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Abstract

Streaming Data Algorithm Design for Big Trajectory Data Analysis

Yong Yi Xian

Trajectory streams consist of large volumes of time-stamped spatial data that are constantly

generated from diverse and geographically distributed sources. Discovery of traveling patterns on

trajectory streams such as gathering and companies needs to process each record when it arrives and

correlates across multiple records near real-time. Thus techniques for handling high-speed trajecto-

ry streams should scale on distributed cluster computing. The main issues encapsulate three aspects,

namely a data model to represent the continuous trajectory data, the parallelism of a discovery al-

gorithm, and end-to-end performance improvement. In this thesis, I propose two parallel discovery

methods, namely snapshot model and slot model that each consists of 1) a model of partitioning tra-

jectories sampled on different time intervals; 2) definition on distance measurements of trajectories;

and 3) a parallel discovery algorithm. I develop these methods in a stream processing workflow. I

evaluate our solution with a public dataset on Amazon Web Services (AWS) cloud cluster. From

parallelization point of view, I investigate system performance, scalability, stability and pinpoint

principle operations that contribute most to the run-time cost of computation and data shuffling. I

improve data locality with fine-tuned data partition and data aggregation techniques. I observe that

both models can scale on a cluster of nodes as the intensity of trajectory data streams grows. Gen-

erally, snapshot model has higher throughput thus lower latency, while slot model produce more

accurate trajectory discovery.
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Chapter 1

Introduction

Advances in location-acquisition technologies such as GPS positioning, sensors probing, mo-

bile phones monitoring and many smart devices. These spatial-temporal location data are usually

recorded in the format of streaming trajectories [29, 37]. Spatial-temporal trajectory data are con-

stantly generated and collected from tremendous diverse sources. In this thesis, I term trajectory

data streams collected from heterogeneous sources as heterogeneous streaming data. For exam-

ple, the Microsoft Geolife project [42] collected the trajectories of objects’ outdoor movements that

are recorded by different GPS loggers and GPS-phones. Due to heterogeneous GPS positioning

sources, the objects’ locations can be recorded by different time intervals. Some objects could be

recorded every 3 seconds and other objects could be recorded every 5 seconds, which results in

heterogeneity of trajectories.

Research effort has been dedicated to discovering groups of objects that travel together over a

certain duration of time [15, 20, 30, 31, 40, 41]. In these works, snapshots were used to model

trajectory data. For trajectories each sampled at different time intervals, a snapshot model with a

fixed interval is likely to miss data points that are partial to companions in continuous time series.

A simple case is illustrated in the following example of Figure 1.1. Connected Vehicles (CVs)

are projected to make the roadways safer through real time exchanging messages containing location

and other safety-related information with other vehicles. This requires to discover which vehicles

travel together in a duration of time. Weijia Xu et al’s work [36] explores the use of real world

connected vehicle data set called Safety Pilot Model Delolyment (SPMD) data. The study was

1
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Figure 1.1: Example of trajectories

conducted in Ann Arbor, Michigan, involved over 2,700 vehicles. Due to the monitoring range

limitation of equipments, vehicles’ locations are collected from different sources. As shown in

Figure 1.1(a), two vehicles’ (A and B) locations are collected at t1, ..., t3 and t′1, ..., t
′
4 respectively

(ti 6= t′i). Given a distance threshold ε, if the distance between any two collected locations of these

two objects is not more than ε, I think these vehicles travel together at this time. In Figure 1.1(a),

I observe the distances from any collected location of A to the trajectory of B are always less than

ε. Therefore, they can be regarded as companions. It should discover them from trajectory data.

However, based on the snapshot model (see Figure 1.1(b)), I cannot collect both a location of A and

a location of B in the same snapshot. Therefore, trajectory companions is non-deterministic in this

case.

Current techniques have two limitations. First, the snapshot modeling methods [15, 20, 30, 31]

only consider locations of those objects of the same timestamp, while records of objects at different

timestamps are missed and thus the relations are not discovered. The second limitation is that most

of those techniques are demonstrated on a centralized computing environment. It is not trivial to

cope these techniques with large-scale trajectory streams.

2



Trajectories are independent to each other. Intuitively, operations on individual trajectories or

combination of trajectories can be processed in parallel. The parallel computing paradigm MapRe-

duce [7] and its open-source implementation such as Hadoop provides off-the-shelf batch processing

for big trajectory data (such as SpatialHadoop [9]). However, Hadoop runs batch mode processing

and relies on distributed file system or storage to keep intermediate data. Thus it is not directly

applicable for streaming data with fast updates.

I desire a new approach that is able to model the relations of trajectory objects at different

timestamps within a time period, and thus reduce the missing rate of trajectory streams. A solution

to address the aforementioned problems should discover relations of objects at each snapshot as well

as relations to all the objects at adjacent timestamps. Since the size of objects in each trajectory are

constantly accumulating in a continuous fashion, this leads to big volume of data when the number

of trajectories grow from geographically distributed sources. Hence it is promising to parallel the

discovery process on a cloud platform that scales beyond a centralized computing solution. In

particular, there are three issues I need to address in parallelism: i) design a discovery method of

handling heterogeneous streaming data precisely; ii) parallelize the discovery algorithm on a cloud

platform to scale; iii) reduce end-to-end delay by improving data locality.

In this thesis, I devise two traveling group models namely gathering and Trajectory Compan-

ion (TCompanion). For each model, I will present the algorithms, parallel workflow, optimization

techniques, and evaluate the proposed methods and techniques on a public dataset in Amazon EC2

clusters.

In particular, I first present gathering that (1) defines a snapshot clustering model (2) detects

clusterings of moving objects into crowds during a certain time intervals that satisfy thresholds on

distances and densities; (3) discovers gatherings that the participation of moving objects in crowds

are constant over a time threshold.

Next, I propose the TCompanion model that (1) represents trajectory objects’ locations at each

timestamp as well as their movements in a time period. (2) define distance metrics to measure

trajectories for their companion discovery over time; (3) develop discovery algorithms based on

the distance metrics and build a parallel framework and optimization algorithms to cope with data

locality and load balancing.

3



In details, I summarize our technical contributions in this paper as follows.

• Devise traveling pattern called Gathering on both batch and streaming data, that discovers the

participation of moving objects in crowds are constant over time

• Devise traveling groups termed Trajectory Companions (TCompanion) on heterogeneous

streaming data. Compared to Gathering, TCompanion represents the heterogeneity of data

with accuracy.

• Design parallel workflow for both models with a suite of techniques and effective load-

balancing and aggregation strategies.

• I propose optimization algorithms in our parallel frameworks to improve end-to-end perfor-

mance. From our evaluation, TCompanion can discover more accurate traveling companions,

while Gathering have higher throughput and lower latency.

The rest of the thesis is organized as follows. Chapter 2 introduces the concepts and prelimi-

naries in the thesis. Chapter 3 provides the related work from both conceptual and technological

aspects. Chapter 4 states our research methodology including problem statement, high level sys-

tem architecture, design factors, as well as evaluation method. Chapter 5 and Chapter 6 cover the

gathering and TCompanion models in detail respectively. Chapter 7 concludes the thesis.

4



Chapter 2

Background

2.1 Distributed Computing

A distribution system refers to a network of autonomous nodes (physical machines or virtual

machines) that communicate with each other in order to achieve one goal. The nodes in a dis-

tributed system are independent and do not physically share memory or processors. Information

is exchanged by passing messages between the processors. Distributed computing is widely used

because its advantages over traditional centralized computing. By using the combined processing

and storage capacity of many nodes, performance levels can be reached that are out of the scope of

centralized computing. That is, distributed computing makes it possible to solve big data problems

more efficient with a cluster of processing units.

When it comes to designing a distributed environment, three core systemic requirements exist in

a special relationship: Consistency, Availability and Partition-tolerance. This concept is so-called

the CAP theorem, was first introduced by Eric Brewer[4]. Basically, the theorem states that can

satisfy only two of these guarantees at the same time, but not all three. Consistency means that

all nodes see the same data at the same time. Availability guarantees that every request receive its

response. Partition Tolerance implies that system continues to work despite message loss or partial

failure. These guarantees are essential to the distributed systems.[5]

5



2.2 MapReduce Model

MapReduce [6] is a programming model for data intensive applications, providing an abstrac-

tion which hides all complexity of parallelization. The term MapReduce is first used by Jeffrey

Dean and Sanjay Ghemawat in Google. Many real world tasks are expressible in this model. Pro-

grams written in this functional style are automatically parallelized and executed on a large cluster

of commodity machine. In fact, MapReduce has been efficiently solved a wide range of large-scale

computing problems, including risk assessment, recommendation engine, document clustering, ma-

chine learning and so on.

In MapReduce paradigm, data are represented as key/value pairs. A job in MapReduce contains

three main phases: map, shuffle and reduce. the whole process can be summarized as following:

Map < k1, v1 >−→ list < k2, v2 >

Reduce < k2, list{vg} >−→ list < k3, v3 >

In the map phase, for each input pair < k1, v1 >, the map function produces one or more

output pair list < k2, v2 >. In the shuffle phase, these data tuples are ordered and distributed to

reducers by their hashed keys. In the reduce phase, pairs with the same key are grouped together as

< k2, list{vg} >. Then the reduce function generates the final output pairs list < k3, v3 > for each

group.

2.3 Stream Processing Model

Matei Z. et al proposed a stream programming model, namely discretized stream (D-Stream) [39].

The main idea behind D-Streams is to treat a streaming computation as a sequence of micro-batch

computations on small time intervals. The input data received during each interval is stored across

the cluster to form an input dataset for that interval. Once the time interval completes, this dataset is

processed via parallel operations to produce new datasets representing outputs or intermediate state.

Sliding Window [2, 21, 39] is one of the common stream processing techniques that works over

multiple intervals. The idea is to evaluate not over the entire past stream events, but rather only over

sliding windows of recent data from the streams. For example, only data from the past hour could

be considered in producing results. Data older than that will be discarded.

6



In stream processing, it often needs to track data across batches so called a state. While sliding

windows compute the results over multiple batches of data, each window would not know the result

from previous windows and hence is stateless. Many complex stream processing pipelines must

maintain state across a period of time. For example, user behavior analysis for websites requires to

maintain information about each user session as a persistent state and continuously update this state

based on the user’s actions.

Figure 2.1 illustrates micro-batch, sliding window, and stateful result with a streaming word

count example. There are 5 events arriving at different timestamps along with input stream. Our

goal is to count the word occurrences from the input event stream. I first consider dividing the input

stream into micro-batches where each batch interval is 5 minutes. I can obtain the running word

counts with one single map/reduce job. Instead of running word counts, I count words within 10

minute windows sliding every 5 mins. That is, word counts in words received between 10 minute

windows are 12:00-12:10, 12:05-12:15 and so on. Note that 12:00-12:10 means data that arrived

after 12:00 but before 12:10. Finally, a global state can keep track of a state for each word count

and update at the end of each batch.

12:02 cat dog 

12:04 dog owl 

12:12 dog 

12:13 owl 
12:07 cat owl Input Stream 

Time 

12:00 12:05 12:10 12:15 

cat 1 

dog 2 

owl 1 

cat 2 

dog 2 

owl 2 

cat 2 

dog 3 

owl 3 

Global State 

12:00 – 12:10 cat 2 

12:00 – 12:10 dog 2 

12:00 – 12:10 owl 2 

12:05 – 12:15 cat 1 

12:05 – 12:15 dog 1 

12:05 – 12:15 owl 2 

Window-based 

results 

cat 1 

dog 2 

owl 1 

cat 1 

owl 1 

dog 1 

owl 1 
Micro-batch 

results 

Figure 2.1: Streaming Word Count Example

7



Chapter 3

Related Work

3.1 Discovery of Traveling Groups

There exist several concepts with the aim to discover a group of objects that move together

for a certain time period, such as flock [12], convoy [15], swarm [20], companion [30, 31], and

Gathering [40, 41]. These concepts can be distinguished based on how the ‘group’ is defined and

whether they require the time period to be consecutive. For instance, companion groups objects

in the density-based clustering fashion and it requires a group of objects to be density-connected

to each other during a consecutive time period. Next I summarize some characteristics of these

methods in Table 3.1.

Table 3.1: Different Group Patterns
flock convoy swarm companion Gathering the proposed

flexible group patten ×
√ √ √ √ √

flexible consecutive time × ×
√

×
√ √

stream processing × × ×
√ √ √

flexible lifetime × × × ×
√ √

parallelism × × × ×
√ √

heterogeneous patten × × × × ×
√

In Table 3.1, the characteristics are explained below:

- flexible group patten denotes that this method captures the pattern of any shape (i.e., not only

circular shape) since it adopts the density-based clustering;

- flexible consecutive time denotes a cluster of objects lasting for consecutive timestamps;

8



- stream processing denotes that this method can cope with dynamic trajectory data;

- flexible lifetime denotes that in a cluster members joining and leaving is inevitable;

- parallelism denotes the method can parallel processing trajectory data;

- heterogeneous patten means that the method can discover companions or patterns from het-

erogeneous trajectory data.

These characteristics are very significant for discovery algorithms of traveling groups or com-

panions. For example, an algorithms without flexible group patten may miss lots of traveling groups

whose location distributions are not regular. In business promotion, a group member may leave at a

timestamp and be back after a period. But the critical part is, though each individual may only leave

for a while, and rejoin in the same group. In this case, if an individual leaves and not joins other

group, I consider this individual is also in the original group in a time period. To the best of our

knowledge, there is no existing method that can capture more generic traveling groups or compan-

ions (i.e., satisfy all these characteristics). Therefore, I aim to propose a solution which can discover

more generic traveling groups while ensure it is able to process heterogeneous streaming data as

well. To our best knowledge, Gathering approach is the current state-of-the-art method. This is, I

will first adjust Gathering in parallel processing manner, and compare TCompanion method with it.

3.2 Trajectory Segmentation

In many scenarios, such as trajectories clustering, I need to divide a trajectory into segments for

a further process. The segmentation not only reduces the computational complexity but also enables

us to mine richer knowledge. I study different segmentation techniques as follow,

- Equal-Split. This technique produces MBRs of fixed time interval of length l. It is a simple

approach with cost linear in the length of a sequence. However, the length of MBR is critical as the

increase of splits can result to larger space utilization.

- k-Optimal. I can discover the k MBRs of a sequence that take up the least volume, using a

dynamic programming algorithm that requiresO(n2k) time ([14]), where n is the length of the given

sequence. Since this approach is not reasonable for large databases, I did not consider k-Optimal.

- Greedy-Split. I assign an MBR to each of the n sequence points and at each subsequent step

9



I merge the consecutive MBRs that will introduce the least volume consumption. The algorithm

has a running time of O(nlogn). Instead of assigning to our space requirements I can assign a

total of K splits to be distributed among all objects. This method can provide better results, since

I can assign more splits for the objects that will yield more space gain. Also, this approach is

more appropriate when one is dealing with sequences of different lengths. The complexity of this

approach is O(K +NlogN), for a total of N objects.

Although k-Optimal and Greedy-Split introduce least volume consumption, the complexity is

higher than Equal-Split. Moreover, space utilization of MBRs is not our major concern. Our main

purpose of utilizing MBRs is to prune segment pair by calculating the Euclidean distance between

MBRs, which will be described in Section 6.2. For simplicity, I apply Equal-Split in our case.

3.3 Geospatial Databases

There exists databases that offer spatial data types (SDTs) in its data model and optimized to

store and query data. Spatial indexing and spatial join are the most common features in these

spatial databases, which can be potentially utilized in our system. I study different spatial databases

as follow,

SharkDB [34] is a trajectory storing and processing system, which includes three components,

the user interface component, the in-memory storage component and the trajectory query processing

component. Moreover, SharkDB can make better use of main memory as the permanent storage

medium, and also greatly benefits from convenient data compression and parallel processing [33].

Nevertheless, SharkDB stores massive historical trajectories to support processing, so that it cannot

apply to high-speed streaming data.

PostGIS1 is a spatial extension for PostgreSQL relational database system that allows GIS ob-

jects to be stored in the database. PostGIS comprises functions for basic analysis of GIS objects and

more importantly, it also supports the spatial indexing schemes by adopting B-Tree, R-Tree, and

GiST (Generalized Search Tree) indexes. PostGIS is frequently used during analysis of large data

set if examination of spatial indexes is a particulary essential task. However, PostGIS, like the other
1http://www.postgis.net/
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relation databases, the database is difficult to scale out. Thus, PostGIS is not suitable for distributed

systems.

Neo4j2, NoSQL graph based database, supports the storage and manipulation of spatial data

through the library Neo4j Spatial3. The Neo4j Spatial enables spatial operations on data store. For

instance, operations to locate data within a specific region or an area close to point of interest (POI).

While Neo4j Spatial is easier to scale out compared to PostGIS, it only supports two dimensional

geometry data. Moreover, Neo4j has no notion of Data/Time data type, timestamp can be stored as

a long, or as a human-readable String. In our case, I aim to analyze spatial-temporal trajectory data

which can be considered as three dimensional data. That is, storing such data in Neo4j may either

miss information or require explicit management.

3.4 Parallel Platform for Trajectory Data

To solve our problem efficiently, I desire parallel processing platforms. There is lots of high-

performance platforms [26, 23, 24, 25, 38] devoting to processing data streams. But, some of them

could be used to analyze trajectory data and trajectories mining. I now introduce some systems and

parallel platforms that are suitable for processing this type of data.

First, MapReduce Online [28] pipelines the intermediate data between Map and Reduce oper-

ators. Compared to traditional MapReduce where a reducer reads the data from mappers in a pull

fashion, a mapper in MapReduce Online transmits data to reducers in a push fashion. When a map-

per has finished processing a key-value pair, it directly sends the data to the reducers through socket

connections. Therefore, the reducers in MapReduce Online do not have to wait until the last map

task has finished. However, MapReduce Online lacks the ability to cache data between iterations.

For our trajectory problem, I need massive iterative operations, so that MapReduce Online cannot

not satisfy our high-speed processing requirements.

Second, Dremel [23] is a system proposed by Google for interactive process of large-scale data

sets. It complements MapReduce by providing much faster query processing. Dremel combines

a nested data model with columnar storage to improve retrieval efficiency. To achieve this goal,
2https://neo4j.com/
3https://github.com/neo4j-contrib/spatial
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Dremel introduces a lossless representation of record structure in columnar format, provides fast

encoding and record assembly algorithms, and postpones record assembly by directly processing

data in columnar format. However, it cannot work so well for our complex trajectory analysis tasks.

Furthermore, Storm is an open source low latency data stream processing system [19]. Storm

consists of several moving parts, including the coordinator (ZooKeeper), state manager (Nimbus),

and processing nodes (Supervisor). Storm implements the data flow model in which data flows

continuously through a network of transformation entities. Storm runs in-memory, and is therefore

set to process large volumes of data at in-memory speed. In many enterprise applications, Storm is

used as their real-time architecture for integrating and processing streaming data continuously. But

it does not have the load balancing policy to balance processing time in different machines.

I also introduce S4 that is a real-time and distributed modular platform for processing continuous

unbounded streaming data, which has a decentralized and symmetric architecture which all the

nodes in a cluster are identical, different to the classic master-nodes architecture [25]. However,

compared with S4, the reliability and performance of Storm is higher [25]. Therefore, I do not use

S4 platform to process our trajectory data streams.

Next I analyze one of most popular parallel computing platform Spark [16] and Spark Stream-

ing [38]. Spark is a cluster computing system originally developed by UC Berkeley AMPLab. The

aim of Spark is to make data analytic program run faster by offering a general execution model that

optimizes arbitrary operator graphs, and supports in-memory computing. It uses a main memory

abstraction called resilient distributed dataset (RDD) with which spark performs in-memory com-

putations on large clusters in a fault-tolerant manner [38]. Moreover, Spark can work on the RDDs

for multiple iterations which are required by many machine learning algorithms. Spark Streaming is

extended from Spark by adding the ability to perform online processing through a similar functional

interface to Spark, such as map, filter, reduce, etc [38]. Spark Streaming runs streaming computa-

tions as a series of short batch jobs on RDDs, and it can automatically parallelize the jobs across the

nodes in a cluster. Also, it supports fault recovery for a wide array of operators.

In our problem, I need to deal with massive and continuously updating trajectory data clustering

operations. Therefore, the following characterizes are necessary,

- real-time processing the platform processes trajectory data in a real-time fashion;
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- iterative processing the platform can execute iterative operations efficiently;

- recoverability recoverability from failures can guarantee the platform processes trajectory

streams stably;

- functionality the platform is multi-functional, such as data mining, learning, and query pro-

cessing, and so on;

- trajectory storage the platform stores trajectory information of objects and partitions them,

which can process data in a parallel manner.

Table 3.4 summarizes the parallel platforms based on these characteristics. I can see that Storm

and Spark are the most appropriate toward our objectives.

Table 3.2: Comparison of Different Approaches
MapReduce Online Storm SharkDB Dremel Spark

real-time processing ♠ ♠ ♠
iterative processing ♠ ♦ ♦
recoverability ♦ ♦ ♦ ♦ ♦
functionality ♦ ♠ ♦ ♠
trajectory storage ♠

(♠ indicates primary objective, while ♦ indicates secondary objectives)

According to the comparison of experimental results4, Spark Streaming can handle more data

than Storm in the same time period. Namely, the Spark Streaming system has higher throughput.

Therefore, I choose Spark Streaming as the parallel computing platform to solve our problem.

3.5 Batch-based Spatial Data Processing

Trajectories consist of spatial points or location, so I analyze papers on spatial data processing.

There is a large body of research work on spatial indexes for spatial data, such as R-tree [13], multi-

version B-tree [3], quad-tree [27] and so on. R-tree is one of most popular spatial indexes, and

especially it is very effective for multi-dimensional data. The R-tree index height-balanced index

structure. Objects are represented by minimum bounding rectangles (MBRs). Each leaf node of the

R-tree points to the MBRs of objects and each internal node points to other internal nodes or leaf

nodes [13]. For trajectory data, Saltenis et al. [32] propose an extension version of R-tree termed
4http://www.slideshare.net/ptgoetz/apache-storm-vs-spark-streaming
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Figure 3.1: Batch-based processing architecture

Time-Parameterized R-tree (TPR-tree) which augments the R-tree with velocities to index moving

objects. Another often used index structure is the quadtree. Samet [27] has done a thorough survey

of the quadtree and the related hierarchical data structures. On the other hand, Ahmed Eldawy et

al. propose a MapReduce framework for spatial data called SpatialHadoop [9] which adds a simple

and expressive high level language for spatial data types and operations. In the storage layer of

SpatialHadoop, it adapts traditional spatial index structures to support spatial data processing and

analysis. Generally, the parallel architecture of batch-based trajectory data processing includes 3

key steps: i) data partition, ii) spatial index, and iii) parallel processing (see Figure 3.1). First, I

choose a partition approach to divide all trajectory data into some batches. Second, I build a spatial

index (e.g., R-tree, quadtree and so on) for these batches of data to improve data search efficiency.

Third, I use multiple nodes to process the data in a parallelism manner. All the trajectory data are

stored in HDFS or other distributed file systems. Spark driver partitions these data into batches, and

use RDD objects to represent data objects. Then master node allocates tasks to work nodes, and

these work nodes process the tasks assigned to themselves.

These above batch-based techniques need to archive all historical trajectory data in order to

construct spatial indexes. In our streaming problem, I can only buffer some trajectory data in a time
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window (several seconds), but unable to store all data from our high-speed trajectory streams. Due

to the dynamic nature of streaming trajectories (i.e., the objects’ positions are always changing),

maintaining spatial indexes (such as R-tree or quad-tree) at each time window incurs high cost [18].

Thus, I do not build the spatial indexes for our streaming problem.
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Chapter 4

Research Methodology

This chapter provides an overview of our research methodology. I first address the problems I

aim to solve. Secondly, I describe the high level system architecture. Then I present a summary of

parallel design factors. Finally, I state our principles for evaluating the quality attributes of the our

system.

4.1 Problem Statements

The objective of the thesis is to design scalable analytic pipelines that discover group of objects

moving together pattern over large and continuous trajectory data stream. The design focuses on

addressing the following research questions,

(1) What are the appropriate model of trajectory pattern discovery?

Choosing an appropriate model becomes the first challenge in our research. Having investi-

gated several existing moving together discovery concepts summarized in Table 3.1, I realize

that there is “no one size fit all” model for trajectory pattern discovery. While most existing

concepts are either limited by the object grouping pattern or lacking the consecutive timestam-

p requirement, they were also designed and evaluated in conventional sequential computing

fashion. Moreover, Migration of existing concepts to parallel computation is not a trivial

effort. Thus, I aim to propose two solutions, namely Gathering and Trajectory Companion
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(TCompanion) which can discover a group of object moving together with flexible group pat-

tern, consecutive time while ensuring it is able to process heterogenous data stream. I will

describe Gathering model in Chapter 5 and TCompanion model in Chapter 6.

(2) What are the algorithmic approaches enabling parallel processing of trajectory data?

To keep up the pace of incoming trajectory data stream, I adopts a ”divide-and-conquer”

paradigm to process the trajectory data concurrently. It implies that data is splitted into sev-

eral smaller subset of data and processing each subset in parallel. Parallel computing has

introduced new degrees of freedom to algorithm design approaches. Essentially, Data par-

tition is the key enabler for parallelization in the divide phase. In this thesis, I focus on

discussing data partitioning in terms of algorithm design approaches.

(3) What are the distance metrics for comparing trajectories?

A fundamental ingredient of trajectory analysis tasks is the distance/similarity measure that

can effectively determine the similarity of trajectories. Unlike other simple data types such

as geometric points where the distance definition is straightforward, the distance between

trajectories needs to be carefully defined in order to reflect the true underlying similarity.

This is due to the fact that trajectories are essentially data attached with both spatial and

temporal attributes, which needs to be considered for similarity measures.

(4) What are the parallelization design factors for efficient analysis?

I adopt MapReduce programming model for parallel computing. However, MapReduce pro-

grams are not guaranteed to be fast. In tuning performance of MapReduce, the algorithmic

and non-algorithmic design factors for mapping, shuffle, and reducing steps has to be taken

into account. Factors central to this thesis are load balancing and data locality.

4.2 System Architecture

Figure 4.1 illustrates the high level architecture of our system which contains three layers: data

ingestion, processing, data storage layers.

17



Spark StreamingApache Common

Trajectory Pattern Analytic Pipeline

YARN

Input 
streamsKafka

Trajectory 
Data Stream 
Generator

Zookeeper

Spark Core

HDFS

AWS S3

AWS EC2
Node 1

AWS EC2
Node 2

AWS EC2
Node n

...

Figure 4.1: System Architecture

Data ingestion layer: Input data stream for Trajectory pattern discovery is generated by the tra-

jectory Data Stream Generator. The generator is responsible for reading dataset files on a distributed

file system (e.g. HDFS or AWS S3) and delivering this data in a manner simulating its arrival in

real-time. The generator runs on a Kafka cluster that employs Zookeeper as the communication

layer to coordinate the nodes within the cluster. On the trajectory data stream generator side, I im-

plement a Kafka producer to push input data into a Kafka topic. This would allow consumer on the

processing layer to pull the data off a topic.

Processing layer: Processing layer is key component of the overall architecture because this is

where the algorithms and logics are implemented. The trajectory pattern analytic pipeline is built on

top of Apache Spark module stack. Our system mainly requires Spark Core and Spark Streaming.

As the name suggests, Spark Core is the heart of Spark and is responsible for management func-

tions such as task scheduling. Spark Streaming ensures applications written for batches of historical

data can be repurposed to analyze streaming data with little modification. The spark program is de-

ployed on YARN cluster, where YARN (Yet Another Resource Negotiator) is a cluster management

technology that separates the resource management and processing components.

Data storage layer: Data storage is a layer provides simple access to data stored in persistent

storage providers, Amazon Simple Storage Server (AWS S3) in our case. This layer is where the
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input, output, and intermediate data live. I first upload the public dataset to AWS S3 bucket so that

it is ready to be consumed by the ingestion layer. At any stage of the processing pipeline may store

its intermediate data back to the AWS S3. This would typically occur when Spark RDDs is set to

persist on disk or checkpointing RDDs.

4.3 Parallel Computing Design Considerations

In this section, I will discuss two design considerations that are significant to parallel computing,

namely load balancing, and data locality.

Load Balancing

While MapReduce model enables us to write distributed application without having to worry

about the underlying distributed computing infrastructure, it gradually exposes some shortcomings.

Typically, handling skewed data can cause the imbalance of the workloads. After mapper processes

data, the result will be sent to reducer by partition function. An inappropriate partition algorithm

may result in poor network quality, the overloading of some reducers and the extension of the

execution time of job. That is, using an inappropriate algorithm to process skewed data will form

a negative impact on the system performance. Distributed computing frameworks such as Spark

do not guarantee balanced workloads at each transformation step. In order to solve load imbalance

problems and improve performance of cluster, I propose partition algorithms to guide the process

of assigning data.

Data Locality

Data locality is another crucial consideration for the performance of task scheduling in dis-

tributed computing system. From distributed computing perspective, data locality, as known as data

placement or proximity of data source, means that computation should happen as close as where

the data is stored to reduce data transfer over the network. Spark’s scheduler already has a concept

of locality-sensitive scheduling such that tasks are executed locally when possible. However, it is

difficult to avoid data shuffling especially in the case of data aggregation. There are many ways
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to join two datasets in Spark. However, not all the methods result in the same performance. Also,

different method may perform differently depending on use cases. Therefore, I perform extensive

analysis on those merging methods in this thesis in order to select the most appropriate ones suitable

for our system.

4.4 Evaluation Method

For both Gathering and TCompanion models, the main goal is to evaluate the following qual-

ity attributes, namely precision and recall, performance, scalability, effectiveness of optimization

strategies, and stability.

4.4.1 The Dataset and Evaluation Setttings

All the evaluations are conducted on Amazon Web Services (AWS). I use one master node and

eight slave nodes in AWS. Table 4.1 shows the deployment settings in our experiments. Details of

cluster configuration and deployment procedure will be described in Appendix A.

Table 4.1: Deployment settings
Factor Description
compute unit AWS EC2 t2.large
core number (in each unit) 2
memory (in each unit) 8GB
storage Amazon S3
computing platform Apache Spark 1.5.11

To study our algorithms on streaming data, I utilize Kafka+Spark Streaming2 to process our

heterogeneous streaming data. In our streaming data, over 10 thousands new locations will be

arrived per second. I use Kafka to let Spark cluster receive each micro batch of data (i.e., data in

several seconds), but do not need to store trajectory in HDFS. Then the Spark cluster will handle

our streaming data step by step.

I use a real GPS trajectories dataset3. This dataset was collected in (Microsoft Research Asia)

Geolife project by 178 real users in a period of over four years (from April 2007 to October 2011),
2http://spark.apache.org/docs/latest/streaming-kafka-integration.html
3http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx
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which is recoded a broad range of these users’ outdoor movements, including not only life routines

like go home and go to work but also some entertainments and sports activities, such as shopping,

sightseeing, dining, hiking, and cycling. In this dataset, there are 17,621 trajectories and over

20 million location records with a total distance of about 1.2 million kilometers. These users’

trajectories were recorded by different GPS loggers and GPS-phones, and have a variety of sampling

rates (e.g. every 1–5 seconds). In this dataset, I ignore the date attribute of each GPS trajectory,

so that they can be regarded as the trajectories with in one day. Then I use them to simulate a

heterogeneous trajectory stream in which each location record contains the information of latitude,

longitude and timestamp of an object.

4.4.2 Ground Truth

To measure the returned results from different algorithms, I need to know which results are

ground truth. Since in our dataset, lots of moving objects are far away from others, I only sample

part of trajectories of objects within a small region (e.g., 1km x 1km). Our sampling process includes

3 steps: 1) choose a fixed number of objects (e.g., 4 objects) in this small region; 2) sample locations

of these objects a time period; 3) pick up the objects that have at least one location is close to

trajectories of the original chosen 4 objects (i.e., less than the distance threshold). This reason is

that this process can ensure the chosen trajectories are more likely to be related with others. As

result, I generate 12 trajectories from our dataset in this sampling process. I would like to observe

which trajectories should be real companions (ground truth) in the sampling dataset.

I visualize the sampling trajectories using spatiotemporal visualizer4, where I can define a time

window by adjusting the slider in the UI. The visualizer, however, does not reveal the factors such

as heading directions and speed of a moving object. That is, I assume an object moving along its

trajectory with constant speed. As shown in Figure 4.2, some objects’ trajectories are always close

but does not imply they are in companion without considering the time constrain. Consider the two

trajectories within the zoom area, each trajectory has two timestamps (shown in diamond and circle

accordingly), indicating the object traveled to the north form 6:15am to 6:25am. The second object

traversed the same path about 2 hours later (8:30am - 8:40am). Technically, these trajectories are
4https://github.com/hugocore/spatiotemporal-visualizer
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Figure 4.2: Trajectory Visualization

not companions. Thus, I measure each pair of objects as follows:

dist(oi[t1]− oj [t2]) ≤ ε, (t1, t2 ∈ Ψ ∧ |Ψ| ≥ τ), (1)

where t1 and t2 are any two timestamps in a set Ψ, oi[t1] and oj [t2] denote the locations of oi and

oj at timestamps t1 and t2 respectively. If there are more than τ timestame pair (like t1, t2) that

satisfies dist(oi[t1]− oj [t2]) ≤ ε, oi and oj are ground truth companions.
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Chapter 5

Snapshot Model

5.1 Overview

In this Chapter, our goal is to discover gatherings from trajectory data. Generally, there are two

types of trajectory data: 1) archived trajectory data and 2) trajectory data streams. The archived

trajectory data are usually stored-and-scanned that is suitable to batch-based processing. On the

other hand, the trajectory data streams are constantly updated. Hence I propose a window-based

model that partitions data based on time windows, (e.g., trajectory data in every 10 seconds), and

process the partitioned data in micro-batching.
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Figure 5.1: Parallel Gathering Discovery Framework
In this way, I define an analysis framework depicted in Figure 5.1 that unifies the processing

of both types of trajectories in three phases, namely (1) snapshot clustering that clusters moving

objects in snapshots; (2) crowd detection that finds clusters during a certain time intervals that satisfy

thresholds on distances and densities; and (3) gathering generation that aggregates participation of
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moving objects in crowds over times.

5.2 Definitions and Notations

The definition and notations of aforementioned concepts in the framework is provided as fol-

lows.

Let O = {o1, o2, ..., oi, ..., om} be the set of all moving objects. In the snapshot model, each

snapshot is the set of these m objects’ location at a timestamp [30]. To discover groups in each

snapshot, I adopt density-based clustering algorithms [10] to use in our problem (like [30, 40, 41]).

Based on the discovered clusters in snapshots, I formally define concepts in this work below.

Definition 1. (Crowd): Let kc be the lifetime threshold which denotes the minimum duration time

of each crowd, ∆t be time threshold and µ be the density threshold, and δ be the cluster-distance

threshold between any two clusters. A crowd Cr =< clta , clta+1 , ..., cltb > is a sequence of snap-

shot clusters in a time interval I between [ta, tb], i.e.. I = tb − ta, which satisfies the following

requirements:

1) I ≥ kc ∧ ∀i(a ≤ i ≤ b), ti+1 − ti ≤ ∆t;

2) |clti | ≥ µ;

3) Dist(clti , clti+1) ≤ δ.

For instant, I set kc = 2, µ = 2 and δ = 5 (assume the maximum distance between o1, o2, o3

in the t1 snapshot and o1, o2 in the t3 snapshot is not more than 5). < clt1 = {o1, o2, o3}, clt3 =

{o1, o2} > is a crowd.

Definition 2. (Participator): Given a crowd Cr, an object o is called a participator of Cr if it

appears in at least kp snapshot clusters of Cr. Let Cr(o) denote the set of snapshot clusters in Cr

that contains object o, i.e., Cr(o) = {clt|clt ∈ Cr, o(t) ∈ clt}. Then the participators of Cr are the

object set Par(Cr) = {o| |Cr(o)| ≥ kp}.

In our example, if kp = 2, Par(Cr) = {o1, o2}.

Definition 3. (Gathering): A crowd Cr is called a gathering iff there exists at leastmp participators

in each snapshot cluster of Cr, i.e., {o|o(t) ∈ clt, o ∈ Cr(o)} ≥ mp.
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I set mp = 2. Then < clt1 = {o1, o2, o3}, clt3 = {o1, o2} > is a gathering. Intuitively, a

gathering trends to discover a sequence of clusters that contain similar objects and distances between

consecutive clusters can be bounded.
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Figure 5.2: An Illustrating Example of Gatherings of Trajectories

5.3 Implementation

Based on the above definition and the conceptual framework, I further design the workflows of

gathering discovery in a parallel manner.

For archived trajectory data, the batch-based approach includes 4 steps as follows.

• Data partition–In this step, I present a grid-based partition method to partition data within

each snapshot into n sub-partitions.

• Group objects into clusters–I use DBSCAN clustering approach to group objects in each

sub-partition and then merge clusters in these sub-partitions.

• Crowd detection–I propose efficient join methods in the parallel framework to join clusters

and thus generate crowds.
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• Discover gatherings–I design the discovering algorithm to find gatherings from crowds.

The streaming model also first groups objects in each time window (such as every 10 seconds).

For the crowd detection phase, instead of storing all the historian trajectories up-to-date I address an

incremental crowd detection approach to generate crowds. Incremental means the latest windows

of date should be appended to the current window Finally, it returns the gatherings in the adjacent

time windows. I summary the key steps of this workflow below:

• Window-based partition–I first buffer data in a time window, and use our grid-based partition

method to partition the buffered data into n sub-partitions as well.

• Group objects into clusters–Similar to our batch model, I also use DBSCAN clustering ap-

proach to group objects in each sub-partition and then merge clusters in these sub-partitions.

• Incremental crowd detection–In this step, I propose the incremental algorithm to generate

crowds from clusters while avoiding scanning all the data.

• Discover gatherings–I present the discovering algorithm to find gatherings from crowds.

The design of discovery method focuses on data partition and data shuffling to improve the

scalability as the workload in terms of data size increases. In this section, I present the techniques

applied in three phases of the analysis framework.

5.3.1 Trajectory Data Partition

First of all, data within each snapshot are partitioned into n sub-partitions for parallel processing.

Fixed grid partitioning is a spatial indexing technique [1],[8] suitable for partitioning trajectory

data as it does not incur any extra storage or computation overhead other than replicated boundary

objects. I employ the fixed grid partition due to its straightforwardness, where the entire space is

partitioned into equal sized grids represented by minimum bounding rectangles (MBRs). Suppose

that the given two dimensional space S = a× b and ω be the grid spacing, and grid Id of the partition

is denoted by gid. Given a spatial point {x, y} where 0 ≤ x < a, 0 ≤ y < b, then the grid G is

represented as G(i, j) =
{
i aN ≤ x < (i+ 1) aN , i

b
M ≤ y < (i+ 1) b

M

}
where N is number of grid

column and M is the number of grid row. That gives that i =
[
xN
a

]
, j =

[
yM
b

]
.
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For instance, in the public Geolife dataset that is used in this study, the world space is divided

by an uniform grid with ω = 0.1 degree (about 11 km, average width of large city or district), -

180◦ ≤ x ≤ 180◦, -90◦ ≤ y ≤ 90◦. Hence, this gives N=3600 and M=1800. If a given point

coordinate is (39.971573,116.33191), I can immediately conclude that the point is belong to the

grid cell [399, 1163].

The partition affects the clustering of the data objects, especially those near to the partitioning

boundaries. I use an example to illustrate this issue. As shown in Figure 5.2, the objects o1, o2 and

o3 belong to one cluster clt1 given the whole snapshot. However, if the snapshot is partitioned, and

o1 and o2 are within one sub-partition, and o3 is within another sub-partition, only o1 and o2 are

grouped into a cluster, while o3 is left out. This is not consistent with the clustering on the whole

snapshot. Therefore the partition can potentially lead to missing objects and less precise results.

I resolve this issue by using the method called multi-assignment [17]. In this method, each

object near to a boundary is replicated to the neighbouring partitions. If an object o is very close

to the partitioning borderlines (i.e., the distance is not more than ε), this object o and other objects

within the neighbouring partition may also generate a cluster. In such case, I should assign o to

multiple sub-partitions, so that the clustering results are not missed.

5.3.2 Snapshot Clustering

I develop the Algorithm 1 to cluster the data in each partition. The map function first extract-

s temporal and spatial information from inputs and emits a key-value pair as << t, gid >, p >,

where t denotes the timestamp of the point p, gid denotes the grid ID and p represents one point (in-

cluding x- and y-coordinates). Next, the grid partition method ensures object points with the same

timestamp located within the same geo-spatial boundary are grouped in the same sub-partitions. Fi-

nally, I employ DBSCAN [10] to identify clusters which satisfy the distance and density constraints.

Euclidean distance is the chosen distance measure for constructing clusters. Distance threshold ε

affects the size of clusters and subsequent computation. I have selected the value ε ranging from

0.0005 to 0.005 degree (approximately 10 to 100 meters) which is common when a gathering hap-

pens.

Spark is a parallel processing framework that supports distributed operations on key-value pairs.
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Algorithm 1: Grid Based Partition
Input : object set O, grid spacing ω, distance threshold ε, density threshold µ
Output: clusters per timestamp per partition

1 Map(documentId a, document d)
2 for each record r ∈ doc d do
3 Extract time t, point p from r
4 EMIT(timestamp t, point p)

5 gridPartitioner(timestamp t, point p)
6 for each grid do
7 gid← getPartitionId(p)
8 EMIT(timestamp t, gridId gid, objectId oid)

9 Reduce(timestamp t, gridId gid, objects [o1, o2, ...])
10 clusters← DBSCAN(ε, µ, objects)
11 for all cluster cl ∈ clusters do
12 EMIT(timestamp t, gridId gid, cluster cl)

I present the workflow of our snapshot clustering algorithm using Spark in Figure 5.3. In this work-

flow, the repartition() transformation plays a significant role since it ensures a partition does not

span multiple machines. This means aggregation operations such as reduceByKey() can be done

locally without shuffling data across network, which significantly improve the runtime performance

for a partition that contains a large dataset.

InputRDD pointRDDmapToPair

{line}
Key=<t,gid>
Value=p

partitionRDD

Repartition(._gridPartitioner())

clusterRDD

reduceByKey

Key=t
Value={<gid, p>}

Key=t
Value={gid, cl}

Figure 5.3: Gathering: Spark Worfklow for Finding Clusters

Next, the clusters are further merged by Algorithm 2. In our workflow, all clusters discovered

from the same timestamp are dispatched to an identical Spark partition. Now the problem is without
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Algorithm 2: Merging Clusters
Input : clusters per timestamp per partition
Output: merged clusters per timestamp

1 Map(timestamp t, gridId gid, cluster cl)
2 EMIT(timestamp t, cluster cl)
3 Reduce(timestamp t, clusters [cl1, cl2, ...])
4 for all cluster cl ∈ clusters do
5 for all cluster cl′ ∈ clusters do
6 if cl 6= cl′ then
7 Ci ← intersect(cl, cl′) //Find common objects
8 if Ci not empty then
9 Cj ← join(cl, cl′)

10 Emit(timestamp t, Cj)

knowing the boundary objects in advance, it is necessary to perform a full self join of the cluster

RDDs in order to compare each cluster pair to determine whether they should be merged. Consider

an example, suppose the snapshot RDD contains s1 =< 1, < 3, 1 >>, s2 =< 1, < 4, 4 >>,

s3 =< 1, < 3, 3 >>, s4 =< 1, < 3, 6 >>, s5 =< 1, < 4, 3 >>. Intuitively, all these snapshots

can be grouped into the same partition since they all share the same key. That is, the partition con-

taining these snapshot becomes P = {< 1, < 3, {1, 3, 6} >>,< 4, {3, 4} >>}. From the result of

merging clusters, it is can be identified that object 3 is the boundary object between grid 3 and grid 4.

As shown in Figure 5.4, the clusterRDD is spitted into two RDDs, namely clusterWithBoRDD

and clusterWithoutBoRDD. As the names suggest, the former one filters the clusters that consist

of one or more boundary objects; the latter RDD is the result of subtraction from clusterRDD to

clusterWithBoRDD. Afterward, a self-join transformation is applied to clusterWithBoRDD

to produce mergedClusterRDD. Finally I obtain the finalClusterRDD by combing two result

RDDs.

The Spark workflow of merging clusters are illustrated in Figure 5.4.

5.3.3 Crowd Detection and Gathering Discovery

The partitions defined in Algorithm 2 is preserved to ensure the level of parallelism. Since ob-

jects are replicated to neighbouring partitions, clusters may span more than one partitions. There-

fore, I again replicate a cluster to all its covering partitions. Next, I perform Secondary Sort to group
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join()

finalClusterRDD

join()

Key=t
Value={gid, cl}
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RDD

Subtract()

Key=t
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Key=t
Value={gid, cl}

Key=t
Value={gid, cl}

Key=t
Value={gid, cl}

Figure 5.4: Gathering: The Spark Workflow for Merging Clusters

clusters the same partition, and sort clusters by timestamps. I create a composite key < t, gid > to

sort all of the records on the composite key, and then use a custom partitioner and grouping function

to ensure that all the records with the same gid appear in the same partition.

finalClusterRDD

Key=t
Value= {gid, cl}

gridPartitionRDD
repartitionAndSort
WithinPartitions

crowdRDD

Key=gid
Value={t, cl}

.values().reduceByKey(
._crowdReducer())

Key=t
Value=crowd

indexedCrowdRDD

mapWithIndex()

Key=<t, crowd>
Value=index

Figure 5.5: Gathering: Spark Workflow for Crowds Detection

Now in each partition I have a set of < t, cluster > pair sorted by timestamps in an ascending

order. I further pass the data set into a reducer function, namely crowdReducer() to analyze the

crowd candidates. Consider an example, given a set of time-cluster pair in a partition clt1 =<

1, {1, 2} >, clt2 =< 3, {2, 3, 4} >, clt3 =< 6, {2, 4} >, clt4 =< 7, {2, 4, 5} >. Assume ∆t=2,

µ=2, Dist(clt1, clt2) < δ and Dist(clt3, clt4) < δ, Table 5.1 illustrates the crowds discovery in

deteail. I first initialize two empty sets, namely CrowdCandidates and Crowds, then iterate
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through the time-cluster pairs. I put the current pair into the candidate set and compare with the

previous candidates. (e.g. from Iter.1 to 2) If the candidate set can not be extended, I save the set

into Crowds (e.g. from Iter.2 to 3). As a result, I can discover two crowds in our example.

Table 5.1: Illustration of Crowd Discovery
Iter. Crowd Candidates Crowds
1 [1, {1, 2}]
2 [1, {1, 2}], [3, {2, 3, 4}]
3 [6, {2, 4}] [1, {1, 2}], [3, {2, 3, 4}]
4 [6, {2, 4}], [7, {2, 4, 5}]
5 [6, {2, 4}], [7, {2, 4, 5}]

The last phase of our framework is discovering all gatherings from the crowds obtained. Recall

Definition 2 and Definition 3, a crowd is called a gathering if it satisfies the temporal and spatial

requirements.

Figure 5.6 illustrates the details. The indexedCrowdRDD is inverted index such that the key

is composed of crowd index and object ID, and the value is the timestamp. Hence I use the call of

reduceByKey() to count the occurrence of a target object in the specific crowd. Next, I filter out the

objects which do not meet the requirement Par(Cr) = {o| |Cr(o)| ≥ kp}. To obtain the participators,

I group the objects shared the same crowd index. Eventually, the participatorRDD is passed into

the second filter applied to indexedCrowdRDD in order to produce gatheringRDD.

indexedCrowdRDD

Key=<t, crowd>
Value=index

clusterObjectRDDflatMap

objectCountRDD

reduceByKey()

filter().groupByKey()

gatheringRDD participatorRDD

filter()

Key=index 
Value={t, crowd}

Key= <index,oid>
Value=t

Key= <index,oid>
Value=count

Key=index
Value={participator}

Figure 5.6: Gathering: The Spark Workflow for Gathering Discovery
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5.3.4 Streaming-based Gatherings Discovery

Compared to the batch-based approach, I need to process the streaming data at the size of

dozens of thousands records arriving per second. Thus I consider previous trajectory data should be

appended to the streams periodically. The interval is regarded as a time window. Thus the partition

and clustering are performed on each window period.

Theorem 1. Let kc be lifetime threshold. In the crowd detection process, only the clusters in kc time

prior to the current window need to be appended without missing an object in the crowd.

Proof. Suppose that clt is a discovered cluster in the current window. According to the definition

of crowds, if any cluster cltx can be included in a crowd with clt, t − tx must be equal or less than

kc. Otherwise if t − tx > kc, the cluster cltx does not satisfy the crowd definition and thus is not

considered. Therefore, I can only check the clusters in kc time prior to the current window.

Based on above theorem, the discovery algorithm is illustrated in Algorithm 3. The implementa-

tion of this algorithm follows three phases of the analysis framework. Each phase shares the similar

Spark workflows for finding clusters, merging clusters, detecting crows and discovering gatherings

as depicted in Figure 5.3 to Figure 5.6.

Algorithm 3: Online Discovery Algorithm
Input : Trajectory data stream S, cluster set C in kc time
Output: Gatherings

1 for each windowWj in S do
2 Find each cluster clt inWj

3 Put clt into C′
4 Discover crowds from C ∪ C′
5 Delete cluster cltx iff t− tx > kc
6 Generate gatherings from crowds

5.4 Optimization

The optimization strategy focuses on data locality to minimize the amount of data shuffled

in the workflows. Data locality means tasks are executed as close as possible to where the data

locates. Poor data locality causes data shuffling. Data shuffling incurs the most significant cost in
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the overall processing as it requires frequent data serialization/deserialization, disk I/Os, and even

data transmissions among physical worker nodes. Therefore, intermediate data communication

from the workflow steps may become performance bottlenecks. In Spark, shuffling usually caused

by operations such as join() or aggregations on keys or values. Our solution rely on techniques of

partitions, load balancing and tuned operation of join(). I discuss the techniques I have identified

for the optimization purpose.

5.4.1 Partitioning

An aggregation can be processed locally without shuffling data if data are partitioned in a way

such that data with the same key or hashing result of the key are in the same partition. Consider

the workflow in phase II, the crowd detection algorithm adopts the divide-and-conquer paradigm.

Crowds are discovered in each grid cell identified by an identifier [i, j]. I have several choices

to realize fixed-grid partitioning in Spark, namely hash partition, range partition, and custom par-

tition. All of these partitioning are key oriented: Hash Partitioning determines the partition as

key.hashCode()%numPartitions; Range Partitioning uses a range to distribute to the respective

partition if the key falls in a range. I select the Hash Partitioning. As I will present shortly in the

evaluation, hash partitioning improves performance of the subsequent key based transformation.

5.4.2 Data Skew

In distributed computation, data skew can be another performance bottleneck which may dimin-

ish the gains made from partitioning. Fixed-grid partitioning is based on a major assumption that

data are evenly distributed. This is often not the case while analyzing geo-spatial data. Gatherings

tend to happen more frequently in downtown than suburban areas. As a result, it ends up with some

partitions only have a few clusters whereas the others contain several thousands of clusters. In the

Spark runtime environment, a set of parallel tasks is defined into a stage for execution. The sub-

sequent stages do not begin until all preceding stages have finished. Thus tasks with unbalanced

workload tend to dominate the overall delays.

Taking the output from the workflow in crowd detection of Figure 5.5, I outline the techniques

used to mitigate the data skew problem as shown in Figure 5.7.
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Key=<gid>
Value={C}

Figure 5.7: Gathering: The Spark workflow for skewed data handling

1) Find skewed partitions by filtering out the keys from the output of the RDD finalClusterRDD.

Those keys contain grid IDs (gid) for those grid partitions that contain clusters more than a thresh-

old.

2) Modify these keys from < gid > to < gid, i > where i is a random number ranged from 0

to numPartition.

3) Hash partition keys (in step 2)) according to key.hashCode()%numPartitions.

4) Find crowds in each partition.

5) Remove i from the key and join the result.

This technique aims to break the skewed partitions down to smaller partitions, which can result

in more load-balanced for data in each partition. This improvement becomes remarkable if the data

is heavily skewed.

5.4.3 Efficient Join

Join of two data sets is one of the commonly used operations in our workflow, such as the step

of merging clusters. In distributed system, joining data can cause significant delay since data are

distributed among many nodes and they need to be shuffled before a join. I consider two types of

join methods, namely Shuffle Join and Broadcast Join.

• Shuffle join is the built-in join() transformation that data of two RDDs with the same key are
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redistributed to the same partition. Records in each RDD is shuffled across the network.

• Broadcast join is suitable joining a large data set with relatively small data sets. The RDD

created from the large data set is broadcast to each worker node so that the join does not

require shuffling data of the large data set.

As shown in Figure 5.4, the procedure to merge clusters invokes join operations. In our problem,

I have observed based on our experimental dataset that clusters with boundary objects CBO are only

approximately 5% of the entire cluster dataset C. Since |CBO| � |C|, I collect CBO into the driver

and further utilize Spark’s borardcast variable to distribute the data to all execution worker nodes.

Hence, broadcast join is beneficial because items in C do not required to be shuffled.

5.5 Evaluation

Table 5.2: Gathering: Parameter settings
Factor Range Default
δ {0.0005, 0.005, 0.001, 0.005} 0.005
n [2, 4, 6, 8, 10, 12, 14, 16] 8

∆t [20, 40, 60] 60
kc [60, 80, 100] 100

I perform dedicated experimental evaluation for both batch-based and stream-based processing.

For the batch-based process, I focus on the quality attributes

Scalability: I analyze the latency of in response to the number of partitions and the size of the

cluster.

Effectiviness: I evaluate the proposed optimizations in terms of data shuffling ratio and latency.

I observe whether the optimization is effectively impact the system performance.

For the streaming-based processing, I are interested in the following quality attributes:

Stability: I perform a stability analysis by observing the processing time and scheduling delay

versus input rate.

Efficiency: I analyze the performance of the streaming-based processing under various control

parameters such as δ and kc. The performance is measured in terms of throughput and latency.

Table 6.2 shows our parameter settings.
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The Evaluation Results of Batch-based Processing

Scalability Observations. I vary the number of partitions and the size of the clusters (i.e. the

number of the worker nodes in the cluster). Figure 5.8 illustrates the end-to-end execution time

measured.
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Figure 5.8: Gathering: Scalability Comparison - Numb. of Partitions vs. Size of cluster

I observe that the system achieves the optimal performance when the number of partitions is near

the number of cores in the cluster. Each partition is run on one core of the cluster. When the number

of partitions are larger than the number of cores, excessive partitions need to wait for available cores

till any parallel partition completes. When the number of partitions is low, the workload on each

partition running on one core becomes big while other cores are idle.

Effectiveness Observation. In this experiment, I aim to observe the effect of different partition

methods on data shuffling. I consider three cases, as follows:

p1: hash partition without repartition() transformation: the partition based on default hashing

does not distribute data uniformly.

p2: hash partition with repartition() transformation: The repartition() transformation actu-

ally shuffles the original partitions and repartition them. However, it does not guarantee to avoid

data skew.

p3: hash partition with skewed data handling : the proposed optimization described in Figure 5.7
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is applied.

I fix 8 worker nodes in a cluster and use 8 partitions. The other parameters use the default

values. The data shuffle is represented by two metrics: shuffle read, and shuffle write, measured as

the ratio (%) of the input data. Shuffle read refers to the sum of serialized read data of all executors.

Likewise, shuffle write is the sum of serialized write data of all executors. Both of these metrics are

obtained from the utility called Spark UI.
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Figure 5.9: Gathering: Partition Performance Comparison

As Figure 5.9 illustrates, p1 introduces approximately 300% read and 250% write. In contrast,

p2 and p3 has dramatically reduced the data shuffled down to approximately 50%. It is expected that

p3 has slightly more data shuffled because of the replication of skewed data partitions. The result

shows p2 incurs the least data shuffle, while p3 has minimal execution time.

Join Performance Evaluation. I compare the performance of two join methods: reduce-side

join (j1), and broadcast join (j2) shown in Figure 5.10. j1 results in a relatively high shuffle read

and shuffle write ratio. One contributing factor is that every join operation requires data with the

identical key to be shuffled to the same partition. Unlike j1, j2 generates a small amount of shuffle

read and nearly zero shuffle write. The shuffle read may due to the smaller dataset broadcasted to

each executor. In this case, two datasets to be joined are in the same partition. That is, no data

shuffle is required. From the computation perspective, j2 outperforms j1 by approximately 50%.

Therefore, I conclude that map-side join is more efficient in the case of a large dataset joins a smaller

dataset.
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Figure 5.10: Gathering: Join Performance Comparison

The Evaluation Results of Streaming-based Processing

Effect of Parameters. In the following experiments, I analyze the throughput and latency

of the streaming-based workflow under different parameter settings. I first evaluate the effect of

parameters δ alternated from 0.0005 to 0.005, and other parameters are used default settings. Also,

I observe the result in 10 windows, whereby each window length is 10 seconds. Figure 5.11 shows

the results under different δ value.
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Figure 5.11: Gathering: Vary δ from 0.0005 to 0.05 - Streaming Mode

I obtain the following two observations:

1) The throughput is higher and the latency is lower with the smaller δ. The reason is small δ
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implies smaller clusters and thus fewer objects to be processed.

2) Except for δ = 0.0005, the throughput of other δ values all drop at window 6. This indicates

that the data size contains in this window is smaller than other windows (e.g. at noon, most people

tend to hang out for lunch). Consequently, it results higher latency.

Figure 5.12 shows the effect of parameter kc on the performance. I vary the lifetime threshold

kc from 60 to 100 seconds. Notice that length of Spark window and ∆t are also impacted by kc.

The window size needs to be equal or larger than kc. Thus, I set window size to 80, 100, and 120;

∆t to 40, 60, and 80 respectively. The result shows the throughput drops at around the window 6

that is consistent with the observations in Figure 5.11.
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Figure 5.12: Gathering: Vary kc from 60 to 100 - Streaming Mode

Stability. I study the stability of our streaming-based processing system by injecting the entire

dataset in 30 windows, where each window size is set to 10 seconds. In this evaluation, I observe

the processing time and scheduling delay from Spark UI in response to the input rate. In Spark, an

application running on a cluster is said to be stable if the processing time of each micro-batch is less

than the window size, as known as batch interval.

In Figure 6.7, I set a horizontal line at 10 seconds indicating the stability threshold, if the pro-

cessing time is over the threshold, it implies the system has some tasks waiting in the queue and

thus results in scheduling delay. From Figure 6.7, I can see that the input rate increase to peak

around windows 10 to 14. This leads the processing time larger than 10 seconds, causing a few
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Figure 5.13: Gathering: Stability Evaluation - Streaming Mode

milliseconds scheduling delay. However, the scheduling delay does not continue to increase after

window 14. The delay is maintained to be comparable to the batch size. To summarize, I observe

our system keeps up with the growth of data input rate.
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Chapter 6

Trajectory Slot Model

6.1 Overview

A trajectory is the sequence of spatial locations or points that a moving object follows as a func-

tion of time. Each point thus consists of a trajectory ID, location (including latitude, and longitude),

and timestamp.

I define Trajectory Slots to denote subsets of trajectories in equal time intervals. Each trajectory

slot consists of moving objects from all trajectories within the time period of T . These objects are of

different timestamps. For the visualization simplicity, Figure 6.1 plots four moving objects namely

o1, o2, o3, o4 crossing 2 time slots of T . Along the trajectory of each object, a point oxj , denoted as

x-th point of object oj , contains the location information as well as the timestamp when object oj

is sampled.

For data streams, new trajectory slot (TS) is generated by arriving trajectory data within every

T time. For analysis, a certain number of trajectory slots can be buffered for analysis.

In the time order, points of an object are connected spatially that forms virtual polylines of

an object. The assumption is if the distance of two polylines within a time slot is measured, and

distance is within a threshold value for a sequence of time slots, the two objects are likely forming

a traveling company within these time slots.

This model partitions the streaming data arriving in time order into slots. The responsiveness

requirement of a discovery method becomes handling objects of all trajectories within T time.
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Figure 6.1: Trajectory Slot Model

6.2 Definitions and Notations

Table 6.1 summarizes the symbols to be used in this model.

Table 6.1: Gathering: Commonly used symbols
Symbol Description
TS trajectory Slot
O set of moving objects
oi i-th object in O
oxj x-th point or location of object oj

Cs(oi) coverage set of oi
n number of partitions
t timestamp (in seconds)
T set of objects’ trajectories
uv lines in the trajectory
T duration of trajectory slot (in seconds)
ε distance threshold
µ density threshold
` companion size threshold
k companion time duration threshold

Concept Definition

Based on trajectory slot model, I formulate our problem of trajectory company discovery with

definitions on concepts and a processing framework.
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Definition 4. (Slot Trajectory Coverage): Let OTS be the object set in a trajectory slot TS, ε

be the distance threshold, and oi, oj ∈ OTS . oj is a slot trajectory coverage for oi denoted by

oj � oi if Dist(oi, oj) < ε, where Dist denotes Euclidean distance between oi and oj . Distance

measurement will be discussed in section 6.2.

I further aim to find all the slot trajectory coverage for each object, and combine them into a

coverage density set for each object. The definition is given below.

Definition 5. (Coverage Density Reachable): oi ∈ OTS , the coverage set of oi contains each object

that is a slot trajectory coverage for oi, denoted as Cs(oi) = {oj ∈ OTS |oj � oi}. Let ε be the

distance threshold and µ be the density threshold, object oi is coverage density reachable from oj ,

if |Cs(oi)| ≥ µ.

In Figure 6.1, assume ε-neighbourhood of o2 covers o3 within TS1. According to Definition 4, I

compute o2�o3. Therefore, o3 ∈ Cs(o2). Likewise, assume the ε-neighborhood of o2 covers o1. So

o1 ∈ Cs(o2). In conclusion, Cs(o2) = {o1, o3} and |Cs(o2)| = 2. If µ is set to be 2, |Cs(o2)| >= µ

and thus o2 is coverage density reachable from o1, o3.

Definition 6. (Coverage Density Connection): For oi ∈ OTS , the coverage density connection of

oi is defined as a set cd(oi)=oi ∪ Cs(oi), where |Cs(oi)| > µ. Following the above example, the

coverage density connection at TS1 is { o1, o2, o3}.

Definition 7. (Trajectory Companion): Let k be the duration threshold, and ` be the size thresh-

old, trajectory companion is defined as a set of objects, if i) the objects are of coverage density

connection for a continuous k trajectory slots and ii) |TC| > `.

Assume that k = 2, ` = 3, {o1, o2, o3} is coverage density connection in TS1 and {o1, o2, o3}

is a coverage density connection in TS2. Therefore, the set {o1, o2, o3} satisfies the requirements

of k = 2, ` = 3. Therefore, the set {o1, o2, o3} is derived as a trajectory companion given the time

periods of TS1 and TS2.

The above definition of trajectory companion means objects of trajectories being spatially close

enough (within a distance threshold) over a fixed time period. It is not necessary for one object
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to be close enough to its companion objects at every timestamp. Thus this trajectory slot mod-

el has the characteristics of flexible group pattern, flexible consecutive time, flexible lifetime and

heterogeneous pattern in Table 3.1.

Distance Metrics

The concept of coverage density reachable depends on the distance between two moving objects.

I propose the Euclidean distance measured by two approaches, namely Point-to-Polyline (P2PL) and

Polyline-to-Polyline (PL2PL).

Point-to-Polyline Approach

The Point-to-Polyline (P2PL) measures the minimum perpendicular distance of each point to a

line segment pair. Let Li and Lj be the polylines of the objects oi and oj . Assume object oi moves a-

long the polylineLi and passes the points<(x1, y1), (x2, y2), (xm−1, ym−1), (xm, ym)..., (xn, yn)>

in order, where (xi, yi) (1 < m ≤ n) denotes the spatial coordinate. Given a point of oj as

pj = (xp, yp), and s(m)
i represents the m-th line segment of the polyline Li of oi. A vector v

perpendicular to the line segment s(m)
i is given by

v =

 ym − ym−1

−(xm − xm−1)

 , (2)

Let r be a vector from the point pj to the point (xm−1, ym−1) in s(m)
i ,

r =

 xm−1 − xp

ym−1 − yp

 , (3)

then the distance from pj to the s(m)
i is given by projecting r onto v, giving,

dm(si, pj) = |v̂ · r| = |(xm − xm−1)(ym−1 − yp)− (xm−1 − xp)(ym − ym−1)|√
(xm − xm−1)2 + (ym − ym−1)2

(4)

Therefore, the distance between any two objects oi and oj is defined as the minimum distance

among all (si, pj) pairs such that,

D(oi, oj) = min
m∈I
{dm(si, pj)}. (5)
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Polyline-to-Polyline Approach

Similar to the point to polyline approach, the polyline to polyline (PL2PL) approach also par-

titions the trajectories into time slots. I analyze polyline distance relations in each slot. In the

d-dimensional space, the polyline of object oi passes the points < (x
(1)
1 , ..., x

(p)
1 , ..., x

(d)
1 ), t1 >,

< (x
(1)
2 , ..., x

(p)
2 , ..., x

(d)
2 ), t2 >,...,< (x

(1)
n , ..., x

(p)
n , ..., x

(d)
n ), tn > by order, where x(p)i (1 ≤ i ≤ n)

denotes p-th dimension coordinate, and ti denotes timestamp to pass x(p)i . Assume that oi moves

along with this polyline, and keeps uniform speed between two points. The p-th dimension coordi-

nate of oi can be estimated as

x(p) =



x
(p)
1 +

x
(p)
2 −x

(p)
1

t2−t1 · (t− t1) (t1 ≤ t < t2)

x
(p)
2 +

x
(p)
3 −x

(p)
2

t3−t2 · (t− t2) (t2 ≤ t < t3)

...

x
(p)
n−1 +

x(p)
n −x

(p)
n−1

tn−tn−1
· (t− tn−1) (tn−1 ≤ t < tn)

(1 ≤ p ≤ d). (6)

Assume that a location of oi collected at t1 timestamp is denoted by ot1i and a location of oj

collected at t2 timestamp is denoted by ot2j . Following spatio-temporal data processing work [22],

this distance should include two parts: spatial distance and temporal distance. In our study, I employ

the distance function that considers both space and time factors below.

Fα(otai , o
tb
j ) =

√
SpatialDist2(otai , o

tb
j ) + α · TemporalDist2(ta, tb), (7)

where SpatialDist(., .) denotes Euclidean distance,

SpatialDist(otai , o
tb
j ) =

√√√√ d∑
p=1

(x(p) − x′(p))2 (8)

where x(p) and x′(p) are the p-th dimension coordinates of oi and oj respectively, which can be

obtained by Equation 6. TemporalDist(., .) is a normalized time-distance function, applied only

within a time slot T , where temporal distance indicates how close between ta and tb. α (0 ≤ α ≤ 1)

indicates the weight of time factor. If α=1, it implies the space and time factors have the same

weight. If α=0, it means the time factor is ignored. The value of this distance is evaluated as

TemporalDist(ta, tb) =


|ta−tb|
T |ta − tb| ≤ T

DNE |ta − tb| > T
(9)
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The distance between any two objects oi and oj is define as

D(oi, oj) = min
ta,tb∈I

{Fα(otai , o
tb
j )} (10)

6.3 Implementation

I define a two-phase trajectory processing framework to address the remaining characteristics

of stream processing and parallelism in Table 3.1.

• The coverage density connection discovery phase. In this phase, I first utilize the trajectory

slot model to set up the unit time T of a slot. I then partition the number of trajectories within

each slot into n sub-sets (sub-partitions), where n is a key parameter to adjust the level of

parallelism. Next I find all the coverage density connections in each sub-partition.

• The trajectory companion generation phase. In this phase, I merge coverage density con-

nections in sub-partitions, and the generate trajectory companions based on results for k con-

tinuous trajectory slots.

The processing elements and data flows are illustrated in Figure 6.2. In our framework, the

procedure includes 4 steps:

• I : Trajectory partition–data within each trajectory slot are partitioned into n sub-partitions;

• II : Find coverage density reachable–find coverage density reachable for each object in every

sub-partition;

• III : Find coverage density connection–find all coverage density connections in each sub-

partition;

• IV : Merge–find coverage density connections in different sub-partition that have same objects

and merge them.

In the following sections, I present the parallel algorithm and techniques on developing the

two-phase framework.
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Figure 6.2: TCompanion Two-phase framework

6.3.1 Load-balanced Trajectory Partition

When partition the trajectories, I aim to balance the load on each partition in term of the number

of objects in each partition. I apply the K-D tree [11] indexing technique. In the K-D tree, there

exist nearly equal amount of data in the tree nodes. The steps is illustrated as Algorithm 4.

Algorithm 4: K-D Tree Based Partition
Input : trajectory data T in a slot, object set O, number of partitions n
Output: {P1, ..., Pn} and {PL1, ..., PLn}

1 m←− 1
2 while m < n do
3 for each region do
4 Compute the the variance in each dimension
5 Pick up the middle value in the dimension with lager variance
6 Split the region into two smaller regions with the middle value

7 m←− m+ 1

8 Extend the borderlines of each regions
9 Give each region an ID

10 for each point v of any object in O do
11 if v is located in i-th region then
12 Put v into Pi

13 for each line vu in T do
14 if vu and i-th region have common points then
15 Put vu into PLi

16 Return Pi and PLi

First, the algorithm computes the variance of all points in x-dimension and y-dimension respec-

tively. Data in a dimension with a larger variance would have more dispersive distribution, hence

the dimension of a larger variance is selected to further split the space. The method computes the
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variance in each dimension and splits points into smaller regions until the number of regions equals

to the fixed number n. The value n is related to the level of parallelism. The way to determine how

many partitions to set will be concluded in section 6.5.

6.3.2 Parallel Discovery of Coverage Density Connection

Algorithm 5 first discovers the coverage density reachable objects and then combined them into

coverage density connection by processing the objects in each partition returned from Algorithm 4.

Algorithm 5: Coverage Density Connection Discovery
Input : trajectory data T in a slot, number of partitions n
Output: coverage density connections in each sub-partition

1 Call Algorithm I
2 for each object oi in a sub-partition do
3 Find coverage density reachable from oi
4 Return coverage density connections

Algorithm 3 illustrates the polyline-to-polyline (PL2PL) distance calculation used in comput-

ing the coverage density reachable of each object. Due to the space limitation, I omit the point-to-

polyline distance calculation. Let Li and Lj be the polylines of the objects oi and oj , and s be the

segment of a polyline. Each segment pair is in a key-value pair: << i, j >,< sfi , s
g
j >>, where i,

j denotes unique identications of polylines (Li and Lj), and < sfi , s
g
j > denotes the segment pair in

Li and Lj respectively (sfi is the f -th segment in Li and sgj is the g-th segment in Lj).

I assure the segment pairs within the same polyline pair can only be assigned to the same

sub-partition. This is done by means of hash partition that partitions segment pairs based on

the hash codes of the keys (Line 10 of Algorithm 3). Therefore, in the reduce phase, I can use

reduceByKey() function to put segment pairs with the same key together. Finally I find the mini-

mum distance of segment pairs in the same polyline pair as the polyline distance (Line 20).

To reduce the data intensity of Algorithm 3, I introduce two pruning rules.

Pruning Rule I: If the shortest distance between the polyline of oi and the polyline of oj is

larger than ε, then oj is not slot trajectory coverage for oi, so it can be pruned safely.

Since the shortest distance between the polyline of oi and the polyline of oj is not more than

minta,tb∈I{Fα(otai , o
tb
j )}, it is larger than ε so that D(oi, oj) ≥ ε.
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Pruning Rule II: If minta,tb∈I{
√
α · TemporalDist2(ta, tb)} > ε, then oj is not slot trajec-

tory coverage for oi, so it can be pruned safely.

Due to minta,tb∈I{
√
α · TemporalDist2(ta, tb)} ≤ D(oi, oj), minta,tb∈I{

√
α · TemporalDist2(ta, tb)} >

ε =⇒ D(oi, oj) ≥ ε.

Algorithm 6: Polyline to Polyline Parallel Distance Calculation
Input : a set of polylines L within a time slot [ti, ti+T ]
Output: a set of polyline density reachable pair R

1 S ← ∅ // a set of polyline segments
2 SP ← ∅ // a set of polyline segment pairs
3 Dpl ← ∅ // a set of polylines distance pair < (Li, Lj) , d >
4 D′pl ← ∅ // a set of polylines minimum distance pair < (Li, Lj) , dmin >
5 for each polyline in L do
6 for each segment s ∈ pl do
7 calculate coefficient of the linear equation
8 add s into S

9 SP ← find all segment pairs from S
10 Map(<< i, j >,< sfi , s

g
j >>)

11 for each sub-partition P do
12 for each segment pair < sfi , s

g
j > in P do

13 bound segments with MBRfi and MBRgj
14 d→ distmin(MBRfi ,MBRgj )

15 calculate the minimum distance between MBRfi and MBRgj // Pruning Rule I
16 if d > ε then
17 prune segment pair < sfi , s

g
j >

18 // Pruning Rule II
19 if

|MBRfi .starttime−MBRgj .endtime| > ε∧|MBRfi .endtime−MBRgj .starttime| > ε

then
20 prune segment pair < sfi , s

g
j >

21 calculate exact distance between two segments as dist(sfi , s
g
j )

22 Reduce(< i, j >, dmin = min[dist(sfi , s
g
j ), ...])

23 for each polyline pair do
24 if dmin < ε then
25 add (Li, Lj) to R

26 Return R
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6.3.3 Trajectory Companions Generation on Streaming Data

In Phase II, I need to find all possible combination of objects in order to obtain trajectory com-

panions. Consider this example, given a slot-objects key-value pair < 1, {1, 2, 3} > read as objects

1,2,and 3 are density connected at slot 1. our goal is to generate all subsets of the set {1, 2, 3}

such that {}{1},{1, 2},{1, 2, 3},{2},{2, 3},{1, 3}. The algorithm is described in Algorithm 7 and

its complexity yields O(2n). If a density connections in a slot contains 20 objects, it requires more

than 1 million iterations. This computation incurs high cost and definitely a performance bottleneck.

Algorithm 7: Power set generation
Input : a set of object IDs S, size threshold l
Output: power set P (S)

1 R← ∅
2 n← 1� S.size
3 for each object oi in a sub-partition do
4 pos← 0
5 bitmask ← i
6 s← ∅
7 do
8 if bitmask ∧ 1 = 1 then
9 add pos into s

10 bitmask � 1
11 increase pos by 1
12 while bitmask > 0;
13 if s.size >= l then
14 add s into R

Technically speaking, the power set computation can be parallelized. The idea I have so far

is to distribute the set to a cluster such that each executor computes a subset size of k. Next, I

merge the result together to form a power set. Continuing on our example, a given set {1, 2, 3}

(where k=3) can be mapped into < {1, 2, 3}, 1 >, < {1, 2, 3}, 2 >, < {1, 2, 3}, 3 >. The second

integer in the tuple indicates the size of subset, meaning that should generate {1, 2}, and {2, 3} for

< {1, 2, 3}, 2 >. Algorithm 8 illustrates the steps to discover k size subsets. The complexity of the

algorithm is O(nk). One of the drawbacks for the algorithm is that it incurs imbalanced workload

for various k. Suppose that n=10, computing the subsets of size 3 needs 1000 iterations, whereas

size of 6 needs 1 million iterations. As result, some executors would have heavy workload while
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the others are idle.
Algorithm 8: Power set generation of size k

Input : a set of object IDs S, size k, index i, current set c, final set R
Output: subset of the power set P (S)

1 if c.size == k then
2 add c into R
3 return
4 if i == S.size then
5 return
6 m← position of i in S
7 add m into c
8 return self(S, k, i+1, c, R)
9 remove m from c

10 return self(S, k, i+1, c, R)

I propose an online incremental algorithm to compute the Phase II procedure that is the trajec-

tory companions generation on streaming data. In a streaming data application, trajectory data are

often received incrementally. As such, the latest batch of trajectory data should be appended to the

streams periodically. Our algorithm checks the discoveries from the most recent trajectory slots and

decides if they can be extended into companions with the new arriving trajectory data.

First, I introduce a new concept of promising companion candidate.

Definition 8. (Promising Companion Candidate): Let k be the duration threshold, and l be the

size threshold. A group of objects are promising companion candidates (denoted by pc), if the group

members coverage density connected by themselves for at least continuous k − 1 slots and is not

less than `.

According to this definition, I first divide the trajectory streaming data into trajectory slots {T1,

T2,..., Ti,... } , where Ti denotes trajectory data within i-th slot. Then I can only check the arriving

data in the next trajectory slot to decide whether there exists new arriving coverage density connec-

tions (cd) and save into the density connection set DC. I find pc that lasts at least k − 1 slots within

DC. If cd and pc generate trajectory companions in the k-th slots, these trajectory companions can

be found immediately. I conclude the Online Discovery Algorithm in Algorithm 4.
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Algorithm 4: Online Discovery Algorithm
Input : {T1, T2,..., Ti,... } and k
Output: trajectory companions

1 for each Ti (not empty) do
2 if i mod k 6= 0 then
3 Call Algorithm III to discover ∀cd within Ti
4 Put ∀cd into a set DC
5 else
6 Find pc in DC
7 Keep pc into memory
8 Call Algorithm III to discover ∀cd in Ti
9 Put ∀cd into a set DC

10 Delete ∀cd within Ti−k from DC
11 Merge pc and ∀cd in Ti into trajectory companions
12 Return trajectory companions

6.4 Merging Methods and Analysis

To discover promising companion candidates and trajectory companions, I need to find the

same objects from all the connections and intersect them. Assume an average M coverage density

connections in each slot and I need k − 1 iterations to generate pc, then intersecting and merging

coverage density connections in each iteration has O(M2) complexity.

In this section, I propose intersecting and merging methods and formally analyze their effec-

tiveness to improve the runtime performance on the Spark Streaming platform. In particular, I aim

to achieve effective data locality and reduce data shuffling. Data shuffling incurs significant cost

since it requires frequent data serialization/deserialization, disk I/Os, and even data transmission

across physical worker nodes. Poor data locality causes extra data shuffling to occur. I introduce an

example below to best analyze the method as follows in section 6.4.1 to 6.4.4.

Example: Let DC be the coverage density connection set, |DC| be the number of coverage

density connections. Also, each coverage density connection cd is in the format of Spark RDDs

such as <<TSid, Pid >, {objectid...}>, where TSid denotes the identification (ID) of a trajectory

slot, Pid denotes the ID of a sub-partition in each slot, and objectid denotes the ID of an object

contained by the same coverage density connection.

Given DC=
{
cd1=<<4, 1>, {1, 2, 3}>, cd2=<<4, 2>, {2, 3, 4}>, cd3=<<5, 1>, {5, 6, 7}>,
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cd4=<<5, 2>, {1, 3, 4}>
}

, find the same objects from all connections in each time slot and inter-

sect them.

6.4.1 Inverted Merging Method

The inverted merging method first inverts the keys and values of the RDD of coverage density

connections. The inverted pair becomes<< {objectid...} >, TSid, Pid >. Then each pair is further

mapped to a new set of key-value pairs as < objectid, < TSid, Pid >>. The next step is to reduce

values with the same key as < objectid, < TSid, Pid > ... >. Eventually based on the values that

are the original slot ID and sub partition ID, the original values of objects are merged. This method

avoids intersecting every pair of coverage density connects by means of Spark key operations only.

Assume that |C| is the average number of coverage density connections that contain the same object

in one slot. The number of pairs equals to n · |C| · |O|, where |O| is the number of objects in one

slot and n is the number of trajectories. This method is still intensive on both computing time and

in-memory storage space.

6.4.2 Self-cartesian Set Method

Cartesian operation returns the cross product of two RDDs or RDD to its identical self. Given

the above example, I compute the self-cartesian such thatDC×DC =
{

(cdi, cdj)|i 6= j and cdi, cdj ∈

DC
}

in the following matrix,

DC × DC =


− (cd1, cd2) (cd1, cd3) (cd1, cd4)

(cd2, cd1) − (cd2, cd3) (cd2, cd4)

(cd3, cd1) (cd3, cd2) − (cd3, cd4)

(cd4, cd1) (cd4, cd2) (cd4, cd3) −


In the worst case scenario, assuming cd1, cd2, cd3, and cd4 are all located in different worker nodes,

cd2, cd3, and cd4 need to shuffle to where cd1 is located to form the first row of the matrix. This costs

|DC| − 1 times data shuffling since I ignore the self-contained pair. Similarly, the same procedure

repeats for the rest of rows. Therefore, the total cost of data shuffling, Γ1, is calculated as

Γ1 = (|DC| − 1) · |DC| ' |DC|2. (11)
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Next, I intersects each pair (cdi, cdj). I observe that 66% of pairs (e.g. (cd1, cd3)) are within dif-

ferent time slots meaning they should not be merged. This indicates the cartesian method produces

unnecessary pairs that would not be merged eventually.

6.4.3 Broadcast Method

Broadcast variable allows a read-only dataset to be shared throughout the cluster. Assuming

cd1, cd2, cd3, and cd4 are in separate worker nodes each. A broadcast method first collectsDC on the

driver node and stores it as a broadcast variable. Next, the broadcast variable is redistributed back

to each worker node such that they all own a copy of DC. On each worker node, I then compute

cdi · DC =
{

(cdi, cdj)|i 6= j and cdj ∈ DC
}

. In our example, I obtain the result as the following,

cdi ×DC =



cd1 ×DC → (cd1, cd2), (cd1, cd3), (cd1, cd4)

cd2 ×DC → (cd2, cd1), (cd2, cd3), (cd2, cd4)

cd3 ×DC → (cd3, cd1), (cd3, cd2), (cd3, cd4)

cd4 ×DC → (cd4, cd1), (cd4, cd2), (cd4, cd3)

where the equation in each roll represents the computation on each worker node. Finally on each

worker node, the method iterates through pairs of coverage density connections locally to merge

them. During this process, the total communication cost, Γ2, is calculated as two rounds transmis-

sion of DC among w worker nodes such that,

Γ2 = 2 · w · |DC|. (12)

When Γ2<Γ1, the performance of the broadcast method is better than the self-cartesian set

method. The assumption of the broadcast method is that the collected data size should fit in memory

of the driver node, otherwise out-of-memory exception could lead to runtime failure to the driver

node. Therefore, the method is limited to the size of DC.

6.4.4 Inner Join Hash Partition Method

In Spark, partitions are each stored in a worker node’s memory. One worker node may contain

one or more partitions but a partition never spread on different worker nodes. By this means, an
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aggregation can be processed locally without shuffling if data of the same key or hashing result of

the key are in the same partition. I propose a new method called Inner Join Hash Partition (IJHP)

that simply hash the key to a partition as key.hashCode()%numPartitions. In IJHP, the slot id slotid

is considered as the key that means density connections of the same time slot are guaranteed to be

in the same partition. The data shuffling occurs when a density connection is not within the node it

is hashed to. Therefore the data shuffling cost is at most the size of the density connections. As the

estimation below, a factor β (0 < β ≤ 1) denotes the portion of the coverage density connections

that need to be shuffled,

Γ3 = β · |DC|. (13)

Since Γ3<Γ2, IJHP has the minimal data shuffling cost. Hence I decide to use the IJHP method

to generate trajectory companions.

6.5 Evaluation

In this section, I experimentally evaluate the performance of the proposed solutions on a real

dataset. In order to compare with our competitor, I are interested in the quality attributes

Precision and Recall: I analyze the precision, recall and F1-score in response to the size of time

slot.

Efficency: I analyze the performance of gathering, TCompanion-P2PL and TCompanion-PL2PL

measured in terms of throughput and latency.

Next, I focus on comparing P2PL and PL2PL algorithms by quality attributes

Scalability: I analyze the throughput in response to the size of the cluster.

Data Intensity: I are interested in data shuffle rate response to different size of data per time

slot.

Stability: I perform a stability analysis by observing the processing time and scheduling delay

versus input rate.

Table 6.2 shows the parameter settings.
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Table 6.2: TCompanion: Parameter settings
Factor Range Default
ε {0.00005, 0.0001, 0.0005, 0.001, 0.005} 0.0001
n [2, 8] 2
T [40, 80] 60

Precision and Recall Evaluation

In Section 4.4.2, I used 12 selected sample trajectories and the predefined ground truth results

to evaluate the precision and recall for each algorithm. Suppose I use the algorithm x to find a set of

trajectory companion pairs (denoted by ˜TC(x)), and the set of ground truth trajectory companion

pairs is denoted by TC(x). The precision is computed as

Precision(x) =
| ˜TC(x) ∩ TC(x)|
| ˜TC(x)|

× 100% (14)

Also, the recall is computed as

Recall(x) =
| ˜TC(x) ∩ TC(x)|
|TC(x)|

× 100% (15)

Lastly, the F1-score is computed as

F1(x) =
Precision(x)×Recall(x)

Precision(x) +Recall(x)
× 100% (16)
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Figure 6.3: Gathering vs. TCompanion: Precision, Recall and F1-score

Figure 6.3 shows the precision, recall and F1-score of our proposed algorithm (TCompanion)

and the competitor algorithm (Gathering)[35],[40]. I vary the size of trajectory slot T from 40 to 80
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seconds. For the Gathering algorithm, T represents the bound of any two snapshot groups within

a gathering. I can see our algorithm has higher precision recall and F1-score. For our algorithm

TCompanion, the precision increases and the recall decreases with increasing value of T . As T

increases, discovered trajectory companions need to maintain the status of being close enough for

kT period of time. Lager T leads to lower recall and higher F1-score. When T = 60, the F1-score

is highest. I set 60 seconds as default value in the following experiments.

Performance Comparisons

I compare the throughput and latency of algorithms of Gathering and TCompanion. The through-

put in term of location points processed per second is

throughput =
total number of locations

procesing time

and the average latency of processing each location record is

latency =
procesing time+waiting time

total number of locations

The Gathering algorithm processes data in one snapshot each time. Since the data size within

each snapshot is not big, the efficiency is not improved by scaling out the computing nodes. Hence,

I set n = 2 for the performance evaluation experiments.

Figure 6.4 illustrates results by varying the distance threshold ε. Both throughput and aver-

age latency of the two algorithms are comparable. TCompanion has more distance computation

since it considers all the timestamps within one time slot. I optimize the runtime performance of

TCompanion by reducing the data shuffling cost (see section 6.4).

Combined the evaluation results on precision and recall, and performance, TCompanion dis-

covers traveling companions with better accuracy and comparable runtime performance to that of

Gathering. Given this observation, I focus on experiments in the following sections to further iden-

tify key factors contributing to system level quality attributes.
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Figure 6.4: TCompanion: Throughput and latency comparison

Scalability Evaluation

I scale out the number of worker nodes to observe the horizontal scalability between the algo-

rithm of TCompanion with two distance metrics P2PL and PL2PL. In AWS, I deploy 8 to 16 nodes.

Figure 6.5 plots the throughput under different size of the cluster.
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Figure 6.5: TCompanion: Scalability Comparison

Each executor is running on one node in the cluster. By increasing the number of partitions and

adding more cluster nodes, the system produces optimal throughput as the numbers of partitions

and executors reach sixteen. When the number of partitions are larger than the number of executors,
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excessive partitions need to wait for available executors till any parallel partition completes, repre-

senting the saturation regimen. When the number of partitions is low, only partial executor nodes

run on partitioned data with high workload while other executors are idle, which also degrades per-

formance. The experiments shows TCompanion with both distance metrics scale as the number of

executor nodes and the number of partitions grow together.

Stability Evaluation

I set up the stability evaluation in alignment with the Spark Streaming window operation. In

Spark Streaming, data streams are received as a batch of RDDs. The number of records in a batch is

determined by the batch interval. The window operation keeps multiplies of batch intervals to make

the number of batches fit with the duration of a window. The experiment is deployed on 16 nodes

of executors.

I inject the entire dataset to 30 windows into the workflow shown in Figure 6.7(a). I consider

the whole workflow system stable if the processing time of each batch of data streams is less than

the batch interval. In this experiment, I set the batch interval as 10 seconds. In Figure 6.7(b) and

(c), I set a horizontal line at 10 second indicating the stability threshold.

Over the span of 300 seconds (5 minutes), I observe the processing time and scheduling delay

from the Spark UI in response to the input rates. If the processing time is over the threshold,

it implies the system has tasks waiting in the queue and thus results in scheduling delay. From

Figure 6.7(a), I can see that the input rate peaks at windows 10 to 14. This leads to the fact that

the processing time also increases in the corresponding windows (see Figure 6.7(b) and (c)). The

algorithm with the P2PL distance metrics remains the processing time under 10 seconds per window

across the entire experiment. With the PL2PL distance metrics, the algorithm goes over stable line

at the 7th window causing extra up to approximately 4-second scheduling delay. The scheduling

delay declines after 13th window since the input rate begins to decrease. This indicates to further

improve the stability of PL2PL to handle the peak load, the underlying cluster needs to provision

extra executor nodes. The auto-scaling mechanism of Amazon Web Services can be applied to

provision and deprovision worker nodes on demands, which remains our future work.
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Data Intensity Evaluation

In this experiment, I observe the data shuffling rate with regards to the size of data per time slot.

The data shuffling rate is represented by two metrics: shuffle read, and shuffle write, measured as

the ratio (%) of the input data. Shuffle read (or Shuffle write) refers to the sum of serialized read

(write) data of all executors. Both of these metrics are obtained from the Spark UI utility. I tune

four set of parameters, shown in Table 6.3 to obtain different size of data to process per time slot.

For example, when I increase the distance threshold (ε) and time slot (T ), more point-to-polyline or

polyline-to-polyline pairs meet the density reachable requirements. Thus, the algorithm generates

larger number of density connections. I also decrease density threshold (µ) and size threshold (l).

This increases the data density in the companion discovery phase of the algorithm.

Table 6.3: TCompanion: Parameter settings of Data Intensity Evaluation
Parameter Set ε k l n T µ

S1 0.001 3 3 8 60 3
S2 0.005 3 3 8 60 3
S3 0.005 3 3 8 100 3
S4 0.005 3 2 8 100 2

As Figure 6.6 illustrates, both read and write shuffling ratios of PL2PL is higher than P2PL.

This indicates the PL2PL distance metrics has more frequent data read from and write to remote ex-

ecutors. The cost of data shuffling is the major contributor approximately 20% to 30% performance

difference between these two metrics (see Figure 6.4 in section 6.5).
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Figure 6.7: TCompanion: Stability Comparison

Execution Time Decomposition

I further decompose the execution time of TCompanion(PL2PL) to understand which steps in

the workflow contribute most to the time cost. Figure 6.8 a) illustrates the ratio of scheduler delay,

executor computing time, getting result time, task deserialization time, shuffle read/write time, and

result serialization time. First, majority of task execution time comprises of raw computation time

that dominates about 75% of total time. Second, data shuffle read/write time takes 11%. This indi-

cates that although data shuffling has effects on the total time cost but it is not the main performance

bottleneck tuned by our optimization techniques.

Figure 6.8 b) illustrates the time distribution over all steps in the workflow. The companion

discovery phase takes 44% of overall task execution time. This phase contains one transformation

to generate all subsets from density connections in order to find trajectory companion (Algorithm 9

line 3). Its complexity yields O(2n).

Effect of Parameters on TCompanion

I analyze the performance of TCompanion (PL2PL) under parameter settings since the distance

metrics of polyline-to-polyline produces higher precision. I run the algorithm in 10 windows with

each duration of 60s that is in total 10 minutes. I tune the distance threshold ε and observe its effects

on throughput and latency. I vary the distance threshold ε from 0.00005 to 0.005, with the geospatial

meaning of 10 to 100 meters. Other parameters use default settings. Figure 6.9 shows the throughput

is higher and the latency is lower by decreasing ε. One reason is lager ε covers more objects, thus
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Figure 6.8: TCompanion: Scalability Comparison

more coverage density connections is generated. Intuitively, discovering companions from these

coverage density connections takes longer time. The figure also shows during the time window 7,

8, 9, the workflow produces higher throughput and lower latency than other time windows. This

indicates fewer objects from the data streams form coverage density connections and thus have less

computation and data shuffling cost.
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Chapter 7

Conclusion

In this thesis, I devise two parallel discovery methods called Gathering and Trajectory Com-

panions on heterogeneous trajectory data stream. The parallelism focuses on data partition and data

aggregation to improve data locality and hence reduce the data shuffling overhead of the discovery

frameworks.

This work first designed a snapshot based parallel framework to discover gatherings on differ-

ent types of trajectory data. I focus on discussing the Spark workflow for each phase of Gathering

Discovery Framework including snapshot clustering, crowd detection, and gathering generation.

To improve performance, I proposed some optimization techniques with Apache Spark and Spark

Streaming respectively. Experimental results demonstrated the effectiveness of the proposed meth-

ods and techniques on a public dataset in Amazon EC2 clusters.

I also propose a slot based trajectory companions discovery algorithm (TCompanion) that con-

tains both spatial and temporal functions to measure distances between trajectories over continu-

ously updated streaming windows. Its implementation focus on load balanced workload as well as

analyzing an optimal merging methods to reduce data shuffling. In experiments, TCompanion is

able to process up to 30,000 updates per second of moving objects within 14 seconds. The modular

structure of our analysis framework allows other distance metrics and clustering methods to be ap-

plied. It remains our future work to refractor the current method as an algorithm of service on the

cloud.
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Appendix A

Cluster Configuration and Applications

Deployment

This appendix is served as a step-by-step guidance of the environment setup of Amazon Web

Service (AWS) EC2 cluster, as well as deployment of our applications to the cluster. Technically, our

applications including Data Generator and Analytic Pipeline can be deployed on any public cloud

Infrastructure-as-a-Service providers (such as Google Cloud Platform1, Azure2, and Digital Ocean3)

or even private cloud. Here, I only focus on the description of the configuration and deployment

steps dedicated to this thesis.

Configuring Apache Spark Cluster on AWS EMR

In AWS, Apache Spark can be installed alongside the other Hadoop application available in

Amazon EMR, and it can also leverage the EMR file system to directly access data in Amazon

S3. In this section, I will describe the procedure to set up a Spark cluster via Amazon EMR. The

following steps is based on the precondition that an AWS account is already created. If you don’t

have an AWS account, you will need to create one before you will be able to proceed.

(1) Create Amazon EC2 key pair to connect to the nodes in the cluster over a secure channel using
1https://cloud.google.com/solutions
2https://azure.microsoft.com
3https://www.digitalocean.com

64

https://aws.amazon.com/


the Secure Shell (SSH) protocol.. Detailed steps can be found in AWS EC2 User Guide4.

(2) Instantiate Apache Spark clusters via AWS EMR. I will need to create two clusters, data

generator cluster (Cg), and analysis pipeline cluster (Ca) respectively. Table A.3 illustrates

the cluster configuration. Detailed steps can be found in Amazon EMR Management Guide5.

Category Option Value
General configuration Cluster name My Cluster

Launch mode Cluster
Software configuration Vendor Amazon

Release emr-4.2.0
Applications Spark: Spark 1.5.1 on Hadoop 2.6.0 YARN with Ganglia 3.6.0

Hardware configuration Instance type t2.large
Number of instances Data Generator: 1; Analysis Pipeline: 9

Security and access EC2 key pair (Select the key pair name defined in Step 1)

Table A.1: AWS - EMR Configurations

Now, I should have two clusters running on AWS. The public DNS or ip address of the master

nodes can be found on the EMR cluster list. Let the ip address of Data Generator master be ipg,

Analytic Pipeline master be ipa. I need these ip addresses to remote access to the instances in the

next step.

Configuring and Deploying Data Generator

The Data Generator is written in Java. The complete source code can be found on the GitHub

repository6 and the driver code of Spark are attached in Appendix B. The application dependencies

is managed by Maven. Table A summarizes the maven dependencies.

groupId artifactId version
org.apache.kafka kafka 2.10 0.9.0.1
org.apache.spark spark-core 2.10 1.6.1

org.slf4j slf4j-api 1.7.10
org.slf4j slf4j-simple 1.7.10

junit junit 4.11
org.cloudera.spark.streaming.kafka spark-kafka-writer 0.1.0

Table A.2: Data Generator - Maven Dependencies

The following steps show how to build, configure, and run the Data Generator:
4http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
5http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
6https://github.com/samsonxian/Trajectory-Companion-Data-Generator
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(1) SSH connect to the master node of Cg with ipg. More detail related to how to connect to the

Master Node Using SSH refer to Amazon EMR Management Guide 7.

(2) On Master Node of cluster Cg, following the instruction described in the README file.

Configuring and Deploying Trajectory Pattern Analytic Piplines

The Trajectory Pattern Analytic Piplines are written in Java. The complete source code can be

found on the GitHub repository8 and the driver code Gathering and TCompanion are attached in

Appendix B, and Appendix C respectively. The application dependencies is managed by Maven.

Table A summarizes the maven dependencies.

groupId artifactId version
org.apache.kafka kafka 2.10 0.9.0.1
org.apache.spark spark-core 2.10 1.5.1
org.apache.spark spark-streaming 2.10 1.5.1
org.apache.spark spark-streaming-kafka 2.10 1.5.1

log4j log4j 1.2.17
org.apache.commons commons-math3 3.1.1

Table A.3: Trajectory Pattern Analytic Pipeline - Maven Dependencies

The following steps show how to build, configure, and run the Trajectory Pattern Analytic Pi-

plines:

(1) SSH connect to the master node of Ca with ipa.

(2) On Master Node of cluster Ca, following the instruction described in the README file.

7http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
8https://github.com/samsonxian/Trajectory-Companion-Finder
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Appendix B

Source code for Trajectory Data Stream

Generator

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {

i f ( a r g s . l e n g t h < 2) {

System . e r r . p r i n t l n ( ”USAGE: <p r o p s f i l e> < i n p u t f i l e > [ debug ] ” ) ;

System . e x i t ( 1 ) ;

}

boolean i sDebug = A r r a ys . a s L i s t ( a r g s ) . c o n t a i n s ( ” debug ” ) ;

/ / S e t u p t h e p r o p e r t y p a r s e r

P r o p e r t y F i l e P a r s e r p r o p e r t y P a r s e r = new P r o p e r t y F i l e P a r s e r ( a r g s [ 0 ] ) ;

p r o p e r t y P a r s e r . p a r s e F i l e ( ) ;

i n t messageRate = I n t e g e r . p a r s e I n t ( p r o p e r t y P a r s e r . g e t P r o p e r t y

( Conf ig . KAFKA PRDOUCER MESSAGE RATE ) ) ;

/ / Kafka p r o d u c e r

P r o p e r t i e s p r o p s = new P r o p e r t i e s ( ) ;

p r o p s . p u t ( ” m e t a d a t a . b r o k e r . l i s t ” ,

p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig .KAFKA HOSTNAME KEY)+ ” : ”+

p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . KAFKA PORT KEY ) ) ;

p r o p s . p u t ( ” s e r i a l i z e r . c l a s s ” , ” k a f k a . s e r i a l i z e r . S t r i n g E n c o d e r ” ) ;

p r o p s . p u t ( ” key . s e r i a l i z e r . c l a s s ” , ” k a f k a . s e r i a l i z e r . S t r i n g E n c o d e r ” ) ;

p r o p s . p u t ( ” r e q u e s t . r e q u i r e d . acks ” , ” 1 ” ) ;
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/ / Spark c o n f i g

SparkConf spa rkConf = new SparkConf ( ) .

setAppName ( ” k a f k a D a t a G e n e r a t o r ” ) ;

i f ( i sDebug ) spa rkConf . s e t M a s t e r ( ” l o c a l [∗ ] ” ) ;

J a v a S p a r k C o n t e x t c t x = new J a v a S p a r k C o n t e x t ( spa rkConf ) ;

JavaRDD<S t r i n g> l i n e s = c t x . t e x t F i l e ( a r g s [ 1 ] ) ;

/ / t i m e s t a m p i n a s c e n d i n g o r d e r

JavaPairRDD<I n t e g e r , S t r i n g> orderedDataRDD =

l i n e s . mapToPair ( new TimestampMapper ( ) )

. sor tByKey ( ) . cache ( ) ;

/ / g e t a l l t i m e s t a m p s

JavaRDD<I n t e g e r> timestampRDD = orderedDataRDD . keys ( ) . d i s t i n c t ( ) ;

Set<I n t e g e r> t i m e s t a m p s = new T r e e S e t ( timestampRDD . t o A r r a y ( ) ) ;

/ / i t e r a t e each t i m e s t a m p

f o r ( i n t t imes t amp : t i m e s t a m p s ) {

/ / grab a l l t r a j e c t o r i e s per t i m e s t a m p

JavaRDD<S t r i n g> timeDataRDD =

orderedDataRDD . f i l t e r ( new T i m e s t a m p F i l t e r ( t imes t amp ) )

. map ( new T r a j e c t o r y M a p p e r ( ) ) ;

t r y {

JavaRDDKafkaWriter<S t r i n g> w r i t e r = JavaRDDKafkaWri te rFac to ry . fromJavaRDD ( timeDataRDD ) ;

w r i t e r . wr i t eToKafka ( props , new KafkaSparkProc (

p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . KAFKA TOPIC KEY ) ) ) ;

Thread . s l e e p ( messageRate ) ;

}

ca tch ( E x c e p t i o n e )

{

System . e r r . p r i n t l n ( e . ge tMessage ( ) ) ;

System . e x i t ( 1 ) ;

}

}

c t x . c l o s e ( ) ;

}
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Appendix C

Source code for Snapshot Model

p u b l i c c l a s s St r eamingGPFinde r {

p r i v a t e s t a t i c S t r i n g o u t p u t D i r = ” ” ;

p r i v a t e s t a t i c double d i s t a n c e T h r e s h o l d = 0 . 0 1 ; / / eps

p r i v a t e s t a t i c i n t d e n s i t y T h r e s h o l d = 2 ; / / mu

p r i v a t e s t a t i c i n t t i m e I n t e r v a l = 6 0 ; / / d e l t a t

p r i v a t e s t a t i c i n t l i f e t i m e T h r e s h o l d = 100 ; / / kc

p r i v a t e s t a t i c i n t c l u s t e r N u m T h r e s h o l d = 3 ; / / kp

p r i v a t e s t a t i c i n t p a r t i c i p a t o r N u m T h r e s h o l d = 2 ; / / mp

p r i v a t e s t a t i c i n t n u m S u b P a r t i t i o n s = 2 ;

p r i v a t e s t a t i c double g r i d s i z e = 0 . 1 ; / / g

p r i v a t e s t a t i c boolean debugMode = f a l s e ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {

/ / s e t u p t h e c l i p a r s e r

S G P C l i P a r s e r p a r s e r = new S G P C l i P a r s e r ( a r g s ) ;

p a r s e r . p a r s e ( ) ;

i f ( p a r s e r . getCmd ( ) == n u l l ) {

System . e x i t ( 1 ) ;

}

f i n a l UserData d a t a = new UserData ( ) ;

i n i t P a r a m s ( p a r s e r , d a t a ) ;

/ / s e t u p t h e p r o p e r t y p a r s e r
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P r o p e r t y F i l e P a r s e r p r o p e r t y P a r s e r = new P r o p e r t y F i l e P a r s e r ( a r g s [ 0 ] ) ;

p r o p e r t y P a r s e r . p a r s e F i l e ( ) ;

Map<S t r i n g , S t r i n g> kafkaParams = new HashMap<>();

ka fkaParams . p u t ( ” m e t a d a t a . b r o k e r . l i s t ” , p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . KAFKA BROKERS ) ) ;

SparkConf spa rkConf = new SparkConf ( )

. setAppName ( ” S t r eamingGPFinde r ” ) ;

i f ( debugMode ) spa rkConf . s e t M a s t e r ( ” l o c a l [∗ ] ” ) ;

i n t b a t c h I n t e r v a l = I n t e g e r . p a r s e I n t ( p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . SPARK BATCH INTERVAL ) ) ;

f i n a l J a v a S t r e a m i n g C o n t e x t s s c = new J a v a S t r e a m i n g C o n t e x t ( sparkConf , D u r a t i o n s . s e c o n d s ( b a t c h I n t e r v a l ) ) ;

s s c . c h e c k p o i n t ( p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . SPARK CHECKPOINT DIR ) ) ;

Set<S t r i n g> t o p i c s = new HashSet ( A r r a ys . a s L i s t (

p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . KAFKA TOPICS ) . s p l i t ( ” , ” ) ) ) ;

/ / c r e a t e d i r e c t k a f k a s t r e am w i t h b r o k e r s and t o p i c s

J a v a P a i r I n p u t D S t r e a m<S t r i n g , S t r i n g> i npu tDSt ream =

K a f k a U t i l s . c r e a t e D i r e c t S t r e a m (

ssc , S t r i n g . c l a s s , S t r i n g . c l a s s ,

S t r i n g D e c o d e r . c l a s s , S t r i n g D e c o d e r . c l a s s ,

kafkaParams , t o p i c s ) ;

J a v a P a i r D S t r e a m windowedInputRDD = inpu tDSt ream . window (

D u r a t i o n s . s e c o n d s ( b a t c h I n t e r v a l ∗ 3 ) ,

D u r a t i o n s . s e c o n d s ( b a t c h I n t e r v a l ∗ 2 ) ) ;

JavaDStream<S t r i n g> l i n e s = windowedInputRDD . map ( new InputDStreamValueMapper ( ) ) ;

l i n e s . f o r e a c h ( new BatchCountFunc ( ) ) ;

/ / f i n d s n a p s h o t per t i m e s t a m p and da ta p a r t i t i o n

/ / f o r m a t : <t imes tamp , { p o i n t}>

JavaPa i rDSt ream<I n t e g e r , TCPoint> snapsho tDSt ream =

l i n e s . mapToPair ( new SnapshotMapper ( ) ) ;

snapsho tDSt ream . f o r e a c h ( new Func t ion2<JavaPairRDD<I n t e g e r , TCPoint>, Time , Void>() {

@Override

p u b l i c Void c a l l ( JavaPairRDD<I n t e g e r , TCPoint> snapshotRDD , Time t ime ) throws E x c e p t i o n {

/ / da ta p a r t i t i o n

/ / K = <g r i d I d , t imes tamp>

/ / V = { p o i n t }

F i x e d G r i d P a r t i t i o n fgp = new F i x e d G r i d P a r t i t i o n ( g r i d s i z e ) ;
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JavaPairRDD<S t r i n g , I t e r a b l e<TCPoint>> p a r t i t i o n R D D = fgp . a p p l y ( snapshotRDD ) ;

/ / f i n d c l u s t e r s − f i n d c l u s t e r s (DBSCAN) i n each sub−p a r t i t i o n

/ / K = t i m e s t a m p

/ / V = gid , c l u s t e r

JavaPairRDD<I n t e g e r , Tuple2<S t r i n g , DBSCANCluster>> c lus te rRDD =

GPQuery . ge tClus te rRDD ( pa r t i t i onRDD , d a t a ) ;

/ / merge c l u s t e r s − f i n d c l u s t e r s i n d i f f e r e n t p a r t i t i o n t h a t have same o b j e c t s

JavaPairRDD<I n t e g e r , Tuple2<S t r i n g , DBSCANCluster>> mergedRDD =

GPQuery . getMergedClusterRDD ( clusterRDD , d a t a ) ;

/ / group c l u s t e r s by t i m e s t a m p t o form a crowd , g i v e n each crowd

/ / an un iq ue i d

/ / K = <gid , crowd>

/ / V = crowdId

JavaPairRDD<Tuple2<S t r i n g , Crowd>, Long> crowdRDD =

GPQuery . getCrowdRDD ( mergedRDD , d a t a ) . cache ( ) ;

/ / f i n d p a r t i c i p a t o r

/ / K = crowdId

/ / V = { p a r t i c i p a t o r }

JavaPairRDD<Long , I t e r a b l e<I n t e g e r>> p a r t i c i p a t o r R D D =

GPQuery . g e t P a r t i c i p a t o r R D D ( crowdRDD , d a t a ) ;

/ / c o n v e r t crowd i n t o t h e same f o r m a t as p a r t i c i p a t o r

/ / f o r m a t : <crowdId , { ( o b j e c t I d , t i m e s t a m p )}>

JavaPairRDD<Long , I t e r a b l e<Tuple2<I n t e g e r , I n t e g e r>>> crowdToObjectTimestampRDD =

crowdRDD . f l a t M a p T o P a i r ( new CrowdToObjectTimestampPairMapper ( ) ) ;

/ / d i s c o v e r g a t h e r i n g s

/ / f o r m a t : <crowdId , {<t imes tamp , { o b j e c t I d}>}>

JavaPairRDD<Long , I t e r a b l e<Tuple2<I n t e g e r , I t e r a b l e<I n t e g e r>>>> gather ingRDD =

GPQuery . getGather ingRDD ( crowdToObjectTimestampRDD , p a r t i c i p a t o r R D D ,

d a t a ) ;

i f ( o u t p u t D i r . i sEmpty ( ) )

gather ingRDD . t a k e ( 1 ) ;

e l s e

gather ingRDD . saveAsHadoopFi le ( o u t p u t D i r ,

S t r i n g . c l a s s , S t r i n g . c l a s s , Tex tOu tpu tFo rma t . c l a s s ) ;
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re turn n u l l ;

}

} ) ;

s s c . s t a r t ( ) ;

s s c . a w a i t T e r m i n a t i o n ( ) ;

}

}
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Appendix D

Source code for Slot Model

p u b l i c c l a s s St r eamingTCFinde r {

p r i v a t e s t a t i c S t r i n g o u t p u t D i r = ” ” ;

p r i v a t e s t a t i c double d i s t a n c e T h r e s h o l d = 0 . 0 0 0 1 ; / / eps

p r i v a t e s t a t i c i n t d e n s i t y T h r e s h o l d = 3 ; / / mu

p r i v a t e s t a t i c i n t t i m e I n t e r v a l = 5 0 ; / / T

p r i v a t e s t a t i c i n t d u r a t i o n T h r e s h o l d = 2 ; / / k

p r i v a t e s t a t i c i n t n u m S u b P a r t i t i o n s = 1 ; / / n

p r i v a t e s t a t i c i n t s i z e T h r e s h o l d = 2 ;

p r i v a t e s t a t i c boolean debugMode = f a l s e ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {

/ / s e t u p t h e c l i p a r s e r

S T C C l i P a r s e r p a r s e r = new S T C C l i P a r s e r ( a r g s ) ;

p a r s e r . p a r s e ( ) ;

i f ( p a r s e r . getCmd ( ) == n u l l ) {

System . e x i t ( 1 ) ;

}

i n i t P a r a m s ( p a r s e r ) ;

/ / s e t u p t h e p r o p e r t y p a r s e r

P r o p e r t y F i l e P a r s e r p r o p e r t y P a r s e r = new P r o p e r t y F i l e P a r s e r ( a r g s [ 0 ] ) ;

p r o p e r t y P a r s e r . p a r s e F i l e ( ) ;

SparkConf spa rkConf = new SparkConf ( )
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. setAppName ( ” S t r eamingTCFinde r ” ) ;

i f ( debugMode ) spa rkConf . s e t M a s t e r ( ” l o c a l [∗ ] ” ) ;

i n t b a t c h I n t e r v a l = I n t e g e r . p a r s e I n t ( p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . SPARK BATCH INTERVAL ) ) ;

J a v a S t r e a m i n g C o n t e x t s s c = new J a v a S t r e a m i n g C o n t e x t ( sparkConf , D u r a t i o n s . s e c o n d s ( b a t c h I n t e r v a l ) ) ;

s s c . c h e c k p o i n t ( p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . SPARK CHECKPOINT DIR ) ) ;

Set<S t r i n g> t o p i c s = new HashSet ( A r r a ys . a s L i s t (

p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . KAFKA TOPICS ) . s p l i t ( ” , ” ) ) ) ;

Map<S t r i n g , S t r i n g> kafkaParams = new HashMap<>();

ka fkaParams . p u t ( ” m e t a d a t a . b r o k e r . l i s t ” , p r o p e r t y P a r s e r . g e t P r o p e r t y ( Conf ig . KAFKA BROKERS ) ) ;

/ / c r e a t e d i r e c t k a f k a s t r e am w i t h b r o k e r s and t o p i c s

J a v a P a i r I n p u t D S t r e a m<S t r i n g , S t r i n g> i npu tDSt ream =

K a f k a U t i l s . c r e a t e D i r e c t S t r e a m (

ssc , S t r i n g . c l a s s , S t r i n g . c l a s s ,

S t r i n g D e c o d e r . c l a s s , S t r i n g D e c o d e r . c l a s s ,

kafkaParams , t o p i c s ) ;

J a v a P a i r D S t r e a m windowedInputRDD = inpu tDSt ream . window ( D u r a t i o n s . s e c o n d s ( b a t c h I n t e r v a l ) ) ;

JavaDStream<S t r i n g> l i n e s = windowedInputRDD .

map ( new InputDStreamValueMapper ( ) ) ;

l i n e s . f o r e a c h ( new BatchCountFunc ( ) ) ;

/ / p a r t i t i o n t h e e n t i r e common . da ta s e t i n t o t r a j e c t o r y s l o t s

/ / f o r m a t : <s l o t i d , { pi , p j , . . . }>

JavaPa i rDSt ream<Long , I t e r a b l e<TCPoint>> slotsRDD =

l i n e s . mapToPair ( new s t c . T r a j e c t o r y S l o t M a p p e r ( ) )

. groupByKey ( ) ;

/ / p a r t i t i o n each s l o t i n t o sub−p a r t i t i o n s

/ / f o r m a t : <s l o t i d , TCRegion>

JavaDStream<Tuple2<Long , TCRegion>> s u b P a r t i t i o n s R D D =

slotsRDD . f l a t M a p ( new KDTreeSubPar t i t i onMapper ( n u m S u b P a r t i t i o n s ) ) . cache ( ) ;

/ / g e t each p o i n t per p a r t i t i o n

/ / f o r m a t : <( s l o t I d , r e g i o n I d ) , <o b j e c t I d , p o i n t>>

JavaPa i rDSt ream<S t r i n g , Tuple2<I n t e g e r , TCPoint>> pointsRDD =

s u b P a r t i t i o n s R D D . f l a t M a p T o P a i r ( new S u b P a r t i t i o n T o P o i n t s F l a t M a p p e r ( ) ) ;

/ / g e t a l l p o l y l i n e s per p a r t i t i o n
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/ / f o r m a t : <( s l o t I d , r e g i o n I d ) , {<o b j e c t I d , p o l y l i n e >}

JavaPa i rDSt ream<S t r i n g , Map<I n t e g e r , TCPoly l ine>> poly l inesRDD =

s u b P a r t i t i o n s R D D . mapToPair ( new S u b P a r t i t i o n T o P o l y l i n e s M a p p e r ( ) ) ;

/ / g e t d e n s i t y r e a c h a b l e per sub p a r t i t i o n

/ / f o r m a t : <( s l o t I d , r e g i o n I d , o b j e c t I d ) , { o b j e c t I d}>

JavaPa i rDSt ream<S t r i n g , I t e r a b l e<I n t e g e r>> dens i tyReachableRDD =

pointsRDD . j o i n ( poly l inesRDD )

. f l a t M a p T o P a i r ( new CoverageDens i tyReachab leMappe r ( d i s t a n c e T h r e s h o l d ) )

. groupByKey ( ) . f i l t e r ( new C o v e r a g e D e n s i t y R e a c h a b l e F i l t e r ( d e n s i t y T h r e s h o l d ) ) ;

/ / remove o b j e c t I d from key

/ / f o r m a t : <( s l o t I d , r e g i o n I d ) , { o b j e c t I d}>

JavaPa i rDSt ream<S t r i n g , I t e r a b l e <I n t e g e r>> dens i tyConnec t ionRDD

= dens i tyReachableRDD

. mapToPair ( new SubPar t i t i onRemoveObjec t IDMappe r ( ) ) ;

/ / merge d e n s i t y c o n n e c t i o n sub−p a r t i t i o n s

/ / f o r m a t : <( s l o t I d , r e g i o n I d ) , {{ o b j e c t I d}}>

JavaPa i rDSt ream<S t r i n g , I t e r a b l e <I n t e g e r>> subpar tMergeConnect ionRDD =

dens i tyConnec t ionRDD

. reduceByKey ( new C o v e r a g e D e n s i t y C o n n e c t i o n R e d u c e r ( ) ) ;

/ / remove r e g i o n I d from key

/ / f o r m a t : <s l o t I d , { o b j e c t I d}>

JavaPa i rDSt ream<I n t e g e r , I t e r a b l e<I n t e g e r>> s lo tConnec t ionRDD =

subpar tMergeConnect ionRDD

. mapToPair ( new S lo t Re mo ve Su bPa r t i t i o n I DMa pp e r ( ) )

. reduceByKey ( new C o v e r a g e D e n s i t y C o n n e c t i o n R e d u c e r ( ) ) ;

J avaPa i rDSt ream<I n t e g e r , I t e r a b l e<I n t e g e r>> windowedSlotConnectionRDD =

slo tConnec t ionRDD . window ( D u r a t i o n s . s e c o n d s ( b a t c h I n t e r v a l ∗ d u r a t i o n T h r e s h o l d ) ) ;

/ / o b t a i n t r a j e c t o r y companion

/ / f o r m a t : <{o b j e c t I d } , { s l o t I d}>

JavaPa i rDSt ream<S t r i n g , I t e r a b l e<I n t e g e r>> companionRDD =

windowedSlotConnectionRDD

. f l a t M a p T o P a i r ( new C o v e r a g e D e n s i t y C o n n e c t i o n S u b s e t M a p p e r ( s i z e T h r e s h o l d ) )

. mapToPair ( new CoverageDens i tyConnec t ionMappe r ( ) )

. groupByKey ( )

. f i l t e r ( new T r a j e c t o r y C o m p a n i o n F i l t e r ( d u r a t i o n T h r e s h o l d ) ) ;
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i f ( debugMode )

companionRDD . p r i n t ( ) ;

e l s e

companionRDD . saveAsHadoopF i l e s ( o u t p u t D i r , ” csv ” ,

S t r i n g . c l a s s , S t r i n g . c l a s s , Tex tOu tpu tFo rma t . c l a s s ) ;

s s c . s t a r t ( ) ;

s s c . a w a i t T e r m i n a t i o n ( ) ;

}

}

76



Bibliography

[1] A. Aji, H. Vo, and F. Wang. Effective spatial data partitioning for scalable query processing.

CoRR, abs/1509.00910, 2015.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.

Stream: The stanford stream data manager (demonstration description). In Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, pages

665–665, New York, NY, USA, 2003. ACM.

[3] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal

multiversion b-tree. The VLDB Journal, 5(4):264–275, Dec. 1996.

[4] E. Brewer. Pushing the cap: Strategies for consistency and availability. Computer, 45(2):23–

29, Feb. 2012.

[5] E. A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the Nineteenth

Annual ACM Symposium on Principles of Distributed Computing, PODC ’00, pages 7–, New

York, NY, USA, 2000. ACM.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In Pro-

ceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation

- Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun.

ACM, 51(1):107–113, Jan. 2008.

77



[8] A. Eldawy, L. Alarabi, and M. F. Mokbel. Spatial partitioning techniques in spatialhadoop.

Proc. VLDB Endow., 8(12):1602–1605, 2015.

[9] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce Framework for Spatial Data. In

31st ICDE 2015, pages 1352–1363, 2015.

[10] M. Ester, H. peter Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. pages 226–231. AAAI Press, 1996.

[11] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu raytracer. In Proceedings

of ACM SIGGRAPH/EUROGRAPHICS, pages 15–22, 2005.

[12] J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajectory data. In

Proceedings of GIS, pages 35–42, 2006.

[13] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of

SIGMOD, pages 47–57, 1984.

[14] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Efficient indexing of s-

patiotemporal objects. In Proceedings of the 8th International Conference on Extending

Database Technology: Advances in Database Technology, EDBT ’02, pages 251–268, Lon-

don, UK, UK, 2002. Springer-Verlag.

[15] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory

databases. Proc. VLDB Endow., 1(1):1068–1080, 2008.

[16] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia. Learning Spark: Lightning-Fast Big

Data Analytics. O’Reilly Media, Inc., 1st edition, 2015.

[17] M. P. Kleeman and G. B. Lamont. The multi-objective constrained assignment problem. In

Proceedings of GECCO, pages 743–744, 2006.

[18] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting frequent updates in r-trees:

A bottom-up approach. In Proceedings of VLDB, pages 608–619, 2003.

78



[19] J. Leibiusky, G. Eisbruch, and D. Simonassi. Getting Started with Storm. O’Reilly Media,

Inc., 2012.

[20] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters.

Proc. VLDB Endow., 3(1-2):723–734, Sept. 2010.

[21] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream join processing. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’15, pages 811–825, New York, NY, USA, 2015. ACM.

[22] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He. Mercury: A memory-constrained

spatio-temporal real-time search on microblogs. In ICDE, pages 172–183, 2014.

[23] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis.

Dremel: Interactive analysis of web-scale datasets. Commun. ACM, 54(6):114–123, June

2011.

[24] J. Miller, M. Raymond, J. Archer, S. Adem, L. Hansel, S. Konda, M. Luti, Y. Zhao, A. Tere-

desai, and M. Ali. An extensibility approach for spatio-temporal stream processing using

microsoft streaminsight. In Proceedings of SSTD, pages 496–501, 2011.

[25] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing platform.

In Proceedings of the 2010 IEEE International Conference on Data Mining Workshops, pages

170–177, 2010.

[26] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman. Aggregation and degradation in

jetstream: Streaming analytics in the wide area. In Proceedings of USENIX, pages 275–288,

2014.

[27] H. Samet. The quadtree and related hierarchical data structures. ACM Comput. Surv.,

16(2):187–260, June 1984.

[28] C. T. and C. N. Mapreduce online. In Proceedings of NSDI, page 313?C328, 2010.

79



[29] L.-A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han. Retrieving k-nearest neighboring

trajectories by a set of point locations. In Proceedings of the 12th International Conference on

Advances in Spatial and Temporal Databases, SSTD’11, pages 223–241, 2011.

[30] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C.-C. Hung, and W.-C. Peng. On discovery

of traveling companions from streaming trajectories. In ICDE 2012, April 2012.

[31] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, W.-C. Peng, and T. L. Porta. A framework of

traveling companion discovery on trajectory data streams. ACM Trans. Intell. Syst. Technol.,

5(1):3:1–3:34, Jan. 2014.
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