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Abstract

Fisher (1989: J. Structural Geology 11, 775-778) outlined an adaptation of the linear kernel estima-
tor for density estimation that is commonly used in applications. However, better alternatives are
now available based on circular kernels; see e.g. Di Marzio, Panzera, and Taylor, 2009: Statistics
& Probability Letters 79, 2066-2075. This paper provides a short review on modern smoothing
methods for density and distribution functions dealing with the circular data. We highlight the
usefulness of circular kernels for smooth density estimation in this context and contrast it with
smooth density estimation based on orthogonal series. It is seen that the wrapped Cauchy kernel as
a choice of circular kernel appears as a natural candidate as it has a close connection to orthogonal
series density estimation on a unit circle. In the literature the use of von Mises circular kernel
is investigated (see Taylor, 2008: Computational Statistics & Data Analysis 52, 3493-3500), that
requires numerical computation of Bessel function. On the other hand, the wrapped Cauchy kernel
is much simpler to use. This adds further weight to the considerable role of the wrapped Cauchy
distribution in circular statistics.

Keywords: circular kernels; kernel density estimator; orthogonal polynomials; orthogonal series
density

1. Introduction

Given an i.i.d. d− variate random sample {X1, ..., Xn} from a continuous distribution function F
with density f, the Parzen-Rosenblatt kernel density estimator is given by

f̃(x;h) ≡ n−1h−d
n∑
i=1

K

(
x−Xi

h

)
(1.1)

where h is known as the window-width or band-width and K is called the kernel function. The
band-width h typically tends to 0 as the sample size n tends to infinity and K is typically a sym-
metric density function centered around zero with unit variance. This estimator was proposed by
Rosenblatt’s (1956), that was further studied by Parzen (1962) and popularized in many subsequent
papers. An alternative motivation for the kernel density estimator is provided recently in Chaubey
et al. (2012) by smoothing the empirical distribution function that justifies the use of asymmetric
kernels while considering density estimation for non-negative random variables.

1Expanded version of the Invited Paper for the invited session IPS-114, “Nonparametric Methods : Theory
and Applications” at ISI-2017, Marrakech July 16-21, 2017



In what follows we consider estimation of the density for circular data, i.e. an absolutely continuous
(with respect to the Lebesgue measure) circular density f(θ), θ ∈ [−π, π], i.e f(θ) is 2π−periodic,

f(θ) ≥ 0 for θ ∈ R and

∫ π

−π
f(θ)dθ = 1. (1.2)

Given a random sample {θ1, ...θn} for the above density, the kernel density estimator may be written
as

f̃(θ;h) =
1

nh

n∑
i=1

K

(
θ − θi
h

)
. (1.3)

Fisher (1989) proposed non-parametric density estimation for circular data by adapting the linear
kernel density estimator (1.1) with a quartic kernel [see also Fisher (1993), §2.2 (iv) where an
improvement is suggested], defined on [−1, 1], that is given by

K(θ) =

{
.9375(1− θ2)2 for − 1 ≤ θ ≤ 1;

0 otherwise.
(1.4)

[see Eqs. (4.40) and (4.41) of Fisher (1993).] Since the resulting estimator is not necessarily
periodic, Fisher (1993) suggested to perform the smoothing by replicating the data to 3 to 4 cycles
and considering the part in the interval [−π, π]. This problem is easily circumvented by using circular
kernels, that has been investigated by Di Marzio et al. (2011). Taylor (2008) considered the von
Misses circular normal distribution with concentration parameter κ for K, that gives the estimator
for f as

f̂vM (θ;κ) =
1

n

n∑
i=1

KvM (θ; θj , κ), (1.5)

where

KvM (θ;µ, κ) =
1

2πI0(κ)
exp{κ cos(θ − µ)}, − π ≤ θ ≤ π, (1.6)

and discussed determination of the optimal data based choice for κ. Note that the von Mises dis-
tribution gets concentrated around µ for large κ.

In Section 2, I present a simple approximation theory motivation for considering the circular kernel
density estimator given in (1.5). It may be noted that the wrapped Cauchy distribution with
location parameter µ and concentration parameter ρ is given by

KWC(θ;µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
,−π ≤ θ < π, (1.7)

that becomes degenerate at θ = µ as ρ → 1. The estimator of f(θ) based on the above kernel is
given by

f̂WC(θ; ρ) =
1

n

n∑
i=1

KWC(θ; θj , ρ). (1.8)

Section 3 describes the approach of approximation using orthogonal functions in deriving density
estimators and Fourier series density estimator is highlighted as a special case. This section also
establishes the equivalence between the circular kernel estimator using wrapped Cauchy kernel and
orthogonal series estimation of a specific complex function defined over a unit circle. In Section 4,
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some alternative approaches based on transformations are provided. The last section provides some
examples and conclusions.

2. Motivation for the Circular Kernel Density Estimator

We consider the following theorem from approximation theory (see Mhaskar and Pai (2000)) to
motivate the circular kernel density estimator. Before giving the theorem we will need the following
definition:

Definition 2.1 Let {Kn} ⊂ C∗ where C∗ denotes the set of periodic analytic functions with a
period 2π. We say that {Kn} is an approximate identity if

A. Kn(θ) ≥ 0 ∀ θ ∈ [−π, π];

B.
∫ π
−πKn(θ) = 1;

C. limn→∞max|θ|≥δKn(θ) = 0 for every δ > 0.

The definition above is motivated from the following theorem which is similar to the one used in
the theory of linear kernel estimation (see Prakasa Rao (1983)). Also, note that we have replaced
Kn of Mhaskar and Pai (2000)) by 2πKn without changing the result of the theorem.

Theorem 2.1 Let f ∈ C∗, {Kn} be approximate identity and for n = 1, 2, ... set

f∗(θ) =

∫ π

−π
f(η)Kn(η − θ)dη. (2.9)

Then we have
lim
n→∞

sup
θ∈[−π,π]

|f∗(θ)− f(θ)| = 0. (2.10)

Note that taking the sequence of concentration coefficients ρ ≡ ρn such that ρn → 1, the density
function of the Wrapped Cauchy will satisfy the conditions in the definition in place of Kn. In
general Kn, appearing in the above theorem may be replaced by a sequence of periodic densities on
[−π, π], that converge to a degenerate distribution at θ = 0.
For a given random sample of θ1, ..., θn from the circular density f, the Monte-Carlo estimate of f∗

is given by

f̃(θ) =
1

n

n∑
i=1

Kn(θi − θ). (2.11)

The kernel given by the wrapped Cauchy density satisfies the assumptions in the above theorem
that provides the estimator proposed in (1.8). This gives the motivation for considering circular
kernels for nonparametric density estimation for circular data as proposed in discussed in a more
detailed by Marzio MD, et al. (2009). However, their development considers circular kernels of
order r = 2 that further requires∫ π

−π
sinj(θ)Kn(θ)dθ = 0 for 0 < j < 2.

The circular kernel density estimator based on the wrapped Cauchy weights is given by

f̃WC(θ) =
1

n

n∑
i=1

fWC(θi − θ). (2.12)
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that may be considered more convenient in contrast to the von Mises kernel due to the fact that
it does not require computation of an integral I0(κ). Another justification of the circular kernel
density estimator may presented by smoothing the empirical distribution function, an approach
investigated in Babu, Canty and Chaubey (2002) and Babu and Chaubey (2006)[see also the recent
paper by Chaubey et al. (2012)].

In this approach we approximate the distribution function instead of the density function using the
approximation

F ∗(θ) =

∫ π

−π
F (η)Kn(η − θ)dη

= 1−
∫ π

−π
Ψθ,n(η)dF (η) (2.13)

where Ψθ,n(.) is the sequence of distribution functions corresponding to the circular densities Kn(.−
θ)
Since F is unknown, using the edf as a plug-in estimate to estimate F ∗, results into an smooth
estimator of F given by

F̃ (θ) = 1−
∫ 2π

0
Ψθ,n(η)dFn(η)

= 1− 1

n

n∑
i=1

Ψθ,n(θi). (2.14)

Considering circular distributions with mean µ and concentration parameter ρn → 0 as n→∞, let
the density function corresponding to Ψθ,n correspond to a location family given by ψ(θ−µ; ρ) that
has mean µ and concentration parameter ρ, then a smooth density estimator f̃(θ) (as the derivative
of F̃ (θ) is given by

f̃(θ) =
1

n

n∑
i=1

ψ(θi − θ; ρ). (2.15)

which is of the same form as the circular kernel density estimator given in (2.11).
In the next section we provide details of the approach where the circular density is represented as
a linear form using a set of basis functions.

3. Density Estimators using Approximation by Orthogonal Functions

Here we will consider approximating continuous bounded functions f(x) in a compact interval
I = [a, b] ⊂ R. For a given nonnegative function w(x) defined on I, the L2 weighted norm of f(x)
is defined as

‖f‖w2 =

∫ b

a
|f(x)|2 w(x)dx. (3.16)

The space of such functions will be denoted by Lw2 . The general method of approximation of functions
f ∈ Lw2 involves the set of basis functions {ϕk(x)}∞0 and a non-negative weight function w(x) such
that

< ϕk, ϕk′ >w=

∫ b

a
ϕk(x)ϕk′(x)w(x)dx =

{
0 for k 6= k′

1 for k = k′
(3.17)
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Then for f ∈ Lw2 the partial sum

fN (x) =
N∑
k=0

gkϕk(x), (3.18)

where

gk =

∫ b

a
f(x)ϕk(x)w(x)dx, (3.19)

is considered to be the ‘best’ approximation in terms of the fact that the coefficients gk are such
that ak = gk minimise

‖f − fN‖w2 =

∫ b

a
|f(x)|2 w(x)dx. (3.20)

The original idea is attributed to Čencov (1962) that considered the cosine basis

{ϕ0(x) = 1, ϕj(x) =
√

2 cos(πjx), j = 1, 2, ...}

and w(x) = 1. In recent literature, many other type of basis functions including trigonometric, poly-
nomial, spline, wavelet and others have been considered. The reader may refer to Devroy and Györfi
(1985), Efromvich (1999), Hart (1997), Walter (1994) for a discussion of different bases and their
properties. Efromvich (2010) presents an extensive overview of density estimation by orthogonal
series concentrated on the interval [0, 1]. As mentioned in Efromvich (2010) the choice of the basis
function primarily depends on the support of the function. Thus for the densities on (−∞,∞), or
on [0,∞), Hermite and Laguerre series are recommended; see Devroye and Györfy (2001), Walter
(1994), Hall (1980) and Walter (1977). For compact intervals, trigonometric (or Fourier) series are
recommended; discussion about these can be found in Čencov (1980), Devroy and Györfy (1985),
Efromvich (1999), Hart (1997), Silverman (1986), Hall (1981), Tarter and Lock (1993). Classical
orthogonal polynomials such as Chebyshev, Jacobi, Legendre and Gegenbauer are also popular;
see Trefthen (2013)), Rudzkis and Radavicius (2005) and Buckland (1992). Wavelet bases are be-
coming increasingly popular, due to their ability in visualizing local frequency fluctuations and
discontinuities, even though their explicit form is not available.
Once the basis functions are chosen, the density f(x) for a random sample {x1, ..., xn} may be
estimated by

f̂N (x) =

N∑
k=0

ĝkϕk(x), (3.21)

where

ĝk =
1

n

n∑
i=1

ϕk(xi). (3.22)

Efromvich (2010) discusses in detail various strategies of selecting N, albeit in a more general setting
by considering the density estimators of the form

f̂(x) = f̂(x, {ŵk}) =
∞∑
k=0

ŵkĝkϕk(x) (3.23)

that includes the truncated estimator f̂J as well as hard-thresholding and block-thresholding estima-
tors, commonly studied in the wavelet literature. However, this modification will not be pursued in
further discussion.
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The estimators using orthogonal series of cosine functions and Fourier series are easy to implement.
Using the truncated cosine series, the density estimator is given by

f̂OC(θ) =
1

2π
+

N∑
k=1

ĝk cos(kθ). (3.24)

where

ĝk =
1

nπ

n∑
i=1

cos(kθi).

This is appropriate for circular density functions that are symmetric around zero, however, the
Fourier series is more general. The truncated Fourier series of f(θ) is given by

f(θ) ≈ 1

2
a0 +

N∑
k=1

{ak cos(kθ) + bk sin(kθ)}, (3.25)

where

ak =
1

π

∫ π

−π
f(θ) cos(kθ)dθ, k = 0, 1, ..., N (3.26)

bk =
1

π

∫ π

−π
f(θ) sin(kθ)dθ, k = 1, ..., N. (3.27)

Considering these coefficients as expectations of appropriate functions, they can be estimated as

âk =
1

nπ

n∑
i=1

cos(kθi); k = 0, 1, 2.... (3.28)

b̂k =
1

nπ

n∑
i=1

sin(kθi); k = 1, 2.... (3.29)

Thus, the Fourier series density estimator is given by

f̂FS(θ) =
1

2π
+

N∑
1

{âk cos(kθ) + b̂k sin(kθ)}. (3.30)

N is considered a smoothing parameter and may be determined using the cross-validation method
described in Efromvich (2010). A common problem with truncation in these estimators is that it
may not produce a true density. In order to alleviate this problem Efromvich (1999) considers L2

projection of f̂ onto a class of non-negative densities given by

f̆(x) = max(0, f̂(x)− c), (3.31)

where c is chosen to make f̆ a proper density.

Recently, Chaubey (2016) demonstrated an interesting connection between the circular kernel den-
sity estimator using the Cauchy kernel and orthogonal series on a circle for the function

W (z) =

∫ (
eiτ + z

eiτ − z

)
f(τ)dτ. (3.32)
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This involves the real and complex Poisson kernels that are defined as

Pr(θ, ϕ) =
1− r2

1 + r2 − 2r cos(θ − ϕ)
(3.33)

for θ, ϕ ∈ [−π, π) and r ∈ [0, 1) and by

C(z, ω) =
ω + z

ω − z
(3.34)

for ω ∈ ∂D and z ∈ D;D = {z | |z| < 1}, is the open unit disk and ∂D = {z | |z| = 1} is the
boundary of the unit disk. The connection between these kernels is given by the fact that

Pr(θ, ϕ) = Re C(reiθ, eiϕ) = (2π)fWC(θ;ϕ, ρ). (3.35)

where z = reiθ for r ∈ [0, 1), θ ∈ [−π, π] and i =
√
−1. Using the result (see (ii) in §5 of Simon

(2005)) that for Lebesgue a.e. θ,

f(θ) =
1

2π
lim
r↑1

Re W (reiθ), (3.36)

a smooth density estimator is proposed to be

f̂r(θ) =
1

2π
Re Wn(reiθ) (3.37)

by appropriately choosing r, where

Wn(z) =
1

n

n∑
j=1

(
eiθj + z

eiθj − z

)
. (3.38)

Thus the sample estimate of f̂r(θ) can be written as

f̂r(θ) =
1

n

n∑
j=1

fWC(θ; θj , r). (3.39)

On the other hand the Fourier expansion of W (z) with respect to the basis {1, z, z2, ...} is given by

W (z) = 1 + 2
∞∑
j=1

cjz
j (3.40)

where

cj =

∫
e−ijθf(θ)dθ,

is the jth trigonometric moment. The series is truncated at some term N∗ so that the the error is
negligible. However, we show below that estimating the trigonometric moments cj , j = 1, 2, ... as

ĉj =
1

n

n∑
k=1

e−ijθk ,
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the estimator of W (z) given by Ŵ (z) = 1 + 2
∑∞

j=1 ĉjz
j is the same as Wn(z). We have

Ŵ (z) = 1 +
2

n

n∑
j=1

{
∞∑
k=1

e−ikθjzk}

= 1 +
2

n

n∑
j=1

{
∞∑
k=1

(ω̄jz)
k};ωj = eiθj ; ω̄j = e−iθj

= 1 +
2

n

n∑
j=1

(
ω̄jz

1− ω̄jz

)

=
2

n

n∑
j=1

(
1

2
+

ω̄jz

1− ω̄jz

)

=
1

n

n∑
j=1

(
1 + ω̄jz

1− ω̄jz

)

=
1

n

n∑
j=1

C(z, ωj),

which is the same as Wn(z) given in (3.38). This ensures that the orthogonal series estimator of
the density coincides with the circular kernel estimator, using the wrapped Cauchy kernel.

4. Transformation Based Density Estimators

In this section we outline some simple transformation estimators that are based on the fact that if
we transform the angular data on (−π, π) to some interval I, where the properties of approximations
on I are well known. Let x = t(θ) denote a one-to-one 2π periodic transformation from (−π, π) to
I and let p(x) denote the density of the transformed data, then the density of the original data is
given by

f(θ) = p(t(θ))|dt(θ)
dθ
|. (4.41)

4.1. Transformation for use with the kernel estimator on the real line

Denoting the angular random variable by Θ, the kernel density estimator on the real line may be
applied using the transformation

X = tan(Θ/2), (4.42)

that transforms the interval [pi, π] to (−∞,∞) and the kernel density estimator of X is given by

p̂(x;h) =
1

nh

n∑
i=1

K

(
x− tan(θi/2)

h

)
. (4.43)

and the transformation based kernel density estimator of f(θ) is given by

f̂(θ;h) =
1

1 + cos(θ)
p̂

(
sin θ

1 + cos θ
;h

)
. (4.44)

An attractive feature of the above procedure in contrast to Fisher’s adaptation of the linear method
is that the latter method gives a periodic estimator, however the former does not.
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4.2. Transformation for use with Bernstein polynomial density estimator

Babu and Chaubey (2006) consider estimating the distributions defined on a hypercube, extending
the univariate Bernstein polynomials (Babu, Canty and Chaubey (2002), Vitale (1973)). Denoting
the empirical distribution function of a random sample of n− observations from a random variable
X ∈ [0, 1], by Gn, the Bernstein polynomial density estimator is given by

p̂B(x;m) = m

m∑
j=1

[
Fn

(
j

m

)
− Fn

(
j − 1

m

)]
β(x; j,m− j + 1), x ∈ [0, 1], (4.45)

where β(x; a, b) is given by

β(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, (4.46)

and B(a, b) = (a+ b− 1)!/[(a− 1)!(b− 1)!]. We consider the transformation

t(θ) =
1

2
+

1

π
tan−1(c tan(θ/2)), (4.47)

that maps the interval [−π, π] to [0, 1] in a one-to-one monotonic transformation for all c > 0.
Note that this provides a periodic transformation in contrast to the linear transformation t(θ) =
θ/(2π) for transforming the interval [0, 2π] to [0, 1], as considered Carnicero et al. (2010). This
transformation offers an extra parameter c that may be optimally chosen for a given random sample.
The transformed estimator of f(θ) is given by

f̂B(θ;m) =
1

2π
p̂B(t(θ);m)

c(1 + tan2(θ/2)

1 + c2tan2(θ/2)
. (4.48)

4.3. Transformation for use with orthogonal polynomials

Orthogonal polynomials of the Chebyshev’s class on [−1, 1] can be converted to orthogonal polyno-
mials on a circle C = {z|‖z‖ = 1} through the transformation

x =
1

2
(z + z−1).

This has been quite popular in numerical approximation of functions (see for example Trefethen
(2013), Chapter 3). the kth Chebyshev polynomial can be defined by the real part of the function
zk on the unit circle:

x =
1

2
(z + z−1) = cos θ, θ = cos−1 x, (4.49)

Tk(x) =
1

2
(zk + z−k) = cos(kθ). (4.50)

The following theorems justify the use of orthogonal polynomial estimators (see Rudin (1976)).

Theorem 4.2 If h is Lipschitz continuous on [−1, 1], it has a unique representation as Chebyshev
series,

h(x) =
1

2
a0 +

∞∑
k=1

akTk(x), (4.51)
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which is absolutely and uniformly convergent. The coefficients are given by the formula

ak =
2

π

∫ 1

−1

h(x)Tk(x)√
(1− x2)

dx, (4.52)

and for k = 0, by the same formula with the factor 2/π changed to 1/π.

If h(x) represents a density on [−1, 1], ak can be estimated by

â0 =
1

nπ

n∑
i=1

1√
(1− x2i )

, (4.53)

âk =
2

nπ

n∑
i=1

Tk(xi)√
(1− x2i )

; k = 1, 2, ... (4.54)

(4.55)

For using Chebyshev’s polynomials in order to provide circular density estimator we transform the
circular data as xi = 2 tan−1(tan(θi/2))/π that essentially provides a 2π periodic transformation to
the interval [−1, 1], and the Chebyshev’s polynomial circular density estimator is given by

f̂CP (θ) =
1

2π
â0 +

1

π

N∑
k=1

âkTk(θ/π) (4.56)

The Chebyshev weight function, however, is singular at the extremes of the interval of support.
Arbitrary power singularities may be assigned to each extreme giving a general weight function

w(x) = (1− x)α(1 + x)β (4.57)

where α, β > 0 are parameters. The associated polynomials are known as Jacobi polynomials,

usually denoted as {P (α,β
n }. The special case α = β, gives orthogonal polynomials that are known as

as Gegenauer or ultraspherical polynomials and are subject of much discussion in numerical analysis;
see Koornwinder et al. (2010). The most special case of all α = β = 0 gives a constant weight
function and produces what are known as Legendre polynomials denoted by Pn(x), n = 0, 1, 2, ....
that define a orthogonal system for the interval [−1, 1]. They may be simply described as

P0(x) = 1, P1(x) = x (4.58)

and the recurrence relation

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x). (4.59)

Thus

P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x, ...etc. (4.60)

An explicit representation may be given by the following formula:

Pk(x) = 2k
k∑
j=0

(
k

j

)(k+j−1
2

k

)
xj (4.61)
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This avoids the possible numerical problem in computing the coefficients due to singularity at the
extremes. Hence this will be a preferred alternative to the Chebyshev polynomials. The expansion
of a function h(x) in terms of the Legendre polynomials is given by

h(x) =
∞∑
k=0

ckPk(x) (4.62)

where

ck =
1 + 2k

2

∫ 1

−1
h(x)Pk(x)dx. (4.63)

Unbiased estimators of the coefficients ck are given by

ĉk =
1 + 2k

2n

n∑
i=1

Pk(xi). (4.64)

Thus the density estimator in the original scale is given by

f̂LP (θ) =
1

2π
+

1

π

N∑
k=1

ĝkPk(θ/π) (4.65)

where

ĝk =
1 + 2k

2n

n∑
i=1

Pk(θi/π); k = 1, 2, .... (4.66)

5. Examples and Conclusions

5.1 Examples

In this section we illustrate some of the density estimators by considering the wellknown Turtle data
and Ants data. The Turtle data set gives the measurements of the directions taken by 76 turtles
after treatment that is available from Appendix B.3 in Fisher (1993), whereas the Ants data set
gives the measurements of the directions chosen by 100 ants in response to an evenly illuminated
black target that is available from Appendix B.7 in Fisher (1993).

Figure 5.1 gives plots of the histogram with superimposed density estimators based on the wrapped
Cauchy kernel and the von Misses kernel along with the transformed kernel estimators based on
the classical kernel estimators based on Gaussian and logistic kernels for different values of the
concentration and variance parameters, for Turtle data and Figure 5.2 presents the same for the
Ants data. The kernel estimator for the transformed data on the real line is obtained from (1.3)
where for the normal kernel

K(u) =
1√
2π

e−
1
2
u2

and that for the logistic kernel

K(u) =
e−u

(1 + e−u)2
.
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Wrapped Cauchy Circular Density Estimators
 for Turtle Data
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von Mises Circular Kernel Density Estimators
 for Turtle Data
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Transformed Circular Density Estimator with Normal Kernel
 for Turtle Data
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Transformed Circular Density Estimator with Logistic Kernel
 for Turtle Data
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Figure 5.1: Histogram and Circular Kernel Density Estimators for Turtle data
(a) Wrapped Cauchy kernel, ρ = .6, .7, .8.; (b) von Mises kernel, κ = 3, 4, 5.;
(c) Transformed linear kernel with Gaussian kernel, h = .25, .3, .35.;
(d) Transformed linear kernel with logistic kernel, h = .15, .25.35.;
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Wrapped Cauchy Circular Density Estimators
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Figure 5.2: Histogram and Circular Kernel Density Estimators for Ants data
(a) Wrapped Cauchy kernel, ρ = .81, .82, .83; (b) von Mises kernel, κ = 5, 6, 7.;
(c) Transformed linear kernel with Gaussian kernel, h = .2, .25, .3.;
(d) Transformed linear kernel with logistic kernel, h = .15, .25, .35.

The von Mises kernel seems to provide smoother plots as compared to wrapped Cauchy, however,
both the kernels provide similar estimators, qualitatively. The estimators obtained by IS transfor-
mation also produce similar results as to those given by the circular kernel estimators. Smoothing
parameter may be selected using the proposal described in Taylor (2008). An enhanced strategy is
to investigate a range of values around the value given by cross-validation.

5.2 Conclusions

This paper provides a simple approximation result for continuous function on defined on a unit
circle to motivate circular kernel density estimator. An interesting connection between this estima-
tor using the wrapped Cauchy kernel and an orthogonal series estimator is discovered that shows
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that truncation in the orthogonal series estimator may be avoided by using the wrapped Cauchy
kernel. The approximation result used here also provides circular density estimator as the deriva-
tive of smooth distribution function estimator. Some further families of estimators are suggested
using stereographic projection of circle on different intervals that might provide easily computable
estimators from well known software. Further studies about the estimators and their properties is
being carried out in ongoing research investigation of the author.
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