapter, we will explore both of these approaches.

2.4.1 Parametric based method

Make3D [SSN09a] is a statistical approach to infer 3D scene structure from single still images based

on Markov Random Field(MRF) to learn a set of “plane parameters”. The result of the approach

is an image texture which is mapped to the 3D mesh that inferred my this approach. Viewers can

roughly see the 3D structure from a single image by changing the viewports.

To formalize the approach, we are introducing a few terms used in this method: superpixels, co-

planar structure, so-linearity, connected structure. Superpixels i (one type of oversegmenting

method) represents a surface in an image, with a centre position q, normal vector α and depth value

di = 1/RT
i . By their assumptions, those superpixels may be connected together, may lie on a mutual

plane, may be part of a huge linear structure. Image 6 is an illustration of their model to infer depth

of an image.

Figure 6: Make3D model for 3D reconstruction, here you can see two superpixels plane connected
together, ray R is project on the planes and d1 d2 are the distance, image is from Make3D work
[SSN09a]

For the Connected structure, the goal is to infer a y value on the edge image, yij ∈ [0, 1]

as soft value Instead of {0, 1}, because they believed in many cases, an edge does not correspond

to an occlusion or folding. The model yi,j is based on a logistic response as P (yi,j = 1|εi,j ;ψ) =

1/(1 + exp(−ψT εi,j)). Where εi,j is the feature, ψ is the model parameters.

The main part of the project is the MRF on planar parameters. It consists of single superpixel

parameters and plane parameters between two superpixels. It is formulated as following.

P (α|X, ν, y,R; θ) =
1

Z

∏
i

f1(αi|Xi, νi, Ri; θ)
∏
i,j

f2(αi, αj |yij , Ri, Rj) (4)
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The main purpose of the equation is to infer α, the plane parameter, by the conditional variable

such as features X; ray(normal) for the superpixel nu that shoots from camera to the pixels on

superpixel with the confidence of the depth prediction ν and the model parameter θ. The ray R

and plane has the relationship that the dot product of the two is the depth. From this, it could

formalize fractional error of depth map di,si into RT
i,si

α(xT θr)− 1

The model of f1 is for minimizing the fractional error, to make the error in the range of [0, 1],

they used negative exponential function.

f1(αi|Xi, νi, Ri; θ) = exp

(
−

∑
(RT

i,siα(x
T θr)− 1)

)
(5)

The second part f2 is more interesting; it models the relation hsi,sj between the plane parameters

of two superpixels i, j. It consists of the connected structure model, Co-linearity model and

Co-planarity model. In the end, a MAP Inference is used to minimize the errors.

The last piece of the puzzle is the image features; here they used responses from the 17 different

filters. The first 9 are the Law’s mask(can be found in [SSN09b]). The last 6 are oriented edge

detectors. They apply the mask on different scales and uses adjacent patches for features.

2.4.2 Non parametric based method

The Non-parametric method by [KLK12a] is a type of technique which uses similar images’ available

depth map to estimate depth for the target images or videos. In order to utilize method, the entire

database needs to be available at runtime. When similar images candidates are found, a candidate

warping process is executed.

The pipeline is straightforward. Firstly, candidates frames for a given image are searched by the

K-Nearest-Neighbour(KNN) method, it is too costly to walk through the entire database image by

image to perform warping so they used GIST [OT01] descriptor to encode the large images into a

few hundred bytes. KNN returns the top 7 candidates frames for the matching step. To have enough

variety of matching candidates, they ensured each video in the database contributes no more than

one matching frame.

As the candidate frames closely match the input frames in the feature space, they should also

share the very similar semantics of the scenes. A candidate warping processing is the next step.

Here, the critical assumption the this work is that the distribution of the depth is comparable among

the input and the candidates. Based on this assumption, the warping is done by finding the pixel-

to-pixel correspondence from a target frame to a candidate using the SIFT-flow[LYT11] method.

SIFT-flow is essentially a multiple scale matching method. The idea of it is expanding the search

area in the dense optical-flow algorithm from small patch into entire image. For every pixel, the

SIFT descriptor is calculated by sampling a patch around that pixel. As every pixel is sampled,

this will encode an image into a SIFT image. Directly performing matching on SIFT image to

SIFT image costs too much, thus a coarse-to-fine fashion searching is applied instead. It operates

as following:

• perform the matching for every pixel on the very small scale
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• After the matches are found, expand the image to a higher scale and limit the search locally

to higher scale match

• perform step 1 until the highest scale

Depths per-pixel are transferred from the candidates to the target using the SIFT-flow matching

method, as we have 7 candidates, 7 transferred depth map is available at the moment. An energy

minimization algorithm is performed as the next step to smooth the transferred depth map. The

energy is determined in equation 6

E(D) = − log(P (D|L)) =
∑

i∈pixels

Et(Di) + αEs(Di) + βEp(Di) + log(Z) (6)

Et is the data term that measures the difference between optimized depth d̂ and depth d in the

candidates. Es is a smooth term that penalize the depth difference between adjacent pixels. Ep

is the difference between d̂ and the prior depth(average all depth images in database). Based on

[KLK12a], this method out performed the Make3D method by a small difference of the 534 images

Make3D dataset.

2.4.3 Model based approaches

A geometric based method [RVCK16b], which does not require training and can be applied to nature

scenes, was proposed in 2016. The approach comprises two stages. A motion segmentation stage

and a reconstruction stage. Unlike the previous methods, such methods must runs on consecutive

frames, but unlike the Structure from Motion(SfM) technique, it can handle dynamic scenes to some

extent.

The Motion segmentation stage takes dense optical flow field f = (fx, fy) as input and segments

into L + 1 rigid motion labels ul, as a variational labeling problem. If the motion is rigid, it

automatically oversegments non-rigid objects into approximately rigid parts. It is formulated as

follows:

(ul, Fl) = argmin

L+1∑
l=1

ul · g(Fl) + ||WlΔul|| (7)

Where g(Fl) is the symmetric distance to epipolar lines for each motion model l and homogeneous

coordinates xi = [xi, yi, 1]

g(Fl) = d(xi
1, Fl, x

i
2)

2 + d(xi
2, Fl, x

i
1)

2 (8)

Wl is a smooth term and Fl in the equation is the fundamental matrix. The energy is solved based

on an iterative algorithm described in paper.

The second part is the Reconstruction by triangulating the scene. It begins by estimating each

inlier correspondence in the motion segmentation stage using the motion model Fl, which yields a

set of depth estimation {zl}. Then the relative scales of each individual zl needs be estimate. It

took a connected scene assumption, dynamic objects occludes static objects assumption and a

smoothing constraint. To ensure the robust estimations, they also adopt a superpixel segmentations,

12



for each superpixel k θk = [θ1k, θ
2
k, θ

3
k], and L different depth scale for previous triangulation result.

For all independently moving objects, The estimation is done by

E(s, θ) = Eord(θ) + Esm(θ) + Efit(s, θ) (9)

It has an ordering term, a smoothness term and a fitting term. The ordering term ensures that

dynamic objects occlude static objects and the smoothness term ensures the two superpixels coincide

at the boundary. The fitting term tries to find the correct scale for the motion models in order to

satisfy the previous two.
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Chapter 3

Methodology

The implementation of the stereoscopics is described in this chapter. Several methods were used.

The first implementation is Superpixel matching based method. The second one is a Neural network

based method.

3.1 Super-Matching Method

The first step towards rendering stereoscopics is generating the depth-map for images. The method

described in this section is a superpixel matching method. the first step of the method utilize

the same assumption [KLK12b], which is fact that that the similar scenes share the same depth

distribution. However, in the following step, we extended it to the superpixel level. The method

followed the pipeline in figure 7. In the beginning, 7 similar images are retrieved through GIST

descriptor[OT01] based on their gist similarities as candidates, we then break RGB input frames

and candidates frames into SLIC superpixels for matching. We will describe the matching in detail

in section 3.1.3. As every superpixel is assigned to its matching counterparts, we can transfer the

depth value of matches into input images. Afterwards, it requires a smoothing procedure as the

matching may produce spatially incoherent depth distribution. To achieve spatial smoothness, an

optimization is used to produce final results.

Figure 7: superpixel matching pipeline
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3.1.1 Superpixel Representation

Both candidates and RGB input need to be broken into superpixels. Here we briefly introduce

the superpixels method. The over segmentation algorithm partitions images into non-equal size

segments. A superpixel represents a group of adjacent pixels with the following properties

• the pixels in the same superpixel tend to share the similar color.

• image edges(can be recovered by edge detection) mostly lies on superpixels boundaries.

Variants of over segementing algorithms were proposed and the implementation we used is SLIC

[ASS+12b]. It is a k-means clustering algorithm with minor difference. As shown in figure 8. At

updating step, instead of search entire image, the search space is a double superpixel size rectangle.

The distance measurements consist of color distance dc in CIELAB color space and pixel’s position

distance ds and they merge into single measure formula 10. Where the Nc and Ns is the norm of

each measurement.

D =

√
(
dc
Nc

)2 + (
ds
Ns

)2 (10)

(a) Traditional K-means clustering algo-
rithm

(b) SLIC limits search space in 2S

Figure 8: SLIC searching scheme

A sample superpixel representation is shown here.

Figure 9: Superpixel representation, the image above is broken into non overlapped superpixels, a
typical size image usually has a few hundred to one thousand superpixels.
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3.1.2 Descriptors for Superpixels

As we mentioned in the pipeline 7, descriptors generation is the next step after we have the superpixel

segments for every image. The descriptors serve as a metric for matching. Feature descriptors like

Scale Invariant Feature Transform [Low04] and Speed up Robust Features [BETVG08] are working

on fixed shape feature points methods. Those methods sample a patch around the feature points,

the shape of the patch depends on the method. For example, SIFT uses a 16× 16 rectangle patch,

DAISY [TLF10], uses a circle like patch for computing descriptors. Our case is a little different,

our patch is determined by the area of superpixels. Patches are not in consistent shape so sample

method has to be different as well.

Still, we need good a appearance descriptor for superpixel representations. We considered hand

coded descriptors, such as super-parsing [TL10]. In the method, the descriptor for every superpixel

coded with information like global information, shape, location, texture, etc. The dimension of

the descriptor turned out to be a few thousand. Similar approach like PatchMatch [BSGF10] also

adopted similar method, but they also consider adjacent top, left, right, down patches when encoding

descriptors.

Here we are measuring the similarity of appearance of superpixels .We are not willing to get too

complicated, so we applied a variant of SIFT descriptor. It still based on Histogram of Gradients and

has the same shape of the SIFT descriptor. The Method for constructing descriptors is described in

.

Algorithm 1: Superpixel Descriptor construction

Data: Superpixels sps

Result: Superpixel descriptor D

1 A, M ← magnitude and angle from applying Sobel filter;

2 B ← superpixel pixel label mask;

3 L ← List of superpixels;

4 S ← initalize sector map for image for i in L do

5 l ← pixels of sp;

6 for p in in sp do

7 compute witch of the 4× 4 sectors p falls in;

8 update sector map;

9 end

10 end

11 for pixel in image do

12 compute the location of sector with sector map S and angle A;

13 updating descriptor with M ;

14 end

15 normalize D;

At the end of the algorithm, we are able to construct a size of 128 descriptor. Each descriptor

is divided into 16 sectors with 8 bins in each sector. In the algorithm, we used a “sector map”, it

records which sector the pixel belongs to, ranges from 0 to 15. The sector index of that pixel is
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determined by the relative location of the pixel in the superpixel. If the superpixel has ill shape(this

means it does not has enough width and height to divide), we will skip processing it. As we have

have sector map of the entire image, the bin of that pixel belongs to is an offset of angle in a sector.

In this way. We are able to build an sufficient descriptor for superpixels. Here we have a visualization

of the sector map in figure 10

Figure 10: Sector map of superpixels, the image on the left in the superpixel contour, the right is
the visualization of sector map. The sector map is coded in [0− 15]

3.1.3 Superpixel Matching

After segmenting an image 9 into superpixels, matching those superpixels one by one is the next step.

An typical image with 500 × 500 resolution can have less than 1000 superpixels. With computed

descriptors we end up with an image of roughly 1000× 1000 descriptor set. The matching operation

on descriptor set to the candidates that we use GIST to retrieve from database is not real time, but

it is still manageable. One can use superpixel descriptors as a metric and then use nearest neighbour

matching method like FLANN to match superpixel independently. In this algorithm, however. We

need to consider not just descriptor metric but also a smoothing metric. The details are explained

in next section.

Graph Representation

After we segmented a image into superpixels, those superpixels naturally came with attributes like

adjacency. To our benefit, the superpixel geometry relationship can be used as cues for local-

correspondence-awareness. That is, the adjacent superpixels should be matched to closed superpixels

in other other image. In the end of the algorithm, we still need to match candidates and RGB input

densely. But instead of operating on pixel pyramid like [KLK12b], the operation is done on the

superpixel graph. A superpixel graph consists of a set of nodes N(superpixels) and a set of edges

E. Adjacency can be found by a searching algorithm. An example is shown in figure 11. If two

superpixel are connected, that is, if there is no edge detected between two superpixels, a blue line is

drawn between them on contours. Details of implementation can be found in section 4. After the
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graph is built, we then formulated the our original depth rendering problem into a graph matching

problem.

(a) An example of the graph of superpixels, the
blue lines here indicate two superpixels are con-
nected

(b) A closer look on the superpixel graph under
a smaller range of the the image

Figure 11: Superpixel graph

Here are more details about superpixel geometry explanation. As we can see in figure 9 and

figure 11, adjacent superpixels tend to belong to the same object, thus they shares similar depth

values. If just applying descriptor distance metric, chances are adjacent superpixels get matches

which are far from each other. As shown in figure 12, SP1, SP2, SP3, SP4, SP5 on the left image

have two different set of matches SP1’, SP2’, SP3’, SP4’, SP5’ in the middle image and SP1”,

SP2”, SP3”, SP4”, SP5” in the right image. Both set matches have high metric in descriptor

distance, however, the matches in the middle are distributed in different location of the image which

will produce depth map lack of coherence after transferring. The matches in the right image also

have low distance in descriptor metric, but instead, the matches are also closer to each other. Thus

the superpixel depth-transfer could produce closer depth values.

Given the information above, we could formulate the approach into a energy minimization prob-

lem, In section 3.1.3 we will describe in details.

Matching as Energy Minimization

To address the local-correspondence-aware superpixel matching problem, we need to take two dif-

ferent metrics into count.

1. Superpixel descriptor distance

2. Adjacent superpixels matches distance in the matching image
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Figure 12: Two different set of matches, left image is the one has the superpixels to find matches
for, the middle image have matches far away from each other, the right image have matches closer
to each other

The two distances correspond to the two energy terms in the in the optimization process. With

these two metrics, we can form two energy terms in order to minimize it. The superpixel descriptors

distance forms the data term Ed. When we minimize the energy, we transfer the depth from more

similar superpixels based on appearance. The second term is the smooth term Es because we want

the matches in the target image to form a cluster instead of distributed across the entire image.

Formally, we are minimize the total energy E

E = Ed + Es

=
∑
i

(
D(spi)−D(M(spi))

)2
+

∑
i

(∑
j

d(M(spi),M(spj))

)
(11)

In the equation 11, the first part D(spi), M(spi) are the descriptor of the superpixel i and the

matched superpixel j. d(spi, spj) is the distance of superpixel i and j in the superpixel graph. To

compute the second part Es, one need to iterate through the matches of adjacent superpixels j of

superpixel i and calculate the graph distance. To minimize the energy, we developed a mono-descent

algorithm 2 to optimize the energy.

The algorithm runs until converge, At every iteration, it exams the energy of superpixel i and all

its adjacent superpixels j, because every update on it will only affect i and js. For those superpixels.

If the energy change ec is negative, it means the match worth changing. thus we will re-assign the

match. By the end of the processing, we would get a local minimum of the energy and corresponding

matches as an output.
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Algorithm 2: Graph Optimization Algorithm

Data: 2 Superpixel Graph V1, E1, V2, E2

Result: Optimized Match M

1 D ← All pairs shortest path;

2 M ← randomly assigned matches;

3 E ← Initial Energy;

4 Repeat ← true;

5 while not Repeat do

6 Repeat ← false;

7 L ← permutation of the V1;

8 for i in L do

9 m ← randomly match from V2;

10 N ← adjacent superpixel of i;

11 ec ← 0;

12 for j in N do

13 ec+ = d(m,M(j))− d(M(i),M(j))

14 end

15 if ec < 0 then

16 Repeat ← true;

17 M(i) ← m

18 end

19 end

20 end

This optimization algorithm could produce local minimum. As the energy decreases step by step,

it converges to a low energy point. But how close is this local minimum to the global minimum is

not a guarantee. We are expecting to use GraphCutOptimization in the future.

Figure 13 is an example of running step of Graph Optimization algorithm. It optimize one

match at a time, exams if the any match has lower energy then move the match to a new one. The

final optimization results are shown in Chapter 4.

3.2 CNN Approach for Depth Prediction

In this section we are proposing a new approach to the depth map estimation problem, as the result

that we realized our approach has its limitation, for example, it is not guarantee to have global

minimum energy thus the result is not smooth enough. In addition to this, it has the inherited

problem like depth transfer method [KLK12a], the method will not work if no similar images are

available.

Although we have not found the silver bullet for mono depth cues for current state-of-the-art,

we also realized that understanding image, depth perception are an very basic abilities for human

or any other animal. Based on this, bringing up neural network on the task seems like a natural
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(a)

Figure 13: The optimizing process, image (a) is the matches before step, image (b) is the matches
after optimizing step. Notice the RED line in (a), after moving the match, we can see that energy
of geometry distances of matches decreases

.

choice. Some people may argue that as we have two eyes, the depth perception works like duo lenses

camera, but there is no difficulty lies in distinguishing far and close objects for pictures or with

only one eye. Neural network has proved to be very useful for many different tasks. Convolutional

Neural Networks(CNN) as a famous branch, it has been successfully applied many recognition task.

Started from LeNet [LBBH98], it is used to classify 10 classes of digits. Now the method is scaled

up to classifying thousands of objects in images.

Before Neural network approach, the method we applied in the previous section and many

methods before that [KLK12a], [SSN09b], [KB15] requires insight modelling the real world into

mathematical models and one need to be careful to avoid non-convex problem, otherwise the model

is hard to fit. In the end, the estimated depth will be able to work on specific scenes which fits

their assumptions. The method we used is named non-parameters method, as they are using the

K-nearest-neighbours method to search for depth. But essentially, this method is established on

balancing different energies and heavily relies on the prior depth which is calculated at runtime.

The study of such problem can start from features in images, then follow the long way of theories
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like lighting model, perspective geometries, motion. At last one may end up too complicated work

thus not addressable. Certainly studying all those methods individually is worthy but combining all

of them to get it to work is difficult to get it to work.

So here we propose a second approach to the problem, with neural network in the pipeline, shown

in the figure 14.

Figure 14: Pipeline with the neural network components

In the thesis we used an trained network architecture which was used to render the depth and

normal maps. We used a multiple scale network architecture which was proposed in [EPF14], briefly

those multiple scales are concatenated in a coarse-to-fine fashion in order to archive better resolution.

The network is trained using RGB and depth map pairs using a loss function for the depths given

by

Ldepth(D,D�) =
1

n

∑
d2i +

1

2n

(∑
d2i

)
+

1

n

∑
| � dx,y|

(12)

which measures the difference between the generated and ground-truth depth, and also the gradient

of the depth because The gradient of the depth encourages local structure similarities. Similarly the

loss function for the normals is defined as,

Lnormal(N,N�) = − 1

n
N ·N� (13)

which is equivalent to the cosine proximity.

An simplified architecture is shown with the diagram 15. As we can see, there are 3 scales of

network, by concatenate the output of last scale to the beginning of next scale the network is thus

formed. In section 3.2.1, 3.2.2, 3.2.3 we will describe the network in detail.
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Figure 15: The diagram of the Convolutional Neural Network architecture we are using The first
scale is represented in white, the second scale is in red and the last scale is blue .

3.2.1 Scale 1

The first scale is more unique than other two scales, it has fully connected layers and only this

scale has fully connected layers. This scale includes an pre-trained imagenet VGG network as an

pre-processing process. After series of Conv, Pooling, Dense layers, it is passed to the final two fully

connected layers. The first one has 4096 features, the second one has 17024 (64× 14× 19) features.

Both these two fully connected layers use 0.5 dropout techniques to prevent overfitting. The output

of the fist layer has only the resolution of 266. To merge with scale two, the dense features are firstly

reshaped to 14× 19 then upsampled to 64× 55× 74.
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3.2.2 Scale 2

After the first scale, there is no fully connected layers anymore. As a difference, the network also

breaks into two paths for normal map and depth map.

To be able to concatenate with last layer, the input RGB images are convolved with a 9 convo-

lution layer with depth of 64 at first. It uses padding to then produces same size of 64 × 55 × 74

feature maps. Together with scale one output, it results of 128 × 55 × 74 tensors. There are 5

convolution layer afterwards, with smaller kernel size 5x5 and same padding technique. At the last

convolution layer, it uses depth of C (3 for normal and 1 for depth) of convolution layer to produce

low resolution depth map and normal map.

(a)

(b) (c)

(d) (e)

Figure 16: Output of the neural network: the image of the top row is the orignal RGB image; the
two images on the second row are the low resolution depth and normal map; the last row are the
finer resolution depth and normal map. Note that depth and normal map are post-processed with
montage technique to be more colourful

3.2.3 Scale 3

The last scale involves similar process as scale two, concatenation and convolution. There one major

differences: in the concatenation part, after convolves the RGB image with depth of 64 kernel, the

concatenation applies. Since The last scale output is only at depth of C, it is significantly smaller
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than current scale, which outputs 64 + C depth of feature map. After a series of convolution, the

end of scale 3 outputs an C × 109× 147 features.

In summary, the network learns to predict coarse depth maps and then refine the prediction

through multiple scales. At each scale there is a number of convolution layers and pooling layers.

A crucial aspect of this network architecture is the concatenation of the output of previous scale to

the input of the following scale in order to add additional depth of channels for convolution.

Here we are showing the example output of the neural network for the second scale and last

scale. In the Figure 16 show the output of this process, namely the depth and normals respectively.

3.3 Virtual Camera Projection for rendering

This section is the full deduction of the virtual camera projection for depth image based rendering.

We deduced the camera rendering equation for a parallel camera setup shown in the equation 24

later in the section, and also a non-parallel camera setup rendering equation. The equation simplify

rendering process.

Cameras project 3D objects onto an image plane. Given extrinsic matrix E and intrinsic matrix

C, one can project a 3D point P = [X,Y, Z] to a 2D image point u = [x, y] using the dot product

of the matrices:

λu = C × E × P (14)

The projection assumes no distortions with the camera. and the camera matrix looks like

C =

⎡
⎢⎢⎣
f 0 a

0 f b

0 0 1

⎤
⎥⎥⎦ (15)

Where f is the focal length, a, b is the principle point offset. Extrinsic matrix E is

E = R×−t =

⎡
⎢⎢⎢⎢⎣
a11 a12 a13 0

a21 a22 a23 0

a32 a32 a33 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣
1 0 0 −tx

0 1 0 −ty

0 0 1 −tz

0 0 0 1

⎤
⎥⎥⎥⎥⎦ =

[
R −Rt

0 1

]
(16)

Where R is the rotation matrix. Based on equation 14, we can also associate two projections

u1 = [x1, y1] to u2 = [x2, y2] for the same 3D point P = [X,Y, Z] with

λ2u2 = C ×R′ × T ×R−1 × C−1 × λ1u1 (17)

R′ is the new camera rotation, T is the translation from the original camera to a new camera. If

we assume the new camera has the same rotation(which is the case), we could optimize the equation

R× T ×R−1

R× T ×R−1 =

[
R 0

0 1

]
×

[
I −t

0 1

]
×

[
R−1 0

0 1

]
=

[
I −Rt

0 1

]
(18)
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To be able to get to the end, we still need to tear some of the matrices apart, for the convenience,

equation 17 gets written as

λ2u2 =

⎡
⎢⎢⎣
f 0 a

0 f b

0 0 1

⎤
⎥⎥⎦×

[
I −Rt

0 1

]
×

⎡
⎢⎢⎣

1
f 0 − a

f

0 1
f − b

f

0 0 1

⎤
⎥⎥⎦× λ1u1 (19)

At this point, we should know that lambdas are the image depth values. By merging the right

hand side, we get

λ2u2 =

⎡
⎢⎢⎣
f 0 a

0 f b

0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
λ1

x1−a
f −Rtx

λ1
y1−b
f −Rty

λ1 −Rtz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
λ1(x1 − a)− fRtx + a · (λ1 −Rtz)

λ1(y1 − b)− fRty + b · (λ1 −Rtz)

λ1 −Rtz

⎤
⎥⎥⎦ (20)

There are a few things worth pointing out here, the new image depth transferred from λ to λ+Rtz.

Finding the Rt becomes a crucial problem. But actually, there could be even more simplification,

by the time we derived R × T × R−1 at equation 18. We ignored a vital fact, the camera pose

translation is relative the its current rotation. More precisely, it translates at the direction of x axis

of the rotation coordinate system. That is R can be rewrite as basis

R =

⎡
⎢⎢⎣

xt


yt


zt

⎤
⎥⎥⎦ (21)

Since the coordinate axes have to be orthogonal to each other, then we have

Rt =

⎡
⎢⎢⎣


Rx
t


Ry
t


Rz
t

⎤
⎥⎥⎦× c
x = [c, 0, 0]t = 
c (22)

Plugs the result to equation 20, we have

λ2u2 =

⎡
⎢⎢⎣
λ1(x1 − a)− fc+ a · (λ1 − 0)

λ1(y1 − b)− f · 0 + b · (λ1 − 0)

λ1 + 0

⎤
⎥⎥⎦ (23)

Which implies

u2 =

⎡
⎢⎢⎣
x1 − fc

λ1

y1

1

⎤
⎥⎥⎦ (24)

The equation 24 makes sense because the epipolar line is horizontal when the camera motion is

horizontal as well. The final result is powerful, as we eliminated the camera calibrations. Figures

17 18 19 are a sample rendering based on the equation 24.
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Figure 17: Original RGB
image from Depth-Transfer
Dataset

Figure 18: Depth map cap-
tured from Kinect

Figure 19: A rendered left-
view of depth map, note that
there is a small disparity be-
tween this left view and origi-
nal view

There is an additional improvement on equation 19. In the equation, we took the parallel camera

setting, but usual human eyes do not look in that way, we could add additional rotation matrix to

tweak a bit. Here we remove the stew offset to simplify the process.

λ2u2 =

⎡
⎢⎢⎣
f 0 0

0 f 0

0 0 1

⎤
⎥⎥⎦×

[
Ry 0

0 1

][
I −
c
0 1

]
×

⎡
⎢⎢⎣

1
f 0 0

0 1
f 0

0 0 1

⎤
⎥⎥⎦× λ1u1 (25)

Ry is a rotation matrix for y axis. It goes the form of⎡
⎢⎢⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cosθ

⎤
⎥⎥⎦ (26)

With a little more of notations, we also simplify the inv(C)× λ1u1 to û1.

û1 =

⎡
⎢⎢⎣

λ1x
f

λ1y
f

λ1

⎤
⎥⎥⎦ (27)

Now the equation 25 becomes:

λ2u2 = C ×
[
Ry 0

0 1

][
I −
c
0 1

]
× û1 (28)

It leads to

λ2u2 = C × (Ryû1 −Ry
c) (29)
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Because θ can be sufficiently small(less than ten degree), we could replace cos θ with 1, sin θ with θ.

After Combining equation 26 and 29 we could get

λ2u2 = C ×Ry × (û1 − 
c) ≈

⎡
⎢⎢⎣

f 0 fθ

0 f 0

−θ 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

λ1x−fc
f

λ1y
f

λ1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
λ1x− fc+ λ1fθ

λ1y

λ1 − (λ1x−fc)θ
f

⎤
⎥⎥⎦ (30)

Equation 30 may looks difficult, as we don’t want to divide everything by λ1 − (λ1x−fc)θ
f . But

note that we could ignore (λ1x−fc)θ
f , there are two reason for this:

• (λ1x−fc)θ
f is very small.

• There should be no change to y-axis. We only listed one rendering equation here, but actually

we should render two symmetric view(left and right camera), then depth of scene should be

symmetric as well.

In fact, if we remove the translation, we should find out that by equation 31 The x-axis offset

only changes by fθ.

λ2u2 = C ×Ry × (û1) ≈

⎡
⎢⎢⎣

f 0 fθ

0 f 0

−θ 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

λ1x
f

λ1y
f

λ1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
λ1x+ λ1fθ

λ1y

λ1 − λ1xθ
f

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣
x+ fθ

y

1

⎤
⎥⎥⎦ (31)

Now we are ready to write down the entire simplified rendering equation.

u2 =

⎡
⎢⎢⎣
x− fc

λ + fθ

y

1

⎤
⎥⎥⎦ (32)

For left camera, c is negative, thus −fc is positive. But angle is negative (because camera rotates

at positive angle), the right camera view is the reverse.

3.4 Stereo View Rendering

Equation 24 and 32 provide a convenient method of deriving the depth for the second camera given

the focal length f and the camera offset c. This produces a depth map for the second camera which

can be used to generate the anaglyph stereoscopic image. An important aspect of this process is that

the drastically increasing or decreasing the focal length and camera offset results in small or large

disparities between the depth maps which when used to generate a stereo image, the image causes

discomfort. This is demonstrated in Figure 26 at section 4.2 where the focal length and camera

offset were intentionally large. At the same time, here raises the problem of choosing focal lens f

and cameras offset c. From the formula 24 we could not determine well the sound choice of c and f ,

the only limit that we can apply here is

fc ≥ min(maxDisparity) ·min(depth)
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The formula 3.4 points out the camera offset and focal lens should be determined by the biggest

pixel disparity offset, thus, this value should also vary by the resolution of the image. By our

experiment, 10 pixel max disparity provides a good rendering results for a typical image at size

500× 500.

We need extra information to determine the correct value, therefore, we made extra assumptions

utilize the formula 32. The process can be visualized by figure 20. In the image, we added two

extra angles α1 and α2 in the system, they represents the “focus angle” for far plane and near

plane. Followed our rendering assumption, α1 and α2 are intentionally chose very small. In addition

to these two angles, we also need D to determine the C. As the depth map is grayscale images

that range from 0 to 255, a clear separation of foreground and background depends on disparity

separation of foreground and background, also, the separation also depends on image resolution. So

we took a “rectangle scene” assumption, which means the depth range is the width image. By this

approach, the rendering setup is determined.

Figure 20: Camera Setup illustration

In addition to using appropriate values for the focal length and camera offset, one has to address

issues arising from the rendering. For example, depth buffering needs to be enabled in order to

avoid overwriting pixel values. Another problem that arises is the presence of holes [or cracks] in

the final rendering. This can be overcome by decreasing the focal length and camera offset, however

this may lead to decrease in the disparities which in turn leads to the aforementioned problem with

discomfort. This problem has been also reported by others such as in [ZDdW10] and solutions have
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been proposed such as oversampling the image and enlarging the warp beam. Another possible

solution to this problem is in-painting where the values of neighbouring pixels are used to fill in

the missing values. In our work we use in-painting and in particular Navier-Stokes based inpainting

method [BBS01].
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Chapter 4

Implementation and Results

This chapter describes the implementation details and evaluations.

4.1 Implementation

The system is implemented with careful, extensible design in mind, system is constructed by com-

ponents and every component itself is a test case. That is the development style starts by

1. Developing standard test case, inheriting main code-base and building out-of-tree classes and

implementations.

2. merge into the main code base if the test case is successful. Thus it can be inherited by later

on by other test cases.

Each of the test case takes input output parameters, such component style implementation

requires writing script to “glue” each of them together but also gave us the flexibility to plug in

other out-of-tree components to the work without rewriting new interfaces.

Figure 21: Components of the projects
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The project mainly uses OpenCV library. As shown in figure 21, the project is divided into

4 components. Superpixel* class is the most heavily inherited class. The base class does many

jobs. For example, making superpixel segments; drawing contours for superpixels; removing small

superpixels; building superpixel graph for the image and many debugging methods. As the base

class is lack of descriptor generation, sub-classes are made with many different implementations.

The current one we are using is superpixelGradient implementation, with implements the SIFT

descriptor for Superpixels. Other implementations like SuperpixelDRWN [GZHZ14] uses many filter-

ing (texton, LBP) results for the superpixels. GraphMatch class take two superpixel instances and

use the algorithm we described in the section 3.1.3. As graph data structure is hard to manage,

we used Boost’s johnson all pairs shortest paths function for computing the distance for each

nodes in the graph. Rendering class is implemented at last, like NN module, it is more independent.

Benefited from the rendering formula we derived. This module can run at real time. NN module is a

wrapper around the implementation by [EPF14]. It does the image feeding and output extraction.

4.2 Results

The section includes the project results as well the corresponded evaluation.

Figure 22 is an example illustration of the results for the matching algorithm which we described

in section 3.1.3.

(a) the left is the image to match. The right is the one we match against, it is the closest image retrieved
by GIST

(b) Graph Matching results

Figure 22: The graph matching algorithm

Figure 23 is an instance of our depth transferring. The matching algorithm does smooth the
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transferred depth. However, the result is not satisfying enough, so we changed to the CNN approach.

Figure 23: Single image Depth Transfer result(without smoothing), the right two grey scale images
represent the depth

Figure 24 to figure 28 (next page) are five row images are the main results of the project. The

represent the different rendering stages. We used two different rendering equation to archive different

stereo effects. First one is the parallel stereo setup, the second one has angle between two camera.

More results are available on YouTube at https://www.youtube.com/user/xeechou/videos?

view=0&shelf_id=0&sort=dd.

4.3 Evaluation

In order to evaluate whether our rendering results quantitatively, we used our rendering results as

an input to the depth prediction pipeline. Intuitively, if the rendering results is accurate, it should

produce similar depth maps, since they are only from slightly different views. Table 1 illustrates

the accuracy of our rendering results. The metric here is the relative depth (range in [0 − 1]).

We compared three different metrics, absolute difference; square difference and fractional depth

difference (d − d̂)/d. The evaluation shows the mean fractional difference is less than 0.02, max

difference is less than 0.08, which yields stable results.

evaluation type mean max min
absolute depth error 0.0102313 0.0469497 0.00246998
square depth error 0.000275407 0.00255624 1.96123e− 05

fractional depth error 0.0184376 0.0865189 0.00501813

Table 1: Evaluation, per-pixel error for re-generated depth map

33



Figure 24: The original sample image

Figure 25: rendered anaglyph without in-painting

Figure 26: Rendered anaglyph with too large focal lens settings that causes discomfort

Figure 27: rendered anaglyph after in-painting

Figure 28: rendered anaglyph using new rendering formula
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Chapter 5

Conclusion

We have presented a novel method for automatic conversion of 2D images/videos to 3D. We used two

methods, one uses non parametric method, the second one leverages the strengths of Deep Learning

to address the complex problem of depth estimation from a single image. The Convolutional Neural

Network produces a depth map which is then used to render the anaglyph image. We use anaglyph

images due to wide availability or red/cyan glasses however this does not limit our approach from

being extended to other forms of stereo e.g. 3D TVs. Furthermore, we have presented a simpli-

fied formulation for computing the depth map of the second stereo camera given two parameters.

The method has been tested with several videos and in the future we anticipate to evaluate the

effectiveness of the approach with human participants.

5.1 Future Works

Our anaglyph rendering method is based on depth map, but both of our proposed methods has

limitations. The first one is more limited than the other because we may not have a similar image to

match. Aside from that we believe it has potential in producing better results. One insight is that

we will transfer normal map instead of depth map directly, because normal map is indeed a more

“local” feature than depth map. We hope also to change the optimizing technique to algorithms like

Graph Cut [BVZ01], as it has proved its versatility in many applications.

The Neural network approach also has limitation, the first one is the output resolution, the cur-

rent state-of-the-art CNN network can only deal with only resolution images. Scaling the resolution

up is a big issue. The second one is size of the models, the model we are using can only work with

specific size ratio. Relaxing such limit can be a interesting direction.
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[RVCK16a] René Ranftl, Vibhav Vineet, Qifeng Chen, and Vladlen Koltun. Dense monocular

depth estimation in complex dynamic scenes. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4058–4066, 2016.

[RVCK16b] Rene Ranftl, Vibhav Vineet, Qifeng Chen, and Vladlen Koltun. Dense monocular depth

estimation in complex dynamic scenes. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016.

[SSN09a] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3d: Learning 3d scene structure

from a single still image. IEEE Trans. Pattern Anal. Mach. Intell., 31(5):824–840,

2009.

[SSN09b] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d: Learning 3d scene struc-

ture from a single still image. IEEE transactions on pattern analysis and machine

intelligence, 31(5):824–840, 2009.

[TL10] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric image

parsing with superpixels. Computer Vision–ECCV 2010, pages 352–365, 2010.

[TLF10] E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense Descriptor Applied to Wide

Baseline Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(5):815–830, May 2010.

[Wel78] W. Welling. Photography in America: the formative years, 1839-1900. Crowell, 1978.

[Wik17] Wikipedia. Stereoscopy, 2017. accessed 06-14-2017.

[ZDdW10] Sveta Zinger, Luat Do, and PHN de With. Free-viewpoint depth image based rendering.

Journal of visual communication and image representation, 21(5):533–541, 2010.

[Zed] ZED Stereo Camera the world’s first 3d camera for depth sensing and motion tracking.

https://www.stereolabs.com. Accessed: 2017-05-06.

38


