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Abstract

Dependence Modelling and Testing: Copula and Varying Coefficient Model with Missing

Data

Yajing Zhu, Ph.D.

Concordia University, 2017

This thesis investigates three topics in theoretical econometrics: goodness-of-fit tests for copu-

las, copula density estimators which preserve the copula property, and bias-correction for the naive

kernel local linear estimators in the two-sample varying coefficient model with missing data.

In the first topic a family of goodness-of-fit tests for copulas is proposed. The tests use gener-

alizations of the information matrix equality of White (1982). The asymptotic distribution of the

generalized tests is derived. In Monte Carlo simulations, the behavior of the new tests is compared

with several Cramer-von Mises type tests and the desired properties of the new tests are confirmed

in high dimensions. In the second topic, a semi-parametric copula density estimation procedure

that guarantees that the estimator is a genuine copula density is outlined. A simulation-based study

is constructed to examine the performance of the proposed copula density estimation method and

compare it with the leading copula density estimators in the literature. The method is also applied to

estimate copula densities in two empirical cases. The third topic shows that the naive kernel estima-

tor using matching data is not consistent in the two-sample varying coefficient model with missing

data. A bias-corrected consistent estimator is proposed and the asymptotic theory is discussed. A

simulation study is conducted to support the theoretical results.
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Chapter 1

Introduction

This thesis investigates three topics in theoretical econometrics: goodness-of-fit tests for copu-

las, copula density estimators which preserve the copula property, and bias-correction for the naive

kernel local linear estimators in the two-sample varying coefficient model with missing data.

In Chapter 2 a family of goodness-of-fit tests for copulas is proposed. The tests use general-

izations of the information matrix (IM) equality of White (1982) and so relate to the copula test

proposed by Huang and Prokhorov (2014). The idea is that eigenspectrum-based statements of the

IM equality reduce the degrees of freedom of the test’s asymptotic distribution and lead to better

size-power properties, even in high dimensions. The gains are especially pronounced for vine cop-

ulas, where additional benefits come from simplifications of score functions and the Hessian. The

asymptotic distributions of the generalized tests are derived, accounting for the non-parametric esti-

mation of the marginals, and apply a parametric bootstrap procedure, valid when asymptotic critical

values are inaccurate. In Monte Carlo simulations, the behavior of the new tests are studied, com-

paring with several Cramer-von Mises type tests. The desired properties of the new tests in high

dimensions are confirmed.

Chapter 3 focuses on simple arrangements for approximating copula densities with spline-type

surfaces, while guaranteeing that our estimator is indeed a copula density. The difficulty of approx-

imating copula densities with piecewise linear surface while guaranteeing the uniform marginal

property is first explored. Next a straightforward method of applying the spline as basis functions

for approximating copula densities is proposed. It is a semi-parametric copula density estimation

1



procedure that guarantees that the estimator is indeed a copula density. The estimation procedure

involves a maximum likelihood estimation of the coefficients of the splines. With simple linear

constraints included in the maximization problem, we are solving a convex optimization problem

which is easy to solve numerically. Our estimation procedure can be easily generalized onto an

irregular grid on the unit square instead of a regular grid with equidistant knots, which implies a

good localization property. Our estimator also can be easily generated to higher dimensions. We

construct a simulation-based study to examine the performance of our copula density estimation

method and compare it with the leading copula density estimators in the literature. This method is

applied to estimate copula densities in two empirical cases.

Chapter 4 shows that the naive kernel estimator using matching data is not consistent in the

two-sample varying coefficient model with missing data. A bias-corrected consistent estimator is

proposed and the asymptotic theory is discussed. A simulation study is conducted to support the

theoretical results.

2



Chapter 2

Generalized Information Matrix Tests

for Copulas

2.1 Introduction

Consider a continuous random vector X = (X1, . . . , Xd) with a joint cumulative distribution

function H and marginals F1, ..., Fd. By Sklar’s theorem, H has the following copula representation

H(x1, ..., xd) = C(F1(x1), . . . , Fd(xd)),

where C is a unique cumulative distribution function, whose marginals are uniform on [0, 1]d. Cop-

ulas represent the dependence structure between elements of X and this allows one to model and

estimate distributions of random vectors by estimating the marginals and the copula separately. In

economics, finance and insurance, this ability is very important because it facilitates accurate pric-

ing of risk (see, e.g., Zimmer, 2012). In such problems d is often quite high – tens or hundreds –

and this has spurred a lot of interest to high dimensional copula modeling and testing in recent years

(see, e.g., Patton, 2012).

In such high dimensions, classical multivariate parametric copulas such as the elliptical or

Archimedean copulas are often insufficiently flexible in modeling different correlations or tail de-

pendencies. On the other hand, they are very flexible and powerful in bivariate modeling. This

3



advantage was used by Joe (1996) and later by Bedford and Cooke (2001, 2002) to construct multi-

variate densities using hierarchically bivariate copulas as building blocks. This process – known as

a pair-copula construction (PCC, Aas et al., 2009) – results in a very flexible class of regular vine

(R-vine) copula models, which can have a relatively large dimension, yet remain computationally

tractable (see, e.g., Czado, 2010; Kurowicka and Cooke, 2006, for introductions to vine copulas).

A copula model for X arises when C is unknown but belongs to a parametric family C0 = {Cθ :

θ ∈ O}, where O is an open subset of R
p for some integer p ≥ 1, and θ denotes the copula

parameter vector. There is a wide literature on the estimation of θ under the assumption H0 : C ∈

C0 = {Cθ : θ ∈ O} given independent copies X1 = (X11, . . . , X1d), . . . ,Xn = (Xn1, . . . , Xnd) of

X; see, e.g., Genest et al. (1995), Joe (2005), Prokhorov and Schmidt (2009). The complementary

issue of testing

H0 : C ∈ C0 = {Cθ : θ ∈ O} vs. H1 : C /∈ C0 = {Cθ : θ ∈ O}

is more recent – surveys of available tests can be found in Berg (2009) and Genest et al. (2009).

Currently, the main problem in testing is to develop operational “blanket” tests, powerful in high

dimensions. This means we need tests which remain computationally feasible and powerful against

a wide class of high-dimensional alternatives, rather than against specific low-dimensional families,

and which do not require ad hoc choices, such as a bandwidth, a kernel, or a data categorization (see,

e.g., Klugman and Parsa, 1999; Genest and Rivest, 1993; Junker and May, 2005; Fermanian, 2005;

Scaillet, 2007; Kojadinovic and Yan, 2011). Genest et al. (2009) discuss five testing procedures that

qualify as “blanket” tests. We will use some of them in our simulations.

Recently, Huang and Prokhorov (2014) proposed a “blanket” test based on the information

matrix equality for copulas, and Schepsmeier (2016, 2015) extended that test to vine copulas. The

point of this test is to compare the expected Hessian for θ with the expected outer-product-of-the-

gradient (OPG) form of the covariance matrix – under H0, their sum should be zero. This is the so

called Bartlett identity and the test is called the Information Matrix Test (IMT) (see White, 1982). So

in multi-parameter cases, the statistic is based on a random vector whose dimension – being equal to

the number of distinct elements in the Hessian – grows as the square of the number of parameters.

4



Even though the statistic has a standard asymptotic distribution, simulations suggest that using

analytical critical values leads to severe oversize distortions, especially when the dimension is high.

The tests we propose in this chapter are motivated by recent developments in information ma-

trix equality testing by Golden et al. (2013). Specifically, we use alternative, eigenspectrum-based

statements of the information matrix equality. This means we use functions of the eigenvalues of the

two matrices, instead of the distinct elements of the matrices. This leads to a noticeable reduction

in dimension of the random vector underlying the test statistic, which permits significant size and

power improvements. The improvements are more pronounced for high dimensional dependence

structures. Regular vine copulas are effective in this setting because of a further dimension reduction

they permit. We argue that R-vines offer additional computational benefits for our tests. Compared

to available alternatives, our tests applied to vine copula constructions remain operational and pow-

erful in fairly high dimensions and seem to be the only tests allowing for copula specification testing

in high dimensions.

The chapter is organized as follows. In Section 2.2, we introduce seven new goodness-of-fit

tests for copulas and discuss their asymptotic properties. Section 2.3 describes the computational

benefits that result from applying our tests to vine copulas. In Section 2.4 we use the new tests

in a Monte Carlo study where we first study the new copula tests in terms of their size and power

performance, and then examine the effect of dimensionality, sample size and dependence strength

on size and power of these tests, as compared with three popular “blanket” tests that perform well

in simulations. Section 2.5 presents the conclusions.

2.2 Generalized Information Matrix Test for Copulas

In the setting of general specification testing, Golden et al. (2013) introduced an extension to

the original information equality test of White (1982), which they call the Generalized Information

Matrix Test (GIMT). Unlike the original test, which is based on the negative expected Hessian and

OPG, GIMT is based on functions of the eigenspectrum of the two matrices. In this section we

develop a series of copula goodness-of-fit tests which draw on GIMT and we study their properties.

5



2.2.1 Generalized Tests and Hypothesis Functions

Let Xi = (Xi1, . . . , Xid), i = 1, . . . , n, denote realizations of a random vector X = (X1, . . . , Xd)

∈ R
d. All tests we consider are based on a pseudo-sample U1 = (U11, . . . , U1d), . . . , Un =

(Un1, . . . , Und), where Ui = (Ui1, . . . , Uid) =
(

Ri1
n+1 , . . . ,

Rid
n+1

)
are realizations of a random vector

U = (U1, . . . ,Ud), and Rij is the rank of Xij amongst X1j , . . . , Xnj . The denominator n+1 is used

instead of n to avoid numerical problems at the boundaries of [0, 1]d. Given a sample {X1, . . . ,Xn},

{U1, . . . ,Un} can be viewed as a pseudo-sample from a copula C.

Note that U1, . . . ,Un (and all functions thereof) depend on the sample {X1, . . . ,Xn} via the

rank transformation but we do not reflect this in the notation (by using a hat or a subscript) in order

to keep the notation under control.

Assume that the copula density cθ exists. Let H(θ) denote the expected Hessian matrix of ln cθ

and let C(θ) denote the expected outer product of the corresponding score function (OPG), i.e.,

H(θ) := E∇2
θ ln cθ(U) and C(θ) := E∇θ ln cθ(U) ∇′

θ ln cθ(U),

where “∇θ” and “∇2
θ” denote the first and second derivatives with respect to θ, respectively; the

expectations are with respect to the true distribution H .

Let θ0 denote the true value of θ, that is, θ0 identifies the unique copula function C in Sklar’s

theorem. Assume H(θ0) and C(θ0) are in the interior of a compact set Sp×p ⊆ R
p×p. For i =

1, . . . , n, let

Hi(θ) := ∇2
θ ln cθ(Ui) and Ci(θ) := ∇θ ln cθ(Ui) ∇

′
θ ln cθ(Ui).

For any θ ∈ O, define the sample analogues of H(θ) and C(θ):

H̄(θ) := n−1
n∑

i=1

Hi(θ) and C̄(θ) := n−1
n∑

i=1

Ci(θ).

6



Then, given an estimator θ̂ of θ0, we can denote estimates of H(θ0) and C(θ0) by

H̄n := H̄(θ̂) and C̄n := C̄(θ̂),

where the subscript n denotes dependence on the estimator θ̂.

The estimator we will use is known as the Canonical Maximum Likelihood Estimator (CMLE).

It maximizes the copula-based likelihood evaluated at pseudo-observations and for this reason it

is often called a maximum pseudo-likelihood estimator. The properties of CMLE are very well

studied; for example, Proposition 2.1 of Genest et al. (1995) shows consistency and asymptotic

normality of CMLE of θ0.

Definition 1 (Hypothesis Function) Let s : Sp×p × Sp×p → R
r be a continuous differentiable

function in both of its matrix arguments. s is called a hypothesis function if for every A,B ∈ Sp×p

it follows:

If A = −B then s(A,B) = 0r,

where 0r is a zero vector of dimension r.

Here and in what follows we let H0 and C0 be the short-hand notation for the expected Hessian

and OPG evaluated at the true value; that is, H0 := H(θ0) and C0 := C(θ0).

Definition 2 (GIMT) A test statistic ŝn := s(H̄n, C̄n) is a GIMT for copula Cθ if it tests the null

hypothesis:

H0 : s(H0,C0) = 0r.

Clearly, there are many choices for the hypothesis function s(·, ·). In particular, eigenspectrum

functions such as the determinant det(·) and the trace tr(·) can be used to construct s(·, ·). One of

the main insights of Golden et al. (2013) is that different hypothesis functions permit misspecifica-

tion testing in different directions. For example, a test comparing the determinants of H0 and C0

will detect small variations in eigenvalues of the two matrices, while a test comparing traces will

focus on differences in the major principal components of the two matrices.

We consider the following choices:
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(1) White Test Tn: vech(H0)+vech(C0) = 0p(p+1)/2, where vech denotes vertical vectorization

of the lower triangle of a square matrix.

(2) Determinant White Test T (D)
n : det(H0 + C0) = 0

(3) Trace White Test T (T )
n : tr(H0 + C0) = 0

(4) Information Ratio (IR) Test Zn: tr(−H
−1
0 C0)− p = 0

(5) Log Determinant IR Test Z(D)
n : log(det(−H

−1
0 C0)) = 0

(6) Log Trace IMT Trn: log(tr(−H0))− log(tr(C0)) = 0

(7) Log Generalized Akaike Information Criterion (GAIC) IMT Gn: log[1p(1p)
′(Λ(−H

−1
0 ) �

Λ(C0))] = 0, where � denotes the Hadamard product, Λ denotes the eigenvalue function and

1p denotes a vector of p ones.

(8) Log Eigenspectrum IMT Pn: log(Λ(−H
−1
0 ))− log(Λ(C−10 )) = 0p

(9) Eigenvalue Test Qn: Λ(−H
−1
0 C0)− 1p = 0p

The tests Tn and Zn are the original White and IR tests (see, e.g., Huang and Prokhorov, 2014;

Schepsmeier, 2016, 2015). The other tests are new. The Trace White Test T (T )
n focuses on the sum

of the eigenvalues of H0 + C0 and the Determinant White Test T (D)
n focuses on the product of the

eigenvalues of H0 + C0. The focused testing allows for directional power which we discuss later.

Two more tests are log-versions of the last two. The (Log) Determinant IR Test Z(D)
n focuses

on the determinant of the information matrix ratio, and the Log Trace Test Trn looks at whether the

sum of the eigenvalues is the same for the negative Hessian and the OPG form. We use logarithms

here as variance stabilizing transformations. In contrast to the White (or IR) version, the Log Trace

Test does not use the eigenvalues of the sum (or the ratio) of H0 and C0, rather it looks at the

eigenvalues of each matrix separately.

The Log GAIC Test Gn picks on the idea of the IR Test that the negative Hessian multiplied

by the inverse of the OPG (or vice versa) equals the identity matrix. The new feature is that we

focus on the average product of the Hessian-based eigenvalues and OPG-based eigenvalues. The
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last two tests are explicitly based on the full eigenspectrum. The Eigenspectrum Test Pn compares

the eigenvalues of H0 and C0 separately, and the Eigenvalue Test Qn uses the eigenvalues of the

information matrix ratio.

In multivariate settings, the dimension of θ often grows faster than the dimension of X. For

example, a d-variate t-copula has O(d2) parameters. The eigenspectrum-based hypothesis functions

allow a reduction of the dimension of the test statistic (and thus the degrees of freedom of the test)

from p(p + 1)/2, where p is the number of copula parameters, to the number of values of the

hypothesis function, r.

All these hypothesis functions represent equivalent equations under the null, yet the behavior of

the tests varies widely. We first look at the asymptotic approximations of the behavior.

2.2.2 Asymptotic Results for a Generic Hypothesis Function

We start by looking at the asymptotic properties of the GIMT based on a generic hypothesis

function. Since ŝn is a function of CMLE these properties will mirror the properties of CMLE,

which are known to be subject to certain regularity conditions. Therefore, the properties of the

GIMT will be subject to the same regularity conditions. The regularity conditions are listed in many

papers on semiparametric copula estimation (see, e.g., Genest et al., 1995; Shih and Louis, 1995;

Hu, 1998; Tsukahara, 2005; Chen and Fan, 2006b,a). They include compactness of the parameter

set, smoothness of the marginals, existence and continuity of the log-density derivatives up to the

second order.

An additional assumption specific to our setting is the assumption of existence of the third-

order derivatives of the log-density. Let ∇θs(H0,C0) denote the derivative matrix of the hypothesis

function with respect to θ evaluated at θ0. We assume that ∇θs(H0,C0) has full row rank r.

The asymptotic distributions of the various test statistics we consider depend on the limiting

properties of H̄n and C̄n, and on the form of the hypothesis function. Let

di(θ) :=

⎛⎜⎝vech(Hi(θ))

vech(Ci(θ))

⎞⎟⎠ ∈ R
p(p+1)
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denote the lower triangle vectorizations of Hi(θ) and Ci(θ) and define the sample average d̄(θ) :=

1
n

∑n
i=1 di(θ). Clearly, the limiting behavior of ŝn is determined by the behavior of d̄(θ̂) and by

the derivative of the various hypothesis functions with respect to H(θ) and C(θ).

Lemma 3 (Asymptotic Normality of
√
nŝn) Let s : Sp×p × Sp×p → R

r be a GIMT hypothesis

function. Then, under H0,
√
nŝn

d→ N(0,Σs(θ0)),

where

Σs(θ0) := S(θ0)V (θ0)S(θ0)
′, (1)

S(θ0) :=

(
∂s

∂vech(H(θ))′

∣∣∣∣
θ0

,
∂s

∂vech(C(θ))′

∣∣∣∣
θ0

)
(2)

and V (θ0) is given in Eq.(25) of Appendix A.

Proof: see Appendix A for all proofs.

Lemma 3 essentially decomposes the two effects on the asymptotic distribution of ŝn. The

common variance component V (θ0) is the variance of
√
nd̄(θ̂) and the test-specific term S(θ0)

captures the effect of using the different hypothesis functions.

The main difference between Lemma 3 and the specification tests of White (1982) and Golden

et al. (2013) is in the form of V (θ0). The complication arises from the rank transformation which

requires a non-trivial adjustment to the variance of ŝn, accounting for the estimation error (see

Huang and Prokhorov, 2014). Therefore, the proof of Lemma 3 mimics that of Proposition 1 of

Huang and Prokhorov (2014).

Let Σ̂s denote any consistent estimator of the asymptotic covariance matrix Σs(θ0). The fol-

lowing result is easy to show using Lemma 1 and consistency of Σ̂s so it is left without proof.

Theorem 4 Under H0, the GIMT statistic for copulas

Wn := n ŝ′nΣ̂
−1
s ŝn (3)

is asymptotically χ2
r distributed.
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Note that the distribution has r degrees of freedom, where r is the number of components of the

vector-valued hypothesis function. An improvement provided by the eigenspectrum-based GIMT is

that for many tests r = 1.

Clearly, a consistent estimator Σ̂s would require a consistent estimation of S(θ0) and V (θ0).

Given θ̂, the task is to obtain consistent plug-in estimators of the derivatives and variance. Let Ŝ

and V̂ denote consistent estimators of S(θ0) and V (θ0), respectively. It follows that Σs(θ0) can be

estimated as

Σ̂s = ŜV̂ Ŝ′.

How to obtain V̂ is discussed by Huang and Prokhorov (2014). This involves plugging θ̂ in

place of θ0 in V (θ0) and replacing expectations in V (θ0) with sample averages.

In the propositions that follow we focus on the estimation of S(θ0).

2.2.3 Asymptotic Results for Specific Tests

We now specialize the result of Theorem 4 to the hypothesis functions we consider.

White Test for Copulas

In the case of the original White (1982) test, the asymptotic covariance matrix in Lemma 3

simplifies. Huang and Prokhorov (2014, Proposition 1) provide the asymptotic variance matrix for

this case. It can be obtained by rearranging the building blocks used in the construction of the test

statistic (elements of di(θ)), and by setting Ŝ =
[
Ip(p+1)/2, Ip(p+1)/2

]
, where Ik is a k×k identity

matrix.

Proposition 5 (Determinant White Test) Define

Ŝ = det(H̄n + C̄n)vech[(H̄n + C̄n)
−1]′

[
Ip(p+1)/2, Ip(p+1)/2

]
.

Then, under H0, the asymptotic distribution of the test statistic

T (D)
n := n

[det(H̄n + C̄n)]
2

Σ̂s
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is χ2
1.

Proposition 6 (Trace White Test) Define

Ŝ =
[
vech(Ip)

′, vech(Ip)
′] .

Then, under H0, the asymptotic distribution of the test statistic

T (T )
n := n

tr(H̄n + C̄n)
2

Σ̂s

is χ2
1.

Note that Σ̂s is scalar for these tests and the test statistics can be viewed as products of two

standard normals where a square root of the numerator is scaled by a square root of Σ̂s. The two

tests have one degree of freedom, rather than p(p+1)/2, but have important differences allowing for

directional testing. Because larger eigenvalues have a larger effect on the determinant than on the

corresponding trace, the Trace White Test will be less sensitive to changes in eigenvalues, especially

small ones, and thus less powerful than the Determinant White Test.

Information Ratio Test for Copulas

As extensions of the original White test, Zhou et al. (2012) and Presnell and Boos (2004) con-

sider using a ratio of the Hessian and OPG. Under correct specification, the matrix −H
−1
0 C0 is equal

to a p-dimensional identity matrix. Two versions of this test for copulas are now proposed.

Proposition 7 (IR Test) Define

Ŝ =
[
vech

(
H̄
−1
n C̄nH̄

−1
n

)′
, vech

(
−H̄

−1
n

)′]
.

Then, under H0, the asymptotic distribution of the test statistic

Zn := n

[
tr(−H̄

−1
n C̄n)− p

]2
Σ̂s
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is χ2
1.

Proposition 8 (Log Determinant IR Test) Define

Ŝ = det(H̄−1n C̄n)
[
vech

(
−C̄nH̄

−1
n C̄n

)′
, vech

(
C̄
−1
n

)′]
.

Then, under H0, the asymptotic distribution of the test statistic

Z(D)
n := n

(
log(det(−H̄

−1
n C̄n))

)2
Σ̂s

is χ2
1.

Log Trace Test for Copulas

Similar to the Log-Determinant IR Test we can construct a test using the log of traces of −H0

and C0, which should be identical under the null.

Proposition 9 (Log Trace Test) Define

Ŝ =

[
1

tr(H̄n)
vech(Ip)

′,− 1

tr(C̄n)
vech(Ip)

′
]
.

Then, under H0, the asymptotic distribution of the test statistic

Trn := n

[
log(tr(−H̄n))− log(tr(C̄n))

]2
Σ̂s

is χ2
1.

As mentioned earlier, trace-based tests pick up changes in larger eigenvalues easier than in

smaller eigenvalues – a property that is desirable for some alternatives.
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Log GAIC Test for Copulas

Define the Generalized Akaike Information Criterion as follows:

GAIC := −2 log
n∏

i=1

c(Ui; θ̂) + 2tr(−H̄
−1
n C̄n).

It is well known (see, e.g., Takeuchi, 1976) that under model misspecification GAIC is an unbiased

estimator of the expected value of −2 log
∏n

i=1 c(Ui; θ̂), where H̄n and C̄n come from a parametric

likelihood. Under correct model specification 2tr(−H̄
−1
n C̄n) → 2p, since −H̄

−1
n C̄n → Ip a.s., and

so GAIC becomes AIC.

However, this definition ignores the fact that our likelihood has a non-parametric component

and so would be valid in our setting only if H̄n and C̄n were based on observations from the copula

rather than on the pseudo-observations. Gronneberg and Hjort (2014) provide a correction required

to the conventional GAIC in order to account for the rank transformation used in CMLE. This link

to GAIC motivates the name for the following form of the GIMT.

Let Λ(A) = (λ1, . . . , λp)
′ denote the vector of sorted eigenvalues of A ∈ R

p×p. Further,

let Λ−1(A) := 1/Λ(A) denote component-wise {1/λj}pj=1 and Λ(A−1) = Λ−1(A). Then, un-

der the null, tr(−H
−1

C) = (1p)
′ (Λ(−H

−1)� Λ(C)
)
, where � denotes the Hadamard product,

i.e. component-wise multiplication. However, generally, eigenvalues of the product matrix are not

equal to the product of eigenvalues of the components.

Proposition 10 (GAIC Test) Define

Ŝ =
1

tr(H̄−1n C̄n)

[
vech

(
H̄
−1
n C̄nH̄

−1
n

)′
, vech

(
−H̄

−1
n

)′]
.

Then, under H0, the asymptotic distribution of the test statistic

Gn := n

{
log

[
1
p(1p)

′ (Λ(−H̄
−1
n )� Λ(C̄n)

)]}2

Σ̂s

is χ2
1.

In contrast to the IR Test the eigenvalues of the Hessian and the OPG are calculated separately.
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Thus, similar to the Log Determinant IR Test, the Log GAIC Test is more sensitive to changes in the

entire eigenspectrum than the IR Test (see Golden et al., 2013, for a more detailed discussion).

Eigenvalue Test for Copulas

The form of the Log Eigenspectrum IMT was initially proposed by Golden et al. (2013). The

test has p degrees of freedom. So the reduction in the degrees-of-freedom from p(p+ 1)/2 is more

noticeable for larger p, which would typically mean a higher dimensional copula.

In order to derive its asymptotic distribution we need additional notation. For a real symmetric

matrix A, let yj(A) denote the normalized eigenvector corresponding to eigenvalue λj(A), j =

1, . . . , p. Let D denote the duplication matrix, i.e. such a matrix that Dvech(A) = vec(A) (see,

e.g. Magnus and Neudecker, 1999).

Proposition 11 (Log Eigenspectrum Test) Define

Ŝ =

⎡⎢⎢⎢⎢⎣
− 1

λ1(H̄n)
[y1(H̄n)

′ ⊗ y1(H̄n)
′]D 1

λ1(C̄n)
[y1(C̄n)

′ ⊗ y1(C̄n)
′]D

...
...

− 1
λp(H̄n)

[yp(H̄n)
′ ⊗ yp(H̄n)

′]D 1
λp(C̄n)

[yp(C̄n)
′ ⊗ yp(C̄n)

′]D

⎤⎥⎥⎥⎥⎦ .

Then, under H0, the asymptotic distribution of the test statistic

Pn := n
[
log(Λ(−H̄

−1
n ))− log(Λ(C̄−1n ))

]′
Σ̂−1s

[
log(Λ(−H̄

−1
n ))− log(Λ(C̄−1n ))

]
is χ2

p.

A similar approach uses the eigenspectrum of the information matrix ratio Λ(−H
−1
0 C0). We

will call this test the Eigenvalue Test.

Proposition 12 (Eigenvalue Test) Define

Ŝ =

⎡⎢⎢⎢⎢⎣
1

λ1(H̄n)
[y1(C̄n)

′ ⊗ y1(C̄n)
′]D − λ1(C̄n)

λ1(H̄n)2
[y1(H̄n)

′ ⊗ y1(H̄n)
′]D

...
...

1
λp(H̄n)

[yp(C̄n)
′ ⊗ yp(C̄n)

′]D − λp(C̄n)

λp(H̄n)2
[yp(H̄n)

′ ⊗ yp(H̄n)
′]D

⎤⎥⎥⎥⎥⎦ .
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Then, under H0, the asymptotic distribution of the test statistic

Qn := n
[
Λ(−H̄

−1
n C̄n)− 1p

]′
Σ̂−1s

[
Λ(−H̄

−1
n C̄n)− 1p

]
is χ2

p.

2.2.4 On Applicability of Asymptotic Approximations

The asymptotic results in Propositions (1)-(8) have simple distributions and may seem very

appealing. However, their implementation and validity is limited by several important considera-

tions. One of the most important criticisms of the original White test is its slow convergence to

the asymptotic distribution. For example, Schepsmeier (2016) shows that for a five-dimensional

copula (df = p(p + 1)/2 = 55), the number of observations needed to show acceptable size and

power behavior using asymptotic critical values is at least 10,000; for an eight-dimensional cop-

ula (df = 406) that number is greater than 20,000. Unfortunately, the new tests inherit the same

problem.

An important reason for the slow convergence to the asymptotic distribution is the complex form

of Σs(θ0). Estimation of the asymptotic variance matrix of the hypothesis function involves numeral

evaluation of d-dimensional integrals and numerical or analytical evaluation of copula derivatives

of orders one to three. Such numerical evaluations are subject to approximation errors themselves

and are rarely done in practice, especially in high dimensions. Instead, it is common to look at the

bootstrap distribution of ŝn. Since the distribution depends on θ0, one uses the parametric bootstrap.

One situation when using asymptotic critical values may be worthwhile is when the copula

score simplifies. Vine copulas allow for such simplifications. Their structure eliminates the need

for d-dimensional integration and they admit simpler derivatives. So in what follows we focus on

vine copulas. For non-vine copulas, one can view the asymptotic results in Propositions (1)-(8) as

justification for the parametric bootstrap using these hypothesis functions.
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2.3 GIMTs for Vine Copulas

A regular vine (R-vine) copula is a nested set of bivariate copulas representing unconditional and

conditional dependence between elements of the initial random vector (see, e.g., Joe, 1996; Bedford

and Cooke, 2001, 2002). Any d-variate copula can be expressed as a product of such (conditional)

bivariate copulas and there are many ways of writing this product. Graphically, R-vine copulas

can be illustrated by a set of connected trees V = {T1, . . . , Td−1}, where each edge represents a

bivariate conditional copula. The nodes illustrate the arguments of the associated copula. The edges

of tree Ti form the nodes of tree Ti+1, i ∈ {1, . . . , d − 2}. The proximity condition of Bedford

and Cooke (2001) then defines which possible edges are allowed between the nodes to form an

R-vine. If we denote the set of bivariate copulas used in trees V by B(V) and the corresponding set

of parameters by θ(B(V)), then we can specify an R-vine copula by (V,B(V),θ(B(V))).

Let U1, . . . , Ud denote a pseudo-sample as introduced in Section 2.2.1. The edges j(e), k(e)|D(e)

in Ei, for 1 ≤ i ≤ d − 1 correspond the set of bivariate copula densities B =
{
cj(e),k(e)|D(e)|e ∈

Ei, 1 ≤ i ≤ d− 1}. The indices j(e) and k(e) form the conditioned set while D(e) is called the

conditioning set. Then a regular vine copula density is given by the product

c1,...,d(u) =
d−1∏
i=1

∏
e∈Ei

cj(e),k(e);D(e)(Cj(e)|D(e)(uj(e)|uD(e)), Ck(e)|D(e)(uk(e)|uD(e))). (4)

The copula arguments Cj(e)|D(e)(uj(e)|uD(e)) and Ck(e)|D(e)(uk(e)|uD(e)) can be derived integral-

free by the formula derived from the first derivative of the corresponding cdf with respect to the sec-

ond copula argument. For details, see Eq.(2) in Schepsmeier (2016). An example of a 5-dimensional

R-vine is given in Figure 2.1.

The canonical vine (C-vine) and the drawable vine (D-vine) are two special R-vines. The C-vine

has in each tree a root node which is connected to all other nodes in this tree. In the D-vine each

node is connected to two other nodes at most.

The copula parameter vector θ(B(V)) can be estimated either in a tree-by-tree approach called

sequential estimation, or in a full maximum-likelihood estimation (MLE) procedure (Aas et al.,

2009). The sequential procedure uses the hierarchical structure of R-vines and is quick – its results
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Figure 2.1: Tree structure of a 5-dimensional R-vine copula.

are often used as starting values for the MLE approach. Both are consistent estimators.

Vine copulas have gained popularity because of the benefits they offer when dimension d is

high. First, they permit a decomposition of a d-variate copula with O(d2) or more parameters into

d(d − 1)/2 bivariate (one-parameter) copulas, which reduces computational burden. Second, they

offer a natural way to impose conditional independence by dropping selected higher-order edges in

V . Finally, the integral free expressions for the conditional copulas offer an additional computational

benefit.

Such a reduction of parameters using the conditional independence copula can be achieved

in two ways. First, single conditional copulas can be assumed independent, especially if some

pre-testing procedure confirms this (see, e.g., Genest and Favre, 2007). Further, by setting all pair-

copula families above a certain tree order to the independence copula, the number of parameters can

be reduced significantly. This involves no testing and is often done heuristically; Brechmann et al.

(2012) call this approach truncation.

In our settings, vine copulas offer an additional advantage over conventional copulas. As an ex-

ample, consider testing goodness-of-fit of a d-variate Eyraud-Farlie-Gumbel-Morgenstern (EFGM)

copula. This copula has p = 2d − d − 1 parameters so the number of degrees-of-freedom for the

White Test is of order O(22d), while for the eigenspectrum-based tests that number is as low as one.

Regardless of the GIMT, the calculation of the test statistic involves evaluating, analytically or nu-

merically, the score function and the Hessian. If we use the asymptotic critical value we also need

to evaluate the third derivative of the log-copula density and a d-variate integral. The score ∇θ ln cθ

is a vector-valued function with 2d − d − 1 elements, each a function of all 2d − d − 1 elements
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of θ. The Hessian is a p × p matrix-valued function, in which each component is a function of the

entire vector θ. The third-order derivative is a p2 × p matrix, with each element a function of p

parameters. Now what changes if we replace that copula with a d-variate vine?

Consider the case of d = 3. Suppose we use the following R-vine representation

c123(u1, u2, u3;θ) = c12(u1, u2; θ1)c23(u2, u3; θ2)c13;2(C1|2(u1|u2; θ1), C3|2(u3|u2; θ2); θ3),

where each bivariate copula is EFGM and θ = (θ1, θ2, θ3). Then, it is easy to see that ∇θ ln cθ has

the form ⎛⎜⎜⎜⎜⎝
∇θ1 ln c12 +∇θ1 ln c13;2

∇θ2 ln c23 +∇θ2 ln c13;2

∇θ3 ln c13;2

⎞⎟⎟⎟⎟⎠ ,

where each element is a score function for the corresponding element of θ – a simpler function

with fewer argument (see Stöber and Schepsmeier, 2013, for details). The term ∇θ1 ln c13;2 is the

only term that has all three parameters but if a sequential procedure is used, estimates of θ1 and

θ2 come from previous steps and are treated as known so only θ3 is effectively unknown in c13;2.

Regardless of the estimation method, only derivatives of bivariate copulas are needed, which are

much simpler than in higher dimensions. Plus, d-dimensional integration needed for evaluation of

V (θ0) is replaced with bivariate. Closed form expressions for the first two derivatives of several

bivariate copulas are given in Schepsmeier and Stöber (2014, 2012). The Hessian will simplify

accordingly – some cross derivatives will be zero (Stöber and Schepsmeier, 2013). The same is true

for the third-order derivatives used to obtain Σ̂s.

These are sizable simplifications when dealing with high dimensional copulas. The problem is

that multivariate dependence requires sufficiently rich parametrization which affects the properties

of the tests. For example, our simulations suggest that convergence to the asymptotic distribution of

the new tests is never faster for non-vine copulas than for vine copulas. More generally, the proper-

ties of the goodness-of-fit tests including GIMTs deteriorate quickly and tests become infeasible for

copulas with larger dimensions unless the copulas are vines. For example, we were unable to obtain

stable simulation results for non-vine copulas for dimensions higher than 8 but had no difficulty
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doing so for vine-copulas.

For this reason, in the simulation study that follows we focus on vine copulas and on the boot-

strap versions of these tests. To an extent, this makes comparisons with other tests fair as most

available “blanket” tests use the parametric bootstrap.

2.4 Power Study

In this section we analyze the size and power properties of the new copula goodness-of-fit tests.

We start by comparing performance of the various versions of GIMT for vine copulas. This is

the case where we believe our tests are paticularly useful in high dimensions. Then, for classical

(non-vine) copula specifications, we compare the best performing tests with “blanket” non-GIMT

alternatives favored in an extensive simulation study by Genest et al. (2009). Genest et al. (2009) do

not look at vine copulas so we return to the non-vine specification (and stay within low dimensions)

for these comparisons.

2.4.1 Comparison Between GIMTs for Vine Copulas

Simulation Setup

We follow the simulation procedure of Schepsmeier (2016) and consider testing the null that the

vine copula model is

M0 = RV (V0,B0(V0),θ0(B0(V0)))

against the alternative

M1 = RV (V1,B1(V1),θ1(B1(V1))),M1 �= M0.

In each Monte Carlo simulation r, we generate n observations on ur
M0

= (u1r
M0

, . . . ,udr
M0

) from

model M0, estimate the vine copula parameters θ0(B0(V0)) and θ1(B1(V1)) and calculate the test

statistic under the null, trn(M0), and under the alternative, trn(M1), for all the tests considered in

Section 2. The number of simulations is B = 5000.
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Then we obtain approximate p-values p̂r for each test statistic as

p̂j := p̂(tj) := 1/B
B∑

r=1

1{tr ≥ tj}, j = 1, . . . , B

and the actual size F̂M0(α) and (size-adjusted) power F̂M1(α) using the formula

F̂ (α) =
1

B

B∑
r=1

1{p̂r ≤ α}, α ∈ (0, 1) (5)

We use an R-vine copula with d = 5 and d = 8 as M0. As M1 we use (a) a multivariate

Gaussian copula, which can also be represented as a vine, (b) a C-vine copula and (c) a D-vine

copula. The details on the copulas under the null and alternatives, as well as on the method used for

choosing the specific bivariate components, are provided in Appendix A.1. All calculations in this

section were performed with R (R Development Core Team, 2013) and the R-package VineCopula

of Schepsmeier et al. (2013).1

Simulation Results

We start by assessing the asymptotic approximation of the tests. Figures 2.2-2.3 show empirical

distributions of the test statistics for two sample sizes, n = 500 and 1000. Several observations seem

important here. First, overall we observe convergence to the asymptotic distribution even for the

fairly high dimensional copulas we consider but asymptotics serve as a very poor approximator in

all, except for a few, cases. Second, the sequential approach performs better than the MLE approach

– an observation for which we do not have an explanation. Third, the sampling distributions of the

Trace White and Determinant IR Tests – one-degree-of-freedom tests – are much closer to their

asymptotic limits, regardless of the dimension, than tests with other functional forms and tests

with greater degrees of freedom. Fourth, the Determinant White, Log Trace, and Eigenvalue Tests

deteriorate quickly as dimension increases. The Trace White and Determinant IR Tests dominate

other tests in terms of asymptotic approximation.
1The R code used in this section, as well as the Matlab codes used in the next section are available from the authors

upon request.
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Figure 2.2: Empirical densities of GIMT for R-vine copulas: d = 5, n = 500
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Figure 2.3: Empirical densities for GIMT for R-vine copulas: d = 8, n = 1000
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Now we look at size-power behavior. Since some of the proposed tests face substantial numeri-

cal problems with the asymptotic variance estimation and many exhibit large deviations from the χ2
r

distribution in small samples, especially when dimension is high, we only investigate the bootstrap

version of the tests. The parametric bootstrap version of the tests is quite common in the copula

goodness of fit literature – for details of the parametric bootstrap procedure we refer the reader to

Huang and Prokhorov (2014); Schepsmeier (2016). Figures 2.4-2.5 illustrate the estimated power

of nine proposed tests. We consider three dimensions, d = 5, 8 and 16; and two versions, sequential

(dotted lines) and MLE (solid lines). The two sample sizes we consider are n = 500 and 1000 for

d = 5 and 8; and n = 1000 and 5000 for d = 16. Percentage of rejections of H0 is on the y-axis,

while the truth (R-vine) and the alternatives are on the x-axis. Obviously, the power is equal to the

actual size for the true model. A horizontal black dashed line indicates the 5% nominal size.

All proposed tests maintain their given size independently of the number of sample points, di-

mension or estimation method. For d = 5 we can observe increasing power as sample size increases

for all tests except the Determinant White Test. If d = 8 the behavior of the tests, especially the

MLE versions, is more erratic. The Determinant White Test seems to be the only test that continues

to perform poorly in terms of power when sample size increases. Other tests show improvement in

power for either the MLE or sequential version or both. Interestingly, the Trace White, Eigenvalue

and IR Tests at times show very strong power in one of the two versions (MLE or sequential) and

no power in the other. Overall, all tests except the Determinant White show power against each

alternative, showing that they are consistent.

For d = 16 we report only sequential estimates as they were most time efficient. The Log

Eigenspectrum, Eigenvalue, IR and Determinant IR tests show consistently good behavior in terms

of power against the two alternatives. The power of the Determinant IR and Log Eigenspectrum

Tests remains high independent of the dimension or the sample size.
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Figure 2.4: Size and power comparison for bootstrap versions of proposed tests in 5 and 8 dimen-
sions with different sample sizes.
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Figure 2.5: Size and power comparison for boostrap versions of proposed tests in 16 dimensions
and different sample sizes (only sequential estimates are reported).

2.4.2 Comparison with Non-GIMT Tests

Simulation Setup

In this section we compare selected GIMTs for copulas with the original White test Tn and three

“blanket” copula goodness-of-fit tests analyzed by Genest et al. (2009). Validity conditions for the

parametric bootstrap method when testing for goodness-of-fit of families of copulas in semipara-

metric models are discussed in Genest and Rémillard (2008). The GIMTs we select are the Log

GAIC Test Gn and the Eigenvalue Test Qn – which showed acceptable size and power properties

in the simulations of previous sections. The selected non-GIMTs are based on the empirical copula

process and the Rosenblatt’s and Kendall’s transformation – which showed favorable size and power

behavior in an extensive Monte Carlo study by Genest et al. (2009). We provide details on the three

tests in Appendix A.3 and summarize them in Table 2.1. For vine copulas such comparisons are

provided by Schepsmeier (2015), plus the simulations by Genest et al. (2009) do not include vine
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copulas so in this section we consider only classical (non-vine) copulas.

Table 2.1: Summary of non-GIMTs.

Empirical copula process Sn n
∫
[0,1]d(Cn(u)− Cθ̂(u))

2 dCn(u)

=
∑n

j=1{Cn(Uj)− Cθ̂(Uj)}2
Rosenblatt’s transform SR

n {Vj = RCθ̂
(Uj)}nj=1∑n

j=1{Cn(Vj)− C⊥(Vj)}2
Kendall’s transform SK

n Cθ(U) ∼ Kθ

n
∫
[0,1](Kn(v)−Kθ̂n

(v))2 dKθ̂(v)

Again, since the limiting approximation is poor and depends on an unknown parameter θ, we

resort to parametric bootstrap to obtain valid p-values. We can use any consistent estimator of θ0,

e.g., the estimator based on Kendall’s τ or the CMLE. In this section, we use the estimator based on

Kendall’s τ in all bivariate and multivariate cases except for tests involving the Outer Power Clayton

and t-copula. For these two copulas, the true parameter vector θ0 is estimated by CMLE. For details

see Appendix A.2.

Simulation Results

We report selected size and power results in tables similar to those reported by Genest et al.

(2009) and Huang and Prokhorov (2014). The point of the tables is to examine the effect of the

sample size, degree of dependence and dimension on size and power of the seven tests. The nominal

level is fixed at 5% as before.

We first report bivariate results for selected values of Kendall’s τ . Gaussian, Frank, Clayton,

Gumbel and Student-t copula families are considered both under the null hypothesis and under the

alternative. When testing against the Student-t copula, we assume the degrees of freedom ν = 6.

For testing the first four one-parameter copula families, we obtain the estimate of the parameter by

inverting the sample version of Kendall’s τ . For testing the Student-t copula, the parameters are

estimated by CMLE. The results are based on 1,000 random samples of size n = 150 and 500.

Table 2.2 reports the size and power results for Kendall’s τ = (0.5, 0.75). In each row we report

the percentage of rejections of H0 associated with Sn, SR
n , SK

n , Tn and Qn. As an example, Table

2.2 indicates that when testing the null of the Gaussian copula using Qn and n = 150, we reject

the null about 42% of the time when the true copula is Gumbel with Kendall’s τ = 0.5. For all
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tests, except Tn, we bootstrap critical values. We use analytical values for Tn to show that the

conventional version of IMT is badly oversized (more comparisons including bootstrap Tn can be

found in Huang and Prokhorov (2014)).

The results indicate that all the tests, except perhaps Tn, maintain the nominal size and generally

have power against the alternatives. We note that in the bivariate case we use only one indicator in

constructing Tn and so Qn provides no dimension reduction. The analytical p-values used for Tn

lead to noticeable oversize distortions, while Qn retains size close to the nominal value and is often

conservative compared with Sn, SR
n , and SK

n . The table also shows that higher dependence or a

larger sample size give higher power, which is true for all the tests we consider. The increase in

power resulting from the sample size increase is an indication of Qn being consistent.

Table 2.3 presents selected results for d = 4. Here we focus on Sn, Tn and Qn but report

two versions of Tn, one based on the bootstrapped critical values (T b
n ) and the other based on the

analytical asymptotic critical values (T a
n ) – this high dimensional comparison was not considered by

Huang and Prokhorov (2014). We do not include SR
n and SK

n because their behavior appears similar

to that of Sn. Under the null, we have three one-parameter Archimedean copulas, the Gaussian and

the t-copula, each with six distinct parameters in the correlation matrix and the Outer Power Clayton

copula with two parameters. The alternatives are six four-dimensional copula families.

Several observations are unique to the multivariate simulations because they involve more than

one parameter and more than two marginals. To simulate from the Outer Power Clayton copula,

which has two parameters, we set (β, θ) = (4/3, 1), which corresponds to Kendall’s τ equal 0.5.

For the Gaussian copula, after estimating the pairwise Kendall’s τs, we invert them to obtain the

corresponding elements of the correlation matrix. For the Archimedean copulas, we follow Berg

(2009) and obtain the dependence parameter by inverting the average of six pairwise Kendall’s τs.

For the Outer Power Clayton and Student-t copula, we can only estimate the parameters by CMLE.

Details on simulating from and estimation of the Outer Power Clayton copula can be found in Hofert

et al. (2012). For a given value of τ and each combination of copulas under the null and alternative,

the results reported are based on 1,000 random samples of size n = 150. Each of these samples is

then used to test goodness-of-fit. Table 2.3 reports size and power for (the average of) Kendall’s τ

equal 0.5. (We do not report results for other values of n and τ in order to save space.)
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Table 2.3: Percentage of rejections of H0 for d = 4, n = 150, and Kendall’s τ = 0.50.

Copula under H0 True copula
Test based on

Sn T a
n T b

n Qn

Gaussian Gaussian 5.0 4.9 5.0 4.9
Frank 15.4 4.7 6.5 56.1

Clayton 88.5 14.4 10.2 72.5
Gumbel 52.1 12.1 13.6 75.5

Student 11.3 14.6 7.0 90.4

Outer Power Clayton 60.2 13.9 11.4 72.4

Frank Gaussian 43.4 16.3 19.6 47.8

Frank 4.2 7.3 5.3 4.9
Clayton 97.0 14.5 7.1 27.3
Gumbel 67.3 7.0 4.5 25.6
Student 56.7 77.3 50.5 80.9

Outer Power Clayton 77.6 8.2 13.1 42.7

Clayton Gaussian 92.2 99.4 42.6 98.8
Frank 94.1 99.9 38.1 99.9

Clayton 5.1 10.3 4.2 4.7
Gumbel 99.3 99.9 55.4 99.8
Student 96.7 98.5 50.8 96.9
Outer Power Clayton 70.3 50.6 12.5 75.8

Gumbel Gaussian 76.3 49.8 20.2 83.4

Frank 60.1 33.8 16.9 76.1

Clayton 99.4 99.6 82.6 99.9

Gumbel 5.0 6.5 5.2 5.1
Student 77.5 79.0 30.3 93.2

Outer Power Clayton 89.7 50.9 22.3 78.5

Outer Power Clayton Gaussian 62.8 14.6 6.7 18.4
Frank 60.1 20.2 9.1 45.1
Clayton 9.4 8.9 9.0 11.1

Gumbel 25.4 13.5 8.1 20.9
Student 19.5 8.4 7.9 75.7

Outer Power Clayton 5.3 7.7 5.0 4.8

Student Gaussian 5.2 6.8 5.1 4.9
Frank 12.3 10.7 8.3 16.2

Clayton 86.5 24.2 20.7 41.5
Gumbel 45.1 6.2 5.4 6.9
Student 5.1 7.2 5.0 5.1
Outer Power Clayton 27.5 22.6 10.1 18.3

Note: Italics indicate the test size, and bold entries indicate the best performing test.
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Table 2.4: Percentage of rejections of H0 for d = 5, n = 150, and Kendall’s τ = 0.50.

Copula under H0 True copula
Test based on

Sn Qn T b
n Gn

Gaussian Gaussian 5.1 4.8 5.0 5.0
Frank 15.2 63.4 7.1 50.6
Clayton 93.8 76.9 17.7 71.2
Gumbel 52.3 74.6 12.4 62.5
Student 9.1 92.6 7.6 90.1
Outer Power Clayton 61.7 74.7 13.5 57.5

Frank Gaussian 60.4 61.4 21.3 51.7
Frank 5.0 4.9 5.1 4.9
Clayton 98.3 34.6 8.3 30.5
Gumbel 69.7 20.1 4.1 19.2
Student 64.2 51.8 60.4 56.4
Outer Power Clayton 75.4 77.3 13.9 80.1

Clayton Gaussian 91.4 98.1 50.4 92.0

Frank 89.9 99.2 38.9 99.4

Clayton 4.9 4.9 5.0 4.9
Gumbel 97.5 99.9 59.5 99.8
Student 97.1 98.1 55.4 98.9

Outer Power Clayton 72.6 74.1 17.6 64.3

Gumbel Gaussian 81.0 86.5 24.9 85.4
Frank 67.5 77.4 20.7 82.0

Clayton 99.3 99.9 83.4 99.9

Gumbel 5.1 5.0 5.1 5.1
Student 74.2 90.4 40.2 76.5
Outer Power Clayton 91.1 80.5 30.5 62.1

Outer Power Clayton Gaussian 60.2 17.3 8.2 12.8
Frank 60.6 51.6 17.4 41.3
Clayton 7.5 11.3 10.2 15.9

Gumbel 26.7 21.7 13.1 17.8
Student 5.2 76.4 10.4 63.7
Outer Power Clayton 5.3 5.0 4.9 5.0

Student Gaussian 5.1 4.9 5.3 5.0
Frank 15.9 21.4 12.4 24.5

Clayton 89.0 49.3 24.6 43.2
Gumbel 54.4 8.8 6.9 8.6
Student 5.0 5.0 4.8 5.2
Outer Power Clayton 38.3 31.5 17.6 34.9

Note: Italics indicate the test size, and bold entries indicate the best performing test.
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Table 2.5: Percentage of rejections of H0 for d = 8, n = 150, and Kendall’s τ = 0.50.

Copula under H0 True copula
Test based on

Sn Qn T b
n Gn

Gaussian Gaussian 5.0 4.8 5.0 5.0
Frank 25.6 86.3 22.5 81.5
Clayton 98.7 91.2 29.6 93.8
Gumbel 75.5 87.2 36.1 90.5

Student 12.2 99.9 18.9 99.9

Outer Power Clayton 75.4 95.6 39.2 82.7

Frank Gaussian 97.8 87.9 32.3 82.2
Frank 4.9 4.9 5.0 4.9
Clayton 99.5 60.2 19.4 42.2
Gumbel 85.6 32.4 9.8 29.3
Student 99.5 79.8 64.4 82.3
Outer Power Clayton 91.4 93.7 42.3 96.7

Clayton Gaussian 99.7 99.9 75.4 99.9

Frank 97.9 100.0 62.2 99.9
Clayton 4.9 4.9 5.0 5.0
Gumbel 99.9 99.9 82.3 99.9

Student 99.9 99.9 65.2 99.9

Outer Power Clayton 81.1 95.8 34.6 81.6

Gumbel Gaussian 99.5 98.9 42.1 97.5
Frank 63.4 81.9 40.3 85.1

Clayton 100.0 99.9 99.0 99.9

Gumbel 5.2 5.0 5.1 5.1
Student 99.5 99.5 54.2 90.1
Outer Power Clayton 99.9 99.9 42.2 82.1

Outer Power Clayton Gaussian 67.6 38.2 33.4 20.7
Frank 71.4 54.1 16.2 42.9
Clayton 14.2 12.5 11.7 16.6

Gumbel 45.3 28.4 32.3 35.8
Student 18.6 97.6 52.4 67.9
Outer Power Clayton 5.0 5.1 5.3 5.0

Student Gaussian 5.0 4.9 5.2 5.0
Frank 21.7 32.8 20.7 33.7

Clayton 96.4 69.3 31.4 64.5
Gumbel 72.5 14.7 9.6 15.2
Student 5.1 5.0 4.9 5.1
Outer Power Clayton 69.7 54.3 33.6 57.2

Note: Italics indicate the test size, and bold entries indicate the best performing test.
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The key observation from Table 2.3 is that Qn dominates both versions of Tn in terms of power.

We attribute this to the dimension reduction permitted by Qn. The table also shows that our test

maintains a nominal size of 5% in the multivariate cases. Overall, the behavior of Qn is as good, if

not better than, that of Sn. A remarkable case of the better performance of Qn is the tests involving

the Student-t alternative, where Sn does worse, regardless of the copula under the null.

An interesting observation is how the power of Qn changes between Table 2.2 and Table 2.3.

Consider, for example, the test of the null of the Frank copula. Regardless of the alternative, Qn

performs poorly in the bivariate case. However, with the increased dimension the behavior of Qn

improves substantially. This is especially pronounced in comparison with Tn, whose power remains

particularly low against the Archimedean alternatives. At the same time, for the Student-t and

Gaussian alternatives, the performance of Qn stands out even compared with Sn.

Table 2.4 and Table 2.5 present selected results for d = 5 and d = 8, respectively. Here we

focus on Sd, Qn, Tn and Gn. We use Tn (bootstrap) as a benchmark. The Log GAIC Test Gn is

another GIMT that performed well in Section 2.4.1 – we use it to illustrate further the dimension

reduction permitted by GIMTs. In Tables 2.4 and 2.5, under the null we have three one-parameter

Achimedean copulas, the Outer Power Clayton copula with two parameters, the Gaussian copula

with d(d−1)
2 distinct parameters in the correlation matrix and the Student-t copula with d(d−1)

2 + 1

distinct parameters. The alternatives are Frank, Clayton, Gumbel, Outer Power Clayton, Gaussian,

and t copulas. Samples in every scenario are simulated from a copula with Kendall’s τ equal to 0.5.

The parameter estimation here is done by CMLE, rather than by conversion of Kendall’s τ used for

d = 4 in Table 2.4. The explicit expressions of the score functions of the selected Archimedean

copulas can be found in Hofert et al. (2012).

The results in Tables 2.4-2.5 show that, as expected, Qn, Gn and Tn all maintain the nominal size

and show power. More interestingly, the power of the three GIMT tests increases as the dimension

increases. In particular, Qn and Gn behave similarly under all null hypotheses and both show

significant increases in power in almost all scenarios as the dimension grows. This may be due

to the fact that, for regular copula, the Kendall’s τs between each pair of the elements in random

vector are set to be the same, therefore more information about the true parameter can be obtained

as the dimension increases. Therefore the power increase is largely the result of our specific design
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in this simulation study – same Kendall’s τs across pairs. We also see that Qn and Gn dominate

Tn in all scenarios. Note that for the Frank, Clayton, and Gumbel copulas, both Hessian and OPG

matrices degenerate to scalars; therefore there is no dimension reduction in Qn and Gn compared to

Tn. Yet, we observe that Qn and Gn are more powerful than Tn, which may be due to the fact that

the eigenvalues of −H
−1

C are more sensitive to changes in H and C than the eigenvalues of H+C.

When testing multi-parameter copulas, e.g., multivariate Gaussian, due to the additional dimension

reduction, Qn and Gn perform much better than Tn.

2.5 Conclusion

We consider a battery of tests resulting from eigenspectrum-based versions of the information

matrix equality applied to copulas. The benefit of this generalization is due to a reduction in de-

grees of freedom of the tests and to the focused hypothesis function used to construct them. For

example, in testing goodness of fit of high-dimensional multi-parameter copulas we manage to re-

duce the information matrix based test statistic to an asymptotically χ2 with one degree of freedom.

Moreover, we can focus on the effect of larger or smaller eigenvalues by using specific functions

of the eigenspectrum such as det or trace. However, only a few of the proposed tests can be well

approximated by their asymptotic distributions in realistic sample sizes so we have also looked at

the boostrap version of the tests.

The main argument of the chapter is that the bootstrap versions of GIMTs dominate other avail-

able tests of copula goodness of fit when copulas are high-dimensional and multi-parameter. We

use this argument to motivate the use of GIMTs on vine copulas, where additional simplifications

result from the functional form of the Hessian and the score.
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Chapter 3

Copula by Triangulation
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3.1 Introduction

Copulas are a broadly used tool for modelling dependence which recently found many appli-

cations in economics, finance and risk management. A key feature of copulas is that they have

uniform margins which amounts to each marginal integral of a copula density being equal to one.

If an estimator does not satisfy this restriction, copula based quantities such as the tail dependence

coefficient are badly biased and can take infeasible values.

While nonparametric copulas offer great flexibility and serve as a robust means of estimat-

ing dependence, available estimators suffer from several major drawbacks. Conventional kernel

density estimation methods exhibit a severe boundary problem (see, e.g., Gijbels and Mielniczuk,

1990; Omelka et al., 2009). Most of newer nonparametric copula estimators such as the Bernstein-

Kantorovich polynomial and exponential series estimators do not impose the uniform marginal

property in finite samples (see, e.g. Sancetta and Satchell, 2004; Gao et al., 2015). The few ex-

ceptions that do, are computationally inefficient and have not been shown to be consistent (see, e.g.,

Qu and Yin, 2012). Finally, very few methods are easily adaptable to cases when dependence is

sparse, that is, when some parts of the copula domain are populated by vastly fewer observations

than others.

This chapter proposes a new class of copula density estimators obtained by triangulation over a

possibly sparse grid. Approximate copula densities with spline-type surfaces while ensuring that our

estimator is indeed a copula density is proposed. The difficulty of approximating copula densities

– bivariate for simplicity – with piecewise linear surfaces while guaranteeing the uniform marginal

property is first explored. The difficulty is that such estimation procedure involves mixed integer

optimization which is hard to work with. Next a straightforward method applying a specific spline

basis function is proposed, which reduces this problem to a convex non-parametric maximum likeli-

hood estimation, subject to linear equality constraints – an easy problem to handle in most available

software packages.

The estimator is generalized to higher degree of spline and irregular grids on the unit square.

The latter contribution is important because it provides a natural but overlooked way of imposing

denser dependence at the corners and along the diagonal and sparser elsewhere. That is to say, our
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estimator has a natural localization property.

The new estimator is compared to the empirical beta copula density estimator, Bernstein-Kantorovich

polynomial, exponential series, data-mirror and naive kernel estimators. This covers the most seri-

ous competitors in nonparametric copula density estimation. The effect of strength of dependence

on performance is examined in the simulation study. In addition, computational time is also consid-

ered. As an application, new insights into several well-studied econometric data sets characterized

by high tail dependence is also provided.

3.2 The Estimation of Copula Densities

First recall Sklar’s representation for multivariate distributions. Let H be a d-dimensional

distribution function with one-dimensional marginals F1, . . . , Fd; then there exists a function C:

[0, 1]d → [0, 1] such that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd));

here C(u) = F (F−11 (u1), . . . , Fd−1(ud)) is referred to as the d-copula. If each marginal is con-

tinuous, C is unique. The copula density c(u) is defined as ∂d

∂1···∂dC(u).

Many nonparametric estimation procedures for the density of a copula density function have

already been proposed in the literature. The basic ones rely on symmetric kernels. Unfortunately,

these techniques are not consistent on the boundaries of [0, 1]d and suffer from boundary bias.

Some techniques have been introduced to get better estimation on the boundaries, e.g., mirror image

modification. The series estimators are also commonly used for copula density estimation because

they are flexible in describing complicated relationships among variables and have the advantage

of smoothness. Most of the copula density estimators in the literature are not genuine copulas

because they do not satisfy the key copula property – uniform marginals. If an estimator does not

satisfy this restriction, copula based quantities such as the Spearman’s ρ coefficient and the upper

tail dependence are badly biased and can take invalid values. For details, see Appendix B.1.

In the following, some popular copula density estimators are listed. To ease the notation without

a lack of generality, we will restrict ourselves to the bivariate case.
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3.2.1 The Naive Kernel Estimator

Kernel density estimators are popular choices for multivariate density estimation. Gijbels and

Mielniczuk (1990) estimate a bivariate copula using smoothing kernel methods. Here we consider

the simplest case. The copula density at a point (x, y) is:

c(x, y) =
1

4h2
lim
h→0

P(|X − x| ≤ h, |Y − y| ≤ h).

This can be estimated by not taking the limit and then replacing the probability with the relative

frequency in this small region:

ĉh(x, y) =
1

4h2n
#(i ; |Xi − x| ≤ h, |Yi − y| ≤ h).

As one can imagine, it exhibits the well-known boundary bias problem of the kernel methods.

3.2.2 The Data-Mirror Estimator

The problem with the naive kernel estimator and other regular kernel estimators is that the copula

densities are underestimated at the boundaries. Several techniques have been introduced to obtain

better estimation on the boundaries. One of them is based on the data-mirror modification (see, e.g.,

Schuster, 1985), where artificial data are obtained using symmetric transformations with respect

to boundaries. To be specific, in bivariate case for example, instead of using only the observed

data (Xi, Yi), additional observations including the images of (Xi, Yi) with respect to all edges and

corners of the unit square are considered; i.e., the (±Xi,±Yi), the (±Xi, 2−Yi), the (2−Xi,±Yi)
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and the (2−Xi, 2− Yi). The estimator is then given by

ĉh(x, y) =
1

nh2

n∑
i=1

{
k
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,

where k(·) can be any symmetric kernel with support [-1, 1]. Note that although underestimation

is corrected on the boundaries, the convergence rate of the bias will be of O(h) on the boundaries,

which is larger than the usual rate O(h2) obtained in the interior. This method can be generalized

to cases of higher dimensions.

3.2.3 The Penalized Exponential Series Estimator

Gao et al. (2015) propose a penalized exponential series estimator (ESE) for copula density

estimation. Unlike series density estimators, the penalized exponential series estimator always

generates positive density estimates. The idea is that we can approximate the log copula density

function by a linear combination of basis functions and penalize the roughness to balance between

goodness-of-fit and parsimony, which leads to penalized maximum-likelihood estimation (MLE).

Akaike information criterion (AIC), Bayesian information criterion (BIC) and the cross-validation

method can be applied for model selection. Note that it is rather expensive to implement the leave-

one-out cross validation for multivariate ESE with a large number of basis functions. To make the

penalized ESE practical in the multivariate case, Gao et al. (2015) propose an approximate cross-

validated log likelihood which requires calculating ESE based on the full sample only once.

Let φk(x, y), k = 1 . . .K be a series of linearly independent basis functions defined on the unit
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square. We approximate c(x, y) by

ĉ(x, y) =
exp(g(x, y))∫

exp(g(x, y))dxdy
,

where g(x, y) = a′φ(x, y) with a = (a1, . . . , aK)′ and φ(x, y) = (φ1(x, y), . . . , φK(x, y))′. The

penalized MLE objective function is given by

Q =
1

n

n∑
i=1

a′φ(Xi, Yi)− ln
∫

exp(g(x, y))dxdy − λ

2
a′Wa,

where W is a positive definite weight matrix for the roughness penalty and λ is the smoothing pa-

rameter. If one applies the leave-one-out cross-validation using the above penalized MLE objective

function to choose λ, it is numerically impractical. To overcome this problem, the cross validated

log likelihood approximation is given below

L− ≈ L− 1

n(n− 1)
trace(ΦĤ−1Φ′) +

1

n2(n− 1)
(ι′Φ)Ĥ−1(Φ′ι),

where H denotes the Hessian matrix of Q and L denotes the quasi-likelihood function

L =
1

n

n∑
i=1

a′φ(Xi, Yi)− ln
∫

exp(g(x, y))dxdy,

and Φ is a n × K matrix with the ith row being
(
φ1(Xi, Yi), . . . , φK(Xi, Yi)

)
and ι is an n × 1

vector with every element equal to unity.

3.2.4 The Sieve MLE Based on the Bernstein Polynomials

The Bernstein copula estimator was first studied by Sancetta and Satchell (2004) for independent

and identically distributed data and then by Bouezmarni et al. (2010, 2013) for dependent data and

for unbounded density copula functions. Here the Sieve MLE based on the Bernstein polynomials

is considered. For a given point u = (u1, u2) in the unit square (0, 1)2, the Bernstein copula density
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at u is given by

cJ(u1, u2;ω) = J2
N

J−1∑
v1=0

J−1∑
v2=0

ω(v1,v2)

2∏
l=1

(
J − 1

vl

)
uvll (1− ul)

J−vl−1, (6)

where JN is an integer that plays the role of a bandwidth parameter and ω =
{
ω(v1,v2)

}
v1,v2=0,...,J−1

denotes the coefficient of the Bernstein polynomials indexed by v = (v1, v2). The estimation prob-

lem given sample set (Xi, Yi)
N
i=1 is in fact a parametric likelihood maximization problem: for a

given J ∈ N

argmax
ω

N∑
i=1

log cJ(Xi, Yi;ω),

s.t. ω(v1,v2) > 0; v1, v2 = 0, . . . , J − 1∑
v1,v2

ω(v1,v2) = 1;

(7)

note that
∑
v1,v2

ω(v1,v2) = 1 guarantees that c( · , · ;ω) is indeed a density function. The sieve

MLE with Bernstein polynomials can be easily generalized to higher dimensions by applying the

following multivariate Bernstein copula density at u = (u1, · · · , ud)

cJN (u) = Jd
N

JN−1∑
v1=0

· · ·
JN−1∑
vd=0

ωv

d∏
l=1

(
JN − 1

vl

)
uvll (1− ul)

JN−vl−1. (8)

For initial values of the coefficient, we can let ωv be the multivariate empirical density estimator,

i.e., ωv = 1
N

∑N
i=1 I(Ui ∈ Hv), where U = (F1(X1), . . . , Fd(Xd)), I(·) is the indicator function

and

Hv =

[
v1
JN

,
v1 + 1

JN

]
× · · · ×

[
vd
JN

,
vd + 1

JN

]
.

cJN with the above ωv is related to the empirical Bernstein estimator proposed in Sancetta and

Satchell (2004).

41



3.2.5 The Empirical Beta Copula

Segers et al. (2017) propose to use the empirical beta copula to estimate the copula nonparamet-

rically. It is shown in their paper that the empirical beta copula is a genuine copula. The estimation

procedure is described below.

Let Xi = (Xi,1, . . . , Xi,d), i ∈ {1, . . . , n} be independent and identically distributed random

vectors, and assume that the cumulative distribution function, F , of Xi is continuous. For i ∈

{1, . . . , n}and j ∈ {1, . . . , d}, let R(n)
i,j be the rank of Xi,j among X1,j , . . . , Xn,j ; namely,

R
(n)
i,j =

n∑
k=1

I{Xk,j ≤ Xi,j}.

The empirical beta copula is defined by

C
β
n(u) =

1

n

n∑
i=1

d∏
j=1

F
n,R

(n)
i,j

(uj), u = (u1, . . . , ud) ∈ [0, 1]d,

where, for u ∈ [0, 1] and r ∈ {1, . . . , n}, Fn,r(u) is the beta distribution B(r, n+ 1− r).

The copula density estimation is the main interest of this paper instead of copula estimation.

The copula density derived from the empirical beta copula above is:

�
β
n(u) =

1

n

n∑
i=1

d∏
j=1

f
n,R

(n)
i,j

(uj), u = (u1, . . . , ud) ∈ [0, 1]d,

where, for u ∈ [0, 1] and r ∈ {1, . . . , n}, fn,r(u) is the density function of the beta distribution,

n!
(r−1)!(n−r)!x

r−1(1−x)n−r. Note that the condition for �βn to be a copula density is that we need to

break the ties at random with the ranks R(n)
i,j .

The empirical beta estimator does not require any smoothing-parameter selection. It is shown

to perform very well in terms of mean squared error compared with other empirical estimators as

shown in the simulation study in Segers et al. (2017).
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3.3 The Idea of the New Estimator

Interest centres on simple arrangements for approximating copula densities with spline type

surfaces. For ease of exposition, we will confine ourselves to a bivariate model for now. The

multivariate case is considered in the Appendix B. The main purpose is to develop an adaptive

estimator that preserves, even in finite samples, the copula property that

∫ 1

0
c(x, y)dx = 1, y ∈ (0, 1) (9)∫ 1

0
c(x, y)dy = 1, x ∈ (0, 1), (10)

where c(x, y) is a copula density. The most basic approach will be to take a piecewise linear surface

on the unit square. Suppose that f(x, y) is determined at points p ∈ P = {p1, . . . , pn}, where

this set includes the corners of the unit square. Then the piecewise linear points surface is defined

elsewhere through a triangulation.

In fact, the uniform marginal properties 9 and 10 are quite restricted on the set of the design

points P in the way that for each internal design point (u, v), there must be two more design

points in the set P to guarantee that Eq.(9) and Eq.(10) hold, and one of the points have the same

x−coordinate u and the other point should have the same y−coordinate v. More details are dis-

cussed in Appendix B.2. Therefore the simplest method to construct set P would be to use a set of

grid points.

For now, assume that we have a regular grid on the unit square with grid points

Γ = {(i/N, j/N)}i,j∈{0,1,...,N}.

The most basic approach would be to take a piecewise linear surface on [0, 1]× [0, 1] with knots at

Γ and then to define all points interior to a grid through a triangulation. However, the grid points Γ

will not uniquely define the triangulation.

To see this, consider any grid cell i with corners denoted by {x(1)i , x
(2)
i , x

(3)
i , x

(4)
i }. We can fix

different non-overlapping triangles where each Ti is the convex hull of three of the corners. For

example, we can have lower left triangle and upper right triangle to form a cover of the cell, or have
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lower right triangle and upper left triangle to form a cover.

In a more general form, we can write a basis expansion of c(x, y) as follows

c(x, y) =

N∑
i=0

N∑
j=0

fijbij(x, y),

where {fij}i,j∈{0,1,...,N} are copula density estimates at the grid points and bij(x, y), i, j ∈ {0, 1, . . . , N}

are certain basis functions. The basis functions are meant to smooth the density estimate in between

the grid points and so it has the following properties:

bij(i/N, j/N) = 1,

bij(x, y) = 0 if
∣∣∣∣x− i

N

∣∣∣∣ ≥ 1/N , or
∣∣∣∣y − j

N

∣∣∣∣ ≥ 1/N.

For reasons that will become clear shortly, the choice of bij we propose is

bij(x, y) = g(x− i/N)g(y − j/N),

where g is the triangular function g(z) = (1−N |z|)+.

The basis is a B-spline and the choice of the basis function is ideal for our purposes because it

guarantees the copula properties (9) and (10) provided that they hold on the grid knots x = i/N and

y = i/N . This is because for 0 ≤ α, β ≤ 1 it can be established that

f((α+ i)/N, (β + j)/N) = (1− α)f(i/N, (β + j)/N) + αf((i+ 1)/N, (β + j)/N)

Thus

∫ 1

0
f((α+ i)/N, y)dy = (1− α)

∫ 1

0
f(i/N, y)dy + α

∫ 1

0
f((i+ 1)/N, y)dy,

and with a similar argument

∫ 1

0
f(x, (β + j)/N)dx = (1− β)

∫ 1

0
f(x, j/N)dx+ β

∫ 1

0
f(x, (j + 1)/N)dx.
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The assumption that the uniform marginal properties hold at knots is innocuous because we

do not observe the copula values at the knots but need to estimate them. Triangulation permits a

nonparametric estimation of these values as well as other values of the copula density based on

observations within the grid cells. The estimates obey the restrictions (9) and (10) by construc-

tion. More precisely, given a sample (xk, yk), k = 1, 2, ...K, we first calculate the estimates

of (F1(xk), F2(yk)), for example, the pseudo-sample (uk, vk), k = 1, 2, ...K, where (uk, vk) =(
Rk1
K+1 ,

Rk2
K+1

)
, Rk1 is the rank of xk amongst x1, . . . , xK , and Rk2 is the rank of yk amongst

y1, . . . , yK . Then we search for values fij i, j ∈ {0, 1, ...N} to maximize

K∑
k=1

log f(uk, vk),

subject to the constraints

fi0 + 2

N−1∑
j=1

fij + fiN = 2N , i = 0, 1, ..., N,

f0j + 2

N−1∑
i=1

fij + fNj = 2N , j = 0, 1, ..., N,

0 ≤ fij ≤ 1.

The above procedure with linear B-splines is a convex non-parametric maximum likelihood estima-

tion, subject to linear equality constraints - an easy problem that most available software packages

can handle. The above procedure with linear B-splines is only an example of a family of desired

estimators. In fact, this procedure can be extended to series estimators using B-splines with sparse

grids and/or of higher degrees, without losing its two main benefits: preserving uniform marginal

property and remaining easy to handle. For details see Appendix B.3. These spline estimators are

consistent under mild regularity conditions. For details, see Theorem 3.1 in Chen (2007). These

spline estimators as well as the Bernstein copula density estimator, unlike other series estimators,

always produce non-negative density estimates. A limitation of the spline estimators and the Bern-

stein copula density estimators is that they cannot be used to model extreme tail behaviour defined

in terms of the coefficient of tail dependence. Nevertheless, it can capture increasing dependence as
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we move to the tails, which can be seen in the empirical study section.

3.4 Simulation Study

To investigate the finite sample performance of the proposed spline estimators and compare

them with the leading competitors described in Section 3.2 , a series of Monte Carlo simulations is

conducted. The number of observations is set to be K = 100. Four common bivariate copulas are

considered in the study: Gaussian, Frank, Clayton and Gumbel. One of the practical problems is

the choice of the grid number N which serves as the “bandwidth” in the sieve estimators including

the Bernstein estimator and the spline estimators. AIC, BIC and cross-validation (CV) for model

selection are used. However, the theoretical implications of using these techniques are not explored.

We compare the performance of the spline estimators (SE) in various cases to the data mirror esti-

mator (DME), the naive kernel estimator (NKE), the penalized exponential estimator (PESE),

the sieve MLE with Bernstein polynomials (SMB) and the empirical beta copula density estimator

(EBCE).

Given that the sample size K = 100, we let the grid parameter N for the spline estimators

range from 1 to 9− d to make sure that the sample size is greater than the number of parameters to

estimate. Note that d denotes the degree of the B-splines and only d = 1 and d = 2 are considered in

this section. The number of estimators to be estimated for each N are (N +d)2. The grid parameter

JN for the sieve MLE with Bernstein polynomials ranges from 1 to 9, to make sure that the sample

size is greater than the number of parameters to estimate.

For PESE, the truncated power series we used is given by

φ(x) = [1, x, x2, . . . , xr, (x− x∗1)
r
+, . . . , (x− x∗k)

r
+],

where (x)+ = max(0, x) and x∗1, . . . , x
∗
k are the knots of the spline basis functions. This truncated

power series performs relatively well in Gao et al. (2015). Set r = 2, k = 2 with x∗1 = 1/3

and x∗2 = 2/3. The tensor product contains a total of 24 basis functions, which implies that 24

parameters are to be estimated for each smoothing parameter. In the simulation, we pick among

three values of the smoothing parameters: two, five, 10. For DM and NK estimators we use CV for
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bandwidth selection.

Table 3.1 - 3.2 contain the simulation results of estimating four bivariate copulas with Kendall’s

τ = 0.5. Every entry is based on averages of 100 repetitions of the mean squared error (MSE) or

mean squared deviation (MSD) of the estimated densities, evaluated on a 29-by-29 equally spaced

grid on the unit square (0, 1)2.

The result in Table 3.1 - 3.2 suggests that all spline estimators perform better in terms of MSE

and MAD compared to the kernel estimators, and all spline estimators perform better in terms

of time cost compared to PESE. SEAIC
d=1 dominates SMBAIC both in accuracy and time cost.

SEAIC
d=2 dominates PESE both in accuracy and time cost. SEAIC

d=2 performs better that SMBAIC

in terms of MSE while having similar time cost.

Figure 3.1- 3.2 visualize all the copula density estimators in the case where the sample is gen-

erated from Gaussian copula, which give us a rough idea how these estimators perform . Figure 3.1

plots the copula density estimates on a 29-by-29 equally spaced grid on the unit square, based on

a single simulation, while Figure 3.2 is based on the averages over 10 simulations. It seems that

the spline estimators have a better performance of capturing the tail behavior, compared to other

estimators except the EBCE. The EBCE is extremely undersmoothed.

Table 3.1: MSE and MAD between the estimated densities and the true copula densities, evaluated
on a 29-by-29 equally spaced grid on the unit square.

Estimators:
True Copula DMECV NKECV SECV

d=1 PESECV EBCE

Frank 0.3231(0.4266) 0.6410(0.6150) 0.1345(0.1538) 0.0724(0.1583) 0.3835(0.4419)
Clayton 0.3082(0.3365) 0.7132(0.5723) 0.2466(0.2346) 0.3303(0.2819) 0.4315(0.4259)
Gumbel 0.3021(0.3583) 0.9218(1.1454) 0.1271(0.1345) 0.1143(0.1728) 0.4282(0.4365)
Gaussian 0.5802(0.3975) 0.6275(0.7266) 0.1069(0.1045) 0.1057(0.1143) 0.3785(0.4330)
Time 5.710s 10.687s 779.864s 1629.233s 0.448s
Note: Applied to samples of size K = 100 with dependence parameter Kendall’s τ = 0.5.
All values are averaged over 100 simulations. MAD is given in parentheses.
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Table 3.2: MSE and MAD between the estimated densities and the true copula densities, evaluated
on a 29-by-29 equally spaced grid on the unit square.

Estimators:
True Copula SEBIC

d=1 SEBIC
d=2 SEAIC

d=1 SEAIC
d=2 SMBAIC

Frank 0.2418(0.4167) 0.0878(0.1603) 0.0317(0.1376) 0.0163(0.1074) 0.0915(0.1609)
Clayton 0.4458(0.3026) 0.2308(0.1823) 0.3743(0.2414) 0.2341(0.1857) 0.3846(0.2722)
Gumbel 0.1757(0.1876) 0.1088(0.1660) 0.2005(0.2018) 0.1106(0.1542) 0.1562(0.2441)
Gaussian 0.2385(0.3721) 0.0844(0.1803) 0.0725(0.1665) 0.0612(0.1463) 0.0748(0.1015)
Time 6.675s 181.368s 1.447s 32.600s 15.12s
Note: Applied to samples of size K = 100 with dependence parameter Kendall’s τ = 0.5.
All values are averaged over 100 simulations. MAD is given in parentheses.
Settings are the same as in Table 3.1.

Table 3.3 - 3.4 contain the simulation results of estimating four bivariate copulas with Kendall’s

τ = 0.75. Every entry is based on averages of 100 repetitions of MSE and MAD of the estimated

densities, evaluated on a 29-by-29 equally spaced grid on the unit square (0, 1)2. Similar results as

in Table 3.1 - 3.2 are observed in this case.

Table 3.3: MSE and MAD between the estimated densities and the true copula densities, evaluated
on a 29-by-29 equally spaced grid on the unit square.

Estimators:
True Copula DMECV NKECV SECV

d=1 PESECV

Frank 4.7941(1.1099) 4.8297(1.2.75) 0.2356(0.3598) 0.2395(0.3350)
Clayton 3.1369(0.5244) 3.1744(0.5556) 3.7136(0.7665) 3.4402(0.5230)
Gumbel 1.1890(0.3021) 1.1374(0.3272) 1.0815(0.1754) 1.0756(0.3753)
Gaussian 3.5897(0.9874) 4.1440(1.1629) 0.3043(0.2871) 0.4511(0.3051)
Time 0.82s 0.417s 820.235s 410.498s
Note: Applied to samples of size K = 100 with dependence parameter Kendall’s τ = 0.75.
All values are averaged over 100 simulations. MAD is given in parentheses.
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Table 3.4: MSE and MAD between the estimated densities and the true copula densities, evaluated
on a 29-by-29 equally spaced grid on the unit square.

Estimators:
True Copula SEBIC

d=1 SEBIC
d=2 SEAIC

d=1 SEAIC
d=2 SMBAIC

Frank 0.2056(0.3245) 0.2475(0.3864) 0.1804(2665) 0.2235(0.3266) 0.6489(0.6104)
Clayton 3.1643(0.4972) 3.5368(0.8361) 3.2883(0.4886) 3.4915(0.6068) 3.7263(0.6743)
Gumbel 1.235(0.3597) 1.1524(0.3684) 1.0624(0.3696) 0.9776(0.3503) 1.2824(0.5147)
Gaussian 0.6329(0.4175) 0.2918(0.2990) 0.5920(0.4238) 0.2861(0.2781) 0.7088(0.5512)
Time 6.953s 193.487s 7.262s 210.167s 205.682s
Note: Applied to samples of size K = 100 with dependence parameter Kendall’s τ = 0.75.
All values are averaged over 100 simulations. MAD is given in parentheses.
Settings are the same as in Table 3.3.
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Figure 3.1: Plot of copula density estimates of a 29-by-29 equally spaced grid on the unit square, a
single simulation. Gaussian copula with Kendall’s τ = 0.5.
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Figure 3.2: Plot of copula density estimates of a 29-by-29 equally spaced grid on the unit square,
averaged over 10 simulations . Gaussian copula with Kendall’s τ = 0.5.

3.5 Applications to Intergenerational BMI Dependence and Gibson’s

Paradox

3.5.1 Application to Intergenerational BMI Dependence

In this section we investigate the intergenerational dependence of Body Mass Index (BMI) be-

tween children and parents. The dataset is part of the 2003 Community Tracking Study (CTS)

Household Survey, which is the same dataset used by Gao et al. (2015). The interest is in house-

holds with adult children (18-30) living with both parents. 691 female and 715 male adult children

are sampled. Table 3.5 reports some BMI summary statistics for the sample. It can be observed that

the male children have higher average BMI and the intergenerational dependence of BMI is stronger

between female children and parents, and between mother and children.

Figure 3.3 - Figure 3.8 report the estimated copula densities.

The first estimator is the spline estimator with linear B-splines. The number of grid parameters

is N = 1, 2, 3, . . . , 8, 9. AIC is used for model selection. Usually N = 2 or N = 3 is chosen.

The second estimator is the spline estimator with quadratic B-splines. The third estimator is

the PESE estimator. The penalty parameter is chosen from {2, 5, 10}. The fourth estimator is the
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Table 3.5: BMI summary statistics (standard deviations in parentheses)
Male Female

Child BMI 24.9242 23.6055
(4.5904) (4.9106)

Father BMI 28.2215 28.2599
(4.4115) (4.3035)

Mother BMI 26.7987 27.0045
(5.3084) (5.5559)

Correlation Father 0.2491 0.3146
Mother 0.2910 0.3668

Kendall’s τ Father 0.1633 0.2097
Mother 0.1880 0.2328

SMB. The number of grid parameters is N = 1, 2, 3, . . . , 8, 9. AIC is used for model selection.

Figure 3.3 shows the result of copula density estimates between son and father. The four copula

density estimators completely capture the dependence structures between generations. All four

estimators clearly suggest a positive and asymmetric dependence structure, with strong dependence

at the high end of the BMI distribution. In addition, the SEAIC
d=2 seems to show stronger dependence

at the high end while the other competitors seem over-smoothing. We observe similar results in

Figure 3.4 - Figure 3.8. On the other hand, Figure 3.3 - Figure 3.8 show that the dependence

relationship differs across children’s and parents’ gender, which is consistent with the results from

summary statistics. In addition, all four estimates in all the figures show stronger dependence at the

higher end of the BMI than at the lower end. The degree of asymmetry in terms of difference in

dependence at two ends is greater when a female is involved.
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Figure 3.3: BMI copula density between son and dad
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Figure 3.4: BMI copula density between son and mom
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Figure 3.5: BMI copula density between daughter and dad
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Figure 3.6: BMI copula density between daughter and mom
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Figure 3.7: BMI copula density between son and mean (mom, dad)
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Figure 3.8: BMI copula density between daughter and mean (mom, dad)
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3.5.2 Application to the Gibson’s Paradox

The dependence relationship is the highlight of the Gibson’s paradox. Dowd (2008) studies the

prices and interest rates using parametric copulas. In the following, the same dataset is studied using

four estimators SEAIC
d=1,2, PESE and SMBAIC .

The dataset consists of prices and interest rates of UK during 1821–1913. The price level was

represented by the UK cost of living (namely, Crafts and Mills, 1994, pp. 180 –182). The interest

rate was represented by a series combining the annual average yield on 3% consols for the period

1821–1849 (Homer, 1963, Table 19), and the annual consol yield series for the period 1850 –1914

(Klovland, 1994, pp. 184 –185).

The positive sample Kendall’s τ in Table 3.6, as well as the positive slope in Figure 3.11 strongly

suggests that on average the price level series and the interest rate series have a positive association.

Figure 3.12 plots the copula density estimates of the Crafts/Mills price level series and the

Homer/Klovland interest rate series. Table 3.7 presents the estimates of the Spearman’s ρ of those

two series, based on the plug-in estimators using SEAIC
d=1,2, PESE and SMBAIC . All four copula

density estimators show strong positive relations between price and interests along the diagonal. It

seems that the tail dependence near the lower end is greater in the spline estimates than in the other

estimates, and SEAIC
d=1 shows fairly strong positive dependence in the centre. Those properties are

consistent with the scatterplot for the combination of the Crafts-Mills price level and the Homer-

Klovland consol yield in Figure 3.11, which suggest that the dependence is relatively strong in the

centre area and at the lower end. However, the two SEs have relatively smaller estimates of the

Spearman’s ρ.

To conclude, summary statistics only capture the overall degree of dependence, while the copula

densities completely summarize the underlying dependence structure between variables.

Table 3.6: Summary statistics
Series Min Max Mean Std Skewness Kurtosis

Crafts/Mills 83.0357 132.1429 101.4113 11.6216 0.4826 2.4141
Homer/Klovland 2.2640 4.0700 3.1245 0.3546 -0.3208 3.1868

Sample Kendall’s τ 0.708
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Figure 3.9: Plot of price level serie
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Figure 3.10: Plot of interest rate serie
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Figure 3.11: Scatterplot for the combination of the Crafts-Mills price level and the Homer-Klovland
consol yield.

Table 3.7: Estimates of the Spearman’s ρ of Crafts/Mills and Homer/Klovland
Estimates of the Spearman’s ρ

Sample estimator 0.876
Plug-in estimator of the Spearman’s ρ based on
SEd=1 0.813
SEd=2 0.785
PESE 0.871
SMB 0.825
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Figure 3.12: Copula density between Crafts/Mills and Homer/Klovland

3.6 Conclusion

We propose a family of spline estimators which guarantee the uniform marginal property for

copula density. The family of spline estimators is strictly positive in the interior and behaves well in

terms of capturing the behaviour while moving to the tails compared to the leading competitors in

the literature. The estimation procedure is a convex maximization problem with linear constraints,

which is numerically easy to implement and costs less time in computation compared to other sieve

estimators. Our Monte Carlo simulations demonstrate the efficiency of the proposed estimators. We

apply the proposed method to estimate the copula densities between children’s and parents’ BMI.

The proposed estimators show similar results as the penalized exponential series estimators and the

Bernstein estimator that the dependence relationship is generally asymmetric and stronger when

BMI is high. We also apply the proposed method to examine the Gibson’s paradox.
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Chapter 4

Varying Coefficient Model

with Missing Data

4.1 Introduction

The purpose of this chapter is to investigate the estimation of the varying coefficients model that

involves matching estimators. The varying coefficient model is:

Y = X · β(Z) + u. (11)

Unlike a linear parametric regression model with constant coefficients, we study a case of nonlin-

ear parametric regression models, of which coefficients vary with the models’ specifications. For

example, the marginal propensity to consume would be different between generations, and the rate

of return to schooling would be different for individuals with different work experience. When

we investigate issues between generations, we sometimes face the problem that the data (Y,X,Z)

cannot be obtained from a single dataset and we have to combine information from two or more

samples drawn from the same population. For example, there is a great deal of literature that studies

intergenerational income mobility. Let Y be a son’s income, and X1 be control variables of the

son’s characteristics, such as education and/or years of work experience. Let X2 be the father’s

or family income at the time of the son’s childhood and Z be the father’s education. It is likely
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that X2 and Y cannot be observed in the same sample. Usually we can only observe (Y,X1, Z)

in one sample and (X2, Z) in another sample, where Z represents some common variables (not

necessarily common observations). Combining different datasets is quite common when a complete

dataset is not available. Arellano and Meghir (1992) estimate female labor supply using two sets

of survey data, the UK Labour Force Survey (LFS) and the Family Expenditure Survey (FES). The

LFS contains the information about labour supply and the information on job-search activity, while

the FES contains the information on the wage rate, other income and consumption. Here labour

supply is the dependent variable and job-search activity is one of the explanatory variables. The

common variables are education, age of husband and regional labor-market conditions. In Arellano

and Meghir (1992), the common variables are excluded from the supply equation and are only used

for the imputation of wage and other income in the combined dataset.

There is an abundance of literature studying how to identify and estimate the joint density of

(Y,X,Z) based on data combination. See the literature review by Ridder and Moffitt (2007). How-

ever, as noted in Ridder and Moffitt (2007), what can be recovered from the combined data is

largely dependent on the nature of the available samples and the additional assumptions that we

have to make. For example, when the population moment conditions are additively separable into

two samples and the available samples are rich enough that we can construct the required mo-

ment conditions from the two samples, then a two-sample generalized method of moments (GMM)

estimation is enough and no additional assumptions are needed (see Angrist and Krueger, 1995;

Murtazashvili et al., 2015).

However, when the two-sample GMM is not feasible due to the nature of the available samples,

we need more assumptions. Suppose that Y and X are only available in two different datasets.

Usually, either the assumption of conditional independence between Y and X, given the common

variables Z, or exclusion conditions must be added for full inference. Obviously, the conditional

independence assumption is not very attractive when we are interested in the estimation of E(Y |

X,Z). On the other hand, exclusion conditions are similar to the instrumental variable estimation

(IVE). We need to find variables that are excluded from the regression of interest, but are highly

correlated with the missing data we want to impute into the combined data. This approach is also

known as two-sample IVE. Instead of making more assumptions or requiring rich samples, we can
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also simply combine the missing data samples by applying a matching method, and investigate the

properties of the estimators using matching. This matching method has been rigorously studied in

the average treatment effects models (see Abadie and Imbens, 2006, 2011).

We consider a general case where (Y,X1, Z) and (X2, Z) are collected from two samples with

one sample size potentially greater than the other but of the same order. Then we can apply a

nearest-neighbour matching method to match these two samples based on the covariates Z. The first

intuition, as in the literature on the average treatment effect, is to approximate the missing X2 in

(Y,X1, Z) by reasonable X2 in the larger sample determined through nearest-neighbour matching

over the corresponding Z. Our investigation shows that the simple local linear estimator based on

matching is inconsistent, due to the “matching discrepancy” termed in Abadie and Imbens (2006).

Moreover, it is shown that the rate of convergence of the simple local linear estimator is dominated

by the error of the matching discrepancy, which in turn depends on the number of matching vari-

ables. In particular, the simple local linear estimator reaches the parametric convergence rate only

if the matching is conducted over one variable, instead of a high dimensional Z. In addition to the

above results, we also discuss possible bias-corrected estimators.

The rest of this chapter is organized as follows. Section 4.2 reveals the inconsistency of simple

local linear estimation of the regression model (12), using matched samples. Section 4.3 proposes

bias-corrected estimators and examines their convergence properties. Section 4.4 examines the

performance of the bias correction in finite samples using Monte Carlo simulations. The conclusions

are summarized in Section 4.5. Some proofs are given in the Appendix.
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4.2 Two-Sample Matching Estimator

4.2.1 Setting and Notation

Consider the following varying coefficient model

Yi = XT
i β(Zi) + ui

= XT
1iβ1(Zi) +XT

2iβ2(Zi) + ui,

E(ui | Xi, Zi) = 0

E(ui
2 | Xi, Zi) = σ2 a.s., i ∈ {1, ...n}

(12)

where the dependent variable Yi is a scalar random variable, and β(·) = (β1(·)T , β2(·)T )T is a

d1 + d2 dimensional vector of unknown functions. Let Xi = (XT
1i, X

T
2i)

T ∈ Rd1+d2 , where X1i

and X2i denote d1 and d2 dimensional vectors of exogenous regressors, respectively. The set of

Zi ∈ R1 are continuous covariates with compact support.

Suppose that we observe two independent random samples from the same population, namely,

{Yi, X1i, Z1i}ni=1 and {X2j , Z2j}mj=1, and we construct a matching dataset of n observations {(Yi,

X1i, X2j(i), Z1i, Z2j(i))}ni=1, where Z2j(i) denotes the nearest match to Z1i and X2j(i) is the obser-

vation paired with Z2j(i) in the sample {X2j , Z2j}mj=1. Define

j(i) := argminj∈{1,...,m}|Z2j − Z1i|. (13)

In other words, we will match the missing values X2i in {X1i, X2i}ni=1, with X2j(i) in {X2j , Z2j}mj=1,

where j(i) is the index of the element that is the nearest match for Element i in terms of the matching

variables Z1.

Define C(j), the number of times that Element j in the sample {X2j , Z2j}mj=1 is used as a match

to Element i in the sample {Yi, X1i, Z1i}ni=1,

C(j) =
n∑

i=1

�(j = j(i)), j ∈ {1, ...,m}

1As discussed in Abadie and Imbens (2006), we can also apply the nearest kth match method such that we first find k
nearest matches to each i and then average the k matches to impute into the combined sample set. This will improve the
performance of our corrected estimator using a single match. Further proof will be explored in future work.
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where �(·) is the indicator function, equal to one if j = j(i) is true and zero otherwise.

We also define A(j) as the subset of the indices i, i ∈ {1, ..., n}, such that j is used as a match

to each observation indexed from A(j); for instance, if i ∈ A(j), then j = j(i). Clearly, the number

of the elements in the set A(j) is C(j).

4.2.2 Identification of the Two-Sample Estimator

If we can observe a complete sample, the moment condition is E(Xiui | Zi) = 0d1+d2 , or⎛⎜⎝E(X1iui | Zi)

E(X2iui | Zi)

⎞⎟⎠ = 0d1+d2 . If we now have two samples of missing data {Yi, X1i, Z1i}ni=1 and

{X2j , Z2j}mj=1 as well as the constructed sample {(Yi, X1i, X2j(i), Z1i, Z2j(i))}ni=1, the previous

moment condition cannot be used directly to identify parameters. Instead, the applicable moment

condition in this case would be

⎛⎜⎝ E(X1iui | Zi)

E(X2j(i)ui | Z1,2)

⎞⎟⎠ = 0d1+d2 , where Z1,2 contains all Z from

two samples. Therefore with the above moment condition, a straightforward calculation yields

⎛⎜⎝ E(X1iyi | Zi)

E(X2j(i)yi | Z1,2)

⎞⎟⎠
=

⎛⎜⎝ E(X1iX
T
1i | Zi), E(X1iX

T
2i | Zi)

E(X2i | Zi)E(X
T
1i | Zi), E(X2i | Zi)E(X

T
2i | Zi)

⎞⎟⎠
⎛⎜⎝β1(Zi)

β2(Zi)

⎞⎟⎠ .

(14)

To further simplify Eq.(14), let Ω(z) = E(XX ′ | Z = z) be positive definite for each z and

uniformly continuous in z, and let Ω(z)(ij) be the (i, j)th block element of matrix Ω(z). Further

denote the conditional expectations of X1 and X2, given Z, as

g1(Z) = E(X1 | Z), g2(Z) = E(X2 | Z).

Define v1 and v2:

v1 = X1 − g1(Z), v2 = X2 − g2(Z).

Let g(Z) = (g1(Z)T , g2(Z)T )T and v = (vT1 , v
T
2 )

T . Denote the conditional variance of v as

E(vvT |Z) = Σ, the conditional variance of v1 as E(v1v
T
1 |Z) = Σ11, the conditional variance
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of v2 as E(v2v
T
2 | Z) = Σ22, and the conditional cross-covariances are E(v1v

T
2 |Z) = Σ12 and

E(v2v
T
1 |Z) = Σ21.

Recall that the model is identifiable if the matrix

Q =

⎛⎜⎝ E(X1iX
T
1i | Zi) E(X1iX

T
2i | Zi)

E(X2i | Zi)E(X
T
1i | Zi) E(X2i | Zi)E(X

T
2i | Zi)

⎞⎟⎠ (15)

from Eq.(14) is invertible.

Note that if we assume Σ12 = 0d1×d2 , which means that X1 and X2 are uncorrelated conditional

on Z, then the matrix in (15) is equivalent to

⎛⎜⎝Ω(z)(11) Ω(z)(12)

Ω(z)(21) Ω(z)(22) − Σ22

⎞⎟⎠ .

In this case, Q is positive-semidefinite matrix. If Q is invertible, its leading principal minors should

be all positive for Q to be positive definite. Therefore both E(X1iX
T
1i | Zi) and E(X2i | Zi)E(X

T
2i |

Zi) should be invertible, which means X2i’s dimension can only be d2 = 1 and X cannot include

the intercept.

To avoid the above situation, instead of assuming Σ12 = 0d1×d2 , we can estimate Σ12 directly.

Assume that the conditional moment of each element of X2 is a linear function of X1 and Z,

Xk
2i = XT

1iβ
k
x + Ziβ

k
z + εi, ∀k ∈ 1, . . . , d2, then βk

x and βk
z are identifiable if

Mk =

⎛⎜⎝E(X1i)E(X
T
1i), E(X1i)E(Zi)

E(X1iZi), E(Z2
i )

⎞⎟⎠
is invertible. See Hirukawa and Prokhorov (2016) for details on linear regression models using

matched data.

In the following sections, we will confine ourselves to the simpler case where Σ12 = 0d1×d2 is

assumed.
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4.2.3 Two-Sample Naive Local Linear Estimator

Suppose that {Yi, X1i, X2j(i), Z1i, Z2j(i)}ni=1 is a matched sample from two samples {Yi, X1i,

Z1i}ni=1 and {X2j , Z2j}mj=1. Denote Xj(i) = (XT
1i, X2j(i))

T as the matching pair for Xi = (XT
1i, X2i)

T ,

i ∈ {1, ..., n}. We can approximate β(Z1i) in a small neighbourhood of z by a linear function:

β(Z1i) ≈ θ0 +
1

h
(Z1i − z)θ1,

where θ0 = β(z), and θ1 = hβ′(z). Then we consider a naive local linear estimator as minimizers

with respect to (θ0, θ1) of the following weighted local least-squares problem:

n∑
i=1

(
Yi −XT

j(i)θ0 −
Z2j(i) − z

h
XT

j(i)θ1

)2

Kh

(
Z2j(i) − z

)
, (16)

where K(·) is a kernel function, h is a bandwidth and Kh(·) = K(·/h)
h .

The local linear estimator β̂(z) is given by the solution for θ0 to the problem of minimizing

(16). And the solution admits the following expression:

(
β̂(z)T , hβ̂′(z)T

)T
=
((

DXm
)T

WDXm

)−1 (
DXm

)T
WY, (17)

where

DXm =

⎛⎜⎜⎜⎜⎝
XT

j(1) XT
j(1)

Z2j(1)−z
h

... ...

XT
j(n) XT

j(n)

Z2j(n)−z
h

⎞⎟⎟⎟⎟⎠ ,

W = diag
(
Kh

(
Z2j(1) − z

)
, ...,Kh

(
Z2j(n) − z

))
,

and

Y = (Y1, ..., Yn)
T .

Let Θ(z) =
(
β(z)T , β′(z)T

)T , and define its estimator to be

Θ̂(z) = H−1 ((DXm)TWDXm
)−1 (

DXm
)T

WY,
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where H = diag(1, ..., 1, h, ..., h) is a 2(d1 + 1)× 2(d1 + 1) matrix with the first d1 + 1 diagonal

elements being 1 and the remaining diagonal elements h. We can write the estimator of β(z) as

β̂(z)T = eH−1((DXm)TWDXm)−1(DXm)TWY,

where e is a 1× 2(d1 + 1) matrix with the first d1 + 1 elements being 1 and the rest of the diagonal

elements 0. We call β̂(z) the two-sample naive local linear estimator for varying coefficient models.

For the following analysis, we modify the expression for the naive local linear estimator in a concise

way,

HΘ̂(z) = Dn(z)
−1Nn(z),

where Dn(z) =

⎛⎜⎝Dn,0 Dn,1

Dn,1 Dn,2

⎞⎟⎠ and Nn(z) =

⎛⎜⎝Nn,0

Nn,1

⎞⎟⎠ ,

Dn,0(z) =
1

n

n∑
i=1

Kh(Z2j(i) − z)Xj(i)X
T
j(i),

Dn,1(z) =
1

nh

n∑
i=1

Kh(Z2j(i) − z)(Z2j(i) − z)Xj(i)X
T
j(i),

Dn,2(z) =
1

nh2

n∑
i=1

Kh(Z2j(i) − z)(Z2j(i) − z)2Xj(i)X
T
j(i),

Nn,0(z) =
1

n

n∑
i=1

Kh(Z2j(i) − z)Xj(i)Yi,

Nn,1(z) =
1

nh

n∑
i=1

Kh(Z2j(i) − z)(Z2j(i) − z)Xj(i)Yi.

4.2.4 Large Sample Properties of the Two-Sample Naive Local Linear Estimator

Assumption 1 {Yi, X1i, Z1i}ni=1 and {X2j , Z2j}mj=1 are two independent samples from the same

population {Y,X1, X2, Z} with missing data.

Assumption 2 (1) The density function f(·) of Z is bounded, and has continuous second deriva-

tives on a compact set.
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(2) The matrix f(z)Ω(z) is invertible, and so is the matrix

f(z)

⎛⎜⎝Ω(z)(11), Ω(z)(12)

Ω(z)(21), Ω(z)(22) − Σ22

⎞⎟⎠
over the domain of z.

(3) βj(·), with j ∈ {1, ..., d1 + d2} has continuous second derivatives at each point z in the

support of Z.

Assumption 3 The kernel function K(·) is symmetric and a bounded second-order kernel function

with compact support. K(·) is Lipschitz continuous. The bandwidth h satisfies nh → ∞ and h → 0

as n → ∞, nh8 → 0 and nh2/(log n)2 → ∞ as n → ∞.

Assumption 4 (1) Functions g1(·) and g1(·) have continuous second derivatives at each point z

on the support of Z,

(2) the fourth moment of the conditional distribution of Y given Z = z exists and is bounded

uniformly in z,

(3) σ2 is bounded away from zero,

(4) m
n → κ ∈ (0,∞) as n, m → ∞ jointly.

Assumption 1 specifies a two-sample setup. As both sample sizes n → ∞ and m → ∞, we

cannot apply the law of large numbers or the central limit theorem to the combined sample con-

structed by nearest matching, because the i.i.d. property of the combined sample is destroyed by

replacing the fixed index i with a random index j(i). Assumptions 2−3 are standard assumptions

for the consistency and asymptotic normality of the local linear estimators of the varying coeffi-

cient models. Assumption 4 adds additional assumptions needed to re-establish the consistency and

asymptotic normality results for our two-sample nearest matching estimators.

We first show that the denominator in our two-sample matching estimator is consistent for its

expectation. We then show that the numerator is also consistent but the resulting two-sample match-

ing estimator is biased. Then we will prove that, without the conditional bias term, the matching
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estimator is N1/2 consistent and asymptotically normal. In the following analysis, we denote

μj =

∫
ujK(u)du,

and

νj =

∫
ujK2(u)du, j = 1, 2, 3.

We use
⊗

to denote the kronecker product.

Lemma 13 Convergence of the Denominator. Under Assumptions 1−4,

Dn(z)
p−→ f(z)Ω(z)

⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠ ,

Proof. See Appendix C.1.

Lemma 14 Convergence of the Numerator. Under Assumptions 1−4,

Nn(z)−
1

n
(DXm)TWDXm

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠ p−→

f(z)

⎛⎜⎝ 0 Σ12

0 −Σ22

⎞⎟⎠β(z)
⊗⎛⎜⎝1

0

⎞⎟⎠+ f(z)

⎛⎜⎝ 0 Σ12

0 −Σ22

⎞⎟⎠hβ′(z)
⊗⎛⎜⎝ 0

μ2

⎞⎟⎠
.

Proof. See Appendix C.2.

Theorem 15 Inconsistency of the Naive Estimator. Suppose that Assumptions 1−4 hold. Then

β̂(z)− β(z) = bias(z)β(z) +Op

(
h2 +

1√
nh

)
, (18)

where

bias(z) = Ω(z)−1

⎛⎜⎝ 0 Σ12

0 −Σ22

⎞⎟⎠ .

Proof. Theorem 15 holds by combining the results from Lemma 13 and 14.

68



Theorem 16 Asymptotic Normality for the Naive Estimator. Suppose that Assumptions 1−4 hold.

Then

√
nhV (z)−1/2D(z)

⎛⎜⎝H(Θ̂(z)−Θ(z))− bias(z)
⊗⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠
⎞⎟⎠ d−→ N (0, I),

where D(z) = f(z)Ω(z)
⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠ and

V (z) =

m∑
j=1

σ2(C(j)Kh(Z2j − z))2Ω(Z2j)
⊗⎛⎝ 1 (Z2j − z)/h

(Z2j − z)/h ((Z2j − z)/h)2

⎞⎠ .

Proof. From the argument in Lemma 14,

√
nh

⎛⎜⎝H(Θ̂(z)−Θ(z))− bias(z)
⊗⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠
⎞⎟⎠ =

√
nhD−1n (z)I4,

where I4 =

⎛⎜⎝ 1
n

∑n
i=1Xj(i)Kh(Z2j(i) − z)ui

1
n

∑n
i=1Xj(i)Kh(Z2j(i) − z)ui(Z2j(i) − z)/h

⎞⎟⎠. By Lemma 13,

Dn(z)
p−→ f(z)Ω(z)

⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠ .

Firstly, we will show I4 is a random vector made up of sums of conditionally independent

random variables, given all of Z from the two samples. Denote I4 = (IT4,0, I
T
4,1)

T , where

I4,0 =
1

n

n∑
i=1

Xj(i)Kh(Z2j(i) − z)ui,

and

I4,1 =
1

n

n∑
i=1

Xj(i)Kh(Z2j(i) − z)ui(Z2j(i) − z)/h.

Since A(j) indicates the subset of the index i, i ∈ {1, ..., n}, such that j is used as a match to each
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observation indexed by i, i ∈ {1, ..., n}, we can rewrite I4,0 and I4,1 as

I4,0 =
1

n

m∑
j=1

Ij4,0

=
1

n

m∑
j=1

∑
i∈A(j)

X(i,j)Kh(Z2j − z)ui,

and

I4,1 =
1

n

m∑
j=1

Ij4,1

=
1

n

m∑
j=1

∑
i∈A(j)

X(i,j)Kh(Z2j − z)ui(Z2j − z)/h,

where X(i,j) = (XT
1i, X

T
2j)

T .

Recall that Z1,2 represents all of the Z from the two samples. Then conditional on Z1,2, the

individual terms in Ij4,0 =
∑

i∈A(j)X(i,j)Kh(Z2j − z)ui are independent with zero means and non-

identically distributed. To see this, first note that the number of elements in the index set A(j) is

C(j), which is the number of times Z2j is used as a match, j ∈ {1, ...,m}. Conditional on Z1,2,

C(j) is nonstochastic. Therefore conditional on Z1,2, the sum in I4,0 are made up of all i.i.d. terms

for all j, j ∈ {1, ...,m}. As a result, Ij4,0 are independent for all j, j ∈ {1, ...,m}. The conditional

variance of Ij4,0 is (C(j)Kh(Z2j − z))2σ2Ω(Z2j) + o(1).

Likewise, conditional on all the Z1,2, the individual terms in Ij4,1 are also independent with zero

means and non-identically distributed. The conditional variance of Ij4,1 is (C(j)Kh(Z2j−z)(Z2j−

z)/h)2σ2Ω(Z2j) + o(1).

Next, we will use the Cramèr-Wold device and the Lindeberg-Feller central limit theorem to

derive the asymptotic distribution of
√
nI4. Denote the dimension of X = (X1, X2) as p = d1+d2.
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For any 2p× 1 nonzero vector τ = (τ1, ..., τ2p)
T , we have

√
nhτT I4 =

√
m

n

√
h√
m

m∑
j=1

⎧⎨⎩
p∑

k=1

∑
i∈A(j)

τkX(i,j)kKh(Z2j − z)ui

+

p∑
k=1

∑
i∈A(j)

τk+pX(i,j)kKh(Z2j − z) ((Z2j − z)/h)ui

⎫⎬⎭ .

Similarly to the argument for the conditional independence of Ij4,0 and Ij4,1 given Z1,2,

√
hIj4 =

√
h

⎧⎨⎩
p∑

k=1

∑
i∈A(j)

τkX(i,j)kKh(Z2j − z)ui

+

p∑
k=1

∑
i∈A(j)

τk+pX(i,j)kKh(Z2j − z) ((Z2j − z)/h)ui

⎫⎬⎭
are independent and we can apply the Lindeberg-Feller central limit theorem if the Lindeberg-Feller

conditions are satisfied. Denote the variance of
∑m

j=1 I
j
4 is Vτ .

For given Z1,2, the Lindeberg-Feller condition requires that

1

mVτ

m∑
j=1

E

[
(Ij4)

2
�{|Ij4 | ≥ η

√
mVτ} | Z1,2

]
→ 0

for all η > 0. By applying Hölder’s and Markov’s inequalities, we have

1

mVτ

m∑
j=1

E
[
(Ij4)

2
�{|Ij4 | ≥ η

√
mVτ} | Z1,2

]

≤ 1

mVτ

m∑
j=1

(
E

[
(Ij4)

4 | Z1,2
]) 1

2
E

[
(Ij4)

2 | Z1,2
]

η2mVτ

≤ 1

mVτ

m∑
j=1

(
C(j)4Kh(Z2j − z)4E[u4j | Z1,2]Ψ(τ, Z2j)

) 1
2

C(j)2Kh(Z2j − z)2σ2Φ(τ, Z2j)

η2mVτ

≤ c̄
1
2

η2σ2

1

m

⎛⎝ 1

m

m∑
j=1

C(j)4

⎞⎠ ,
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where c̄ = supzE[u
4
j | Z = z] < ∞, both Ψ(τ, Z2j) and Φ(τ, Z2j) are functions comprising deter-

ministic coefficients. Because E(C(j)4) is uniformly bounded by Lemma 3 in Abadie and Imbens

(2006), by Markov’s inequality, the last term is bounded in probability. Hence, the Lindeberg-Feller

condition is satisfied for almost all z. As a result,

√
nhV (z)−1/2I4

d−→ N (0, I),

where

V (z) =

m∑
j=1

σ2(C(j)Kh(Z2j − z))2Ω(Z2j)
⊗⎛⎝ 1 (Z2j − z)/h

(Z2j − z)/h ((Z2j − z)/h)2

⎞⎠+ o(1).

The boundedness of V (z) is proved in Appendix C.4. Then

√
nhV (z)−1/2D(z)

⎛⎜⎝H(Θ̂(z)−Θ(z))− bias(z)
⊗⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠
⎞⎟⎠ d−→ N (0, I),

where D(z) = f(z)Ω(z)
⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠.

4.3 Bias Correction and a Consistent Estimator

In this section we analyze the asymptotic properties of the bias-corrected matching estimator.

From Theorem 15, the bias term in the two-sample matching estimator is given by

bias(z)
⊗⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠ = Ω(z)−1

⎛⎜⎝ 0 Σ12

0 −Σ22

⎞⎟⎠⊗⎛⎜⎝ β(z)

μ2hβ
′(z)

⎞⎟⎠ .

This bias comes from the fact that the denominator of the two-sample matching estimator, Dn(z),

converges to its expectation D(z), while the numerator Nn(z) converges to

⎛⎜⎝D(z) + f(z)

⎛⎜⎝ 0 Σ12

0 −Σ22

⎞⎟⎠⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠
⎞⎟⎠
⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠ .
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Therefore, we can replace the denominator Dn(z) with a consistent estimator of

Dn(z) + f(z)

⎛⎜⎝ 0 Σ12

0 −Σ22

⎞⎟⎠⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠ ,

and leave the numerator Nn(z) unchanged to eliminate the bias in the two-sample matching estima-

tor.

In order to establish the asymptotic properties of the bias-corrected estimator, we need to es-

timate Σ12 and Σ22 consistently. For Σ22, we consider the difference-based variance estimator

discussed in Rice (1984). In particular,

Σ̂22 =
1

2(m− 1)

m∑
j=2

(X2(j) −X2(j−1))(X2(j) −X2(j−1))
T ,

where X2(j) and Z2(j) are from the ordered sample {(X2(j), Z2(j))}mj=1 based on Z2(1) ≤ · · · ≤

Z2(m).

However, the estimator of Σ12 is more complicated, because Σ12 reflects the population corre-

lation between X1 and X2, while X1 and X2 are not available in a single sample . There is rich

literature about this kind of two-sample-combination problem and solution to recover the population

joint density of X1 and X2. These assume either that X1 and X2 are conditionally independent or

that more exclusive variables are needed, which are excluded from the regression of Y on X1 and

X2, but highly correlated to both X1 and X2. As a result, here we assume Σ12 = 0, and we can also

consistently estimate the density function f(z) by any nonparametric method.

Define bias-corrected two-sample matching estimator as

HΘ̂bcll(z) =

⎛⎜⎝Dn(z) + f̂(z)

⎛⎜⎝ 0 0

0 −Σ̂22

⎞⎟⎠⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠
⎞⎟⎠
−1

Nn(z).
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Then we can estimate β(z) consistently using

β̂bcll(z) = eH−1

⎛⎜⎝Dn(z) + f̂(z)

⎛⎜⎝ 0 0

0 −Σ̂22

⎞⎟⎠⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠
⎞⎟⎠
−1

Nn(z), (19)

where e is a 1 × 2(d1 + d2) matrix with the first (d1 + d2) elements being 1 and the remaining

diagonal elements 0.

Theorem 17 Asymptotic Normality for the Bias-corrected Matching Estimator. Suppose that As-

sumptions 1−4 hold, and assume Σ12 = 0, then

√
nhV (z)−1/2D(z)

(
H(Θ̂bcll(z)−Θ(z))

)
d−→ N (0, I),

where D(z) = f(z)Ω(z)
⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠ and

V (z) =

m∑
j=1

σ2(C(j)Kh(Z2j − z))2Ω(Z2j)
⊗⎛⎝ 1 (Z2j − z)/h

(Z2j − z)/h ((Z2j − z)/h)2

⎞⎠ .

Proof. Firstly, we will show that

√
n

⎛⎜⎝HΘ̂bcll(z)−HΘ̂(z) + bias(z)
⊗⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠
⎞⎟⎠ p−→ 0,

74



where bias(z) = Ω(z)−1

⎛⎜⎝ 0 0

0 −Σ22

⎞⎟⎠. Note

HΘ̂bcll(z)−HΘ̂(z)

=

⎛⎜⎝
⎛⎝Dn(z) + f̂(z)

⎛⎝ 0 0

0 −Σ̂22

⎞⎠⊗⎛⎝1 0

0 μ2

⎞⎠⎞⎠−1

− (Dn(z))
−1

⎞⎟⎠Nn(z)

= (Dn(z))
−1

⎛⎝f̂(z)

⎛⎝ 0 0

0 −Σ̂22

⎞⎠⊗⎛⎝1 0

0 μ2

⎞⎠⎞⎠
⎛⎝Dn(z) + f̂(z)

⎛⎝ 0 0

0 −Σ̂22

⎞⎠⊗⎛⎝1 0

0 μ2

⎞⎠⎞⎠−1

Nn(z)

= (Dn(z))
−1

⎛⎝f̂(z)

⎛⎝ 0 0

0 −Σ̂22

⎞⎠⊗⎛⎝1 0

0 μ2

⎞⎠⎞⎠HΘ̂bcll(z).

The consistency of HΘ̂bcll(z) can be established in line with the proof of Theorem 15. Therefore

we have HΘ̂bcll(z)
p−→ HΘ. As a result,

HΘ̂bcll(z)−HΘ̂(z)
p−→ Ω(z)−1

⎛⎜⎝ 0 0

0 −Σ22

⎞⎟⎠⊗⎛⎜⎝1 0

0 μ2

⎞⎟⎠HΘ.

Then the asymptotic normality results will be applied by Theorem 16. The result of Theorem 17

suggests that the bias-corrected matching estimator has the same asymptotic variance as the naive

local linear matching estimator does.

4.4 Monte Carlo Simulations

To evaluate the naive local linear and the bias-corrected local linear estimator, we consider the

following data generating process (DGP):

Y = β0(Z)X10 + β1(Z)X11 + β2(Z)X2 + U, (20)
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Figure 4.1: Local linear estimator in one complete sample case: β0(Z)

where β0(Z) = (1 − eZ + Z) and β1(Z) = (0.5 + 0.5Z). We consider two functional forms of

β2(·). We assume β
(1)
2 (z) = 0.5 + 0.5Z + 0.25Z3 for DGP (1) and β

(2)
2 (z) = 1 + ez for DGP

(2). We set Z ∼ N(0, 1) truncated at ±2, X10 = 2Z + ξ1, X11 = 0.5X10 + ξ2, X2 = 3Z + ξ3,

(ξ1, ξ2, , ξ3)
′ ∼ N(0, I3), and U ⊥ (ξ1, ξ2, ξ3)

′.

The optimal bandwidth h of all the estimators are determined by the cross validation (CV)

method throughout this section.

4.4.1 The case with One Complete Sample

In this section we show that the naive local linear estimator performs well when we have one

complete sample generated from DPG (1). The sample size n = 3000. Figure 4.1 - Figure 4.3 are

based on 500 replications. In fact, the performance of the estimator is based on one estimation,

including the order of bias and variance, is similar with that based on 500 replications.
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Figure 4.2: Local linear estimator in one complete sample case: β1(Z)

77



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
Coefficient of X2

 

 
Coefficient of X2
LL

Figure 4.3: Local linear estimator in one complete sample case: β2(Z)
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4.4.2 Case with Two Missing-Data Samples

In this section we first study the behaviour of the naive local linear estimator (LL) and the bias-

corrected local linear estimator (BCLL) when we have two i.i.d samples with missing data generated

from DPG (1), {Yi, X1i, Z1i}ni=1, {X2j , Z2j}mj=1, where n = 3000, m = 4000. Figure 4.4 - Fig-

ure 4.6 are based on 500 replications. In fact, the performance of the LL and BCLL estimators in

one estimation, including the order of bias and variance, are similar to the performance based on

500 replications, respectively. Figure 4.4, 4.5 and 4.6 show the performance of the LL and BCLL

estimators estimating of the intercept, the coefficient function for X1 and the coefficient function

for X2, respectively. In these figures, the solid lines represent the true function parameters, while

the dashed lines and the dotted lines represent the LL and BCLL respectively. It can be easily seen

from Figure 4.4 that, the BCLL estimator has less average bias than the LL estimator in most parts

of the support of Z despite the boundary effect. In addition, BCLL identifies the right shape of the

intercept function while LL does not. Figure 4.6 shows similar properties of two estimators as in

Figure 4.4. For Figure 4.5, the two estimators both identify the true shape of the coefficient function

while BCLL has less average bias.

To evaluate the finite sample performance of the LL and BCLL estimator of the functional

coefficient, we calculate both the mean absolute deviation (MAD) and mean squared error (MSE)

for each estimate evaluated at 100 evenly-spaced points between the support of Z, which is [−2, 2].

In this case we consider both DGP (1) and DGP(2) with sample size n = 300 and m = 400.

Table 4.1 reports the results where the MSEs and MADs are averages over 500 replications

for each functional coefficient. As expected, the bias-corrected local linear (BCLL) estimators

perform better than the local linear (LL) estimators both in DGP(1) and DGP(2), which are specified

differently only for the coefficient of X2, β2(Z), in Eq.(20). However, all the estimators of the

coefficients β0(Z), β1(Z) and β2(Z) are very sensitive to this change in the DGP. This reflects

the fact that even with the additional assumption that Σ12 = 0, the BCLL estimation does not just

correct the coefficient β2; all the estimators of coefficients are affected because of the inverse of the

additive bias-corrected term in the denominator of the BCLL estimator.
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Table 4.1: Finite sample comparison of the local linear (LL) estimator and the bias-corrected local
linear (BCLL) estimator

DGP Estimators β1(Z) β2(Z) β3(Z)
MSE MAD MSE MAD MSE MAD

DGP (1) LL 1.1625 1.3886 0.7254 0.6272 0.8537 0.6072
BCLL 0.2233 0.3040 0.2784 0.2297 0.3082 0.2237

DGP (2) LL 1.3908 1.0438 1.4761 1.1572 1.3490 0.9765
BCLL 0.8634 0.7173 0.1902 0.3199 0.3856 0.5050

Notes: samples are generated from DGP (1) and DGP (2) respectively. The
pair of sample sizes are (n = 300,m = 400), which is the same for both DGP
(1) and DPG (2). MSEs and MADs are averages over 500 replications.
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Figure 4.4: Estimators in the two-sample case: β0(Z)
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Figure 4.5: Estimators in the two-sample case: β1(Z)
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Figure 4.6: Estimators in the two-sample case: coefficient of X2, β2(Z)
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4.5 Conclusion

In this chapter, we show the inconsistency of the simple local linear estimation of the two-

sample varying coefficient model with missing data, using matched samples. The bias-corrected

estimator is proposed and it is proven to be consistent and asymptotically normally distributed.

According to the simulation study, it shows better performance in terms of mean squared error than

the non-corrected version in finite samples.
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Chapter 5

Conclusions

In Chapter 2, we consider a battery of tests resulting from eigenspectrum-based versions of

the information matrix equality applied to copulas. The benefit of this generalization is due to a

reduction in degrees of freedom of the tests and to the focused hypothesis function used to construct

them. For example, in testing the goodness of fit of high-dimensional multi-parameter copulas

we manage to reduce the information matrix based test statistic to an asymptotically χ2 with one

degree of freedom. Moreover, we can focus on the effect of larger or smaller eigenvalues by using

specific functions of the eigenspectrum such as det or trace. However, only a few of the proposed

tests can be well approximated by their asymptotic distributions in realistic sample sizes, so we

have also looked at the boostrap version of the tests. The main argument of this chapter is that the

bootstrap versions of GIMTs dominate other available tests of copula goodness of fit when copulas

are high-dimensional and multi-parameter. We use this argument to motivate the use of GIMTs on

vine copulas, where additional simplifications result from the functional form of the Hessian and

the score.

In Chapter 3, we propose a family of spline estimators which guarantee the uniform marginal

property for copula density. The family of spline estimators is strictly positive in the interior and

behaves well in terms of capturing the behaviour while moving to the tails compared to the leading

competitors in the literature. The estimation procedure is a convex maximization problem with

linear constraints, which is numerically easy to implement and has less or similar computational

burdens in terms of time cost compared to other sieve estimators. Our Monte Carlo simulations
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demonstrate the efficiency of the proposed estimators. We apply the proposed method to estimate

the copula densities between children’s and parents’ BMI. The proposed estimators show similar

results as the penalized exponential series estimators and Bernstein estimator that the dependence

relationship is generally asymmetric and stronger when BMI is high. We also apply the proposed

method to examine the Gibson’s paradox. The family of spline estimators is strictly positive in the

interior and behaves well in terms of capturing the behaviour while moving to the tails compared to

the leading competitors in the literature.

In Chapter 4, we show the inconsistency of simple local linear estimation of the two-sample

varying coefficient model with missing data, using matched samples. The bias-corrected estimator

is proposed and it proves to be consistent and asymptotically normally distributed. The simulation

study shows that in finite samples it has better performance in terms of mean squared error than the

non-corrected version.
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Appendix A

Proofs in Chapter 2

Proof of Lemma 1: The proof is based on combining the results of Golden et al. (2013) and

Huang and Prokhorov (2014). It also relates to the work of Presnell and Boos (2004) on information

ratio test. We start with d = 2 for simplicity and later give the formulas for any d. We will need

some additional notation.

Recall

di(θ) :=

⎛⎜⎝vech(Hi(θ))

vech(Ci(θ))

⎞⎟⎠ ∈ R
p(p+1). (21)

Under the assumption that the derivatives and expectation exist, let Dθ := E∇θdi(θ) ∈ R
p(p+1)×p

denote the expected Jacobian matrix of the random vector di(θ). Note that we can estimate Edi(θ0)

by d̄(θ̂).

Let Fij := Fj(Xij), j = 1, 2, i = 1, . . . , n, denote the marginal cdf of Xj evaluated at point

Xij and let F̂ij := F̂j(Xij), j = 1, 2, i = 1, . . . , n, denote the empirical cdf of Xj evaluated at

point Xij . Then, Eq.(21) can be written as follows:

di(θ) =
{
vech[∇2

θ ln c(F̂i1, F̂i2;θ)]
′, vech[∇θ ln c(F̂i1, F̂i2;θ)∇′θ ln c(F̂i1, F̂i2;θ)]

′
}′

.

Define the sample equivalent of Dθ as follows

D̄θ = n−1
n∑

i=1

∇θdi(θ).
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The asymptotic normality proof for
√
nd̄(θ̂) is provided by White (1982) for generic multivari-

ate distributions and can be easily transfered to the case of copulas with known margins. To extend

the proof to empirical margins we first expand
√
nd̄(θ̂) with respect to θ at θ0:

√
nd̄(θ̂) =

√
nd̄(θ0) +Dθo

√
n(θ̂ − θ0) + op(1). (22)

The remainder term in this expansion is controlled by assumptions on continuity of copula deriva-

tives such as the conditions used in Theorem 1 of Tsukahara (2005) or Proposition 2.1 of Genest

et al. (1995). We do not list these conditions explicitly for space considerations.

Chen and Fan (2006a) show that the second term in the right-hand side of Eq.(22) is normally

distributed, i.e.,
√
n(θ̂ − θ0) → N(0,H−10 GH

−1
0 ),

where

G = lim
n→∞

V ar(
√
nA∗n),

A∗n =
1

n

n∑
i=1

(∇θ ln c(Fi1, Fi2;θ0) +W1(Fi1) +W2(Fi2)).

Here the terms W1(Fi1) and W2(Fi2) are the adjustments needed to account for the empirical dis-

tributions used in place of the true distributions. These terms are calculated as follows:

W1(Fi1) =

∫ 1

0

∫ 1

0
[1{Fi1 ≤ u} − u]∇2

θ,u ln c(u, v;θ0) c(u, v;θ0)dudv,

W2(Fi2) =

∫ 1

0

∫ 1

0
[1{Fi2 ≤ v} − v]∇2

θ,v ln c(u, v;θ0) c(u, v;θ0)dudv.

So, rewriting the consistency result from Chen and Fan (2006a) we have

√
n(θ̂ − θ0) = −H

−1
0

√
nA∗n + op(1).

The explicit conditions for this result to hold are Conditions A1 through A6 of Chen and Fan (2006a,

p. 319).
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Second, let ∇jdi(θ0), j = 1, 2, denote ∂di(θ0)
∂Uij

|Uij=Fij and expand
√
nd̄(θ0) with respect to U1

and U2 around the point (Fi1, Fi2):

√
nd̄(θ0) =

1√
n

n∑
i=1

di(θ0)|Uij=Fij +
1

n

n∑
i=1

∇1di(θ0)
√
n(F̂i1 − Fi1)

+
1

n

n∑
i=1

∇2di(θ0)
√
n(F̂i2 − Fi2) + op(1). (23)

In order to control the behavior of the remainder term in the expansion it is standard to use assump-

tions on existence and boundedness of copula derivatives such as assumptions A5-A6 of Chen and

Fan (2006a).

Now let ∇u denote the derivative w.r.t. u and let ∇θ denote the vertical derivative vector w.r.t. θ.

Then, following Chen and Fan (2006a), we can write

1

n

n∑
i=1

∇1di(θ0)
√
n(F̂i1 − Fi1)

�
∫ 1

0

∫ 1

0
∇u{vech[∇2

θ ln c(u, v;θ0)]
′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′

√
n(F̂1(F

−1
1 (u))− u)c(u, v;θ0)dudv

=
1√
n

n∑
i=1

∫ 1

0

∫ 1

0
[1{Fi1 ≤ u} − u]

∇u{vech[∇2
θ ln c(u, v;θ0)]

′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′c(u, v;θ0)dudv.

Denote

M1(Fi1) =

∫ 1

0

∫ 1

0
[1{Fi1 ≤ u} − u]

∇u{vech[∇2
θ ln c(u, v;θ0)]

′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′c(u, v;θ0)dudv,

then
1

n

n∑
i=1

∇1di(θ0)
√
n(F̂i1 − Fi1) =

1√
n

n∑
i=1

M1(Fi1).
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Similarly, denote

M2(Fi2) =

∫ 1

0

∫ 1

0
[1{Fi2 ≤ v} − v]

∇v{vech[∇2
θ ln c(u, v;θ0)]

′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′c(u, v;θ0)dudv,

then
1

n

n∑
i=1

∇2di(θ0)
√
n(F̂i2 − Fi2) =

1√
n

n∑
t=i

M2(Fi2).

Therefore, Eq.(23) can be rewritten as

√
nd̄(θ0) =

1√
n

n∑
i=1

di(θ0)|Uij=Fij +
√
nB∗n + op(1), (24)

where

B∗n =
1

n

n∑
i=1

[M1(Fi1) +M2(Fi2)].

Finally, combining the expansions (22) and (24) gives

√
nd̄(θ̂) =

1√
n

n∑
i=1

di(θ0)|Uij=Fji +
√
nB∗n −Dθ0H

−1
0

√
nA∗n + op(1).

So d̄(θ̂) converges in distribution to a multivariate normal with variance matrix V (θ0):

√
nd̄(θ̂) → N(0, V (θ0)),

where

V (θ0) = E {di(θ0) +M1(Fi1) +M2(Fi2)

−Dθ0H
−1
0 [∇θ ln c(Fi1, Fi2;θ0) +W1(Fi1) +W2(Fi2)]

}
× {di(θ0) +M1(Fi1) +M2(Fi2)

−Dθ0H
−1
0 [∇θ ln c(Fi1, Fi2;θ0) +W1(Fi1) +W2(Fi2))]

}′
.
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Extension to d ≥ 2 is straightforward. Now

di(θ) =

⎛⎜⎝ vech(∇2
θ ln c(F̂i1, F̂i2, . . . , F̂id;θ))

vech(∇θ ln c(F̂i1, F̂i2, . . . , F̂id;θ)∇′θ ln c(F̂i1, F̂i2, . . . , F̂id;θ))

⎞⎟⎠
and the asymptotic variance matrix becomes

V (θ0) = E

⎧⎨⎩di(θ0)−Dθ0H
−1
0

⎡⎣∇θ ln c(Fi1, Fi2, . . . , Fid;θ0) +
d∑

j=1

Wj(Fij)

⎤⎦+
d∑

j=1

Mj(Fij)

⎫⎬⎭
×

⎧⎨⎩di(θ0)−∇Dθ0H
−1
0

⎡⎣∇θ ln c(Fi1, Fi2, . . . , Fid;θ0) +
d∑

j=1

Wj(Fij)

⎤⎦+
d∑

j=1

Mj(Fij)

⎫⎬⎭
′

,

(25)

where, for j = 1, 2, . . . , d,

Wj(Fij) =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
[1{Fij ≤ un} − uj ]∇2

θ,uj
ln c(u1, u2, . . . , ud;θ0)

c(u1, u2, . . . , ud;θ0)du1du2 · · · dud,

and

Mj(Fij) =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
[1{Fij ≤ uj} − uj ]∇ujvech[∇2

θ ln c(u1, u2, . . . , ud;θ0)

+∇θ ln c(u1, u2, . . . , ud;θ0)∇′θ ln c(u1, u2, . . . , ud;θ0)]

c(u1, u2, . . . , ud;θ0)du1du2 · · · dud.

Now, since ŝn is a function of d̄(θ̂), its asymptotic distribution follows trivially using the delta

method:
√
nŝn

d→ N(0,Σs(θ0)),

where

Σs(θ0) := S(θ0)V (θ0)S(θ0)
′.
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Lemma A1: For any real-valued square matrices A and B, let the elements of B ∈ R
r×r be

functions of A ∈ R
p×p. Let the matrix dB

dA ∈ R
p2×r2 be called matrix derivative of B by A if

dB

dA
=

∂

∂vec(A)
vec(B)′,

where vec denotes the vectorization operator. Let D denote the transition matrix, i.e. such a matrix

that for, any A, vech(A) = Dvec(A) and D+vech(A) = vec(A), where D+ is the Moore-Penrose

inverse of D. Then, the following results hold Kollo and von Rosen (see, e.g., 2006):

dA

dA
= Ip2

dC ′A

dA
= Ip ⊗ C, where C is a matrix of proper size with constant elements

d(C ′B)

dA
=

dB

dA
(I⊗ C)

dBC

dA
=

dB

dA
(C ⊗ I)

dA−1

dA
= −A−1 ⊗ (A′)−1

dtr(B)

dA
=

dB

dA
vec(Ir)

dtr(C ′A)

dA
= vec(C), where C is a matrix of proper size with constant elements

d det(A)

dA
= det(A)vec(A−1)′

dA(B(C))

dC
=

dB

dC

dA

dB

Lemma A2: Let λ denote an eigenvalue of a symmetric matrix A and let y denote the corresponding

normalized eigenvector, i.e. the solution of the equation system Ay = λy, such that y′y = 1. Let D

denote the duplication matrix. Then, the following result holds Magnus (see 1985):

∂λ

∂vech(A)
= [y′ ⊗ y′]D

Proof of Proposition 1: First use Lemma A1 on determinant differentiation, as well as properties
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of vec and vech operators, to obtain

S(θ0) = det(H(θ0) + C(θ0))vech((H(θ0) + C(θ0))
−1)′

[
Ip(p+1)/2, Ip(p+1)/2

]
Now use θ̂, which is consistent for θ0, and the sample equivalents H̄n and C̄n, which are consistent

for H0 and C0, to obtain the consistent estimator Ŝ given in the proposition.

The asymptotic distribution of T (D)
n then follows from Theorem 1.

Proof of Proposition 2: First use Lemma A1 on trace differentiation to obtain the form of S(θ0),

then the result follows trivially from Theorem 1.

Proof of Proposition 3: First use Lemma A1 on trace and inverse differentiation as well as the fact

that [C ′ ⊗A]vec(B) = vec(ABC), to obtain

S(θ0) =
(
vech

(
H(θ0)

−1
C(θ0)H(θ0)

−1)′ , vech
(
−H(θ0)

−1)′)
then replace the population values with consistent estimates as before, and apply Theorem 1 to

obtain the result.

Proof of Proposition 4: Similar to previous propositions, using Lemma A1 on determinant differ-

entiation to obtain

S(θ0) = det(H(θ0)
−1

C(θ0))
(
vech

(
−C(θ0)

−1
H(θ0)

−1
C(θ0)

)′
, vech

(
C(θ0)

−1)′) .

Proof of Proposition 5: Similar to previous propositions, using Lemma A1 on trace differentiation

to obtain

S(θ0) =

(
− 1

tr(−H(θ0))
vec (Ip)

′ ,
1

tr(C(θ0))
vec (Ip)

′
)
.

Proof of Proposition 6: Under the null, this is a log version of the IR test, so

S(θ0) =
1

tr(H(θ0)−1C(θ0))

(
vech

(
H(θ0)

−1
C(θ0)H(θ0)

−1)′ , vech
(
−H(θ0)

−1)′)
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The rest of the proof is the same as in previous propositions.

Proof of Proposition 7: Similar to above, using Lemma A2 to obtain

S(θ0) =

⎡⎢⎢⎢⎢⎣
− 1

λ1(H(θ0))
[y1(H(θ0))

′ ⊗ y1(H(θ0))
′]D 1

λ1(C(θ0)))
[y1(C(θ0))

′ ⊗ y1(C(θ0))
′]D

...
...

− 1
λp(H(θ0))

[yp(H(θ0))
′ ⊗ yp(H(θ0))

′]D 1
λp(C(θ0)))

[yp(C(θ0))
′ ⊗ yp(C(θ0))

′]D

⎤⎥⎥⎥⎥⎦ .

Proof of Proposition 8: Similar to above, using Lemma A2 to obtain

S(θ0) =

⎡⎢⎢⎢⎢⎣
1

λ1(H(θ0))
[y1(C(θ0))

′ ⊗ y1(C(θ0))
′]D − λ1(C(θ0))

λ1(H(θ0))2
[y1(H(θ0))

′ ⊗ y1(H(θ0))
′]D

...
...

1
λp(H(θ0))

[yp(C(θ0))
′ ⊗ yp(C(θ0))

′]D − λp(C(θ0))
λp(H(θ0))2

[yp(H(θ0))
′ ⊗ yp(H(θ0))

′]D

⎤⎥⎥⎥⎥⎦ .

A.1 Vines Used in Simulations

In Section 2.4.1 we used the following vine copula for our simulation study. Table A.1 for

d = 5 and Table A.2 for d = 8 give details about the vine copula decomposition (structure) V , their

selected pair-copula families B and Kendall’s τ for the vine copula under the null hypothesis. For

the C-vine and D-vine, V as well as B are selected by the algorithms provided in the VineCopula

package (Schepsmeier et al., 2013). τ̂ denotes the estimated Kendall’s τ in the pre-run step of the

simulation procedure of Schepsmeier (2016). Note that the vine copula density is written in a short

hand notation omitting the pair-copula arguments. The notation of the pair-copula families follows

Brechmann and Schepsmeier (2013).

For the C- and D-vine the calculation of the vine copula density (4) simplifies. For the five-

dimensional example used in the simulation study, (4) can be expressed as

c12345 = c1,2 · c2,3 · c2,4 · c2,5 · c1,3;2 · c1,4;2 · c1,5;2 · c3,4;1,2 · c4,5;1,2 · c3,5;1,2,4

c12345 = c1,2 · c1,5 · c4,5 · c3,4 · c2,5;1 · c1,4;5 · c3,5;4 · c2,4;1,5 · c1,3;4,5 · c2,3;1,4,5

Similar representations used for d = 8 and 16 as well as a similar table for d = 16 are available
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from the authors upon request.

R-vine C-vine D-vine

T V5
R B5

R(V5
R) τ V5

C B5
C(V5

C) τ̂ V5
D B5

D(V5
D) τ̂

1 c1,2 N 0.71 c1,2 N 0.71 c1,2 N 0.71
c1,3 N 0.33 c2,3 N 0.51 c1,5 F 0.70
c1,4 C 0.71 c2,4 G180 0.70 c4,5 G 0.75
c4,5 G 0.74 c2,5 F 0.73 c3,4 G 0.48

2 c2,4;1 G 0.38 c1,3;2 G90 -0.33 c2,5;1 N 0.37
c3,4;1 G 0.47 c1,4;2 G180 0.29 c1,4;5 G180 0.22
c1,5;4 G 0.33 c1,5;2 G180 0.25 c3,5;4 C 0.15

3 c2,3;1,4 C 0.35 c3,4;1,2 N 0.27 c2,4;1,5 F 0.18
c3,5;1,4 C 0.31 c3,5;1,2 N 0.25 c1,3;4,5 F -0.26

4 c2,5;1,3,4 N 0.13 c4,5;1,2,3 G 0.20 c2,3;1,4,5 G180 0.31

Table A.1: Chosen vine copula structures, copula families and Kendall’s τ values for the R-vine cop-
ula model and the C- and D-vine alternatives in the five-dimensional case (N:=Normal, C:=Clayton,
G:=Gumbel, F:=Frank, J:=Joe; 90, 180, 270:= degrees of rotation).

A.2 Outer Power Clayton Copula

The Outer Power Clayton copula is defined as follows:

C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)),

where ψ(t) = ψ̃(t1/β) for some β ∈ [1,∞) and ψ̃(t) is the Clayton copula generator ψ̃(t) =

(1 + t)−1/θ for some θ ∈ (0,∞). The inversion of Kendall’s τ is not feasible here because τ =

τ(θ, β) = 1− 2
β(θ+2) and so (β, θ) are not identifiable individually. Our simulations using the CMLE

instead of the inversion of Kendall’s τ for other copulas (not reported here) suggest that the CMLE

leads to a substantial power improvement of some GIMT, e.g., of Qn. We do not have an explanation

for this phenomenon and so only report the least favorable results. The power reported in Section

2.4.2 for tests that do not involve the Outer Power Clayton copula is therefore conservative.

A.3 Non-GIMTs for Copulas

Here we provide details on the non-GIMTs used in Section 2.4.2. We start with a few definitions.
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R-vine C-vine D-vine

T V8
R B8

R(V8
R) τ V8

C B8
C(V8

C) τ̂ V8
D B8

D(V8
D) τ̂

1 c1,2 J 0.41 c1,8 F 0.59 c1,4 N 0.61
c1,4 N 0.59 c2,8 F 0.51 c4,5 G180 0.71
c1,5 N 0.59 c3,8 N 0.55 c5,8 F 0.60
c1,6 F 0.23 c4,8 G180 0.59 c7,8 G 0.65
c3,6 F 0.19 c5,8 F 0.60 c3,7 G180 0.41
c4,7 C 0.44 c6,8 F 0.27 c2,3 G 0.52
c7,8 G 0.64 c7,8 G 0.65 c2,6 J180 0.57

2 c2,6;1 C 0.58 c1,2;8 J 0.10 c1,5;4 C 0.22
c1,3;6 G 0.44 c2,3;8 J 0.29 c4,8;5 C 0.22
c4,6;1 F 0.11 c2,4;8 G 0.24 c5,7;8 J90 -0.05
c4,5;1 C 0.53 c2,5;8 G 0.29 c3,8;7 G 0.41
c1,7;4 C 0.29 c2,6;8 J180 0.52 c2,7;3 J 0.10
c4,8;7 N 0.53 c2,7;8 N -0.17 c3,6;2 G270 -0.48

3 c5,6;1,4 N 0.19 c1,4;2,8 N 0.28 c1,8;4,5 N 0.20
c6,7;1,4 F 0.03 c3,4;2,8 N 0.22 c4,7;5,8 N -0.13
c1,8;4,7 G 0.22 c4,5;2,8 G180 0.41 c3,5;7,8 G 0.18
c3,4;1,6 N 0.41 c4,6;2,8 G270 -0.20 c2,8;3,7 G 0.25
c2,3,1,6 G 0.68 c4,7;2,8 I 0 c6,7;2,3 C 0.08

4 c6,8;1,4,7 C 0.17 c1,6;2,4,8 J180 0.09 c6,8;2,3,7 C 0.05
c5,7;1,4,6 N 0.09 c3,6;2,4,8 N -0.33 c2,5;3,7,8 G 0.19
c3,5;1,4,6 F 0.21 c5,6;2,4,8 F -0.04 c3,4;5,7,8 C180 0.09
c2,4;1,3,6 G 0.57 c6,7;2,4,8 I 0 c1,7;4,5,8 J180 0.06

5 c2,5;1,3,4,6 J 0.25 c1,5;2,4,6,8 C 0.23 c5,6;2,3,7,8 C90 -0.04
c3,7;1,4,5,6 G 0.17 c3,5;2,4,6,8 F 0.10 c2,4;3,5,7,8 C90 -0.02
c5,8;1,4,6,7 F 0.02 c5,7;2,4,6,8 F 0.05 c1,3;4,5,7,8 G90 -0.09

6 c2,7;1,3,4,5,6 G 0.31 c1,3;2,4,5,6,8 F 0.07 c4,6;2,3,5,7,8 C90 -0.14
c3,8;1,4,5,6,7 C 0.20 c3,7;2,4,5,6,8 I 0 c1,2;3,4,5,7,8 G90 -0.13

7 c2,8;1,3,4,5,6,7 F 0.03 c1,7;2,3,4,5,6,8 I 0 c1,6;2,3,4,5,7,8 G180 0.24

Table A.2: Chosen vine copula structures, copula families and Kendall’s τ values for R-vine copula
model and the C- and D-vine alternatives in the eight-dimensional case (I:=indep., N:=Normal,
C:=Clayton, G:=Gumbel, F:=Frank, J:=Joe; 90, 180, 270:= degrees of rotation).
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Given a multivariate distribution, the Rosenblatt’s transformation (Rosenblatt, 1952) yields a set

of independent uniforms on [0, 1] from possibly dependent realizations obtained using that multi-

variate distribution. The Rosenblatt’s transform can be specialized to copulas as follows:

Definition 18 Rosenblatt’s probability integral transformation (PIT) of a copula C is the map-

ping R : (0, 1)d → (0, 1)d which to every u = (u1, . . . , ud) ∈ (0, 1)d assigns a vector R(u) =

(e1, . . . , ed) with e1 = u1 and, for i ∈ {2, . . . , d},

ei =
∂i−1C(u1, . . . , ui, 1, . . . , 1)

∂u1 · · · ∂ui−1
/
∂i−1C(u1, . . . , ui−1, 1, . . . , 1)

∂u1 · · · ∂ui−1
. (26)

As noted by Genest et al. (2009), the initial random vector U has distribution C, denoted U ∼ C,

if and only if the distribution of the Rosenblatt’s transform R(U) is the d-variate independence

copula defined as C⊥(e1, . . . , ed) =
∏d

j=1 ej . Thus H0 : U ∼ C ∈ C0 is equivalent to H∗0 :

Rθ(U) ∼ C⊥.

The PIT algorithm for R-vine copulas is given in the Appendix of Schepsmeier (2015). It makes

use of the hierarchical structure of the R-vine, which simplifies the calculation of (26).

Definition 19 Kendall’s transformation is the mapping X �→ V = C(U1, . . . , Ud), where Ui =

Fi(Xi) for i = 1, . . . , d and C denotes the joint distribution of U = (U1, . . . , Ud).

Let K denote the (univariate) distribution function of Kendall’s transform V and let Kn denote

the empirical analogue of K defined by

Kn(v) =
1

n

n∑
j=1

1{Vj ≤ v}, v ∈ [0, 1], (27)

where 1{·} is the indicator function. Then, under standard regularity conditions, Kn is a consistent

estimator of K. Also, under H0, the vector U = (U1, . . . , Ud) is distributed as Cθ for some θ ∈ O,

and hence Kendall’s transformation Cθ(U) has distribution Kθ.

Note that K is not available for all parametric copula families in closed form, especially not for

vine copulas. Thus Genest et al. (2009) use a bootstrap procedure to approximate K in such cases.

We now describe the non-GIMTs used in the simulation study.
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A.3.1 Empirical Copula Process Test

This test is based on the empirical copula defined as follows:

Cn(u) =
1

n

n∑
i=1

1{Ui1 ≤ u1, . . . , Uid ≤ ud}. (28)

It is a well-known result that, under regularity conditions, Cn is a consistent estimator of the true

underlying copula C, whether or not H0 is true. Note that Cn(u) is different from Kn(v), which is

a univariate empirical distribution function.

A natural goodness-of-fit test would be based on a “distance” between Cn and an estimated

copula Cθn obtained under H0. In this paper, θ̂ = Γn(U1, . . . ,Un) stands for an estimator of θ

obtained using the pseudo-observations.

Thus the test relies on the empirical copula process (ECP)
√
n(Cn − Cθ̂). In particular, it has

the following rank-based Cramér-von Mises form:

Sn =

∫
[0,1]d

(Cn − Cθ̂)
2 dCn(u) =

n∑
j=1

{Cn(Uj)− Cθ̂(Uj)}2, (29)

where large values of Sn would lead to a rejection of H0. Genest et al. (2009) demonstrate that the

test is consistent, that is, that if C /∈ C0 then H0 is rejected with probability one as n → ∞.

In the vine copula case we have to perform a double bootstrap procedure to obtain p-values

since Cθ̂n
is not available in closed form.

A.3.2 Rosenblatt’s Transformation Test

As an alternative to Sn, Genest and Rémillard (2008) proposed using {Vj = RCθ̂
(Uj)}nj=1

instead of Uj , where RCθ̂
represents Rosenblatt’s transformation with respect to the copula Cθ̂n

∈

C0 and θ̂ is a consistent estimator of the true value θ0, under H0 : C ∈ C0 = {Cθ : θ ∈ O}.

The idea is then to compare Cn(Vj) with the independence copula C⊥(Vj) and the correspond-

ing Cramér-von Mises type statistic can be written as follows:

SR
n =

n∑
j=1

{Cn(Vj)− C⊥(Vj)}2. (30)
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In the vine copula context Schepsmeier (2015) called this GOF test ECP2 test addressing its

close relation to the ECP.

A.3.3 Kendall’s Transformation Test

Since under H0, the Kendall’s transformation Cθ(U) has distribution Kθ, the distance between

Kn and a parametric estimator Kθ̂ of K is another natural testing criterion. We are testing the null

H∗∗0 : K ∈ K0 = {Kθ : θ ∈ O} using the empirical process K =
√
n(Kn − Kθ̂). The specific

statistic considered by Genest et al. (2006) is the following rank-based analogue of the Cramér-von

Mises statistic

SK
n =

∫ 1

0
Kn(v)

2dKθ̂(v)
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Appendix B

Proofs in Chapter 3

B.1 The Plug-in Estimators of the Spearman’s ρ and the Upper Tail

Dependence Based on the Copula Density Estimators

B.1.1 The Spearman’s ρ

In this section we are going to show that, in the bivariate case, if the copula density estimator

is a density function but does not satisfy the uniform marginal property of copula density, then the

plug-in estimator of the Spearman’s ρ may take an invalid value.

Let U, V ∼ U(0, 1) with joint distribution function C and its corresponding copula density c.

Then the Spearman’s ρ for (U, V ) is given by

ρs(U, V ) = 12

∫∫
[0,1]2

uv dC(u, v)− 3

= 12

∫∫
[0,1]2

uvc(u, v) dudv − 3.

We sometimes will use ρs(c) to emphasis the dependence on c.

To estimate ρs, we only need the density estimator cn(·, ·) and apply the plug-in estimator

ρ̂s = ρs(cn) = 12

∫∫
[0,1]2

uvcn(u, v) dudv − 3. (31)

Now we are going to show that if cn(u, v) does not satisfy the uniform marginal property and is just
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a bivariate density function, then ρ̂s (or ρs(cn)) may not fall into [-1, 1].

Assume cn(·, ·) is a copula density estimator which is a density function but not a copula den-

sity, e.g., the penalized exponential series estimator or the sieve MLE with Bernstein polynomials.

Assume F (·, ·) is the corresponding bivariate distribution function, and Fu, Fv are the marginals,

respectively. C∗ is the corresponding copula of F.

Now consider ρ̂s = ρs(cn).

ρ̂s = ρs(cn)

= 12

∫∫
[0,1]2

uvcn(u, v) dudv − 3

= 12

∫∫
[0,1]2

uv dF (u, v)− 3

= 12 E[UV ]− 3, (32)

where U, V are random variables with joint distribution function F (·, ·), copula C∗, and marginals

Fu, Fv respectively. Therefore,

ρ̂s = ρs(cn)

= 12 E[UV ]− 3

= 12 (Cov(U, V ) + E[U ] E[V ])− 3

= 12 Cov(U, V ) + (12 E[U ] E[V ]− 3)

=
Cov[U, V ]√

Var[U ]
√

Var[V ]

(√
Var[U ]

1
12

√
Var[V ]

1
12

)
+ (12 E[U ] E[V ]− 3)

= A1 · Corr[U, V ] +A0, (33)

where A1 =

√
Var[U ]

1
12

√
Var[V ]

1
12

, and A0 = 12E[U ] E[V ]− 3.

When U, V ∼ U(0, 1), i.e., cn is a copula density, ρ̂s = Corr[U, V ] ∈ [−1, 1]. This is because,

in this case, A1 = 1, A0 = 0,E[U ] = E[V ] = 1
2 , and Var[U ] = Var[V ] = 1

12 .

When U, V � U(0, 1), i.e., cn is just a density function but not a copula density, we will
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examine the values of A1 and A0 in the following. First

E[U ] =

∫ 1

0
udFu(u)

= uFu(u)
∣∣1
0 −

∫ 1

0
Fu(u)du

= 1−
∫ 1

0
Fu(u)du

= 1−M (0)
u ,

(34)

where M
(i)
u =

∫ 1
0 uiFu(u)du for i = 0, 1, . . . . It is obvious that

∫ 1
0 Fu(u)du ∈ (0, 1), therefore

E[U ] ∈ (0, 1), and A0 ∈ (−3, 9).

Now consider A1. Note that

Var[U ] =

∫ 1

0
u2 dFu(u)− (1−M (0)

u )2

= u2Fu(u)
∣∣1
0 − 2

∫ 1

0
uFu(u)du− (1−M (0)

u )2

= 1− 2M (1)
u − (1−M (0)

u )2

= −2M (1)
u + 2M (0)

u −M (0)2

u .

When U � U(0, 1), Var[U ] is an increasing function with respect to M
(0)
u on [0, 1]. When M

(0)
u

goes to 0, Var[U ] goes to 0, because M
(1)
u ≤

∫ 1
0 udu = 1

2 . Therefore A1 goes to 0 while A0 goes

to 9, which means that when E[U ] and E[V ] are much greater than 1
2 and close to 1, we will have a

ρ̂s much greater than 1.

To conclude, when cn is not a copula density, it is possible to have ρs(cn) /∈ [−1, 1].

B.1.2 The Upper Tail Dependence

In this section we are going to show that, in the bivariate case, if the copula density estimator is

a density function but not a copula density, then the plug-in estimator of the upper tail dependence

may take an invalid value.
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Let X and Y be two random variables. The upper tail dependence λU is defined as

λU = lim
u→1−

2− 1− C(u, u)

1− u
, (35)

where C is the true copula of (X,Y ). We can estimate λU by a plug-in estimator λ̂U replacing C

with a copula estimator Ĉ.

If we have a copula density estimator ĉ for X and Y, which is a density function but not a

copula density, then the copula estimator Ĉ based on ĉ is not a copula but only a joint distribution

function on [0, 1]2.

Denote Ĉ(·, ·) by F (·, ·). Let F1, F2 and C∗ be the two marginals and the copula associated

with F (·, ·), respectively. Also let f1 and f2 be the density functions associated with F1 and F2,

respectively. The support of F1, F2, f1, and f2 is [0, 1]. f1 and f2 are not always equal to one on

[0, 1] since Ĉ or F is not a copula function.

Now consider the plug-in estimator λ̂U of λU defined in Eq.(35) by replacing C with Ĉ.

λ̂U = 2− lim
v→1−

1− Ĉ(v, v)

1− v

= 2− lim
v→1−

1− F (v, v)

1− v

= 2− lim
v→1−

1− C∗(F1(v), F2(v))

1− v

= 2− lim
v→1−

{
∂C∗(x1, x2)

∂x1

∣∣∣∣
(F1(v), F2(v))

· f1(v) +
∂C∗(x1, x2)

∂x2

∣∣∣∣
(F1(v), F2(v))

· f2(v)
}

= 2− lim
v→1−

{
∂C∗(x1, x2)

∂x1

∣∣∣∣
(F1(v), F2(v))

}
· f1(1)−

{
∂C∗(x1, x2)

∂x2

∣∣∣∣
(F1(v), F2(v))

}
· f2(1).

(36)

It can be easily shown that

∂C∗(x1, x2)

∂x1

∣∣∣∣
(a, b)

= Pr(Y ≤ b|X = a) ∈ [0, 1],

∂C∗(x1, x2)

∂x2

∣∣∣∣
(a, b)

= Pr(X ≤ a|Y = b) ∈ [0, 1],
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where (X,Y ) is a random vector with uniform marginal and copula C∗, and a, b ∈ [0, 1]. Therefore,

lim
v→1−

∂C∗(x1, x2)

∂x1

∣∣∣∣
(F1(v), F2(v))

∈ [0, 1],

lim
v→1−

∂C∗(x1, x2)

∂x2

∣∣∣∣
(F1(v), F2(v))

∈ [0, 1].

If Ĉ is just a joint cumulative distribution function but not a copula, then f1(1) and f2(2) could

be any non-negative numbers. It is possible that the estimate of the upper tail dependence λ̂U is

negative when f1(1) and f2(2) are large enough in Eq.(36).

B.2 Restrictions on the Design Points

In this section we are going to show that the copula property puts heavy restrictions on the de-

sign points. Consider a vertical integral
∫ 1
0 f(x, y)dy. Suppose this crosses triangulation lines

1, 2, . . . ,M in order, where M ∈ N. For j ∈ 1, 2, . . . ,M , line j connects (x
(1)
j , y

(1)
j ) and

(x
(2)
j , y

(2)
j ) with y

(1)
1 = y

(2)
1 = 0 and y

(1)
M = y

(2)
M = 1. The value of f at the point where we

cross line j is

fj =
(x

(2)
j − x)f(x

(1)
j , y

(1)
j ) + (x− x

(1)
j )f(x

(2)
j , y

(2)
j )

(x
(2)
j − x

(1)
j )

,

and this occurs at a y value of

yj =
(x

(2)
j − x)y

(1)
j + (x− x

(1)
j )y

(2)
j

(x
(2)
j − x

(1)
j )

.

The integral of f between line j and line j + 1 is

∫ yj+1

yj

(yj+1 − y)fj + (y − yj)fj+1

yj+1 − yj
dy

=
1

yj+1 − yj

[
(yj+1y −

y2

2
)fj + (

y2

2
− yjy)fj+1

]yj+1

yj

= yj+1fj − yjfj+1 + (
yj+1 + yj

2
)(fj+1 − fj)

=
yj+1 − yj

2
(fj+1 + fj).
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We need the total integral to be constant with changes in x. Note that

∂fj
∂x

=
f(x

(2)
j , y

(2)
j )− f(x

(1)
j , y

(1)
j )

(x
(2)
j − x

(1)
j )

;

∂yj
∂x

=
y
(2)
j − y

(1)
j

(x
(2)
j − x

(1)
j )

.

Hence

M−1∑
j=1

((
∂yj+1

∂x
− ∂yj

∂x

)
(fj+1 + fj) + (yj+1 − yj)

(
∂fj+1

∂x
− ∂fj

∂x

))
= 0.

To examine the solution to the above system, we start with a simple case. Suppose that we have a

situation as shown below. To calculate the marginal integral at x, it crosses four triangulation lines.

The first one connects (0, 0) and (x1, 0). The second one connects (0, yb) and (x1, 0). The third

line connects (0, yb) and (x2, 1), and the fourth line connects (0, 1) and (x2, 1). The value of f at

the point where we cross line j is fj ,
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then

f1 =
xfd + (x1 − x)fa

x1
,
∂f1
∂x

=
fd − fa

x1
, y1 = 0

f2 =
xfd + (x1 − x)fb

x1
,
∂f1
∂x

=
fd − fb

x1
, y2 =

(x1 − x)yb
x1

f3 =
xfe + (x2 − x)fb

x2
,
∂f3
∂x

=
fe − fb
x2

, y3 =
x+ (x2 − x)yb

x2

f4 =
xfe + (x2 − x)fc

x2
,
∂f4
∂x

=
fe − fc
x2

, y4 = 1

and the integral is

=
y2 − y1

2
(f2 + f1) +

y3 − y2
2

(f3 + f2) +
y4 − y3

2
(f4 + f3)

with derivative

(x1 − x)yb
x1

2fd − fb − fa
x1

− 2xfd + (x1 − x)(fa + fb)

x1

yb
x1

+ (
x+ (x2 − x)yb

x2
− (x1 − x)yb

x1
)(
fe − fb
x2

+
fd − fb

x1
)

+

(
1− yb
x2

+
yb
x1

)(
xfd + (x1 − x)fb

x1
+

xfe + (x2 − x)fb
x2

)
+

(
1− x+ (x2 − x)yb

x2

)
2fe − fb − fc

x2
+

(
−1− yb

x2

)(
2xfe + (x2 − x)(fb + fc)

x2

)
= 0.

Multiplying by x21x
2
2, we get

x22(x1 − x)yb(2fd − fb − fa)− x22 (2xfd + (x1 − x)(fa + fb)) yb

+ (x1 (x+ (x2 − x)yb)− x2(x1 − x)yb) (x1(fe − fb) + x2 (fd − fb))

+ (x1(1− yb) + x2yb) (x2 (xfd + (x1 − x)fb) + x1 (xfe + (x2 − x)fb))

+ x21 (x2 − (x+ (x2 − x)yb)) (2fe − fb − fc)− x21 (1− yb) (2xfe + (x2 − x)(fb + fc))

= 0
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thus

2x22yb (xfa + xfb − 2xfd − x1fa − x1fb + x1fd)

+ 2 (x1 − x1yb + x2yb) (xx1fe − xx1fb − xx2fb + xx2fd + x1x2fb)

+ 2x21 (1− yb) (xfb − 2xfe + xfc + x2fe − x2fb − x2fc)

= 0.

Since this is true for all x, we have

x22yb (fa + fb − 2fd) + (x1 − x1yb + x2yb) (x1fe − x1fb − x2fb + x2fd)

+x21 (1− yb) (fb − 2fe + fc) = 0

x21(fc − fe)(1− yb) + x22yb(fa − fd) + x1x2 (fd − fb + feyb − fdyb) = 0

and

2x22yb (−x1fa − x1fb + x1fd) + 2 (x1 − x1yb + x2yb) (x1x2fb)

+2x21 (1− yb) (x2fe − x2fb − x2fc) = 0

x2yb (fd − fa − fb) + (x1(1− yb) + x2yb) (fb) + x1 (1− yb) (fe − fb − fc) = 0

x2yb (fd − fa) + x1 (1− yb) (fe − fc) = 0.

We can then substitute this last equation in the above to get

x21(fc − fe)(1− yb) + x2x1 (1− yb) (fe − fc) + x1x2 (fd − fb + feyb − fdyb) = 0

x1(fc − fe)(1− yb) + x2 (1− yb) (fe − fc) + x2 (fd − fb + feyb − fdyb) = 0.

Substituting again, we get

x2yb (fd − fa) + x2 (1− yb) (fe − fc) + x2 (fd − fb + feyb − fdyb) = 0

yb (fd − fa) + (1− yb) (fe − fc) + (fd − fb + feyb − fdyb) = 0

fe − fb − fc + fd − fayb + fcyb = 0.
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We also need for the integral to be 1 so

yb(fa + fb) + (1− yb)(fb + fc) = 2

yb =
2− fb − fc
fa − fc

and if fa = fc then fb = 2− fa. Thus

fe − fb − fc + fd − (2− fb − fc) = 0

fe + fd = 2

The three conditions that we need are:

fe + fd = 2

yb =
2− fb − fc
fa − fc

x2yb (fd − fa) = x1 (1− yb) (fc − fe) .

However, if we add an internal point, then we may be unable to make this work.

In conclusion, the uniform marginal property is quite restrictive on the set of the design points.

And a simple set of design points that would satisfy the uniform marginal property would be an

equidistant grid on the unit square.

For example, with the points shown above there will be a change in the derivative with respect
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to x of the integral as x passes through x0. So for any internal point, there must be a second point

on the same horizontal line and another one on the same vertical line.

We need to think about the same question with respect to the previous example. Is there a

problem as x moves past x1 if x1 �= x2? This can certainly be avoided if the f values on the

boundary are linear through the point in question. If not, then

g(x) =

∫ δ

0
f(x, y)dy

cannot be linear in a range (x1 − ε, x1 + ε) and yet

1− g(x) =

∫ 1

δ
f(x, y)dy

will be linear, thus giving a contradiction.

So this adds so much more conditions to the example in the case where x1 �= x2 and yb �= yf

(the unlabelled point on the opposite boundary) that in the end this will rule out any solution with

x1 �= x2 and yb �= yf .

B.3 Generalization to General B-Splines

We are going to show that the originally proposed copula density estimation method using sim-

ple linear B-splines can be generalized to a similar method using B-splines of higher degrees while

still preserving the uniform marginal property.

We are going to show that the tensor product spline surface generated by two sets of univariate

B-splines with arbitrary degrees can preserve the uniform marginal property of the bivariate copula

under mild assumptions on the knot vectors t and s, and on coefficients {fij}.

Some lemmas that are needed for the proof of Proposition 22 are listed below.

Lemma 20 A knot vector is said to be “d + 1” regular if t1 = ... = td+1 < td+2 < ... < tn <
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tn+1 = ... = tn+d+1 and n ≥ d+ 1. On interval [td+1, tn+1),

n∑
j=1

Bj,d(x) ≡ 1. (37)

Lemma 21 (Bhatti and Brachen (2006)) The integral of a B-spline on its support is given by

∫ tn+d+1

t1

Bj,d(x)dx =

∫ tj+d+1

tj

Bj,d(x)dx

=
tj+d+1 − tj

d+ 1
.

Proposition 22 Assume that we have a spline space S1 of degree dt with a “dt + 1 regular ” knot

vector t = (ti)
nt+dt+1
i=1 and t1 = 0, tnt+dt+1 = 1, and another spline space S2 of degree ds with

a “ds + 1 regular ” knot vector s = (sj)
ns+ds+1
j=1 and s1 = 0, sns+ds+1 = 1. Let {Bi,dt,t}nt

i=1 and

{Bj,ds,s}ns
j=1 denote the B-splines in S1 and S2, respectively. We claim that

f(x, y) =

N∑
i=1

N∑
j=1

fij Bi,dt,t(x) Bj,ds,s(y) (38)

with constraints

ns∑
j=1

sj+ds+1 − sj
ds + 1

fij = 1, i = 1, 2, . . . , nt,

nt∑
i=1

ti+dt+1 − ti
dt + 1

fij = 1, j = 1, 2, . . . , ns (39)

can be used to approximate the copula density while preserving the uniform marginal property.
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Proof. We are going to prove that ∀x ∈ [0, 1),
∫ 1
0 f(x, y)dy = 1.

∫ 1

0
f(x, y)dy =

∫ 1

0

nt∑
i=1

ns∑
j=1

fij Bi,dt,t(x) Bj,ds,s(y)dy

=

∫ 1

0

nt∑
i=1

Bi,dt,t(x)

ns∑
j=1

fij Bj,ds,s(y)dy

=

nt∑
i=1

Bi,dt,t(x)

ns∑
j=1

fij

∫ 1

0
Bj,ds,s(y)dy

=

nt∑
i=1

Bi,dt,t(x)

ns∑
j=1

fij

∫ sns+ds+1

s1

Bj,ds,s(y)dy

=

nt∑
i=1

Bi,dt,t(x)

ns∑
j=1

fij
sj+ds+1 − sj

ds + 1

=

nt∑
i=1

Bi,dt,t(x)

= 1.

The last two equations are due to Eq.(39) in the assumptions and Eq.(37), respectively.
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Appendix C

Proofs in Chapter 4

C.1 Convergence of the Denominator

Proof of Lemma 13: Recall that

Dn,0(z) =
1

n

n∑
i=1

Kh(Z2j(i) − z)

⎛⎜⎝ X1iX
T
1i X1iX2j(i)

X2j(i)X
T
1i X2

2j(i)

⎞⎟⎠ .

Let Dn,0(j1,j2)
(z) denote the (j1, j2)th block matrix element of Dn,0(z). Then we will prove that

Dn,0(22)(z)
p−→ f(z)Ω(22)(z) by showing that Dn,0(22)(z) converges to f(z)Ω(22)(z) in mean-

square. The convergence of the rest of Dn,0(j1,j2)
(z) can be shown in a similar way.

Before we proceed, we first outline some properties of Z2j(i), i ∈ {1, ..., n}. Let fj(i)(·), i ∈

{1, ..., n} denote the density of Z2j(i), i ∈ {1, ..., n}, which is also the distribution of Z2j con-

ditional on it being a nearest match to Z1i, j ∈ {1, ...m}. Because the density of Z2j is f(z),

then

fj(i)(z) =

m∑
j=1

Pr(j(i) = j | Z2j = z)f(z)

= f(z) ·
m∑
j=1

(
1

m
+ o(

1

m
))

= f(z)(1 + o(1)),
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where the second equality comes from the conditional probability result derived in Abadie and

Imbens (2006)’s Additional Proofs on Page 5. The above implies that the density of any Z2j(i)

differs from another density of Z2j(k) and the population density by o(1), i, k ∈ {1, ..., n}, k �= i.

Also, C(j) is defined as the number of times that Element j in the sample {X2j , Z2j}mj=1 is used as

a match to Element i in the sample {Yi, X1i, Z1i}ni=1,

C(j) =

n∑
i=1

�(j = j(i)), j ∈ {1, ...m}

where �(·) is the indicator function, equal to one if j = j(i) is true and zero otherwise. Then

E(C(j) | Z2j) =
n
m(1 + o(1)) is given in Abadie and Imbens (2006)’s Additional Proofs on Page

11.

Let Z1,2 denote all the Z from the two samples. Note that, the conditional expectation of

Dn,0(22)(z) is

E

(
Dn,0(22)(z) | Z

1,2
)
=

1

n

n∑
i=1

Kh(Z2j(i) − z)Ω(22)(Z2j(i))

=
1

n

m∑
j=1

C(j)Kh(Z2j − z)Ω(22)(Z2j).

And the unconditional expectation is

E

(
Dn,0(22)(z)

)
= E

(
1

n

n∑
i=1

Kh(Z2j(i) − z)Ω(22)(Z2j(i))

)

= E

⎛⎝ 1

n

m∑
j=1

C(j)Kh(Z2j − z)Ω(22)(Z2j)

⎞⎠
=

1

n

m∑
j=1

E
(
E(C(j) | Z2j)Kh(Z2j − z)Ω(22)(Z2j)

)
=

m

n
E

( n

m
(1 + o(1))Kh(Z2j − z)Ω(22)(Z2j)

)
= f(z)Ω(22)(z)(1 + o(1) +O(h2)).

Next, we are going to show the convergence of the variance of Dn,0(22)(z). Apply the law of
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total variance,

V ar
(
Dn,0(22)(z)

)
= E

(
V ar

(
Dn,0(22)(z) | Z

1,2
))

+ V ar
(
E

(
Dn,0(22)(z) | Z

1,2
))

.

First, we consider V ar
(
E

(
Dn,0(22)(z) | Z1,2

))
. Since Ω(z) = E(XX ′ | z) is a matrix, we

transform it into a vector for its convergence. Let Ω(22)(z) be the (2, 2)th block matrix element of

Ω(z). Denote

Aj = vec
(
Kh(Z2j − z)Ω(22)(Z2j)− f(z)Ω(22)(z)

)
,

Aj(i) = vec
(
Kh(Z2j(i) − z)Ω(22)(Z2j(i))− f(z)Ω(22)(z)

)
.
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Then V ar
(
E

(
Dn,0(22)(z) | Z1,2

))
can be rewritten as

V ar
(
E

(
Dn,0(22)(z) | Z

1,2
))

= E

(
(
1

n

n∑
i=1

Aj(i))(
1

n

n∑
i=1

Aj(i))
T

)

=
1

n2
E

(
n∑

i=1

n∑
t=1

Aj(i)A
T
j(t)

)

=
1

n2
E

⎛⎜⎜⎝ n∑
i=1

∑
j(t)=j(i)
t∈{1,...,n}

Aj(i)A
T
j(t)

⎞⎟⎟⎠+
1

n2
E

⎛⎜⎜⎝ n∑
i=1

∑
j(t) �=j(i)
t∈{1,...,n}

Aj(i)A
T
j(t)

⎞⎟⎟⎠
=

1

n2
E

(
n∑

i=1

Aj(i)C(j(i))AT
j(i)

)
+

1

n2

n∑
i=1

∑
j(t) �=j(i)
t∈{1,...,n}

E
(
Aj(i)

)
E

(
AT

j(t)

)

≤ 1

n2
E

(
n∑

i=1

( max
j=1,...,m

C(j))Aj(i)A
T
j(i)

)
+

n2 − n

n2
(o(1)2 +O(h2)2)

=
1

n2
E

⎛⎝ m∑
j=1

( max
j=1,...,m

C(j))C(j)AjA
T
j

⎞⎠+O(h4) + o(1)2

=
1√
n

(m
n

) 3
2
E

(
(

1√
m

max
j=1,...,m

C(j))C(j)AjA
T
j

)
+O(h4) + o(1)2

=
1√
n

(m
n

) 3
2
E

(
1√
m
( max
j=1,...,m

C(j))2AjA
T
j

)
+O(h4) + o(1)2

≤ 1√
n

(m
n

) 3
2
E

(
1√
m
( max
j=1,...,m

C(j))2
)
μ̄2 +O(h4) + o(1)2,

where μ̄2 = supZj
‖AjA

T
j ‖. μ̄2 is finite due to Assumption 2 and Assumption 3, which implies

that Ω and Kh are continuous on the finite support of Z, and in turn implies that Kh and Ω satisfy

the Lipschitz condition. Next, we are going to prove that E
(

1√
m
(maxj=1,...,mC(j))2

)
is bounded

uniformly in m, which implies that V ar
(
E

(
Dn,0(22)(z) | Z1,2

))
converges to zero matrix as n,m

go to infinity of the same order.
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Following the proofs on Page 23 in Abadie and Imbens (2006)’s Additional Proofs, by Bonfer-

roni’s inequality:

E

(
(

1√
m
( max
j=1,...,m

C(j))2)2
)

=
1

m
E

(
max

j=1,...,m
C(j)4

)
=

1

m

∞∑
N=0

Pr( max
j=1,...,m

C(j)4 > N)

≤ 1

m

∞∑
N=0

mPr(C(j)4 > N)

≤ E
(
C(j)4

)
.

(40)

The first equation holds because C(j) is a positive integer for all j = 1, . . . ,m. According to

Lemma 3 in Abadie and Imbens (2006) , given Assumption 1 and part 1 of Assumption 2, E (C(j)q)

is bounded uniformly in m for all q > 0. Since

E

(
1√
m
( max
j=1,...,m

C(j))2
)2

≤ E

(
(

1√
m
( max
j=1,...,m

C(j))2)2
)
, (41)

which implies the boundedness of E
(

1√
m
(maxj=1,...,mC(j))2

)
, and in turn implies that

V ar
(
E

(
Dn,0(22)(z) | Z

1,2
))

converges to zero matrix as n,m go to infinity of the same order. By the same method, we can easily

show that under certain finite moment assumptions, the expectation of V ar
(
Dn,0(22)(z) | Z1,2

)
goes to zero as sample sizes go to infinity.

To conclude, we have showed that V ar
(
Dn,0(22)(z)

)
goes to zero as sample sizes go to infinity

and therefore Dn,0(22)(z) converges to f(z)Ω(22)(z) in mean-square. Similarly, we can show that all

the block matrix elements of Dn,0(z) converge to the respective block matrix elements of f(z)Ω(z)

in mean-square. The convergence of Dn(z) to f(z)Ω(z)
⊗⎛⎜⎝ 1 0

0 μ2

⎞⎟⎠ is proved in the same line

of arguments.
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C.2 Convergence of the Numerator

Proof of Lemma 14: We approximate the expression of Y = XT
i β(Z1i)+ui � XT

i β(Z2j(i))+

ui by a Taylor expansion in the neighbourhood of |Z1i − z| < h and |Z2j(i) − z| < h.

XT
i β(Z1i) = XT

i β(z) + (Z2j(i) − z)XT
i β

′(z) +
h2

2

(
Z2j(i) − z

h

)2

β(z)′′ + o(h2) a.s.,

where β′(z) and β(z)′′ are the vectors consisting of the first and the second derivatives of the

function β(z).

Then we substitute the approximate expression of Y into the expression of Nn(z).

Nn(z) =
1

n
(DXm)TWY

=
1

n
(DXm)TW

⎛⎜⎝DX

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠+
h2

2
AzX

Tβ′′(z) + u+ o(h2)

⎞⎟⎠ ,

where

DXm =

⎛⎜⎜⎜⎜⎝
XT

j(1) XT
j(1)

Z2j(1)−z
h

... ...

XT
j(n) XT

j(n)

Z2j(n)−z
h

⎞⎟⎟⎟⎟⎠ ,

W = diag
(
Kh(Z2j(1) − z), ...,Kh(Z2j(n) − z)

)
,

DX =

⎛⎜⎜⎜⎜⎝
XT

1 XT
1

Z2j(1)−z
h

... ...

XT
n XT

n
Z2j(n)−z

h

⎞⎟⎟⎟⎟⎠ ,

and

Az = diag((
Z2j(1) − z

h
)2, ..., (

Z2j(n) − z

h
)2).

Recall that Xj(i) = (XT
1i, X2j(i))

T is the matching pair for Xi = (XT
1i, X2i)

T , i ∈ {1, ...n}.
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Next, we decompose Nn(z)− 1
n(D

Xm)TWDXm

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠ = I1 + I2 + I3 + I4, where

I1 =
1

n
(DXm)TW

⎛⎜⎝DX

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠− E(DX | Z1,2)

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠
⎞⎟⎠ ,

I2 =
1

n
(DXm)TW

⎛⎜⎝E(DX | Z1,2)

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠−DXm

⎛⎜⎝ β(z)

hβ′(z)

⎞⎟⎠
⎞⎟⎠ ,

I3 =
1

n
(DXm)TW

h2

2
AzX

Tβ′′(z),

I4 =
1

n
(DXm)TWu.

Firstly, we consider I1. Since

DX − E(DX | Z1,2) =

⎛⎜⎜⎜⎜⎝
(X1 − g(Z11))

T (X1 − g(Z11))
T (Z2j(1)−z)

h

... ...

(Xn − g(Z1n))
T (Xn − g(Z1n))

T (Z2j(n)−z)
h

⎞⎟⎟⎟⎟⎠ ,

then

I1 =

⎛⎜⎝ 1
n

∑n
i=1Xj(i) (Xi − g (Z1i))

T Kh

(
Z2j(i) − z

)
1
nh

∑n
i=1Xj(i) (Xi − g (Z1i))

T (Z2j(i) − z
)
Kh

(
Z2j(i) − z

)
⎞⎟⎠β(z)

+

⎛⎜⎝ 1
nh

∑n
i=1Xj(i) (Xi − g (Z1i))

T (Z2j(i) − z
)
Kh

(
Z2j(i) − z

)
1

nh2

∑n
i=1Xj(i) (Xi − g(Z1i))

T (Z2j(i) − z
)2

Kh

(
Z2j(i) − z

)
⎞⎟⎠hβ′(z).

We will show that

I1
p−→ f(z)

⎛⎝ Σ11 Σ12

0 0

⎞⎠β(z)
⊗⎛⎝1

0

⎞⎠+ f(z)

⎛⎝ Σ11 Σ12

0 0

⎞⎠hβ′(z)
⊗⎛⎝ 0

μ2

⎞⎠ .
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Denote

I10 =
1

n

n∑
i=1

Xj(i)(Xi − g(Z1i))
TKh(Z2j(i) − z),

I11 =
1

nh

n∑
i=1

Xj(i)(Xi − g(Z1i))
T (Z2j(i) − z)Kh(Z2j(i) − z),

and

I12 =
1

nh

n∑
i=1

Xj(i)(Xi − g(Z1i))
T (Z2j(i) − z)2Kh(Z2j(i) − z).

Next, we will show that I10
p−→ f(z)

⎛⎜⎝ Σ11(z) Σ12(z)

0 0

⎞⎟⎠. Suppose that j(i) = j, then X2j

is the match to X2i. Denote X(i,j) = (XT
1i, X

T
2j)

T as the match to Xi = (XT
1i, X2i), when j(i) = j.

E(I10 | Z1,2) =
1

n

m∑
j=1

E

⎛⎝ ∑
i∈A(j)

X(i,j)(Xi − g(Z1i))
TKh(Z2j − z) | Z1,2

⎞⎠
=

1

n

m∑
j=1

Kh(Z2j − z)E

⎛⎝ ∑
i∈A(j)

X(i,j)(Xi − g(Z1i))
T | Z1,2

⎞⎠
=

1

n

m∑
j=1

Kh(Z2j − z)
∑

i∈A(j)
E

⎛⎜⎝
⎛⎜⎝ X1i

X2j

⎞⎟⎠ (v1i, v2i)
T | Z1,2

⎞⎟⎠
=

1

n

m∑
j=1

Kh(Z2j − z)
∑

i∈A(j)

⎛⎜⎝ Σ11(Z1i) Σ12(Z1i)

0 0

⎞⎟⎠
=

1

n

m∑
j=1

Kh(Z2j − z)C(j)

⎛⎜⎝ Σ11(Z2j) Σ12(Z2j)

0 0

⎞⎟⎠ (1 + o(1)) .

The next to the last equality is from the fact that {X1i}ni=1 and {X2j}mj=1 are two independent

samples from the same population. Since A(j) is defined as the subset of the index i, i ∈ {1, ..., n},

such that j is used as a match to each indexed observation, then the number of elements in the set

A(j) is C(j), j ∈ {1, ...m}. Also C(j) is nonstochastic conditional on Z1,2. As we discussed

before, for a pair of match, Z2j(i) and Z1i, their densities only differ by o(1). So for all i ∈ A(j),

the densities of Z1i and Z2j differ by o(1) as well. Therefore, the last equality holds.
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To compute the unconditional expectation of I10, we apply the result of E(C(j)|Z1,2) = n
m(1+

o(1)) from Abadie and Imbens (2006). Then

E(I10) = f(z)

⎛⎜⎝ Σ11(z) Σ12(z)

0 0

⎞⎟⎠ .

The convergence of the variance V ar(I10) is in the Appendix C.3. As a result, we have the

convergence result of I10. Similarly, we can show the convergence of I11 and I12. And then the

convergence of I1 is straightforward.

Next, we consider the convergence of I2. Since

E(DX | Z1,2)−DXm =

⎛⎜⎜⎜⎜⎝
(g(Z11)−Xj(1))

T (g(Z11)−Xj(1))
T (Z1j(1)−z)

h

... ...

(g(Z1n)−Xj(n))
T (g(Z1n)−Xj(n))

T (Znj(n)−z)
h

⎞⎟⎟⎟⎟⎠ ,

then

I2 =

⎛⎜⎝ 1
n

∑n
i=1Xj(i)(g(Z1i)−Xj(i))

TKh(Z2j(i) − z)

1
nh

∑n
i=1Xj(i)(g(Z1i)−Xj(i))

T (Z1i − z)Kh(Z2j(i) − z)

⎞⎟⎠β(z)

+

⎛⎜⎝ 1
nh

∑n
i=1Xj(i)(g(Z1i)−Xj(i))

T (Z1i − z)Kh(Z2j(i) − z)

1
nh2

∑n
i=1Xj(i)(g(Z1i)−Xj(i))

T (Z1i − z)2Kh(Z2j(i) − z)

⎞⎟⎠hβ′(z).

Following a similar argument, we can show that

I2
p−→ f(z)

⎛⎜⎝ −Σ11 0

0 −Σ22

⎞⎟⎠β(z)
⊗⎛⎜⎝1

0

⎞⎟⎠
+ f(z)

⎛⎜⎝ −Σ11 0

0 −Σ22

⎞⎟⎠hβ′(z)
⊗⎛⎜⎝ 0

μ2

⎞⎟⎠ .

Finally, we can compute in a similar way to prove that I3 = o(h2) and I4 = op(1).
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C.3 Convergence of V ar(I10)

Let vec(·) denote the vectorization transformation of matrix and V I10 = vec(I10).

Consider the variance decomposition,

V ar (V I10) = E
(
V ar(V I10 | Z1,2)

)
+ V ar

(
E(V I10 | Z1,2)

)
.

In the following, we will prove that the convergence of both E
(
V ar

(
V I10 | Z1,2

))
and

V ar
(
E
(
V I10 | Z1,2

))
as sample sizes go to infinity.

First, consider E
(
V ar

(
V I10 | Z1,2

))
. Let

B(i,j) = Kh(Zj(i) − z) · vec

⎛⎜⎝Xj(i)(Xi − g(Zi))
T −

⎛⎜⎝ Σ11(Zi) Σ12(Zi)

0 0

⎞⎟⎠
⎞⎟⎠ ,

B(i,i) = Kh(Zi − z) · vec
(
Xi(Xi − g(Zi))

T − Σ
)
.

Then

E
(
V ar

(
V I10 | Z1,2

))
= E

((
V I10 − E

(
V I10 | Z1,2

)) (
V I10 − E

(
V I10 | Z1,2

))T)
= E

(
(
1

n

n∑
i=1

B(i,j))(
1

n

n∑
i=1

B(i,j))
T

)

≤ 1√
n

(m
n

) 3
2
E

(
1√
m
( max
j=1,...,m

C(j))2B(i,i)B
T
(i,i)

)
+O(h4) + o(1)2.

Following the same assumptions and argument in proof of Lemma 13, we have that

E

(
1√
m
( max
j=1,...,m

C(j))2B(i,i)B
T
(i,i)

)

is bounded uniformly in all m and therefore E
(
V ar

(
V I10 | Z1,2

))
converges to zero matrix as

sample size n,m go to infinity of the same order.

Before we proceed, we introduce a useful lemma from Abadie and Imbens (2006) about the

distribution of the matching discrepancy. Suppose that we have a random sample Z1, . . . , ZN , with
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density f over bounded support Z. Now consider the closest match to a z ∈ Z in the sample. Let

j1 = argminj=1,...,N‖Zj − z‖ and let Uj1 = Zj1 − z be the matching discrepancy.

Lemma 23 Matching Discrepancy - Asymptotic Properties: Suppose that f is differentiable in a

neighbourhood of z. Then Uj1 = Op(N
−1). Moreover, the first two moments of Uj1 are O(N− 1

2 ).

Now, consider V ar
(
E
(
V I10 | Z1,2

))
. Define

Ai,j(i) = Kh(Zj(i) − z) · vec

⎛⎝ Σ11(Zi) Σ12(Zi)

0 0

⎞⎠− fz(z) · vec

⎛⎝ Σ11(z) Σ12(z)

0 0

⎞⎠ ,

Ai,i = Kh(Zi − z) · vec

⎛⎜⎝ Σ11(Zi) Σ12(Zi)

0 0

⎞⎟⎠− fz(z) · vec

⎛⎜⎝ Σ11(z) Σ12(z)

0 0

⎞⎟⎠ .

By Lemma 23 and Lipschitz assumption on Kh, ‖Ai,j(i) − Ai,i‖ = Op(N
−1). Also note that by

simple calculation, we have

E

⎛⎝Kh(Zi − z)

⎛⎝ Σ11(Zi) Σ12(Zi)

0 0

⎞⎠⎞⎠ = fz(z)

⎛⎝ Σ11(z) Σ12(z)

0 0

⎞⎠+O(h2),

which implies that E(Ai,i) = O(h2). Therefore,

V ar
(
E(V I10 | Z1,2)

)
= E

(
(
1

n

n∑
i=1

Ai,j(i))(
1

n

n∑
i=1

Ai,j(i))
T

)

=
1√
n

(m
n

) 3
2
E

(
1√
m
( max
j=1,...,m

C(j))2A(i,i)A
T
(i,i)

)
+O(h4) + o(1)2.

Note that under the Lipschitz assumption on Kh and Σ, V ar
(
E(V I10 | Z1,2)

)
goes to zero matrix

as sample sizes go to infinity. Therefore we have demonstrated that I10 converges in probability to

f(z)

⎛⎜⎝ Σ11(z) Σ12(z)

0 0

⎞⎟⎠ .
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C.4 Boundedness of V (z)

The following shows that the expectation of V (z) is finite. The result follows Lemma 3 in

Abadie and Imbens (2006).

V (z) =

m∑
j=1

σ2(C(j)Kh(Zj − z))2Ω(Zj)
⊗⎛⎜⎝ 1 (Zj − z)/h

(Zj − z)/h ((Zj − z)/h)2

⎞⎟⎠ .

From Lemma 3 in Abadie and Imbens (2006), C(j) is O(1) , j ∈ {1, ...,m}. By Assump-

tions 3−4, the kernel functions we consider are Lipschitz continuous on a compact set, and νj =∫
ujK2(u)du, j = 1, 2, 3 are also bounded, therefore V (z) is also bounded.
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