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Exploiting Bounds Optimization for the
Semi-formal Verification of Analog Circuits

Ons Lahiouel, Henda Aridhi, Mohamed H. Zaki, and Sofiène Tahar
Dept. of Electrical and Computer Engineering, Concordia University, Montréal, Québec, Canada.

Abstract—This paper proposes a semi-formal methodology for
modeling and verification of analog circuits behavioral properties
using multivariate optimization techniques. Analog circuit differ-
ential models are automatically extracted and their qualitative
behavior is computed for interval-valued parameters, inputs and
initial conditions. The method has the advantage of guaranteeing
the rough enclosure of any possible dynamical behavior of analog
circuits. The circuit behavioral properties are then verified on
the generated transient response bounds. Experimental results
show that the resulting state variable envelopes can be effectively
employed for a sound verification of analog circuit properties, in
an acceptable run-time.

Index Terms—Analog Circuits; Global Optimization; Verifica-
tion; Qualitative Simulation

I. INTRODUCTION

Process parameters and input fluctuations have an adverse
impact on analog circuits functionality and robustness [1].
Moreover, analog circuits responses are very sensitive to the
uncertainty in the initial values of their continuous state vari-
ables. Indeed, different initial conditions may create totally dis-
similar dynamic behaviors. Therefore, verification techniques
ensuring that a circuit model satisfies its desired behavior
with the inclusion of parameters, input and initial condition
variability are of great importance. However, the verification
of analog circuits is time-consuming and requires a great deal
of expertise on the part of the designer. The difficulty mainly
arises from the knowledge-intensive nature of analog circuits
and their infinite state and parameters space [2].

SPICE [3] is the state-of-the-art in terms of accurate analog
circuit simulation. It includes Monte Carlo (MC) statistical
simulation capabilities which analyze a model multiple times
with a random change of model parameters. MC analysis can
be employed to characterize the circuit dynamic under the
effect of process variation and estimates its yield rate [1].
However, it is very difficult to show a specific behavior
through simulation, if we are not provided with a complete
knowledge of the circuit parameters and inputs. Furthermore,
MC-based methods cannot guarantee an exhaustive coverage
of the circuit state space [4]. This lack of observability may
have a disastrous effect when the aim of the simulation is
to verify whether the circuit will go through critical oper-
ating conditions [5]. A large number of simulations can be
required to achieve acceptable accuracy at a prohibitively high
computational cost and memory resources. Moreover, circuit
simulator-based verification involves the use of device param-
eter variation for a particular process at the transistor level,
making the verification process unmanageable at lower level of
abstraction. Besides, the user has only access to the numerical

simulation results and cannot extract the mathematical model
of the circuit which is usually hard coded.

Based on rigorous mathematics, formal verification is the
most promising verification method in terms of exhaustiveness
and completeness [6]. However, due to the complexity of
analog circuits devices models, formal verification techniques
are very hard to apply without resorting to over-simplified
circuit models in the verification process. Their use has been
mainly limited by their computational overhead and lack of
automation [2].

This paper tries to address some of the above shortcoming
and challenges. Mainly, the objectives can be summarized as
follow: (1) the development of a homogeneous environment
for the modeling and practical verification of analog circuits;
(2) the computation of a complete characterization of the
circuit behavior under multiple type of uncertainties; and (3)
the sound verification of analog circuit behavioral properties
within a reasonable computation time.

Qualitative simulation is a semi formal technique introduced
by Bonarini and Bootempi [7] to complement numerical sim-
ulations and predict the behavior of incompletely known and
fuzzy systems [8]. Based on global optimization, it generates
an over-approximated envelope of a dynamical system trajec-
tories modeled as Fuzzy differential equations. Furthermore,
the computed bound can be considered as a complete descrip-
tion of the uncertain dynamical model, as it contains almost
any possible behavior of the circuit. Therefore, qualitative
simulation can be a potential choice for the characterization
of analog circuit behavior in time domain.

In this paper, we propose an environment for modeling and
verification of analog circuits behavioral properties. First, we
automatically generate device-level analog circuit augmented
differential equations from their netlist, which take into ac-
count the uncertainty in their parameters, inputs and initial
conditions. After that, we compute envelopes of their transient
behavior using a modified qualitative simulation algorithm.
That is, we extended the qualitative simulation method to
take into consideration not only the uncertainty in the initial
values of the state variables but also the variation of the
circuit parameters and inputs. We also provide the necessary
steps to formulate the core optimization problem for better
convergence and faster simulations. Our method generates
effective over-approximations of the state space reached start-
ing from a continuous region of initial condition. Finally,
we automatically verify whether the circuit model satisfies a
specified functional properties. Our verification environment
is powerful in handling properties connected to: the dynamic
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behavior of analog circuits (e.g. oscillation), the upper and the
lower bounds of the circuit currents and voltages, sensitivity
of the circuit response, etc.

We provide experimental results of our proposed verification
environment for three analog circuits: a Tunnel Diode Oscilla-
tor, a Rambus Ring Oscillator and an Analog Comparator [9].
We compare the first two applications with previous related
work [10] [11] and show that we can prove the same results
in a reasonable computational time. However, the method
we propose in this paper has attractable advantages. First,
to the best of our knowledge, no systematic method has
so far been proposed to automatically obtain performance
bounds in transient domain directly from the circuit netlist
while considering multiple types of uncertainties. Second, our
proposed method enables the practical verification of analog
circuit behavioral properties while avoiding exhaustive check-
ing inherited by sampling-based circuit simulation. Third,
the obtained verification results are sound as the proposed
optimization algorithm provides an unrevealed coverage of the
circuit state space.

The rest of the paper is organized as follows. In Section II,
we give an overview of verification techniques developed for
analog circuits. Section III details our proposed methodology
for the verification of analog circuits given their netlist and
behavioral properties. In Section IV, we present experimental
results to validate the proposed method and in Section VI, we
present our conclusions and future work.

II. RELATED WORK

Bound analysis of analog circuits under parameter variations
has been studied in the past to serve for the verification and
tolerance analysis of analog circuits.

One important approach consists in constructing piecewise
linearized models describing the time evolution of analog
circuits and modeling the parameter variation using a set of
intervals. Then, satisfiability solvers are applied to yield a
formal check of the circuit properties for a continuous set
of interval-valued parameters (e.g., [12] [13] [14]). Besides,
the work in [15] and [16] employed a symbolic analysis
approach to derive transfer functions of a linearized analog
circuit when considering process variations. In [15], affine
interval arithmetic is used to characterize variational transfer
functions. The time-domain performance bound is computed
via the inverse fast Fourier transform. Unfortunately, affine
arithmetic and satisfiability solvers based methods introduce
large overapproximations in the reachable state space.

Reachability analysis has been deployed in reliability veri-
fication of dynamic circuits and systems. In [17], a zonotope-
based reachability analysis using backward Euler is employed
to verify the stability properties of an SRAM cell. Similar to
our approach, the method computes the bound enclosing the
circuit trajectories under the effect of uncertain inputs and/or
interval parameters by one-time computation. The reachable
set is further deployed for the optimization of the SRAM using
a novel safety distance sensitivity calculation. The method
achieved remarkable speed-up when compared to the MC
method. However, the method is formulated for the SRAM
circuit only. In contrast, the work we present in this paper

automatically extracts nonlinear analog circuit models, given
their SPICE Netlist, and it computes their qualitative behavior,
when provided with a set of time points and a qualitative de-
scription of the circuit parameters, input and initial condition.

In [17], the reachable set can be over-expanded by the
reachable set due to the linearization error. The resulting over-
conservativeness is controlled by splitting of the reachable
sets which reduces the search space (i.e., the split zonotopes
cover a smaller region). However, the higher the order of the
zonotope, the less effective may be the splitting. Besides, the
method may require a large number of split sets when small
initial set expands rapidly due the dynamics of the circuits
(e.g., large effect of parameter on the circuit dynamic or
chaotic behavior). In contrast, the method presented in this
work directly handles device-level and nonlinear model of the
circuit dynamic.

In [17], experimental results show that the method may not
cover all possible trajectories obtained by MC simulations.
It can also produce an over-conservative reachable set when
compared to the MC method. In contrast, the bound extracted
by the proposed optimization approach is kept tight along
the whole simulation and closely surrounds the complete MC
trajectories.

Recently, a zonotope-based reachability analysis [18] is
applied to compute the worst-case eye-diagram of high-speed
I/O links. The proposed analysis extends the work in [17] to
consider not only spatial variation but also temporal variation
of the jitter at input. Meanwhile, the proposed optimization-
based method also computes the trajectories bound under
the effect of different types of uncertainties, including time
dependent input.

In order to reduce the computational cost, the authors in [18]
applied a macromodeling of the I/O links via model order
reduction (MOR). Applying reachability analysis on a set of
reduced and linearized system of equations led to a large run-
time speedup when compared to the MC method applied on the
full order model. However, it may not provide a good trade-
off between the accuracy and the computational cost. The
accuracy can be enhanced by increasing the model order, but at
the cost of extra runtime. Meanwhile, the method we propose
in this paper is applied on nonlinear differential models, hence,
the speedup order is not as large as in [18]. However, the bound
tightly encloses the MC trajectories.

Another thread of research used stochastic spectral meth-
ods [19] as a means to characterize the impact of parameter
uncertainties. The circuit parameters are modeled using con-
tinuous stochastic processes. Using the generated stochastical
model, the state variable distribution is derived over time in
terms of Polynomial Chaos (PC) [20]. However, this approach
is computationally expensive and difficult to apply to nonlinear
circuit models.

An interesting approach to verify analog circuits consists
in combining formal methods and simulation in order to
increase confidence in the design while completing the ver-
ification task in a timely manner. In [10], the authors use the
model checking tool Checkmate for the formal verification
of the tunnel diode oscillator properties. The proposed ap-
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proach analyzes simulation traces from the Simulink/Stateflow
framework under temperature and initial condition variations.
Unfortunately, the method requires significant effort to create
an appropriate design model and sophisticated fine tuning of
computation parameters such as the number of time steps and
error tolerance. A rigorous approach was proposed in [11]
where monotonicity properties of MOSFET was exploited to
efficiently find all the DC equilibrium points of a Rambus
Ring Oscillator. Small signal analysis techniques were then
applied for stability analysis of the DC equilibria. However,
the authors mentioned that their method is not able to locate
all possible dynamical behaviors of the oscillator. In [21],
reachability analysis together with dynamical system theories
are employed to verify the start up conditions of a four state
variables differential ring oscillator. These contributions are
certainly an exciting progress, but they only apply to the
specific class of oscillator circuits.

In [22], the authors use fuzziness and possibility distribu-
tions to model the dynamics of control systems. The dynamic
of the system is first described using a set of differential
equations where the initial conditions are modeled as Fuzzy
Number. Then, they introduce a qualitative simulation method
to verify the behavior bounds of a dynamical model. The
method is proved to be efficient in capturing a failure that
MC method could not predict [22].

In [23], the circuit state space bounds of a tunnel diode
oscillator are determined using qualitative simulation and the
circuit oscillation property is verified on these bounds. Al-
though non real solutions are included in the generated bounds,
the generated bounds are kept tight throughout the simulation.
The work we describe in this paper extends the method
proposed in [23] to include different types of uncertainties in
analog circuits verification and includes further experimental
results. Besides, the performance of the core optimization
problem is enhanced for better convergence and computational
time.

III. PROPOSED METHODOLOGY

An overview of our proposed framework for modeling and
verifying analog circuits is shown in Figure 1. It has mainly
three major functional blocks:

- The first block is responsible for generating an augmented
differential model for analog circuits described as a SPICE
netlist. A parsing step reads a given SPICE netlist and gen-
erates a single object containing all the circuit devices and
subcircuits. The object is then flattened and the Modified
Nodal Analysis (MNA) is applied to generate a differential
model of the circuit. The resulting differential model is aug-
mented by adding the so called connection matrix derivative
and sensitivity equations that are necessary for qualitatively
describing the circuit state variables evolution [24].
- The second block is responsible for generating behavior
bound of the obtained circuit model for a continuum set
of initial conditions, parameters, inputs or any variable that
triggers a specific behavior of the circuit. This block is based
on global optimization theory [25] and is inspired from the
method for qualitative simulation of fuzzy systems proposed

in [22]. The augmented differential model is not solved for
every possible scenario, but it uses the active set algorithm
to optimize the search for the global extremum. The output
of this block is an over-approximated envelope of all possible
trajectories of the model originating from a specified set of
initial conditions and for a qualitative description of inputs
and parameters.
- Finally, the verification block outputs a pass or fail con-
clusion when verifying the model properties formulated by
the user and describing a required behavior. That is, the
computed bound allows the verification of the properties by
demonstrating that no trajectory of the circuit model under the
effect of variational initial condition, input and parameters can
reach a bad state, at each time instant in a specified range.
The types of properties that can be verified includes model
sensitivity, start-up delay, state variable bounds, or oscillation.
(see Section III-C).

Fig. 1: Semi-formal Verification Approach

A. Augmented Differential Model Extraction

The objective of this stage is to capture the circuit de-
scription at the device-level and model it into a differential
model. The extracted model should preserve fundamental
analog behavior, while being less complex, easier to verify
and faster to simulate.

Fig. 2: Augmented Differential Model Extraction

Towards this goal, we propose a modeling environment
that automatically generates Augmented Differential Mod-
els (ADM) for linear and nonlinear circuits described using
SPICE-like netlist, through the application of MNA. Figure 2
provides the main components of our proposed approach im-
plemented in a MATLAB Object Oriented environment [26].
The parser converts a netlist file to a circuit object which
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provides a concise and readable description of the circuit and
its components. The circuit object together with a set of model
libraries which include the device level IV characteristic, user
defined parameters and constraints, are input to an equation
formulation step. This step implements MNA formulation by
scanning the component property of the circuit object. A com-
plete description of the previous steps, as well as simulation
of the generated models are available in [24]. The resulting
differential model is augmented by adding symbolically the so
called connection matrix derivative and sensitivity equations
that are necessary for qualitatively describing the influence
of the inputs, parameters and initial conditions on the time
evolution of the circuit state space. The obtained nonlinear
circuit model can be generally described with Equation (1).

ẋ = f(x, u, p) (1)
Ċ = J · C
ẋp = J

∂x

∂p
+
∂f

∂p

ẋu = J
∂x

∂u
+
∂f

∂u
x(0) = x0, xp(0) = xp0

C(0) = In, xu(0) = xu0

where x and ẋ ∈ Rn are the vector of state variables and
its time derivative, u ∈ Rm is a vector of inputs modeled
as a set of intervals, p ∈ Rnp is a set of np interval circuit
parameters, f : Rn×Rm×Rnp → Rn is a nonlinear function
capturing the dynamical behavior of the circuit generated and
x0 ∈ Rn is a set of interval initial conditions. C and Ċ are the
connection matrix and its time derivative, respectively, where
cij = ∂xi

∂x0j
, C(0) = In as given in [22] and In is the identity

matrix. The elements of the connection matrix express the
sensitivity of the state variable component xi, with respect
to a variation of the initial condition x0j . The differential
model of xp = ∂x

∂p and xu = ∂x
∂u express the sensitivity of

the solution component with respect to small changes of the
circuit parameters p and input u, respectively. Their initial
conditions xp(0) and xu(0) are determined using simulation
traces. J is the Jacobian of f that is obtained symbolically and
defined as Jij = ∂fi

∂xj
for i, j = 1 . . . n. The ADM has a size

of n+ n2 + n ∗ np + n ∗m equations in theory. However, in
practice, the matrix C is a sparse matrix like the Jacobian
of the function f since each circuit state variable xi does
not depend on all other state variables xj , j 6= i. All these
equations are necessary to capture the model dynamics and
sensitivity, though. The elements of the connection matrix as
well as the partial derivative of the solution x with respect to
p and u, are essential to characterize the time evolution of the
circuit state variables x.

The set of continuum initial condition x0 defines a hy-
percube X0 of dimension n that we call the initial region
of uncertainty at t = 0. The elements of the augmented
differential model are required to determine the direction of
the tangents to the uncertainty region at a fixed time t∗, when
the initial condition x0 is constrained to the initial region of
the state space (x0 ∈ X0), and for a variation of the circuit

parameters p ∈ P and inputs u ∈ U , where P and U are
sets of intervals that specify the possible values of p and u,
respectively. Figure 3 illustrates the case of of a second order
system. It plots the evolution of the initial region of uncertainty
X0 (i.e the rectangular surface ABCD) at each time step t∗.

Fig. 3: Time Evolution of State Space Regions

The complete solution of the ADM can be obtained by
computing an infinite number of model trajectories having as
initial condition a state that belongs to the initial region of
uncertainty X0, when the circuit parameters are constrained
to be in P and the inputs to be in U . However, this is very
complex and even impossible in a continuous domain. Not
only varying the initial condition of the circuit state variables
changes the ADM solution, but also, ranging the values of the
parameters p and inputs u, changes the ADM system itself.
In this paper, we adopt the approach proposed by Bonarini
and Bootempi [7] for the simulation of approximately known
systems. In particular, it has been proved in [7], under
general condition of continuity and differentiability, that
computing the evolution of the external surface of the region
of uncertainty is sufficient [22]. Besides, the following
theorem has been established, where its detailed proof can be
found in [7].

Theorem 1: An ordinary differential equation maps the
external surface of its region of uncertainty at time t∗, into
the external surface of its region of uncertainty at time t∗+dt.

In other words, theorem 1 reduces the characterization problem
into the tracking of the trajectories of all points belonging to
the external surface of the region of uncertainty. For example,
in Figure 3, the external surface of the initial region of
uncertainty X0 corresponds to the rectangle ABCD. It is
sufficient to simulate the trajectories starting from all points in
the rectangle ABCD to reconstruct the region of uncertainty
at each time point.

Despite the reduction of the problem complexity, the num-
ber of trajectories to compute is still infinite. The challenge
here is how to sample in the most accurate and efficient way
the external surface that guarantees the inclusion of all possible
trajectories. To address this issue, Qualitative Simulation (QS)
can further reduce the sampling problem to a multivariate
constrained optimization problem [22], where only the extrema
of the solution of the circuit model are determined. In the
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proposed verification framework, we extend and customize this
method to solve the ADM in Equation 1, as detailed in the
sequel.

B. Global Optimization

The ADM is solved using Algorithm 1 which is a modified
version of the QS approach introduced for dynamic systems
with varying initial conditions. However, in the proposed
version, interval-valued inputs and parameters are also
considered to accommodate different types of uncertainties
in analog circuits. The principle idea behind Algorithm 1
is that the ADM is not solved for every possible situation
including input, initial condition and parameter variations.
However, only the extremum solutions of the model are
determined at a selected observation point t∗. In particular,
Algorithm 1 is based on global optimization1 and employs
the MATLAB toolbox for symbolic derivatives computation
which provides functions for generating and manipulating
symbolic equations. Algorithm 1 requires the following inputs:

- The ADM of the circuit, as given in Equation (1).
- A qualitative description of the inputs U (a description of
the envelope of a time varying amplitude or phase signal).
- An interval description of the initial conditions X0 (i.e.,
the initial region of uncertainty) and parameters P which
are supposed to affect the user defined circuit property. The
parameter P may be representing the set of valuations of
a formula involving more than one model parameter, for
example the width and length ratio of a transistor.
- A set of the state variable indexes Nx to be optimized and a
set of adaptively sampled time points [t0, t1, . . . , tf ] required
for the observation of the circuit behavior.
- The global optimization algorithm type alg required in Line
8, which is the active set method for our case [27].

The output of the algorithm is a graphical representation
of the uncertainty region evolution in the state space or
equivalently the state variables behavior bounds in the tran-
sient domain. The characterization result will be employed
afterwards to check the circuit behavior in the verification part.

In Lines 2-19, the extremum possible values for the state
variables, which are indexed with in the set Nx, are determined
for all time points t∗ ∈ [t0, t1, . . . , tf ], using multivariate
global optimizations (GO) in Line 10. The for loop in Lines
3-16 performs the search of the minimum and the maximum
values of the objective function, i.e., the state variable xi at
each time point t∗.

In Lines 6-15, the search for the extreme values is divided
into a number of subproblems. At each subproblem, only one
portion Ej of the external surface of X0 is considered in
the optimization constraint. The subdivision refines the initial
region of uncertainty X0 at t0 and consequently enhances the
capability of the global optimization to include all possible tra-
jectories. If we consider the state space evolution of the second

1Global optimization refers to a set of algorithms for computing the optimal
solution of a multivariate nonlinear optimization problem subject to a set of
constraints [25].

Alg. 1 Global Optimization Algorithm
Require: ADM : augmented differential model, X0: initial region of uncer-

tainty, P : interval-valued parameters, U : qualitative inputs, Nx: state

variables indexes, [t0, t1, . . . , tf ]: time points, alg: active set.

1: t∗ = t0, C0 = In

2: while t∗ ≤ tf do
3: for i ∈ Nx do
4: ximax(t

∗) = −∞ {*Upper bound initialization*}
5: ximin(t

∗) =∞ {*Lower bound initialization*}
6: for Each External Portion Ej of X0 do {*Running the

optimization for each external surface of X0*}
7: Constr = UpdateConstr(i, ADM,P,U,Ej)

{*Constraints formulation*}
8: xinit1 = inf(Ej), xinit2 = Sup(Ej), xinit3 =

mean(Ej) {*Initial points sampling from Ej* }
9: for Each xinitk do {*Running the optimization for multiple

initial points*}
10: [xL,i

jk (t∗), xU,i
jk (t∗)] = GO(alg, ADM, i, t0, t∗, Constr,

11: xinitk)

12: ximax = max(ximax, x
U,i
jk ) {*Upper bound update*}

13: ximin = min(ximin, x
L,i
jk ) {*Lower bound update*}

14: end for
15: end for
16: end for
17: update(t∗, [t0, t1, . . . , tf ])

18: end while
19: return : [ximin, ximax]: State variables bounds, ∀i ∈ Nx, ∀t∗ ∈

[t0, t1, . . . , tf ]

order system illustrated in Figure 3. The external surface of
the initial region of uncertainty (i.e., the rectangle ABCD) at
t0 is transformed by the ADM into A′B′C ′D′ at t∗. To do so,
for each portion Ej of ABCD, (e.g., AB), the optimization
engine in Line 10 searches for the maximum and minimum of
the state variable xi. More precisely, during each optimization
routine, only one component of the initial condition vector x0
is varying over the portion Ej and the rest of the components
is kept at fixed values. For example, when considering the
portion AB, then x01 is varying over AB = [x01min, x01max],
while x02 is fixed at x02min. Similarly, when considering the
portion AD, then x02 is varying over AD = [x02min, x02max],
while x01 is fixed at x01min. In Lines 12 and 13, the lower and
upper bounds of the state of xi are updated with the greatest
maxima and the lowest minima, respectively.

Besides, it is well known that global optimization is sen-
sitive to the selected starting point. For that reason, each
subproblem is run for multiple stating points (Lines 9-14).
Obviously, as the number of considered starting points in-
creases, the computed bound is more reliable. However, this
would prohibitively increase the computational cost. In the
proposed algorithm, three initial points xinit are sampled from
the extremes and center of each external portion Ej (Line 8).

The optimization of the state variable xi in Line 10 (i.e., the
GO procedure) is subject to the nonlinear constraints Constr
which are set in Line 7. The constraints given in Line 7
guarantee that: (1) the optimized state variable xi = x(i)
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is the ith component of the state variables vector x, where
x is determined by solving the ADM at time t∗. The ADM
solution vector y = (x, xp, xu, C) is computed by integrating
the system of ADM from t0 to t∗, using the MATLAB
function ode23 [26]; (2) the ADM solution y originates from
the external portion Ej of initial region of uncertainty, i.e.,
x0 ∈ Ej ; and (3) the ADM solution uses the specified interval
inputs u ∈ U and parameters p ∈ P . The constraints are
provided in Equation (2), where ∧ stands for logic conjunction.

min,max xi (2)

s.t. y =

∫ t∗

t0

ADM(t, y, u, p) ∧ (u ∈ U) ∧ (p ∈ P )

∧(x0 ∈ Ej)

The performance of the constrained multivariate optimiza-
tion problem in terms of run-time and accuracy cost is
enhanced by providing the partial derivatives of the objective
function xi at time t∗ with respect to the model arguments
(P,Ej , U) [22]. The partial derivatives of the objective
function are given by the ith rows of C, xp and xu. This
justifies why the differential equations involving C, xp and
xu are considered in the ADM as given in Equation (1).

The multivariate optimization procedure (GO) (Line 10)
determines the minimum and maximum of xi at the time point
t∗, solution of the dynamical system given in Equation (1).
It uses the MATLAB function fmincon [26] for the global
optimization of constrained nonlinear multivariable functions.
The optimization is subject to the constraints given in Lines
2 and 3 of Equation (2). It takes as starting point xinitk
and uses the active set algorithm for constrained optimization
problem. The optimization is enhanced by supplying the active
set method with the sensitivity equations in the ADM .

The lowest and highest possible values of x(t∗), t∗ ∈
[t0, t1, . . . , tf ], provide a lower and upper bound of the circuit
state variables. Consequently, an envelope of the system trajec-
tories from the uncertain region of initial conditions and under
the effect of variational inputs and parameters is obtained.
Any point on the external surface of the obtained behavioral
bounds represents a real system state that is reachable by
the circuit model from a specific initial condition x0, input
u and parameter p. Finally, the function update(t∗), in Line
18, adaptively changes the next time sample point.

The complexity of the original version of qualitative simula-
tion is an exponential function of the model size n. However,
in our environment, we limit the number of states to be
evaluated to the minimal set Nx required to verify the user
defined properties. Moreover, when the circuit state variable
is rapidly changing, the time sampling step should be enough
small to allow the observation of the desired circuit behavior.
However, when the evolution of the circuit state variable is
relatively slow, the time step is increased in order to gain in
simulation time and memory usage. Therefore, the density of
the sample points along the time axis depends on the property
to be verified and has to be carefully set by the user. Also,
providing the derivatives of the state variable with respect
to the initial condition x0, input u and parameter p greatly
increases the performance of the optimization routine in terms

of run-time.
The accuracy of the maximum and minimum values com-

puted, respectively, in Line 12 and Line 13 is comparable to
that of a gradient-based optimization algorithm. It also depends
on the numerical method used to solve the ADM . However,
the simulation result can be considered as a nearly optimal
solution for several reasons. First, as mentioned before, we
are supplying the optimization routine with the sensitivity
equations (i.e., Ċ, ẋp, ẋu in Equation (1)), which further
enhances the accuracy of the solution. Second, we consider
multiple starting points for the optimization search and the
greatest maxima and the lowest minima are chosen to be the
solution. Third, we take the advantage of using an advanced
engine for the global optimization procedure which is capable
of performing multiple starts automatically to enhance the
convergence to the optimal solution. Finally, at each time step,
the time integration starts from t0, as there is no guarantee
that the computed bound at t∗ + dt, starting from the region
of uncertainty computed at t∗, is the same as starting from the
initial region of uncertainty X0 at t0.

The generated bounds for a single state variable is an inten-
sive characterization of all its possible values at the specified
time points. However, they may include spurious values which
cannot be real solutions of the circuit differential model, Fig-
ure 4 illustrates the conservativeness of the computed bounds.
It plots the evolution of the initial region of uncertainty of a
second order oscillating system (i.e., the rectangular surface
ABCD). Algorithm 1 will add to the solution at time t∗ (i.e.,
the rotated rectangle A′B′C ′D′) the red region which does not
correspond to any trajectory having as initial condition a state
that belongs to ABCD. The existence of spurious regions
is due to the fact that Algorithm 1 does not represent the
interaction that the ADM establishes between the circuit state
variables.

Fig. 4: Introduction of Spurious Region [7]
Despite the presence of spurious regions, the state space

regions can be effectively used to get statements of the circuit
behavior and conclude if a user defined behavioral property
is satisfied or not, for two main reasons: (1) The generated
bound for a single state variable exhaustively covers all its
possible values at the specified time points; and (2) the
computed bounds include near optimal extreme values that
can be reached by the circuit state variable.

C. Property Verification

This step checks whether the generated envelopes
of the circuit trajectories satisfy a given behavioral
property. That is, given the state space regions M =
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{[ximin(t∗), ximax(t∗)],∀i ∈ [1, n],∀t∗ ∈ [t0, t1, . . . , tf ]}
and a circuit property P , we check M |= P , i.e., at each
time instant t∗, we automatically verify if P is satisfied or
violated over M . Currently, the behavioral properties are
expressed using MATLAB functions and are verified in an
offline manner after the simulation is completed. It is also
possible to do the verification on the fly when the state space
bounds are computed. The property is observed while the
simulation is running, and hence the violation or satisfaction
of a property can be detected as soon as it occurs using
online monitoring. The properties which can be verified in
this verification environment are expressed in the form of
first order formula over intervals of time, parameter values
and initial condition, and are similar but not limited to the
following:

- Oscillation in [0, A]: for a given set of interval initial
condition x0 and circuit parameters p, the state variables xi
oscillate in [0, A]:
P1 := ∀i ∈ [1, n],∀p ∈ [l, u]m,∀x0 ∈ [a, b]n,
∀t∗ ∈ [t0, t1, . . . , tf ], (|mean(ximin)− A

2 | ≤ ε
∧ |mean(ximax)− A

2 | ≤ ε) ∧ (|rms(ximin)− A
K | ≤ δ

∧ |rms(ximax)− A
K | ≤ δ)

where mean and rms stand for the mean and root mean
square values, respectively. The factor K = A

rms(xi)
≥ 1 is

employed to estimate the impact occurring in the state space
bound [28]. For a pure sinusoid, K =

√
2 [29]. ε and δ

are the tolerated fluctuation of the mean and rms values,
respectively.
- Settling time of the output voltage: for a given set of
circuit parameters p, the output voltage vout settles within a
tolerated band of a DC value V0 by the settling time T :
P2 := ∀p ∈ [l, u]m,∃ts ∈ [t0, t1, . . . , tf ], ts ≤ T,
∀t∗ ∈ [ts, tf ],∃V0 > 0, |voutmax(t∗)− V0| ≤ ε
∧ |voutmin(t∗)− V0| ≤ ε
where ε reflects the acceptable variation of the final value V0.

Other properties such as locking time property of a PLL
or the maximum delay of an output signal given an input,
can also be formulated in the same way. Frequency behavior
properties (e.g. related to the gain value), require the process-
ing of the obtained state space region by applying FFT to
the transient behavior of the computed state variable bounds
ximin and ximax. A property failure case has two meanings:
the computed state space regions are not sufficient to conclude
if the property is verified, or that the circuit does not satisfy
the user defined property. In the first case, we try to fine-
tune the qualitative parameters and initial ranges manually to
determine where the property is satisfied.

Formally describing the desired behavior of analog circuits
is still a difficult task due to the lack of a uniform and circuit
independent language [30]. The difficulty mainly arises from
the complex behaviors of analog components, the alteration
of their behavior over time and the quantification of uncer-
tain quantities in the property [31]. Precise properties which
take into account various uncertainties should be carefully
expressed to avoid misunderstandings of the desired behavior.

IV. APPLICATIONS

In this section, we report experimental results for behavioral
properties verification of three different analog circuits: a
Tunnel Diode Oscillator, a Rambus Ring Oscillator and an
Analog Comparator. In what follows, ID is a diode current, In
and Ip are n-channel and a p-channel MOSFET drain-source
currents, respectively. Their IV characteristics are based on
device terminals voltages and their physical and technology
parameters. The extracted circuit differential models are as
accurate as the nonlinear device models employed to capture
the IV-characteristics of the MOSFET, BJT, diode, resistor,
etc,. In these experiments, we use the quadratic model for the
MOSFET and the diode current model given in [10]. However,
more complex device models (e.g., EKV or BSIM for the
MOSFET) can also be integrated and the models parameters
can be modified by changing the MATLAB models ID, In
and Ip. All simulations were run on a 64 bit Windows 7
workstation with a 2.8 GHz processor and 24 GB of memory.

A. Tunnel Diode Oscillator

We consider the Tunnel Diode Oscillator (TDO) circuit
shown in Figure 5. It exhibits an oscillatory behavior when
operating in the negative resistance region of the diode IV
characteristic. Its oscillation property is affected by the tem-
perature, the conductance G = 1/R and the initial condi-
tions [10].

Fig. 5: Tunnel Diode Oscillator Schematic

Our purpose is to study the sensitivity of the circuit behavior
to the circuit parameter G = 1/R and the initial conditions
x0 = [x10, x20] lying in a specific continuous range of
values at a nominal temperature (T = 200K) [23]. The
objective function during the global optimization procedure of
Algorithm 1 is given by the state variables x1 and x2, which
have to be a solution of the augmented differential model of
the TDO shown in Equation (3).

ẋ1 =
1

C0
(−ID(x1) + x2) (3)

ẋ2 =
1

L
(−x1 −

1

G
x2 + V )

ċ11 = − 1

C0
I ′D(x1)c11 +

1

C0
c21

ċ12 = − 1

C0
I ′D(x1)c12 +

1

C0
c22

ċ21 = − 1

L
c11 −

1

LG
c21

ċ22 = − 1

L
c12 −

1

LG
c22

where x1 is the voltage across the capacitor C0 = 1pF ,
x2 is the current Id through the inductor L = 1µH and(
c11 c12
c21 c22

)
is a 2×2 connection matrix. The circuit parameters
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and input voltage are considered deterministic. Consequently,
the differential model has 6 variables (2 state variables + 4
nonzero connection matrix elements).

The TDO behavioral oscillation property P , for state vari-
ables x1 in [0;A1] and x2 in [0;A2], A1 = 0.5V , A2 = 1mA,
is given in Equation (4).

P := ∀t∗ ∈ [0, 60]ns, (|mean(ximin)− Ai

2
| ≤ εi (4)

∧ |mean(ximax)− Ai

2
| ≤ εi) ∧ (|rms(ximin)− Ai

Ki
| ≤ δi

∧ |rms(ximax)− Ai

Ki
| ≤ δi)

where K1 = 1.75 and and K2 = 1.6 are the ratio of the
amplitude to the rms values. 0 ≤ ε1 ≤ 0.08, 0 ≤ ε2 ≤
0.7 × 10−4, 0 ≤ δ1 ≤ 0.04 and 0 ≤ δ2 ≤ 0.02 × 10−4

are the acceptable variation of the mean and rms values of
the state space bounds, respectively. These ranges of tolerance
ensure stable oscillation of the state space bounds around Ai

2 .
In our experiment, we consider the initial conditions x0 ∈
[[0.4; 0.5]V, [0.4; 0.5]mA] and the conductance parameter G
is deterministic. The oscillation property is satisfied if any
trajectory of the circuit remains inside an envelope around
Ai

2 , i ∈ 1, 2.
Table I details the circuit conditions where the TDO is

supposed to oscillate in Case 1 and lock up in Case 2 and
compares our results with the formal method in [10]. We
consider the same TDO differential model, diode model and
circuit parameters values as those reported in [10]. Using
our proposed technique, we obtained the same verification
results proved formally in [10]. However, the work in [10]
necessitates a complicated process to carry out the verification
of the circuit. In fact, the analysis of circuit models that in-
clude nonlinear components cannot be performed. Instead, the
method utilizes the simulation traces of the circuit to perform
the verification. Most importantly, the technique necessitates
complicated changes in the implementation of the employed
verification tool to enable the formal analysis of the simulation
traces. In contrast, using our approach, the verification task is
more practical: (1) it requires only the circuit netlist and the
property expression; (2) the optimization routine only needs
to be invoked once; (3) it automatically covers a complete set
of initial conditions, with reasonable run time and memory
usage.

TABLE I: TDO Oscillation Property Verification

Case 1 Case 2
G 5mΩ−1 4.13mΩ−1

Initial conditions (x01 ∈ [0.4, 0.5]V ) ∧ (x02 ∈ [0.4, 0.5]mA)
Method in [10] Oscillations No oscillations

Run time[s] 6505.36 83835.00
Our method Oscillations No oscillations
Run time[s] 4076.87 3049.95

Mem usage[MB] 0.046 0.050

Figure 6 shows a 2−D state space representation of the
simulation results for the Case 1 column of Table I. It plots
the evolution of the external surface of the regions containing
all the possible state variables values originating from the
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Fig. 6: State Space Representation for Oscillations (Case 1)

rectangular region [0.4, 0.5]V ×[0.4, 0.5]mA. By construction,
any trajectory of the circuit originating from any set of initial
conditions within these ranges travels necessarily through
these rectangular regions. It can be seen in Figure 6 that the
states reachable at the end of one cycle are contained in the set
of initial states. The entire set of reachable states is therefore
an invariant of the circuit. Although spurious values which
cannot be real solutions of the model can be included, the
generated boxes are kept tight during the whole simulation
time while providing a guaranteed over-approximation of the
set of reachable states of the system.

0 1 2 3 4 5 6

x 10
−8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time [s]

x1
 [V

]

 

 

x1
min

x1
max

Fig. 7: Oscillations Case: State Variable x1

Figure 7 shows the over-approximated envelope of all
possible trajectories originating from the specified set of
initial condition. The TDO produces a periodic signal with
small variation in amplitude when subject to initial condition
variation. During the complete simulation time, the minimum
and the maximum of the state variable x1 are oscillating
between 0V and 0.5V , while the bounds on x2 are oscillating
between 0mA and 1mA which confirm that the oscillation
specification as given in Equation (4) is verified. Therefore,
since the complete envelope of the possible TDO trajectories
is oscillating, there is no chance of a lock up scenario in this
case.

Figure 8 shows a 2−D state space representation of the
simulation results for the Case 2 column of Table I. The
generated over-approximation of the state space regions show
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Fig. 8: State Space Representation for
No Oscillations (Case 2)

that the possible TDO states settle to a fixed region in
the state space which eliminates the possibility of a stable
oscillation. The lock up behavior of state variable x1 is shown
in Figure 9. The voltage x1 slightly oscillates approximately
around 0.075V while the bounds on x2 are around 0.95mA.
These oscillations are considered as bad states since they do
not reach neither the minimum nor the maximum of the circuit
state variable. The oscillation specification is therefore not
verified.
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Fig. 9: No Oscillations Case: State Variable x1

To further study the efficiency of the proposed method,
we consider the variational initial condition x0 uniformly
distributed over [[0.4, 0.5]V, [0.4, 0.5]mA] and run standard
Monte Carlo simulation. Figure 10 shows, at each time point,
the bounds of the state variable x1 from 500 MC runs, 5000
MC runs and the proposed method. The lower and upper
bounds of the MC method are computed by running MC
simulation at each observation time step t∗, starting from t0,
and selecting from the simulation results the minimum and the
maximum values reached by the circuit state variable x1. For
clearer visualization of the state variable bounds, we bring out
the result for the time frame [10, 18]ns.

We can observe that at each time point in [10, 18]ns, the
bound extracted from 5000 MC runs is wider than the bound
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Fig. 10: Lower and upper oscillating bounds in the time frame
[10, 18]ns: State Variable x1

of 500 MC runs, which totally conforms with the nature of the
MC method. In fact, MC simulation is able to achieve better
exploration of all possible reachable states when the number
of sampling increases. We also observe that the bound from
the proposed method closely surrounds both upper and lower
bounds from the MC runs. This observation confirms the high
ability of Algorithm 1 in bounding all possible trajectories of
the circuit state variables.

TABLE II: MC Result for TDO Oscillation Property Verifica-
tion

Case 1 Case 2
G 5mΩ−1 4.13mΩ−1

Initial conditions (x01 ∈ [0.4, 0.5]V ) ∧ (x02 ∈ [0.4, 0.5]mA)
MC (500 Run) Oscillations No oscillations

Run time[s] 5989.40 5789.25
MC (5000 Run) Oscillations No oscillations

Run time[s] 30717.01 20716.02

The verification results including the running time measure-
ments of the MC method are also listed in Table II. First,
we can observe that the accuracy of MC is accomplished at
the cost of the computational time. Furthermore, our proposed
method achieves almost 8X speedup over 5000 MC simulation
runs (Case 1), and is even faster than 500 MC runs in both
Cases. In fact, it can directly yield the performance bounds
within less computational runtime and without simulating a
large number of samplings points.

In order to show the capability of the proposed method to
handle both variational initial condition and circuit parameter,
we verify the TDO behavioral oscillation property P , as
given in Equation (4), with the initial condition x0 uniformly
distributed over [[0.4, 0.5]V, [0.4, 0.5]mA] and conductance
parameter G lying in [4.13mΩ−1, 5mΩ−1]. The ADM in
Equation (3) is further augmented by the differential model
of xG = ∂x

∂G which expresses the sensitivity of the solution
component with respect to small changes of the circuit param-
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eter G and given as:

ẋ1G = − 1

C0
I ′D(x1)x1G +

1

C0
x2G (5)

ẋ2G = − 1

L
x1G −

1

LG
x2G +

∂ẋ2
∂G

where xiG = ∂xi

∂G . We compare our results with different sam-
pling methods including the brute-force Monte Carlo (MC),
Quasi Monte Carlo (QMC) and Latin Hypercube Sampling
(LHS), implemented in MATLAB. The verification results
including the running time measurements of the proposed
method, the brute-force MC method and its variants are listed
in Table III. Figure 11 shows the bounds of the state variable
x1 for all four methods. We bring out the result for the
time frame [0, 30]ns for better visualization of the trajectories
bounds. In this case, the uncertainty in the initial condition and
circuit parameter G results in a violation of the oscillation
specification in Equation (4). In fact, the circuit trajectories
do not remain inside an envelope around Ai

2 , i ∈ 1, 2, ∀G ∈
[4.13mΩ−1, 5mΩ−1] and ∀x0 ∈ [[0.4, 0.5]V, [0.4, 0.5]mA].
Furthermore, Figure 11 shows that the bound from the pro-
posed method tightly encloses both upper and lower bounds
from the MC method and its variants, showing its excellent
trajectories coverage ability. Besides, our proposed method
achieves almost 8X speedup over 5000 MC simulation runs,
and is also faster than 500 MC runs. The reachability of the
LHS and QMC methods with 500 samples is similar to 5000
MC simulation runs with around 6X speedup.
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Fig. 11: Lower and upper oscillating bounds with variational
x0 and parameter G: State Variable x1

We compare our method to the corner analysis (CA)
method [32] and the worst case analysis (WCA) method [32].
The trajectories bounds are shown in Figure 12. The bound
of the CA method is determined by simulating the circuit at
all possible worst case scenarios of conductance and initial
condition variation. The bound of the WCA is obtained
by optimizing the state variable x1 when the initial con-
dition x0 and conductance parameter G are constrained to

[[0.4, 0.5]V, [0.4, 0.5]mA] and [4.13mΩ−1, 5mΩ−1], respec-
tively. The optimization employs the fmincon solver of MAT-
LAB with the active set algorithm. CA is computationally
efficient due to the limited number of simulations required,
however its lower bound is highly inaccurate and exhibits a
poor coverage of the circuit state space. In fact, the worst
case deviation of the circuit trajectories does not occur at the
extreme deviation of the circuit parameter and initial condition.
The bound of the proposed optimization algorithm exhibits
a better coverage ability than the WCA method despite a
more expensive computational cost, which is explained by the
search strategies that the method has adopted to enhance the
reachability of the generated envelope.

TABLE III: TDO Oscillation Property Verification with vari-
ational initial condition and conductance parameter

G [4.13mΩ−1, 5mΩ−1]
Initial conditions (x01 ∈ [0.4, 0.5]V ) ∧ (x02 ∈ [0.4, 0.5]mA)
MC (500 Run) No Oscillations

Run time[s] 5795.46
MC (5000 Run) No Oscillations

Run time[s] 32818.05
QMC (500 Run) No Oscillations

Run time[s] 5785.34
LHS (500 Run) No Oscillations

Run time[s] 5789.63
CA No Oscillations

Run time[s] 90.82
WCA No Oscillations

Run time[s] 2227.65
Our method No Oscillations
Run time[s] 4265.34
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Fig. 12: Lower and upper oscillating bounds with variational
x0 and parameter G: State Variable x1

B. Rambus Ring Oscillator

We consider a Rambus Ring Oscillator (RRO) made with
an even number of stages (n = 2), as shown in Figure 13.
Each stage has two forward inverters (labeled fwd) connected
by a pair of cross-coupling inverters (labeled cc). Each inverter
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is a cascaded n-channel and p-channel transistor with a total
capacitance Ct connected to their drains.

Fig. 13: 4-states Rambus Ring-Oscillator

In [11], it has been proven that if the cross-coupling
inverters transistor size (cc) is much larger than the forward
inverters transistor size (fwd), then the circuit acts like a ring
of 2n inverters and will not oscillate. In the opposite case,
the circuit may or may not oscillate depending on the initial
conditions. We use our proposed framework to verify the lock
up free property of this oscillator in the presence of inverter
size variation, and compare our results with the results of [11].
The inverter size ratio is defined as given in Equation (6) [11].
As considered in [11], we account for the effect of global
process variation. In fact, all the cross-coupling and forward
inverters are equally affected by the parameter s.

s =
size(cc inverter)

size(fwd inverter)
(6)

The RRO differential augmented model has a size of 8
variables (4 state variables + 4 elements of the sensitivity
vector ẋs). Equation (7) shows the first and the last elements
of the state variable time derivatives vector ẋ and of the
sensitivity vector ẋs.

ẋ1 =
1

Ct
((−In(x4, x1, gnd, s)− Ip(x3, x1, vdd, s) (7)

−Ip(x4, x1, vdd, s)− In(x3, x1, gnd, s))

ẋ2 =
1

Ct
((−In(x1, x2, gnd, s)− Ip(x1, x2, vdd, s)

−Ip(x4, x2, vdd, s)− In(x4, x2, gnd, s))

ẋ3 =
1

Ct
((−In(x2, x3, gnd, s)− Ip(x2, x3, vdd, s)

−Ip(x1, x3, vdd, s)− In(x1, x3, gnd, s))

ẋ4 =
1

Ct
((−In(x3, x4, gnd, s)− Ip(x2, x4, vdd, s)

−Ip(x3, x4, vdd, s)− In(x2, x4, gnd, s))

ẋ1s =
∂ẋ1
∂x1

x1s +
∂ẋ1
∂x3

x3s +
∂ẋ1
∂x4

x4s +
∂ẋ1
∂s

ẋ2s =
∂ẋ2
∂x1

x1s +
∂ẋ2
∂x2

x2s +
∂ẋ2
∂x4

x4s +
∂ẋ2
∂s

ẋ3s =
∂ẋ3
∂x1

x1s +
∂ẋ3
∂x2

x2s +
∂ẋ3
∂x3

x3s +
∂ẋ3
∂s

ẋ4s =
∂ẋ4
∂x2

x2s +
∂ẋ4
∂x3

x3s +
∂ẋ4
∂x4

x4s +
∂ẋ4
∂s

where x = x1, . . . , x4 are the four state variables of the model,

Ct is the capacitance at the inverters outputs, gnd = 0V is
the ground voltage, vdd = 1.8V is the power supply voltage
and xis = ∂xi

∂s . In our experiment, we aim to study the impact
of the parameter s on the oscillation property of xi in [0, A],
i ∈ [1, 4], A = 1.8V , as given in Equation (8).

P := ∀t∗ ∈ [0, 0.18]µs, (|mean(ximin)− A

2
| ≤ εi

∧ |mean(ximax)− A

2
| ≤ εi) ∧ (|rms(ximin)− A

K
| ≤ δi (8)

∧ |rms(ximax)− A

K
| ≤ δi)

where K = 1.8 is the ratio of the peak amplitude A to the
rms value. 0 ≤ εi ≤ 0.3 and 0 ≤ δi ≤ 0.2 are the tolerated
variation in the mean and rms values of the state variable
bounds.

The objective function during the global optimization pro-
cedure is given by the state variables xi, i = 1, · · · , 4, which
have to be a solution of the obtained augmented model. The
optimization constraint is related to the continuous range of
the s parameter. The verification results of the oscillation
conditions were already demonstrated in the literature [11].

TABLE IV: Oscillation Conditions Comparison

Circuit behavior Our Method Method in [11]
May oscillate s < 0.610 s < 0.638
Lock up free s ∈ [0.610, 2.100] s ∈ [0.638, 2.243]

Lock up s > 2.100 s > 2.243

Our verification results are similar to the results obtained
in [11], as shown in Table IV. We concluded that the oscillator
is unstable (so it oscillates) if s ∈ [0.610, 2.100]. For s <
0.610 we were not able to state if the oscillator might lock up
or exhibit oscillation. For s > 2.100 the oscillation properties
failed for the complete initial conditions region. The slight
differences in the values of s can be explained by the accuracy
of the nonlinear constrained optimization function used as well
as the difference in the circuit model itself. Moreover, the
method in [11] is primarily a pencil-and-paper analysis and is
specific to ring oscillator circuits.

TABLE V: Rambus Ring-Oscillator Results

Circuit behavior Run time [s] Memory usage [MB]
May oscillate or not 3607.87 0.13
Lock up free 6711.16 0.14
Lock up 3405.11 0.15

Table V reports the total verification time and the memory
usage of our proposed approach. In fact, our method is quite
fast and requires low memory usage. The RRO lock up
behavior for s ∈ [2.2, 3] is shown in Figure 14. There is no
possibility of complete oscillations in the generated bounds
otherwise they are considered as bad oscillations because the
bounds do not reach the maximum voltage or the minimum.

If the generated bounds are tight like in Figure 14, we can
definitely refute a good oscillation case. However, when the
bounds are wide, for example if the minimum is close to
the gnd level and the maximum bound is close to the vdd
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level, we cannot conclude the satisfaction or not of the lock
up free property. We faced this problem in the case given in
the first row of Table IV. The solution to this requires a good
formulation of the constraints on the parameter G during the
global optimization step.
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Fig. 14: Lock Up Case: State Variable x1

Figure 15 illustrates the oscillating bounds of the state
variable x1 of the Rambus Oscillator model of Figure 13,
when the parameter s is uncertain and lies in the interval
[0.6, 2.1] Our method is not able to guarantee that all the
computed solutions represent a real circuit state. However,
the generated bound surrounds all the possible trajectories of
the state variable x1. The circuit exhibits stable oscillation
between 0V and 1.8V and refutes any possibility of locking.
We notice that the width of the bounds becomes large as time
increases because of the effect of the variability in the circuit
frequency due to the variation in the inverter size.
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Fig. 15: Lock Up Free Case: State Variable x1

To further analyze the completeness of the generated
bound, we consider the size ratio s uniformly distributed over
[0.610, 2.100] and run 5000 standard MC simulation to verify
the lock up free case. Figure 16 brings out the maximum and
minimum values of the state variable x1 from 5000 MC runs
and the proposed method in the time frame [0.14, 0.18]µs. The
MC bound is computed similar to the previous experiment. We

can observe that the bound extracted using the proposed opti-
mization algorithm tightly encloses the MC bound. However,
while the MC method requires the computation of multiple
circuit trajectories, the proposed method is more efficient as it
is invoked only once and exhaustively covers the trajectories
of the state variable x1. Furthermore, the proposed method
achieves a significant speedup of 20X over MC method. In
fact, MC suffers from a high computational overhead as it
required 37.28 hours to complete the simulation.
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Fig. 16: Lower and upper oscillating bounds in the time frame
[0.14, 0.18]µs: State Variable x1
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Fig. 17: Lower and upper oscillating bounds in the time frame
[0.14, 0.18]µs: State Variable x1

We apply the WCA method and advanced MC methods
including QMC and LHS to compute the trajectories bound of
the RRO circuit. Figure 17 shows the trajectories bound of the
state variable x1 for the QMC and the LHS methods with 500
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simulation runs and the WCA method. It can be observed that
the proposed approach surrounds all generated envelopes and
presents a higher guarantee to include all possible dynamical
behaviors of the RRO circuit.

C. Analog Comparator

In this subsection, we consider an analog Comparator
circuit, as described in [9]. It is a decision-making circuit
composed of three main stages: a pre-amplification circuit
(a differential amplifier with active loads), a decision circuit
(a positive feedback) and a post-amplification circuit (a self
biasing differential amplifier used as a buffer), as shown in
Figure 18. In practice, the propagation delay, the sensitivity
and the noise rejection of the Comparator are of a great
concern.

In our experiment, we are interested in the sensitivity prop-
erty of the Comparator, that is its capability to discriminate
mV level signals. Thus, the positive input vp is a behavioral
pulse with an amplitude lying in a continuous range, while,
the negative input vm, the initial conditions x0 and the circuit
parameters p are considered fixed.

Fig. 18: Analog Comparator Schematic

Using our methodology, we generated an augmented model
using the Comparator SPICE netlist. The model has a size
of 32 variables (16 elements of the state variables x + 16
elements of the sensitivity component xu ) and the elements
of C and xp are zeros, as defined in Equation (1). The
objective function during the global optimization procedure is
the Comparator output voltage vout subject to being a solution
of the Comparator model.

PS := (((vp− vm > S)|− > vout = 1.8) (9)
(∧ (vp− vm < 0))|− > vout = 0)

The Comparator sensitivity behavioral property PS is given
in Equation (9), where S = 50mV is the Comparator sensi-
tivity, the first argument of the property states that while the
Comparator input voltages are such that vp − vm > S, its
output should settle to the maximum voltage vout = 1.8V
after a certain delay, and its second argument states that
vout = 0V should be true if vp − vm < 0. We notice here
that the second argument of the property is not the negation
of its first argument, because the Comparator is expected to
not detect small voltage variations or noise, and it exhibits a
hysteresis behavior. In order to check the behavior intended by

the sensitivity property using the current method, we have to
substitute the variable vout by its behavioral bounds voutmin

and voutmax, and design a variable input vp which triggers
the situations shown in Table VI. We consider two Comparator
input voltages that correspond to Case 1 and Case 2 of the
verification experiment.

The input vm = 0.9V and the input vp is a pulse of 10ns
duration with an amplitude lying in the range [0.95, 1.6]V
in Case 1 and [0.94, 1.6]V in Case 2, as shown for the
simulations in Figures 19 and 20, respectively. Table VI
shows the expected bounds of the Comparator output state
vout for different input voltages. The variable ε expresses
the tolerance range of the lower and upper bounds of the
Comparator output. Equation (10) is the interpretation of the
Comparator sensitivity property PS in Equation (9) during
the behavior characterization step. Pa, Pb and Pc express the
expected output voltage bounds and at what time intervals of
the Comparator simulations they have to be observed.

PS := ∀t∗ ∈ [0, 20]ns, Pa ∨ Pb ∨ Pc (10)
Pa := ∀t∗ ∈ [0, 5] ∪ [15, 20]ns, 0 ≤ voutmin ≤ ε

∧ 0 ≤ voutmax ≤ ε
Pb := ∀t∗ ∈ [6, 14]ns, 1.8− ε ≤ voutmin ≤ 1.8

∧ 1.8− ε ≤ voutmax ≤ 1.8

Pc := ∀t∗ ∈ [5, 6] ∪ [14, 15]ns, 0 ≤ voutmin ≤ 1.8

∧ 0 ≤ voutmax ≤ 1.8
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Fig. 19: Comparator Output Behavior for
min(vp− vm) ≥ 50mV (Case 1)

Table VII also shows the obtained verification results; the
Comparator sensitivity property PS is satisfied in Case 1
and failed in Case 2. The simulation result of Case 1 in
Figure 19 shows that the extrema behavior of the output,
voutmin and voutmax, are almost identical and contain only
its expected behavior. That is, the experiment validates that
the Comparator can always detect that the input vp is higher
than vm. This is not the result for the behavioral simulation in
Case 2 (see Figure 20), where the computed output behavior
bound voutmin falls multiple times to a minimum voltage level
showing that the Comparator can possibly fail to detect that
the input vp is greater than vm. In this case, the Comparator
failed to sense that vp is greater than vm. As a result, this
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TABLE VI: Expected Comparator Output State Bounds

Inputs min(vp− vm) > S > 0 0 < min(vp− vm) < S vp ≤ vm

Output 1.8− ε ≤ voutmin ≤ 1.8 0 ≤ voutmin ≤ 1.8 0 ≤ voutmin ≤ ε
1.8− ε ≤ voutmax ≤ 1.8 0 ≤ voutmax ≤ 1.8 0 ≤ voutmax ≤ ε

TABLE VII: Verification of Comparator Sensitivity

Case 1 Case 2

Inputs min(vp− vm) ≥ 50mV min(vp− vm) < 50mV
vm = 0.9V vm = 0.9V

Time[ns] Pa Pb Pc PS Pa Pb Pc PS

[0; 5] 1 0 0 1 1 0 0 1
[5; 6] 0 0 1 1 0 0 1 1
[6; 14] 0 1 0 1 0 0 0 0
[14; 15] 0 0 1 1 0 0 1 1
[15; 20] 1 0 0 1 1 0 0 1
Result PS Verified PS Failed for t ∈ [6, 14]ns
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Fig. 20: Comparator Output Behavior for
min(vp− vm) < 50mV (Case 2)

Comparator can fail if the noise level at the inputs is close
to 50mv. In this case, the behavior characterization of the
analog comparator covered critical circuit trajectories, that can
be completely missed if only sampling methods were used.

V. DISCUSSION

Compared with the methods in [33] and [34] that also
employed nonlinear constrained optimization to compute tran-
sient performance bounds of analog circuits under process
variations, the approach we proposed in this paper has sev-
eral advantages. Using different approximation methods, the
authors in [33] compute the derivations of the linearized analog
circuit models and derive the bound of the circuit response in
transient domain. Also in [34], a symbolic MNA formulation
is applied on a linearized analog circuit model. Then, time
domain performance response bounds are computed. However,
the outcome of the employed optimization algorithms in both
mentioned works is highly sensitive to the operating point
around which the circuit is linearized. Furthermore, the pro-
posed methods do not consider the sensitivity of their bound
analysis to the initial condition. Moreover, the work in [33]
and [34] consider the optimization solution for each time
step as the stating point of the next time step to speedup

the bound analysis at the cost of the accuracy. In contrast,
our method directly handles device-level nonlinear models of
analog circuits and considers a complete possible set of initial
conditions. Furthermore, each optimization routine starts from
the initial time point.

VI. CONCLUSIONS

The major weaknesses of available verification method-
ologies is their uncertainty about verification coverage and
their high computational cost. In this paper, we addressed
the problem of verifying nonlinear analog circuits behavioral
properties by computing a guaranteed overapproximations of
their reachable state space, given an uncertain set of inputs,
parameters and initial conditions. Then, behavioral circuit
properties were evaluated over the generated envelopes and
trajectories. Our experimental results showed the potential of
this method that is an exhaustive coverage of the state space,
sufficient to guarantee the soundness of the verification results
within an acceptable run-time. Hence, critical behavioral prop-
erties related to the dynamic behavior were robustly verified.

One drawback of the original qualitative simulation algo-
rithm is the eventuality of expensive computation time due to
the fact of iteratively restarting the time integration starting
from the initial time, for every state variable. In our case, we
are optimizing only the behavior of the state variables involved
in the property of interest. However, we think that an inter-
esting approach to address this problem is the modification of
the used time integration algorithm computing the solution
of the differential model. Also, the methodology has been
applied on small and medium size circuits. Its application on
larger circuits will require the implementation of acceleration
techniques to reduce the timing complexity. For example, in
Algorithm 1, the search for the extremum possible values of
each state variable can be parallelized. Furthermore, despite
the automated circuit modeling step, the user interface can be
further minimized by implementing a learning strategy which
predicts the next sampled point given the historic of the circuit
dynamic. Another issue that needs to be addressed is the
case of non concluding results happening when the generated
behavior envelopes are too wide. In this case, the uncertainty
in the input, circuit parameter or initial condition results
in an oscillation frequency variation. We project to address
this problem by using a disjoint union of tighter qualitative
inputs and parameters and verify properties in each of them.
Moreover, we are currently working on another version of
the optimization algorithm that takes into consideration the
interaction between the circuit state variables and does not
introduce trajectories external to the correct evolution of the
region of uncertainty. Future work also include the verification
of circuits with a large number of states using a parallel and
hierarchical global optimization technique based on circuit
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decomposition. Circuits are decomposed into subsystems with
less complex transient behaviors which can be solved in
parallel. We plan to investigate a technique that rigorously
deals with correlations between the partitioned subsystems and
removes the undesirable overapproximation in the full circuit
state space reconstruction.
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