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Abstract

Optimal Schedules for Data Gathering in Wireless Sensor
Networks

Mahesh Bakshi, Ph.D.

Concordia University, 2017

Wireless Sensor Networks (WSNs) are widely used for target monitoring: sensors monitor

a set of targets, and forward the collected or aggregated data using multi-hop routing to the

same location, called the sink. The resulting communication scheme is called ConvergeCast

or Aggregated ConvergeCast.

Several researchers studied the ConvergeCast and the Aggregated ConvergeCast, as to

produce the shortest possible schedule that conveys all the packets or a packet aggregation

to the sink. Nearly all proposed methods proceed in two steps, first the routing, and then

the scheduling of the packets along the routes defined in the first step.

The thesis is organized around four contributions. The first one is an improvement of

the previous mathematical models that outputs (minimum-sized) multi-set of transmission

configurations (TCs), in which a transmission configuration is defined as a set of links that

can transmit concurrently. Our model allows the transmission of several packets per target,

in both single-path and multi-path settings; we give two new heuristics for generating new

improved transmission configurations.While such models go beyond the routing step, they

do not specify an ordering over time of the configurations. Consequently, the second con-

tribution consists of several algorithms, one exact and several heuristics, for ordering the

configurations. Our results show that the approach of scheduling when restricted to a tree

generated by the first contribution significantly outperforms the ordering of configurations of

TC-approach for single-rate, single packet per sensor traffic patterns, but the TC approach

gives better results for multi-rate traffic and when there are a large number of packets per

sensor.

In the last two contributions, we propose an exact mathematical model that takes care,

in a single phase, of the routing and the scheduling, for the ConvergeCast and the aggregated

ConvergeCast problem. They both correspond to decomposition models in which not only

we generate transmission configurations, but an ordering of them.

We performed extensive simulations on networks with up to 70 sensors for both Con-

vergeCast and Aggregated ConvergeCast, and compared our one phase results with one of

the best heuristics in the literature.
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Chapter 1

Introduction

1.1 Motivation

A wireless sensor network (WSN) is a connected network of spatially distributed autonomous

sensors that monitor physical or environmental conditions, such as temperature, sound,

pressure, etc. and forward the collected data through the network to a central sink node in

the network. The development of wireless sensor networks was initially motivated by military

applications such as battlefield surveillance. Today such networks are used in many industrial

and consumer applications, such as industrial process monitoring and control, machine health

monitoring, and so on. Applications of WSN [34] can be broadly classified into three groups,

namely, Environmental (Noise [68], RiverFloodDetection [23], etc.,), Condition Monitoring

(WindTurbine [74], Pipelines [73], etc.,) and Process Automation (WaterConsumption [50],

ProductionAutomation [52], etc.). WSN solutions should be scalable, reliable, low latency

and power-efficient. Indeed, the combination of requirements is hard to meet.

In this thesis, we focus on a broad class of data-collection applications called target

coverage. We give two sample target coverage applications to motivate our work, that differ

in whether they require all the data collected by sensors or only a summary of the data.

Application 1: Volcano Monitoring. The first application is active volcano monitoring,

such as the network of 80 Waspmote sensors deployed in the Masaya volcano in August

2016 that connected Nicaragua’s most active volcano to the internet. The sensors measure

atmospheric pressure, humidity, temperature, various types of gases like sulphur dioxide,

hydrogen sulphide and carbon dioxide. They also collect seismic data, gravity data with

gravimeters in different places around and inside the volcano. Many other sensor network

testbeds that have been deployed for a volcano to further research are described in [80, 55,

38, 46].

Application 2: Building monitoring. Another example is the deployment of wireless
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sensors in a smart building; sensors can sense the presence or absence of someone in an

office, and a corresponding actuator can turn the lights on or off. The building management

system collects and records information about energy usage in the building. In particular,

it may be desirable to record the total or average number of hours the ventilation system

or lights were on in different rooms. To enable data collection, sensors in each room may

collect and send information about the amount of time the lights were on to a central sink

node, which can in turn report the information to the building management system.

The communication pattern used to send the data from the sensors to the sink is called

ConvergeCast. ConvergeCast is often done using a spanning tree of the network, with the sink

as the root of the tree. Figure 1(a) shows a sensor network, and the routes taken by packets

to achieve ConvergeCast are shown in Figure 1(b). While in Application 1, it may be of

interest to send every item of data collected by sensors to the sink, Application 2 exemplifies

the fact that in many situations, what is of interest is not to collect every item of data but a

function of the data, such as the minimum or maximum or average reading. In such cases,

tremendous energy savings can be obtained by requiring every intermediate sensor nodes to

aggregate the data it receives before forwarding to the sink, thereby drastically reducing the

number of packet transmissions required, and consequently both the time needed for the

sink to receive the information it needs, and the energy used. For example, if the sensors are

monitoring the temperature at each target, and what is required is for the sink to know the

maximum temperature over all targets, each sensor needs to forward only the maximum of

its own data and those received from its children. Such a ConvergeCast operation is called an

Aggregated ConvergeCast. Figure 1(c) illustrates Aggregated ConvergeCast. Notice that the

ConvergeCast operation requires a total of 23 packet transmissions, while the Aggregated

ConvergeCast operation requires only 11 packet transmissions. In this thesis, we study both

ConvergeCast and Aggregated ConvergeCast.

To improve reliability and to provide redundancy, it is often required that multiple sensors

report on the same volcanic area or room in the building. This requirement is called q-

coverage, viz, q sensors report on the same target (area within the volcanic region, room

within the building). In this thesis, we consider q=1, 2, 3 in our experiments.

2
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1.2 Medium access control

Medium access control (MAC) is one of the critical issues in the design of wireless sensor

networks. As in any wireless network, the wireless transmission medium is a shared resource,

and a collision is said to occur when two nodes send data at the same time over the same

channel. To address collisions, a sensor network must employ a MAC protocol to arbitrate

access to the shared medium and at the same time to fairly and efficiently share the band-

width resources in a network. MAC protocols can be broadly classified into contention-based

(e.g., IEEE 802.11) and schedule-based (e.g., FDMA, TDMA) protocols.

Although most of the state of the art wireless sensor networks (WSNs) are formed by

nodes that are designed to operate in an autonomous, distributed fashion and thus use

contention-based protocols, some recent work in the literature such as [39] indicates that

centrally-coordinated network and MAC layer protocols are at least as efficient as distributed

protocols in numerous settings, while bringing several advantages such as code simplicity,

ease of management or observability. In particular, many WSN applications exhibit a regular

traffic pattern by periodically collecting sensor measurements at a centralized sink. In this

context, TDMA (Time Division Multiple Access) offers a convenient multiple access scheme

at the MAC layer since it guarantees high bandwidth utilization and low energy consumption.

In TDMA, the time is divided into frames, each containing a certain number of fixed size

slots. Typically, a central entity is responsible to define a frame schedule assigning each node

a fixed number of slots for transmitting and receiving data. Moreover, several transmission

links can be scheduled in the same slot if no harmful level of interference occurs among them.

To a great extent, interference is captured in theoretical studies using either the protocol

model or the physical/SINR-based model. In the protocol model, a transmission from a node

s to a node t in time slot τ is successful if t lies within the transmission range of s and

outside the transmission ranges of all other nodes transmitting in the same time slot τ .

Under the protocol model, assuming that all nodes have the same transmission range Tmax,

the sensor network can be represented by a unit disk graph, where two nodes are connected

if the distance between them is at most Tmax. Then the criterion for successful transmission

from s to t requires that no other neighbor of t is transmitting in the same time slot.

In reality, one has to take into account not just neighboring transmitters, but also en-

vironmental noise, as well as interference from nodes that are not immediate neighbors. In

addition, node t may be able to receive s’s transmission even if another neighboring node s′

is transmitting simultaneously, provided the signal of s overwhelms that of s′. These factors

are captured by the physical interference model: a transmission is successful if and only if

the signal-to-interference-and-noise-ratio (SINR) at the intended receiver exceeds a certain

4



threshold so that the transmitted signal can be decoded with an acceptable bit error rate.

This model is widely considered as a more accurate representation of the behavior of real

systems [72]. We will use the physical interference model in this thesis.

Each sensor has a certain maximum transmission power specification. We consider sensors

that have the ability to dynamically adjust their transmission power. Both the widely used

MicaZ and TelosB sensors allows tuning of transmission power from 0.001mW to 1mW.

Note that transmitting at the maximum power enables the sensor to directly reach sensors

that may not be reachable with lower power. However, transmitting at high power levels

increases interference to other sensors. Sensors are assumed to transmit using the modulation

and coding schemes [54] of IEEE 802.15; according to this specification, a transmission with

data rate θ can be decoded successfully if the SINR measured at the receiver is above a

corresponding threshold βθ.

1.3 Problem Statement

In this thesis we look at target coverage applications where sensors need to send raw readings

or summarized data to the sink. Sensor nodes generate readings/data about the targets they

are monitoring, and forward the data to other sensors or the sink. Other sensor nodes may

not monitor targets but simply act as forwarding nodes in the network. We will study

two kinds of ConvergeCast problems in this thesis: ConvergeCast Scheduling (CC) and the

Aggregated ConvergeCast Scheduling (ACC).

1.3.1 ConvergeCast problem

The ConvergeCast problem uses the location of a set of sensors, a set of targets and the

sink, as well as the desired coverage level q as input, and finds a minimum length TDMA

frame that achieves the ConvergeCast operation, that is,

1. Each target is monitored by exactly q sensors.

2. Each sensor forwards all the data it receives along a path to the sink.

3. The sink node gets q readings about every target.

The solution involves deciding which sensors cover which targets, finding paths to send the

sensor readings from the covering sensors to the sink node, as well as scheduling transmission

slots for the sensors on these paths that avoid excessive interference. The goal is to find a

transmission schedule of minimum length, that is, a schedule with the minimum number of

5



transmission slots. Figure 1 demonstrates an instance of ConvergeCast. Figure 1(a) shows

the input for the problem: the location of the set of targets (e.g., t0, t1), sensors{s1, . . . , s11},
and the sink node s0. The desired coverage level is q = 1, i.e., each target needs to be

covered by one sensors. Figure 1(b) gives a ConvergeCast solution for this input. Observe

that each target is monitored by one sensor, that is, q=1. Target t0 can be monitored

by sensor s4 or by sensor s8, selection of the sensor monitoring a target is also part of

solution. Each of the monitoring sensors needs to send the information concerning the

target(s) it is monitoring along a path to the sink, as shown in the figure. Since sensor s9

is monitoring one target, it needs to send one packet to the sink. Finally the links along all

paths have to be scheduled while respecting interference constraints. One possible schedule is

as follows. In time slot 1, schedule the links (s1, s0), (s4, s3) and (s11, s5) simultaneously, then

in slot 2, the links (s2, s0) and (s7, s3). In the next eleven slots, the sets {(s3, s0), (s6, s2)},
{(s3, s0), (s9, s6)}, {(s2, s0), (s10, s7)}, {(s3, s0), (s6, s2)}, {(s2, s0), (s7, s3)}, {(s3, s0), (s8, s4)},
{(s5, s2)}, {(s2, s0), (s4, s3)}, {(s5, s2)}, {(s3, s0)}, {(s2, s0)} can be scheduled in turn, and it

can be verified that all data reaches the sink.

1.3.2 Aggregated ConvergeCast problem

Given a set of sensor locations, and a sink node, we consider the problem of finding a

minimum-length schedule for Aggregated ConvergeCast. In particular, a valid schedule

satisfies the following constraints assuming each sensor is monitoring a target:

1. Each sensor sends exactly one packet.

2. A sensor cannot receive a packet during or after the time slot when it transmits.

3. The sink node receives all the aggregated data.

Figure 1 demonstrates an instance of Aggregated ConvergeCast and a possible solution.

Figure 1(a) shows the input for the problem: the location of the set of sensors {s1, . . . , s11},
and the sink node s0. Figure 1(c) gives an Aggregated ConvergeCast tree. We assume that

every sensor is monitoring a target and has an item of data to send to the sink. Observe

that without aggregation using a defined interference model, we need 23 packet transmissions

using this tree, and any schedule would be of length at least 12 slots. However, if each sensor

waits to receive information from its children, and aggregates its own data with that received

from its children, the operation can be achieved using 11 packet transmissions, and there is

a schedule with 5 slots.

Each of the monitoring sensors needs to aggregate and send the information concerning

the target it is monitoring along a path to the sink, as shown in the figure. Since sensor s3 is
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monitoring its own target and receives a packet from s4, s7 and s11, it needs to aggregate four

packets and send one aggregated packet towards the sink. Each sensor has a path to the sink

as given in Figure 1(c). It uses 5 slots {(s9, s6), (s1, s0), (s8, s7), (s4, s3)}, {(s6, s2), (s10, s7)},
{(s7, s3), (s5, s2)}, {(s2, s0), (s4, s3)}, {(s5, s2)}, {(s2, s0)}, {(s3, s0)} in slot 1 to slot 5 respec-

tively. It can be verified that aggregated data from all the sensors reaches the sink. The

information acquired at the sink is commonly the aggregated information like maximum or

average, so that we can accumulate data rapidly and reduce consumption of transmission

power. At the same time, interference from simultaneous transmissions is also reduced as

we use fewer transmissions.

A complete Aggregated ConvergeCast solution consists of a tree, and a schedule for links

in the tree that avoid interference. A subtle issue is that interference is caused not just by

tree links, but also by non-tree links. For instance in Figure 1(c), the tree links (s5, s2) and

(s11, s3) cannot be scheduled in the same time slot, even though the receivers of the two links

are different, because of the existence of the non-tree link (s5, s3) which causes interference

at s3.

In this thesis, we study algorithms to schedule ConvergeCast both with and without

aggregation using TDMA. Both of these problems are NP-hard as shown in [10] and [18]

respectively.

1.4 Literature review

In this section we will survey the most recent work on ConvergeCast (Section 1.4.1) and

Aggregated ConvergeCast (Section 1.4.2).

1.4.1 ConvergeCast

We classify the research on ConvergeCast into two main categories: scheduling algorithms

with mathematical programming models and scheduling algorithms without mathematical

programming models.

ConvergeCast: Mathematical Programming Models

The problem of generating a minimum number of transmission configuration occurrences

to solve communication instances has been extensively studied in the literature for TDMA

wireless networks. There are two classes of algorithms that have been proposed in the

literature.
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The first class considers mathematical programming tools, i.e., column generation models

that allow the decoupling of the TFMP+(TDMA Frame Minimization Problem) problem into

two subproblems solved alternately until an optimality condition is satisfied. Earlier work

studied the problem in the context of WiMax networks without considering the transmission

power, see, e.g., [25], [15] and then later with the integration of the power control constraints

[26], [14], [62]. In [27], ElBatt and Ephremides solved the problem via two alternating phases

that define a set of admissible links along with their transmission power in the context of ad-

hoc networks. The main contribution was to eliminate the need of computationally expensive

algorithms by splitting the problem and executing the power control in a distributed fashion.

Kaddour [44], [43] adapted the previous column generation models for the design of wireless

sensor networks subject to SINR constraints, as well as q-coverage, power control and rate

adaptation considerations. However, due to the computational complexity of generating

transmission configurations under such constraints, his model lacks scalability.

ConvergeCast: Non-Mathematical Programming Models

The second class of algorithms deals with heuristics, see, e.g., [11], [48]. For joint link

scheduling and power control with the use of heuristics, see, e.g., [75] who consider the

objective of throughput improvement while considering fairness through a new introduced

factor called demand satisfaction factor. After the original model was formulated as a Mixed

Integer Linear Program (MILP) (not a column generation model), the key idea was to

iteratively use the solutions obtained from a Linear Program (LP)- a relaxed version of the

problem - as guidelines for channel scheduling.

Similarly, for joint scheduling and routing, many heuristics have been proposed; see for

example [48], [31], [40], [12], [70], [17], [58], [61], [13], [53], [45] [36], [47] and [32]. Of

these, [48], [40], [12], [70], [36], [47] and [32] use the SINR model; the remaining papers use

the protocol model. The authors of [48], [36], and [47] proposed approximation algorithms

for multi-hop networks assuming unlimited transmission power, constant power and limited

transmission power respectively. But they deal with arbitrary traffic patterns, not converge

cast.

The authors of [40, 12, 70, 32] deal with ConvegeCast in the SINR model. [40] provides

heuristics for ConvergeCast based on trees using the SINR model. They claim to show how

to use multiple frequencies to eliminate interference. Two ConvergeCast heuristics using

Dijkstra and graph coloring are provided in [12]. In [70], nodes are divided into clusters

and a non-linear optimization model is given to get a ConvergeCast solution using the SINR

model. Similarly, Gong and Yang first identify a ConvergeCast tree, then construct a weight-

based heuristic [32] for scheduling on the tee. The weight of a link is related to its capacity to
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cause interference to other links. None of the algorithms in [40, 12, 70, 32] consider multi-rate

sensors or q-coverage, and do not provide any bounds on the accuracy of their solutions.

1.4.2 Aggregated ConvergeCast Scheduling

Most of the existing work for Aggregated ConvergeCast Scheduling uses the protocol, i.e.,

graph-based interference model and a minimum spanning tree rooted at the sink node, also

commonly called Shortest Path Tree in the literature. We start with a brief description of

this work, and then describe related work on the SINR interference model.

1.4.3 Aggregated ConvergeCast Using Protocol Interference Model

Aggregated ConvergeCast Scheduling for unit disk graphs using the protocol interference

model is studied in Kesselman et al. [49], Gandhi et al.[30], Wan et al. [78], Xu et al.

[81], Gagnon et al. [29], Guo et al. [35], Pan et al. [66], Jakob et al. [41], Yousefi et al.

[82]. Guo et al. [35] gave an Aggregated ConvergeCast schedule of length O(D + δ), where

D is the diameter of the input graph and δ is the maximal degree. As every Aggregated

ConvergeCast schedule is of length at least D, it gives O(δ)-approximation ratio (δ can be

Θ(n)). Gandhi et al.[30] gave a randomized approximation algorithm ratio of
√
d̃n, where d̃

is the average degree. Kesselman et al. [49] showed that aggregation can then be achieved in

O(log n) assuming the Collision Detection protocol is available at each sensor. Pan et al. [66]

construct a scheduling tree using a weight function based on receiver’s depth and number

of children and propose a scheduling algorithm based on neighbours’ degree. Jakob et al.

[41] uses top-down approach and produce a heuristic schedule without any tree construction.

Yousefi et al. [82] provided another heuristic based on a distributed algorithm. Erzin et al.

[28] proved that for a given Aggregated ConvergeCast tree, the problem of finding optimal

schedule is still NP-hard using protocol interference model.

1.4.4 Aggregated ConvergeCast Using SINR Interference Model

Moscibroda et al. [64], Li et al. [59], Li et al. [57], Halldorsson et al.[37], and Wang et al.

[77] study the problem using the SINR interference model and propose heuristics. Assuming

discrete power levels, Moscibroda et al. [64] proposed a polylogarithmic bound of O(log4 n)

slots for their scheduling algorithm using an SINR model, where n is the number of sensors.

For uniform or linear power levels, their algorithm needs O(n2 log n) slots. Halldorsson et

al.[37] relax the SINR interference model by using unlimited transmission power, ignoring

noise, and α > 2, where α is the path loss exponent. They then provide an algorithm that
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connects an arbitrary point set in O(log n) slots, improving on the results of Moscibroda et

al. [64].

Li et al.[59] provided a heuristic using the dominating Set for the Aggregated Converge-

Cast. Li et al. [57] provide a O(log 3n) heuristic. This last heuristic uses a round-based

approach; in each round it gives preference to the smaller links and selects set of links sat-

isfying a simplified SINR condition. Data is transmitted on the selected links, whose source

sensors are subsequently removed from consideration. This process is repeated until all sen-

sors forward the aggregated data to the sink. The major drawback of this approach is that it

assumes the network is connected even after removing some links. Wang et al. [77] propose

an algorithm with a lower bound of O(d log 2n)), where d is the depth of the tree. This

algorithm also consists of several in rounds; in each round we schedule all the links in the

highest layer first and repeat this procedure in each round for all the links in different layers.

Indeed, we will compare our algorithms with this last heuristic as it appears to be the most

efficient one using a SINR interference model.

Ebrahimi et al. [24] give a schedule using a mathematical model for a related problem

with several aggregated trees.

1.5 Thesis Contributions

The contributions of this thesis have been published in four papers. We give a brief descrip-

tion of each below:

Chapter 2[8]: We propose an improvement to the TFMP (Time Frame Minimization Prob-

lem) model of [44] to derive a near-optimal set of configurations for ConvergeCast.

Our model allows the transmission of several packets per target, in both single-path

and multi-path settings. We give two new heuristics for solving the pricing problem,

i.e., for generating new improving transmission configurations. Our results show that

significant gains in scalability can be obtained, thanks to our enhanced solution scheme.

Chapter 3[9]: We compare two common approaches to computing a minimum length sched-

ule for the TDMA frame. In the first approach, called the TC-approach, an optimal

(minimum-sized) multi-set of transmission configurations (TCs) that are interference-

free and that cover the ConvergeCast traffic is computed. It is generally left unspecified

in what order and how many times to actually schedule these TCs. In the second ap-

proach, called the two-phase approach, first a routing tree or subgraph is computed,

and next, sets of non-interfering links are scheduled in rounds, based on which links

have available traffic in each round.
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In this paper, we start by giving a new column generation approach called TFM-Tree,

to build an optimal set of TCs when the scheduling is restricted to a tree. Our model

takes into account variable power assignment, q-coverage, and multi-rate sensors. Next,

for any given set of TCs that comprise a feasible solution, we give algorithms to schedule

the TCs. In particular, we give an ILP model that computes an optimal schedule using

the given set of TCs, as well as several new and efficient scheduling heuristics. For

the two-phase approach, we observe that the TFM-Tree model gives as a by-product

a possible routing tree. We give a new scheduling algorithm for the second phase,

called the Round-Optimal-Scheduling (ROS) algorithm, and significantly modify the

scheduling algorithm in [32]. We performed extensive experimental evaluations of

both approaches. Our results show that the two-phase approach using the TFM tree

significantly outperforms the TC-approach for single-rate, single packet per sensor

traffic patterns, but the TC approach gives better results for multi-rate traffic and

when there are a large number of packets per sensor.

All the existing mathematical approaches just output set of configurations but do not

order them. Similarly, a multiset of transmission configurations obtained by phase one

of TFMP does not constitute a schedule for ConvergeCast. We investigated set of al-

gorithms to schedule these transmission configurations and also proposed a mechanism

to obtain the optimal schedule.

Chapter 4[5]: In this paper, we give for the first time, a mathematical programming formu-

lation for a complete and optimal solution, i.e., an ordered sequence of transmission

configurations that achieves ConvergeCast. This solution provides much better re-

sults than those of the previous best available mathematical programming or heuristic

approaches in the literature.

Chapter 5[3]: We consider the scheduling problem for Aggregated ConvergeCast in wireless

sensor networks with the physical model for interference. Previous work on the prob-

lem has provided either heuristics without performance guarantees, or approximation

algorithms which do not perform well in practice. We propose here a first mathe-

matical model that outputs an optimal Aggregated ConvergeCast schedule. Since the

resulting Integer Linear Program (ILP) model is computationally hard to solve, we use

large scale optimization techniques, namely a Dantzig-Wolfe decomposition algorithm,

to solve it. We performed extensive simulations on networks with upto 70 sensors,

and compared our results with one of the best heuristics in the literature [77]. Our

results show that our ε-optimal schedule is significantly better than the previous best

schedule, i.e., it produces TDMA frames that are about 50% shorter.
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All numerical experiments in this thesis were implemented in Java using the CPLEX Concert

Technology (version 12.6). Data sets were the same for Chapter 4 and Chapter 5, but different

for Chapter 2 and Chapter 3.
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Chapter 2

Efficient Minimization of TDMA

Frame Length in Wireless Sensor

Networks

M. Bakshi, M. Kaddour, B. Jaumard, and L. Narayanan. An efficient method to minimize

TDMA frame length in wireless sensor networks. submitted for publication, 2017. An

extended abstract of this paper has been published in IEEE Wireless Communications and

Networking Conference (WCNC), 2015 [7].

2.1 Introduction

Although most of the state-of-the-art Wireless Sensor Networks (WSNs) are formed by nodes

that are designed to operate in an autonomous and distributed fashion, some recent work

in the literature such as [39] indicates that centrally-coordinated network and Media Access

Control (MAC) layer protocols are at least as efficient as distributed protocols in numerous

settings, while bringing several advantages such as code simplicity, ease of management

or observability. In particular, many WSN applications exhibit a regular traffic pattern

resulting from a periodic collection of sensor measurements at a centralized entity called the

sink. In this context, Time Division Multiple Access (TDMA) offers a convenient multiple

access scheme at the MAC layer since it guarantees high bandwidth utilization and low

energy consumption. In TDMA, the time is divided into frames, where each frame contains

a certain number of fixed size time slots. All sensor measurements are to be transmitted

to the sink in a single frame. Typically, a central entity is responsible for defining a frame

schedule, by assigning each node a fixed number of slots for transmitting and receiving data.
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Moreover, several transmission links can be scheduled in the same time slot if no harmful

level of interference occurs among them. This variant is sometimes called Self-Organized

Time Division Multiple Access (STDMA).

Interference is generally captured in theoretical studies or simulation using either the

protocol model or the physical interference model [71]. Under the protocol model, a successful

transmission occurs when the intended receiving node falls inside the transmission range of

its transmitting node and falls outside the interference ranges of all other (non-intended)

transmitters. On the other hand, under the physical model, a transmission is successful if

and only if the Signal-to-Interference-and-Noise-Ratio (sinr) at the intended receiver exceeds

a certain threshold so that the transmitted signal can be decoded with an acceptable bit

error rate. The latter model is widely considered a much more accurate representation of

the behavior of real systems [72]; we adopt this model of interference in our work.

The general problem of determining a minimum-length frame, and consequent schedule,

that satisfies given traffic demands as well as sinr constraints is NP-hard as shown in [10].

In this paper, we study a target coverage application, in which n sensors collectively monitor

a set of m targets, so that each target is monitored by q sensors, and all sensor measurements

are sent to a designated sink node. As explained above, a TDMA frame must specify a set

of transmissions that meet sinr requirements for every time slot in the frame. We define

a transmission configuration to be such a set of links, with associated data rates, that can

transmit concurrently during one time slot subject to the sinr requirements. We study the

TDM Frame Minimization Problem (TFMP), which requires the generation of the smallest

possible multiset of transmission configurations that achieves the transmission of all sensor

measurements to the sink node. It can be easily seen that the TFMP problem is equivalent

to the problem of maximizing the network throughput

2.1.1 Related work

The problem of generating a minimum number of transmission configuration occurrences

to solve communication instances has been extensively studied in the literature for TDMA

wireless networks. There are two classes of algorithms that have been proposed in the

literature.

The first class considers mathematical programming tools, i.e., column generation models

that allow the decoupling of the TFMP+ problem into two subproblems solved alternately

until an optimality condition is satisfied. Earlier work studied the problem in the context of

WiMax networks without considering the transmission power, see, e.g., [25], [15] and then

later with the integration of the power control constraints [26], [14], [62]. In [27], ElBatt and
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Ephremides solved the problem via two alternating phases that define a set of admissible

links along with their transmission power in the context of ad-hoc networks. The main

contribution was to eliminate the need of computationally expensive algorithms by splitting

the problem and executing the power control in a distributed fashion. Kaddour [44] adapted

the previous column generation models for the design of wireless sensor networks subject

to sinr constraints, as well as power control and rate adaptation considerations. However,

due to the computational complexity of generating transmission configurations under such

constraints, his model lacks scalability.

The second class of algorithms deals with heuristics, see, e.g., [11],[48]. For joint link

scheduling and power control with the use of heuristics, see, e.g., [75] who consider the

objective of throughput improvement while considering fairness through a new introduced

factor called demand satisfaction factor. After the original model was formulated as a Mixed

Integer Linear Program (MILP) (not a column generation model), the key idea was to

iteratively use the solutions obtained from a Linear Program (LP)- a relaxed version of

the problem - as guidelines to schedule some channel. Similarly, for joint scheduling and

routing, many heuristics have been proposed; see for example [48], [31], [40], [12], [70], [17],

[58], [61], [13], [53], [45] [36], [47] and [32]. Of these, [48], [40], [12], [70], [36], [47] and

[32] use the sinr model; the remaining papers use the protocol model. The authors of [48],

[36], and [47] proposed approximation algorithms for multi-hop networks assuming unlimited

transmission power, constant power and limited transmission power respectively. But they

deal with arbitrary traffic patterns, not converge cast. The authors of [40, 12, 70, 32] deal

with convegercast in the sinr model. [40] provides heuristics for ConvergeCast based on trees

using the SINR model. They claim to show how to use multiple frequencies to eliminate

interference. Two ConvergeCast heuristics using Dijkstra and graph coloring are provided in

[12]. In [70], nodes are divided into clusters and a non-linear optimization model is given to

get a Convergecast solution using the SINR model. Similarly, Gong and Yang first identify

a ConvergeCast tree, then construct a weight-based heuristic [32] for scheduling on the tee.

The weight of a link is related to its capacity to cause interference to other links. None

of the algorithms in [40, 12, 70, 32] consider multi-rate sensors or q-coverage, and do not

provide any bounds on the accuracy of their solutions. As such, they are not comparable to

our work.

2.1.2 Our results

In this paper, we present a scalable optimization model to minimize the TDMA frame length

that enables the gathering of sensor observations at the sink. The solution consists of finding
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subsets of transmission links which can be activated simultaneously, and an association

between targets and sensors. Our model satisfies the given target coverage requirements

and allows for multi-path routing, power control, rate adaptation. In particular, (i) the

interference model is SINR-based; (ii) sensors can dynamically adjust their transmission

power to reduce interference or hop-distance from the sink; (iii) transmission links can

admit different data rates depending on the SINR threshold at the receiver; (iv) different

packets between the same source and destination can take different paths; (v) a target can

be associated with multiple sensors providing redundancy and reliability to sensing data.

The adopted approach, formulated initially as an integer linear program, relies on a col-

umn generation decomposition formulation to decouple traffic and bandwidth management,

which are solved in the so-called restricted master problem, from feasible configuration gen-

eration, the so-called pricing problem. Our model for traffic and bandwidth management

problem is a generalization of the work in [44], allowing the transmission of several packets

per target by the monitoring sensors. In contrast with [44], the difficult problem of gener-

ating feasible configurations is tackled by two heuristics, called Hybrid1 and Hybrid2, both

of which efficiently generate transmission configurations subject to SINR, rate adaptation

and power control constraints. When our heuristics fail to generate an improving transmis-

sion configuration (i.e., a configuration whose addition improves the value of the current

mathematical model), the pricing problem (generation of new transmission configurations)

is solved exactly.

2.1.3 Organization of the paper

The rest of this paper is organized as follows. We present our network model in Section 2.2.

We describe in Section 2.3 the enhanced column-generation-based model to maximize net-

work throughput. Section 2.3.3 and 2.3.4 are devoted to a detailed presentation of our two

heuristic approaches to solve the pricing problem, i.e., to generate the improving transmis-

sion configurations. Section 2.4 presents our extensive computational experiments in order

to assess the scalability of our approach, and the accuracy of the obtained results, as well as

a comparison with the results of [44]. Finally, conclusions are drawn in Section 2.5.

2.2 Sensor Network Model

We consider a set of n sensors, denoted as S = {s1, s2, ..., sn} and a set of m targets, denoted

as T = {t1, t2, ..., tm}, deployed arbitrarily on a given area. Each target must be covered by

q sensors, known as the q-coverage requirement. We assume that a target can be covered
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by a given sensor if the Euclidean distance between them does not exceed the sensing range

Rmax. Each sensor periodically generates a set of data packets for every target that it is

monitoring; each such data packet is of size a multiple of σ bits. All the monitored data

must be forwarded, possibly after passing through several hops, to a sink node, denoted by

s0.

We assume that each sensor is equipped with a single radio that can be tuned dynamically

without a significant delay to transmit with some power level in the range [0, Pmax]. Let λmax

be the transmission range obtained with power Pmax. Network connectivity is represented

by a directed graph G = (S ∪ {s0}, L) where

L = {(si, sj) : dij < λmax, i = 1, . . . , n, j = 0, . . . , n}.

According to the given deployment of sensors and targets on the area, we assume that all

sensors have a path toward the sink and are able to transmit according to a given modulation

and coding scheme (MCS), as proposed in [54], where MCSr (r ∈ R) generates date rate θr.

Let θ1 < θ2 < . . . < θ|R|.

According to the physical model (see, e.g., [33]), a transmission with rate θr can be

decoded successfully if the SINR measured at the receiver is above a corresponding threshold

βr. More precisely, the transmission of a node si on the link (si, sj) with data rate θr is

successful if SINRij, measured at the intended receiver, given by

SINRij =
pid
−α
ij

N0 +
∑
i′:i′ 6=i

pi′d
−α
i′j

≥ βr (1)

where pi is the transmission power of node si, dij is the distance between sj and sj, α is the

propagation loss exponent, N0 is the ambient noise, and the summation in the denominator

is taken over all other nodes i′ transmitting in the same time slot (even if to different intended

receivers).

We assume a TDMA access scheme, where the channel is divided into time slots of fixed

duration. A set of N contiguous time slots, where N is a system parameter such that the

sink receives q packets from each target (q-coverage), forms a frame. Such a frame repeats

cyclically over the time. In each frame, every sensor node is assigned a set of specific time

slots. This last set constitutes the schedule according to which the sensor nodes operates in

each frame. The duration of each slot is Tslot, which corresponds to the time required to

send a data packet of σ bits using the lowest data rate θ1.
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2.3 TDMA Frame Minimization Problem Plus (TFMP+)

In this section, we describe our solution to the TDMA Frame Minimization problem. We

first give an ILP that we call TFMP+ to solve the problem; this is an extension of the TFMP

model given in [44] that allows for sensors to send multiple packets per target to the sink.

We then enhance the column generation formulation for TFMP given in [44] by introducing

two new heuristics to solve the time-consuming pricing problem. Our experiments show that

our solution is much more scalable than the original TFMP model.

2.3.1 Optimization Model

We adopted a decomposition scheme as in [51],[25],[44] that is based on the concept of a trans-

mission configuration, i.e., a subset of radio links that can be scheduled concurrently without

violating the SINR requirement at each receiver. Our objective is to define a minimum-length

set of TDMA configurations by determining jointly which sensors cover each target, the set

of concurrent transmitting links during each slot, along with their used MCSs and power

levels, and by establishing the routes toward the sink.

A configuration c lasts for one time slot and is formally defined as:

c =

{
(xcijr, p

c
i) : (si, sj) ∈ L, r ∈ R, SINRij ≥ βr,

∑
r∈R

xcijr ≤ 1

}
(2)

where xcijr is a binary parameter indicating if link (si, sj) is scheduled in c with data rate

r, and pci is the transmission power used by si. The set of all potential configurations is

denoted by C.

We denote by the integer variable λc the number of occurrences of configuration c, i.e.,

the number of time slots during which the configuration c is scheduled. Let yij be a binary

variable indicating if target tj is covered by sensor si (i 6= 0). In addition, let fij be an

integer flow variable counting the number of data packets transmitted on link (si, sj) during

the whole TDMA frame. The TFMP+ problem can be formulated by the following Integer

Linear Program (ILP):

[TFMP+] min
∑
c∈C

λc (3)
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subject to: ∑
si∈S

yij = q tj ∈ T (4)∑
sj∈S

fji +
∑
tk∈T

yik × pktsk =
∑

si∈S∪{s0}

fij si ∈ S (5)

∑
si∈S

fi0 = q ×
∑
tkinT

pktsk (6)∑
c∈C

∑
r∈R

Tslotθrx
c
ijrλc − fijσ̂ ≥ 0 (si, sj) ∈ E (7)

λc ≥ 0 and integer, c ∈ C (8)

fij ≥ 0 and integer, (si, sj) ∈ E (9)

yik ∈ {0, 1} si ∈ S, tk ∈ T. (10)

Constraint (4) ensures that every target is covered by exactly q sensors. Constraint (5)

represents a flow conservation rule that states that the sum of the incoming traffic into

sensor si, i.e., the sum of traffic forwarded to si by the other sensors and of the local traffic

generated by the monitoring of targets under the responsibility of si, is equal to the outgoing

traffic. Constraint (6) guarantees that all data packets are gathered by the sink. The channel

capacity constraint (7) ensures that the number of times each link (si, sj) is included in all

the scheduled configurations (λc > 0) is sufficient to forward the allocated traffic: fij σ̂

represents the number of bits to be transmitted on link (si, sj), while
∑
c∈C

∑
r∈R

Tslot θr x
c
ijr λc is

equal to the available channel capacity with the selected set of transmission configurations.

To allow for the possibility that each sensor generates multiple readings for every target

that it monitors, which can be routed independently to the sink, we introduce a new integer

variable “pktsk” which denotes the number of packets collected from each target k. Note

that the different packets collected from the same target can take different routes to the sink.

We also consider the case when a sensor reading does not fit into a time slot, and sensors

need to fragment the reading. In this case we require that the entire reading is assembled

at the next hop before any fragment can be routed further. Note that all fragments of a

packet should now take the same route to the sink. This can be achieved in our model by

simply adjusting the value of the parameter σ̂ in Constraint 7. Recall that Tslot is the time

required to send a packet of size σ using the lowest data rate. So using σ̂ = σ implies no

fragmentation, and σ̂ = 2σ means that each packet should be fragmented into two fragments

of size σ and so on.

Finally, the model also handles the situation when k readings are collected from each
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sensor, but each reading needs to be fragmented. In this case, the multiple packet fragments

corresponding to a reading take the same route (and in fact are reassembled at every node

on the path), while packets corresponding to different readings may take different paths.

While clearly the model is not scalable if it is required to exhaustively enumerate all

the candidate transmission configurations, we can use column generation techniques, as

described in the next section, to solve it by taking advantage of the implicit enumeration of

those configurations, thereby resulting in a scalable solution scheme.

2.3.2 Column Generation and Pricing Problem

Column generation (CG) is an exact and efficient algorithm for solving large-scale linear

programs [56],[20]. A key observation is that for a mathematical program with m constraints

and n variables, the optimal solution of the linear programming cannot contain more than m

nonzero variables, even if m << n, and n is an exponential function, e.g., with respect to the

number of links in a network. Consequently, most of the variables will be non-basic (equal to

zero) in the optimal solution of the linear program. CG is a technique that allows to quickly

identify the set of nonzero variables in the optimal solution without an explicit enumeration

of all the variables (columns) of the optimization model. Indeed, the original problem (called

the master problem) is decomposed into the restricted master problem (RMP) and the pricing

problem. The RMP is the problem as described in (3) - (10) with a very small collection of

configurations (or variables λc), and aims at selecting the best set of configurations among the

generated/considered ones. The pricing problem corresponds to the configuration generator

that generates only the variables (λc)/configurations which improve the optimal value of the

objective of the current RMP. The solution process alternates between the solution of the

RMP and of the pricing until the optimality condition is satisfied: the pricing problem can

no longer generate a variable (column/configuration) such that, if added to the current RMP,

the optimal value of the enhanced RMP is improved. This amounts to checking whether the

optimal value of the objective function of the pricing problem, i.e., the reduced cost (see,

e.g., [56], [20]) is negative (minimization case).

For our problem TFMP+, the RMP is formulated as the linear relaxation of (3)-(10)

with only a subset C0 ⊆ C of candidate configurations, in which the variables λc, fij and yij

become non negative variables with λc ≥ 0.

The pricing problem relies on finding a new transmission configuration with a negative

reduced cost. While the search for an improving transmission configuration guarantees the

best improvement (for the next re-optimization of the current RMP) with the addition of

a single configuration at a given iteration of the column generation algorithm, it suffices
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to generate a configuration with a negative reduced cost (not necessarily the most negative

one) in order to iterate. Moreover, it usually leads to an overall faster solution of the linear

relaxation, see, e.g., Chapter 1 in [22].

Let uij be the dual variables associated with (7- ij), the reduced cost of any configuration

c can be written:

red costc = 1−
∑

(si,sj)∈L

∑
r∈R

θr Tslot x
c
ijr uij. (11)

If the minimum reduced cost has a negative value, the corresponding configuration (column)

is added to C0 and the RMP is solved again, otherwise the optimal solution has been reached.

We call the pricing problem provided in [44] as PP TFMP. We use TFMP+ as the name of our

enhanced optimization model given in Section 2.3.1. using the PP TFMP pricing problem.

The computationally time consuming part corresponds to the solution of the PP TFMP.

Consequently, we discuss in the next section how to solve it more efficiently, keeping in mind

that it suffices to identify a transmission configuration with a negative reduced cost (no need

to identify the transmission configuration with the most negative reduced cost) in order to

iterate in the solution process of the column generation technique.

2.3.3 Algorithm Hybrid1 - Enhanced Pricing Problem1

We propose a hybrid algorithm, called Hybrid1, which attempts to generate an augmenting

transmission configuration, i.e., a configuration with a negative reduced cost, thanks to a

greedy heuristic called Greedy1, and which solves PP TFMP exactly if Greedy1 fails in the

generation of an augmenting transmission configuration.
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Algorithm 1 Heuristic Greedy1

Require: Dual values, set of data rates, link lengths

Ensure: Lselect: Transmission configuration (with power values and data rates)

Lselect ← ∅ {Links already selected as radio links of the configuration under construction}
Lsorted ← list of dual values sorted in decreasing order

for each link ` ∈ Lsorted do

okay-to-add ← true.

for each `′ ∈ Lselect do

if (` and `′ have a common endpoint) or (PP TFMP+ (`) is not feasible) then

okay-to-add ← false.

end if

end for

if okay-to-add then

Lselect ← Lselect ∪{`}
end if

end for

Greedy1 proceeds as follows. It adds in a greedy fashion the links that can contribute

the most to the reduced cost, while causing the least interference. It starts from an empty

transmission configuration whose links will later be stored in the Lselect set of links. We

next try to add the link associated with the largest dual values (see the expression (11) of the

reduced cost) in order to reach a negative reduced cost. Let ` be that link. Ties are broken

using the length of the links, as a shorter link will cause less interference than a longer one.

In order check whether ` can be added to the configuration under construction, we check the

SINR conditions, and search if there exists a feasible power value. This can be done using

the following restricted version PP TFMP+(`) of PP TFMP in which ` = (i, j) is checked

against the links already selected for defining the next transmission configuration, in order

to identify the rate θr of ` and the power Pr of its source i.

[PP TFMP+(`)] max
∑
r∈R

θrTslotu`xr (12)
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subject to:∑
r∈R

xr ≤ 1 (13)

pi′d
−α
`′ − βr(`′)

∑
`′′=(i′′,j′′)∈Lselect, i′ 6=i′′

pi′′d
−α
i′′,j′ ≥ βr(`′)N0 `′ = (i′, j′) ∈ Lselect \ {`} (14)

pid
−α
` − βr

∑
`′=(i′,j′)∈Lselect,i′ 6=i

pi′d
−α
i′,j − L1xr ≥ βrN0 − L1 r ∈ R (15)

0 ≤ pi′ ≤ Pmax `′ = (i′, j′) ∈ Lselect (16)

xr ≤ L2 pi r ∈ R (17)

xr ∈ {0, 1} r ∈ R (18)

We now stress the particularities of PP TFMP+(`). The decision variables are: xr, the

rate of link ` = (si, sj) and p`′ , the transmission powers of all the links `′ in the configuration

under construction (including `). Constant βr`′ is the SINR threshold associated with the

links `′ (rate r`′) in Lselect. L1 and L2 are again large constants.

PP TFMP+(`) determines whether or not a candidate link ` with a particular dual value

can be added to the configuration under construction. PP TFMP+(`) is a particular case of

PP TFMP restricted to one link, under the assumption that the links of Lselect have been

selected to be part of the configuration under construction. In order to be able to add ` to

Lselect, we need to check the SINR requirements with constraints (14) and (15), for both `

with respect to Lselect and for any `′ ∈ Lselect with respect to (Lselect \ {`′}) ∪ {`}. Once

the rate of ` is selected, under the condition that a feasible solution exists, powers of the

origins of the links of Lselect need to be recomputed. Lastly, we evaluate the contribution

of ` in the reduced cost, see (11), of PP TFMP+.
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Algorithm 2 Hybrid1

Require: Dual values, set of data rates, link lengths

Ensure: Either LP OPT = true., that is, the linear relaxation of the TFMP problem has

been solved optimally, or returns a transmission configuration with a negative reduced cost.

LP OPT ← false.

Call Greedy1  Lselect

if red cost(Lselect) ≥ 0 then

Solve PP TFMP exactly.

if red cost(PP TFMP) ≥ 0 then

LP OPT ← true.

else

return configuration produced by PP TFMP.

end if

else

return configuration Lselect produced by Greedy1.

end if

Algorithm 2 describes the complete Hybrid 1 algorithm. First it calls the Greedy1

heuristic given in Algorithm 1. If the returned configuration has a negative reduced cost,

then we add the corresponding column to the RMP. Otherwise, we call the exact pricing, that

is, PP TFMP, for finding a new configuration before moving back to the RMP. This process

of invoking Hybrid1 algorithm is repeated until the exact pricing returns a nonnegative

reduced cost.

2.3.4 Algorithm Hybrid2 - Enhanced Pricing Problem2

While Hybrid1 improves the scalability of the TFMP+ model, it still requires solving an

MILP (that is, PP-TFMP+(`)) in each iteration of the Greedy1 heuristic. We next propose

a new hybrid algorithm, called Hybrid2, in which we attempt to eliminate the iterative

solution of an MILP in the Greedy1 heuristic. In order to do so, we use the application of

the Perron Frobenius (PF) theorem to the Power Control Problem, as formulated in [67], in

order to check the feasibility of a given configuration. We first recall that theorem, and then

explain how we use it in a greedy heuristic, called the Greedy2 Heuristic. Hybrid2 is similar

to Hybrid1, except for replacing Greedy1 by the Greedy2 Heuristic.
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PF Theorem

Consider n transmitters with powers P1, P2, ...Pn > 0, transmitting to n receivers. Let

Gij > 0 be the path gain of transmitter j to receiver i, and βi be the SINR threshold for

receiver i. Then, the signal power at receiver i is Si = GiiPi and interference power at

receiver i is Ii =
∑
k 6=i

GikPk. Assuming a null noise (Ni = 0), we get:

SINR =
Si
Ii

=
GiiPi∑

k 6=i
GikPk

=
Pi∑

k 6=i
G̃ikPk

≥ βi ⇒ βi
∑
k 6=i

G̃ikPk ≤ Pi.

In matrix form, it becomes:
β1 0 · · · 0

0 β2 · · · 0

0 0 · · · 0

· · ·
· · · 0 0 βn




0 G1j · · · G1n

G21 0 · · · G2n

Gi1 Gi2 · · · Gin

· · ·
Gn1 Gnj · · · 0


︸ ︷︷ ︸

A


P1

P2

· · ·
· · ·
Pn


︸ ︷︷ ︸

P

≤ 1︸︷︷︸
λ

×


P1

P2

· · ·
· · ·
Pn


︸ ︷︷ ︸

P

. (19)

It leads to AP ≤ λP where λ is the eigenvalue and P is the eigenvector.

An eigenvalue/eigenvector pair of the matrix A ∈ Rn×n and A ≥ 0 satisfies the equation

Ax = λx where λ and x represent the eigenvalue and the corresponding eigenvector, respec-

tively. The PF theorem says, if a matrix A ∈ Rn×n and A ≥ 0 then there is an eigenvalue

λpf of A that is real and nonnegative. For any other eigenvalue λ of A, we have |λ| ≤ λpf .

As shown in [67], a set of links is SINR-feasible if the eigenvalue λ satisfies 0 ≤ λ ≤ 1.

Heuristic Greedy2

The heuristic Greedy2 is described in Algorithm 3. We first build a list of all links, Lsorted

sorted in decreasing order of dual values, with one copy of the link for each possible data

rate. We observe that very often dual values have similar values. Consequently, in order not

to always choose the same set of links, we introduce some randomness in the link selection

among the links with identical dual values. Next, we start building the configuration Lselect.

In each iteration, we select the next link from Lsorted to add to the configuration and use the

Perron-Frobenius theorem described above to check if the eigenvalue 0 < λ ≤ 1, which implies

the feasibility of the configuration. When no more links can be added, the corresponding

eigenvector gives the powers to be used by the links. If all the powers are less than the
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maximum power then we can consider the configuration under construction to be SINR

feasible.

Algorithm 3 Heuristic Greedy2

Require: Set of dual values.
Ensure: Status: false/true; if true  a potential configuration with its set of links,

and for each link: power value and data rate.
N(`)← set of links that share an endpoint with `
for all links ` and all data rates θ do
key(`θ) = θ× dual value of `
L← L ∪ {`θ}

end for
Lsorted ← L sorted in decreasing order of key(`θ).
if MostDualsAreSame then
Lsorted ← randomly permute links of same dual value in Lsorted

end if
`← first element of L
Lselect ← {`}
Lsorted ← Lsorted \ (N(`) ∪ {`})
while |Lsorted| > 0 do
`← Next(Lsorted)
Determine whether isSINRFeasible (i.e., SINR ≥ βr) is true/false using Perron-

Frobenius theorem on Lselect ∪ {`}
if isSINRFeasible then
Lselect ← Lselect ∪ {`}
Lsorted ← Lsorted \N(`)

end if
Lsorted ← Lsorted \ {`}

end while
if red cost(Lselect) < 0 then

return true
else

return false
end if

For completeness we give the pseudocode for Hybrid2 in Algorithm 4.

2.3.5 ILP Solution of the TFMP+ Problem

The CG technique solves the linear relaxation of ILP (3)-(10), while we need to obtain integer

values for variables λc and fij, and binary values for variables yik. Recall that the coverage

variable yik are decision variables that indicates whether or not a target is covered by a given

sensor (0 or 1), and the flow variable fij counts the number of data packets transmitted on
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Algorithm 4 Hybrid2

Require: Dual values, set of data rates, link lengths
Ensure: Either LP OPT = true., that is, the linear relaxation of the TFMP problem has

been solved optimally, or returns a transmission configuration with a negative reduced cost.
LP OPT ← false.
Call Greedy2  Lselect

if red cost(Lselect) ≥ 0 then
Solve PP TFMP exactly.
if red cost(PP TFMP) ≥ 0 then

LP OPT ← true.
else

return configuration produced by PP TFMP.
end if

else
return configuration Lselect produced by Greedy2.

end if

link (si, sj) during the TDMA frame. Indeed, a data packet should reach the sink as a whole

entity without costly fragmentation.

In order to derive an ILP solution, we solve exactly the last generated RMP with integer

requirements for variables λc, fij and yik. This results in an upper bound z̃ilp on the optimal

ILP value of (3)-(10), denoted by z?ilp. Let z?lp denote the optimal LP solution of the TFMP+

problem. Note that z?lp ≤ z?ilp ≤ z̃ilp, and that the accuracy ε of solution z̃ilp is given by:

ε =
z̃ilp − z?lp

z?lp
.

In our optimization model we use three pricing algorithms namely PP TFMP pricing,

Hybrid1 pricing and Hybrid2 pricing. We name these three optimization models as TFMP+,

Hybrid1 and Hybrid2 optimization models respectively. All the three optimization models

produce an optimal CG solution. In some cases, in our experiments, due to slow convergence,

we needed to stop the solution process of the LP solution before the optimality condition was

satisfied. In such a case, we estimated the solution accuracy with ε1, computed as follows:

ε1 =
z̃ilp − zbestlp

zbestlp

,

where zbestlp is the best estimate we obtained for z?lp. Note that z?lp ≤ zbestlp , and that ε1 is not

an upper bound on the solution accuracy, but merely an estimate.
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2.4 Numerical Results

In this section, we discuss the numerical experiments we conducted in order to evaluate the

performance of our Hybrid1 and Hybrid2 solution schemes. We compare their performance

with the TFMP optimization model of [44] using PP TFMP pricing, In Section 2.4.1, we

describe the data instances. In Section 2.4.2, we compare the accuracy of the three schemes

for different values of q (q-coverage). Here we restrict our experiments to single-rate sensors,

and assume that each sensor generates a data packet each time it monitors a target. In

Section 2.4.3, we analyze the performance of all three algorithms for multi-rate sensors, and

in Section 2.4.4 we analyze the performance of the Hybrid1 algorithm when we scale our

model to multiple packets from each target. Finally, in Section 2.4.5, we compare the power

characteristics of the solutions provided by all three algorithms.

2.4.1 Data Instances

Sensors and targets were uniformly and independently deployed over a square area of 625

meters side length. We fixed the number of targets to 100 nodes and then varied the number

of sensors from 40 to 110 nodes. We also considered three different coverage levels to provide

reliability and redundancy. We considered a single sink in all experiments. During the

generation of input data instances, we ensure that each target/sensor has at least one path

to the sink node. We also ensure that all the input data instances have at least q sensors

within the maximum transmission range of each target (q-coverage). This ensures that we

can use the same data instance to compare the performance of different coverage levels. All

presented results correspond to averages over 10 data instances.

The model was implemented in Java using the CPLEX Concert Technology (version

12.6). We ran all our experiments on a cluster with 12 GB of memory. Similar to the

parameters used in the literature e.g., [44] and out-door sensor specifications, we set the

maximum transmission power to 13 mW, the path loss exponent to α = 2, and the noise

to 10−6 W. The sensing range was fixed to 150 meters. On the basis of the modulation

and coding schemes proposed in [54] as an extension to the 802.15.4 standard, the possible

transmission rates are bk ={250 kb/s, 500 kb/s, 1 Mb/s, 2 Mb/s} and require the following

SINR thresholds βk ={1.3, 2.0, 4.0, 10.0}. Note that we considered the standardized case of

a single available data rate, which then corresponds to 250 kb/s. We assume single packet

size σ = 1,000-bytes as is standard in the literature. Recall that our model allows for larger-

sized packets, by resetting the value of σ̂ in Constraint 7, and for multiple packets per target

by changing the parameter pktsk; this will be used in the experiments in Section 2.4.4.
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2.4.2 Comparison of the solution accuracies and computational

times of TFMP, Hybrid1 and Hybrid2 algorithms

In this section, we compare the performance of the previously proposed TFMP algorithm [44]

with the Hybrid1 and Hybrid2 algorithms given in Section 2.3.3 and 2.3.4. Recall that the

objective of TFMP, Hybrid1 and Hybrid2 algorithms is to find the minimum frame length.

We therefore compare how these algorithms perform under similar settings. Table 1 shows

the frame length achieved when the algorithms are restricted to using a single data rate (250

kbps), while Table 2 reports the average computational times(in seconds).

Table 1: Average number of time slots with q-coverage (10 instances) - Single rate

#
q=1

sensors
TFMP Hybrid1 Hybrid2

z?lp/ † zbestlp z̃ilp ε/ † ε1 z?lp/ † zbestlp z̃ilp ε/ † ε1 z?lp/ † zbestlp z̃ilp ε/ † ε1
40 1,713.7 1,714.0 0.0 1,713.7 1,714.4 0.0 1,713.7 1,714.0 0.0

50 1,452.1 1,453.3 0.0 1,453.0 1,454.1 0.1 1,452.1 1,453.2 0.0

60 1,131.5 1,132.7 0.1 1,131.5 1,132.7 0.1 1,131.5 1,132.9 0.1

70 1,057.9 1,058.6 0.1 1,057.9 1,059.7 0.2 1,057.9 1,059.2 0.1

† 80 944.5 946.9 0.2 945.3 947.6 0.2 945.1 947.3 0.2

† 90 885.1 888.2 0.4 884.7 887.9 0.4 890.9 893.3 1.0

†100 1,077.9 1,081.3 23.5 875.6 878.8 0.4 874.2 877.9 0.3

†110 1,959.6 1,960.7 115.1 1,090.0 1,092.0 19.8 911.4 915.6 0.5

#
q=2

sensors
TFMP Hybrid1 Hybrid2

z?lp/ † zbestlp z̃ilp ε/ † ε1 z?lp/ † zbestlp z̃ilp ε/ † ε1 z?lp/ † zbestlp z̃ilp ε/ † ε1
40 3,588.8 3,589.2 0.0 3,588.8 3,589.2 0.0 3,588.8 3,589.2 0.0

50 3,064.6 3,065.5 0.0 3,064.6 3,065.4 0.0 3,064.6 3,065.4 0.0

60 2,376.9 2,378.1 0.0 2,376.9 2,378.2 0.1 2,376.9 2,378.1 0.0

70 2,252.9† 2,255.4 2.1 2,208.9 2,211.4 0.1 2,208.9 2,210.3 0.1

† 80 1,955.3 1,957.1 0.0 1,956.4 1,958.3 0.1 1,954.5 1,956.2 0.0

† 90 1,822.4 1,825.2 0.4 1,818.5 1,820.9 0.1 1,823.9 1,826.6 0.4

†100 1,935.3 1,938.1 7.4 1,804.0 1,807.6 0.2 1,807.1 1,810.9 0.4

†110 4,065.6 4,066.8 115.2 1,883.8 1,887.7 0.2 1,889.5 1,892.9 0.5

#
q=3

sensors
TFMP Hybrid1 Hybrid2

z?lp/ † zbestlp z̃ilp ε/ † ε1 z?lp/ † zbestlp z̃ilp ε/ † ε1 z?lp/ † zbestlp z̃ilp ε/ † ε1
40 5,635.6 5,635.6 0.0 5,635.6 5,635.6 0.0 5,635.6 5,635.6 0.0

50 4,820.1 4,821.0 0.0 4,820.1 4,821.1 0.0 4,820.1 4,821.0 0.0

60 3,734.4 3,736.0 0.0 3,734.4 3,736.0 0.0 3732.9 3,734.7 0.0

70 3,434.9† 3,436.4 0.2 3,430.9 3,433.1 0.1 3,430.9 3,432.3 0.0

† 80 3,005.5 3,007.0 0.0 3,005.9 3,007.9 0.1 3,008.5 3010.0 0.1

† 90 2,951.5 2,954.4 5.6 2,797.9 2,800.7 0.1 2,809.6 2812.7 0.5

†100 2,787.4 2,790.6 1.9 2,739.5 2,742.5 0.1 2,783.3 2,786.2 1.7

†110 6,580.2 6,581.8 125.8 3,089.3 3,092.7 6.1 2,915.1 2,918.5 0.1

† LP solution of the RMP is stopped when the solution of PP takes more than 12h

For smaller topologies, we consider accuracy ε using the lower bound as given by z?lp.
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For larger input instances, as discussed in Section 2.3.5, we consider accuracy ε1 using best

found lower bound, as given by zbestlp , with a time limit of 12h. In Table 1 we provide the

accuracies of our three solutions for (q-coverage) with q = 1, 2, 3. We can see that all these

three algorithms provide very good accuracies or ε/ε1 optimal solutions. To measure the

scalability of our algorithms, we look at the results of the large input instances, as for smaller

instances all three algorithms provide an identical lower bound. We can see that the two

hybrid algorithms are comparable. However, they both converge faster and produce solutions

with better accuracies for 1, 2, and 3-coverage. % q (q-coverage).

Table 2: Average computational times with q-coverage (seconds) - Single Rate

TFMP Hybrid1 Hybrid2

#
q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

sensors

40 59.7 64.4 72.7 44.6 54.5 54.4 52.9 61.4 70.6

50 276.7 335.0 435.1 226.0 285.5 377.6 406.3 660.8 952.8

60 1,310.9 2,016.5 2,905.9 1,150.8 1,887.6 2,510.9 2,889.0 4,560.8 5,495.9

70 10,968.9 11,368.7 15,486.0 10,924.8 13,527.9 16,680.7 14,961.0 16,337.2 19,068.5

†80 26,679.2 29,521.7 42,074.2 25,650.0 29,833.4 37,843.9 29,811.5 31,064.9 39,426.3

† 90 35,078.2 43,905.7 38,762.4 33,139.2 42,718.1 42,615.2 32,543.3 43,858.3 45,480.8

† 100 42,763.9 89,937.3 44,158.3 41,160.8 41,520.6 41,517.3 37,926.4 42,893.7 43,858.3

† 110 44,443.1 44,088.7 45,348.8 44,411.5 45,643.1 46,021.3 46,713.7 46,875.7 49,010.4

† LP solution of the RMP is stopped when during the solution of PP, we reach the time limit (12h)

Table 2 reports the average time of 10 problem instances for all three TFMP, Hybrid1

and Hybrid2 algorithms. The time taken by the hybrid algorithms matches with that of

TFMP+ for smaller instances. For larger instances (n ≥ 80), the LP solution of the RMP is

stopped when the PP takes more than 12 hours. So the time taken by all three algorithms

is comparable for large instances. However, Hybrid1 and Hybrid2 converge to much better

solutions in this time. We may observe that the time taken by Hybrid1 algorithm is less

than that of Hybrid2 algorithm. Another interesting observation is that as the coverage level

increases, cpu time only increases slightly, even though traffic increases by a factor of q.
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Table 3: Analysis of the Number of Generated Configurations - Single Rate

#
TFMP

sensors
q= 1 q= 2 q= 3

Overall # Overall # Overall #

# selected # selected # selected

40 34.7 17.3 37.5 19.6 42.3 22.7

50 65.7 22.6 76.6 25.5 86.9 28.2

60 131.3 29.1 156.2 33.1 171.3 37.0

70 230.0 38.9 200.8 38.8 237.4 43.3

† 80 258.0 42.3 265.0 44.2 284.6 47.9

† 90 256.9 39.4 260.7 43.4 237.7 44.4

† 100 149.4 34.4 140.1 34.0 158.6 36.3

† 110 50.7 32.1 58.7 42.4 62.0 48.8

#
Hybrid1

sensors

q= 1 q= 2 q= 3

Overall # # exact Overall # # exact Overall # # exact

# selected PP # selected PP # selected PP

40 44.9 18.9 17.2 50.0 21.7 21.5 51.5 23.5 23.0

50 87.4 23.6 43.6 94.2 27.4 52.4 108.8 29.9 62.0

60 167.3 30.5 101.9 203.9 33.0 123.0 208.7 37.1 131.6

70 284.2 38.1 189.3 296.4 42.8 200.2 303.5 44.4 214.8

† 80 316.9 40.5 206.4 335.3 45.2 235.6 348.0 46.8 237.7

† 90 346.4 39.7 204.4 359.4 43.9 219.3 365.0 45.2 204.7

† 100 290.3 35.7 133.0 262.4 37.8 125.2 285.6 38.6 137.0

† 110 180.0 33.3 73.6 211.0 33.0 85.8 173.3 35.6 61.9

#
Hybrid2

sensors

q= 1 q= 2 q= 3

Overall # # exact Overall # # exact Overall # # exact

# selected PP # selected PP # selected PP

40 50.3 19.1 18.5 61.4 22.2 22.0 63.1 24.6 24.0

50 112.3 24.2 48.0 111.8 25.8 54.9 128.8 30.3 67.1

60 175.2 28.9 102.7 206.1 33.8 135.4 218.4 37.4 142.6

70 295.5 38.4 202.6 286.9 40.7 202.5 313.1 45.3 228.2

† 80 325.8 40.8 231.3 337.9 44.0 239.6 352.1 48.0 253.4

† 90 329.0 39.1 224.1 335.2 44.3 231.3 309.5 44.8 213.0

† 100 263.4 34.3 150.1 247.9 36.2 146.8 255.7 36.8 146.1

† 110 191.2 31.6 91.1 155.4 34.9 75.6 133.9 38.9 63.6

† LP solution of the RMP is stopped when the solution of PP takes more than 12h

Table 3 gives the total number of iterations generated by TFMP and hybrid solutions,

the number of selected columns, as well as the number of times the original pricing problem

is called in the ”# exact PP” column. We can see that particularly for larger data instances,

the total number of generated columns is much smaller for TFMP than both the Hybrid1

and Hybrid2 algorithms; this explains the poorer quality of its solutions. The number of

selected columns (among all the generated columns) in the final solution are shown in the

‘selected’ column. We observe that the number of selected columns is higher for both our

algorithms compared to TFMP; this means they produce higher number of configurations

compared to TFMP. Finally, a larger value in the ”# exact PP” column implies a higher

solution time, as the expensive exact pricing is being called more often.
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2.4.3 Comparison of single and multi-rate networks

Table 4: Comparison of Single and Multi-rate average number of slots

TFMP Hybrid1 Hybrid2

#
Single Multi Gain Single Multi Gain Single Multi Gain

sensors

40 1,714.0 1,377.0 24.5 1,714.4 1,377.0 24.5 1,714.0 1,377.0 24.5

50 1,453.3 1,224.6 18.7 1,454.1 1,160.0 25.4 1,453.2 1,159.9 25.3

60 1,132.7 897.7 26.2 1,132.7 897.7 26.2 1,132.9 897.6 26.2

70 1,058.6 910.0† 16.3 1,059.7 818.3 29.5 1,059.2 818.0 29.5

† 80 946.9 1,286.0 -26.4 947.6 733.8 29.1 947.3 752.6 25.9

† 90 888.2 1,711.0 -48.1 887.9 697.8 27.2 893.3 694.4 28.6

†100 1,081.3 1,701.8 -36.5 878.8 700.9 25.4 877.9 690.6 27.1

† LP solution of the RMP is stopped when during the solution of PP, we reach the time limit (12h)

Gain = 100× (zsingleilp − zmulti
ilp )/zmulti

ilp

Table 4 compares the time-slots required for solutions using single and multi-rate sensors for

all three algorithms. For larger topologies we stop our computation after a certain time as

explained earlier. As multi-rate solutions are associated with an increase in the combinatorial

aspect of the TFMP model, the quality of the solution within the time constraint is not so

good. Consequently, we do not see improvement over single rate solutions for the case of

TFMP. However, both Hybrid1 and Hybrid2 obtain significant improvements using multi-

rate sensors. In particular, we gain around 25 percent of time slots using multi-rate solutions

over single rate. Thus, the scalability of our two Hybrid1 and Hybrid2 solutions is much

better.

Table 5: Average computational times with q-coverage (seconds) - Multiple rates

Sensors TFMP Hybrid1 Hybrid2

40 394.7 287.8 383.6

50 1,846.8 1,542.8 2,084.2

60 10,627.8 9,119.0 12,539.0

70 35,119.2 36,970.7 35,747.6

† 80 48,232.0 42,717.8 41,559.2

† 90 57,568.3 48,694.1 51,393.7

†100 57,544.7 56,911.7 56,943.3

† LP solution of the RMP is stopped when during the solution of PP,

we reach the time limit (12h)
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Table 5 shows the time taken by all three algorithms for multi-rate sensors. Comparing

Tables 2 and 5, we see that multi-rate solutions take a longer time than single rate solutions.

This is to be expected as the number of combinations to be considered is much more. This

appears to be the cost to be paid for the better quality of multi-rate solutions.

2.4.4 TFMP+: One vs. several packets per target

In this section, we report on two different experiments to investigate the effect of increasing

the amount of traffic in the network on the number of links in the generated configurations. In

both cases we used the Hybrid1 algorithm, and considered 40 single-rate sensors monitoring

100 targets.

In the first experiment, we assume that we have multiple readings at each target and

that each reading is of size σ and can fit in one time slot. Different readings can therefore

take different paths to the sink. Our results are summarized in Figures 2(a) and 3(a). We

varied the number of readings/packets collected from each target by changing the parameter

pktsk from 1 to 64 for each simulation.

In the second experiment, we consider the scenario when there is one reading per sensor,

but it needs to be fragmented and needs multiple time slots to be sent to the next hop, where

it is reassembled before being forwarded to the next hop. Thus all packets corresponding to

a sensor reading use the same path to the sink. For that purpose, we increased the parameter

σ̂, i.e., we use σ̂ = σ, 2σ, 4σ, . . . 64σ in (7). Our results are summarized in Figures 2(b) and

3(b). Observe that this corresponds to varying the number of slots from 1 to 64 for each

reading to be forwarded to the next hop. .

In Figure 2, we depict the number of configurations on the vertical axis, and the size (i.e.,

number of transmitting links) of the configurations on the horizontal axis, while in Figure

3, the percentage of links in each configuration is on the vertical axis, and the configuration

index is on the horizontal axis, where each block of vertical bars is associated with the

number of slots it takes to transmit one packet.

In Figures 2 and 3, we can see that, as traffic increases, we can see a larger percentage

of larger configurations, that is, configurations with larger number of links. This implies

greater spatial reuse, as higher number of links can be scheduled simultaneously. We can

therefore expect that with a dynamic traffic stream, we would see greater efficiency of reuse.
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Figure 2: Distribution of the sizes of the configurations
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Figure 3: Distribution of the links among the configurations

2.4.5 Power Characteristics of the Transmission Configurations

In this section, we analyze various characteristics of the transmission configurations generated

by the three algorithms: TFMP, Hybrid1, and Hybrid3. All results in this section are from
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simulation runs for 70 single-rate sensors collecting data from 100 targets. Figure 4 compares

the transmission power and number of links in each configuration for TFMP, Hybrid1 and

Hybrid2. The x-axis shows specific configurations used, together with the number of times it

is used in the solution. The red line corresponds to the number of links in that configuration.

The blue bars represent the sum of powers in that configuration. As seen in Figure 4, the

total power used by links in a configuration is, in general, proportional to the number of links

in that configuration. We conclude that the power used by all links is similar on average, for

all configurations, in all algorithms. This is a good indication of a good solution. Finally,

we computed the total power used by all links used in all configurations (including multiple

copies of every configuration). This represents the energy cost of the solution. Our results

show that this cost is similar for the solutions produced by all three algorithms, for q = 1, 2, 3.
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(b) TFMP with q=2

0 

2 

4 

6 

8 

10 

12 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

t8
4

0
 

t4
0

 

t8
0

0
 

t1
3

0
 

t2
4

0
 

t1
2

0
 

t3
2

 

t8
 

t4
3

 

t3
2

 

t5
6

 

t1
6

 

t1
6

 

t1
6

 

t9
6

 

t1
6

 

t6
4

 

t2
1

 

#L
in

ks
(r

e
d

) 

Su
m

_P
o

w
e

r_
C

fg
 

Configuration 

(c) TFMP with q=3
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(d) Hybrid 1 with q=1
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(e) Hybrid 1 with q=2
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(f) Hybrid 1 with q=3
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(g) Hybrid 2 with q=1
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(h) Hybrid 2 with q=2
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(i) Hybrid 2 with q=3

Figure 4: Total power per configuration (70 single-rate sensors, 100 targets)
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Table 6: Number of configurations of a given length (70 single-rate sensors, 100 targets)

q=1 q=2 q=3

#
TFMP Hybrid1 Hybrid2 TFMP Hybrid1 Hybrid2 TFMP Hybrid1 Hybrid2

Links

1 240 216 0 520 0 0 840 0 0

2 0 33 120 32 336 181 136 328 226

3 96 487 160 403 976 184 1072 1704 551

4 512 118 320 112 432 422 312 448 970

5 192 265 184 1012 248 584 602 1048 769

6 128 48 104 379 256 291 646 272 548

7 104 160 144 154 152 154 355 248 200

8 8 9 16 9 296 130 69 40 217

9 56 0 32 76 24 35 128 48 11

10 0 0 0 31 8 0 8 48 51

11 0 0 0 0 0 0 16 0 0

Average Conf. Length 4.2 3.8 4.6 4.3 4.3 4.7 4.0 4.2 4.8

Table 6 gives the number of configurations of a given length. For q = 1, the average

configuration length of Hybrid1 (3.8) is less than that of TFMP(4.2) and Hybrid2(4.6).

Hybrid2 in general produces larger configurations. These three algorithms use different

average configuration lengths, and yet produce similar same frame size for smaller networks.

2.5 Conclusion

In this paper we studied the TDMA Frame Minimization problem to achieve ConvergeCast

in wireless sensor networks. We designed an optimization model to derive schedules with

minimum length, hence maximizing network throughput. By leveraging advanced network-

ing capabilities offered by current sensors, a wide range of network parameters are considered

in the solution related to coverage, routing, power control and rate adaptation. Since the

straightforward formulations of these problems are NP-hard, we introduced a computation-

ally feasible column-generation-based method to compute near-optimal solutions. Further-

more, since the underlying pricing problem remains NP-hard, we proposed two algorithms

that scale up to problems with larger sizes. Both our algorithms outperform the algorithm

given in [44] for large topologies, and are therefore more scalable. Furthermore, we describe

two realistic scenarios in which each sensor monitoring a target produces multiple packets

relating to the target, and described how to modify our algorithms to support such scenarios.

We performed a comprehensive analysis of the solutions produced by our algorithms.
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Chapter 3

TDMA Scheduling in Wireless Sensor

Networks

M. Bakshi, M. Kaddour, B. Jaumard, and L. Narayanan. TDMA scheduling in wireless sen-

sor networks. submitted for publication, 2017. An extended abstract of this paper has been

published in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).

[2]

3.1 Introduction

A wireless sensor network (WSN) is a network of spatially distributed autonomous sensors

that can monitor physical or environmental conditions, such as temperature, sound, or hu-

midity, and can communicate with each other using wireless transmissions. An important

application of sensor networks concerns target coverage, where the sensor network is tasked

with periodically collecting data about a given set of targets and sending the data to a cen-

tral sink node in the network (see Figure 5(a)). The resulting many-to-one communication

pattern in which data from a set of sources is to be routed to a common sink, is often referred

to as convergecast (see Figure 5(b)). Depending on the environment and application, only a

subset of sensor nodes might be close enough to the targets to monitor them, and in some

cases, in order to ensure reliability, we might require q-coverage, that is, every target is to

be monitored by q sensors.
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Figure 5: convergecast Problem Significance (q=2)

A central issue in the design of sensor networks for such applications is the question

of medium access control (MAC). As in all wireless networks, the nodes share the ac-

cess medium, and there needs to be an access control protocol that arbitrates access to

the medium in a fair and efficient manner. MAC protocols can be broadly classified into

contention-based (IEEE 802.11) and schedule-based (e.g., FDMA, TDMA) protocols. Al-

though conventional wisdom holds that contention-based protocols are more suitable for

WSN since the nodes are designed to work in an autonomous and distributed manner, some

recent work in the literature such as [39] indicates that centrally-coordinated network and

MAC layer protocols are at least as efficient as distributed protocols in numerous settings,

while bringing several advantages such as code simplicity, ease of management or observabil-

ity. In particular, many WSN applications, including target coverage applications, exhibit a

regular traffic pattern by periodically collecting sensor measurements at a centralized sink.

In this context, TDMA (Time Division Multiple Access) offers a convenient multiple access

scheme at the MAC layer since it guarantees high bandwidth utilization and low energy con-

sumption. In TDMA, the time is divided into frames each containing a certain number of

fixed size slots. Typically, a central entity is responsible to define a frame schedule assigning

each node a fixed number of slots for transmitting and receiving data. Moreover, several

transmission links can be scheduled in the same slot if no harmful level of interference occurs

among them.

In this paper, we consider the problem of finding an efficient TDMA schedule for a

convergecast communication pattern in a given WSN. We use the physical or SINR model of

interference: transmission is successful on a link if the signal to interference and noise ratio is

above a certain threshold. Finding a schedule that minimizes the number of slots to achieve

convergecast is NP-hard as shown in [10]. The previous work on this problem has taken one
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of two approaches. The first approach uses mathematical programming to derive a multiset

of transmission configurations, each of which consist of a set of links in the network that

can transmit simultaneously without significant interference. Column generation is typically

used as a technique to speed up the computation. A routing sub-graph is obtained as a

by-product of the computation. The second approach is to divide the problem into that of

finding a convergecast tree, and then specify a scheduling algorithm to route packets along

the edges of the tree.

The advantage of deriving transmission configurations is that each transmission configu-

ration can be scheduled without any further need to check for the possibility of interference.

It is also the case that the multiset of transmission configurations suffices to cover all links

necessary to achieve the convergecast. However, a serious deficiency in this approach is that

a multiset of transmission configurations does not constitute a schedule for transmission, as

there is no implied order between the configurations. Indeed, it may even be impossible to

achieve convergecast using only the so-called optimal set of transmission configurations. For

example, consider a sensor network with a path topology with n nodes from the sole target to

the sink. The optimal set of transmission configurations may contain only two configurations

(all even numbered nodes transmitting in the first configuration and all odd-numbered nodes

in the second, see Figure 6(a)), but any schedule must use at least n − 1 slots (see Figure

6(b)), as that is the distance from the source to the sink. We conclude that the number of

transmission configurations is only a lower bound on the length of the schedule, and in fact

a very weak lower bound in the worst case.
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Figure 6: Scheduling Example
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3.1.1 Our Results

In this paper, we investigate several scheduling questions. Given a set of transmission config-

urations that can potentially achieve convergecast, how do we schedule these configurations?

How useful is it to use only the set of precomputed transmission configurations in finding an

efficient schedule for convergecast, as compared to scheduling maximal sets of links on the

fly based on the current traffic situation? While many convergecast algorithms in the liter-

ature restrict themselves to routing on a tree structure, is there any advantage to be gained

by relaxing this restriction and routing instead on a subgraph of the original network? If

restricting to routing on a tree, how much difference does the choice of tree make?

We study and compare two different approaches to the problem of convergecast. In the

first approach, which we call the TC approach, we provide a new column generation model

to obtain an optimal or near-optimal set of transmission configurations that restricts the

routing graph to be a tree. This is an extension of the TFM model given in [44], where

the routing graph is not necessarily a tree. Given a set of transmission configurations that

constitute a feasible solution to convergecast, we give an ILP to find an optimal schedule

using only the given set of TCs. We also give several scheduling heuristics that are non-

optimal but very efficient in practice. Note that both the ILP and the heuristics can be used

both for tree-based and routing subgraph-based solutions.

In the second approach, which we call the two-phase approach, we first build a routing

tree or sub-graph, and then schedule transmissions along this tree/sub-graph, in each round

choosing a set of non-interfering links among those that have available traffic. We use two

previously defined trees [32], [29] and also give a new tree, called the TFM tree which takes

into account both the SINR interference model and the possibility of varying power levels.

We also consider the routing subgraph defined by the TFMP+ model in [7]. We give a new

scheduling algorithm called the ROS algorithm which uses an ILP to find the optimal set of

links to schedule in every round. We also significantly modify and generalize the algorithm

in [32] to obtain a new algorithm called EMWF that (a) schedules only links that have

data (b) works with routing graphs rather than routing trees (c) deals with q-coverage and

multi-rate sensors. In contrast, the algorithm of [32] does not consider whether or not a link

has available data before scheduling it, only considers routing tees, single-rate sensors, and

1-coverage.

We ran extensive experiments to compare both approaches. Our results can be summa-

rized as follows:

1. Two-phase approaches are better, i.e. produce shorter schedules, than TC-based ap-

proaches for single-rate sensors when there are one or very few packets to be routed
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per sensor. For the TC-based approach, the best results are obtained by our w3-

based heuristic, which prioritizes the configuration with the highest amount of traffic

left to forward. For the two-phase approach, both scheduling algorithms have sim-

ilar performance in terms of number of slots, though the EMWF algorithm is more

computationally efficienti. The TFM tree is the best data gathering tree for both our

two-phase scheduling algorithms.

2. Schedules based on routing subgraphs are better than those restricted to trees, for

both approaches. Two-phase approaches do even better on routing subgraphs relative

to the TC-based heuristic.

3. For multi-rate sensors or when there are many packets to forward, the TC-based heuris-

tic performs better than two-phase algorithms.

3.2 Literature Survey

The problem of determining a minimum-length schedule that satisfies given traffic demands

as well as SINR constraints is NP-hard as shown in [10]. We categorize the existing work

on the problem into approaches using mathematical programming and approaches that use

heuristics, some of which have proven approximation ratios.

Several papers use mathematical programming to solve scheduling problems in wireless

networks. Algorithms for routing and scheduling in wireless multi-hop networks considering

SINR constraints were given by [51]. [76] studied the same problem considering multiple

channels. [44] considers q coverage by wireless sensor networks, and scheduling specifically

for the resulting convergecast operation, and takes advantage of multiple power levels; im-

provements to this approach were given in [7]. In all these papers, the final output of the

algorithms is a multiset of transmission configurations. They do not describe in what order

to schedule these configurations, and as mentioned in Section 1, sometimes it is impossible

to achieve a schedule using only the output multiset of configurations.

Similarly, for joint scheduling and routing, many heuristics have been proposed; see for

example [48], [31], [40], [12], [70], [17], [58], [61], [13], [53], [45] [36], [47] and [32]. Of

these, [48], [40], [12], [70], [36], [47] and [32] use the SINR model; the remaining papers use

the protocol model. The authors of [48], [36], and [47] proposed approximation algorithms

for multi-hop networks assuming unlimited transmission power, constant power and limited

transmission power respectively. But they deal with arbitrary traffic patterns, not converge

cast. The authors of [40, 12, 70, 32] deal with convegercast in the SINR model. [40] provides

heuristics for convergecast based on trees using the SINR model. They claim to show how to
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use multiple frequencies to eliminate interference. Two convergecast heuristics using Dijkstra

and graph coloring are provided in [12]. In [70], nodes are divided into clusters and a non-

linear optimization model is given to get a Convergecast solution using the SINR model.

None of the algorithms in [40, 12, 70, 32] consider multi-rate sensors or q-coverage. As well,

they do not provide any bounds on the accuracy of their solutions. As a result, they are not

directly comparable to our work.

We now describe in a bit more detail two papers which we use in our experimental

evaluation. [32] use a two-phase approach in the SINR model. First they construct a tree

named Low Latency High Compatibility (LLHC) in which they attempt to minimize the

degree of nodes in the entire tree. Next, they use a scheduling algorithm called Maximum

Weight First (MWF), in which first links are sorted in decreasing order according to a

weight function which is equal to the remaining traffic load on the link, plus the number of

interfering links. Subsequently links are considered in order and scheduled in the current slot

as long as they do not conflict with already chosen links. The authors of [29] proposed a two

phase algorithm for aggregation convergecast, in the first phase of which they propose a new

tree called Degree-Constrained Aggregation Tree (DCAT). The key idea is to choose a parent

with minimum degree in the graph, rather than in the tree. Note that their work was for

the protocol model of interference, and the problem studied was aggregation convergecast.

We implement both the LLHC tree and the DCAT tree to compare them with our results.

We also implemented the MWF scheduling function and compared its performance with our

ROS algorithm.

3.3 Network Model

We consider a set of n sensors, denoted as S = {s1, s2, ..., sn} and a set of m targets, denoted

as T = {t1, t2, ..., tm}, deployed arbitrarily on a given area. Each target must be covered by

q sensors for redundancy and reliability. We assume that a target can be covered by a given

sensor if the Euclidean distance between them does not exceed the sensing range Rmax. Each

sensor generates a data packet of size σ bits each time it monitors an associated target. All

the monitored data must be forwarded, possibly after passing through several hops, to a sink

node, denoted by s0.

We assume that each sensor is equipped with a single radio that can be tuned dynamically

without a significant delay to transmit with some power level in the range [0, Pmax]. Traffic

flows inside the network can be represented by a directed connectivity graph G = {S ∪
{s0}, E} with E = {(si, sj) : dij ≤ transmission range, i = 1, . . . , n, j = 0, . . . , n}. There

exists an arc from si (i 6= 0) to sj if the separating distance dij is less than the transmission
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range attained with Pmax. According to the given deployment of sensors and targets on

the area, we assume that all sensors have a path toward the sink, and that each target can

be covered by at least q sensors. Furthermore, sensors are assumed to be able to transmit

according to R modulation and coding schemes (MCS). Each MCSr (1 ≤ r ≤ R) generates

a certain date rate θr (θ1 < θ2 < . . . < θR). A transmission with rate θr can be decoded

successfully if the signal-to-interference plus noise-ratio (SINR) measured at the receiver is

above a corresponding threshold βr. Clearly, the higher the data rate is, the higher the

requested SINR is.

According to the physical model given in [33], in the presence of interference caused by

concurrent links in E, a transmission link (si, sj) with data rate θr would be successful if

SINRij measured at the intended receiver is greater than or equal to βr. It is given by:

SINRij =
pid
−α
ij

N0 +
∑
i′,i′ 6=i

pi′d
−α
i′j

(20)

where pi is the transmission power of node si, dij is the distance between sj and sj, α is

the propagation loss exponent, and N0 is the thermal noise power. We use Pmax = 15mW,

N0 = 10−6, data rates {250, 500, 1000, 2000} kbps and β = {1.3, 2.0, 4.0, 10.0}.
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In addition, we assume a TDMA access scheme, where a central entity divides the time

cyclically into slots of fixed duration, which are then grouped into frames. The duration

of each slot is Ts, which corresponds to the time required to send a data packet of σ bits

using the lowest data rate θ1. A TDMA schedule defines the group of admitted transmission

links within each time slot so that the SINR at each receiver is above the corresponding

required threshold. We neglect the slots that might be needed for control and synchronization

purposes as their number is generally constant. Also, we assume that each sensor generates

one data packet for each monitored target during the TDMA frame.

3.4 TDMA Frame minimization restricted to trees

In this section, we give an optimization model to find an optimal set of transmission con-

figurations that achieve convergecast while ensuring that the routing subgraph is a tree.

Our model is a modification of the model given in [7] . Our objective is to define a set of

minimum-length TDMA configurations by determining jointly which sensors cover each tar-

get, the scheduled concurrent links at each slot, along with their used data-rates and power

levels, and the established routes toward the sink. We refer to this problem in the rest of

the paper as TFM Problem.

A configuration c is characterized by:

(xcijr, p
c
i) : (si, sj) ∈ E, r ∈ R, SINRij ≥ βr, (21)

where xcijr is a binary parameter indicating if the link (si, sj) is scheduled in c using data

rate r, and pci is the transmission power used by si. The set of all feasible configurations is

denoted as C.
We denote by the integer decision variable λc the number of slots in which the configu-

ration c is scheduled. Let yij be a binary variable indicating if target ti is covered by sensor

sj (i 6= 0). In addition, let fij be an integer flow variable counting the number of data

packets transmitted on link (si, sj) during the whole TDMA frame. The TFM problem can

be formulated by the following ILP:

[TFM-tree model] min
∑
c∈C

λc (22)
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subject to: ∑
sj∈S

yij = q ti ∈ T (23)

∑
sj∈S

fji +
∑
tk∈T

yki =
∑

sj∈S∪{s0}

fij si ∈ S (24)

∑
si∈S

fi0 = mq (25)

bij × (mq + 1)− fij ≥ 0 (si, sj) ∈ E (26)∑
sj∈S

bij ≤ 1 si ∈ S (27)

∑
c∈C

∑
r∈R

Tsθrx
c
ijrλc − bijσ ≥ 0 (si, sj) ∈ E (28)

λc ≥ 0 and integer, c ∈ C (29)

fij ≥ 0 and integer, (si, sj) ∈ E (30)

yik ∈ {0, 1} si ∈ S, tk ∈ T (31)

bij ∈ {0, 1} (si, sj) ∈ E. (32)

Constraint (23) ensures that every target is covered by exactly q sensors. Constraint (24)

and (25) guarantees that each data packets has a path from its target to the sink. Using

constraint (26) we introduce a boolean bij to indicate true if there exists a flow from i to j.

Constraint (27) makes sure we have a tree rooted at sink. This constraint also makes sure

that each source sensor will send data to one destination sensor node and hence avoid cycle.

The channel capacity constraint (28) along with constraints (24) and (25) ensures that the

number of times each link (si, sj) is included in all the scheduled configurations (λc > 0) is

sufficient to forward the allocated traffic.

Now, this model is solvable if we can determine by some means the set C. But enumerating

all feasible configurations would be computationally very expensive. We present in the next

section a technique to alleviate this issue.

3.4.1 Column Generation Applied to TFM Tree

In order to solve efficiently the TFM-tree model, we can use the column generation tech-

nique that only requires an implicit enumeration of the set of configurations in order to solve

the linear programming relaxation of the TFM-tree model. It consists in solving the model

(22)-(32) for a restricted set of variables or columns, leading to a so-called restricted master

problem (RMP), which selects the best configurations among the set of already generated
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configurations. The RMP is next iteratively enriched with ”augmenting configurations”,

generated by a so-called pricing problem, until an optimality condition is met. A configu-

ration is an augmented one if, when added to the current RMP, it allows improving (i.e.,

reduce) the current optimal value of the RMP. Each new configuration is generated by the

pricing problem, and using the theory of linear programming, is an augmented one if its

so-called reduced cost is negative (see, e.g., [20] if not familiar with the concept of reduced

cost in the linear programming theory). The expression of the reduced cost of configuration

c is written as follows:

rcostc = 1−
∑

(si,sj)∈E

∑
r∈R

θrTsx
c
ijruij (33)

The solution process consists in solving alternatively the RMP and the pricing problem until

the pricing problem cannot generate anymore a new configuration with a negative reduced

cost, meaning that we have reached the optimal solution of the linear programming relaxation

of (22)-(32).

The pricing problem can be stated as follows:

[TFM-Pricing] min
c∈C

rcostc (34)

subject to:∑
sj∈S

∑
r∈R

xijr + xjir ≤ 1 si ∈ S (35)

∑
r∈R

x0ir = 0 si ∈ S (36)

pid
−α
ij − βr

∑
(su,sv)∈E,u 6=i

pud
−α
uj − L1xijr ≥ βrN0 − L1 si ∈ S, sj ∈ S ∪ {s0}, r ∈ R (37)

pi ≤ Pmax

∑
sj∈S

∑
r∈R

xijr si ∈ S (38)

xijr ≤ L2 pi si ∈ S, sj ∈ S, r ∈ R (39)

xijr ∈ {0, 1} si ∈ S, sj ∈ S, r ∈ R (40)

pi ≥ 0 si ∈ S, (41)

where xijr indicates a transmission link between nodes si and sj using rate θr, pi is the

transmission power of node si, L1 and L2 are large positive constants. Constraint (35)

states that a node cannot transmit and receive at the same time and restricts it to a single

rate, whereas constraint (36) prevents the sink from transmitting. Constraint (37) is an
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enforcement of (20) by ensuring that when a link (si, sj) is active, the SINR should be above

the threshold βr. Otherwise, this constraint becomes redundant. Constraints (38) and (39)

bind between every transmission link and its power. If a transmission link is not active,

power would be set to zero, and vice-versa.

Once the optimality condition is satisfied (i.e., the pricing problem is no more able to

produce configurations with a negative reduced cost), solving the last RMP with integrality

requirements leads to an ILP solution, with an easy way to evaluate accuracy.

3.5 Scheduling Algorithms using the TC approach

The result of a column generation model such as the one given in the previous section

or [51, 76, 44, 7] is a multi-set of transmission configurations. Each such configuration

can be scheduled in a single time slot without any further need to check for interference.

Additionally, we are assured that it is feasible to complete the convergecast operation only by

using the transmission configurations. However, the solution of the column generation model

does not suggest any order in which to use them, nor how many times each transmission

configuration should be used (but does provide a lower bound on the number of times

each is required). In this section, we start with an approach to find an optimal schedule

(Section 3.5.1) and subsequently give a number of scheduling heuristics using only these

transmission configurations (Section 3.5.2).

3.5.1 Optimal schedule given a set of TCs

We first provide an approach to find an optimal schedule using only the given set of config-

urations and a single datarate.

OptimalSchedule min
∑
τ∈TS

zτ (42)

subject to:
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Dτ
s − bτ` = Dτ+1

s τ ∈ TS, ` ∈ {(s, s′) ∈ E} (43)

Dτ
s + bτ` = Dτ+1

s τ ∈ TS, ` ∈ {(s′, s) ∈ E} (44)∑
s∈S

D0
s = DTS

0 (45)

bτ` ≤ 1−
∑
c∈C

λτc (1− x`c) τ ∈ TS, ` ∈ {(s, s′) ∈ E} (46)∑
c∈C

λτc = zτ τ ∈ TS (47)

zτ ∈ {0, 1} τ ∈ TS. (48)

λτc ∈ {0, 1} τ ∈ TS, c ∈ C (49)

bτ` ∈ {0, 1} τ ∈ TS, ` ∈ {(s, s′) ∈ E} (50)

Dτ
s ∈ Z∗ τ ∈ TS, s ∈ S (51)
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The input to this optimal schedule ILP model is multi-set of configurations. Here we

represent Dτ
s as the number of packets available in sensor s in slot τ . The boolean variable

zτ says if slot τ is used or not. The boolean λτc says whether a configuration c is used in slot

τ or not. Similarly bτ` says weather a link ` is used in slot τ or not. Constraints (43) and

(44) ensure the flow of data at each sensor. Constraint (45) says that in time slot TS, the

sink node gets all the packets initially present at the sensor nodes monitoring the targets.

Constraint (46) ensures that only the links in the configuration scheduled in time slot τ can

send data in that time slot. Constraint (47) ensures that exactly one configuration is chosen

in every slot.

3.5.2 TC-based scheduling heuristics

To provide a set of scheduling heuristics as shown in Algorithm 5, we next define the weight of

a configuration, and always pick the configuration of maximum weight. Given a configuration

c, denote by α` the boolean value that denotes whether or not link ` has data ready to

transmit, x` the length of the queue for link `, y` the number of packets still to be transmitted

over link `, and d` the hop-distance of ` to the sink node. We propose different weight

functions for a configuration c:

w1(c) :
∑
`∈c

α` ; (number of links with data)

w2(c) :
∑
`∈c

α`x` ; (sum of queues)

w3(c) :
∑
`∈c

α`y` ; (sum of remaining traffic)

w4(c) : min
`∈c

α`d` ; (min distance)

w5(c) : max
`∈c

α`d` ; (max distance)

w6(c) : max
`∈c

α`y` ; (max of remaining traffic)

w7(c) : max
`∈c

α`x`; (max of queues).

In Section 3.7, we discuss the performance evaluation of these heuristics, used either with

the transmission configurations produced by the TFM-graph model in [7] or with the results
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of the TFM-tree model proposed in Section 3.4.

Algorithm 5 Scheduling heuristic using weight function W on given set of transmission
configurations C

Require: Weight function W , load [`] = number of packets to sent on link `,

data[s] =number of packets waiting to be forwarded from node s, C = set of configu-

rations.

Ensure: Schedule. NumSlots← 0

repeat

for each configuration c in C do

Compute c.weight according to weight function W

end for

max← 0,maxc ← −1

for each configuration c in C do

if c.weight > max then

max← c.weight

maxc ← c; %%maxc is the configuration with highest weight

end if

end for

if max > 0 then

for each link ` in maxc do

if data[`.src] > 0 then

packets ← min(`.rate/lowestRate, data[`.src])

Schedule[NumSlots] = Schedule[NumSlots] ∪ {`}
load [`] = load [`]−packets

data[`.src] = data[`.src]−packets

data[`.dst] = data[`.dst]+packets

end if

end for

NumSlots← NumSlots+ 1

end if

until sink gets all packets

51



3.6 Two-phase Scheduling Algorithms

Two-phase scheduling algorithms are two phase algorithms. In the first phase, a routing

tree is defined to achieve convergecast. In the second phase, an algorithm to schedule the

packets along the links of the tree defined in the first phase is described. In this paper, we

propose a new algorithm for each phase. For the first phase, we propose a new TFM Tree

for convergecast, namely, the tree implied by the result of the column generation algorithm

described in Section 3.4. Clearly, this tree can be used with any algorithm for the second

phase; we evaluate its performance with two different algorithms for the second phase in

Section 3.7.

Algorithm 6 Round Optimal Schedule (ROS)

Require: Data gathering tree or graph Ĝ, data[s] =number of packets waiting to be for-

warded from node s

Ensure: Schedule, Power to be used by each link in each slot Uses:

MILP (F, PowerV ector, RateV ector,NumSlots) which outputs a set of links L ⊆ F that

can transmit simultaneously under SINR constraints, and assigns feasible powers and

rates to all links for the current time slot.

NumSlots← 0 load = Compute-Link-Load-V ector(Ĝ)

repeat

F ← ∅
for each link ` with load[`]0] do

if data[`.src] > 0 then

F ← F ∪ `
end if

end for

L←MILP (F, PowerV ector, RateV ector,NumSlots) Schedule[NumSlots]← L

for each link ` ∈ L do

packets ← min(Rate[`]/lowestRate, data[`.src])

load[`]← load[`]−packets

data[`.src] = data[`.src]−packets

data[`.dst] = data[`.dst]+packets

end for

NumSlots← NumSlots+ 1

until sink gets all packets

For the second phase, we give a new algorithm, and also modify the algorithm in [32].

52



First, we propose a new algorithm (named Round-Optimal Schedule (ROS), see Algorithm

6) that schedules packets for convergecast along the links of a given tree. The algorithm

proceeds in rounds. In each round, we examine the set of links in the routing tree/subgraph

that have data available. We compute a maximum-sized subset of links that can be scheduled

while not violating SINR conditions, and schedule them. We move the data to the respective

destination nodes of the links, and proceed to the next round. We use an MILP to check the

SINR condition and power level assignments. This MILP solves the optimization problem

with the following objective function subject to constraints (35) - (41):

[ROS] max
∑

(si,sj)∈ links with data

∑
r∈R

xijr. (52)

Next we describe our modifications to the algorithm given in [32], whose scheduling

algorithm is called Maximum Weight First (MWF). In their algorithm, first links are sorted

in decreasing order according to a weight function which is equal to the remaining traffic

load on the link, plus the number of interfering links. Subsequently links are considered in

order and scheduled in the current slot as long as they do not conflict with already chosen

links. MWF also uses a conflict graph I = (V,E) for a scheduling tree T , such that each edge

in T is represented as a vertex in I. If it is impossible to schedule two links simultaneously

in T , then there is an edge in I between those two corresponding vertices. MWF uses the

Perron-Frobenius theorem as given in [67] to assign powers to links. This algorithm has the

same major problem as the previous TC-based models: links are scheduled even when they

have no data. In other words, the algorithm as given does not give a true schedule. In this

paper, we fix this problem by considering in line 10 only the links which have data ready to

transmit. Secondly, the MWF algorithm in [32] assumes that every sensor initially has one

data packet to transmit. We extend the algorithm by removing this assumption. Finally we

extend the algorithm to deal with q-coverage, as well as multiple data rates. The requirement

of q-Coverage is handled by the first phase, and is therefore does not need to be considered

in this algorithm. For multi-rate, while greedily choosing links we assign maximum feasible

rate that achieves feasible power assignment vector.
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Algorithm 7 EMWF

Require: Data Gathering tree or graph Ĝ; Transmitting power levels range {0,Pmax};
data[s] =number of packets waiting to be forwarded from node s, IsTFM=true only if

it uses TFM based tree or subgraph, load [`] = number of packets to send on link ` using

TFM model

Ensure: Schedule, Power to be used by each link in each slot;

1: Generate conflict graph I for the links in T

2: load = Compute-Link-Load-V ector(Ĝ)

3: NumSlots ← 1

4: TotalLoad ←
∑

`∈T load(`)

5: repeat

6: for each ` ∈ Ĝ do

7: degree(`)← degree of the node associated with ` in the conflict graph I

8: weight(`)← load[`] + degree(`)

9: if data[`.src] = 0 then

10: weight(`) ← 0

11: end if

12: end for

13: Sort links in T in the descending order of their weight into T ′

14: for each ` in T ′ do

15: for each possible rate r in decreasing order do

16: if there exists feasible power assignment for ScheduleNumSlots ∪ {`} then

17: Schedule[NumSlots] ← Schedule[NumSlots] ∪ {`}
18: Assign power vector for links in Schedule[NumSlots] using PF-theorem

19: packets← min(data[`.src], r/LowestRate)

20: load(`) = load(`)− packets
21: TotalLoad← TotalLoad− packets
22: data[`.src]← data[`.src]− packets
23: data[`.dst]← data[`.dst] + packets

24: break

25: end if

26: end for

27: end for

28: Update conflict graph I, by removing vertices whose traffic load is satisfied in T

29: NumSlots = NumSlots+ 1

30: until (TotalLoad > 0)
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The pseudocode for our extended algorithm, called Extended Maximum Weight First

(EMWF) is presented in Algorithm 8.

Algorithm 8 Compute-Link-Load-Vector1

Require: Data Gathering Tree or subgraph Ĝ; data[s] =number of packets waiting to be

forwarded from node s, IsTFM=true only if using TFM based tree or subgraph, in which

case TFMload[`] = is already computed

Ensure: load(`) computed for each link ` ∈ Ĝ;

if IsTFM = true then

return TFMload

else

for each s ∈ S with data[s] > 0 do

path = GetPathToSink(s)

for each ` ∈ path do

load[`]← load[`] + data[s]

end for

end for

end if

1 While there are more efficient ways to compute this vector for a routing tree, we present a

unified method here that works for both routing trees and routing subgraphs

3.7 Experimental Results

We now present our evaluation of the two scheduling approaches. Each result presented

here is an average over 10 simulations with randomly generated topologies. To have a

more meaningful comparison of results, when looking at larger topologies, we embed the

topologies used for smaller networks, and add extra nodes at random positions. Since the

column generation-based methods take significantly longer on larger inputs, we use 2 hours

as a stopping condition for all inputs. Note that on topologies with 80 nodes or more, this

results in a sub-optimal column generation solution.

3.7.1 Scheduling on a Tree

Tables 7 and 8 show the lengths of schedules produced by the different algorithms. Among

the different heuristics used for the TC method, we observe immediately that the sum-based

heuristics work significantly better than the max/min-based heuristics. The best performer
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is the w3-based heuristic, that schedules in the next slot the configuration with the maximum

remaining traffic.

Among the two-phase methods, the first question we seek to answer is, which tree is

best? With both scheduling algorithms (ROS and EMWF), the best tree is consistently the

TFM tree. The second question is: which scheduling algorithm is best? Both the EMWF

and ROS scheduling algorithms exhibit similar results in terms of number of slots, for each

of the three trees. However, the EMWF algorithm is more computationally efficient, and

takes only a few seconds on topologies of 100 nodes, while the ROS scheduling takes two

hours in some cases. We conclude that among the two-phase methods, while the additional

computational cost of computing the TFM tree is worthwhile, the EMWF algorithm is more

computationally efficient than ROS. That is, the best option would be to use the TFM tree

and the EMWF scheduling algorithm.

Finally we compare the TC-based methods with the two-phase methods. Our observation

is that the two-phase approaches significantly outperform the TC-based approaches, for 70,

80, and 90 nodes. For 100 nodes, the EMWF-TFM-tree combination still produces a better

result, but the difference is less than for 90 nodes; this could be because the quality of

the TFM tree used may be sub-optimal, owing to the stopping condition of 2 hours being

imposed.

Table 7: Length of schedule produced by different algorithms

# Sensors
”Estimated”

Transmission Configuration (TC) Methods

Lower Bound
sum-based min-based max-based

schedule w1 w2 w3 w4 w5 w6 w7

40 105.0 147.3 142.8 124.1 229.1 213.6 239.0 197.0

50 125.1 171.3 167.2 146.9 306.6 283.8 316.8 258.3

60 115.0 167.9 163.8 138.6 344.2 300.9 358.4 270.4

70 132.9 190.7 189.6 161.3 399.6 368.3 418.5 314.8

80† 142.0 205.3 201.0 173.6 414.6 369.6 428.8 318.8

90† 172.8 253.6 226.2 202.4 390.0 345.6 404.2 325.4

100† 196.5 254.8 252.3 226.5 421.3 374.0 425.8 379.3

† LP solution of the RMP is stopped when the solution of PP takes more than 2h
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Table 8: Length of schedule produced by different algorithms

# Sensors
”Estimated”

two-phase Methods

Tree
Lower Bound

TFM LLHC DCAT TFM LLHC DCAT

schedule EMWF EMWF EMWF ROS ROS ROS

40 105.0 123.7 140.9 140.8 125.0 141.1 141.8

50 125.1 144.3 163.2 165.9 144.9 164.2 165.2

60 115.0 137.1 169.2 174.2 137.8 169.8 172.9

70 132.9 151.2 203.7 198.1 153.9 194.4 196.6

80† 142.0 149.4 204.8 215.9 150.4 204.1 213.1

90† 172.8 172.6 218.6 226.6 176.4 218.2 227.4

100† 196.5 220.7 231.7 235.7 220.3 231.3 231.7

† LP solution of the RMP is stopped when the solution of PP takes more than 2h

3.7.2 Routing on Trees or Subgraphs

We examine here the impact of restricting the scheduling on a tree. We compare the lengths

of the schedules when we impose such a restriction versus when we do not impose such a

restriction. We run the column generation algorithm in [7] to derive a set of transmission

configurations as well as the resulting routing sub-graph, called the TFM graph. When

scheduling on a tree, since the TFM tree was observed to be the best out of all considered

trees, we consider only the TFM tree here. Then we consider the ROS, the EMWF scheduling

algorithms and the w3-based heuristic and compare the results, shown in Table 9.

When routing on graphs, as with trees, the ROS and EMWF algorithms outperform the

w3-based heuristic. In addition, both ROS and EMWF produces schedules with fewer slots

while using the TFM graph compared to the TFM tree, while for the w3-based scheduling,

there is no significant difference. In other words, the difference between ROS and EMWF

and the w3-based heuristic is even more when using routing subgraphs than when using

routing trees.
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Table 9: Scheduling - Subgraph vs Tree

TFM Graph TFM Tree

Sen LB† w3 ROS EMWF LB† w3 ROS EMWF

40 102.3 123.2 122.0 123.7 105.0 124.1 125.0 123.7

50 117.7 149.7 138.4 142.3 125.1 146.9 144.9 144.3

60 110.5 141.8 134.1 130.6 115.0 138.6 137.8 137.1

70 118.1 152.5 138.8 138.0 132.9 161.3 153.9 151.2

80† 123.7 173.0 142.0 144.2 142.0 173.6 150.4 149.4

90† 152.1 198.2 160.6 168.2 172.8 202.4 176.4 172.6

100† 200.0 223.0 211.0 212.7 196.5 226.5 220.3 220.7

LB† = Estimated Lower Bound

† LP solution of the RMP is stopped when the solution of PP takes more than 2h

3.7.3 Scheduling for q-Coverage

In this section, we consider the situation when only a subset of the sensors are close enough to

the targets to monitor them. However, every target is required to be monitored by q sensors,

q ∈ {1, 2, 3}. The remaining sensors only play a role in forwarding data to the sink. We

compare our three best algorithms using the TFM graph for 100 targets, but with different

numbers of sensors. Table 10 compares the number of slots used for different coverage levels.

We see that for all coverage levels, ROS and EMWF outperform the w3-based heuristic.

However, as q increases, the percentage difference between the schedule length computed by

the w3-based heuristic and EMWF decreases. This agrees with the intuition that the TC-

based approach is really based on routing a stream of data rather than a single data packet

as in the previous experiments. Since there are more packets to be routed in 2-coverage or

3-coverage, w3 ’s performance relative to the EMWF and ROS algorithms improves. Another

interesting observation is that for q = 2 and 3, the EMWF schedule starts to perform better

compared to ROS.
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Table 10: Scheduling q-coverage (100 targets, TFM graph)

Q = 1 Q = 2 Q =3

w3 ROS EMWF w3 ROS EMWF w3 ROS EMWF

40 235.5 242.1 239.6 472.5 510.1 499.8 745.7 798.6 788.2

50 205.1 195.2 198.0 395.3 395.4 395.1 622.1 633.3 636.4

60 175.1 168.3 165.0 345.2 342.4 335.8 515.4 511.8 506.9

70 171.2 155.8 155.1 327.3 318.6 313.7 492.2 491.6 484.7

80† 158.6 143.0 138.7 310.3 305.9 295.6 464.5 460.5 446.2

90† 162.6 132.6 131.4 294.8 259.3 256.6 449.2 409.7 406.9

100† 168.1 130.3 130.2 321.6 281.6 279.3 490.8 423.1 418.2

110† 172.0 138.9 140.4 328.5 292.0 286.8 496.8 446.1 442.1

† LP solution of the RMP is stopped when the solution of PP takes more than 2h

3.7.4 Effect of Having more Packets per Sensor

In all the experiments in Section 3.7.1, we assumed that one packet is sufficient to forward

data to the next sensor. In this section, we consider the situation in which each sensor

reading may be too large to fit in a single packet, thus, each sensor may need to send

multiple packets per reading. This resembles more closely the situation when sensors are

sending a stream of data. We used the TFM routing subgraph, and compared the results

of the two best algorithms: w3-based, and EMWF. We did not consider ROS as it would

be computationally too expensive. The number of slots in the schedules computed by the

two algorithms is shown in as shown in Table 11 for the number of packets ranging from 1

to 32. We see that as the number of packets increases, the w3-based heuristic does better

than EMWF. In fact, the percentage difference between the w3-based heuristic and EMWF

increases with the number of packets. This is consistent with the results of Section 3.7.3; as

the number of packets sent by a sensor increases, the relative performance of the w3-based

heuristic improves, and in fact is the best of the three algorithms when there are more than

4 packets per reading. We used 50 and 60 sensors for the results shown here, but we found

a similar pattern for other numbers of sensors as well.
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Table 11: Scheduling - Effect of having more packets per sensor

Schedule Schedule

packets LB w3 EMWF (EMWF - w3)/w3

per reading as percentage

50 Sensors

1 114 138 142 2.9

2 229 278 283 1.8

4 456 493 538 9.1

8 912 946 1,098 16.1

16 1,823 1,916 2,175 13.5

32 3,624 3,757 4,250 13.1

60 Sensors

1 121 166 155 -6.6

2 242 315 305 -3.2

4 484 534 571 6.9

8 976 1,072 1,156 7.8

16 1,935 2,065 2,286 10.7

32 3,869 4,078 4,525 11.0
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3.7.5 Scheduling for Multi-rate

Table 12: Scheduling - Multi rate

Schedule Schedule Schedule

Sensors LB† w3 ROS EMWF

40 834.0 883.0 980.0 1,044.0

40 720.0 761.0 730.0 906.0

40 664.0 742.0 747.0 878.0

40 880.0 906.0 965.0 957.0

40 752.0 813.0 1,057.0 1,164.0

40 776.0 810.0 874.0 895.0

40 1,000.0 1,062.0 1,045.0 1,010.0

40 808.0 861.0 928.0 922.0

40 898.0 971.0 896.0 896.0

40 842.0 965.0 988.0 951.0

AVG 817.4 877.4 921.0 962.3

50 916.0 972.0 1,063.0 1,156.0

50 760.0 826.0 831.0 853.0

50 648.0 687.0 748.0 774.0

50 1,128.0 1,206.0 1,181.0 1,325.0

50 1,032.0 1,239.0 1,262.0 1,256.0

50 803.0 859.0 900.0 962.0

50 1,144.0 1,178.0 1,201.0 1,243.0

50 966.0 1,041.0 1,193.0 1,192.0

50 665.0 704.0 723.0 752.0

50 1,064.0 1,260.0 1,263.0 1,290.0

AVG 912.6 997.2 1,036.5 1,080.3
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In the experiments in the previous sections, we used a single data rate for all sensors, and

this enabled sending a single packet over a link in a time step. In this section, we evaluate the

performance of three of our best algorithms using multiple data rates. We use a reading size

such that an entire reading can be forwarded in one slot using the highest possible data rate,

while using the highest of the 4 possible data rates, we could send 8 packets (one reading)

in a single time slot. Rate and power assignment are done to satisfy SINR constraints either

when using the optimization model (for the w3-based heuristic) or in the ROS/EMWF

algorithms. Table 12 shows that the w3-based heuristic provides the best result, followed

by ROS. EMWF has the worst results. We remark that both the w3-heuristic and ROS

find optimal solutions for some part of the problem (optimal transmission configurations for

w3 and round-optimal schedule for ROS, while EMWF is very efficient but does not make

any attempt at optimality. We conclude that it is more advantageous to restrict to the

precomputed transmission configurations when using multiple rates.

3.8 Conclusion

We investigated two basic approaches to scheduling for a convergecast operation in a WSN.

In the first approach, called the TC-approach, a multiset of transmission configurations that

are interference-free and that cover the convergecast traffic is computed and the scheduling

algorithm restricts itself to using these configurations. In the second approach, called the

two-phase approach, as exemplified in [32], first a routing tree or subgraph is computed,

and next, sets of non-interfering links are scheduled in rounds, based on which links have

available traffic in each round. In this paper, for the TC-based approach, we provide a new

column generation model that restricts the schedule to a tree. Given any set of TCs that

cover the required traffic, we give an ILP model to schedule the TCs as well as several new

and very efficient scheduling heuristics. For the two-phase approach, we give a new tree

called TFM tree, which takes into account the physical interference model as well as power

control, as well as two scheduling algorithms (ROS and EMWF) for the second phase. Our

results show that for single-rate sensors, when each sensor has 1 or very few packets to send,

the two-phase approach using our TFM tree significantly outperforms the TC-approach in

terms of the length of the produced schedule. However, if each node has several packets to

send in the same frame, a situation which more closely resembles a data stream, or if the

sensors are multi-rate, then the TC-approach produces better results.
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Chapter 4

Optimum ConvergeCast Scheduling in

Wireless Sensor Networks (WSNs)

M. Bakshi, B. Jaumard, and L. Narayanan. True convergecast scheduling in wireless sensor

networks. submitted for publication, 2017. An extended abstract of this paper has been pub-

lished in International Conference on Computing, Networking and Communications (ICNC),

2017. [6]

4.1 Introduction

A Wireless Sensor Network (WSN) is a connected network of autonomous sensors, which

can monitor or sense physical or environmental conditions, such as temperature, sound, or

pressure, and that can communicate with each other using wireless transmissions. WSNs

have many applications in, e.g., agriculture, environment monitoring, wildlife tracking, smart

buildings and cities. Many of these are multimedia applications and need multi-rate support

[79], [58], [21]. An important class of applications for WSNs is target coverage: given a set

of targets, each target must be monitored by q sensors and all the sensor readings must be

forwarded using multi-hop routing to a sink node. ConvergeCast refers to the many-to-one

communication scheme, where data from a set of sources are routed toward a common sink.

ConvergeCast is the communication pattern used in target coverage applications.

In this paper, we consider the problem of finding a transmission schedule to achieve

ConvergeCast in a WSN using TDMA as the MAC-layer protocol. The solution involves

deciding which sensors cover which targets, finding paths to send the sensor readings from

the covering sensors to the sink node, as well as scheduling transmission slots for the sensors

on these paths that avoid excessive interference. The goal is to find a transmission schedule

of minimum length, that is, a schedule with the minimum number of transmission slots. In

63



addition, we will not assume that transmission is done with a tree transmission scheme, as

it does not necessarily lead to an optimal schedule, as explained in the example that follows.

Figure 7 illustrates an instance of ConvergeCast. The input is described in Figure 7(a),

i.e., the location of the set of targets {t0, t1}, sensors{s1, . . . , s7}, and the sink node s0. The

desired coverage level is q = 2, i.e., each target needs to be covered by two sensors. All

possible transmission links are depicted in Figure 7(a).

Under the assumption of a tree transmission scheme, the ConvergeCast solution is de-

picted in Figure 7(b). Observe that target t0 is monitored by sensors s3 and s6, while target

t1 is monitored by sensors s2 and s5. Each of the monitoring sensors needs to send the

information concerning the target(s) it is monitoring along a path to the sink. Links have to

be scheduled in such a way that the combination of the paths defines a ConvergeCast tree

(using sensors) while obeying interference constraints. One possible optimal schedule is as

follows. In time slot 1, schedule links (s3, s4) and (s2, s1) simultaneously, then in the next six

slots, the sets {(s5, s3), (s1, s0)}, {(s5, s3), (s4, s0)}, {(s3, s4)}, {(s4, s0)}, {(s3, s4)}, {(s4, s0)}
can be scheduled in turn.

However, if we do not impose to use a tree transmission scheme, as illustrated in Figure

7(c), it is possible to get a shorter optimal schedule with 6 slots. Observe that target

t0 is monitored by sensors s3 and s5, while target t1 is monitored by sensors s2 and s5.

Each of the monitoring sensors needs to send the information concerning the target(s) it is

monitoring along a path to the sink. Since sensor s5 is monitoring two targets, it needs to

send two packets to the sink, possibly along different paths, as is the case in the solution

given in Figure 7(c). Finally the links along all paths have to be scheduled while respecting

interference constraints. One possible optimal schedule is as follows. In time slot 1, schedule

the links (s3, s4) and (s2, s1) simultaneously, then in slot 2, the links (s5, s3) and (s1, s0). In

the next four slots, the sets {(s5, s2), (s4, s0)}, {(s3, s4), (s2, s1)}, {(s1, s0)}, {(s4, s0)} can be

scheduled in turn, and it can be verified that all data reaches the sink.

Many researchers have approached ConvergeCast and related scheduling problems by

using mathematical programming modelling and algorithms. In general, these solutions

produce as output, a set of transmission configurations (TC). Each TC is a set of links

that can be scheduled simultaneously during the same time slot without causing significant

interference. Put together, the TCs provide a set of paths from the targets to the sink that

meet coverage requirements. However, they do not actually provide a schedule specifying

the time slots in which a sensor should transmit. Indeed, as already mentioned in [42, 2],

it is non-trivial to produce a schedule given a set of TCs. Indeed, the number of TCs that

is output by the previously proposed mathematical models only give a lower bound on the

length of the schedule. In some cases, e.g., in a line topology, this is a very weak lower
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(c) Unstructured Transmission Scheme (6 slots)

Figure 7: ConvergeCast Problem Instance (q=2)
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bound, as shown in Figure 8. The optimal set of TCs is of size 2, but any schedule needs

n− 1 slots.

t0 s1 s2 s3 s4 sn−1 s0

(a) Existing mathematical programming solutions output 2 transmission configurations, one with all “odd”

links, another with all “even” links

t0 s1 s2 s3 s4 sn−1 s0

(b) An optimal schedule requires n− 1 slots: each link is scheduled in a different slot

Figure 8: Limitation of existing ConvergeCast solutions

4.1.1 Our Results

In this paper, we provide, for the first time, a mathematical programming formulation to

find an optimal schedule for ConvergeCast in a TDMA-based WSN, using multi-rate trans-

missions, q-coverage and a physical interference (SINR) model.

We design a scalable solution process, called OSCC-1P (Optimal Schedule for Converge-

Cast in One Phase or 1P) algorithm, which uses Dantzig-Wolfe decomposition techniques, to

solve the resulting model. It outputs a proven ε-optimal solution for large ConvergeCast in-

stances. We conducted extensive experiments to compare the performance of the OSCC-1P

algorithm with the best previous algorithm of the literature. Accuracy is not only proven

but significantly improved. The schedule output by OSCC-1P compares very favorably with

the lower bound produced by the previously proposed TC-based approach [2]. For up to 70

sensor nodes, the OSCC-1P solution is proven to be within 4 % of the optimal solution. In

terms of the upper bound, the OSCC-1P solution is upto 15 % better than the previously

best solution.

In the next section, we provide the system model and a concise definition of the Con-

vergeCast problem. In Section 4.3, we present a brief overview of previous work. In Section

4.4, we provide a new single phase formulation for the ConvergeCast scheme. In Section 4.5,

we propose a scalable OSCC-1P algorithm for solving the proposed mathematical program-

ming model. Numerical results are presented in Section 4.6. Conclusions are drawn in the

last section.
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4.2 System Model and ConvergeCast Problem

In this section, we describe our system model, namely our interference model, the TDMA

protocol and the ConvergeCast problem specification.

Let S be a set of n sensors and T a set of m targets. A target t can be covered by a

sensor s if the Euclidean distance between t and s is less than the sensing range. Similarly,

sensor s can forward data to another sensor s′ only if the Euclidean distance between s and

s′ does not exceed transmission range (Rmax). Each sensor generates a data packet of size

σ bits each time it monitors an associated target. We consider that the sensors and targets

are deployed arbitrarily in a given area such that each target can be covered by at least q

sensors, and each sensor has a path to the sink node s0.

Communication between sensor nodes takes place using wireless transmissions, and there-

fore needs to account for the possibility of radio interference. Indeed, each link can cause

interference to the other links transmitting at the same time. Among the different inter-

ference models which are used in the literature, the Signal to Interference plus Noise Ratio

(SINR) [33] model is considered to the most realistic. SINR refers to the ratio of the signal

received by the intended receiver of a link ` = (s, s′) to the interference caused by the other

parallel links plus noise, which is defined as:

SINRs,s′ =
psd
−α
ss′

N0 +
∑

s′′∈S,s′′ 6=s
ps′′d

−α
s′′s′

. (53)

Therein, ps is the transmission power of sensor s, dss′ is the distance between sensors s and

s′, α is the path loss exponent, N0 is the thermal noise power, and S ′ is the set of sensors

transmitting at the same time as s.

Sensors are assumed to transmit using the modulation and coding schemes [54] of IEEE

802.15; according to this specification, a transmission with data rate r can be decoded

successfully if the SINR measured at the receiver is above a corresponding threshold βr.

That is, a transmission link ` with data rate r is successful only if:

SINR` ≥ βr, (54)

where βr is a threshold that depends on the data rate r.

We consider each sensor is equipped with a single radio that can be tuned dynamically

without a significant delay to transmit with some power level in the range [0, Pmax]. We use

out-door sensor specifications, i.e., Pmax = 0.013W, N0 = 10−6, set of data rates R = {250,

500} kbps and βr = {1.3, 2.0}.
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Figure 10: TDMA - Each frame achieves ConvergeCast

A configuration refers to a set of links that can be used simultaneously, while satisfying

the SINR condition (54). We can formally define a configuration c:

c = {(`, r`, ps) : ` = (s, s′) ∈ L, SINR` ≥ βr}, (55)

i.e., c is a set of links ` = (s, s′), using data rate r` on link `, with ps being the transmission

power used by sensor s. Figure 9 gives an example of a configuration: links `21 and `34 can be

scheduled simultaneously without violating the SINR constraints.The problem of finding a

maximum set of links that can form a configuration even for the protocol interference model

is NP-hard as it can be seen to be equivalent to the well-known Maximum Independent Set

problem.

t0

t1

s5s7

s3

s2

s4

s1

s6

s0

Figure 9: A configuration example (q=2): c = {(s2, s1), (s3, s4)}

As mentioned earlier, Time Division Multiple Access (TDMA) is considered as the MAC

layer protocol for collision resolution in this paper. Many WSN applications, including

the target coverage application that we consider here, require periodic collection of sensor

measurements at a centralized sink node; TDMA is a suitable MAC layer protocol for such
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purposes. We assume the slots needed for control and synchronization are negligible. In

TDMA, as shown in Figure 10, time is divided into frames, each containing a certain number

of fixed size time slots. Each slot holds one configuration, while the entire frame achieves

the ConvergeCast operation, and can be repeatedly periodically as needed. In the context

of the present study, we assume that the duration of each slot is Ts, which corresponds to

the time required to send a data packet of σ bits using the highest data rate. Observe that

the same configuration may be scheduled in multiple slots in the same frame. A frame can

therefore be seen to be an ordered sequence of configurations.

The ConvergeCast problem uses the location of a set of sensors, a set of targets and

the sink, as well as the desired coverage level q as input, and finds a minimum length TDMA

frame that achieves the ConvergeCast operation, that is,

1. Each target must be monitored by exactly q sensors.

2. Each sensor forwards all the data it receives along a path to the sink.

3. The sink node gets all the data from the targets.

The general problem of determining a ConvergeCast solution using the SINR interference

model and power control is NP-hard [10].

4.3 Existing Work

The scheduling problem of generating a minimum number of transmission configuration

occurrences in a wireless TDMA network has been extensively studied in the literature. We

can distinguish two classes of algorithms that we next discuss, heuristics and mathematical

programming models/algorithms.

4.3.1 Heuristics

A first class of algorithms deals with heuristics, without using any mathematical models.

They can be further classified into tree-based or unstructured sub-graph based on the one

hand, and then into protocol and SINR interference based models.

Most of the heuristics are tree-based heuristics, see, e.g., [31], [40], [12], [17], and [32].

Among them only [40], [12] and [32] uses a SINR based interference model.

In [40] provides heuristics for ConvergeCast based on trees using the SINR model. They

claim to show how to use multiple frequencies to eliminate interference. Two ConvergeCast

heuristics using Dijkstra and graph coloring are provided in [12]. Similarly, Gong and Yang
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first identify a convergecast tree, then construct a weight-based heuristic [32] for scheduling

on the tee. The weight of a link is related to its capacity to cause interference to other links.

For tree-based non-SINR models, [31] provides a variation of BFS algorithm, to derive a

ConvergeCast algorithm, [17] is for ConvergeCast but assumes sink decides the location of

sensors and each sensor is one hop reachable from sink node. Subgraph-based heuristics for

ConvergeCast are namely [75], [70], [58], [61], [13]. Among them only [75] and [70], uses SINR

model of interference. In [75] considered the objective of throughput improvement while

considering fairness through a new introduced factor called demand satisfaction factor. After

the original model was formulated as a Mixed Integer Linear Program (MILP), the key idea

was to iteratively use the solutions obtained from a Linear Program (LP)- a relaxed version

of the problem - as guidelines to schedule some channel. In [70], nodes are divided into

clusters and a non-linear optimization model is given to get a Convergecast solution using

the SINR model. Among non-SINR based models, [13] provided a Column Generation(CG)

model for solving a network of 14 sensors. CG procedure does not guarantee lower bound as

linear optimal is not always can be found. Similarly [61] proposes a geometric and Signomial

formulation for routing and sleep sceduling in WSNs. They solved solutions for a network of

20 sensors. In [58] proposed a distributed heuristic based on random-walk algorithm for non-

SINR ConvergeCast problem, they used multi-radio and multi-power to nullify interference.

None of the heuristic using SINR interference model in [40, 12, 70, 32] consider multi-rate

sensors or q-coverage, and do not provide any bounds on the accuracy of their solutions. As

such, they are not comparable to our work.

4.3.2 Mathematical Programming Approaches

The second class of studies considers mathematical programming tools (models and algo-

rithms), and indeed, only provide a set of transmission configurations without providing a

mechanism for ordering the configurations in order to produce a schedule.

Addis et al. [1] recently provided a survey of mathematical models and methods for

energy-awareness into communication networks. This mainly covers non-SINR models for

different network management problems. Very few studies used classical ILP formulations

as they provide non scalable models. Tang et al. [75] considered the objective of throughput

improvement while considering fairness through a new introduced factor called demand sat-

isfaction factor. Initially, they formulated a MILP model, but as it was not scalable, they

conducted their experiments using a heuristic. Li et al. [60] and Capone et al. [16] proposed

MILP models for scheduling in wireless mesh networks.

Authors who consider decomposition models use column generation models that allow the
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decoupling of the Time Frame Minimization Problem (TFMP) problem into two subproblems

solved alternately until an optimality condition is satisfied. Earlier work studied the problem

in the context of WiMax networks without considering the transmission power, see, e.g., [25],

[15] and then later with the integration of the power control constraints [26], [62], [51], [76].

Kompella and Wieselthier [51], El-Najjar et al. [25] and several other studies provided

column generation mathematical formulations for routing in the context of ad-hoc or WiMax

networks and incomplete scheduling, i.e., no ordering of the transmission configurations out-

put by their model. Uddin and Assi [76] who extended the formulation of Kompella and

Wieselthier to work with multiple channels. Kaddour [44] adapted the previous column gen-

eration models for the design of wireless sensor networks subject to SINR constraints, as well

as power control and rate adaptation considerations. However, due to the computational

complexity of generating transmission configurations under such constraints, his model lacks

scalability. Bakshi et al. [7] who improved the scalability of the mathematical formulation

of Kaddour. Also, Bakshi et al. [2] highlighted the incompleteness of solutions provided by

the previous mathematical formulations. The authors of [42], [2] were the first to provide

a schedule based on the outputs (i.e., transmission configurations) of a mathematical pro-

gramming formulation. None of the mathematical formulations provide direct ordering of

transmission configurations and hence does not provide an actual schedule. This was not

well advertised in the literature, as several papers wrongly claimed to produce a schedule,

while they were only providing a set of unordered transmission configurations.

4.4 Mathematical Model for TDMA Frame Minimiza-

tion (OSCC-1P)

In this section, we propose a single step ConvergeCast mathematical formulation that out-

puts a schedule of the transmission configurations that utilizes the minimum number of

slots in order to forward all the data towards the sink. We start with a discussion of the

incompleteness of previous approaches, and then proceed to give our solution.

As pointed out in [2], the mathematical formulations for wireless scheduling in the lit-

erature do not provide a complete ConvergeCast solution. There are two ways in which

the provided solutions are incomplete. First, instead of computing an ordered sequence of

configurations, they simply output a multiset of configurations; the ordering of this set is

non-trivial to compute and is left unspecified. Second, and perhaps even more important,

the provided multi-set is simply a cover of all the paths from sensors to sink, and does not

take into account whether or not data is available at a sensor before it transmits.
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(a) Previous TFMP formulation [2] outputs 5

configurations:{(s5, s2), (s4, s0)}, {(s5, s3), (s1, s0)},
{(s3, s4), (s1, s0)}, {(s2, s1), (s4, s0)}, {(s3, s4), (s2, s1)}, but

there exists no feasible schedule with only 5 configurations.
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(b) Complete ConvergeCast using 6 configura-

tions (5 distinct ones). One feasible schedule:

{(s3, s4), (s2, s1)}, {(s5, s3), (s1, s0)}, {(s5, s2), (s4, s0)},
{(s3, s4), (s2, s1)}, {(s1, s0)}, {(s4, s0)}

Figure 11: ConvergeCast using configurations (q=2)

To illustrate the latter issue, we use the example given in Figure 7(a). The models given

in [44][7] produce as output a set of five configurations {(s5, s2), (s4, s0)}, {(s5, s3), (s1, s0)},
{(s3, s4), (s1, s0)}, {(s2, s1), (s4, s0)}, {(s3, s4), (s2, s1)} as the solution to the ConvergeCast,

using the routes shown in Figure 11(a). Each configuration satisfies the SINR constraints,

and the number of times each link is present in all configurations suffices to carry the number

of packets the link has to transmit. However, it is impossible to build a schedule of five slots,

72



with one configuration for each slot, to achieve ConvergeCast. For example, if we use the

configuration {(s5, s2), (s4, s0)} in the first slot, the link (s4, s0) does not yet have data,

so the configuration is only partly used, and it has to be scheduled again. In fact, any

schedule using the set of configurations above must use at least seven slots. This shows that

the TFMP solutions in [44], [7] only produce a lower bound on the length of the schedule,

and as already observed, in the case of a path, a very weak lower bound. Clearly then,

using previous approaches, a second phase for obtaining a valid schedule for ConvergeCast

is needed. Figure 11(b) shows a valid schedule for achieving ConvergeCast for the example

of Figure 7(a) that uses six time slots.

We now propose a mathematical programming model that gives a valid and optimal

transmission schedule to achieve ConvergeCast.

Let TS be the set of time slots, indexed by τ . We assume that |TS| is an upper bound

on the number of required time slots. It can be calculated using any of the heuristics from

the literature. We denote by L the overall set of potential transmission links, indexed by `.

The remaining notations that are needed for setting the model have been defined in Section

4.2.

The OSCC-1P model uses three set of variables. The first set of decision variables zτc is

such that each variable zτc indicates if configuration c is selected, i.e., scheduled in time slot

τ . The second set of variables correspond to binary variables yts indicating each if target t

is covered by sensor s. The third set of variables are integer ones, such that each variables

Dτ
s counts the number of data packets in the buffer of sensor s during timeslot τ . It works

with a set of configurations as input for each timeslot τ , defined by ac`r. It says weather a

link ` is used with a datarate r in a configuration c.

The proposed model, called OSCC-1P, can be written as the following one-phase ILP:

ConvergeCast [OSCC-1P] min
∑
τ∈TS

∑
c∈Cτ

zτc (56)
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subject to: ∑
s∈S

yts = q t ∈ T (57)

D0
s = 0 s ∈ S ∪ {s0} (58)

D0
s +

∑
t∈T

ytsσ = D1
s s ∈ S (59)

Dτ
s −

∑
c∈Cτ

∑
`∈ω+(s)

∑
r∈R

rTsa
c
`rz

τ
c +

∑
c∈Cτ

∑
`∈ω−(s)

∑
r∈R

rTsa
c
`rz

τ
c = Dτ+1

s

τ ∈ TS \ {0}, s ∈ S ∪ {s0} (60)

Dτ
s ≥

∑
c∈Cτ

∑
`∈ω+(s)

∑
r∈R

rTsa
c
`rz

τ
c τ ∈ TS \ {0}, s ∈ S ∪ {s0} (61)

D|TS|s0
= mqσ (62)∑

c∈C

zτc ≤ 1 τ ∈ TS (63)

yts ∈ {0, 1} t ∈ T, s ∈ S (64)

zτc ∈ {0, 1} τ ∈ TS, c ∈ C (65)

Dτ
s ∈ Z+ ∪ {s0} τ ∈ TS, s ∈ S ∪ {s0}. (66)

Constraints (57) ensures that every target is covered by exactly q sensors. Constraints (58)

initializes all sensors with zero readings in slot τ = 0. We assume targets as a set of nodes

which can be monitored by any sensor if they are within the given sensing-range. Constraints

(59) ensures that the sensor directly monitoring targets will take initial σ bits of readings

from time slot 1. Constraints (60) are flow constraints to ensure that the source of a link

looses upto σ bits and the destination of a link gains those bits of a packet whenever we

schedule a specific link. Constraints (61) define cutting-plane inequalities: although not

necessary for the model, they are useful to obtain a better lower bound, see an illustrative

example in Section 4.5.1. They ensure that sensor node s only sends data it has. Constraints

(62) make sure that all packets are destined to the sink. Constraints (59), (60) and (62)

guarantee that each data packet has a path from its target to the sink. Constraint (63)

ensures that at most one configuration can be used in any timeslot. Constraints (57)-(66)

ensure that the number of times each link is included in all the scheduled configurations

using (zτc ) are sufficient to forward the allocated traffic to the sink.

The above OSCC-1P model works with a set of configurations for each timeslot τ . But

how to generate this set? The set of all possible configurations is exponentially large. In the

next section we explain how to re-interpret the model (56)-(66) as a decomposition model
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Figure 12: Solution flowchart

in order to be able to design a scalable solution process.

4.5 Solution Scheme of OSCC-1P

Column Generation (CG) is an efficient and exact algorithm for solving a set of large-scale

linear programs. CG relies on the fact that most of the variables will be equal to zero in the

optimal linear programming solution. Hence, only a subset of columns needs to be explicitly

enumerated when solving a CG model. This property is also true for the ConvergeCast model

(56)-(66) as it involves a very large number of variables due to the combination of different

power levels, links, configurations etc, but only some of them will be considered in an optimal

solution. This means we can use CG for solving the linear-relaxed OSCC-1P model to reach

an optimal ILP solution (i.e., schedule of the selected transmission configurations). Then,

we will use all the configurations generated in this process to solve the resulting OSCC-1P

ILP model and obtain a near-optimal solution of the ConvergeCast problem.

The solution flow is summarized in the flowchart shown in Figure 12. The selection

of the best transmission configurations is done via the so-called OSCC-1P Restricted

Master Problem (or OSCC-1P-RMP for short), made of a restricted set of transmission

configurations for each time slot, which we will discuss in Section 4.5.1. Configuration

Generators use a set of so-called Pricing Problems in the mathematical programming lit-

erature. We denote them by (OSCC-1P-Pricing) as explained in Section 4.5.2, one for each

time slot (τ). Each pricing problem generates a new configuration (cnew) that can improve

the value of the objective function of OSCC-1P-RMP, if its objective (called reduced cost in
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mathematical programming literature, is negative.

We use the initial feasible solution given by [2] as the initial set of configurations

and then solve the OSCC-1P-RMP model. Using the dual values of 1P-RMP model output,

we solve all OSCC-1P-Pricing problems in a round robin fashion. We add all the configu-

rations with a negative reduced cost to OSCC-1P-RMP and re-solve OSCC-1P-RMP. The

process is repeated until none of the pricing problems is anymore able to produce a nega-

tive reduced cost, and the optimal solution of the linear relaxation of OSCC-1P is reached

(z?lp(OSCC-1P)).

Once we reach the optimal solution of the linear relaxation of OSCC-1P, we use all

the configurations generated in the process to produce an optimal solution of the linear

relaxation of OSCC-1P and solve it exactly in order to get an ILP solution. That resulting

ILP solution, z̃ilp(OSCC-1P), defines a an ε-optimal solution of the ConvergeCast problem,

where ε is defined as follows:

ε =
z̃ilp(OSCC-1P)− z?lp(OSCC-1P)

z?lp(OSCC-1P)
.

4.5.1 Restricted Master Problem (OSCC-1P-RMP)

OSCC-1P-RMP is derived from (56)-(66) with a restricted set of variables/configurations.

We next comment on why constraints (61) were instrumental in getting accurate lower

bounds, and consequently a highly scalable solution scheme.

Constraint (61) ensures that in a continuous solution, node s will send data only when

it has data. This constraint is not required for an ILP solution of OSCC-1P as it is taken

care of by integrality constraints of decision variables Dτ
s , zτc . Without Constraints (61) in

OSCC-1P-RMP, it is possible to use some links where incoming data equals outgoing data

even when a source link does not have available data. For instance, consider the example

in Figure 13. If we consider a path of length 4, in which only sensor s1 has one packet

and needs to forward it to s0, then as shown in Figure 13(a) we need 2 slots without using

Constraints (61). A drawback of not having constraint (61) is that some sensors (like s2)

forward data even when they have no available data. After including constraint (61), we

are in the situation of Figure 13(b). Four slots are required, and this greatly helps to get a

ConvergeCast solution with a very high precision (ε) using OSCC-1P-RMP.
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slot 1 uses 0.5 times blue and red configurations.

t0 s1 s2 s3 s4 s0

0.5
0.5

0.5
0.5

slot 2 uses 0.5 times blue and red configurations.

t0 s1 s2 s3 s4 s0

0.5
0.5

0.5
0.5

(a) OSCC-1P-RMP: Without Constraint (61) needs 2 slots

t0 s1 s2 s3 s4 s0

1
1

1
1

(b) OSCC-1P-RMP:With Constraint (61) needs 4 slots

Figure 13: Continuous ConvergeCast Solution: white node - target, gray node - sensor,
lightgray node - sink.

4.5.2 OSCC-1P-Pricing: Configuration Generator

The objective of 1P-Pricing problem is the reduced cost associated with variable zτc . It is

computed using the dual values generated by 1P-RMP. Let u
(60)
sτ , u

(61)
sτ , u

(63)
τ be the values of

the dual variables with respect to constraints (60), (61) and (63), respectively.
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The pricing problem can be stated as follows:

[OSCC-1P-Pricing] min
c∈C

red cost(zτc )

= 1− u(63)τ +
∑
s∈S

u(61)sτ

∑
r∈R

rTs
∑

`∈ω+(s)

ac`r

−
∑
s∈S

u(60)sτ

∑
r∈R

rTs

 ∑
`∈ω−(s)

ac`r −
∑

`∈ω+(s)

ac`r

 (67)

subject to:∑
r∈R

(
∑

`∈ω+(s)

a`r +
∑

`∈ω−(s)

a`r) ≤ 1 s ∈ S (68)

∑
r∈R

a`r = 0 ` ∈ ω+(s0) (69)

psd
−α
` − La`r − βr

∑
s′′∈S,s′′ 6=s

ps′′d
−α
s′′s′ ≥ βrN0 − L s ∈ S, ` ∈ ω+(s), r ∈ R (70)

ps ≤ Pmax

∑
`∈ω+(s)

∑
r∈R

a`r s ∈ S (71)

a`r ≤ L′ ps s ∈ S, ` ∈ ω+(s), r ∈ R (72)

a`r ∈ {0, 1} ` ∈ L, r ∈ R (73)

ps ≥ 0 s ∈ S (74)

Variable a`r indicates a transmission link between sensors sensors s and s′ using rate r

and ps denotes the transmission power of sensor s. L and L′ are large positive constants.

Constraint (68) states that a node cannot transmit and receive at the same time, whereas

constraint (69) prevents the sink node s0 from transmitting. Constraint (70) enforces the

SINR condition (54). Constraints (71) and (72) binds every transmission link with its power.

If a transmission link is not active, the power would be set to zero, and vice-versa.

4.6 Results

In this section, we present the performance evaluation of our new model for ConvergeCast

and of the scalability of its solution scheme. We also provide comparison with our previous

best algorithm described in [2], refered as CC-2P or 2P(ConvergeCast-two phase), as it

was a two phase algorithm: firstly, the computation of the transmission configurations and

secondly, their ordering in order to produce a feasible schedule.
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We are interested in assessing:

1. the accuracies of the ε-solutions that we output. Accuracies are given by comparing

the lower bound (lb) given by the optimal LP solution (called OSCC-1P lower bound)

versus the upper bound (ub) given by the ILP (called the OSCC-1P solution).

2. the lower bound given by the TFMP solution in [44] (called the CC-2P lower bound)

versus our lower bound and

3. the upper bound given by the TFMP ROS schedule from [2] (called the CC-2P upper

bound) versus our upper bound.

All the experimental results are computed as an average over 10 instances using randomly

generated topologies in a square grid of side 625m. We ensure that each topology used in the

experiments is connected, and allows for q-coverage of all targets; if the randomly generated

topology does not meet these requirements, we simply discard it, and generate another

topology. We consider the sensing range to be 150m, the maximum transmission range

as 100m, derived using the data rate of 150kbps, and a maximum transmission power of

13mW. Finally, we considered coverage levels q from 1 to 3. We consider 40, 50, 60, and 70

sensors, and the number of targets is incremented from 10 to the number of sensors in each

experiment, in steps of 10. All these parameters match with that of the parameters present

in the literature [44] and outdoor sensor specifications [65].

4.6.1 1-Coverage: Solution Accuracies and Computational Times

In this first set of experiments, we investigate the quality of the schedules that our new

model and solution process output for 1-coverage.

Results are summarized in Table 13. Observe that the OSCC-1P upper and lower bound

are quite close in all experiments; in contrast, the CC-2P upper and lower bound can differ

by as much as 55 %, especially for large number of sensors monitoring few targets. Secondly,

the OSCC-1P lower bound is 4 % better than the CC-2P lower bound on average, and over

10 % better when the number of targets is small. Finally, the quality of our OSCC-1P

solution (upper bound) is better than the CC-2P upper bound by 15 % on average. We

can conclude that our method gives a solution that is very close to optimal and provides

a big improvement on the state-of-the-art, particularly when the number of targets is low

compared to the number of sensors.

Table 13 also compares the accuracy and bound improvement of OSCC-1P algorithm

over CC-2P algorithm, where accuracy corresponds to the closeness of schedule with the

LB, expressed as a percentage. The accuracy (ε) of OSCC-1P is seen to be much better
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Table 13: ConvergeCast Analysis (q=1)

targets
LB UB

ε2 ε12P 1P Ilb 1P 2P Iub

40 sensors
10 24.3 27.2 10.6 28.1 32.7 16.4 34.6 3.4
20 47.0 47.6 1.1 48.4 55.0 13.6 16.9 1.7
30 69.8 71.5 2.4 72.8 85.8 17.9 23.0 1.8
40 93.7 95.3 1.7 96.3 111.9 16.2 19.4 1.1

50 sensors
10 17.8 19.0 5.9 19.7 23.6 19.8 32.2 3.9
20 33.6 35.2 4.7 36.6 41.1 12.4 22.4 3.7
30 42.4 46.0 7.8 46.4 49.6 6.9 17.0 0.9
40 63.2 65.5 3.5 66.1 72.6 9.8 14.9 0.9
50 76.1 81.4 6.5 81.7 90.1 10.3 18.4 0.4

60 sensors
10 16.1 17.9 10.0 18.2 22.9 25.6 42.4 2.0
20 30.0 31.2 4.1 31.9 40.1 25.8 33.9 2.1
30 41.4 43.7 5.3 45.0 49.9 10.8 20.4 2.9
40 59.2 60.6 2.2 62.9 71.5 13.7 20.7 3.8
50 72.1 72.4 0.3 73.6 83.3 13.2 15.5 1.7
60 81.3 83.4 2.5 85.0 93.2 9.6 14.6 1.9

70 sensors
10 13.1 15.1 13.2 16.7 20.3 22.0 55.3 10.5
20 25.7 26.4 2.5 28.8 34.5 19.8 34.2 9.2
30 38.6 38.9 0.8 40.9 49.3 20.5 27.8 5.2
40 51.9 52.2 0.6 55.6 65.1 17.0 25.5 6.6
50 64.6 64.6 0.0 69.9 79.0 13.1 22.2 8.1
60 74.9 75.6 1.0 81.2 87.0 7.2 16.2 7.4
70 91.1 91.9 0.8 95.3 101.0 6.0 10.8 3.7

ε2 = 100× (UB2P − LB2P)/LB2P ; ε1 = 100×(UB1P - LB1P) / LB1P

Iub = 100× (2Pub − 1Pub) / 1Pub ; Ilb = 100× (2Plb − 1Plb) / 1Plb
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than that of CC-2P, particularly as the number of targets decreases for a fixed number of

sensors. Figure 14 demonstrates that the OSCC-1P solution is much better than that of

CC-2P solution. Table 14 compares cpu time of OSCC-1P and CC-2P, we need more time

for the OSCC-1P algorithm as it gives a complete solution.
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Figure 14: ConvergeCast lower bound and upper bound (q=1); �= LB2P ,o= LB1P ,∆= UB1P ,
�= UB2P
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Table 14: ConvergeCast cpu time in hours (q = 1)

|S|
2P 1P 1P LB 1P UB

LB UB UB LB σ max σ max

10 targets

40

< 0.1

< 0.1 0.8 1.9 0.3 1.5 0.9 3.3

50 0.1 3.8 3.8 3.1 9.2 3.1 9.2

60 0.5 4.7 1.9 7.1 22.8 6.6 22.8

70 4.1 33.4 24.3 21.5 70.0 21.9 70.0

20 targets

40

<0.1

<0.1 0.6 1.4 0.5 1.5 1.2 3.7

50 0.1 6.5 6.3 3.6 10.2 4.0 10.3

60 5.2 5.7 2.3 6.7 6.5 6.4 6.6

70 2.9 55.1 54.3 21.5 86.6 22.2 90.2

30 targets

40

<0.1

<0.1 0.8 1.8 0.7 2.0 1.9 5.5

50 0.1 2.6 2.2 3.7 11.3 5.4 17.4

60 0.5 5.4 5.4 5.5 16.1 5.5 16.2

70 3.5 45.3 42.3 23.9 66.7 26.4 79.0

40 targets

40

<0.1

0.1 0.8 2.0 0.7 2.6 2.1 7.5

50 0.2 3.0 3.0 3.2 8.6 3.2 8.7

60 0.7 10.8 10.6 9.3 23.9 9.5 24.5

70 2.5 52.8 42.3 32.2 100.6 36.0 103.1

50 targets

50

<0.1

0.2 0.9 0.9 0.6 2.4 0.6 2.4

60 0.6 17.6 14.2 11.5 35.5 18.3 55.9

70 2.8 58.0 42.1 24.2 67.4 37.8 101.1

60 targets

60
<0.1

0.6 9.6 9.1 10.6 34.0 11.9 38.5

70 2.7 52.7 38.0 21.3 59.8 32.8 94.8

70 targets

70 <0.1 2.6 54.2 33.8 39.9 101.8 50.2 145.9

σ = standard deviation, max = maximum time over 10 instances
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Table 15: q-Cover ConvergeCast using 40 sensors

|T |
q = 2 q =3

2P 1P 1P 2P UB 2P 1P 1P 2P UB

LB LB UB UB Iub LB LB UB UB Iub

10 50.3 50.9 52.4 63.4 21.0 78.5 79.1 80.7 94.3 16.9

20 97.5 97.9 98.7 114.6 16.1 152.2 152.3 153.7 175.8 14.2

30 144.2 145.3 146.5 170.2 16.2 225.1 225.3 227.1 267.1 17.6

40 194.6 197.2 198.4 228.7 15.3 302.7 303.1 305.1 338.4 10.9

Iub = 100× (2Pub − 1Pub)/1Pub

4.6.2 q-Coverage with q ≥ 2: Solution Accuracies and Computa-

tional Times

We now look at the same type of comparisons in the context of q-coverage for q = 2 and

q = 3.

Table 15 provides the LB and UB values of the OSCC-1P method for different coverage

levels. We fixed the number of sensors as 40 and varied targets from 10 to 40. It is obvious

that for a higher coverage level we need more slots, to forward more data. We can observe that

the OSCC-1P method remains highly accurate, and also that we obtain 10-20% improvement

in the length of the schedule compared to the earlier CC-2P method. Table 16 compares the

LB and UB values of the OSCC-1P method for single and multiple data-rates.

When Using multiple rates, we are able to reduce the number of packet transmissions

by sending more data in a slot. We can see that the lower bound is better than that of the

single rate. However, the accuracy of the schedule deteriorates a bit.

Table 16: Single vs. Multi data rate

single multi
|T | |S| LB UB ε LB UB ε
10 10 29.0 29 0.0 27.0 27 0.0
20 20 61.3 63 2.8 59.0 63 6.0
30 30 76.0 77 1.3 63.5 77 21.3
40 40 87.3 89 1.9 74.0 83 12.2

ε = 100× (UB− LB)/LB
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4.7 Conclusion

For the NP-hard problem of ConvergeCast, we provided a first complete mathematical for-

mulation to get an optimal ”true” schedule, i.e., not only the minimum number of required

configurations, but also the ordering of the selected configurations, all in one step.. The

scalability of this formulation is enhanced by adding a set of valid inequalities in order to

strengthen its linear relaxation. The enhanced resulting LB improves by 4 % the best one

provided by a mathematical programming formulation. On the other hand, the quality and

accuracy of the optimized ConvergeCast solution is improved by about 15 % when compared

to the best previously available solution.
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Chapter 5

Optimal Aggregated ConvergeCast

Scheduling with an SINR Interference

Model

M. Bakshi, B. Jaumard, and L. Narayanan. Optimal aggregated convergecast scheduling.

submitted for publication, 2017. An extended abstract of this paper has been submitted to

IEEE International Conference on Wireless and Mobile Computing, Networking and Com-

munications. (WiMob), 2017.

In target coverage applications, wireless sensors are required to periodically collect data

about targets they monitor and send them to a central node called the sink. In many

situations, what is of interest is not to collect every item of data but a function of the data,

such as the minimum or maximum or average reading. In such cases, tremendous energy

savings can be obtained by requiring every intermediate sensor nodes to aggregate the data

it receives before forwarding the function value to the sink, thereby drastically reducing the

number of required packet transmissions, and consequently both the time needed for the sink

to receive the information, and the energy used. For example, if the sensors are monitoring

the temperature at each target, and what is required for the sink is to know the maximum

temperature over all targets, each sensor needs to forward only the maximum of its own

data and those received from its predecessors. Such a ConvergeCast operation is called an

Aggregated ConvergeCast.

Given a set of sensor locations, and a sink node, we consider the problem of finding

a minimum-length schedule for Aggregated ConvergeCast. We assume a Time Division

Multiple Access (TDMA) network, and a SINR (Signal to Interference plus Noise Ratio)

model of interference. For many WSN applications, TDMA is considered a more efficient

medium access scheme than random access schemes [39]. A SINR model of interference is
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Figure 15: Aggregated ConvergeCast

a more realistic model of interference than the protocol model of interference: a receiver

node receives a packet so long as the signal to interference plus noise ratio is above a certain

threshold. As in most studies, we assume that every sensor is monitoring a target and has

an item of data to send to the sink.

Figure 15 demonstrates an instance of Aggregated ConvergeCast and a possible solution.

Figure 15(a) shows the input for the problem: the location of the set of sensors {s1, . . . , s11},
and the sink node s0. Figure 15(b) gives an Aggregated ConvergeCast tree. Observe that

without aggregation, we need 22 packet transmissions using this tree, and for a given in-

terference scheme, it can be shown that any schedule would be of length at least 12 slots.

However, if each sensor waits to receive information from its children, and aggregates its

own data with that received from its children, the operation can be achieved using 11 packet

transmissions, with a schedule that requires only 5 slots.

Each of the monitoring sensors needs to aggregate and send the information concerning
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the target it is monitoring along a path to the sink, as shown in Figure 15(b). Since sensor s3

is monitoring its own target and receives a packet from s4, s7 and s11, it needs to aggregate

four packets and send an aggregated packet once towards the sink. Each sensor has a path

to the sink as indicated in Figure 15(b). The information acquired at the sink is commonly

the aggregated information like ”maximum” or ”average”, so that we can accumulate data

rapidly and reduce consumption of transmission power. At the same time, interference from

simultaneous transmissions is also reduced as we use less communications.

Assuming that a given sensor aggregates only once the information it gets from its prede-

cessors together with its own information, an easy observation is that a complete and exact

Aggregated ConvergeCast solution consists of (i) a tree and (ii) a schedule (ordering) of

the links in the tree that avoids interference. That observation was made in the context of

the protocol interference model by [63], and remains valid for the SINR interference model.

Observe that interference is caused not just by tree links, but also by non-tree links. For

instance in Figure 15(b), the tree links (s5, s2) and (s11, s3) cannot be scheduled in the same

time slot, even though the receivers of the two links are different, because of the existence

of the non-tree link (s5, s3) which causes interference at s3.

The Aggregated ConvergeCast problem is known to be NP-hard in both protocol and

SINR models of interference [18], [57]. In fact, even given an aggregation tree, finding an

optimal aggregation schedule is NP-hard [77]. The solutions given in the literature are

either heuristics with no indication of how far the solution is from the optimal solution, or

approximation algorithms that perform badly in practice.

Our Results. We propose the first mathematical model that outputs an optimal schedule

for Aggregated ConvergeCast using the SINR interference model. Our solution is a one-

phase method that simultaneously builds a tree and a schedule. To ensure the scalability of

the solution process, we use a large scale optimization modelling and method to solve the

linear relaxation of the proposed ILP (Integer Linear Programming) model. We are then

able to solve problems of upto 70 sensors, and obtain schedules, which are about 50% better

than the schedules output by the best previously proposed heuristic with a SINR model of

interference [77]. We added cutting planes in order to speedup further the solution process.

The paper is organized as follows. We describe the background in Section 5.1, and related

work in Section 5.2. We propose a mathematical decomposition model that achieves an

optimal Aggregated ConvergeCast in Section 5.3. Finally, numerical results and concluding

comments are given in Section 5.4 and 5.5, respectively.
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5.1 Background

In this section, we define the notation and then the network model.

Let S = {s1, s2, . . . , sn} be a set of n wireless sensors and s0 the sink node. Sensor s

can forward data to another sensor s′, if the Euclidean distance between them is less than

the maximum transmission range. This leads to define a graph G = (V, L) such that each

node of V ≡ S is associated with a sensor, and there is a directed link (s, s′) ∈ L if sensor

s′ is within the transmission range of s. Sensors communicate using wireless transmissions

and need to address the possibility of radio interference. We use the Signal to Interference

plus Noise Ratio (SINR) model of interference. At the intended receiver of a link ` = (s, s′),

SINR refers to the ratio of the signal received to that of the interference from the other

transmission links plus noise. SINR is defined as:

SINR(s,s′) =
psd
−α
(s,s′)

N0 +
∑

s′′∈S′,s′′ 6=s
ps′′d

−α
(s′′,s′)

(75)

where ps is the transmission power of sensor s, d(s,s′) is the distance from s to s′, α is the path

loss exponent, N0 is the thermal noise power and S ′ is the set of sensors that are transmitting

at the same time as s. According to Modulation and Coding Schemes (MCS) [54] of IEEE

802.15.4, a signal can be decoded successfully if the SINR measured at the receiver is above

a given threshold β, which depends on the transmission rate. We used parameter values

based on the out-door sensor specifications [65], [44], i.e., we use power level p = 0, 0.013W,

N0 = 10−6, a single data rate = 250kbps and β = 1.3.

A transmission configuration, or configuration for short, refers to a set of links that

can be scheduled simultaneously while satisfying the SINR constraint above. Note that

the problem of finding a configuration with maximum cardinality is already NP-hard for

the protocol interference model [19], as it is equivalent to the maximum independent set

problem.

We assume the use of Time Division Multiple Access (TDMA) as the MAC layer protocol

for collision resolution. Therein, time is divided into frames, each frame contains a fixed

number of slots, and each slot holds one configuration.

We assume that each sensor monitors a target, and that initially each sensor s has a read-

ing rs. We assume the aggregation function is a function f that is defined on a set of readings.

A solution to the Aggregated ConvergeCast problem needs to find a minimum length TDMA

frame, i.e., an ordered sequence of configurations. Such a sequence achieves the Aggregate

ConvergeCast operation, that is, each sensor transmits exactly once, and the sink can derive

the value of f(r1, r2, . . . , rn) from the data it receives. Figure 16 shows a valid schedule for
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achieving Aggregated ConvergeCast that uses five time slots (five configurations).
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Figure 16: Aggregated ConvergeCast using 5 Configurations

In particular, a valid schedule satisfies the following constraints:

1. Every sensor is monitoring a target and consequently, each sensor sends exactly one

packet.

2. A sensor cannot receive a packet during or after the time slot when it transmits.
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3. Links scheduled in the same time slot satisfy SINR requirements.

4. The sink node receives all the aggregated data.

Aggregated ConvergeCast is proved to be NP-hard in Chen et al. [18] even for the

protocol interference model.

5.2 Related work

Most of the existing work for Aggregated ConvergeCast Scheduling uses the protocol, i.e.,

graph-based, interference model and a minimum spanning tree rooted at the sink node. We

start with a brief description of these studies, and then describe related work on the SINR

interference model.

5.2.1 Using Protocol Interference Model

Aggregated ConvergeCast Scheduling for unit disk graphs using the protocol interference

model is studied in Kesselman et al. [49], Wan et al. [78], Xu et al. [81], Gagnon et al.

[29], Gandhi et al.[30], Guo et al. [35], Pan et al. [66], Jakob et al. [41], Yousefi et al.

[82]. Guo et al. [35] gave an Aggregated ConvergeCast schedule of length O(D + δ), where

D is the diameter of the input graph and δ is the maximal degree. As every Aggregated

ConvergeCast schedule is of length at least D, it gives O(δ)-approximation ratio (δ can be

Θ(n)). Gandhi et al.[30] gave a randomized approximation algorithm ratio of
√
d̃n, where d̃

is the average degree. Kesselman et al. [49] showed that aggregation can then be achieved in

O(log n) assuming the Collision Detection protocol is available at each sensor. Pan et al. [66]

construct a scheduling tree using a weight function based on receiver’s depth and number

of children and propose a scheduling algorithm based on neighbours’ degree. Jakob et al.

[41] uses top-down approach and produce a heuristic schedule without any tree construction.

Yousefi et al. [82] provided another heuristic based on a distributed algorithm. Erzin et

al. [28] proved that for a given Aggregated ConvergeCast tree, the problem of finding an

optimal schedule is still NP-hard using protocol interference model.

5.2.2 Using SINR Interference Model

Moscribroda et al. [64], Li et al. [59], Li et al. [57], Halldorsson et al.[37], and Wang et al.

[77] study the problem using the SINR interference model and propose heuristics. Assuming

discrete power levels, Moscribroda et al. [64] proposed a polylogarithmic bound of O(log4 n)

slots for their scheduling algorithm using an SINR model, where n is the number of sensors.
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For uniform or linear power levels, their algorithm needs O(n2 log n) slots. Halldorsson et

al. [37] relax the SINR interference model by using unlimited transmission power, ignoring

noise, and α > 2, where α is the path loss exponent. They then provide an algorithm that

connects an arbitrary point set in O(log n) slots, improving on the results of Moscribroda et

al. [64].

Li et al. [59] provided a heuristic using dominating sets for the Aggregated ConvergeCast.

Li et al. [57] suggested another O(log 3n) heuristic. This last heuristic uses a round-based

approach; in each round it gives preference to the smaller links and selects set of links

satisfying a simplified SINR condition. Data is transmitted on the selected links, whose

source sensors are subsequently removed from consideration. This process is repeated until

all sensors forward the aggregated data to the sink. The major drawback of this approach is

that it assumes the network is connected even after removing some links. Wang et al. [77]

proposed a heuristic with a lower bound of O(d log 2n)), where d is the depth of the tree.

The heuristic also goes in rounds; in each round they schedule all the links in the highest

layer first and repeat such link scheduling in each round for all the links in different layers.

We will compare our algorithms with this last heuristic as it appears to be the most

efficient one using a SINR interference model.

Ebrahimi et al. [24] give a schedule using a mathematical model for a related problem

with several aggregated trees.

5.3 Optimal Model for Aggregated ConvergeCast

We now propose a first exact Aggregated ConvergeCast ILP model, called ACC, assuming

each sensor has a target to monitor. After presenting the solution of the ACC model in

Section 5.3.2, we propose two enhancements, called ACC-MP and ACC-PP, in order to

improve the convergence speed of the solution process in Sections 5.3.3 and 5.3.4, respectively.

5.3.1 Basic ACC Model

We now describe the ACC model in order to solve the Aggregated ConvergeCast problem.

We use two sets of decision variables. The first set corresponds to decision variables zτc , with

each variable equal to 1 indicating that a link transmission configuration c is scheduled in

time slot τ , and 0 otherwise. The second set of variables is such that: P τ
` = 1 if link ` is

used for transmission in slot τ , 0 otherwise.

In the constraints, coefficient a`, with ` = (s, s′), indicates a transmission link from sensor

s to s′ with power ps.
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We denote by ω−(s) the incoming links (data) to s, and by ω+(s) the outgoing links

(data) from s.

[ACC] min
∑
τ∈TS

∑
c∈Cτ

zτc (76)

subject to: ∑
τ∈TS

∑
`∈ω+(s)

P τ
` = 1 s ∈ S (77)

(1−
∑

`∈ω+(s)

P τ
` )(n+ 1) ≥

∑
τ ′∈TS:τ ′>τ

∑
`′∈ω−(s)

P τ ′

`′ s ∈ S, τ ∈ TS (78)

∑
c∈C

zτc ≤ 1 τ ∈ TS (79)∑
c∈Cτ

ac`z
τ
c = P τ

` ` ∈ L, τ ∈ TS (80)

zτc ∈ {0, 1} c ∈ Cτ , τ ∈ TS (81)

P τ
` ∈ {0, 1} ` ∈ L, τ ∈ TS. (82)

Each sensor has a target to monitor, therefore each sensor has a packet to forward. Constraint

(77) ensures every sensor node must transmit once. Constraints (78) ensure that: if s sent a

packet to s′ at time τ , then no one can send another packet to s after time τ ; it takes care

of aggregation. Constraints (79) make sure that at most one configuration can be used in a

time slot. Constraints (80) ensure that if a link is used in any time slot, then it is included

in one of the scheduled configurations.

As can be observed, the ACC model needs a set of configurations for each time slot τ .

But how can we generate this set? The set of all possible configurations is exponentially

large. In the next section, we explain how to solve it using a scalable column generation

based algorithm.

5.3.2 Solution of the ACC Model

Column Generation and ILP Solution

The ACC model has an exponential number of variables. Therefore, in order to solve it, we

use the Column Generation (CG) method for solving exactly the ACC using explicitly only

a very small subset of variables zτc , see, e.g., [20] if not familiar with the CG method. The

Column Generation method allows an optimal solution of the linear relaxation of the ACC

model. We used it, combined with a heuristic in order to generate an initial set of variables,
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i.e., the heuristic of Wang et al. [77]. The implementation of the CG method requires the

decomposition of the ACC model into the so-called Restricted Master Problem (RMP), i.e.,

the ACC model with a very restricted set of variables, and the so-called pricing problem, i.e.,

a generator of ”improving” link transmission configurations. Such configurations, if added

to the current RMP, lead to an improved value of the linear relaxation of the current RMP.

The column generation method then consists in solving RMP and PP in rounds until we

reach the optimal solution of the linear relaxation of the ACC model. Then, considering only

the configurations generated in order to reach the optimal linear programming relaxation of

the ACC model, we derive an integer solution of the Aggregated ConvergeCast problem.

By doing so, we get an ε-optimal solution for model ACC, with

ε =
z̃ilp − z?lp

z?lp
,

where z?lp denotes the optimum value of the linear relaxation of ACC and defines a lower

bound on the value of the optimum ILP solution (z?ilp), and z̃ilp an upper bound on z?ilp,

even if z̃ilp is the optimal ILP value of the last generated RMP.

Pricing Problem - Transmission Configuration Generator

As discussed in the previous paragraph, in the CG solution scheme, we use a configuration

(column) generator, called ConfigurationGenerator, one for each τ . We now state it.

The objective of the ConfigurationGenerator corresponds to the minimization of the

reduced cost redcostτc . Recall (see [20]) that a negative redcost indicates that the corre-

sponding configuration (column) can contribute to the improvement of the objective of the

ACC model. Let u
τ(80)
` , vτ(79) be the dual values of Constraints (80), (79) respectively. The

expression of the reduced cost can be written:

[ConfigGen] min
c∈C

redcostτc = 1−
∑
`∈L

u
τ(80)
` ac` − vτ(79) (83)
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subject to: ∑
`∈ω+(s)

a` +
∑

`∈ω−(s)

a` ≤ 1 s ∈ S (84)

a` = 0 ` ∈ ω+(s0) (85)

psd
−α
` − β

∑
s′′∈S′:s′′ 6=s

ps′′d
−α
s′′s′ − L1a` ≥ βN0η − L1 ` = (s, s′) ∈ L (86)

ps ≤ Pmax

∑
`∈ω+(s)

a` s ∈ S (87)

a` ≤ L2 ps ` = (s, s′) ∈ L (88)

a` ∈ {0, 1} ` = (s, s′) ∈ L (89)

ps ≥ 0 s ∈ S. (90)

where a` indicates a transmission link between two sensors sensors s and s′ using ps, the

transmission power of sensor s, L1 and L2 are large positive constants. Constraints (84)

say that a node cannot transmit and receive at the same time, whereas constraints (85)

prevent the sink from transmitting. Constraints (86) enforce the SINR condition, i.e., (75).

Constraints (87) ensure that if there is an outgoing link then that the power of the source link

is less the maximum power. Constraints (88) ensure that the transmission link is not active

if the power is set to zero, and vice-versa. When none of the [ConfigGen] problems produces

a configuration with a negative reduced cost in a linear programming iteration, then we can

claim we have reached the optimal linear programming solution of ACC or ACC-MP.

5.3.3 A first improvement: ACC-MP Model

While conducting the numerical experiments with the solution scheme described in Section

5.3.2, we noticed that the lower bound provided by z?lp, the optimal value of the linear

relaxation of ACC was very weak, and then investigated how to tighten the set of constraints

of the ACC model (76) - (82), and consequently improve both the accuracy of the solution

and the convergence speed of the solution process. We therefore looked for so-called cuts or

valid inequalities.

Indeed, we added new sets of constraints, which calculate explicitly (it was only implicitly

done in the basic ACC model) paths from each sensor to the sink node. These last constraints

correspond to flow constraints. We call the resulting model ACC-MP.

Observe that, with the addition of cutting-plane constraints, we can avoid the genera-

tion of configurations that cannot be part of a feasible Aggregated ConvergeCast schedule.

Indeed, the newly added constraints put a priority on completing existing partial paths
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(throughout the already generated configurations) from sensors (targets) to sink, whenever

there is an opportunity for improving the optimal value of the current RMP while doing so.

The addition of the flow constraints require the introduction of a set of variables f =

(fss′)`=(s,s′)∈L to ensure that each target has a path to the sink node. Model ACC-MP can

be written as follows:

[ACC-MP] min
∑
τ∈TS

∑
c∈Cτ

zτc (91)

subject to: ∑
(s′s)∈L

fs′s + 1 =
∑

(ss′)∈L

fss′ s ∈ S (92)

∑
s∈S

fss0 = n (93)∑
τ∈TS

P τ
ss′ ≤ fss′ ≤

∑
τ∈TS

P τ
ss′ × n (s, s′) ∈ L (94)

Constraints: (77)− (82)

fss′ ≥ 0 and integer (s, s′) ∈ L. (95)

Constraints (92) and (93) ensures that each sensor has a path to the sink node. Constraints

(92) guarantee that, at each sensor, the number of incoming paths plus one (i.e., the path

from its own target) equals the number of outgoing paths. Constraint (93) makes sure that

the sink is the destination of a path originating from each sensor. Constraint (94) ensures

that we use link P τ
` only based on flow variables fss′ . The left-hand inequality makes sure

that we do not allow P τ
` to have a non-zero value when there is no flow. The right-hand

inequality ensures that whenever there is a flow, P τ
` is true. Lastly, we use all the constraints

of ACC.

5.3.4 A second improvement: ACC-PP Model

While testing the improvement described in the previous section, we found out that, while

the lower bound (optimal value of the LP relaxation) was improved, there was still room

for further improvement. We therefore next investigated the idea of strengthening the lower

bound of ACC-MP model throughout the introduction of cutting-planes in the configuration

generator ([ConfigGen-ACC-PP] model). Indeed, while in decomposition models, constraints

are usually not repeated in the master and in the pricing problems, it sometimes help to do

so. Consequently, we decided to duplicate Constraints (78) in the pricing problem, and this

required two new sets of constraints (97) and (98).
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The resulting Configuration Generator is called [ConfigGen-ACC-PP] and can be written

as follows:

[ConfigGen-ACC-PP] min
c∈C

redcostτc (96)

subject to:

(84)− (90) as well as

(1− a`)L1 ≥
∑

τ ′∈TS,τ ′<τ

∑
`′∈ω+(s)

P τ ′

`′ ` = (s, s′) (97)

(1− a`)L1 ≥ #Cs − (
∑

τ ′∈TS,τ ′<τ

∑
`′∈ω+(children(s))

P τ ′

`′ ) ` = (s, s′) (98)

Constraints (97) ensure that links that transmitted in earlier slots are discarded. Constraints

(98) ensure that links are considered only when all their children have transmitted. All

together, (97) and (98) are equivalent to (78).

We tested the embedding of [ConfigGen-ACC-PP] in both ACC and ACC-MP (restricted)

master problems. We found out that qualities of the solutions were very similar, while

computational times were higher with the embedding of [ConfigGen-ACC-PP] in ACC-MP.

Consequently, we decided to go on only with the so-called ACC-PP model, that combines

ACC for the master problem and [ConfigGen-ACC-PP] for the pricing problem.

5.4 Computational Experiments

We now present extensive computational experiments for comparing all three new proposed

models ACC, ACC-MP, and ACC-PP for Aggregated ConvergeCast, as well as with the best

previously proposed heuristic with an SINR interference model (Wang et al [77]).

5.4.1 Data Sets

All experimental results use randomly generated topologies in a square grid of side 625m.

We ensure that each topology is connected; if the randomly generated topology does not

meet these requirements, we discard it and generate another topology.

Wireless sensor parameters are those used in the literature [44] for outdoor sensor speci-

fications [65]: sensing range is 150m, maximum transmission range is 100m, assuming a data

rate of 150kbps, and a maximum transmission power of 13mW. We consider 40, 50, 60, and

70 sensors in each experiment.

Each value in the tables and the figures correspond to an average computed over 10

different randomly generated topologies.
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5.4.2 Comparison of ACC, ACC-MP, and ACC-PP Models

Table 17: Schedule - Aggregated ConvergeCast (40, 50 sensors)

ACC ACC-MP ACC-PP

40sen LP ILP LP ILP LP ILP Wang2012

0 6.8 18 6.8 18 17.0 18 30

1 6.0 23 6.0 23 22.5 24 32

2 10.7 18 11.4 18 17.0 19 28

3 5.2 20 5.5 20 19.3 21 29

4 16.5 24 17.5 24 23.0 24 37

5 5.9 18 8.2 18 17.0 19 27

6 5.9 18 5.9 18 17.0 18 30

7 6.4 19 6.7 19 18.0 19 26

8 6.0 23 6.7 23 20.8 22 35

9 5.1 19 5.6 19 18.0 19 32

avg 7.5 20.0 8.0 20.0 19.0 20.3 30.6

gap 168.3 149.0 7.1

ACC ACC-MP ACC-PP

50sen LP ILP LP ILP LP ILP Wang2012

0 5.9 22 6.7 22 20.0 22 39

1 5.5 17 6.3 17 16.0 17 31

2 5.1 20 5.9 20 19.0 20 34

3 4.6 20 5.1 20 18.0 20 35

4 6.1 20 5.7 20 19.0 20 40

5 6.3 19 6.6 19 17.0 19 31

6 5.4 20 7.3 20 19.0 20 36

7 6.9 21 7.0 21 21.0 21 33

8 5.7 16 6.1 16 16.0 16 32

9 5.9 25 6.6 25 24.0 25 39

avg 5.7 20.0 6.3 20.0 18.9 20.0 35.0

gap 248.4 216.0 5.7

gap = 100*(ILP-LP)/LP ILP=Schedule LP=Lower Bound

97



Table 18: Schedule - Aggregated ConvergeCast (60, 70 sensors)

ACC-PP 60sen ACC-PP 70sen

LP ILP Wang2012 LP ILP Wang2012

0 23.0 25 42.0 30.0 32 47.0

1 20.0 22 36.0 23.0 24 42.0

2 18.0 19 40.0 25.4 26 43.0

3 21.0 22 39.0 27.0 27 43.0

4 18.0 19 34.0 27.0 27 40.0

5 28.0 28 40.0 32.0 33 42.0

6 20.0 21 40.0 24.0 24 49.0

7 25.0 25 38.0 26.0 27 38.0

8 17.0 18 36.0 25.0 25 38.0

9 19.0 21 41.0 29.0 30 44.0

avg 20.9 22.0 38.6 26.8 27.5 42.6

gap 5.2 2.5

gap = 100*(ILP-LP)/LP ILP=Schedule LP=Lower Bound

Table 17 and 18 give a comparison of the solutions provided by our ACC, ACC-MP, and

ACC-PP models with those output by the algorithm of [77]. We can see that the sched-

ules produced by all our three models are comparable, and all of them obtain substantial

improvements (50% to 75%) over the schedule of [77]. However, the integrality gap is very

large in ACC. Indeed ACC-MP provides a better lower bound than that of ACC but still

is far from the ILP. This improvement can be attributed to the valid inequalities that were

added in ACC-MP. Finally, ACC-PP substantially reduces the integrality gap to 7%. The

reduction in the integrality gap is shown pictorially in Figure 17 for different network sizes.

It can be seen that the gap is further reduced for ACC-PP as the network size increases.

98



0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

LB UB ACC_LB

0

5

10

15

20

25

30

35

40

sl
o

ts

Schedule_#Sensors

Upper and lower bound range

Figure 17: Bounds

0.0

50000.0

100000.0

150000.0

200000.0

250000.0

300000.0

350000.0

400000.0

40 50 60 70

se
c

sensors

CPU time

ACC

ACC⁺

ACC_PP

Figure 18: Computational times

In Figure 18, we compare the computational times of ACC, ACC-MP, and ACC-PP

models, with the number of sensors between 40 and 70. Surprisingly, ACC-PP is much

faster than the other two models, ACC-MP and ACC-PP, and its accuracy is also much

better.
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5.4.3 Comparison of ACC-PP Algorithm with the Heuristic of

Wang et al. [77]

We do a detailed comparison of the schedules produced by ACC-PP and [77] on a topology

of 70 nodes. The frame length achieved by ACC-PP is 24 slots and that by [77] is 43 slots

for this topology. On average, for every 4 frames used by the algorithm of [77], we save one

frame using ACC-PP. Note that both algorithms have to schedule exactly 70 links for this

topology.
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(a) Wang et al. (2012) - After 5 slots (12 scheduled

links)

(b) ACC-PP - After 5 slots (28 scheduled links)

(c) Wang et al. (2012) - After 25 slots (48 sched-

uled links)

(d) ACC-PP - After 25 slots (58 scheduled links)

(e) Wang et al. (2012) - Final tree after 43 slots (f) ACC-PP - Final tree after 34 slots

Figure 20: Aggregated ConvergeCast using Wang2012 and ACC-PP

Figure 20 shows the links that are scheduled using both methods, after 5 slots, and after

25 slots. It can be seen that ACC-PP schedules many more links in earlier slots than [77].

For example, in the first five slots, ACC-PP successfully schedules 28 links compared to 12 of

[77]. Figure 19 compares the number of links scheduled before a given slot for both methods.

It demonstrates that the number of links scheduled before a given time slot increases at a

similar rate for both methods, but the method of Wang et al [77] gets a much slower start;

this accounts for the much longer frame length.
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5.5 Conclusion

We design a first exact model ACC with two enhancements (ACC-MP and ACC-PP models)

to improve its scalability, in order to compute an optimal schedule for the NP-hard Aggre-

gated ConvergeCast problem. With all three models, we can solve instances of up to 70

sensors within very reasonable computing times. All three models obtain similar schedules,

which are about 50% shorter than the schedules produced by the best heuristic proposed

so far with an SINR interference model. In addition, the most efficient model, ACC-MP,

outputs ε-optimal solutions with an accuracy of 7%, which is already enough to produce

much shorter schedules than the best algorithm of the literature.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied the problem of finding a minimum length TDMA frame or schedule

to achieve ConvergeCast and Aggregated ConvergeCast. The results of the thesis have been

published and/or submitted in [7, 8, 2, 9, 6, 5, 4, 3].

In [7, 8], we studied the problem of finding the minimum number of configurations to

forward data to the sink in wireless sensor networks. We designed an optimization model

consisting of master and pricing problems, to solve the problem. Since the underlying pricing

problem remains NP-hard, we proposed two algorithms that scale up to problems with larger

sizes. Both our algorithms outperform the algorithm given in [44] for large topologies, and

are therefore more scalable. Furthermore, we describe two realistic scenarios in which each

sensor monitoring a target produces multiple packets relating to the target, and described

how to modify our algorithms to support such scenarios. We performed a comprehensive

analysis of the solutions produced by our algorithms.

Since the solution produced in [44, 8] does not actually give a schedule, in [2, 9], we

investigated two basic approaches to scheduling for a ConvergeCast operation in a WSN.

In the first approach, called the TC-approach, a multiset of transmission configurations is

computed and the scheduling algorithm restricts itself to using these configurations. In

the second approach, called the two-phase approach, first a routing tree or subgraph is

computed, and next, sets of non-interfering links are scheduled in rounds. For the TC-based

approach, we provide new optimal solution using TCs and several new scheduling heuristics.

For the two-phase approach, we give a new tree called TFM tree, as well as two scheduling

algorithms (ROS and EMWF) for the second phase. Our results show that the tree-based

approach using our TFM tree significantly outperforms the TC-approach, unless each node

has several packets to send in the same frame, a situation which more closely resembles a

data stream.
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For the NP-hard problem of ConvergeCast, in [6, 5], we provided a first complete mathe-

matical formulation to get an optimal ”true” schedule, i.e., not only the minimum number of

required configurations, but also the ordering of the selected configurations. The quality and

accuracy of the optimized ConvergeCast solution is improved by about 15 % when compared

to the best previously available solution.

In [4, 3], we design a mathematical model to achieve an optimal schedule for the NP-

hard Aggregated ConvergeCast problem. We can solve instances of up to 70 sensors within

very reasonable computing times. We obtain schedules, which are about 50% shorter than

previously proposed schedules.

6.1 Future Work

Our optimal true schedule ConvergeCast formulation and the optimal schedule formulation

of the Aggregated ConvergeCast needs to solve sequentially a set of pricing problems in each

CG iteration. Each of these pricing problems are independent of each other and only need

a set of dual values produced by the restricted master formulation as input. We can take

advantage of this property of being independent and instead of sequential execution, we can

have parallel execution. This can help us solve larger networks much more efficiently.

We considered a single sink throughout the thesis, as it is the generic scenario for the

ConvergeCast operation. It would be interesting to modify the formulation to work with

multiple sinks.

In all the experiments in this thesis, we assume the location of the sensors are given. It

would be an another interesting problem if one has to also decide the initial location of the

sensors along with the ConvergeCast named Optimal Sensor Location problem [69]. This is

another interesting research area, that is much more challenging then the addressed NP-hard

ConvergeCast problem.

Finally, ConvergeCast has the advantage of having all the readings at the sink, while

that of Aggregate ConvergeCast optimizes energy and traffic by only sending aggregated

data. If we could formulate a scalable model that has the advantages of both ConvergeCast

and Aggregated ConvergeCast using compressed sensing [24] that would be another future

direction to work on.
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