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Abstract

On the Relationship Between Self-Admitted Technical Debt and

Software Quality

Sultan Wehaibi

Developers settle for a non-optimal solution under pressure to meet deadlines and

quotas despite the potential pitfalls that might ensue at later stages in development,

which has been referred to as “technical debt.” And like its financial analogue, if not

carefully monitored and mediated, technical debt can compromise the very project it

was intended to expedite. Several approaches have been proposed to aid developers

in tracking the technical debt they incur. Traditionally, developers have relied on

metric-based approaches, which use static analysis tools to identify technical debt

based on thresholds defined on object-oriented metrics, e.g. code smells. Another

technique, pioneered in a recent study, leverages source code comments to detect

(self-admitted) technical debt. Therefore, in this thesis we use empirical studies to

examine how self-admitted technical debt and code smells (God Classes) relate to

software quality.

Preliminarily, we examine the relationship between self-admitted technical debt and

software quality for five open-source projects. To measure this, we take into account

three criteria commonly associated with quality: (i) on the file level, the relationship

between defects and self-admitted technical debt (SATD); (ii) on the change level, the

potential of SATD to introduce future defects and (iii) the complexity SATD changes

impose on the system. The results of our study indicate that: (i) SATD files tend to

have less defects than non-SATD files and (ii) SATD changes make the system less
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susceptible to future defects than non-SATD changes do, though (iii) SATD changes

are more difficult to execute.

Until the advent of SATD, god classes were used to detect technical debt, and though

others have studied the impact of metric-based approaches on software quality, this

work has been limited to a small number of systems. Therefore, we conduct an ex-

tensive investigation that compares the relationship between both approaches and

software quality on a larger number of projects. We assess how code smells—in par-

ticular, god classes (metric-based approach)—and SATD (comment-based approach)

are associated with software quality by determining: (i) whether god and SATD files

have more defects than non-god and non-SATD files, (ii) whether god and SATD

changes induce future defects at a higher rate than non-god and non-SATD changes,

(iii) whether god and SATD changes are more difficult to perform than non-god and

non-SATD changes and (iv) how much the metric- and comment-based approaches

to technical debt file identification overlap. Our results indicate that: (i) neither god

nor SATD files are correlated with defects, (ii) introduction of future defects is higher

for god- and SATD-related changes, (iii) god- and SATD-related changes are more

difficult to perform and (iv) the metric-comment technical debt file overlap ranges

from 11% to 34%.

Overall, our study indicates that although technical debt—whether measured by the

SATD or god classes—may have negative effects, these do not include file-level defects.

Rather, the detriments of technical debt are its tendencies to introduce future defects

at an elevated rate and to make the system more difficult to change in the future.

In terms of detection methods, our work advocates implementing both the comment-

and metric-based approaches to maximize the sources of technical debt identified.
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1

Introduction

Software companies and organizations have a common goal when developing soft-

ware projects—to deliver high-quality, useful software in a timely manner. However,

in most practical settings developers and development companies are saddled with

deadlines, urging them to release earlier than the ideal date in terms of product

quality. Such situations are all too common and in many cases force developers to

take shortcuts [KNOF13] [SNKO15]. Recently, the term technical debt was coined to

represent the phenomenon of “doing something that is beneficial in the short term

but will incur a cost later on” [Cun92]. Prior work has shown that there are many

different reasons why practitioners assume technical debt. These include: a rush to

deliver a software product given a tight schedule, deadlines to incorporate with a

partner product before release, time-to-market pressure and incentives to satisfy cus-

tomer demands in a time-sensitive industry [LTS12] that still expects them to meet

its software quality standards.

Most definitions of software quality recognize two subdivisions: external quality and

internal quality. In one such definition, Fitzpatrick [Fit96] characterizes software

quality as “the extent to which an industry-defined set of desirable features are incor-

porated into a product so as to enhance its lifetime performance.” How the features
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that end users enjoy conform to their individual preferences determines external qual-

ity. Internal quality, by contrast, is a composite evaluation of the features developers

have built into the code on the production side. While industries differ on how they

weight the specific features in the development process (quality factors), there is

consensus that maintainability goes a long way in determining internal quality.

Studies over the years have proposed different approaches to measure technical debt,

which has been found to impact (internal) quality. Zazworka et al. [ZSSS11], for

instance, recommend combining automated technical debt detection tools with man-

ual detection strategies. For his part, Marinescu [Mar04] has proposed a technique

to detect code smells, specifically god classes, based on sets of thresholds defined on

various object-oriented metrics.

God classes typically exhibit high complexity and low inner-class cohesion and access

foreign class data at a higher rate than the trivial classes whose workloads they

consolidate. Moreover, god classes withhold tasks that would otherwise be delegated

elsewhere [LDM07]. Their size and many dependencies make the system harder to

comprehend and more defect-prone [FB99].

More recently, a study by Potdar and Shihab [PS14] introduced a new way to identify

self-admitted technical debt (SATD) through source code comments. SATD is techni-

cal debt that developers themselves report through source code comments. Prior work

[MS15] has demonstrated that accrual of SATD is commonplace in software projects,

where implementing comment-based approaches can identify different types of techni-

cal debt (e.g. design, defect, and requirement debt), just as metric-based approaches

detect technical debt using static analysis tools. Today, these two approaches are the

state of the art in measuring technical debt.

Intuition and general belief concur that technical debt negatively impacts software

maintenance and overall quality [ZSSS11, SZV+13, GSG+11, SNKO15, KNOF13].

However, to the best of our knowledge, there is little empirical evidence as to how

2



SATD and metric-based technical debt are related to software quality. Such a study

is critical since it will help us either confirm or refute entrenched preconceptions

regarding the technique and better understand how to manage SATD and metric-

based technical debt.

Since there is no prior work on the relationship between SATD and quality, we con-

duct a preliminary study in Chapter 3 of this thesis to empirically investigate the

relationship between SATD and software quality in five open-source projects. In par-

ticular, we examine whether (i) files with SATD have more defects compared to files

without SATD, (ii) whether SATD changes introduce more future defects and (iii)

whether SATD-related changes tend to be more difficult. We measure the difficulty of

a change in terms of the amount of churn, the number of files it touches, the number

of modified modules and its entropy.

Having studied the relationship between SATD and software quality, we then expand

our study to include another measure of technical debt (metric-based technical debt).

Such a study is important for providing researchers and practitioners with different

observations of technical debt; comparing the new approach to the traditional ap-

proach in terms of how they relate to software quality and advancing the state of the

art in understanding and mitigating technical debt.

Therefore, in Chapter 4 of this thesis, we compare the SATD and metric-based ap-

proaches across 40 open-source systems in order to validate our preliminary findings

with a larger data set. Specifically, we compare: (i) the defects of god and SATD files

versus non-god and non-SATD files, (ii) the future defect introduction of god and

SATD changes versus non-god and non-SATD changes and (iii) the difficulty of god

and SATD changes versus non-god and non-SATD changes. In addition, we measure

(iv) the overlap between metric- and comment-based technical debt files.
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1.1 Thesis Overview

Chapter 2: Literature Review: This chapter synthesizes more detailed discussions

of the technical debt metaphor from websites, blogs and research papers to provide a

brief chronological survey of the most prevalent of its various applications, including

some of the most recent. At the end of this chapter, we offer a critical assessment

of the current status of technical debt in the field, including its reputation among

software developers and the drawbacks it has been found to entail.

Chapter 3: Examining the Relationship Between Self-Admitted Technical

Debt and Software Quality: We preliminarily examine how self-admitted tech-

nical debt relates to software quality across five open-source projects (Chromium,

Cassandra, Spark, Tomcat and Hadoop) on three accounts: (i) which of SATD and

non-SATD files have more existing defects, (ii) which of SATD and non-SATD changes

induce more future defects and (iii) which of SATD and non-SATD changes are more

difficult to execute. We adhere to precedent in measuring change difficulty using

amount of churn, number of files, number of modified modules and change entropy.

Our findings demonstrate: (i) no clear trend relating self-admitted technical debt and

existing defects, (ii) a higher incidence of future defects for non-SATD changes and

(iii) greater difficulty in performing SATD changes. Therefore, based on our findings,

we conclude that self-admitted technical debt adversely affects system maintenance

by increasing change complexity but is dissociated from defects.

Chapter 4: Comparing the Relationship Between Comment- Versus

Metric-Based Technical Debt and Software Quality: We conduct a wide-

ranging study on 40 open-source projects to investigate the ways in which code smells

(God Classes) and self-admitted technical debt influence software quality and con-

centrate on three points of view: (i) whether god and SATD files have more defects

than non-god and non-SATD files, (ii) to what extent god and SATD changes are

correlated with future defects and (iii) whether performing god and SATD changes
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imposes more difficulty on the system, where difficulty is measured by amount of

churn, number of affected files and modified modules and change entropy. In the

interest of comparing the approaches, we also determine: (iv) to what extent the

metric- and comment-based approaches identify the same sources of technical debt.

We conclude that: (i) neither god nor SATD files tend to have more defects than

non-god and non-SATD files, (ii) god- and SATD-related changes tend to induce a

greater number of future defects and (iii) god- and SATD-related changes are more

difficult to perform than non-god and non-SATD changes. Thus, god classes and

self-admitted technical debt are detrimental insofar as they increase future defects

and change complexity. We also found that (iv) the metric- and comment-based

approaches complement each other at a rate of 11% to 34%.

1.2 Thesis Contributions

The major contributions of this thesis are as follows:

• Empirically examine the relationship between self-admitted technical debt and

software quality.

• Enhance knowledge of the technical debt phenomenon by presenting a large-

scale empirical study that compares the SATD (comment-based) and non-SATD

(metric-based) approaches.

• Provide evidence that technical debt tends to induce more future defects and

increase system complexity.
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2

Background & Related Work

In this chapter we present the key contributions of selected publications pertaining

to technical debt, which puts the state of the art in focus and contextualizes the aims

of this thesis. The studies we present first are concerned primarily with laying out

the technical debt metaphor and establishing which cases such an analogy accurately

describes, particularly in dealing with those less versed in software development

jargon. These studies elaborate on the criteria that characterize sub-varieties of

technical debt and how it is currently being implemented. Another collection of

studies, presented second, discusses the issue of identifying technical debt in the

source code.

For the most part, this section incorporates prior work that centers on technical debt

generally; information specific to the studies under discussion will accompany their

respective chapters.

In section 2.1, we provide background information on technical debt generally; sec-

tion 2.2 provides a cursory summary of related work divided into six subsections:
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Leveraging Source Code and Static Analysis Tools, Source Code Comments, Lever-

aging Source Code Comments (Self-Admitted Technical Debt), Technical Debt, Soft-

ware Quality and Identifying and Detecting Code Smells.

2.1 Background

In the early days of technical debt, blogs curated by industry professionals circulated

the most up-to-date information, but this medium largely left those outside the

industry in the dark. In the time since, however, a greater emphasis on collaboration

and information sharing has spurred extensive research, undertaken by both the

industrial and academic fronts, on what exactly is subsumed under the technical

debt metaphor, which includes more and more as its usage gains traction.

Ward Cunningham [Cun92] originated the technical debt metaphor over twenty

years ago as a means of negotiating a common language for the software developers

and non-technical staff assigned to the same project. His original conception likened

the additional effort incurred to maintain a project in the long term to the interest

accrued on debt, such as a loan. Temporary fixes initially accelerate development

and thus confer the short-term advantage of meeting deadlines otherwise unrea-

sonable, yet if sufficient debt accumulates, the project grinds to a halt under the

burden of incurred interest. It is the metaphor’s financial familiarity that makes

it effective in explaining how temporarily functional portions of code eventually

become unsustainable.

Steve McConnell [McC07] popularized the metaphor in his taxonomy, as did Martin

Fowler [Fow07] in devising the four quadrants outlined in Figure 1. Due to the effec-

tiveness of these two methods of explaining technical debt to the software engineering
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community, we devote the two subsections that follow to examining each in turn.

2.1.1 Intentionally vs. Unintentionally Incurred Technical

Debt

Steve McConnell recognizes “intentionally incurred” (Type I) and “unintentionally

incurred” (Type II) as the two principle classifications of technical debt [McC07]. The

latter comprises error-prone design techniques and poorly written code by an inexpe-

rienced programmer, among others. Unintentionally incurred technical debt results

from low-quality work and is sometimes assumed without the recipient’s knowledge,

as in the case of company acquisitions and mergers.

Type I debt, in contrast, is incurred purposefully and in exchange for an immediate

payoff. Software development companies, like all companies, make business decisions,

strategically opting to accrue debt from time to time so that a deadline can be met.

Justifications for incurring technical debt, such as “If we don’t get this release done

on time, there won’t be a next release,” are credible enough that some companies, for

instance, use glue code to synchronize multiple databases before proper reconcilia-

tion can be conducted, or postpone revisions that would ensure consistency in coding

standards [McC07].

McConnell further partitions Type I debt into short- and long-term varieties. In

keeping with the technical debt metaphor, short-term debt is assumed reactively and

ideally paid off quickly and frequently, whereas organizations take on long-term debt

proactively and, depending on the risk, sometimes count on expected income gener-

ated by an investment to pay it back.
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2.1.2 The Technical Debt Quadrant

Advocating an alternative interpretation of the metaphor, Fowler [Fow07] conceptu-

alizes a typology of technical debt in which each of his four quadrants is designated

either “reckless” or “prudent” and either “deliberate” or “inadvertent,” allowing for

four possibilities total. Prudent deliberate debt is assumed when a market supplier

is fully aware of what it is taking on and has conducted an in-depth cost-benefit

analysis to determine whether the hypothetical additional revenue an earlier release

generates exceeds the expense of repaying the debt later. The polar opposite,

so-called “reckless inadvertent debt,” is among the consequences of “not knowing

any better,” or being unacquainted with sound design practices [Fow07].

As Fowler’s quadrant schema demonstrates, reckless debt need not always coincide

with inadvertent debt, nor prudent debt with deliberate debt. Companies cognizant

of sound design practices, or even ones that ordinarily adhere to them, might opt

for the “quick fix” rather than clean code under pressure. Prudent inadvertent debt

arises when all parties are satisfied with the software delivered, which functions

smoothly at the time and gives no indication of future issues, but it dawns on a

developer afterwards that there was a more optimal solution. Of course, this is to be

expected since programming is a learning process, albeit one that does not forgive

debt incurred along the way [Fow07].

Figure 1 displays Fowler’s technical debt quadrants. Each of these contains a

quote that sums up a prototypical scenario in which developers would resort to its

particular combination of prudent/reckless and deliberate/inadvertent debt.

2.1.3 Additional Insights on the Technical Debt Metaphor

The technical debt metaphor has found favor with software developers who need to

convey to project stakeholders uninitiated in programming terminology similar debts
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Figure 1: Technical Debt Quadrant

and patchwork repairs that “kick the can down the road” and put off the effort of

isolating a solution viable in the long term. Concepts falling under this umbrella

include test, requirement, documentation and generalized software debt [Ste10].

Broadening the metaphor to cover too many varieties of debt, however, might ulti-

mately lessen its effectiveness, as Kruchten et al. point out [KNO12]. Unimplemented

requirements, functions or features do not qualify as requirement debts, just as putting

off developing them does not qualify as a planning debt. Heavy reliance on tools alone

to detect technical debt is one pitfall that the study highlights, in many cases lead-

ing to non-negligible underestimation of the actual technical debt load. This occurs

since the majority of technical debt accumulates because of structural choices and

technological gaps rather than code quality.

Further corroborating the overextension of the metaphor, Spinola et al. [SZV+13]

compiled statements on technical debt that software developers made both online and

in published work and selected 14 of them to use as items in two surveys measuring

the level of agreement of 37 participants with software development backgrounds.

On the whole, most participants strongly agreed that poorly managed technical debt

drives up maintenance costs until they outpace consumer value and disagreed that
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all technical debt is accrued with a developer’s full knowledge.

In the same study, the authors speculate that the technical debt metaphor’s compre-

hensibility is what fuels its generalization to phenomena outside the realm of technical

debt in the truest sense. This in turn blurs the boundaries between technical debt

and other costs or coding flaws and leads to persistent conflation among non-technical

project contributors and, all too often, industry specialists, who adopt the metaphor

as a rote catchall [SZV+13].

Alves et al. [ARC+14] have introduced a specialized vocabulary intended to disam-

biguate the subtleties that an all-purpose term such as technical debt overlooks, by

sorting concepts extracted from a systematic literature mapping that combed 100

studies published between 2010 and 2014. Their undertaking identified 15 categories

of technical debt but remained flexible enough to account for instantiations of techni-

cal debt that belonged in multiple categories: design debt, documentation debt, code

debt, requirements debt, people debt, process debt, service debt, versioning debt, us-

ability debt, build debt, test automation debt, infrastructure debt, defect debt, test

debt and architecture debt. The work of Alves et al. and others who have monitored

trends in the application of the technical debt metaphor and devised schemata relay-

ing its latest interpretations has allowed developers and their stakeholders to make

sense of the dynamic interplay between holdover solutions and deferred expense.

2.2 Related Work

2.2.1 Leveraging Source Code and Static Analysis Tools

Lately, there has been a lot of incentive to engineer better strategies for detecting

and managing technical debt. Technical debt often gets out of hand and reaches

unsustainable levels because a developer fails to realize how quickly it accumulates.

Static analysis tools can efficiently pinpoint violations of object-oriented design
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principles and source code anomalies outside the pre-specified ranges quantifying

code quality. Such outliers constitute “bad smells,” which fall under the category of

design debt.

In a study probing the effects of god classes (another manifestation of design debt)

on project maintainability, Zazworka et al. [ZSSS11] examined two commercial

applications released by a development company and concluded that god classes

are more liable to be defective, and thus higher-maintenance, than non-god classes.

For this reason, it is worthwhile for developers to monitor and, where appropriate,

mitigate the effect of technical debt on product quality, at all stages in the process.

God classes and other bad smells—namely, data class and duplicate code—were

extracted from open-source systems and scrutinized by Fontana et al. [FZMM13]

in an effort to prioritize the handling of different types of design debt. Their

approach ranks bad smells in descending order with respect to negative impact on

software quality and encourages developers to rectify higher-priority design debts first.

Zazworka et al. [ZSSS11] elicited an enumeration of technical debt items stored in

project artifacts from multiple developers and compared the results with what three

static analysis tools identified as fitting the relevant criteria. As different teams

reported different technical debt items, counting only the items that all teams rec-

ognized as technical debt results in an underestimation of the actual technical debt

load and for this reason aggregation proves to be the better method. Similarly,

static analysis tools will yield underestimations—some varieties of technical debt go-

ing undetected—unless supplemented with human mediation.
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2.2.2 Source Code Comments

A number of studies examined the usefulness/quality of comments and showed

that comments are valuable for program understanding and software maintenance

[TGM96, TYKZ07, LFB06]. For example, Storey et al. [SRB+08] explored how task

annotations in source code help developers manage personal and team tasks. Takang

et al. [TGM96] empirically investigated the role of comments and identifiers on

source code understanding. Their main finding showed that commented programs

are more understandable than non-commented programs. Khamis et al. [KWR10]

assessed the quality of source code documentation based on an analysis of the quality

of language and consistency between source code and its comments. Other work, by

Tan et al., has proposed several approaches to identify code-comment inconsistencies.

The first, called @iComment, detects lock- and call-related inconsistencies [TYKZ07].

The second approach, @aComment, detects synchronization inconsistencies related

to interrupt context [TZP11]. A third approach, @tComment, automatically infers

properties from Javadoc related to null values and exceptions; it performs test case

generation by considering violations of the inferred properties [TMTL12].

Other studies have examined the co-evolution of comment updates as well as the rea-

sons behind them. Fluri et al. [FWG07] studied the co-evolution of source code and

associated comments and found that 97% of the comment changes are consistently co-

changed. Malik et al. [MCT+08] performed a large empirical study to understand the

rationale for updating comments along three dimensions: characteristics of the mod-

ified function, characteristics of the change, as well as the time and code ownership.

Their findings showed that the most relevant attributes associated with comment

updates are the percentage of changed call dependencies and control statements, the

age of the modified function and the number of co-changed functions which depend

on it. De Lucia et al. [DLDPO11] proposed an approach to help developers maintain
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source code identifiers and consistent comments with high-level artifacts. The main

results of their study, based on controlled experiments, confirm that providing devel-

opers with similarity between source code and high-level software artifacts helps to

enhance the quality of comments and identifiers.

Most relevant to our research is the work recently undertaken by Potdar and Shi-

hab [PS14], which uses source code comments to detect self-admitted technical debt.

Using the identified technical debt, they studied how much SATD exists, the ratio-

nale for SATD and the likelihood of its removal after introduction. Another relevant

contribution to our study is Maldonado and Shihab’s [MS15], as their work has also

leveraged source code comments to detect and quantify different types of SATD.

They classified SATD into five types: design debt, defect debt, documentation debt,

requirement debt and test debt. Ultimately, they concluded that the most common

type is design debt, accounting for anywhere between 42% and 84% of a total of

33,000 classified comments.

Our study builds on prior work in [PS14, MS15] since we use the comment patterns

they produced to detect SATD. However, we differ from these studies in that we

examine the relationship between SATD and software quality.

2.2.3 Leveraging Source Code Comments (Self-Admitted

Technical Debt)

While strides have been made in locating sources of technical debt and preventing

unsustainable accumulation, such as using static source code analysis tools, new

improvements are constantly proposed, debated and adopted for use alongside

older, “tried and tested” methodologies. One such improvement, from Potdar

and Shihab [PS14], enlists source code comments in isolating technical debt, in

which the developer confesses the debt. At best, analysis tools can only suppose
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debt on the basis of semi-arbitrary cutoffs and thresholds, and stop short of guar-

anteeing that an implementation is less than optimal, i.e., self-admitted technical debt.

In their study capturing the state of the art in self-admitted technical debt iden-

tification, Potdar and Shihab [PS14] extracted source code comments from five

open-source projects and conducted manual inspections. The authors read and

analyzed more than 100,000 comments and in the end isolated 62 different comment

patterns that serve as reliable indicators of self-admitted technical debt, most

consisting of simple phrases, e.g. “fixme,” “workaround” and “this can be a mess.”

It was found that: (i) between 2.4% and 31.0% of the files analyzed contained these

keywords, (ii) the bulk of the self-admitted technical debt was introduced by more

experienced developers and (iii) there is no correlation between time pressures or

code complexity and the amount of self-admitted technical debt.

Building on the work of Potdar and Shihab [PS14], Bavota and Russo [BR16]

examined the growth and evolution of self-admitted technical debt across 159

projects and the effects this has had on software quality, and extracted upwards

of 600,000 commits and two billion source code comments. They found that: (i)

self-admitted technical debt is diffused, averaging 51 occurrences per system; (ii) it

accumulates over time as new occurrences pile up on top of ones which have not yet

been corrected and (iii) the occurrences that are corrected have a mean lifespan of

1,000 commits in the system.
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2.2.4 The Relationship Between Technical Debt and Soft-

ware Quality

Other work has focused on the identification and examination of technical debt. It

is important to note that the technical debt discussed here is not SATD: rather, it

is technical debt that is detected through source code analysis tools. For example,

Zazworka et al. [ZSV+13] attempted to identify technical debt automatically and then

compared their automated identification with human elicitation. The results of their

study outline potential benefits of developing tools and heuristics for the detection

of technical debt. Also, Zazworka et al. [ZSSS11] investigated how design debt, in

the form of god classes, affects software maintainability and correctness of software

products. Their study involved two industrial applications and showed that god

classes are changed more often than non-god classes and, moreover, that they contain

more defects. Their findings suggest that technical debt may negatively influence

software quality. Guo et al. [GSG+11] analyzed how and to what extent technical

debt affects software projects by tracking a single delayed task in a software project

throughout its lifecycle.

Our work differs from foregoing research by Zazworka et al. [ZSSS11, ZSV+13] since

we focus on the relationship between SATD (and not technical debt related to god

files) and software quality. However, we believe that our study complements prior

studies since it sheds light on the overall consequences of SATD and, in particular,

those pertaining to software quality.

2.2.5 Software Quality

A plethora of prior work has proposed techniques to improve software quality, the ma-

jority of this work having concerned itself with understanding and predicting software
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quality issues (e.g. [ZNZ08]). Several studies have examined the metrics that best in-

dicate software defects, including design and code [JCMB08], code churn [NB05] and

process metrics [MPS08, RD13].

Other studies have opted to focus on change-level prediction of defects. Sliwerski et

al. suggested a technique known as SZZ to automatically locate fix-inducing changes

by linking a version archive to a bug database [SZZ05a]. Kim et al. [KWZ08] used

identifiers in added and deleted source code and the words in change logs to identify

changes as defect-prone or not. Similarly, Kamei [KSA+13] et al. proposed a “Just-

In-Time Quality Assurance” approach to identify risky software changes in real time.

The findings of their study reveal that process metrics outperform product metrics

in terms of identifying risky changes.

Our study leverages the SZZ algorithm and some of the techniques presented in the

aforementioned change-level work to study the defect-proneness of SATD-related com-

mits. Moreover, our study complements existing work by taking up the hypothesized

correlation between SATD and software defects.

2.2.6 Identifying and Detecting Code Smells

Fowler and Beck [FB99] originated the term code smell to designate various indica-

tors of object-oriented design flaws that can undermine software maintenance. Code

smells respond to the internal and external properties of the system elements they

monitor. Though manual code smell detection warns developers of potential vulner-

abilities, Marinescu [Mar01] observes that it is time-consuming, non-repeatable and

non-scalable. Apart from this, the more familiar the software system is to a devel-

oper, the higher the risk of a subjective appraisal of its efficiencies and shortcomings,

according to Mntyl [MVL03, MVL04], and one important corollary of this is that a

developer’s chances of overlooking design flaws increase. In order to surmount these
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drawbacks, Marinescu recommends enlisting code metrics to detect system volatili-

ties, and in this spirit, several implementations of this alternative to manual detection

have been devised [LDM07, Mar04, Mar05, Mar12].
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3

Examining the Relationship

Between Self-Admitted Technical

Debt and Software Quality

3.1 Introduction

Software companies and organizations have a common goal when developing software

projects: both aim to deliver high-quality, useful software in a timely manner. How-

ever, in most practical settings, developers and development companies are saddled

with deadlines, giving them every incentive to release earlier than the date that would

be ideal if product quality alone were taken into account. Such situations are all too

common and in many cases force developers to take shortcuts [KNOF13] [SNKO15].

Recently, the term technical debt was coined to denote the phenomenon of “doing

something that is beneficial in the short term but will incur a cost later on” [Cun92].

Prior work has shown that practitioners cite numerous reasons for assuming techni-

cal debt, among them: rushing to compensate for delays and still deliver on time
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or to make deadlines for incorporating with a partner product before release, alle-

viating time-to-market pressure and meeting customer demands in a time-sensitive

industry [LTS12].

More recently, a study by Potdar and Shihab [PS14] introduced a novel method

of identifying technical debt reported by developers. This so-called “self-admitted

technical debt,” abbreviated SATD, is declared in developer source code comments.

Prior work [MS15] has demonstrated that accrual of SATD is commonplace in soft-

ware projects, where reviewing source code comments can identify different types of

technical debt (e.g. design, defect and requirement debt).

Intuition and general belief concur that inducing technical debt, which many devel-

opers resort to in a time crunch, negatively impacts software maintenance and overall

quality [ZSSS11, SZV+13, GSG+11, SNKO15, KNOF13]. However, to the best of

our knowledge, there is no empirical study that examines the relationship between

SATD and software quality. Such a study is critical since it will help us to confirm

or refute entrenched preconceptions regarding the technique and better understand

how to manage SATD.

Therefore, in this chapter, we investigate the empirical relation between SATD and

software quality in five open-source projects. In particular, we examine whether (i)

files with SATD have more defects compared to files without SATD, (ii) whether

SATD changes introduce more future defects and (iii) whether SATD-related changes

tend to be more difficult. We measured the difficulty of a change in terms of the

amount of churn, number of files, number of modified modules, and change entropy.

Our findings show that: i) while it is true that SATD files have more bug-fixing

changes in a number of the studied projects, in other projects, files without SATD

have more defects, thus there is no clear relationship between defects and SATD; ii)

SATD changes are associated with fewer future defects than non-SATD changes and

iii) SATD changes (i.e., changes touching SATD files) are more difficult to perform.
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Our study indicates that although technical debt has negative effects, defects are not

one of them, but making the system more difficult to change in the future is.

3.2 Approach

The objective of our study is to investigate the relationship between SATD and soft-

ware quality. We measure software quality in two ways. First, we employ the tradi-

tional measure of counting the defects in a file and defect-inducing changes, which is

in line with most prior studies [KSA+13, KWZ08, ŚZZ05b]. In particular, we mea-

sure the number of defects in SATD-related files and the percentage of SATD-related

changes that introduce future defects. Second, since technical debt is meant to rep-

resent the phenomenon of taking a short-term benefit at the cost of paying a higher

price later on, we employ as another measure the difficulty of the changes related to

SATD. Specifically, we use amount of churn, number of files, number of directories

and change entropy to quantify difficulty. We formalize our study with the following

three research questions:

• RQ1: Do files containing SATD have more defects than files without SATD?

Do the SATD files have more defects after the introduction of SATD?

• RQ2: Do SATD-related changes introduce future defects?

• RQ3: Are SATD-related changes more difficult than non-SATD changes?

To address our research questions, we followed the general procedure enumerated

in Figure 2, which consists of the following steps. First, we mined the source code

repositories of the studied projects (step 1). Then, we extracted source code files at

the level of each analyzed project (step 2). Next, we parse the source code and extract
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Figure 2: Comment-based (SATD) approach overview.

comments from the source code of the analyzed systems (step 3). At this point, we

apply the comment patterns proposed by Potdar and Shihab [PS14] to identify SATD

(step 4). Finally, we analyze the changes to quantify defects in files and use the SZZ

algorithm to determine defect-inducing changes (step 5).

3.2.1 Data Extraction

Our study analyzes five large open-source software systems—namely Chromium,

Hadoop, Spark, Cassandra and Tomcat. We chose these projects because they repre-

sent different domains and programming languages (i.e., Java, C, C++, Scala, Python

and Javascript) and have a large number of contributors. More importantly, these

projects are well-commented (since our approach for the detection of SATD is based

on source code comments). Moreover, they are all available to the research community

as well as industry practitioners and have considerable development history.

Our analysis requires the source code as input. We downloaded release 45 for

Chromium, 2.7.1 for Hadoop, 2.3 for Spark, 2.2.2 for Cassandra and 8.0.27 for

Tomcat, as shown in Table 1. Then, we filtered the data to extract the source code

at the level of each project release. Files not consisting of source code (e.g. CSS,

XML, JSON) were excluded from our analysis as they do not contain the comments

our analysis relies on.
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Table 1: Characteristics of the studied projects.

Project Release Release Date # Lines of Code # Comment Lines # Files # Committers # Commits

Chromium 45 Jul 10, 2015 9,388,872 1,760,520 60,476 4,062 283,351

Hadoop 2.7.1 Jul 6, 2015 1,895,873 378,698 7,530 155 11,937

Spark 2.3 Sep 1, 2015 338,741 140,962 2,822 1,056 13,286

Cassandra 2.2.2 Oct 5, 2015 328,022 72,672 1,882 219 18,707

Tomcat 8.0.27 Oct 1, 2015 379,196 165,442 2,747 34 15,914

Table 1 summarizes the main characteristics of these projects. It reports for each: (i)

the relevant project release, (ii) the date of the release, (iii) the number of lines of

code, (iv) the number of comment lines, (v) the number of source code files, (vi) the

number of committers and (vii) the number of commits.

3.2.2 Scanning Code and Extracting Comments

After obtaining the source code of the five software projects, we extracted the com-

ments from their source code files. To this end, we developed a Python-based tool

that identifies comments based on the use of regular expressions. This tool also indi-

cates comment type (i.e., single-line or block comments), the name of the file where

the comment appears and the line number of the comment. To ensure our tool’s

accuracy, we employ the Count Lines of Code (CLOC) tool [Dan]. As long as the

total number of lines of comments is the same according to both tools, then the tool

we developed can be considered independently reliable.

In total, we found 879,142 comments for Chromium; 71,609 for Hadoop; 31,796 for

Spark; 20,310 for Cassandra and 39,024 for Tomcat. Of these, SATD comments

numbered 18,435 for Chromium; 2,442 for Hadoop; 1,205 for Spark; 550 for Cassandra

and 1,543 for Tomcat. To enable easy processing, we store all of our processed data

in a PostgreSQL database, which we query to answer our RQs.
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3.2.3 Identifying Self-Admitted Technical Debt

To perform our analysis, we need to identify self-admitted technical debt at two levels:

(i) the file level and (ii) the change level.

SATD files: To identify SATD, we followed the methodology outlined in Potdar

and Shihab [PS14], who generated a list of 62 different patterns that indicate SATD.

Therefore, in our approach, we determine which comments identify SATD by locating

those that match any of the 62 patterns associated with SATD. These patterns are

extracted from several projects and some appear more often than others. Examples

of these patterns include: “hack, fixme, is problematic, this isn’t very solid, probably

a bug, hope everything will work, fix this crap.” The complete list of the patterns

considered in this study is available online1.

Once we identify the comment patterns, we then abstract up to determine the SATD

files. Files containing at least one of the SATD comments are then labeled as SATD

files, while files that do not contain any of these SATD comments are referred to as

non-SATD files. We use the SATD files to answer RQ1.

SATD changes: To study the impact of SATD at the change level, we need to

identify SATD changes on the basis of the SATD files just identified. We analyze

the changes and determine all the files that were touched by each change. If at least

one of the files touched by the change is an SATD file, then we label that particular

change as an SATD change. If the change does not touch any SATD files, then we

label it as a non-SATD change. Table 2 displays the percentage of SATD comments

and files for each of the studied systems. From the table, we see that SATD comments

exhaust less than 4% of the total comments, and between 10.17% and 20.14% of the

files are SATD files.

1http://users.encs.concordia.ca/˜eshihab/data/ICSME2014/data.zip
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Table 2: Percentage of SATD of the analyzed projects.

Project SATD Comments (%) SATD files (%)

Chromium 2.09 10.43

Hadoop 3.41 18.59

Spark 3.79 20.14

Cassandra 2.70 16.01

Tomcat 3.95 10.17

3.2.4 Identifying Defects in SATD Files and SATD Changes

To determine whether a change fixes a defect, we search for co-occurrences of defect

identifiers in change logs from the Git Version control system using regular expres-

sions like “fixed issue #ID, bug ID, fix, defect, patch, crash, freeze, breaks, wrong,

glitch, properly, proper.” Sliwersky et al. [ŚZZ05b] showed that the use of such key-

words in the change logs usually indicates the correction of a mistake or failure. A

similar approach was applied to identify fault-fixing and fault-inducing changes in

prior work [KSA+13, KWZ08, ŚZZ05b]. Once this step is performed, we identify, for

each defect ID, the corresponding defect report from the corresponding issue track-

ing system, i.e., Bugzilla2 or JIRA3, and extract the relevant information from each

report.

After grouping the SATD files and SATD changes, we proceed to identify the de-

fects each contains. To do so, we follow the protocol previous research has ad-

hered to in determining the number of defects in a file and locating defect-inducing

changes [KSA+13, KWZ08, ŚZZ05b].

Defects in files: Comparing the defectiveness of SATD and non-SATD files hinges

on having the number of file defects at our disposal. To ensure this, we extract all

2https://www.bugzilla.org
3https://www.atlassian.com/software/jira
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the changes that have touched a file throughout the system’s entire history. Then, we

search for keywords in the change logs that indicate defect-fixing, as demonstrated

in Figure 3. A subset of the keywords we entered contains: “fixed issue #ID, bug

ID, fix, defect, patch, crash, freeze, breaks, wrong, glitch, proper.” In cases where a

defect identification is specified, we extract the defect report to verify that the defect

corresponds to the system (i.e., product).

Second, we establish whether the issue IDs identified in the change logs are true

positives. Once we determine the defect-fixing changes, we use these changes as an

indication of the defect fixes that occur in a file, i.e., we count the number of defects

in a file as the number of defect-fixing changes.

Defect-inducing changes: Similar to the process above, we first determine whether

a change fixes a defect. To do so, we use regular expressions and specific keywords

referencing a fix to search the change logs (i.e., commit messages) from the source code

control versioning system. In particular, we search for the following keywords: “fixed

issue #ID, bug ID, fix, defect, patch, crash, freeze, breaks, wrong, glitch, proper.” We

also search for the existence of defect identification numbers in order to determine

which defects, if specified, the changes actually fix.

Once we identify the defect-fixing changes, we map back (using the blame command)

to determine all the changes that altered the fixed code in the past. We take the

defect-inducing change to be the change that is closest to but still before the defect

report date. In essence, this tells us that this was the last change before a defect

showed up in the code. If no defect report is specified in the fixing change, then

following the precedent of prior work [KSA+13], we assume that the last change

before the fixing change was the change that introduced the defect. This approach

is often referred to as the SZZ [ŚZZ05b] or approximate (ASZZ) algorithm [KSA+13]

and is to date the state of the art in identifying defect-inducing changes.
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Figure 3: Indicating a bug-fixing change.

3.2.5 Mann-Whitney-Wilcoxon Rank Sum Test

The Mann-Whitney-Wilcoxon Rank Sum Test is used to analyze the differences be-

tween two groups of the same attribute for a data set [MW47]. This statistical test

makes use of median values for its comparison rather than mean values, allowing

it to characterize populations that do not follow a normal curve distribution. The

main result of the test is the p-value it generates, which quantifies the probability of

the null hypothesis being true, with the null hypothesis in this case being that both

groups have the same central tendency. In our study we use this test to determine

if the distinction between SATD and non-SATD files results in a difference in rele-

vant statistical properties. If it does, then whatever caused a noticeable distinction

between the file categories is meaningful to the statistical property.

3.3 Case Study Results

This section reports the results of our empirical study examining the relationship

between self-admitted technical debt and software quality.
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RQ1: Do files containing SATD have more defects than files

without SATD? Do the SATD files have more defects after

the introduction of SATD?

Motivation: Researchers have studied technical debt and shown that, consistent

with long-standing intuition, it negatively impacts software quality [ZSSS11]. How-

ever, this research has neglected SATD, which is prevalent in software projects accord-

ing to past research [PS14]. Empirically examining the impact of SATD on software

quality provides researchers and practitioners with a better global understanding of

the phenomenon, warns them of its future risks and raises awareness of the obstacles

or challenges it can pose.

In addition to comparing the defect-proneness of SATD and non-SATD files, we

compare the defect-proneness of SATD files before (pre-SATD) and after SATD (post-

SATD). This analysis provides us with a different view of the defect-proneness of

SATD files and, in essence, tells us whether the introduction of SATD is at all related

to the defects we observe.

Approach: To address RQ1, we perform two types of analyses. First, we compare

the defect-proneness of files that do and do not contain SATD. Second, for the SATD

files only, we compare defect-proneness before and after the introduction of SATD.

Comparing SATD and non-SATD files. To perform this analysis, we follow

the procedure for identifying SATD files summarized earlier in section 3.2.3. In a

nutshell, we determine which files contain at least one SATD comment and label

them as SATD files. Files that do not contain any SATD are labeled as non-SATD

files. Once we sort the files, we determine the percentage of defect-fixing changes in

each file category (SATD and non-SATD). We opt for percentages over raw numbers

so as to normalize our data, since files can have different amounts of changes. To

answer the first part of RQ1, we plot the distribution of defects by file category and

29





are larger than the values in another. Cliff’s d ranges in the interval [−1, 1] and is

considered small for 0.148 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474 and large for

d ≥ 0.474 [GK05b].

RQ1 - Interim Summary

There is no clear relationship between defects and SATD.

Comparing files pre- and post-SATD. To compare SATD files pre- and post-

SATD, we first determine all the changes that touched a file and then identify the

change that introduced the SATD. Next, we measure the percentage of defects (i.e.,

# of fixing changes

total # changes
) in the file before and after the introduction of the SATD. We com-

pare percentage of defects instead of raw numbers since SATD could be introduced

at different times, i.e., we may not have the same total number of changes before and

after the SATD-inducing change. Once we determine the percentage of defects in a

file pre- and post-SATD, we perform the same statistical test and effect size measure,

i.e., Mann-Whitney and Cliff’s delta.

Results - Defects in SATD and non-SATD files: Figure 4 shows the percentage

of defect-fixing changes in SATD and non-SATD files for the five projects. We observe

that in four out of five cases, the non-SATD (NSATD) files have a slightly higher

percentage of defect-fixing changes—in Chromium, Hadoop, Spark and Cassandra.

However, in Tomcat, SATD files have a slightly higher percentage of defects. For

all projects, the p-values were such that p < 0.05, indicating that the difference is

statistically significant. However, when we closely examine the Cliff’s delta values in

Table 3, we see a different trend for Chromium. In Chromium and Tomcat, SATD

files often have higher defect percentages than non-SATD files and the effect size

is medium for Chromium and small for Tomcat. On the other hand, in Hadoop,

Cassandra and Spark, SATD files have lower defect percentages than non-SATD files

and this effect is large for Hadoop, medium for Cassandra and small for Spark.
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Table 3: Cliff’s delta for SATD versus NSATD and POST versus PRE fixing changes.

Project SATD vs. NSATD Post- SATD vs. Pre- SATD

Chromium 0.407 (M) 0.704 (L)

Hadoop 0.562 (L) 0.137 (N)

Spark 0.221 (S) 0.463 (M)

Cassandra 0.400 (M) 0.283 (S)

Tomcat 0.094 (N) 0.763 (L)

Our findings underscore that there is no clear trend when it comes to the percentage of

defects in SATD versus non-SATD files. In some projects, SATD files have more bug-

fixing changes, while in others, it is the non-SATD files that have a higher percentage

of defects.

Results - Defects in SATD files, pre- and post-SATD: Figure 5 shows boxplots

for the percentage of defect-fixing changes in SATD files, pre- and post-SATD. Unsur-

prisingly, the post-SATD percentage of defect-fixing changes is higher for all projects.

In Table 3, the Cliff’s delta effect size values corroborate our visual observations in

that there is again more defect-fixing in the SATD files post-SATD than pre-SATD.

For all projects except Hadoop and Cassandra, where effect size is small, the Cliff’s

delta is large.

These findings contend that although it is not always clear whether SATD or non-

SATD files will have a higher percentage of defects, there is a consistently higher

percentage of defect-fixing once SATD has been introduced.

RQ2: Do SATD-related changes introduce future defects?

Motivation: After investigating the relationship between SATD and non-SATD at

the file level, we would like to conclude whether SATD changes are more likely to

introduce future defects. Whereas the file-level analysis looked at files as a whole, our
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Figure 6: Percentage of defect-inducing changes with SATD and NSATD.

analysis here is more fine-grained and tailored to assess individual changes.

Studying the propensity of SATD changes to introduce future defects is important

since it tells us how SATD and non-SATD changes compare in terms of future in-

troduction of defects and how quickly the impact of SATD on quality can be felt.

For example, if SATD changes introduce defects in the very next change, this tells us

that the impact of SATD is felt almost immediately. Our conjecture is that SATD

changes tend to introduce more defects.

Approach: To address RQ2, we applied the SZZ algorithm [ŚZZ05b] in order to

detect defect-inducing changes. Then, we sorted the results into two categories: SATD

33



Table 4: Cliff’s delta for the change difficulty measures across the projects.

Project # Modified Files Entropy Churn # Modified Directories

Chromium 0.418 (M) 0.418 (M) 0.386 (M) 0.353 (M)

Hadoop 0.602 (L) 0.501 (L) 0.768 (L) 0.572 (L)

Spark 0.663 (L) 0.645 (L) 0.825 (L) 0.668 (L)

Cassandra 0.796 (L) 0.764 (L) 0.898 (L) 0.827 (L)

Tomcat 0.456 (L) 0.419 (M) 0.750 (L) 0.390 (M)

and non-SATD defect-inducing changes.

Results: Figure 6 demonstrates that non-SATD changes have a higher incidence

of defect-inducing changes relative to SATD changes. In Chromium, for example,

roughly 10% of the SATD changes induce future defects, compared to about 27%

of the non-SATD changes. Our findings here show that contrary to our conjecture,

SATD changes actually have a lower chance of inducing future defects.

RQ2 - Interim Summary

SATD changes are associated with less future defects than non-SATD changes.

RQ3: Are SATD-related changes more difficult than non-

SATD changes?

Motivation: Thus far, our analysis has confined itself to the relationship between

SATD and software defects. However, by definition, technical debt entails some sort

of tradeoff where a short-term benefit ends up costing more in the future. Therefore,

it remains to be decided to what extent this tradeoff makes effecting changes more

difficult after the introduction of technical debt. Answering this question will help us

understand the impact of SATD on future changes and provide us with a different
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view on how SATD impacts a software project.

Approach: We classify the changes into two groups, i.e., SATD and non-SATD

changes. Then, we compare the difficulty of performing the two types of changes. We

quantify the difficulty of a change using four different metrics: the total number of

modified lines in the change (churn), the number of modified directories, the number

of modified files and change entropy. The first three are motivated by earlier work in

which Eick et al. [EGK+01] measure software decay. The change entropy metric is

motivated by the work of Hassan [Has09], in which entropy is used to measure change

complexity.

To measure the change churn, number of files and number of directories, we use

data from the change log directly. The churn is given for each file touched by the

change, so we simply aggregate the churn of the individual files to determine the

overall churn of the change. The list of files is extracted from the change log to

determine the number of files and directories touched by the change. When mea-

suring the number of modified files and directories, we refer to a file as NF and a

directory as ND. Hence, if a change involves the modification of a file having the

path “net/base/registry controlled domains/effective tld names.cc,” then the file is

effective tld names.cc and the directory is base/registry controlled domains.

To measure the entropy of a change, we use the change complexity measure proposed

by Hassan [Has09]. Entropy is defined as: H(P ) = −
∑n

k=1 (pk ∗ log2pk), where k is

the proportion filek is modified in a change and n is the number of files in the change.

Entropy measures the distribution of a change across different files. Let us consider a

change that involves the modification of three different files named A, B and C, and let

us suppose that the number of modified lines in files A, B and C is 30, 20 and 10 lines,

respectively. The entropy is equal to: (1.46 = −30
60
log2

30
60

− 20
60
log2

20
60

− 10
60
log2

10
60
).

As in Hassan [Has09], the above entropy formula has been normalized by the maxi-

mum entropy log2n to account for differences in the number of files per change. The
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higher the normalized entropy, the more difficult the change.

Results: Figures 7, 8, 9 and 10 reveal that for all difficulty measures, SATD changes

have a higher value than non-SATD changes. We also find that the difference between

the SATD and non-SATD changes is statistically significant, with a p-value such that

p < 0.05. Table 4 shows the Cliff’s delta effect size values for all projects studied.

We observe that for all projects and all measures of difficulty, the effect size is either

medium or large (Cf. Table 4), which indicates that SATD changes are more difficult

than non-SATD changes.

RQ3 - Interim Summary

SATD changes are more difficult to perform.

In summary, we conclude that SATD changes are more difficult than non-SATD

changes, provided that difficulty is measured using churn, the number of modified

files, the number of modified directories and change entropy.

3.4 Threats to Validity

Threats to internal validity concern any factors that could have confounded our

study results. To identify self-admitted technical debt, we use source code comments.

In some cases, though, developers may not add comments when they introduce techni-

cal debt. The opposite poses another threat, namely, that developers might introduce

technical debt and subsequently remove it without removing the related comment.

In both cases the code and comment change inconsistently. However, Potdar and

Shihab [PS14] examined this phenomenon in Eclipse and found that in between 70%

and 90% of cases code and comments change in tandem.

We performed this step, independently, for each of the five projects studied and identi-

fied a change as an SATD change if it contained at least one SATD file. Alternatively,

we could have defined SATD changes as only those for which all files have SATD. We
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elected to do it the former way because sometimes SATD in just one file can impact

the rest of the change, e.g. it may cause many other files to be changed. When mea-

suring the percentage of file defects after the introduction of SATD, it is difficult to

distinguish the differences due to SATD from those attributed to natural evaluation

of the files.

Threats to external validity concern the possibility that our results may not general-

ize. To optimize generalizability, we analyzed five large open-source systems and drew

our data from the well-established, mature codebase of open-source software projects

with well-commented source code. These projects belong to different domains and

they are written in different programming languages. However, we focused on SATD

only, which means that we do not cover all technical debt—there could well be other

technical debt that is not self-admitted. Studying all technical debt is beyond the

scope of this thesis.

Threats to construct validity concern the degree to which indirect metrics fall

short of measuring what they were developed to measure. For example, as a means of

locating SATD, we use the comments compiled by Potdar and Shihab [PS14], yet there

is a possibility that these patterns do not detect all SATD. Additionally, given that

comments are written in natural language, Potdar and Shihab had to manually read

and analyze them to determine those that would indicate SATD. Manual analysis is

prone to subjectivity and errors and therefore we cannot guarantee that all considered

patterns will be perceived as SATD indicators by other developers. To mitigate this

threat, we manually examined each comment that we detected and verified that it

contained one of the 62 patterns in [PS14].
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3.5 Conclusion

Technical debt is intuitively recognized as bad practice by software companies and or-

ganizations, yet there is very little empirical evidence on the extent to which technical

debt can impact software quality. Therefore, in this chapter we perform an empirical

study, using five large open-source projects, to determine precisely how technical debt

relates to software quality. We focus on self-admitted technical debt, which refers to

errors that might be introduced as part of intentional and temporary quick fixes. As

in [PS14], we leverage source code comments to identify such debt on the basis of

recurring indicator patterns.

We examined the relationship between self-admitted technical debt and software qual-

ity by investigating: (i) whether files with SATD have more defects compared to files

without SATD, (ii) whether SATD changes introduce future defects and (iii) whether

SATD-related changes tend to be more difficult. Our findings suggest that there

is no reliable trend when it comes to defects and SATD. In some of the projects,

self-admitted technical debt files had more bug-fixing changes, while in others, files

without it had more defects. We also found that SATD changes are less correlated

with future defects than non-SATD changes, but more difficult to perform. Our study

demonstrates that although technical debt may have negative effects, its impact does

not extend to defects, but rather to making the system more difficult to change in

the future.
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4

Comparing the Relationship

Between Comment- Versus

Metric-Based Technical Debt and

Software Quality

4.1 Introduction

In the previous chapter, we studied the relationship between self-admitted technical

debt and software quality and found that the presence of SATD complicates future

changes. Supplementing these comment-based indicators with the metric-based indi-

cators used in earlier work [ZSSS11] (God Classes), we replicate the study conducted

in chapter 3 on a larger scale in order to compare the relationship between both

comment- and metric-based technical debt and quality. Of the foregoing studies that

have covered how metric-based technical debt affects software quality, few have done

so on large datasets. We remedy this on the one hand by integrating both comment-

and metric-based approaches, as mentioned, and on the other by introducing a more
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granular analysis on the file and change levels. Empirically examining how both ap-

proaches relate to software quality and comparing any differences between them will

provide researchers and practitioners with a more global understanding of technical

debt, warn them of its future risks and raise awareness of the challenges it can pose.

Predictably, as technical debt has become a more popular strategy at develop-

ers’ disposal, numerous advances have been made in detecting it, some metric-based

and others comment-based. The former includes Marinescu’s [Mar04] methodology,

which detects God Class code smells according to sets of rules and thresholds defined

on various object-oriented metrics. The latter, advocated by Potdar and Shihab’s

[PS14] methodology in recent work, flags recurring source code comment patterns

that correlate with incidence of self-admitted technical debt (SATD). Moreover, the

nature of the comments that developers leave has allowed occurrences of SATD to be

sub-categorized and analyzed accordingly.

Without access to research that treats technical debt from all angles, developers

will be misinformed as to the costs and benefits of technical debt and unequipped to

decide responsibly whether it should be assumed in a given scenario—not to mention

lacking effective strategies for keeping it in check once assumed. Our work closes

this gap as we study 40 open-source projects that bring into focus the empirical links

between both self-admitted technical debt and god classes and software quality. If

our results are true for a larger number of projects, then they are even more likely to

generalize to others.

Our inquiry pursues: (i) whether god class and SATD files have more defects

than files free of god classes and SATD, (ii) whether god- and SATD-related changes

introduce future defects, (iii) whether god- and SATD-related changes are associated

with greater difficulty and (iv) to what extent the comment- and metric-based ap-

proaches identify the same instances of technical debt. As in the previous chapter,

amount of churn, quantity of affected files and modified modules and change entropy
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all factor into the change difficulty calculations. In the end we observed that: (i) no

straightforward correlation exists between incidence of SATD or god files and inci-

dence of defects, (ii) more future defects surfaced after performing god and SATD

changes than non-god and non-SATD changes and (iii) god and SATD changes are

more difficult to perform than non-god and non-SATD changes. Preliminarily, (i)-

(iii) concede that the downsides of god classes and self-admitted technical debt are

increases in future defect density and change difficulty. Yet the two approaches were

found to reinforce each other in that (iv) between 11% and 34% of technical debt

sources were identified by both the comment- and metric-based approaches.

4.2 Approach

As we continue to study the interplay between self-admitted technical debt and

metric-based debt (God Classes) and software quality, measures must be established

in order to quantify software quality [KSA+13, KWZ08, ŚZZ05b]. The precedent in

accomplishing this task has been to count the defects in SATD files and calculate the

rate of future defect introduction among SATD changes, expressed as a percentage.

Deferring to the technical debt metaphor and its concept of accruing “interest” to

be paid in the long run, we also measure software quality in terms of SATD change

difficulty, which we calculate as stipulated earlier. With these metrics standardized,

we entertain the research questions that follow:

• RQ1: Do god and SATD files have more defects than non-god and non-SATD

files?

• RQ2: Do god- and SATD-related changes introduce future defects?

• RQ3: Are god- and SATD-related changes more difficult than non-god and

non-SATD changes?
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• RQ4: Is there an overlap between comment- and metric-based technical debt?

We devised a suitable methodology, visualized in Figure 11, to guide our inquiry

into these questions. We initiate the process by mining the source code repositories

and pulling source code files on a project-by-project basis (steps 1-2). Afterwards the

source code files are parsed and comments extracted (step 3). We then identify all

instances of self-admitted technical debt, count defects file-wide and isolate defect-

inducing changes by means of the SZZ algorithm (steps 4-5).
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Figure 11: Metric-based (God Classes) approach overview.

4.2.1 Data Extraction

To generalize the scope of this study, we relied on certain criteria in selecting the

40 open-source software projects: (i) well-commented source code, (ii) varying num-

bers of lines of code (LOC), (iii) different numbers of contributors, (iv) different

development domains, (v) mature development history and (vi) issue tracking system

capability. The first criterion is a prerequisite for Potdar and Shihab’s SATD de-

tection technique; the last is essential to accurately study the introduction of future
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defects.

Given the extent to which our approach to locating self-admitted technical debt

relies on source code comments, we downloaded the most recent versions of the rele-

vant systems, filtered this input to generate source code and excluded all files lacking

source code comments (e.g. CSS, XML, JSON). As for comments suspected of indi-

cating no SATD, e.g. license comments, commented source code, Javadoc comments,

etc., four filtering heuristics were deployed to remove them from the results.

Tables 5 and 6 showcase some key identifiers and statistics for each project, in-

cluding: (i) which release was downloaded, (ii) the number of lines of code it contains,

(iii) the number of comment lines, (iv) a source code file count, (v) the number of

committers in the project’s development history and (vi) its commit count.
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Table 5: Characteristics of the studied projects (part 1).

Project Release # Lines of Code # Comment Lines # Files # Committers # Commits

Apache OpenNLP 1.7.1 163,114 30,581 861 11 1,339

Apache Camel 2.18.0 1,626,040 430,818 17,046 333 25,461

Apache Habse 1.2.4 1,310,985 251,409 3,243 166 12,531

Apache Groovy 2.4.2 286,920 85,885 1,517 262 13,422

Apache Oltu 1.0.2 267,88 7,386 300 14 842

Apache Maven 3.3.9 150,724 34,830 1,540 81 10,370

Apache Karaf 5.4.0 155,675 32,906 1,467 86 5,666

Apache Hama 0.6.4 855,64 22,545 499 22 1,592

Apache Tomee 1.7.4 854,611 212,542 6,297 35 10,257

Apache Deltaspike 1.7.2 149,871 45,722 1,842 48 2,044

Apache Curator 2.10.0 124,077 18,458 525 66 1,813

Apache Calcite 1.10.0 448,820 110,410 1,702 102 2,180

Apache Poi 3.15 644,284 182,823 3,298 39 7,963

Apache Zeppelin 0.6.2 124,865 15,314 552 201 2,642

Apache Ant 1.9.7 343,010 109,150 1,927 62 13,425

Apache Stanbol 1.0.0 339,699 107,208 2,044 25 3,398

Apache Kafka 0.10.1 152,685 33,368 1,002 300 2,734

Apache Tika 1.13 142,786 38,984 992 54 3,209

Apache Felix 5.4.0 837,955 211,404 5,039 51 13,240

Apache Phoenix 4.9.0 396,054 69,326 1,620 59 1,748
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Table 6: Characteristics of the studied projects (part 2).

Project Release # Lines of Code # Comment Lines # Files # Committers # Commits

Apache Wicket 7.5.9 548,923 191,279 4,830 80 19,574

Apache Aurora 0.16.0 317,551 70,774 1,284 105 3,639

Apache Ignite 1.6 1,498,260 443,157 7,361 117 17,933

Apache Helix 0.7.1 141,632 34,430 900 32 2,266

Apache Archiva 2.2.1 191,743 33,641 1,172 41 7,742

Apache Struts 2.5 316,495 83,911 2,307 65 4,634

Apache Derby 10.13.1.1 1,271,629 386,703 3,023 37 8,127

Apache Ambari 2.4.2 2,220,418 421,937 10,223 119 18,025

Apache Nifi 1.0.0 576,512 118,806 3,493 120 2,826

Apache Tiles 3.0.7 51,487 20,173 599 16 1,455

Apache Shiro 1.3.2 81,131 36,854 727 22 1,641

Apache Usergrid 2.1.0 605,286 114,999 2,619 110 10,621

Apache Nutch 2.3 104,214 27,478 843 37 2,217

Apache Zookeeper 3.4.9 196,008 38,867 814 21 1,468

Apache Mina 2.0.16 45,588 14,336 340 29 2,400

Apache Cxf 3.1.8 988,585 196,520 8,806 81 12,302

Apache CloudStack 4.9.0 1,423,346 207,036 6,424 412 29,931

Apache Oozie 4.3.0RC0 256,423 49,510 1,239 22 1,772

Apache Kylin 1.5.4.1 217,645 45,320 1,227 89 5,121

Apache Flink 1.1.2 791,670 195,738 4,154 325 9,513
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4.2.2 Scanning Code and Extracting Comments

Now source code comments must be extracted from the projects under investigation,

for which we implement a Python-based tool. The rest of the extraction process is

the same as for subsection 3.2.2.

4.2.3 Filter Comments

Source code comments left by developers might situate the project within the cir-

cumstances of its development, communicate their recommendations for revising the

code at a later date, acknowledge who wrote which pieces or who made which fixes or

confess that self-admitted technical debt has been assumed. Efforts should be made

to decrease the volume of comments, especially when sifting through them in search

of self-admitted technical debt confessions. For this reason, we make use of several

filtering heuristics proposed by Moldonado et al. [MST17] to focus our search query.

A Python-based tool reads data retrieved from parsed source code, initiates the

filtering heuristics and stores the results in the database. The retrieved data specify

each class or comment’s starting and ending line numbers as well as Java syntax

comment type (i.e., single-line, block or Javadoc). Once this information is acquired,

the filtering heuristics are processed.

Self-admitted technical debt is seldom indicated in comments left prior to class

declaration, e.g. license comments, among others, so we benefit from any mechanism

that identifies and omits such distractors without also omitting comments that in-

corporate Java IDE task annotations (i.e., “TODO:”, “FIXME:” or “XXX:”). If a

comment features any of these keywords, tasks related to the comment will be added

to an IDE-generated list for ease of access. As for separating pre- and post-class

declaration comments, the number of the line in which the class is declared marks

the crucial cutoff in that any preceding comments are targeted for removal.

Comment type matters insofar as cumbersome comments stitched together from
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single-line comment components (and not block comments) impede message inter-

pretation for comments read one by one. A heuristic that pinpoints and collapses

sequences of adjacent single-line comments into block comments overcomes the com-

ment type issue.

Commented source code does not indicate self-admitted technical debt in our

experience, but rather either code not used at all or code used exclusively for debug-

ging. To eliminate this distractor, we use a regular expression to remove typical Java

code structures, i.e., public, private, for, exception, etc.

Most IDEs auto-generate comments when creating a method, constructor, try

catch, etc. Due to the nature of the auto-generation of these comments, there is

no SATD content. The majority of Javadoc comments also fail to mention SATD,

and those that do are annotated with at least one task (i.e., “TODO:”, “FIXME:”,

“XXX:”). This criterion allows our heuristic to determine which Javadoc comments

should be salvaged versus ignored, while no distinction is necessary for auto-generated

comments. We designed a regular expression to apply the criterion by checking for

task annotations before omitting the comment.

The procedure was conceived with the intention of factoring out the contribution

of noise, which ultimately improves the quality of the comment dataset by reducing

cases of SATD false positives and prioritizing the most applicable comments.

4.2.4 Identifying Self-Admitted Technical Debt

Our analysis hinges on locating self-admitted technical debt at two levels: (i) the file

level and (ii) the change level.

SATD files: We emulated Potdar and Shihab [PS14] in identifying self-admitted

technical debt on the basis of 62 different patterns recurring in multiple projects at

various frequencies. The specifics of these patterns can be found in subsection 3.2.3.

SATD changes: At the change level, all the files touched by the same change are
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checked for evidence of self-admitted technical debt. If any one of them is determined

to be an SATD file, the whole change is classified as an SATD change. Alternatively,

if none of the files touched by a change is an SATD file, the whole change falls into

the non-SATD change category. In general, the more SATD files a system contains,

the more likely it is to have a higher number of SATD changes. SATD comments are

shown to account for less than 6.10% and SATD files for somewhere between 1.37%

and 25.03% of the respective totals for all systems in Tables 7 and 8, where each

system’s percentages are listed separately for comparison.
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Table 7: Percentage of SATD and God of the analyzed projects (part 1).

Project SATD Comments (%) SATD Files (%) God Files (%)

Apache OpenNLP 2.66 19.02 14.77

Apache Camel 0.95 3.53 12.95

Apache Habse 1.69 18.29 15.05

Apache Groovy 3.41 13.67 14.52

Apache Oltu 1.91 5.67 14.27

Apache Maven 3.76 10.65 13.92

Apache Karaf 2.40 7.44 14.58

Apache Hama 1.44 11.24 14.48

Apache Tomee 1.94 7.16 14.33

Apache Deltaspike 3.95 9.28 9.26

Apache Curator 0.99 5.34 15.32

Apache Calcite 1.67 12.97 14.54

Apache Poi 2.11 16.79 14.43

Apache Zeppelin 1.62 9.37 14.87

Apache Ant 2.23 20.56 14.60

Apache Stanbol 4.03 25.03 14.06

Apache Kafka 1.56 7.73 11.71

Apache Tika 3.29 19.28 14.40

Apache Felix 1.88 9.72 13.59

Apache Phoenix 3.34 13.81 13.47
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Table 8: Percentage of SATD and God of the analyzed projects (part 2).

Project SATD Comments (%) SATD Files (%) God Files (%)

Apache Wicket 0.89 5.29 11.52

Apache Aurora 3.97 14.27 14.91

Apache Ignite 0.26 3.12 13.50

Apache Helix 4.02 18.09 15.62

Apache Archiva 6.05 17.71 12.61

Apache Struts 1.85 8.07 12.39

Apache Derby 1.20 22.66 14.37

Apache Ambari 2.29 8.76 13.31

Apache Nifi 0.87 4.62 13.29

Apache Tiles 0.17 1.37 10.90

Apache Shiro 2.67 15.86 12.85

Apache Usergrid 2.20 11.20 12.33

Apache Nutch 2.17 12.25 15.60

Apache Zookeeper 1.71 10.31 13.82

Apache Mina 1.12 5.99 14.71

Apache Cxf 2.78 6.87 14.04

Apache CloudStack 1.98 10.42 14.04

Apache Oozie 1.63 9.73 15.81

Apache Kylin 1.64 8.06 15.38

Apache Flink 0.57 3.72 14.84
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4.2.5 God Classes

God classes are classes that combine trivial class workloads and generally avoid as-

signing tasks to other classes. They are distinguishable on account of their high

complexity, low inner-class cohesion and frequent foreign class data access [LDM07].

Object-oriented design advocates a one-to-one correspondence between classes and

responsibilities, which god classes violate by definition [LDM07]. Due to their size

and the extent to which they are tied to other classes, god classes can make it more

difficult to understand the system [FB99] and are expected to be more susceptible

to defects during system maintenance. The higher the incidence of defects, the more

often changes will have to be performed and the bigger those changes will be, com-

pounding maintenance over time [FB99, LDM07].

4.2.6 Identifying God Classes

To perform our analysis, we need to identify god classes at the same two levels as

self-admitted technical debt: (i) the file level and (ii) the change level.

God files: To identify god classes, we followed the methodology outlined by Mari-

nescu [Mar04], who proposed an approach to specify and detect code smells, specif-

ically God Classes. Their technique leverages metric-based heuristics that identify

god classes according to sets of rules and thresholds defined on various object-oriented

metrics. The formula provided below in Figure 12 operates on three metrics—namely,

weighted method count (WMC), tight class cohesion (TCC) and access to foreign data

(ATFD)—and generates one of two outputs. If the output is 1, then the class to which

the formula is applied is a god class; if 0, it is a non-god class.

God changes: To study the relationship between god classes and quality at the

change level, we must first identify which classes are god classes and which are non-

god classes. By analogy with the technique used to identify SATD and non-SATD

changes, we consider any change containing at least one god file to be a god change
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and those containing no god files to be non-god changes.

GodClass(C) =



















1 (AFTD(C), HigherThan(1)) ∧ ((WMC(C), T opV alues(25%))∨

(TCC,BottomV alues(25%)))

0 else

Figure 12: God Class Detection Equation

The equation in Figure 12 above describes how we detect a god class, where:

• Weighted Method Count (WMC) is the sum of the statistical complexity

of all methods in a class [CK94]. McCabe’s cyclomatic complexity [McC76] is

used as a complexity measure for all class methods.

• Tight Class Cohesion (TCC) is the number of directly connected public

methods in a class [BK95].

• Access to Foreign Data (ATFD) is the number of external classes whose at-

tributes are accessed either directly or indirectly (by accessor methods) [Mar05].

4.2.7 Identifying Defects in God Files and God Changes

According to Sliwersky et al. [ŚZZ05b], expressions denoting defect identifiers, e.g.

“fixed issue, bug ID, fix, defect, patch, crash, freeze, breaks, wrong, glitch, properly,

proper,” ordinarily certify that an earlier mistake has been corrected when recorded in

control system change logs. Other work has proposed comparable methodologies for

tracking fault-inducing changes until repaired [KSA+13, KWZ08, ŚZZ05b]. Next we

pull each defect report from its corresponding issue tracking system, i.e., Bugzilla 1 or

JIRA 2, and comb for all pertinent details. Once the god files and god changes have

1https://www.bugzilla.org
2https://www.atlassian.com/software/jira
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been separated, we go about determining the number of file defects and identifying any

defect-inducing changes in the same way foregoing research has [KSA+13, KWZ08,

ŚZZ05b].

Defects in files: A file defect count is a prerequisite to any defectiveness comparison

between god and non-god files. With this in mind, we first view a file’s history and

extract all the changes that have touched it. The list this produces is then shortened as

change log searches return only results consistent with keywords indicating corrective

changes. Examples of these keywords can be found in subsection 3.2.4, along with

the steps we take to rule out false positives.

Defect-inducing changes: Along the same lines, we search the commit messages

using regular expressions that convey defect fixes as a means of establishing whether

a given change is corrective. The keywords used to identify corrective changes are

given in subsection 3.2.4, where the procedure for identifying defect-inducing changes

is presented.

4.3 Case Study Results

In this section, we present the empirical outcomes of our inquiry into the correlation

between both self-admitted technical debt and god classes and software quality. Each

of the three research questions is restated below, where we summarize its motivation,

our approach in treating it and the conclusions we reached. Statistics and results are

listed for all individual projects, accompanied by cross-project comparisons.

RQ1: Do god and SATD files have more defects than non-god

and non-SATD files?

Motivation: Reluctance to resort to code smells and technical debt suggests that

most developers believe these adversely affect software quality, and what research
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has been conducted supports this conviction [ZSSS11]. The potential drawbacks of

SATD, meanwhile, have remained unexplored despite its research-affirmed ubiquity

in software projects [PS14]. Researchers and developers should be better equipped

to negotiate the long-term risks of SATD and have empirical evidence in hand that

identifies concrete issues its use can bring about, raising SATD literacy within the

community at large.

Approach: We compare god files versus non-god files and SATD files versus non-

SATD files in terms of defect-proneness.

Comparing god and non-god files: The God Class Detection Equation proposed

by [Mar04] provides a way to identify god classes using object-oriented metrics. Files

are fed to the equation and are labeled either god or non-god files, depending on the

output. We calculate the normalized value of defect-fixing changes for each file in

both categories based on # of fixing changes

SLOC
. We normalize our data by dividing the

number of defect-fixing changes by the number of source lines of code, since god files

are inherently large, and apply a test designed to measure whether the differences

between the categories are statistically significant.

In case this distribution is non-normal, we use the non-parametric Mann-

Whitney [MW47] test because, unlike the parametric alternatives, it is capable of

handling such distributions. A p-value such that p ≤ 0.05 indicates that the differ-

ence between the samples is statistically significant.

Comparing SATD and non-SATD files: We identify SATD files in accordance

with the procedure detailed in section 3.2.3, labeling files containing any number

of SATD comments as SATD files and all others non-SATD files. These two file

categories (SATD and non-SATD) undergo calculations yielding the percentage of

defect-fixing changes, # of fixing changes

SLOC
, which, unlike pure counts, standardizes the

metric across files hosting different numbers of source lines of code. Afterwards the

defect distribution is plotted for SATD and non-SATD files and a test is performed
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to uncover any statistical trends.

Again, we elected to conduct the non-parametric Mann-Whitney [MW47] test

to decide whether a statistical difference exists between the SATD and non-SATD

groups rather than a parametric substitute, which could not accommodate non-

normal distribution. A statistically significant difference returns a p-value of at most

0.05 (p ≤ 0.05).

Results - Defects in god files vs. non-god files and SATD files vs. non-

SATD files:
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Figure 13: Percentage of defect-fixing changes for (i) God vs. non-God files and (ii)

SATD vs. NSATD files.

Beanplots are a convenient way to present and compare univariate data for two

groups. Those in Figure 13 display the distribution of median corrective change rates,

based on # of fixing changes

SLOC
, for god files versus non-god files and SATD files versus
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non-SATD files in each project. The dotted lines represent the overall mean taking

data from both groups into account; for this reason, the dotted lines mark the same

value on both sides of each beanplot. The solid lines, in contrast, mark the median

value for each group and thus differ from one side to the other. A comparison of

distribution medians indicates that the defectiveness rates for god and SATD files are

lower than the corresponding rates for non-god and non-SATD files.

RQ1 - Interim Summary

Neither god files nor self-admitted technical debt files are associated with a

higher percentage of defects.

Figure 19 (in the appendix) shows boxplots for the individual projects which

compare the distribution of defectiveness rates for god and non-god files. We can see

that the rate is higher for non-god files than god files within each project and that

this difference is statistically significant such that p ≤ 0.05, which holds when all

project medians are consolidated in the distribution in Figure 13.

Although Figure 13 indicates that non-SATD files have a higher median defec-

tiveness rate than SATD files, this trend is not borne out in every individual project.

In Figure 20, we observe that OpenNLP, Curator and Tiles constitute exceptions

where the defectiveness rate is higher among SATD files.

RQ2: Do god- and SATD-related changes introduce future

defects?

Motivation: Having looked at how god and non-god and SATD and non-SATD

compare at the file level, we turn our sights to the question of whether god and

SATD changes introduce future defects at a higher rate than non-god and non-SATD

changes. Before, entire files were the objects of our analysis; now we require an

analysis tailored to assess individual changes.
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To investigate how change category relates to introduction of future defects and

the duration of the “grace period” before software quality is affected, we should first

determine to what extent god classes and SATD are predisposed to introduce future

defects. Our conjecture is that god and SATD changes introduce future defects at a

higher rate than non-god and non-SATD changes. Further, we expect that if a god

or SATD change causes a defect to be introduced in the change right after, then the

delay is minimal and the impact on quality cannot be put off for very long.

Approach: We identify defect-inducing changes utilizing the SZZ algorithm [ŚZZ05b]

and subdivide the results it generates into four categories depending on whether

the changes contain god classes or not (god versus non-god defect-inducing changes)

and whether they contain SATD or not (SATD versus non-SATD defect-inducing

changes). We then apply the Mann-Whitney test [MW47] to evaluate the statistical

significance of the difference between god versus non-god defect-inducing changes and

SATD versus non-SATD defect-inducing changes (from the same respective data sets).

If the resulting p-value is such that p ≤ 0.05, then the difference is not attributable

to chance but rather statistically significant, and generalizes to other data sets.

Results: God and non-god distributions of defect-inducing change rates in each

project share a common vertical axis in the first plot in Figure 14, as do SATD and

non-SATD defect-inducing change rate distributions in the second. We observe that

the distribution median (i.e., the median of the individual project medians) is higher

for the god and SATD changes than for the non-god and non-SATD changes. This

indicates that god and SATD changes have more of a tendency to induce future defects

than their non-god and non-SATD counterparts. We also find that the differences

between god versus non-god and SATD versus non-SATD defect-inducing changes

are both statistically significant with p ≤ 0.05.
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RQ2 - Interim Summary

Both god changes and SATD changes tend to introduce a higher number of

future defects.
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Figure 14: Percentage of defect-inducing changes for (i) God vs. non-God and (ii)

SATD vs. NSATD.

As a general rule, what is true of the distribution medians is also true of individual

project medians, though exceptions exist—among them Apache Hbase, Apache Kafka,

Apache Mina, Apache Shiro, Apache Oozie, Apache Flink, Apache Deltaspike and

Apache curator in Figures 21 and 22. In these projects, the non-god and non-SATD

changes appeared to induce more future defects than the god and SATD changes.

These isolated counterexamples, while in conflict with the trend observed in Figure

14, are compatible with our findings in chapter 3, where we report that SATD changes
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have less of a tendency to induce future defects.

RQ3: Are god- and SATD-related changes more difficult than

non-god and non-SATD changes?

Motivation: Up to this point, we have been concentrating on the interplay between

both god classes and SATD and defects lowering software quality. As we know

from previous research [Mar04], god classes violate object-oriented design principles

and have negative long-term implications for system maintainability. Likewise,

if we recall the ramifications of the technical debt metaphor, we see that the

short-term payoff should come at an increased cost later on in development. The

deferred consequences of god classes and technical debt are measured in terms of

increasing difficulty, which has yet to be fully examined after detecting god classes

and introducing technical debt. Verifying that god classes and SATD do increase

change difficulty will better portray their implications for future changes and

software projects and in the end enable developers to see the full picture when de-

ciding whether or not to refactor god classes or introduce self-admitted technical debt.

Approach: We recognize god, non-god, SATD and non-SATD change categories

and compare the difficulty of executing changes from each category. We reuse the

four metrics from chapter 3 to determine change difficulty: churn, the number of

modified directories, the number of modified files and the entropy of the change. For

a slightly different purpose, Eick et al. [EGK+01] chose the first three to measure

decay; Hassan [Has09] utilized the last metric to measure change complexity. As in

RQ2, we use the Mann-Whitney test [MW47] to determine whether the differences

between god and non-god changes and between SATD and non-SATD changes are

statistically significant and measure the effect size using Cliff’s delta [GK05a], this

time with respect to the complexity metric categories.
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Figure 15: Total number of lines modified per change for (i) God vs. non-God and

(ii) SATD vs. NSATD.
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Figure 16: Total number of files modified per change for (i) God vs. non-God and

(ii) SATD vs. NSATD.
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Figure 17: Total number of modified directories per change for (i) God vs. non-God

and (ii) SATD vs. NSATD.
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Figure 18: Distribution of the change across files for (i) God vs. non-God and (ii)

SATD vs. NSATD.
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Results: In each one of Figures 15, 16, 17 and 18, a distribution is compiled for

god and non-god and SATD and non-SATD changes by plotting the median values

obtained from a different difficulty measure for each project. Juxtaposition of the

distribution medians demonstrates that regardless of the metric employed to quantify

change difficulty, god and SATD changes are consistently more difficult to perform

than non-god and non-SATD changes. Moreover, the Mann-Whitney test [MW47]

yields p ≤ 0.05, indicating that the differences are statistically significant. Tables 9

and 10 show the Cliff’s delta [GK05a] effect size values for all projects studied for

both god and SATD changes. We observe that for most projects and all measures

of difficulty, the effect size is either medium or large, except for Hbase, Hama,

Deltaspike, Calcite and Stanbol for god changes and Hbase and Deltaspike for SATD

changes, which have a small effect size.
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Project NF E C ND

Apache openNLP 0.31 0.30 0.35 0.36

Apache Camel 0.42 0.41 0.39 0.37

Apache Hbase 0.23 0.24 0.29 0.22

Apache Groovy 0.36 0.33 0.34 0.40

Apache Oltu 0.49 0.47 0.43 0.48

Apache Maven 0.35 0.34 0.33 0.33

Apache Karaf 0.29 0.26 0.36 0.27

Apache Hama 0.27 0.25 0.32 0.22

Apache Tomee 0.36 0.34 0.36 0.35

Apache Deltaspike 0.30 0.28 0.29 0.29

Apache Curator 0.22 0.33 0.45 0.33

Apache Calcite 0.22 0.24 0.23 0.27

Apache Poi 0.44 0.42 0.36 0.49

Apache Zeppelin 0.44 0.42 0.44 0.46

Apache Ant 0.47 0.45 0.43 0.49

Apache Stanbol 0.27 0.25 0.30 0.24

Apache Kafka 0.35 0.34 0.33 0.35

Apache Tika 0.35 0.33 0.33 0.36

Apache Felix 0.37 0.35 0.34 0.30

Apache Phoenix 0.50 0.45 0.47 0.54

Project NF E C ND

Apache Wicket 0.58 0.58 0.55 0.53

Apache Aurora 0.50 0.49 0.45 0.57

Apache Ignite 0.52 0.39 0.52 0.53

Apache Helix 0.45 0.42 0.47 0.43

Apache Archiva 0.39 0.39 0.38 0.30

Apache Struts 0.40 0.48 0.43 0.43

Apache Derby 0.54 0.53 0.52 0.52

Apache Ambari 0.34 0.32 0.41 0.33

Apache Nifi 0.40 0.37 0.43 0.44

Apache Tiles 0.30 0.29 0.29 0.36

Apache Shiro 0.36 0.34 0.38 0.39

Apache Usergrid 0.50 0.43 0.46 0.52

Apache Nutch 0.32 0.34 0.31 0.40

Apache Zookeeper 0.31 0.26 0.27 0.45

Apache Mina 0.42 0.39 0.40 0.43

Apache Cxf 0.56 0.54 0.56 0.55

Apache Cloudstack 0.37 0.34 0.36 0.44

Apache Oozie 0.52 0.47 0.47 0.60

Apache Kylin 0.36 0.30 0.35 0.38

Apache Flink 0.53 0.51 0.57 0.59

Table 9: Cliff’s delta for the change difficulty measures across the projects for God Changes.
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Project NF E C ND

Apache openNLP 0.34 0.33 0.36 0.39

Apache Camel 0.44 0.42 0.38 0.40

Apache Hbase 0.26 0.27 0.29 0.24

Apache Groovy 0.35 0.32 0.33 0.39

Apache Oltu 0.36 0.33 0.41 0.35

Apache Maven 0.40 0.39 0.37 0.38

Apache Karaf 0.35 0.32 0.40 0.34

Apache Hama 0.34 0.31 0.37 0.28

Apache Tomee 0.35 0.33 0.34 0.34

Apache Deltaspike 0.31 0.29 0.29 0.26

Apache Curator 0.40 0.30 0.51 0.40

Apache Calcite 0.30 0.31 0.29 0.35

Apache Poi 0.48 0.47 0.37 0.51

Apache Zeppelin 0.59 0.57 0.56 0.59

Apache Ant 0.41 0.49 0.47 0.49

Apache Stanbol 0.33 0.30 0.34 0.39

Apache Kafka 0.40 0.39 0.39 0.40

Apache Tika 0.37 0.33 0.30 0.38

Apache Felix 0.30 0.38 0.36 0.33

Apache Phoenix 0.52 0.47 0.44 0.56

Project NF E C ND

Apache Wicket 0.47 0.47 0.40 0.43

Apache Aurora 0.52 0.51 0.48 0.59

Apache Ignite 0.53 0.60 0.53 0.56

Apache Helix 0.53 0.51 0.50 0.49

Apache Archiva 0.30 0.39 0.39 0.40

Apache Struts 0.37 0.39 0.39 0.34

Apache Derby 0.37 0.36 0.32 0.34

Apache Ambari 0.38 0.36 0.44 0.38

Apache Nifi 0.57 0.55 0.53 0.59

Apache Tiles 0.57 0.56 0.43 0.52

Apache Shiro 0.35 0.39 0.35 0.36

Apache Usergrid 0.51 0.44 0.47 0.52

Apache Nutch 0.49 0.51 0.43 0.54

Apache Zookeeper 0.39 0.35 0.33 0.47

Apache Mina 0.54 0.49 0.47 0.51

Apache Cxf 0.36 0.34 0.31 0.35

Apache Cloudstack 0.40 0.37 0.29 0.46

Apache Oozie 0.53 0.50 0.45 0.57

Apache Kylin 0.57 0.52 0.53 0.59

Apache Flink 0.47 0.44 0.39 0.49

Table 10: Cliff’s delta for the change difficulty measures across the projects for SATD Changes.
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RQ3 - Interim Summary

God class-related changes and SATD-related changes are more difficult to per-

form than non-god and non-SATD changes.

Upon inspection of the boxplots in Figures 23, 24, 25, 26, 27, 28, 29 and 30 (in

appendix), we find that the distribution median and distribution mean inequalities

remain unchanged for all projects for all difficulty measures except for number of

directories in OpenNLP, where non-god and non-SATD change medians are still not

greater than those of god and SATD changes, but about equal. In summary, then,

performing god and SATD changes is more difficult than performing non-god and

non-SATD changes by all difficulty measures.

RQ4: Is there an overlap between comment- and metric-based

technical debt?

Motivation: Thus far, we have compared how the technical debt identified by

comment- and metric-based approaches relates to software quality. What remains

outstanding now is the amount of overlap between the self-admitted technical debt

files that the comment-based approach labels and the god files that the metric-based

approach detects. Specifically, our objective is to calculate the percentage of files that

contain technical debt on both counts so that we can garner a better understanding

of how comment-based technical debt complements metric-based technical debt.

Approach: We take the list of self-admitted technical debt files generated by the

comment-based approach and the list of god files generated by the metric-based ap-

proach and isolate the files that made both lists. We count how many of these files

meet the criteria for both approaches and then divide by the total number of files

in both lists. The result represents the share of comment-based technical debt that

complements metric-based technical debt (overlap), expressed as a percentage.
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Results:

Table 11 displays the percentage overlap by project. We see that the values

range from 11% to 34%. Our findings confirm that the comment-based approach,

which uses source code comment patterns to detect technical debt, complements the

metric-based approach, which relies on thresholds of object-oriented metrics. In other

work, Moldonado et al. [MST17] studied the overlap between self-admitted technical

debt and several types of code smells extracted by a static analysis tool for 10 open-

source projects. For self-admitted technical debt and god classes specifically, they

found an average overlap of 44.2%, which, though higher than the overlap we found,

is based on a smaller sample size. Despite considerable overlap, each of the comment-

and metric-based approaches identifies some additional sources of technical debt that

the other fails to detect.

RQ4 - Interim Summary

The comment-based approach complements the metric-based approach with an

overlap ranging from 11% to 34%. Nevertheless, practitioners should integrate

both approaches in order to better detect technical debt.
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Project Overlap (%)

Apache OpenNLP 24.39

Apache Camel 16.57

Apache Habse 33.88

Apache Groovy 30.10

Apache Oltu 16.68

Apache Maven 26.08

Apache Karaf 23.65

Apache Hama 29.51

Apache Tomee 21.61

Apache Deltaspike 20.46

Apache Curator 25.23

Apache Calcite 31.12

Apache Poi 31.36

Apache Zeppelin 23.37

Apache Ant 28.86

Apache Stanbol 32.95

Apache Kafka 20.64

Apache Tika 33.56

Apache Felix 26.00

Apache Phoenix 30.99

Project Overlap (%)

Apache Wicket 19.33

Apache Aurora 26.44

Apache Ignite 14.28

Apache Helix 25.45

Apache Archiva 30.33

Apache Struts 24.74

Apache Derby 32.56

Apache Ambari 25.59

Apache Nifi 18.92

Apache Tiles 11.37

Apache Shiro 31.03

Apache Usergrid 26.90

Apache Nutch 32.11

Apache Zookeeper 26.70

Apache Mina 16.78

Apache Cxf 22.25

Apache CloudStack 27.91

Apache Oozie 21.88

Apache Kylin 22.54

Apache Flink 15.37

Table 11: Percentage of overlap between God and SATD files of the analyzed projects.

71



4.4 Threats to Validity

Threats to internal validity concern any factors that could have confounded our

study results. Since developers might not think to declare the introduction of a tech-

nical debt in the first place, or remove the corresponding comment after eliminating a

technical debt, one candidate is the use of source code comments. Every time the code

and comment do not undergo a change simultaneously, the source code comments be-

come a less and less accurate record. Despite this, Potdar and Shihab [PS14] found

that in Eclipse code and comments were updated in tandem between 70% and 90%

of the time. Another threat derives from comments intended to indicate SATD that

do not correspond to any of the patterns Potdar and Shihab [PS14] compiled, which,

owing to the flexibility of natural language, had to be analyzed manually. This tech-

nique is error-prone and somewhat subjective, in that developers could conceivably

disagree as to which comments indicate SATD consistently. To mitigate these effects,

we conducted manual inspections of all identified comments for each project in turn

to certify that each contained one of the 62 patterns in [PS14]. While we chose to

identify any change containing at least one SATD file as an SATD change, we could

have reserved this label for changes containing only SATD files. In our view, it is

better not to restrict SATD changes in this way because sometimes all it takes is one

SATD file to change several other files touched by the same change.

Threats to external validity concern the generalizability of our results. In

order to optimize this, we analyzed 40 large open-source systems. Nonetheless, other

systems should be analyzed to support the conclusions of this chapter, for one thing,

because all the projects studied were written in Java, which limits programming

language representation. Additionally, the projects studied were all developed by

Apache, so systems developed by other companies could potentially run counter to

our findings. Drawing on open-source projects means we have no guarantee that our

results hold for industrial systems. Moreover, we focused on the relationship between
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SATD and god classes only, which means that other, unadmitted technical debt or

code smells might have been overlooked. Nonetheless, studying all technical debt is

beyond the scope of this thesis.

Threats to construct validity concern the extent to which indirect metrics

do not accurately measure what they are intended to. Code metrics and thresholds

were used to detect god classes as Marinescu [Mar04] proposes, and while these have

proven effective when applied in other studies, it has not been evaluated whether such

strategies are suitable to use in all contexts. If not, findings will depend heavily on

the particular metrics and thresholds specified for detection and varying these will

alter our findings.

4.5 Conclusion

The software development community stigmatizes technical debt, even though it still

lacks adequate evidence to formalize its adverse effects on software quality. Accord-

ingly, the empirical study we present in this chapter seeks to identify in what ways god

classes and self-admitted technical debt detract from quality. God classes centralize

the workload of trivial classes and perform tasks using their data in violation of the

object-oriented design principle stipulating one task per class. Self-admitted technical

debt encompasses bugs that develop over time as a result of resorting to quick fixes

that “do the job” for the deadline and defer associated costs which could jeopardize

the code in the long run. We identify god classes by employing Marinescu’s [Mar04]

object-oriented metric thresholds and self-admitted technical debt by locating source

code comments that match the SATD indicator patterns in [PS14].

Three correlations allowed us to dissect the relationship between god classes

and software quality: (i) whether god files have more defects than non-god files, (ii)

whether god changes introduce future defects and (iii) whether god changes are more
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difficult to perform. Likewise, we examine the relationship between self-admitted

technical debt and quality by determining (i) whether SATD files have more defects

than non-SATD files, (ii) whether SATD changes introduce future defects and (iii)

whether SATD-related changes are more difficult to perform. We measured change

difficulty for both god classes and self-admitted technical debt in terms of the amount

of churn, numbers of files and modified modules in a change and entropy. After dealing

with god and SATD files and changes separately, we assess (iv) to what extent the

metric- and comment-based approaches overlap.

In the end, we found that (i) there is no dependable trend between god classes

or self-admitted technical debt and defects: three exceptional projects revealed more

corrective changes in SATD files than in non-SATD files; (ii) a trend did surface,

however, in that both god changes and SATD changes are more correlated with the

introduction of future defects and (iii) more difficult to perform than non-god and

non-SATD changes. As for the overlap between the two approaches, we learned that

(iv) the metric- and comment-based approaches identify the same sources of technical

debt in 11% to 34% of cases.

Our study imparts that although god classes and technical debt may have detri-

mental effects, these imply nothing with respect to defects per se, but increase the

number of defect-inducing changes and make the system more difficult to change in

the future. We advise practitioners to integrate both the comment- and metric-based

approach to improve technical debt detection.
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5

Summary, Contributions and

Future Work

5.1 Summary of Addressed Topics

Chapter 2 offers a synopsis of the latest research on technical debt, which has gener-

ated much interest in the software development community in recent years. Conse-

quently, we find it to be an opportune time to pick up where this body of research

left off and address some of the inquiries it has not yet delved into, whether not

thoroughly enough or not at all. It should do much in the way of informing current

debate in the field to determine whether the technical debt metaphor and developers’

views of the practice hold up under further scrutiny.

Chapter 3 presents how comment-based technical debt (self-admitted technical

debt) relates to software quality. In this chapter, we conduct a preliminary study

to analyze the source code comments of five well-commented open-source projects

representing various domains and programming languages that have a large number

of contributors. We find that: (i) files with SATD have more defects than files without

SATD, (ii) SATD changes are associated with less future defects than non-SATD
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changes and (iii) SATD changes are more difficult to execute.

Chapter 4 presents the effects of comment- versus metric-based technical debt

on software quality. In this chapter, we conduct a large-scale study on 40 open-

source projects to understand how god classes and SATD influence software quality.

We observe that: (i) neither the incidence of god nor SATD files is correlated with

defects, (ii) future defects are introduced at a higher rate by god and SATD changes,

(iii) the difficulty imposed on the system is greater for god and SATD changes and

(iv) the comment- and metric-based approaches agree on 11% to 34% of identified

sources of technical debt.

5.2 Contributions

The major contributions of this thesis are as follows:

• Empirically examine the relationship between self-admitted technical debt and

software quality.

• Enhance knowledge of the technical debt phenomenon by presenting a large-

scale empirical study that compares the SATD (comment-based) and non-SATD

(metric-based) approaches.

• Provide evidence that technical debt tends to induce more future defects and

increase system complexity.

5.3 Future Work

We believe that this thesis advances the state of the art in understanding the rela-

tionship between technical debt and software quality. Though our research clarifies

the dynamics of this complex relationship, there are other dimensions of software
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quality that should be navigated in order to understand the full force of technical

debt’s consequences.

5.3.1 Automating Technical Debt Management

Our findings lay the groundwork for creating a tool that would assist developers

in understanding and mitigating the undesirable long-term consequences of incurring

technical debt. We have every reason to believe that a tool of this kind would facilitate

detection and management of different varieties of technical debt while enhancing

design practices, which would optimize the overall quality of the system and dovetail

formerly discrete stages in the development process.

5.3.2 Diversifying Code Smell Representation

The scope of this thesis was not conducive to studying the overlap between self-

admitted technical debt and all instantiations of code smells, yet developers would

certainly benefit from further research that demonstrates how code smells besides

god classes fit into the picture. The overlap between self-admitted technical debt

and lazy class, black sheep, shotgun surgery, etc. could indicate that comment-based

approaches to detecting technical debt are more or less reliable than the respective

metric-based approaches.

5.3.3 Granularizing Technical Debt Classification

We have focused our attention so far on the relationship between technical debt and

software quality at the file and change levels. Naturally, a logical progression would

be to accommodate the method level, as it would provide more granular insights into

the implications of technical debt for quality as a result of increasing confidence in

the organization of files into SATD and non-SATD categories.
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Appendix A

Defects on The File-level

The following boxplots display the defect-proneness for god versus non-god and SATD

versus non-SATD.
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Figure 19: Percentage of defect fixing changes for GOD and NGOD files.
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Figure 20: Percentage of defect fixing changes for TD and NTD files.
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Appendix B

Defect Inducing Changes

The following boxplots display the propensity of god versus non-god and SATD versus

non-SATD changes to introduce future defects.
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Figure 21: Percentage of defect inducing changes for GOD and NGOD files.
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Figure 22: Percentage of defect inducing changes for TD and NTD files.
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Appendix C

Complexity on The Change-level

The following boxplots display the change level complexity measured by total number

of modified lines in a change, the number of modified directories, the number of

modified fies, and change entropy for god versus non-god and SATD versus non-

SATD.
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Figure 23: Total number of lines modified per change (GOD vs. NGOD).
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Figure 24: Total number of lines modified per change (TD vs. NTD).
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Figure 25: Total number of modified directories per GOD and NGOD change
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Figure 26: Total number of modified directories per SATD and NSATD change.
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Figure 27: Total number of files modified per change (GOD vs. NGOD).
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Figure 28: Total number of files modified per change (SATD vs. NSATD).
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Figure 29: Total number of entropy modified per change (GOD vs. NGOD).
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Figure 30: Total number of entropy modified per change (SATD vs. NSATD).
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