
TOWARDS USABLE AND FINE-GRAINED SECURITY

FOR HTTPS WITH MIDDLEBOXES

Abhimanyu Khanna

A thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

in Information Systems Security at

Concordia University

Montréal, Québec, Canada

May 2017

c© Abhimanyu Khanna, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211519761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Abhimanyu Khanna

Entitled: Towards usable and fine-grained security for HTTPS

with middleboxes

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Jia Yuan Yu Chair

Dr. Walter Lucia Examiner

Dr. Emad Shihab External Examiner

Dr. Mohammad Mannan and Dr. Jeremy Clark Supervisor

Approved

Chair of Department or Graduate Program Director

2017

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

iii

Abstract

Towards usable and fine-grained security for HTTPS with

middleboxes

Abhimanyu Khanna

Over the past few years, technology firms have inlined end-to-end encryption for their

services and implored for increased in-network functionality. Most firms deploy TLS

and middleboxes by performing man-in-the-middle (MITM) of network sessions. In

practice, there are no official guidelines for performing MITM and often several tweaks

are used resulting in less secure systems. TLS was designed for exactly two parties

and introducing a third party by doing MITM breaks TLS and the security benefits

it offers.

With increasing debate in finding a clean way to deploy middleboxes with TLS,

our work surveys the literature and introduces a benchmark based on the Usability-

Deployability-Security (UDS) framework for evaluating existing TLS middlebox in-

terception proposals. Our benchmark encompasses and helps understand the current

benefits, solutions and challenges in the existing solutions for incorporating TLS with

middleboxes. We perform a comparative and qualitative evaluation for the schemes

and summarize the results in a single table. We propose: Triraksha, an alterna-

tive to the currently deployed middlebox interception models. Triraksha provides

a packet inspection service for end-to-end encrypted connections while maintaining

fine-grained confidentiality for end points. We evaluate a prototype implementation

of our scheme on local and remote servers and show that the overhead in terms of

iv

latency and throughput is minimal. Our scheme is easily deployable as only a few

software additions are made at the middlebox and client end.

v

Acknowledgments

At the end of this thesis, I would like to thank all the people who helped me during

the course of my Masters program.

First and foremost, I would like to thank my advisors Dr. Mohammad Mannan and

Dr. Jeremy Clark. You have been tremendous mentors and role models to me, always

guiding me on the right path and supporting me when needed. I appreciate all your

contributions of time, ideas, and funding to make my Masters experience productive

and stimulating. Your mixture of advice, inspiration and criticism on both research as

well as on my life career have been invaluable in helping me realize my strengths and

weaknesses. My learning curve has only ever steepened under your guidance. You

created infinite space and freedom for me to find my own path in life and research

and for this I shall be ever grateful.

I believe that I am extremely fortunate to have worked with two outstanding indi-

viduals and scholars - Lianying Zhao and Xavier de Carné de Carnavalet. With your

confidence, focus, kindness and friendship, you embed in me qualities of sincerity

and dedication. My interaction with you has developed in me clarity of thought and

systematic approach to problems in research. Thank you for all your feedback and

encouragement. I would also like to thank all fellow lab mates and the other faculty

members of the CIISE department. I enjoyed a lot from our discussions and learned

a lot from the courses that I attended during my Master’s program.

vi

Finally, I would like to dedicate this thesis to my family. Words cannot express

how grateful I am for their support throughout the course of my Masters degree. I

thank my parents Sanjay Khanna and Jasmeet Khanna for educating me with their

ideals, for unconditional love and encouragement to pursue my interests, even when

the interests went beyond boundaries of my field. I would not have been able to reach

this position in my life without them. My parents have truly shown me the essence

of never giving up and how we never fight our battles alone. I thank you for your

help to handle all the difficulties and wrong decisions I made. I have experienced

your guidance day by day and I will keep on trusting you for my future. I would

like to thank my brother - Abhinav Khanna for instilling ambition, cheering me and

motivating me throughout the course of my Masters.

Abhimanyu Khanna

vii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline . 5

2 Background 6

2.1 Transport Layer Security (TLS) protocol 6

2.1.1 The handshake protocol . 8

2.1.2 The record protocol . 9

2.2 Middleboxes . 9

2.2.1 Introduction . 9

2.2.2 Middlebox taxonomy . 10

2.2.3 Split TLS and why it breaks regular TLS 12

2.2.4 The world of middleboxes with end-to-end encryption 14

3 UDS framework 17

3.1 UDS benchmark . 19

viii

3.2 Summary of schemes evaluated using UDS framework 25

3.2.1 Modified TLS schemes . 25

3.2.2 Passthrough . 28

3.2.3 Proxy based schemes . 29

3.2.4 Schemes that provide server side consent 32

3.3 Sample evaluation based on the UDS benchmark 37

3.4 Evaluation of schemes (client consent) based on the UDS benchmark 39

3.4.1 Modified TLS . 39

3.4.2 Passthrough . 41

3.4.3 Proxy . 42

3.5 Related work omitted from UDS framework 45

3.6 UDS evaluation discussion . 49

4 Triraksha 51

4.1 Design goals . 51

4.1.1 Threat model . 53

4.2 Triraksha overview and architecture 53

4.2.1 Triraksha handshake protocol 57

4.2.2 Triraksha record protocol . 61

4.3 Implementation setup and discussion 63

4.3.1 Client support for Triraksha 64

4.3.2 Middlebox support for Triraksha 66

4.4 Evaluation . 71

4.4.1 Design principle compliance 71

4.4.2 Experimental setup . 72

4.4.3 Functionality evaluation . 73

4.4.4 Performance evaluation . 80

ix

5 Discussion and extensions to Triraksha 89

5.1 TLS 1.3 and AEAD ciphers . 89

5.1.1 TLS 1.3 . 89

5.1.2 AEAD ciphers . 90

5.2 Verification of TLS secrets and integrity of data using MAC 95

5.3 Extending Triraksha use cases and a note on usability 97

6 Conclusion 102

7 Appendix 1 113

7.1 TLS Message Header Values . 113

7.2 Entities and definitions . 114

7.3 Machine configuration for Triraksha implementation 116

7.4 Definitions for Curl APIs . 116

7.5 Definitions for Chrome’s HAR file . 117

x

List of Figures

1 Example of a TLS handshake done using RSA. 8

2 Classification of schemes for middleboxes coexisting with TLS. 15

3 Architecture of the Triraksha protocol. 56

4 Triraksha handshake. 58

5 Format of log file from Middlebox ClientHello dissection. 59

6 Triraksha implementation. 63

7 Internal functioning of the GCM encryption operation. 92

8 Deriving two keys from MK in GCM. 94

xi

List of Tables

1 Summary of the evaluation of client side consenting schemes with the

UDS benchmark . 45

2 The time taken to read the SSLKEYLOGFILE and generate TLS secrets. 81

3 The time taken to send TLS secrets using rsync. 81

4 The time taken for Curl’s time appconnect (handshake time) and the

total Triraksha handshake time. 82

5 The time taken to create a dummy SSLKEYLOGFILE and add rules

to the firewall. 82

6 The time and size for a Curl request for yts.ag. 83

7 The time and size for a Curl request for Twitter.com. 84

8 The total time taken for a Curl request compared to a regular end-to-

end TLS connection. 84

9 The time and size for downloading a Thunderbird addon: cherami.xpi. 84

10 The time and size for downloading a repo tarball from OpenSSL. . . 84

11 The time and size for a Chromium request (page global data) for Ama-

zon.ca. 85

12 The time and size for a Chromium request (page global data) for eztv.ch. 86

xii

Chapter 1

Introduction

1.1 Motivation

With advances in Internet technology, there is increased usage of middleboxes in

networks [59, 80, 24]. Functionalities offered by middleboxes like firewalls, NATs,

proxies provide a wide range of services benefiting end users and network operators.

Services like caching, compression, prefetching and load balancing improves page load

time, data usage and reduces consumption of resources [39, 82, 43, 59] on end points.

Network Intrusion Detection systems (IDS)/Intrusion Prevention systems (IPS) and

network scanners like Snort [16], Suricata [17] and Bro [63] prevent network attacks

and help detect malware/viruses in packet payloads. Parental filtering devices and

policy enforcement appliances [13, 74] help mandate and enforce policies on browsing

of network traffic and data usage. Middleboxes have become an essential component

[83, 50, 23] in the network of many organizations and enterprises. However, trends

[72, 70, 69, 62, 6] also show that usage of middleboxes is associated with high cost,

complex management and a host of privacy concerns.

1

Recent data breaches and increasing concerns for user’s privacy [48, 84, 67, 79, 2,

33, 77] have led to increased use of end-to-end encryption. This trend has led to

the widespread adoption of web servers using HTTPS as the norm to communicate

with clients. It was forecasted that 70% of global Internet traffic will be encrypted

in 2016, with many networks exceeding 80% [22, 60, 58]. TLS (Transport Layer

Security) has become an intrinsic component of HTTPS services and provides for a

secure communication channel between a client and server. TLS was designed for

two parties and ensures the following properties for end points: entity authentication,

data integrity and data secrecy. Middleboxes, which perform in-network functionality

at various points in the network [58, 44] do not work well with end-to-end encrypted

sessions. Use of TLS pushes any in-network functionality employed by a network

operator to be done at the application layer of the end points. Services like packet

inspection and payload manipulation cannot be performed as the middlebox does

not have access to the packet payload. The very benefits offered by HTTPS are in

variance and block the essential in-network functionality of middleboxes.

To get around end-to-end encryption and enable middlebox functionality, middle-

box systems are deployed in an insecure method called ‘Split TLS’ [59]. The middle-

box is placed as a gateway in the network and simply performs MITM (man in the

middle) for all TLS connections. The middlebox pipes data between the client and

the server in two separate TLS connections. Split TLS though widely deployed, has

several downsides emanating from its design. A major downside is that the client

has to trust the middlebox to securely connect to the server on its behalf. Further,

the middlebox has complete access over the data that was meant only for the end

points and can read/modify it. Split TLS violates the end-to-end security guarantees

of TLS. This is a cause for concern considering the recent number of data breaches

by hackers. A number of issues were recorded and surveyed in [58, 44] expressing

2

privacy concerns for users.

Using end-to-end encryption with in-network functionality of middleboxes is a re-

cent topic of interest and has caused for increasing debate [19] in the community.

Many RFCs and academic proposals [59, 47, 73, 72, 64, 55, 53] attempt to construct

a protocol that allows middleboxes to exist side-by-side with end-to-end encryption.

Recent proposals like mcTLS [59], Blindbox[73] and Embark [49] discuss, raise issues

of data permissions and privileges associated with a middlebox in a TLS connection

and attempt to address these issues in their scheme. The schemes propose to extend

TLS, outsource in-network processing to cloud services and/or propose new searchable

encryption schemes. The privacy model in these schemes is stricter when compared to

Split TLS. Industrial efforts by Akamai [42, 47], Google [64], Ericsson and AT&T [53]

also attempt to bring forward solutions to incorporate middlebox infrastructure with

end-to-end encryption. However, the solutions in the existing literature still suffers

from limitations. A majority of the schemes are not compatible with the server and

are hence less likely to be adopted. Schemes have varying assumptions on privileges

for the middlebox and usability for end users. The approach taken by a few schemes

incur overhead [75, 52] that may not be suitable for all environments like mobile net-

works and in networks of content service providers. Further, many of the proposed

schemes are not evaluated extensively over real world data points. A good solution

to the problem is yet to exist and the topic is very active with various discussions in

the IETF, TLS and middlebox community.

1.2 Contributions

In this work, we begin with a survey of the literature with the aim of understanding:

3

1. The problems and challenges of deploying middleboxes with end-to-end en-

crypted sessions in current proposals.

2. The properties required for a middlebox to work securely with end-to-end en-

cryption.

We propose a benchmark for comparative evaluation of the existing literature. The

benchmark defines 12 properties fitting to the UDS (Usability-Deployability-Security)

framework and is used to evaluate 12 proposals from the academia and industry. The

results were summarized and placed in a comparative table. We further discuss and

demonstrate with each property how and why the schemes are rated as such. The

systematical exercise done in our study establishes and provides for insight into the

challenges, problems and solutions for use of middleboxes with end-to-end encrypted

sessions. Based on a comprehensive survey and understanding of using middleboxes

with TLS, we present Triraksha: an alternative scheme to Split TLS. Triraksha uses

existing infrastructure to securely incorporate a packet inspection service for TLS

connections in enterprise environments. Our scheme Triraksha achieves the following:

1. It requires minimal changes at end points and is deployable with existing in-

frastructure.

2. Introduces fine-grained security for a client taking part in a TLS connection

with a server.

3. An in-network packet inspection service.

4. Incorporates the security properties of TLS and has a stronger privacy model

compared to Split TLS.

We implemented Triraksha by adding software modifications only on the middlebox

and the client. Our evaluation shows that Triraksha incurs little overhead when

compared with a regular end-to-end TLS connection.

4

In summary, our contributions are as follows:

1. A benchmark based on the UDS framework to assess the benefits of a scheme

that attempts to incorporate middleboxes in end-to-end encrypted sessions.

2. A comprehensive study of the existing literature and a comparative evaluation

of the schemes using our benchmark.

3. Triraksha: a practical alternative scheme to Split TLS for inspection of TLS

traffic in enterprise environments.

4. A prototype implementation of Triraksha in a controlled environment.

5. Strategies and discussion for extending Triraksha to future versions of the TLS

protocol and working under extended threat models.

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 covers some necessary

background and literature related to this dissertation. In Chapter 3, we introduce

our benchmark based on the UDS framework; summarize the schemes and do an

evaluation of schemes with our benchmark. Chapter 4 discusses the threat model,

design, implementation details and evaluation of our scheme Triraksha. In Chapter

5, we discuss extensions and general concerns for Triraksha. Chapter 6 concludes.

5

Chapter 2

Background

In this chapter, we discuss the TLS protocol, introduce middleboxes2, discuss a few

existing classification techniques for middleboxes and summarize deployment of mid-

dleboxes in networks using Split TLS. The section establishes that middleboxes are

beneficial and provides an overview on why it is necessary to work on a solution to

cleanly deploy middleboxes with a higher layer protocol like TLS.

2.1 Transport Layer Security (TLS) protocol

The TLS protocol was designed to provide secure communication for a connection

between a client and a server. TLS provides confidentiality and integrity of messages

for higher layer protocols like HTTP, IMAP, SMTP etc. The terms TLS and SSL are

often used interchangeably but the protocols differ subtly. TLS 1.0 was the successor

to SSL 3.0 and the current version of TLS is 1.2 [37] which is also the most widely

deployed TLS version. Version 1.3 [38] is currently under development.

2Formal definition of the terms used throughout the paper are provided in the Appendix.

6

TLS is placed at layer 5 in the TCP/IP [12] network stack and consists of the

handshake protocol and the record protocol. The handshake protocol is responsible

for setting up a secure session and establishing symmetric encryption keys between

the server and the client while the record protocol uses the symmetric encryption key

from the handshake protocol to do encryption and decryption of TLS record packets.

TLS packets are of four content types: handshake, cipher key exchange, application

data and alert. Each content type has its own header values and are summarized in

the Appendix. The TLS protocol is build on top of various cryptographic primitives

and tasks like key agreement, authentication, encryption and integrity protection.

The protocol allows the end points to choose from a list of algorithms to perform

these tasks. The collective selection of algorithms are referred to as a cipher suite.

An example of a cipher suite is TLS ECDHE RSA WITH AES 128 GCM SHA256

where ECDHE RSA is the key exchange algorithm, AES 128 GCM is the bulk en-

cryption algorithm and SHA256 is the message authentication code algorithm.

TLS ensures the following properties:

1. Entity authentication: An end point authenticates who it is communicating

with.

2. Payload confidentiality : which allows only the two parties in the connection

access to the data sent between them.

3. Payload integrity : which provides for data integrity and authenticity of the

messages communicated (in transit) between the parties.

We summarize the handshake and the record protocol in the following subsection.

7

2.1.1 The handshake protocol

The TLS handshake is responsible for establishing TLS session keys and authenti-

cating two end points in a connection. Figure 1 represents the TLS handshake done

using RSA. A TLS handshake is initiated by a TLS client with a ClientHello message.

The ClientHello contains information about the TLS version and a list of supported

cipher suites. The server responds with a ServerHello message containing the se-

lected cipher suite. The server also sends the server Certificate, ServerKeyExchange

and a ServerHelloDone message. The ServerHelloDone message indicates the end of

the transmission of the ServerHello. The client in turn sends a ClientKeyExchange,

ChangeCipherSpec and Finished message.

Figure 1: Example of a TLS handshake done using RSA.

The information in the Client/ServerKeyExchange messages are used to determine

the TLS session keys (TLS sessions keys are used for encryption of TLS application

data). The ChangeCipherSpec message indicates that all subsequent messages sent

between the endpoints would be encrypted. Following the Client Finished message,

8

the server responds with the ServerChangeCipherSpec and Server Finished message.

The Finish message is a hash of the entire handshake and ensures that the previous

messages have not been tampered with. A variation to the TLS handshake involves

session resumption where the end points can resume a previously negotiated session.

2.1.2 The record protocol

The record protocol is used to transmit protocol messages. A TLS client takes mes-

sages from a higher layer and uses the cipher suite negotiated during the handshake

to encrypt the message. The TLS client based on the cipher suite usually computes a

MAC over the plaintext, pads the message to a fixed block length and finally encrypts

it to get ciphertext. The ciphertext is wrapped with the protocol version, message

type and message length headers and passed to a lower network stack.

2.2 Middleboxes

2.2.1 Introduction

Middleboxes are units that stay in the network between two end points and perform

some functionality on the traffic by altering, inspecting, filtering or transforming

it. Significant changes have been made to the technology used in the Internet in

the last few years and with higher processing power of computers, performance and

security expectations from commercial services, content service providers and regu-

lar servers have increased [36, 25]. Middleboxes provide the necessary functionality

[83, 50] to meet them. Compared to the original architecture of the Internet [32]

which is based on the end-to-end principle and pushes functionality at end points,

9

middleboxes provide functionality and increase resource efficiency in-network. Mid-

dleboxes helps the Internet grow into a market driven ecosystem [59]. Middleboxes

are widely deployed in networks of all sizes. All major Internet service providers,

content service providers, mobile carriers, enterprises use middlebox for a wide range

of services. Not all functionality transpired by middleboxes is desirable as there are

increasing privacy concerns [77, 33, 2] on how middleboxes handle traffic. However,

it is established that middleboxes are essential and provide the necessary resources

for end points to perform better on the stage [49, 82].

2.2.2 Middlebox taxonomy

RFC 3234 [32] introduces a taxonomy for middleboxes. The most common way to

classify a middlebox is a classic: “good versus bad” scenario. Some middleboxes

provide useful functionality while some are malicious and attempt to disrupt commu-

nication between the endpoints. Middleboxes are also classified at the protocol layer

depending on which layer they provide functionality in. mcTLS [59] depicts exam-

ples of application layer middleboxes and the permissions it needs for functionality

at the HTTP layer. The examples are a good representative of the most common

types of middleboxes in networks. They are: cache, compression, load balancing, IDS,

parental filter, packet pacer and WAN optimizer. They classify middleboxes into three

categories: value added services (users opt in for these middleboxes), administrator

mandated (helps enterprises/institutions to set policies) and unauthorized (not useful

for network or user). TLS-AUX [47] classifies middleboxes into content aware and non

content aware services. Content aware services deal with the packet payload while

non content aware services usually work on the headers and other meta data associ-

ated with the connection. Middleboxes under the content aware services category can

access the plaintext data sent between the client and the server. Some examples are

10

an Intrusion detection systems, Intrusion prevention systems and content filters. In

our scheme Triraksha, we are interested in application layer middleboxes that provide

useful functionality such that the middlebox is capable of monitoring and inspecting

TLS traffic but not modifying it.

Middlebox operators and environment: We briefly summarize the environ-

ment and the operators that run the middlebox services. In medium and small sized

networks like home/company networks, middleboxes which typically provide func-

tionality at an application layer are operated as proxies or application layer gateways

(ALGs) while middleboxes which provide functionality at IP layers and below com-

monly run as routers, firewalls and NAT (network address translator) devices. A

proxy is a device that relays application messages between two peers in the network.

Proxies are capable of terminating sessions with the client and the server, acting as

server to the end-host client and as client to the end-host server. Proxies are of two

types: forward proxy and reverse proxy. A forward proxy forwards requests from a

peer to another in the network while the reverse proxy is used as a front-end to con-

trol and protect access to a server on an network. Both forward and reverse proxies

are typically used to provide services like anonymity, compression, load balancing,

WAN optimization, SSL acceleration etc. Application layer gateways are entities

programmed to provide a specific set of services and are implemented as hardware

or software at the gateways in an network. ALGs may reside within the gateway

device or reside externally but communicating with the gateway through a protocol.

Contrary to proxies, ALGs do not terminate connections between its peers. ALGs

inspects or optionally modifies application payload content to provide the middlebox

service and continue the flow of application traffic as a network hop. In large scale

networks, middleboxes are collectively run at multiple points to provide a wide array

of functionality. The collective distributed infrastructure for middleboxes services in

11

large scale networks are typically run as a CDN. A CDN has a large number of sur-

rogate servers in geographically different locations. A website using a CDN service

would have its data replicated to the surrogated servers and when users access the web

site, they will be directed to the CDN and finally get the content from a nearby sur-

rogate server rather than the web site’s origin server. CDNs originally were designed

to reduce network latency but have evolved to provide services like DDoS protections

appliances and application layer firewalls.

2.2.3 Split TLS and why it breaks regular TLS

A naive and popular solution used to incorporate middlebox environments with TLS

is to place the middlebox transparently between the end points. The middlebox acts

as a certificate authority and provides a self signed root certificate for each client

in the network. The client installs this root certificate on his end and when the

client attempts to connect to a server, the middlebox intercepts the connection and

fabricates a brand new certificate for that server (the fabricated certificate is signed by

the key of the root certificate installed on the client computer). Since the fabricated

certificate is signed by a key that the client trusts, the client application will accept the

connection. A second TLS connection is opened with the server and the middlebox

then pipes the data between these two end points.

Problems stemming from Split TLS: Split TLS only works for middlebox

operators that explicitly install a root certificate on the end point (typically client

side). Split TLS is designed insecurely and breaks the security properties offered by

TLS in the following ways:

1. Server authentication: The client as an end point does not authenticate the

12

server. To a regular user, no certificate warning signs would be displayed for in-

valid server certificates on a browser because the browser accepts the certificate

signed by one in its trusted root directory. Further, the server is completely

unaware of the middlebox in the connection.

2. TLS negotiations: The client does not negotiate the TLS handshake parameters

with the server and has no security guarantees of the parameters negotiated

between the middlebox and the server.

3. Over privileged middlebox: The middlebox gains access and is capable of reading

and modify the data sent between the client and the server. Full disclosure of

user and server traffic increase risk of privacy leak in systems.

Adopting Split TLS leads the user to have a false sense of belief that the client is

communicating with the server when in-fact the client is transparently communicating

with the middlebox. The bottom line is that Split TLS brings about risk and results

in less secure systems. Despite its limitations this scheme is widely used because of

its ease of deployment.

In the subsequent chapters of this thesis, we propose our scheme: Triraksha, which

is an alternative to Split TLS and provides better security benefits. We briefly discuss

how Triraksha has better security benefits over Split TLS. The Triraksha protocol

provides the following benifits:

1. Server authentication: The client and the server perform a TLS handshake.

The middlebox does not participate in the TLS handshake. The client sees

the certificate of the server and trusts this certificate if it is signed by a root

certificate on the client computer.

13

2. TLS negotiations: Compared to Split TLS, where the middlebox negotiates the

TLS version and the ciphers for the connection with the server (the middlebox

may degrade the security of the TLS connection by using poor or broken ci-

phers). In Triraksha, the client sets the list of ciphers and TLS version to be

used for the connection.

3. Over privileged middlebox: Compared to Split TLS where the middlebox has

access to the whole traffic (the middlebox can modify traffic or do unwarranted

actions like insert ads etc.), In Triraksha, the client controls for which con-

nections the middlebox can read the traffic. The middlebox cannot modify

the traffic in Triraksha and maintains content integrity for the messages sent

between the client and the server.

2.2.4 The world of middleboxes with end-to-end encryption

In the previous section, we discussed that middleboxes are used with TLS using Split

TLS. However, this works for only middleboxes that have an close association with the

end points (as the end point installs a certificate from the middlebox). Middleboxes

that operate without such a relationship must reveal their presence explicitly. It is

possible for middleboxes to coexist with end-to-end encryption without solely relying

on the Split TLS model but they must get consent/be trusted by atleast an end point

of the connection (client or server). Trust and explicit presence of the middlebox are

two necessary properties required for a middlebox to coexist with end-to-end encryp-

tion. A middlebox that is not visible to an end point cannot be trusted by that end

point [40]. The world of middleboxes existing with end-to-end encrypted connections

are described in Figure 2.

14

Figure 2: Classification of schemes for middleboxes coexisting with TLS.

The world described in Figure 2 contains the client (an end point that wants ser-

vice), the middlebox (which provides network functionality) and the server (the ser-

vice provider to the client). The environment is roughly divided into either the client

or the server providing consent to allow the middlebox in the connection. Configured

client side [40] consents to grant the middlebox access to traffic in an end-to-end

encrypted connection by allowing the middlebox to MITM the connection. A typical

example of such a model is Split TLS. The middlebox has access to all traffic and

is transparent to to the server. A variation to the ‘Configured client side model’ is

the ‘Dynamic client side model’ where the client learns the presence of the middlebox

after the clients attempts to contact the service in the respective network. In this

case, the client receives a certificate for the middlebox and the client can proceed

with the connection or not explicitly granting consent to the proxy. Contrary to the

client providing consent, there are models which allow the server to provide consent

in the similar manner. The client is transparent to the middlebox in this case. An

example of such an model is Keyless SSL [34]. We describe these models in the sub-

sequent sections. Recent proposals and models involve the client and the server to

negotiate and allow a predefined list of middleboxes or allow for middlebox discovery.

15

Following the negotiation, the client and server grants read or write permissions to

the middlebox on components of the traffic. An examples of such a model is mcTLS

[59].

16

Chapter 3

UDS framework

In this chapter, we propose a benchmark to assess schemes which incorporate middle-

boxes in TLS connections. We follow up with a comparative evaluation of the schemes

using the benchmark and discuss how and why the properties are rated based on facts

or any assumptions made in the proposals.

The UDS framework was introduced in [31] and provides a semi-structured way

to comprehend the benefits of a scheme. The properties chosen in the framework

allows the schemes to be [31] “rated across a common, broad spectrum of criteria

chosen objectively for relevance in wide ranging scenarios, without hidden agenda”.

The entities and context for trust in various schemes differ widely in assumptions

made in their privacy model, user consent and deployability for operators. It is

important to understand the process and the end goal a scheme tries to achieve. By

introducing a benchmark that encompasses the properties of the schemes, we can

align the security goals with the deployment needs of operators and usability for end

users. The benchmark we propose addresses the assumptions made in the literature,

the trust between the entities, their requirements and what they accomplish.

17

Schemes can be broadly classified into categories based on which end point would

provide consent to include the middlebox in the connection. Consent can be provided

by either the client or the server. In some schemes, it is assumed that the end user is

aware of the middlebox in the network by having an explicit list of the middleboxes

that they would allow to participate in the connection (the list in few cases is agreed

during handshake by the server and the client) while, with some schemes the end

users make policy decisions on discovery of a middlebox. The policy might apply to

each connection or for a longer period; granting specific permissions or complete read

and write permissions on the data.

Our classification is based on which end point trusts the middlebox and the com-

munication strategy used between the end point and the middlebox. We categorize

schemes into two categories (scheme either provide client side consent or server side

consent to the middlebox) and the client side consent schemes are further classified

into three categories. These categories are:

1. Proxy based schemes: In this category, the middlebox acts as a proxy and termi-

nates the connection between the end points. The consent to add a middlebox

can be provided by the client or the server and the proxy pipes data between

the end points.

2. Passthrough: In this category, the middlebox allows the end points to com-

municate directly with each other. An endpoint then uses a custom protocol

to communicate with the middlebox and provide consent. The communication

protocol with the middlebox maybe inband or out-of-band with the connection

to the other end point.

3. Modified TLS: In this category, TLS is modified to do a three party key exchange

during the handshake. The end points agree on a predefined list of middleboxes

18

to use in the session or use an extension with the TLS ClientHello/ServerHello

for middlebox discovery. An end point can provide consent to the middlebox to

read/write components of the traffic after the initial negotiation.

3.1 UDS benchmark

The benchmarks are divided into three categories: Usability, Deployability and Se-

curity. For the rest of the paper, a property shall be addressed to with an italicized

mnemonic title.

The schemes are rated qualitatively as either supporting the property or not sup-

porting the property. In some scenarios, sometimes the property is not applicable and

is hence rated accordingly. Cases in which it is unclear if the property is supported

by the scheme or not, we make an assumption fitting to the scheme or give it the

benefit of the doubt and rate it to have a partial compliance for the property. Such

schemes generally lack sufficient technical details in their proposal. We discuss when

such an assumption is made for the scheme. The decision to evaluate the scheme

qualitatively rather than quantitatively (assigning a weight to each scheme and rank-

ing them linearly) is motivated by the fact that we would like to have a understanding

of the technical issues for using middleboxes in TLS and focus on solving those prob-

lems rather than ranking schemes linearly. The ratings illustrate only what a scheme

achieves. If a scheme supports a particular property, it does not mean that we endorse

the scheme to perform better than its alternatives. We now proceed to describe each

of the properties.

Usability

1. Middlebox discovery visibility : The client/user is aware of the existence of

19

a middlebox when they make a connection to the server.

This property is not applicable for schemes that provide server side consent.

Rating for UDS framework:

Yes: The scheme shows the existence of a middlebox to the user/client during

each TLS connection.

Partial compliance: The scheme shows the existence of a middlebox is only

shown to the user/client initially when the middlebox is configured.

No: The scheme shows the existence of the middlebox is not shown to the

user/client during a TLS connection.

2. Middlebox persistence visibility : This property checks if the middlebox is

visible to the client/user when the user switches to a new network.

This property is not applicable for schemes that provide server side consent.

Rating for UDS framework:

Yes: The middlebox defaults to intercept each connection and show its exis-

tence to the user/client when the user switches to a new network.

No: The middlebox defaults to not intercept a connection when the user

switches to a new network.

3. Infrequent errors or open fails : The property puts in check if the scheme

is capable of handling open fails and supports error handling when the end

parties rely on alternative authentication methods (key pinning, DANE, HSTS

etc.) other than certificate validation.

Rating for UDS framework:

Yes: The scheme has a feature that allows the client to handle open fails. The

20

client, middlebox and server should be capable of supporting HTTPS authen-

tication services other than certificate authentication.

No: The scheme has no feature to handle open fails.

Security

1. Server authentication : The client authenticates the server in the handshake

phase. Server authentication should be achieved before any TLS application

data is transmitted between the client and the server. The scheme should

always let the client authenticate the server’s certificate.

Rating for UDS framework:

Yes: The scheme allows the client to authenticate the server.

No: The client does not authenticate the server.

2. Middlebox recognition : Any middlebox that would intercept the connection

between a client and a server should be recognized by the client.

Rating for UDS framework:

Yes: The client recognizes the middlebox.

No: If the client does not recognize the middlebox.

3. Connection specific interception : The scheme allows fine-grained data

confidentiality for each connection between the end points and the middlebox

i.e. trusting a middlebox for one connection should not extend the trust to sub-

sequent and future connections. The end points can make several connections

and the middlebox (or a number of middleboxes in the network) may or may

not be able to perform functionality for all of these connections (based on the

policy set by the client/server).

Rating for UDS framework:

21

Yes: The scheme has a mechanism to set fine-grained access control on each

connection made by the end points.

No: The scheme has no mechanism to set fine-grained access control on each

connection made by the end points.

4. Minimal read disclosure : The scheme supports least privilege for read ac-

cess on data in a connection which is intercepted by a middlebox. The middle-

box should be provided with the least read level access it requires to perform

its functionality. Read access can be classified into three levels: full read access,

partial read access and no read access. A scheme allows full read access if the

middlebox can read and inspect all data between the client and the server. A

scheme is marked as partial read access if a middlebox is allowed to read only

selective data sent between the client and the server, for example, in a partial

read access scheme, a middlebox would support keyword inspection giving the

middlebox privilege to read only few keywords. Other examples would include

schemes in which a middlebox has privileges set by the end points for the data

it can read. A scheme is marked no read access if the middlebox cannot read

the data communicated between the end points.

Rating for UDS framework:

Yes: The scheme provides no read access to the middlebox for the data trans-

mitted between the client and the server.

Partial compliance: The scheme provides partial read access to the middle-

box for the data transmitted between the client and the server.

No: The scheme provides full read access to the middlebox for the data trans-

mitted between the client and the server.

5. Minimal write access : A scheme should have minimal write access to the

data accessed by a middlebox. A middlebox should be provided with write

22

access to the data only if required. The scheme at any given phase should

be able to maintain message integrity between the end points. The client and

server should be able to detect modification made to the traffic between them.

Write access can be classified into three levels: full write access, partial write

access and no write access. Full write access implies that the middlebox can

modify data before it pipes it between the client and the server. Partial write

access means the scheme supports selective modification to data that is sent

between the client and the server. No write access means the middlebox does

not have access to the data communicated between the client and the server.

Rating for UDS framework:

Yes: The scheme provides no write access to the middlebox for the data trans-

mitted between the client and the server.

No: The scheme provides full write access to the middlebox for the data trans-

mitted between the client and the server.

Partial compliance: The scheme provides partial write access to the middle-

box for the data transmitted between the client and the server.

6. Client negotiation for TLS : This property puts in check if the client is

allowed to handle TLS handshake negotiations with the server.

Rating for UDS framework:

Yes: The scheme allows the client to negotiate all handshake parameters for a

middlebox in the connection.

No: The scheme does not allow the client to negotiate all handshake parameters

for a middlebox in the connection.

This property is not applicable for schemes that provide server side consent.

Deployability

23

1. No significant latency : The property checks if the scheme has additional

overhead than a regular TLS connection. Overhead can be measured in term of

extra round trips, page load times, handshake sizes (and file download times for

varying configurations of link speed and file size). In our evaluation, we com-

pare the number of additional TLS handshakes between the entities in a scheme

with the entities (client and server) in a regular end-to-end TLS connection. A

TLS handshake in the scheme maybe extended (requiring additional informa-

tion to be carried between the entities or be dependent on some process). For

this property, an extended handshake is the same as a regular end-to-end TLS

handshake and we ignore the additional network latency of the extended TLS

handshake.

Rating for UDS framework:

Yes: A scheme is rated yes if it has equal number of TLS handshakes than that

of a regular end-to-end TLS connection.

No: A scheme is rated no if it has more number of TLS handshakes than that

of a regular end-to-end TLS connection.

2. Server compatibility : This property keeps in check if in a scheme any changes

are made at the server end or additional extensions are needed to the TLS

protocol itself. An user (organization/enterprise) at the server end would less

likely adopt another scheme if additional modifications are required at their

end.

Rating for UDS framework:

Yes: The scheme requires no changes to be made at the server end.

No: The scheme requires changes to be made at the server end.

24

3. Middlebox compatibility : This property checks if the scheme requires mid-

dlebox providers to make changes at the middlebox end. The scheme would be

easier to use if it supports extensions/plugins to middleboxes and can be de-

ployed with existing infrastructure. If a non mature scheme were to be adopted,

in-network processing would require middlebox providers to update their soft-

ware/hardware.

Rating for UDS framework:

Yes: If no changes are required at the middlebox end.

No: If changes need to be made to the middlebox for it to be usable in the

scheme.

3.2 Summary of schemes evaluated using UDS frame-

work

We use the benchmark described in the previous section to do a qualitative evaluation

of TLS middlebox interception schemes. The evaluation process is summarized in

Table 1. In this section, we summarize the different schemes according to the category

they belong to. We start with schemes that are based on giving client side consent

to the middlebox.

3.2.1 Modified TLS schemes

1. mcTLS: mcTLS [59] proposes to let the client and the server agree on a mid-

dlebox/list of middleboxes that should be authorized in the connection to read

or write certain parts of the traffic. They introduce the notion of contexts. An

context is a set of symmetric encryption and/or message authentication code

(MAC) keys for controlling who can read and write the data. In other words,

25

the context is a set of privileges and these privileges allow the data to be read

or modified by the middlebox. Applications can associate each context with a

purpose and access permissions for each middlebox. For instance, web browser-

s/servers could use one context for HTTP headers and another for content. The

client and the server decide for each context its privileges and accordingly the

middlebox gets access to keys and can read (encrypt/decrypt) or write (en-

crypt/decrypt and authenticate) over the context. They introduce a three way

key-exchange protocol for their scheme by extending the TLS handshake to es-

tablish ephemeral session keys for each party taking part in the protocol. The

paper discusses the security model for middleboxes in a TLS session, the rele-

vant permissions required by a middlebox in a TLS session and the impact of

using contexts on privacy of the TLS session in mcTLS.

2. Blindbox: The Blindbox [73] proposal introduces the usage of two party com-

putation to implement secure keyword inspection by middleboxes in an end-

to-end TLS connection. The key difference between mcTLS and Blindbox is

that in Blindbox, the middlebox can read only keywords (generated by a third

party called as rule generator) in the traffic. The middlebox cannot modify the

traffic. The scheme use different cryptographic protocols to achieve their goals

altogether.

Keyword inspection allows the middlebox to detect whether the encrypted

traffic between the client and the server matches a particular pattern or keyword.

In the proposal, two streams of TLS connections are set up. The first stream

allows the client to communicate with the server directly. For the second stream,

all data sent by the client is divided into a number of tokens. These tokens are

encrypted by the client and sent to the middlebox. An entity: ‘Rule generator’

26

(trusted by the endpoints), generates a list of keywords (or rules) for which it

wants the middlebox to inspect the encrypted traffic. Using oblivious transfer

and two party computation, the middlebox is permitted to inspect the traffic for

particular keywords without it gaining access to the plain text. The middlebox

can only inspect the traffic for particular keywords that match the attack rules

established by the rule generator. The rules/keywords are oblivious to the

endpoints.

3. EFGH (End-to-End Fine Grained HTTP): EFGH [41] is a scheme that

extends the TLS protocol to allows middleboxes to be introduced in a TLS

connection between a client and a server. EFGH and mcTLS achieve the same

end goals. The key difference between mcTLS and EFGH lies in the approach

taken for endpoints to make selective content visible to the middlebox. mcTLS

uses the notion of contexts while EFGH uses a custom header in the packet

frame.

EFGH introduce a three party key exchange protocol, which upon completion

produces four types of encryption keys; two of them are used to encrypt data

of which one key is shared between the client, proxy and the server and the

other key is shared between the client and the server only. The remaining two

keys are authentication keys used to authenticate data between the proxy and

the server and the proxy and the client. The authors of EFGH modify the TLS

framing format by adding a TLS record header to have a custom frame (also

referenced as an EFGH frame). The EFGH frame has a header carrying extra

information on the type of the frame. Frames are typically divided into three

types: handshake, application data and alerts. Application data frames further

contain a header, metadata block and data block. The header in the application

27

data frame indicates whether the frame’s data is visible to the middlebox or not.

An EFGH protocol also includes a policy which typically encodes fine-grained

disclosure rules. The rules in the policy informs the principals about who (an

entity in the TLS session) is allowed to see what (protocol elements).

3.2.2 Passthrough

1. Ubicrypt: The Ubicrypt [81] scheme allows end-to-end encryption between a

client and a server while allowing a trusted gateway to inspect traffic. Ubicrypt

does not need modifications on the server end. Ubicrypt works on the QUIC

protocol (QUIC is an application layer protocol that sits on top of UDP and

utilizes a cryptographic protocol similar to TLS for authentication and encryp-

tion). At the start of the protocol, the trusted gateway allows an Ubicrypt

client to send session negotiation packets to the server until the session encryp-

tion keys are generated. The Ubicrypt client securely leaks the QUIC session

keys for an connection to the gateway in a separate secure channel. The gateway

continues to buffer packets sent by the client or the server and on receipt of the

keys will allow the packets to pass through. The scheme however suffers from

poor real word performance and was not evaluated over realistic data points.

Further, they do not have a proof of concept that performs decryption of the

packets or a evaluation of the resources and time required to do so.

Our scheme Triraksha in concept is similar to Ubicrypt however, we incor-

porate middleboxes for TLS instead of QUIC and enable decryption of TLS

packets. Further, we talk in detail about sharing only TLS encryption keys to

provide fine-grained trust in our model.

2. Sharing record protocol keys with a middlebox in TLS (SRPK): SRPK

28

[61] uses session key proliferation to achieve its goals of sharing symmetric ses-

sion keys between a TLS client and a middlebox. The key difference between

SRPK and Ubicrypt is that SRPK is server incompatible. SRPK uses a separate

content type “KeyshareInfo” added with the ClientHello for middlebox discov-

ery and negotiation. On agreement with the server (for including a middlebox),

it sends the symmetric keys. Ubicrypt simply resorts to using a trusted gate-

way. Further Ubicrypt supports only the QUIC protocol and SRPK supports

only TLS.

Specifically, the authors of SRPK construct a ‘tls keyshare extension’ that is

included in the TLS ClientHello and TLS ServerHello. The extension contains

a sequence of SHA-256 hashes of middlebox certificates. The client sends the

hashes of the certificates of middleboxes that it wants to include in the session

and the server sends a subset of the same hashes for those which it agrees to

trust. The RFC defines a new record type ‘KeyshareInfo’. This record type

allows the client, proxy and the server to agree upon the ciphersuites and TLS

version and also contains a data structure to store cryptographic keys. On

completion of the protocol, a trusted middlebox will receive the encryption/de-

cryption keys in ‘KeyshareInfo’ for the data transmitted between the client

and the server. They discuss how the client, middlebox and proxy process the

‘KeyshareInfo’ record at their end.

3.2.3 Proxy based schemes

1. Split TLS and Split TLS as CA: We discussed Split TLS in Section 2.2.3.

Here we discuss a subtle variation to Split TLS in which the middlebox has

as a certificate from a certificate authority or is a certificate authority. Unlike

29

regular Split TLS where the middlebox simply provides its certificate to the

client, here, the middlebox intercepts the connection with a certificate signed

by a certificate authority that the client trusts. The middlebox does not have

to present the client with its certificate and can intercept the connection by

simply being an intermediate in the network.

2. Explicit Proxies for HTTP/2.0 (Exproxy), R. Peon et al.: The Exproxy

RFC [64] proposed the use of explicit proxies. Their proposal falls under two

threat models. In the first threat model, they use a trusted proxy, which is

capable of inspecting all data sent and received by the end points while in the

second model they use a caching proxy in which only data that can be served

from the cache is inspected by the proxy. The middlebox (proxy) intercepts

the connection in both Split TLS and Exproxy but the key difference is that

Split TLS makes use of certificates to get the client private key while Exproxy

explicitly provides the “decryption material” to the middlebox.

In Exproxy, the client will decide whether it should use a null cipher for

encryption of data or give the decryption key for the session to the proxy de-

pending on the security mode. In case of a trusted proxy, the client can use a

null cipher for the TLS stream or give the decryption keys for the encrypted

data to the proxy while during the use of a caching proxy, the client should not

use a null cipher for the TLS stream and not provide the decryption keys for

the encrypted data to the proxy.

3. TLS proxy server extension, Mcgrew et al. (TPS): The proposal allows

proxies to be MITM entities. The key difference between Split TLS and TPS is

that TPS is server incompatible and TPS makes use of a custom extension in

the TLS handshake to introduce the middlebox in the connection. The custom

30

extension is also used for giving consent to the middlebox to participate in the

connection.

The principal contribution in TPS [55] is to construct a ‘ProxyInfoExtension’.

According to the scheme, when a client attempts to contact a server, the TLS

proxy intercepts and checks if the TLS ClientHello has a ProxyInfoExtension.

It then holds the stream data sent by the client. The proxy will then continue to

complete a TLS session with the server and send to the client, assertion about

the server and the session. The ProxyInfoExtension carries this assertion. The

client then performs authentication and authorization processes (checking server

certificate, hostname etc.) for the server certificates. The client also authen-

ticates the proxy and establishes trust. On successful run of the protocol, the

proxy will be able to relay data between the client and its peer connection. The

RFC addresses multiple goals such as handling middlebox discovery, authenti-

cation of server and proxy by the client and allowing the client to make access

control decisions for the proxy over the content it transmits.

4. Explicit Trusted Proxy in HTTP/2.0, Loreto et al (ETP): The RFC

[53] describes how an user can provide consent for a trusted Proxy to be securely

involved in the connection when the user is requesting an HTTP URI resource

over HTTP2 with TLS. Conceptually, there is little difference with ETP and

Split TLS. The key difference lies that ETP requires user consent to include the

middlebox for each connection.

In the scheme, when the user has given consent to the presence of the proxy,

the client switches to a “proxy mode” in which it does not check the hostname of

the origin server against the server’s identity as presented in the server certificate

31

message. The scheme also allows an user to “opt out” and choose to bypass

the proxy. Proxy discovery is described in two methods. In the first method,

discovery of the proxy is done when the client receives the server certificate

(the server certificate contains an ‘Extended KeyUsage’ extension and a ‘proxy

authentication key purpose ID’). It performs certificate validation checks and

secures consent from the user to allow the proxy in the TLS connection. In the

second method, the proxy indicates its presence and identity by intercepting

a TLS ClientHello message, and forcing the client to redirect to a secure page

on a portal where the user requests to consent to the presence of the secure

proxy. In both the methods once the trusted proxy has been identified and user

consent is established, the proxy is trusted and has access to all data. Loreto et

al. further constrain the trusted proxy such that URIs that are available over

the HTTPS scheme do not traverse the proxy. This has the effect of precluding

the proxy from performing services that may be of benefit to the user

3.2.4 Schemes that provide server side consent

We first summarize two schemes (configured server side) and then some Industry

patents which provide an abstract description on how they use middleboxes in a TLS

connection. In this thesis, we do not focus on schemes that use server side consent

for middleboxes in detail and do not evaluate them with the UDS benchmark.

1. Keyless SSL: Keyless SSL [34] was introduced by CloudFlare and allows for it

to have read and write access to traffic between the client and the server. Keyless

SSL pushes the consent for access to data to the server side. Keyless SSL lets

regular servers retain custody of their private keys while they use CloudFlare

to serve traffic. In Keyless SSL, the private key of the server is moved to a

32

‘keyserver’. During a TLS handshake, when the client sends a random pre-

master secret encrypted by the server’s public key. CloudFlare will forward

the encrypted pre-master secret to the keyserver and the keyserver returns an

unencrypted pre-master secret (as the keyserver has the private key to decrypt

the encrypted random password). Once it receives the random pre-master secret

for the TLS session, CloudFlare and the client can derive identical TLS session

keys and CloudFlare can serve server traffic encrypted by the TLS session key.

The connection between CloudFlare and the keyserver is encrypted by a strong

cipher suite.

2. SSL spliting: SSL spliting [51] proposed to simulate a SSL connection with

a client by combining authentication records from the server with data records

from the proxy. The scheme reduces bandwidth load on servers by allowing

proxies to serve data which is endorsed by the server. The server signs the

data while the proxy is a distribution channel which serves data to the client.

SSL splitting does not provide confidentiality, as the proxy has access to the

encryption keys shared between the server and the client and uses them to re-

encrypt the merged stream. The proposal is hence limited to serving only public

data. During the setup phase, the client attempts to initiate an handshake with

the server. The proxy will replay the handshake messages to the server and in

return the server is authenticated to the client. To respond to the data resource

requested by a client, the server sends the MAC of the resource along with a

short unique identifier. The proxy splices the payload sent by the server, it uses

the unique identifier to lookup the resource in its cache and then merges the

MAC from the spliced payload with the resource. It replays the reconstructed

stream to the client in a manner indistinguishable to an original stream that

would be sent by the server. The server does not have to send any data records

33

and the proxy has access to the encryption keys but not to the authentication

keys. If a proxy does not have a particular resource in its cache then it triggers

a cache miss handler which is simple HTTP like protocol that downloads the

resource from the server.

3. Terminating SSL connections without locally-accessible private keys,

Akami Technologies: The patent [42] filed by Akami technologies is very

similar to Cloudflare’s Keyless SSL. The protocol dictates the SSL handshake

and decryption of the pre master secret for the server to be done at a remote

location. The server in context with the patent is an edge server in a CDN

and not the principal server of the website. The proxy is split to function in a

client-server model with the client side residing at the SSL termination point

(the edge server). The server component of the proxy resides in a remote place

and is associated as a data store in which decryption keys (private keys) are

stored. The decryption keys for a server certificate do not reside at the end

point (the edge server) and are never accessible from the server component of

the proxy. During a SSL handshake, the client proxy component proxies the

encrypted pre-master secret it receives from a conventional SSL client and the

server component of the proxy returns the decrypted pre master secret. The

client component of the proxy forwards this to the edge server with which it can

derive master keys and continue with the rest of the handshake normally. The

connection between the client proxy component and the server proxy component

is mutually authenticated.

4. Proxy SSL handoff via mid-stream re-negotiation, F5 Networks: The

patent [30] filed by F5 Networks provide an infrastructure in which a single

existing SSL connection can be used to serve content from more than one server

device. A traffic management device (TMD) is setup between a client and the

34

first server. To switch to another server the process is as follows: for an existing

SSL connection between a client and a server device, the TMD may request a

client to re-negotiate an encrypted connection. The criterion for which a re-

negotiation request is initiated by a TMD is server configured, for example it

maybe a schedule maintenance of a server or based on the type of data requested

by a client. The TMD receives the private key from the first server and can

decrypt all data sent by the client. The TMD can redirect the responses of

the re-negotiation request to a second server device based on network topology,

network traffic, server capacity etc. The TMD receives the private key from

the second server device, decrypts the responses from the client and may itself

becomes the endpoint by encrypting the messages or may forward the responses

to the second server device enabling it to be the endpoint.

5. Accessing SSL connection data by a third-party, F5 Networks: The

patent [66] discusses a method for a proxy intercepting SSL connections which

is situated between a client and a server or a client and a traffic management

device (TMD). It specifies various embodiments for the connection setup. The

secret data to decrypt content in a SSL session can concurrently be given to the

proxy or can be given in a separate out-of-band connection. The secret data

can be encrypted by the sender and may consist of the pre master secret and

server/client random or the master secret. The proxy has access to the payload

sent by either end point and can decrypt the data and modify it. The payload

may be scanned, logged, audited and even used to make a traffic management

decision. The proxy can also decide to terminate the SSL connection or act

as an end point. For an SSL rehandshake request, the proxy checks the SSL

session ID for the party it received the Hello request from. If the SSL session

ID points to a previous session, then session keys for the proxy interception are

35

derived from the same secret data logged by the proxy.

6. Strong SSL proxy authentication with forced SSL re-negotiation, F5

Networks: The patent [28] reciprocates an idea based on the same design of

Split TLS. In the setup, the client initiates an encrypted network connection

with a proxy. Having established a secure connection with the proxy, it forward

the target server domain name or IP address it wants to connect to. The proxy

responds to the client with an encrypted session re-negotiation message. The

client sends to the proxy an encrypted session handshake message. The proxy

device forwards the encrypted session handshake message to the target server,

and continues to pipe handshake messages between the client and the server

device, enabling the client device and the target server device to establish an

encrypted session.

7. Authentication delegation based on re-verification of cryptographic

evidence, Microsoft: The patent [57] discusses on authentication delegation

by re-verifying the cryptographic evidence. The client authenticates to the

proxy (gateway) using a TLS handshake with client authentication. A record-

ing of the TLS handshake (THR) is provided either to the web server (which

re-verifies the validity of the handshake) or to a third party entity (which upon

verifying the recording, provides user credentials to the gateway which is further

authenticated with the web server). The web server or third party verify that

the user has authenticated to the gateway (by validating the certificate verify

message in the THR). If the user credentials (e.g., client certificate) are authen-

ticated by the web server, access to the requested web server is granted to the

client/user, and if the client certificate cannot be verified, access is denied. The

scheme is limited to function only when there is client side authentication in

36

TLS and the client and gateway do not resume a previous TLS session/dupli-

cate an existing session. Replay attacks to reuse the recorded TLS handshake

record are prevented by using timestamps in handshake messages or embedding

of a nonce (provided by the web server) by the proxy.

3.3 Sample evaluation based on the UDS bench-

mark

In this section, we discuss some of the specific cases and give an example for how

some of the properties are rated.

1. Middlebox discovery visibility : An example of a scheme that is ‘Yes’ rated

is TPS. The TPS RFC relies on a TLS extension which is used by the proxy

to provide information to the client or server about its presence. They leave it

to the client applications to visualize the existence of a proxy to the user. An

example of a scheme that is rated as ‘No’ is Split TLS as a certificate authority.

In this case, the middlebox acts as a CA. It can present a certificate (signed by

a legitimate root certificate) to the client/user. The client/user would not be

aware that the connection is intercepted. An example of a scheme that is rated

as partially compliant is regular Split TLS. In this case, an user/client accepts a

certificate for the middlebox during configuration. The user/client may or may

not be aware if the connection is intercepted. All schemes that use a predefined

list of middleboxes to include in an encrypted connection or need a predefined

configuration to connect to the middlebox are rated as partially compliant.

2. Infrequent errors or open fails: An example of a scheme that is rated

‘No’ is Split TLS as in Split TLS, authentication mechanisms like key pinning

37

are not supported. An example of a scheme that is rated ‘Yes’ is TPS as they

support other authentication mechanism like DANE, HSTS etc. A scheme that

makes modifications by extending TLS does not support Infrequent errors or

open fails as it is unclear how open fails are handled by the client and the

server. A scheme in this case is rated ‘No’ unless they discuss specifically if

they support existing alternative authentication mechanisms for TLS.

3. No significant latency : The number of handshakes in Split TLS for a sin-

gle TLS connection are two (one each between a client and a middlebox and

a middlebox and a server) and hence does not support No significant latency.

Schemes are broadly categorized as to use upto three handshakes in their proto-

col. On a general note, three handshakes mean that there is one TLS handshake

between the client and the server, one TLS handshake between the client and

the middlebox and then one TLS handshake between the middlebox and the

server. Schemes that use two TLS handshakes mean that generally there is

one TLS handshake between the server and the middlebox and one between

the middlebox and the client. Schemes that have one TLS handshake gener-

ally have some kind of an additional extension that is included along with the

TLS Sever/ClientHello. This extension would carry information to include and

authenticate a middlebox in the session. The entire TLS session is negotiated

in two RTTs (round trip times; the same number of RTTs in a regular TLS

connection with no middlebox).

4. Minimal read/write disclosure: A scheme is rated as partially compliant

when the end points can control what components of the traffic can be read/-

modified by the middlebox. An example of such a scheme is mcTLS.

5. Server compatibility : The schemes do not support server compatibility when

38

modifications are made to the standard HTTPS/HTTP protocols or involve the

server to be modified for the middlebox to intercept the connection. An example

of a scheme that is rated as ‘No’ is mcTLS.

3.4 Evaluation of schemes (client consent) based

on the UDS benchmark

In this section, we evaluate all schemes that provide client side consent to the mid-

dlebox (grouped under their category). We choose and discuss the rating for one

representative scheme in detail for each category. For the rest of the schemes in the

category, we only discuss the differences in the rating process relative to the repre-

sentative scheme.

3.4.1 Modified TLS

1. mcTLS:mcTLS complies partially withMiddlebox discovery visibility as it uses

a predefined list for middleboxes that the client and the server want to include

in the connection. The scheme does not support Middlebox persistence visibility

because for each connection, the client sends a list of middleboxes (included in

the ClientHello) that it want to include in the connection. If an user switches

a network, the client would still continue to ask the server to include the list

of middleboxes in the connection. mcTLS fails to discuss how it would han-

dle open fails or other authentication mechanisms and thus does not comply

with Infrequent errors or open fails. mcTLS requires the server and middlebox

to support the scheme and hence does not support Server compatibility and

Middlebox compatibility. mcTLS achieves the entire TLS negotiation in one ex-

tended TLS handshake (here extended TLS handshake is based on the three

39

way key exchange protocol. It is a regular TLS handshake with symmetric key

establishment for middlebox) and hence supports No significant latency. As

described in the three way handshake of mcTLS, it is clear that the scheme

supports Server authentication and Middlebox recognition and TLS protocol ne-

gotiation. An application and server using mcTLS can set contexts in two ways:

context per data stream or as a middlebox policy. A middlebox can read/write

data only if the it has the respective context key. Hence, we rate mcTLS as to

partially supportMinimal read disclosure andMinimal write access and support

for Connection specific interception.

2. EFGH: mcTLS and EFGH are rated similarly as they both achieve the same

properties using a subtly different approach. EFGH handles middlebox discov-

ery and discusses very briefly that the client first establishes a TCP connection

with the middlebox by a proxy auto-config file, DHCP, or manually configuring

the address of a proxy in browser. An user can switch configuration on how he

connects to the proxy by changing his browser settings, DHCP configuration

etc. when he switches his network and is hence rated to support Middlebox per-

sistence visibility. All other properties are rated the same as mcTLS for similar

reasons.

3. Blindbox: mcTLS and Blindbox are rated similarly. Blindbox does supports

Minimal write access as the middlebox cannot modify traffic between the client

and the server. The scheme requires three separate streams: one regular TLS

connection, one to transmit the “searchable” encrypted tokens, and one to listen

if a middlebox on path requests garbled circuits. Only one TLS handshake

is used between the sender and a receiver in the scheme. The performance

overhead of Blindbox on a connection is due to obfuscated rule encryption and

only one TLS handshake is used between the end points. We rate is as to support

40

No significant latency. All other properties are rated the same as mcTLS for

similar reasons.

3.4.2 Passthrough

1. Ubicrypt: The scheme does not discuss how an user would be aware of the

middlebox inspecting the packet payload. The trusted gateway (middlebox)

in Ubicrypt is preconfigured to be a network hop in the connection and hence

partially complies with Middlebox discovery visibility. The gateway is no longer

part of the network and the client defaults to using a regular end-to-end TLS

connection with the server when the user switches a network. It hence supports

Middlebox persistence visibility. Ubicrypt would rely on existing browser alter-

native authentication mechanisms and hence supports Infrequent errors or open

fails. Even though the real world performance for their proof of concept was

poor, the protocol establishes a QUIC connection in one extended TLS hand-

shake (extended TLS handshake here means the regular TLS handshake along

with the connections that leaks the QUIC sessions keys) and hence supports No

significant latency. Ubicrypt is deployable and supports Server compatibility as

no server side modifications are required, however, does not have support for

Middlebox compatibility. Ubicrypt supports Server authentication and Middle-

box recognition as the scheme allows the client to authenticate the server using

QUIC and the threat model only allows a trusted gateway as a middlebox.

The scheme is modeled such that clients simply failing to leak the keys would

have the network connections terminated before it sends QUIC application data

packets to the server. The keys have to be leaked for each connection or the

client does not communicate with the server. We rate it to support Connection

specific interception. It is unclear if the MAC keys are also leaked along with

41

the encryption keys in Ubicrypt. We assume that for the gateway to correctly

decrypt and verify integrity for the data, the MAC keys are leaked. Following

this assumption, Ubicrypt does not provide for Minimal read disclosure and

Minimal write access. Ubicrypt supports Client negotiations for TLS as the

client communicates with the server directly.

2. Triraksha: The rating for Triraksha is described in Section 4.4.1.

3. SRPK: SRPK supports Middlebox discovery visibility as the client sends a list

of middleboxes that are in connection to the server and allows for a unknown

middlebox to be added to the connection as well. SRPK supports Middlebox

persistence visibility as the client sends the hashes of the certificates of middle-

boxes that it knows are on-path to the server. If an user switches a network,

the new connection to the server would include only the new list of middleboxes

in the network. SRPK does not support Server compatibility as a new content

type ‘KeyshareInfo’ is used in the TLS connection. SRPK does not support

Minimal read access and Minimal write access as the client shares the RSA

encrypted record of the write keys (for both client and server) with the middle-

box. SRPK allows the client to have access controls for the proxy over a specific

domain and hence supports Connection specific interception. SRPK establishes

the connection in one TLS handshake and hence supports No significant latency.

3.4.3 Proxy

1. Split TLS: With Split TLS, the middlebox certificate is installed by the client

upon first connection. This is a case of preconfigured middlebox and is hence

rated as to partially support Middlebox discovery visibility. Once a certificate

from the client is installed on the root certificate directory, the client/user is

42

always configured to allow the proxy in the connection. It does not support

Middlebox persistence visibility. With Split TLS, authentication mechanisms

like HSTS and key pinning are not allowed. It does not support Infrequent errors

or open fails. No modifications are needed at the middlebox and server end and

hence supports Server compatibility andMiddlebox compatibility. Split TLS uses

two handshakes (one between the client and the middlebox and one between the

server and the middlebox) and hence does not support No significant latency.

With Split TLS, the server is not authenticated by the client and the client does

not negotiate the TLS handshake. It is hence not Server authentication and

Client negotiation for TLS. The client can see the certificate of the Middlebox

and is hence Middlebox recognition. Split TLS does not allow for Connection

specific interception. Once a certificate is installed on the client, the middlebox

is capable of modifying and reading all encrypted traffic in the connection. It

hence does not support Minimal read disclosure and Minimal write access.

2. Split TLS as a CA: Regular Split TLS and Split TLS as CA are rated sim-

ilarly. However, the difference lies in Middlebox discovery visibility. The client

trusts the middlebox as the middlebox certificate is signed by the same root

CA as that of a root certificate on the client computer. It is hence does not

support Middlebox discovery visibility. The scheme does not support Middlebox

recognition as the middlebox presents its certificate to the client signed by a

CA that the client trusts. The rest of the properties are rated the same as Split

TLS for similar reasons.

3. Exproxy: Split TLS and Exproxy are rated quite similarly. With Exproxy the

client is preconfigured to connect to the proxy and is hence partially compliant

withMiddlebox discovery visibility. In Exproxy, an user can switch configuration

on how he connects to the proxy by changing his proxy connection settings and

43

is hence Middlebox persistence visibility. Exproxy is not Server compatibility

and Middlebox compatibility as it requires modifications at the middlebox and

the server end. The trusted proxy model does not support Minimal read access

as it has access to all the traffic in the connection while the threat model of using

a caching proxy partially supports Minimal read access and supports Minimal

write access. The caching proxy is authenticated and it is not provided with

the decryption keys to the encrypted traffic. However, the caching proxy can

still serve the client with cached data and hence is rated partially compliant.

The rest of the properties are rated the same as Split TLS for similar reasons.

4. TPS: TPS supports Middlebox discovery visibility as a TLS extension is used

by the proxy to provide information to the client or server about it. It sup-

ports Middlebox persistence visibility as the custom extension would be used

to involve a middlebox for each connection irregardless of the network. TPS

supports Infrequent errors or open fails as they specifically mention that the

scheme can support alternative authentication mechanisms. TPS does not sup-

port No significant latency as it uses two TLS handshakes to make a connection.

TPS is not Server compatibility and Middlebox compatibility as it requires the

server and middlebox to support the ‘ProxyInfo’ extension. TPS does Server

authentication, Middlebox recognition and Client negotiation for TLS in their

scheme. These three properties are supported by the use of the ‘ProxyInfo’

extension. The extension is send with each connection and hence TPS is Con-

nection specific interception. Once the proxy is part of the connection, it has

access to all the traffic in the connection and is capable of modifying it. It does

not support Minimal read disclosure and Minimal write access.

5. ETP: ETP is rated similar to Split TLS for most of the properties for similar

reasons. ETP supports Connection specific interception, Middlebox discovery

44

visibility and Middlebox persistence visibility as it involves the user/client con-

sent for each connection.

Usability Deployability Security

Name M
id
d
le
b
ox

d
is
co
ve
ry

v
is
ib
il
it
y

M
id
d
le
b
ox

p
er
si
st
en
ce

v
is
ib
il
it
y

In
fr
eq
u
en
t
er
ro
rs

or
op

en
fa
il
s

N
o
si
gn

ifi
ca
n
t
la
te
n
cy

(h
an

d
sh
ak
e)

S
er
ve
r
co
m
p
at
ib
il
it
y

M
id
d
le
b
ox

co
m
p
at
ib
il
it
y

S
er
ve
r
au

th
en
ti
ca
ti
on

M
id
d
le
b
ox

re
co
gn

it
io
n

C
on

n
ec
ti
on

sp
ec
ifi
c
in
te
rc
ep
ti
on

M
in
im

al
re
ad

d
is
cl
os
u
re

M
in
im

al
w
ri
te

ac
ce
ss

C
li
en
t
n
eg
ot
ia
ti
on

s
fo
r
T
L
S

P
ro
x
y

Split TLS �� � � � � � � � � � � �
Spit TLS as CA � � � � � � � � � � � �
ETP � � � � � � � � � � � �
TPS � � � � � � � � � � � �
Trusted Exproxy �� � � � � � � � � � � �
Caching Exproxy �� � � � � � � � � �� � �

P
as
s

th
ro
u
g
h SRPK � � � � � � � � � � � �

Ubicrypt �� � � � � � � � � � � �
*Triraksha �� � � � � � � � � � � �

M
o
d
ifi
ed

T
L
S

mcTLS �� � � � � � � � � �� �� �
Blindbox �� � � � � � � � � �� � �
EFGH �� � � � � � � � � �� �� �

Table 1: Summary of the evaluation of client side consenting schemes with the UDS
benchmark. Legend: � the scheme supports the property; � the scheme does not

support the property; and �� the scheme partially complies with the property

3.5 Related work omitted from UDS framework

In this section, we discuss some of the related literature that is not included with the

evaluation in the UDS framework. These proposals are not included with the UDS

45

framework as they either lack sufficient technical details or are only partially related

to our work.

Stebila et al. [75] examines the security and performance of CloudFlare’s Keyless

SSL, in which the principal web server retains possession of their private key and

splits the TLS state machine geographically with the edge server and a key server.

Keyless SSL allows to use a private key proxy service and hence, decreases the trust

given to an edge server while still being able to do data caching and compression.

They find the latency to be sightly higher but better than the principal web server

serving content directly to the edge server.

RFC 3280 [78] specifies the Internet standard for proxy certificates based on the

X.509 public key infrastructure. The document defines properties for proxy certifi-

cates as a means of providing restricted proxying within an (extended) X.509 PKI

based authentication system.

Any node refusal [1] includes proxies in TLS sessions by requiring trusted proxies

to have their own end-to-end HTTPS session with the browser when processing traffic

from an HTTPS content server. The proxy establishes an end-to-end intra-connection

using TLS with a NULL cipher (A cipher with no encryption but still does data

authentication and data integrity checking) between the browser and the server. The

traffic sent from the client to the server is encrypted by the end-to-end TLS sessions,

while being viewable by the proxy. The browser and web server can authenticate and

validate the integrity of the data. Any node (client/server) can refuse participation of

sending data on a per object basis. The scheme is not included in the UDS framework

due to lack of technical detail in the paper.

Several patents [29], [46], [57], [35] and [54] discuss methods like optimizing SSL

handshakes, support for delegation of SSL handshakes to secondary server devices,

form based login authentication in SSL through a proxy and insertion of resources by

46

a proxy in Split SSL. Most of these ideas are represented and similar to some of the

patents in the previous section and hence we do not discuss them.

Liang et al. in their paper [52] study the current practices of using HTTPS with

CDNs. They investigated 20 popular CDN providers and 10,721 of their customer web

sites. They observed that 15 percent of them raised alerts of invalid certificates, reify-

ing the broken trust model of HTTPS with CDNs. They also provide a lightweight

and flexible DANE based solution that addresses the HTTPS authentication problem

in the CDN environment. In the solution, the client issues a DNS query request to

view the web server’s TLSA records and can recognize the delegation relationship

between entities.

Jawi et al. [45] use a non intrusive, forward proxy with adaptive security features

for SSL/TLS connections. The proxy has three components for monitoring, analysis

and response for each connection. A security policy is used with the analysis com-

ponent which feeds information of each SSL/TLS connection for static and dynamic

testing before proceeding to the response component. The security policy contains

static attributes (cipher suites, root certificates, key exchanges, ciphers and hashes)

and dynamic attributes (SSL certificates specific to a connection). The JSON schema

is used to define the attributes and policies used for testing. Scripts are then run to

match the attributes with the policies and if the attributes default to the policy then

an error is raised in the response component.

RFC 2660 [65] defines Secure HTTP (S-HTTP) which provides secure communi-

cation mechanisms between an HTTP client-server duo. They aim to improve the

status-quo for commercial transactions in a wide range of applications. S-HTTP

does not require client side public key certificates and supports only symmetric key

operation modes. S-HTTP defines two mechanisms for key transfer, the first uses

47

“public-key enveloped key” exchange and the second method uses “externally ar-

ranged keys”. For the latter method, the data is encrypted by using a prearranged

session key, with key identification information specified in the header lines. The

S-HTTP protocol also specifies interaction between a client and a proxy in their pro-

tocol. The client and a proxy negotiate cryptographic options that the proxy sent.

On agreement, a client will recursively encapsulate the data and send it to the proxy.

When the proxy receives a message, it will strip the outer encapsulation to recover

the message and pipe it forward to the server.

Backes et al present WebTrust [26], an integrity and authenticity framework for

HTTP that “allows on the fly verification of static, dynamic and real time web

stream content from untrusted servers”. It uses iframes for verifiability of content

provided from different web servers. Under their model, WebTrust provides protec-

tion of HTTP content against active network attackers. WebTrust enables the client

to detect any modified data packet upon arrival without downloading the entire docu-

ment. Webtrust also enables the use of web cache (proxies) but looses confidentiality

of content in this case.

Some proposals work to incorporate middleboxes by working on a different layer

in the OSI stack. IPsec [71] proposes to encrypt and authenticate data at the IP

layer. There are significant limitations to use IPsec with middleboxes. The overhead

of double encryption when TLS is used with IPsec and the lack of separate key

management scheme make the adoption less likely. TCPcrypt [18] establishes end-

to-end encrypted sessions at the TCP layer. TCPcrypt has reduced overhead on

the server and leaves authentication to the application. However, TCPcrypt does

not replace TLS and suffers from drawbacks like: using short lived keys to provide

forward secrecy and the lack of a key confirmation in its 4 way handshake. The

Delegation-Oriented Architecture and (DOA) [3] and Named Data Networking (NDN)

48

[8] projects support to use trusted intermediaries in the network based on their own

security mechanisms and properties.

3.6 UDS evaluation discussion

We summarize our evaluation of the proposals in Table 1. It is observed that within

the schemes there is inherent lack of consideration in the design for usability and

deployability. Rendering the user to believe that it is is communicating with the end

server directly when infact it is communicating with a middlebox results in violation

of trust for the user. The schemes would barely describe the bare bones on how a

deployed scheme would look like to an user. A second observation is that almost

all schemes requires modifications at the server, client and middlebox end points.

Non server compatibility results in overall less integration of the scheme in the real

world. Requiring server side modifications forces clients to connect to only servers

that support the scheme. Some schemes fail to offer fine-grained security within the

middleboxes. While some schemes by design apply minimal read and write disclosure

to the middlebox, a majority of them do not discuss it in detail. The evaluation for

majority of the schemes are limited. Some do not have a proof of concept implemen-

tation and the subset of the ones that do have an implementation are not evaluated

extensively over real world data points. However, the reason for this may be at-

tributed as evaluation of a scheme on the Internet is not trivial. There are limited

ways to demonstrate and test ideas on a large scale when there is already a huge

install base that is reluctant to change.

In this thesis, we do not do a quantitative scheme evaluation, that is weights are

not assigned for each property. Simply counting the dots from Table 1 do not endorse

a scheme to be better. However, from our perspective the most important property

49

within the framework is Server compatibility. As with existing literature, if a scheme

requires server side changes, the chances of it being deployed in the real world is less

likely. If we look at Table 1 and in particular at the column for server compatibility;

only 5 schemes are server compatible. Two schemes (Ubicrypt and Triraksha in theory

present the same idea and differ slightly in the level of fine-grained confidentiality,

Further, Ubicrypt was developed for the QUIC protocol and we propose Triraksha

for the TLS protocol). The remaining three schemes collectively lack the necessary

security properties and break end-to-end encryption for reasons described in Section

2.2.3. This gives us incentive and the need for a scheme that provides fine-grained

confidentiality and is server compatible.

We now propose and introduce the Triraksha protocol in Chapter 4.

50

Chapter 4

Triraksha

In this chapter, we discuss and set the context for our scheme: Triraksha. With

Triraksha, we can serve end-to-end encrypted traffic in a TLS connection while main-

taining middlebox functionality. We use software modifications with TLS to enable

fine-grained security and usability at end points for incorporating middleboxes with

TLS. Triraksha allows the middlebox to access plain text content for a TLS connec-

tion but does not allow for modifications to the traffic. In the subsequent sections, we

describe our protocol requirements, key concepts, and the protocol itself. We follow

up with the evaluation in the last section of this chapter.

4.1 Design goals

With Triraksha, we would like to have the security properties offered by TLS with

fine-grained confidentiality for middleboxes. Further, our priority is to build a scheme

that can be easily deployed with existing infrastructure. We target the following in

Triraksha:

1. Entity authentication: A client should be able to authenticate the server and

the middlebox in a TLS connection. The connection used for communicating

51

data between each entity in a TLS session must be end-to-end encrypted. The

encryption ciphers used in TLS should not be weak.

2. Payload confidentiality: Any party other than the end points should not be able

to read the plain text send between the client and the server unless it is given

consent by the client or the server.

3. Payload integrity: Clients should be able to verify the data is sent by the server

it is communicating with. Integrity of data should be maintained by end points

and modification to data should be detected by the end points.

4. Configurations and deployment of middleboxes should be on par with recent

practices and be Server compatible. There should be minimal change to existing

protocols/software in order to maximize deployment for the scheme.

5. The middlebox should not be able to modify the traffic. It should comply with

Minimal write access.

6. Read/write privileges for a middlebox on encrypted traffic should be connection

specific and should be set by the user. An user should be able to opt out of the

communication channel if he would not like a middlebox to inspect his traffic.

7. The user should be aware of the middlebox in the connection.

In summary, we would like Triraksha to be compatible with existing infrastruc-

ture using minimal software/hardware modifications. The properties should incorpo-

rate and satisfy the security offered by TLS and give privileges for read permissions

and no privilege for write permissions to the middlebox for a connection. Atleast, one

of the end points should authenticate the middlebox and the user should be aware of

the middlebox in the connection.

52

4.1.1 Threat model

Scheme and third party attacker: Triraksha relies on the security properties

of TLS for an encrypted connection between a client and server. All entities in

the scheme execute the protocol correctly and do not leak information to an entity

outside of the scheme. Triraksha relies on the browser/TLS library for existing TLS

authentication techniques to detect an untrusted connection (through the existing

browser warning signs). A third party adversary in our scheme is an active network

attacker. He is computationally bound and can attempt to intercept, alter, or insert

packets during any phase of the session. Our scheme does not defend against denial

of service attacks and side channel attacks on network protocols. The adversary does

not have access to private keys of servers. The server and the client do not collude in

any way.

Middlebox and user: The middlebox can attempt to modify or read the plaintext

from the encrypted traffic in the end-to-end connection. The middlebox trusts the

encryption keys provided by the client. A ‘malicious user’ can send garbage TLS en-

cryption keys for a connection to the middlebox. The middlebox trusts the encryption

keys provided by the client for a given grace period until it is provided with the master

secret used in TLS negotiations (see Chapter 5 for details). A ‘malicious/defaulting

user’ can attempt to bypass the Triraksha protocol.

4.2 Triraksha overview and architecture

Overview: To achieve the requirements of Triraksha, we allow clients to connect to

a server only if they provide the middlebox with the TLS secrets for that connection.

We define TLS secrets as the symmetric session encryption keys/IVs that are used

to encrypt/decrypt data packets for that specific TLS session. Individually sharing a

53

TLS encryption key for a session implies that the middlebox can inspect TLS traffic

for that session. Further, the client can communicate effectively with a server only if

it provides the TLS secrets. In our scheme Triraksha, we are interested in application

layer middleboxes that are capable of inspecting the traffic but cannot modify it.

Application layer middleboxes are typically implemented at a common gateway for

all clients in an organization’s network. The gateway typically implements application

layer functionality like packet inspection, content filtering, audit logging etc. In large

organization networks, a gateway can be a network wide proxy. In our scheme, our

middlebox is a gateway which implements a packet inspection service on an TLS

connection between a server and a client.

Example use cases: The concept our systems presents is best put to use in enter-

prise environments. In an enterprise environment, the need to inspect TLS traffic is

essential to mandate network policies. The Triraksha middlebox can act as a corpo-

rate firewall without having clients install root certificates. An IDS/IPS device that

currently ignores encrypted traffic or relies on Split TLS can now have access to the

plain text in a TLS connection by adopting Triraksha. Institutions and home devices

can use Triraksha as a parental filtering device to block inappropriate content. On

a general note, Triraksha can be adopted for application layer middleboxes that re-

quire only read access in a TLS connection. Following the examples (demonstrated in

mcTLS [59]) for middleboxes that require read access in connections, we picture the

Triraksha middlebox to be used as a load balancer, packet pacer and WAN optimizer.

In Triraksha, we only give read permissions to the middlebox. A majority of the

middleboxes which provide functionality over HTTP/TCP messages between end

points only need read access to the request/response headers and body [59]. Further,

if a middlebox has write permissions then there is no way to maintain integrity for

54

the data with the current HTTPS protocol. Hence, with Triraksha we disallow write

access to the middlebox. The Triraksha middlebox cannot be used as a data cache

or data compressor. TLS uses MACs for content integrity between the client and

the server. The MACs are specific to a client-server connection, therefore no caching

of HTTPS content is possible without significant changes to the way HTTPS works.

With Triraksha, deployability is one of our design goals and we do not make changes

to HTTPS. We suggest the reader to look at SSL Splitting [51] for further discussion

on this.

Architecture: Figure 3 represents the architecture for Triraksha. Triraksha serves

end-to-end encryption using TLS between a client and a server while still allowing

the middlebox to inspect packet payload. The Triraksha middlebox initially allows

any client to communicate TLS handshake packets and TLS cipher key exchange

packets with the server but drops TLS application data packets. Selective blocking

of TLS packets is done at the network level by firewall rules. With user consent and

successful completion of a TLS handshake, the client leaks the TLS encryption keys

for a connection to the middlebox in a separate secure connection. On receipt of the

TLS encryption keys, the middlebox will allow TLS application data packets to pass

for the respective connection. The client and the server communicate with each other

like in regular TLS for that TLS connection while the Triraksha middlebox uses the

encryption key to decrypt the encrypted traffic and gets access to the plain text. This

allows the middlebox to enforce its inspection policies while still maintaining a sense

of end-to-end encryption between the client and the server.

Compared to Split TLS where once a root certificate is installed and the mid-

dlebox has complete access to the traffic for all the connections, Triraksha offers

fine-grained security. We would like to note that the trust level between the client

55

and the Triraksha middlebox is stricter than the trust between the client and the

Split TLS middlebox. Specifically in Triraksha, the client controls for which connec-

tion the middlebox can have access to the plain text by sharing only the encryption

key for the TLS session. Further, the middlebox can never modify the traffic. In

Triraksha, the trust on the middlebox is minimized but not null. While middlebox

discovery is out of scope in this thesis, we assume that the user/client is aware of the

middlebox and explicitly provides trust/authenticates the middlebox in a separate

connection. Specific to the Triraksha implementation, the user may learn the public

key/FTP/SSH password of the middlebox out-of-band. For example, for a corporate

network, the public key/password for the middlebox connection might be given on a

piece of paper or in an email.

Figure 3: Architecture of the Triraksha protocol.

On a design level, the Triraksha protocol is faster than Split TLS. Split TLS requires

two TLS handshakes to perform to establish the connection between the client and

the server, while the Triraksha protocol needs only one TLS handshake to establish a

connection between the client and the server. The connection between the client and

56

the middlebox for sending keys is long lived and needs to be established only once.

Once application data is flowing, Split TLS has to do an encryption and decryption

for every record. Specifically, the middlebox first decrypts the data sent by the client,

performs its functionality and then re-encrypts this data to be send to the server.

Similarly these operations are performed for messages sent from the server to the

client. With Triraksha, the decryption operation (where the middlebox get access to

the plain text) is non halting. The decryption is performed for encrypted data logged

by the client and does not actively block application data packets for the connection.

We now proceed to explain how our scheme functions by discussing the handshake

phase and the record phase of Triraksha in detail.

4.2.1 Triraksha handshake protocol

The Triraksha handshake is similar to the TLS handshake and can make use of all

the cipher suites and extensions associated with TLS.

The Triraksha handshake is initiated by the client and allows it to:

1. Authenticate the server.

2. Negotiate a symmetric session key and a cipher suite with the server.

3. Allow the user to leak TLS secrets to a middlebox.

Figure 4 represents the Triraksha handshake.

Handshake steps: As in TLS, the Triraksha client opens a TCP connection and

sends a TLS ClientHello message. The ClientHello message contains the following: (1)

the maximum protocol version that the client wishes to support (2) the ‘client random’

(32 bytes, out of which 28 are suppose to be generated with a cryptographically strong

number generator) (3) the ‘session ID’ (in case the client wants to resume a session

57

Figure 4: Triraksha handshake.

58

in an abbreviated handshake) (4) the list of ‘cipher suites’ that the client supports,

ordered by client preference (5) the list of compression algorithms that the client

knows of, ordered by client preference (6) some optional extensions.

The middlebox simply forwards the ClientHello to the server and logs the client

random, the source IP address, source port and destination IP address of the Clien-

tHello packet. The client random is treated as unique to the TLS connection. For

conciseness in the thesis, we refer to this process of logging the client random as

‘Middlebox ClientHello dissection’. The format for the log file described above is:

XXXXX source IP address source port destination IP address
XXXX is the client random in hex value of the ClientHello

Figure 5: Format of log file from Middlebox ClientHello dissection.

The server responds to the ClientHello with a ServerHello which contains the fol-

lowing: (1) the protocol version that the client and server will use (2) the ‘server

random’ (32 bytes, with 28 random bytes) (3) the session ID for this connection (4)

the cipher suite that will be used (5) the compression algorithm that will be used

(6) optionally, some extensions. Along with the ServerHello, the server also sends

its Certificate which contains the server’s public key, the ServerKeyExchange which

contains the server’s value for key exchange and a ServerHelloDone. Following the

ServerHelloDone, the client responds with the ClientKeyExchange which is the client

part of the key exchange. Using the data from the key exchange messages, the client

and server establishes a pre master secret, which is further used to generate a master

secret. The master secret is used in combination with the client random and server

random and fed to a pseudo random function to generate a key block. The key block

is split into sets of keys: encryption keys, MAC keys and IVs. The keys are used in

59

the subsequent messages to encrypt/decrypt data. The client also sends a Change-

CipherSpec message, which is a separate TLS record type. The ChangeCipherSpec

marks the point at which the client switches to the newly negotiated cipher suite

and keys. The subsequent records from the client will then be encrypted. The client

sends a ‘Finished’ message, which is a cryptographic checksum computed over all

previous handshake messages (from both the client and server). When the server

receives that message and verifies the checksum, the server obtains a proof that it has

indeed communicated with the same client all along. The ‘Finished’ message protects

the handshake from alterations by a third party. The server responds with its own

ChangeCipherSpec and Finished messages at which point the handshake is complete.

In Triraksha, the user decides if he wants a middlebox to inspect traffic for a TLS

connection. He makes the decision before attempting to connect with the server.

Following the decision to support packet inspection, the client logs the sets of keys

generated from the key block during the key exchange for each TLS connection made

by the client. Specifically, the data logged is a set of encryption keys and IVs. In

Triraksha, the MAC keys are not logged and/or shared with the middlebox. The

client uses the client random from the ClientHello message as a unique identifier and

associates it with the keys. From now on, we refer to a set of client random and

TLS symmetric encryption keys and IVs for a connection as the TLS secrets for that

connection. The TLS secrets for the respective connection are stored on the client

computer. The client authenticates the middlebox in a separate connection and leaks

the TLS secrets to the middlebox on user consent. The client can authenticate the

middlebox using any secure authentication process like certificate validation etc.

To summarize, the Triraksha handshake achieves the following:

1. The client authenticates the server.

60

2. The client does the TLS handshake negotiations with the server. Specifically,

the client establishes a symmetric encryption key with the server for encryption

of TLS record packets.

3. The client authenticates the middlebox.

4. The user consents to leaking TLS secrets for a connection and following the

decision, the client leaks the TLS secrets to the middlebox in a separate channel.

4.2.2 Triraksha record protocol

We now describe the additions we make to the TLS record protocol. Like in the

handshake phase, the additions are external to the TLS record protocol in itself.

The Triraksha client takes payload from a higher level protocol and sets up an

environment for encrypting/decrypting the data. The client breaks the payload into

blocks. Like in regular TLS, a payload in a block can consists of at most 16384 bytes.

The client optionally compresses the block and then depending on the cryptographic

primitives in the cipher suite, it applies a MAC and encrypts the block (the block is

MAC and encrypted with the symmetric MAC and encryption key from the hand-

shake phase). Triraksha supports use of any encryption and MAC algorithms that

are supported by TLS. The encrypted block is appended with a TLS record header

and transmitted to the end point (server) as a TLS application data packet. After

reception at the other end point, the same operations are performed to the packet in

reverse order (decryption, MAC verification, decompression, reassembly and sends it

to a higher layer).

In Triraksha, the middlebox drops all TLS application data packets sent by the

client until the client leaks the TLS secrets to the gateway for that TLS session. To

61

send TLS application data packets, the user would have to consent to leak the TLS

secrets for a TLS connection. Following the decision, the client would have leaked

the TLS secrets during the handshake phase.

The middlebox matches the client random in the TLS secrets it received by the

client with the client randoms logged during ‘Middlebox ClientHello dissection’. A

successful match implies that the middlebox received the TLS secrets for a TLS

connection and it should allow TLS application data packets to pass through for that

connection. The middlebox now adds a firewall rule for the respective IP addresses

and port (logged from ‘Middlebox ClientHello dissection’) and allows TLS application

data packets to pass through for that connection. A client and server now continue

to transmit TLS application data packets as in a regular TLS connection.

The middlebox uses the TLS secrets to decrypt the respective TLS application data

packets to get access to the plain text. The middlebox however, cannot modify the

data as it does not have the MAC keys for the TLS connection. This also implies that

the middlebox must trust the secrets provided by the client. We discuss an extended

threat model in more detail in Section 10.

To summarize, the Triraksha record protocol achieves the following:

1. Allows a client and a server to communicate TLS application data packets.

2. Provides read access to the middlebox in the TLS connection.

3. Provides no write privilege to the middlebox in the TLS connection.

4. The client and server can authenticate and maintain integrity of the TLS ap-

plication data packets transmitted between them.

62

4.3 Implementation setup and discussion

The section discusses the setup for the implementation, the software modifications

and implementation details for Triraksha. We discuss the modifications made at each

end point based on the design decisions from the previous section.

A proof of concept for Triraksha was implemented on two computers running

Ubuntu 14.01. Figure 6 represents the Triraksha implementation setup. The middle-

box is set up such that it can connect to the Internet on a network interface (NI1).

The client computer is connected to the proxy using a USB to ethernet adapter and

communicates with the proxy on the respective network interface (NI2). The network

interfaces NI1 and NI2 are bridged on the proxy computer hence, giving the client

access to Internet. We describe how the client and the middlebox are implemented to

support the scheme. Our implementation requires no server side modifications and

should be compatible with all servers supporting TLS.

Figure 6: Triraksha implementation.

1Machine configurations described in the Appendix.

63

4.3.1 Client support for Triraksha

To enable Triraksha on the client end, we make software modifications such that

the client computer can leak the TLS secrets to the gateway securely. On the client

computer, TLS session key logging was achieved by the use of the SSLKEYLOGFILE

variable which is supported by most popular browsers and SSL libraries (like Chrome,

Firefox, OpenSSL, mbedTLS, GnuTLS etc). The SSLKEYLOGFILE variable sets

up an environment such that every time an application makes a TLS connection, the

underlying SSL library writes the TLS session master secret/pre-master secret to the

environment variable location. The format for the SSLKEYLOGFILE is a series of

records with the following formats [20]:

1. ‘RSA xxxx yyyy’

Where xxxx are the first 8 bytes of the encrypted pre-master secret (hex-

encoded) and yyyy is the cleartext pre-master secret (hex-encoded).

2. ‘RSA Session-ID:xxxx Master-Key:yyyy’

Where xxxx is the SSL session ID (hex-encoded) and yyyy is the cleartext

master secret (hex-encoded).

3. ‘PMS CLIENT RANDOM xxxx yyyy’

Where xxxx is the client random from the ClientHello (hex-encoded) and yyyy

is the cleartext pre-master secret (hex-encoded).

4. ‘CLIENT RANDOM xxxx yyyy’

Where xxxx is the client random from the ClientHello (hex-encoded) and yyyy

is the cleartext master secret (hex-encoded).

In Triraksha, we do not share the negotiated TLS master secret or TLS pre master

secret with the middlebox as it can be used to generate the encryption keys and the

64

MAC keys. To enable fine-grained confidentiality, we share only the encryption keys

and not MAC keys. However, the SSLKEYLOGFILE does not provide a format to

do so. A workaround for this is to modify an underlying TLS library or browser

source code to print out the TLS secrets. However, by making this implementation

choice we minimize adoption as the scheme would be adopted only if the modified

library/browser would be used by the enterprise.

Instead of making changes to a browser/TLS library, we make use of Wireshark [20],

a de-facto network protocol analyzer. In Triraksha, we use it to exfiltrate TLS secrets

for a TLS connection. Wireshark is set up such as to capture network packets on

the client computer and log all TLS packets for a connection. Wireshark requires the

negotiated TLS master key for a connection to generate the TLS session keys (TLS

secrets). The TLS master key for a connection is provided via the SSLKEYLOG-

FILE environment variable. The Wireshark TLS dissector waits for the handshake

to complete and calculates the TLS sessions keys once it logs a ChangeCipherSpec

message from the client end. The Wireshark TLS dissector was modified to print the

TLS secrets to a file on the client computer. It should be noted that the ClientHello

random, ServerHello random and master secret are not always sufficient to calculate

the session keys. According to [27] RFC 7627 TLS Extended Master Secret extension,

one needs to log the full handshake to generate the secrets and hence Wireshark waits

until a client ChangeCipherSpec message is logged.

An user can control if he wants to leak the TLS secrets for a connection/all connec-

tions by simply exporting the client application with the SSLKEYLOGFILE variable.

A script is run to leak the keys to the middlebox for each time Wireshark prints the

TLS secrets to the file. The Triraksha client opens a connection and sends the file

using ‘rsync’ over ‘SSH’ [14]. rysnc is a fast and versatile file copying tool. It can

65

copy locally, to/from another host over any remote shell, or to/from a remote rsync

daemon. It uses the delta-transfer algorithm, which reduces the amount of data sent

over the network by sending only the differences between the source files and the

existing files in the destination. The rsync connection authenticates the middlebox.

Other implementation choices that we could use for authentication between the client

and the middlebox are to use a TLS client-server/SCP connection.

4.3.2 Middlebox support for Triraksha

To enable the middlebox to support Triraksha, the following need to be implemented:

1. Selective blocking of TLS packets on the network.

2. Receive TLS secrets from client and verify if they are associated with a legiti-

mate TLS connection made by the client.

3. Decrypt encrypted traffic using the TLS secrets.

4.3.2.1 Selective filtering of TLS packets

Selective filtering of TLS content type is done on the network level with the help

of iptables [5] and IP sets [4]. iptables is a Linux based firewall and is used to set

up, maintain, and inspect the tables of packet filter rules in the Linux kernel. We

leverage iptables with the u32 module to achieve filtering of TLS handshake and

cipher key exchange traffic from TLS application data packets. We also note that it

is possible to drop TLS application data packets using the string module for iptables.

However, this may result in false positives as the string module compares a particular

string anywhere in the packet. The u32 module allows for more fine-grained pattern

matching as it allows one to check packet payload at a particular position in the

packet bytes. We use u32 to check for TLS headers in the first few bytes of the TCP

66

payload. With the u32 module, we offset to the TCP payload and check the TLS

header of a packet. TLS application data packets have the header value 17. The

header value is followed by the TLS version used for the connection. The value for

TLS 1.2 is 303. The following command is used to block application data packets for

TLS 1.2.

iptables -I OUTPUT 1 \ -p tcp \! -f --dport 443 \ -m state

--state ESTABLISHED -m u32 --u32 \

"0>>22&0 x3C@ 12>>26&0 x3C@ 0 & 0xFFFFFF00 =0 x17030300 -j

DROP

IP sets is used to set up, maintain and inspect so called IP sets in the Linux kernel.

With IP sets we can store multiple IP addresses and port numbers and match against

the collection by iptables as a whole. IP sets helps eliminate the performance penalty

faced by iptables when adding IP addresses dynamically. With IP sets only one match

rule is added to iptables instead of cluttering the firewall with multiple rules. IP sets

prevents duplicate rules from being added by default. With this setup the middlebox

allows all TLS handshake, TLS cipher key exchange and TLS alert traffic but blocks

TLS application data packets for a TLS connection.

4.3.2.2 Associating TLS secrets to a TLS connection

To check if the TLS secrets received from the client are associated with a legitimate

TLS connection made by the client, we build a program called ‘TLS hello dumper’

that uses libpcap to record and dissect TLS traffic, in particular the Hello messages

in the TLS handshake. We log for each ClientHello message the client random, the

source IP address, source port and destination IP address of the ClientHello packet.

On subsequent and successful completion of the TLS handshake, TLS secrets are

generated by the client computer and are transferred to the middlebox using rsync.

67

The format in which the TLS secrets are send to the middlebox is as follows:

Client Random XXXXX

Client encryption key YYYY

Server encryption key YYYY

Client IV YYYY

Server IV YYYY

where XXXX and YYYY are respective values.

The client random is used as a unique identifier to associate the secrets for a TLS

connection. The TLS client random is a random string of 32 bytes unique to each

TLS connection. The client and the server are allowed to exchange TLS application

data packets only if there is a client random with the TLS secrets that matches

with a client random logged by the middlebox. A script running on the middlebox

matches the logged client randoms (from TLS hello dumper) with the client random

presented with the keys sent by the client. This process allows the middlebox to link

a TLS connection with the TLS secrets provided by the client for that particular TLS

session. If a successful match occurs, it allows traffic for that pair of IP addresses and

respective port to pass through. We track the TCP state of the TLS connection by

inspecting the TCP headers of the packets. We remove a rule from the firewall when

we detect a packet having a TCP FIN/TCP RST header in that connection. A single

TCP connection encapsulates a single TLS connections. When a TLS connections

ends, we remove the rule and by doing this we stop a client from attempting to initiate

a TLS connection over a previously added firewall rule.

68

4.3.2.3 Decrypting TLS traffic at the middlebox

In this section, we first discuss our current implementation choices and then follow

up with some alternative implementation decisions that could have been made.

To enable the middlebox to get access to the plain text from the encrypted traf-

fic, the Wireshark TLS dissector for Wireshark version 2.2 was modified and run on

the middlebox to read the TLS secrets received from the client. On successful read,

Wireshark would decrypt TLS application data packets sent between the client and

the server. Wireshark by design uses the SSLKEYLOGFILE to consume a master

secret for a TLS connection and then generate TLS session keys. This process is done

whenever it detects a TLS ChangeCipherSpec message for that connection. In our

design, we feed Wireshark a dummy SSLKEYLOGFILE (a file that contains a fake

master secret for each client random logged by the middlebox). An entry is added to

the dummy SSLKEYLOGFILE only if the middlebox received TLS secrets for that

connection. Whenever a client cipher key exchange packet is detected, Wireshark

attempts to consume the master secret from a dummy SSLKEYLOGFILE. If Wire-

shark is unsuccessful in finding the master secret, it will continue to poll the dummy

SSLKEYLOGFILE for 0.8 seconds (we set the threshold time to generate keys on

the client and send it to the middlebox as 0.8 seconds). On successful read of the

fake master secret, Wireshark generates TLS session keys using the fake master se-

cret. These session keys are then overwritten by the TLS session keys that were sent

from the client as TLS secrets. They are loaded into Wireshark process memory as

a decoder for the rest of the TLS session. On subsequent exchange of TLS applica-

tion data packets, the respective decoder is used to decrypt all TLS application data

packets. MAC verification for packets are set to be ignored during this time.

69

The implementation effort involved writing multiple scripts (900 LoC) to enable

functionality for our protocol and understanding and modifying parts of the Wire-

shark TLS dissectors which is written over 10,000 LoC. Another possible implemen-

tation choice that we could have made is to write a custom dissector that waits for

the TLS secrets from the client and interprets the TLS record layer separately before

the Wireshark TLS dissector is invoked. With our current design, we minimize the

changes made to the Wireshark TLS dissector and attempt to load the secrets into

memory exactly once when the cipher key exchange happens. Specifically, Wireshark

uses a decoder variable to decrypt TLS traffic for a session. The secrets are loaded

into the decoder variable when a cipher key exchange is logged by Wireshark. Once

the decoder is set, it is used to decrypt application data packets for the entire TLS

session. The decision to let Wireshark read a dummy SSLKEYLOGFILE and gen-

erate keys before overwriting them is because we wanted to make minimum changes

to the dissector code. It is possible to load the keys from the client into the decoder

variable directly by simply bypassing and commenting out the irrelevant code. How-

ever, the time taken for this step to read a dummy keylog file and generate secrets is

negligible (in ms). The process of reading a SSLKEYLOGFILE provides for a neat

GUI functionality to be used at a later stage for determining integrity of the TLS

keys and data. Specifically, if we would like to verify the integrity of the payload

(MAC verification) and the integrity of TLS encryption keys, the client must submit

his end of the SSLKEYLOGFILE (which contains the correct master secret). The

client SSLKEYLOGFILE can then be loaded via the GUI and MAC verification can

be performed for the TLS application data packets.

We also note that there are a number of potential implementations for the Trirak-

sha middlebox. We explore a number of potential projects like using NFQUEUE [10],

Scapy [15], nDPI [9], mitmproxy [7] and Surciata as an IPS. However, with most of

70

these projects we would have required to change underlying libraries (which would

result in decreased deployability) or account for TCP and TLS reassembly. We choose

Wireshark as it a de-facto network protocol analyzer with state of the art implemen-

tation for TCP, TLS reassembly and TLS decryption. Our current implementation

is portable to existing TLS libraries and browsers. Ubicrypt is the only other scheme

in the literature to have a proof of concept which can be adopted with web browsers.

However, even their proof of concept was implemented over a virtual network.

4.4 Evaluation

To evaluate Triraksha, we aim to understand the following:

1. Does Triraksha function correctly?

2. What are the performance overheads for Triraksha?

We begin by first understanding the goals achieved by Triraksha, follow up with

functionality evaluation and finally end with evaluating the overhead of using the

scheme when compared to a regular end-to-end TLS connection.

4.4.1 Design principle compliance

To understand how Triraksha achieves its design goals and fares against other schemes,

we assess Triraksha with the UDS framework. The scheme requires software mod-

ifications only at the client and the middlebox end. It does not require server side

modifications and supports Server compatibility. The number of TLS handshakes

between a client and a server in Triraksha is one handshake (in Triraksha, the TLS

handshake is simply extended to leak TLS secrets to the middlebox) which is the same

as in a regular end-to-end TLS connection. It hence complies with No significant la-

tency. Triraksha allows for TLS negotiation only between the client and the server.

71

The client further authenticates the server (during TLS negotiation by checking the

server certificate) and middlebox (by using SSH with the rsync connections). It hence

complies with Server authentication, Middlebox recognition and TLS protocol nego-

tiations. Triraksha provides fine-grained security as it lets the middlebox access to

plain text data only for the connections in which the TLS session secrets are leaked to

the middlebox. It complies with Connection specific interception. Triraksha does not

comply with Minimal read disclosure as the Middlebox has access to the plain text

for connections that the clients leaks TLS secrets. It complies with Minimal write

access as the MAC keys are not shared with the middlebox and no modifications

can be made to the data sent between the client and the server. It relies on existing

and familiar browser mechanisms to display server’s certificate and warning signs for

insecure connections. Existing schemes like DANE, HSTS etc. that are implemented

by an application can also be used in Triraksha. The middlebox is preconfigured

to act as a network intermediate (gateway) for a client and hence partially complies

with Middlebox discovery visibility and Infrequent errors or open fails. When the user

switches to a new network, the middlebox would no longer be a gateway in the new

network (by default) and hence supports Middlebox persistence visibility.

4.4.2 Experimental setup

We setup a test environment to evaluate functionality and performance for Triraksha

based on the implementation described in Section 4.3. We test Triraksha by making

web requests from our university network under two scenarios:

1. HTTP requests to local servers, and

2. HTTP requests to remote servers.

A local server is a server in our local network using the OpenSSL s server program

72

[11] while remote web servers represent real world web sites. We use the Chromium

and Curl to make single/multiple HTTP web requests to remote and local servers.

Chromium uses CCA9 also referenced as ECDHE RSA WITH POLYCHACHA20 SHA

or a variation of this suite as the default cipher for its connections. This cipher suite

is not recognized by the Wireshark TLS dissector and hence we blacklist the ci-

phers: CCAX (where X is a numerical variation). All other cipher suites offered by

Chromium are acceptable. With Curl, we simply use the command line argument

CIPHERS: HIGH to set the cipher suite for the connection. Unless specified, exper-

iments run in the environments consist of a 100 runs for which we report the mean

or cumulative result. During the run of these experiments, we do not record the

deviation for the average (the numbers for the deviation for the average recorded is

minimal). While the environment was setup to make web request automatically to

a large number of websites, we perform the experiments manually by making web

requests randomly to URLs from the list of Alexa’s top 100 websites. Further details

on this are provided in the subsequent sections. The benchmarks provided in the

performance evaluation are specific to our proof of concept and not to the Triraksha

design. The numbers may possibly improve with some other implementation.

4.4.3 Functionality evaluation

To evaluate the functionality for Triraksha, we address the following questions:

1. Can the Triraksha middlebox perform packet inspection correctly?

2. Is Triraksha robust?

We answer these questions by first describing the methodology for the functionality

evaluation.

73

Methodology: We picked websites randomly from the list of Alexa’s top 100

websites. We download files of varying sizes (a few Kb upto 10 Mb) using Curl when

requests were made to a local server. When connecting to remote servers with Curl,

only the headers and index file were downloaded. For Chromium, we simply open the

website and let the browser load all objects for the main page of the website. We run

experiments manually with Curl and Chromium on approximately 20-30 domains. To

test packet inspection, we set the ground truth as plain text decrypted by Wireshark

on the client computer under two models. Under model 1, our goal was to check if the

hash of the decrypted content for a middlebox and client under Triraksha matches

with the hash of the decrypted content for a client in a regular TLS connection

(ground truth). Under model 2, our goal is to test if the decrypted content match for

the client and the middlebox when both are used with Triraksha.

Model 1: Under model 1, the experiment is run twice for a single web request. For

the first experiment, the scheme is a regular end-to-end TLS connection. We enable

decryption with Wireshark on the client end and print out all decrypted content for

TLS application data packets in hex values to a file. We calculate a hash of the file

and store it. In the second experiment, we then perform the same web request under

Triraksha and print the decrypted content on the middlebox (as hex values). A hash

of the file was calculated and stored.

The hash was done using the Linux sha1sum command and a comparison was

made between the hash of the client decrypted content and the hash of the middle-

box decrypted content. While the comparison process could be automated to test

for a larger number of web requests, we do it manually for two reasons: (1) we are

interested in comparing the decrypted content only for a single web request at a

time. By making multiple web requests, decrypted content for those requests would

be printed to the same file. The only way to cleanly print out the decrypted content

74

for a single web request is to manually re-initate the capture everytime a web request

is made. (2) Making manual web request helped us perform better debugging. It is

easier to understand the Wireshark log for a single web request compared to simul-

taneous multiple requests. Cases in which a match of the hashes does not occur, our

script would further run to verify the discrepancy by printing out the non matching

decrypted content. We then followed up with manual debugging of non matching

decrypted content with the Wireshark SSL debug file and network log.

Model 2: Under model 2, we run the experiment once for a single web request

under Triraksha. We store the decrypted content at the client and the middlebox end.

We perform a hash of the file and log it. Similar to model 1, we do the experiments

manually for websites chosen randomly from Alexa’s top 100 list.

Results summary: The hash of the decrypted content matched for the client and

the middlebox under both models for Curl requests. We encountered a known Wire-

shark bug and had to analyze the network logs to understand the exact sequence of

events. After applying a manual solution for the Wireshark bug, the hash for the

decrypted content matched on both the client and the middlebox end.

Discussion: We discuss the results in detail now. Initially, under model 1, the hash

of the decrypted content did not match in any web request made by Curl or Chromium

to local or remote servers. The file size of the decrypted content on the client was

more than that on the middlebox which implied that the middlebox did not perform

decryption for all TLS application data packets. Our debugging script pointed us to

the matching and non matching content with the packet number (Wireshark frame

number). For Curl requests, we observed that the GET request on the client and the

middlebox were decrypted correctly, however, the middlebox would not decrypt the

75

index file (response text of the server).

On manually debugging the capture file and understanding the Wireshark SSL

debug log, we find the reason for this is due to various retransmissions for TCP/TLS

packets. In every web request, we had a case of a retransmission for the GET request

and the Server ChangeCipherSpec message. We come across bug 9461 [21] in the

Wireshark bug forum which states that Wireshark fails to decrypt TLS packets when

TCP packets fall out of order. In Wireshark, by default the TCP dissector will hand

retransmissions to the subdissector (in this case the SSL dissector) which means that

the subdissector sees the retransmitted data twice. This corrupts the state of the

SSL dissector and is hence is unable to decrypt the TLS application data packets.

The client under a regular TLS connection would decrypt the TLS application data

packets and see the index file of the website as usually there are no retransmitted

packets in a regular TLS connection. Compared to the previous state, the middlebox

in Triraksha drops packets if a firewall rule is not present and hence experiences

retransmissions. As a result, Wireshark on the middlebox in Triraksha does not

decrypt the TLS application data packets containing the index file. A solution to

this is to simply set to ignore the retransmitted packets (done manually by toggling

preference for the packet in the GUI) after which the SSL dissector resets its state and

is able to decrypt packets correctly. The hash of the decrypted content on the client

under a regular end-to-end TLS connection and the hash of the decrypted content on

the middlebox and client under Triraksha matched for all cases when we manually

toggled to ignore retransmitted packets.

Under model 2, our goal was to test if the decrypted content match for the client

and the middlebox when both are used with Triraksha. We follow the same routine

as described in the previous model, and additionally we manually set to ignore the

76

retransmitted packets. We then match the hash of the decrypted content of the

client and the middlebox. The hash of the decrypted content matches in all cases

with Curl. We got a successful match for the hash of the decrypted content for all

experiments with web requests downloading files of various size from local servers. The

experiments conclude that our script to add firewall rules and leak TLS secrets to the

middlebox work correctly in the overall implementation. In some cases, experiments

for single web requests made with Chromium did not match. Unlike Curl, the TCP

packets were out of order in many cases with Chromium. Reassembly of packets

did not occur on Wireshark properly and hence led to irregular decryption. In some

cases, we experienced retransmission of packets leading to new fragment overlapping

an old data fragment (TCP fragmentation). After manually ignoring the respective

retransmitted packets and triggering decryption again, the hash of the decrypted

content matched correctly.

It is possible to export HTTP objects from the captured file in Wireshark. However,

this step requires to stop the capture on the middlebox/client. Also, not all objects

can be exported via the GUI as the filenames for the exported data does not comply

with the OS filename policy. A script was run to find the hash for all exported objects

in a directory for both the client and the proxy. We observed that the hash for all

media objects were the same.

We also note that in some cases, malformed packet were logged on the middlebox

but not on client and vice versa. We also experienced cases in which there were SSL

timeouts/handshake failures and there was incomplete capture of handshake data

on the client/middlebox. A SSL handshake timeout may occur regardless of using

Triraksha or a regular end-to-end TLS connection. We ignore the experiments for

these cases in our evaluation as they are irregular cases (we experienced these cases

77

for a regular end-to-end TLS connection as well).

Robustness for Triraksha To understand robustness for Triraksha, we test Tri-

raksha with different test cases. We discuss the test cases briefly.

Test Case 1: A client leaking TLS secrets to the middlebox is always able to

complete the GET request. The response of the GET request from the server is the

same as under a regular TLS connection. This test case checks if the firewall rules are

correctly put in order and do not block TLS application data packets for a connection

after the client leaks the TLS secrets.

Test Case 2: Functionality check by making two simultaneous connections to the

same domain and see if they are recognized differently by the middlebox and client.

This test case checks if a client can access resources from a domain (web server) over

a connection in which he leaks the TLS secrets while he opens another connection

(this time does not leaking the TLS secrets) and attempts to access resources from

the same domain (web server).

Our implementation handles this test case by tracking TCP connections. We add

a firewall rule for a source IP address, destination IP address, source port and des-

tination port and remove the rule when a TCP FIN/RST packet is detected for this

connection. A separate TLS connection to the same IP address will always be opened

over a different source port (browser/OS policy). The client cannot use the same

source port and IP address pair to open another TLS connection as a single TCP

connection encapsulates only a single TLS connection. We confirm that a new con-

nection is created with the same (ip.src, ip.dst, tcp.src port, tcp.dst port) after an

78

authorized one was closed (either by timeout or by remote server closing the connec-

tion, or by client closing the connection).

Test Case 3: The client always sends the TLS secrets to the middlebox when

the application making the web requests is exported with the SSLKEYLOGFILE.

To test this case, we run a script to make multiple Curl requests to Alexa’s top 5000

websites. After the script is run, we check the hash of the generated TLS secrets on

the client computer and the hash of the TLS secrets received by the middlebox.

Test Case 4: An application not leaking TLS secrets cannot communicate TLS

application data packets with the server and vice versa. This rule checks if the TLS

application data packets are dropped correctly on the respective network interface.

Test Case 5: We send incorrect and correct TLS secrets to the middlebox and

confirm that the decrypted text is respectively garbage/correct in this experiment.

Test Case 6: We verify that a long processing time at the middlebox doesn’t

interfere with the TLS handshake (because of retransmissions, timeouts, several Clien-

tHello sent by browsers at once, etc.).

We evaluate Triraksha on these test cases by running experiments manually. We

made web requests to domains from Alexa’s top 100 list. Initially, some of the test

cases failed (due to retransmission of packets, minor errors in implementation etc.)

but were fixed over the time period of this research. We would like to note that the

test cases were developed to stress test the proof of concept. They were written to

test each components of the Triraksha implementation and if the components interact

79

with each other the way they are supposed to. Triraksha successfully passes on all of

these test cases.

4.4.4 Performance evaluation

In this section, we are interested in finding the overhead incurred by Triraksha com-

pared to a regular end-to-end TLS connection. We start by discussing detailed micro

benchmarks for the client and the middlebox with web requests made with Curl. The

timing information was collected by leveraging Curl’s built-in timing APIs.

Client Performance: How long does it take to generate keys and send it to the

middlebox during the handshake? Table 2 provides some insight into the logistics for

the time taken to generate TLS secrets based on our implementation. We use six

popular websites for our experiments: Youtube, CNN, Twitter, Facebook, YTS and

New York Times. The websites together all have different types of media content. On

an average, Wireshark on the client side takes 344 μs to read a SSLKEYLOGFILE,

generate TLS secrets and write them to a file. We measured the time interval to

run the respective functions collectively by using APIs from the glibc library for this

statistic.

Curl’s appconnect metric gives the time, in seconds, it takes from the start until the

SSL/TCP/ connect/handshake to the remote host is completed. With the Triraksha

handshake, the handshake includes sending the TLS secrets to the middlebox. On

an average, sending the TLS secrets using rsync for a single Curl request takes 280

ms. Table 3 contains statistics for the rync transfers. Table 4 represents the statistics

for Curl’s appconnect metric. The metrics in Table 4 were established over a period

of 5 runs. From the table, we observe that the Triraksha handshake has little or no

1Definitions for Curl’s APIs are in the Appendix.

80

overhead compared to a regular TLS connection. This is expected as we do not make

any changes to the TLS handshake itself. The TLS handshake protocol for Triraksha

and a regular TLS connection is the same and the key generation process and transfer

of TLS secrets do not affect the handshake. There is only network latency observed in

Curl’s appconnect metric for Triraksha and a regular TLS connection. The overhead

incurred in the Triraksha handshake is attributed to sending the TLS secrets to the

middlebox.

Website Time taken (μs)
Youtube 426
Twitter 381
CNN 392

Facebook 241
YTS 332

New York Times 293

Table 2: The time taken to read the SSLKEYLOGFILE and generate TLS secrets.

Website Time taken (ms)
Youtube 283
Twitter 291
CNN 286

Facebook 294
YTS 286

New York Times 288

Table 3: The time taken to send TLS secrets using rsync.

Summary: There is little overhead for the Triraksha handshake when compared

to a regular end-to-end TLS handshake. The additional overhead in Triraksha hand-

shake is from the latency of sending the TLS secrets from the client to the middlebox.

Middlebox performance: When it comes to evaluating the performance for the

middlebox, we are interested in addressing two questions: How long does it take to

81

Website TLS (ms) Triraksha appconnect (ms) Total time Triraksha (ms)
Youtube 105 136 419
Twitter 179 176 459
CNN 172 166 452

Facebook 215 184 478
YTS 31 37 323

New York Times 102 158 446

Table 4: The time taken for Curl’s time appconnect (handshake time) and the total
Triraksha handshake time.

create a dummy SSLKEYLOGFILE and add rules to the firewall once the middlebox

receives the TLS secrets? and What is the total time taken to complete a single Curl

request with Triraksha? Table 5 gives details for the time taken to execute the scripts

and add rules to the firewall. The time taken by IP sets to add firewall rules is minimal

(an average latency of 12 ms). We do not measure the time taken for packets to be

matched against the respective firewall rules.

Website Time taken (ms)
Youtube 12
Twitter 14
CNN 13

Facebook 12
YTS 13

New York Times 12

Table 5: The time taken to create a dummy SSLKEYLOGFILE and add rules to
the firewall.

We now measure and show the time taken to complete the entire Curl request.

The time taken to complete the entire Curl request consists of the time taken to

do a DNS lookup, time for the handshake to complete, sending the TLS secrets

to the middlebox, adding a firewall rule and the time taken to transfer the server

response for the website. Table 6 shows detailed statistics for a website. The major

difference between Triraksha and a regular end-to-end TLS connection lies in Curl’s

82

‘time starttransfer’. time starttransfer is the time, in seconds, from the start until

the first byte is transferred. This includes the time taken for the handshake, redirects,

the DNS name lookup and the time the server needed to calculate the result. Table

8 provides a summarized version of the total time taken for the six websites used in

previous experiments.

From the tables, we observe that the time taken to start transfer for application

data packets initially is significant. On average, an overhead of 1.2 seconds occurs

across the websites. On manual analysis (for each website) of the packet capture

running with Wireshark, we find re-transmitted packets at the TCP and TLS layer.

Specifically, the GET request from the client is retransmitted multiple times (3-10

times) and the ChangeCipherSpec from the server is logged as a TCP spurious retrans-

mission in all instances. TCP spurious retransmission indicates that the sender sent

a retransmission for data that was already acknowledged by the receiver and for some

reason, the sender interpreted that a packet was lost, so it sends it again. Further, the

retransmission time roughly doubles for every retransmitted packet (adaptive TCP

retransmission policy). The time difference in establishing a TLS connection with

Triraksha and a regular end-to-end TLS connection is attributed to re-transmissions

of packets. We should note that time starttransfer is the time taken to first byte

(TTFB) for the TLS application data packet. If the connection were to remain open

and a resource was downloaded from the server using the same TLS connection then

the difference between the two schemes would be negligible. Table 10 show statistics

Property End-to-End TLS Triraksha
time starttransfer 0.503 seconds 1.839 seconds

time total 0.523 seconds 1.942 seconds
size header (at client) 763 bytes 763 bytes

size download (at client) 34548 bytes 34548 bytes

Table 6: The time and size for a Curl request for yts.ag.

83

Property End-to-End TLS Triraksha
time starttransfer 0.519 seconds 1.32 seconds

time total 0.664 seconds 1.877 seconds
size header (at client) 1364 bytes 1364 bytes

size download (at client) 309066 bytes 309066 bytes

Table 7: The time and size for a Curl request for Twitter.com.

Website End-to-End TLS (s) Triraksha (s)
Youtube 0.18 1.08
Twitter 0.66 1.87
CNN 0.29 1.12

Facebook 0.46 1.22
YTS 0.523 1.94

New York Times 0.17 1.01

Table 8: The total time taken for a Curl request compared to a regular end-to-end
TLS connection.

Property End-to-End TLS Triraksha
time starttransfer 0.22 seconds 0.9 seconds

time total 0.29 seconds 0.906 seconds
size header (at client) 331 bytes 331 bytes

size download (at client) 66459 bytes 66459 bytes

Table 9: The time and size for downloading a Thunderbird addon: cherami.xpi.

Property End-to-End TLS Triraksha
time starttransfer 0.16 seconds 0.19 seconds

time total 39.03 seconds 39.12 seconds
size header (at client) 394 bytes 394 bytes

size download (at client) 33852374 bytes 33852374 bytes

Table 10: The time and size for downloading a repo tarball from OpenSSL.

84

for the timing difference in downloading a larger file. The time difference between

Triraksha and a regular TLS connection for downloading a 33MB file is 0.09 seconds.

The difference is very small and attributed to network latency.

Summary: There is an overhead initially only for establishing the TLS connection.

Once the TLS connection is established and firewall rules are added, other resources

from the server take the same time to be downloaded as a regular end-to-end TLS

connection.

Performance overhead with browser requests: Triraksha can be adopted with

popular desktop web browsers like Chromium, Firefox etc. To understand how bench-

marks with a Curl request transform with real world browsers, we evaluate Triraksha

with web requests made from the Chromium browser. We choose websites from the

list of Alexa’s top 100 websites. We record all information from the network log

using Chromium’s developer tool and the decrypted plain text by Wireshark. For

each single web request, we record logistics for the objects downloaded and uploaded.

The information was stored as a HTTP Archive format file (HAR) and was analyzed

with a HAR viewer. Tables 11 and 12 show performance benchmarks of two popular

websites for Triraksha compared to a regular end-to-end TLS connection.

Property End-to-End TLS Triraksha
No. of requests 26 51
Onload time 1388 ms 5832 ms
SSL time 365 ms 412 ms

Uploaded data 15273 bytes 29365 bytes
Downloaded data 796098 bytes 3456866 bytes

Table 11: The time and size for a Chromium request (page global data) for
Amazon.ca.

1Definitions for parameters involved with browser experiments are in the Appendix.

85

Property End-to-End TLS Triraksha
No. of requests 36 43
Onload time 2401 ms 10220 ms
SSL time 250 ms 581 ms

Uploaded data 24026 bytes 27009 bytes
Downloaded data 1310201 bytes 1315904 bytes

Table 12: The time and size for a Chromium request (page global data) for eztv.ch.

The difference between the schemes mainly lie in the uploaded and downloaded

data. Each retransmitted packet on Chromium between the client and the server

increments the stats reflecting the difference in the downloaded and uploaded data

from the HAR file. Overall, the browsing experience for both the schemes is very

similar.

Data volume overhead: The data volume overhead for a middlebox in Triraksha is

from the TLS secrets received by client. The memory consumption on the middlebox

would increase with the number of TLS connections. For each TLS connection, the

secrets consists of 56-64 bytes. The TLS secrets are send in a separate connection and

take only a few bytes of disk space. There is no size difference between the Triraksha

handshake and a regular TLS handshake; however, data volume overhead exists from

the retransmission of packets (cannot be quantified due to its variable nature).

Data throughput: The data throughput for our scheme ideally should be the same

as for a regular TLS connection. However, the number of connections is limited by the

resources on the middlebox. With our current implementation setup, the modified

version of Wireshark can decrypt upto approximately 5000 Curl requests around

which and after Wireshark experiences memory crashes. We made Curl requests to

a list of Alexa’s top 10000 websites. After a number of runs for this experiment, we

1Machine configuration for the proof of concept is in the Appendix.

86

observed that Wireshark is stable upto 5000 connections.

CPU overhead: Triraksha performs worse compared to Split TLS and other schemes

when it comes to CPU overhead. The scripts run to achieve the intermediate steps in

Triraksha are event and I/O driven. The resources used by the scripts are minimal,

however, the main source of CPU overhead is attributed to the resources consumed by

Wireshark. Wireshark is used for the generation of TLS secrets on the client end and

as a decryption engine at the middlebox end. Wireshark uses significant memory as

it frequently updates a GUI component, captures packets and dissects them. Further,

Wireshark dissectors do not run in a multi-threaded environment. Using Wireshark

on the client is a tradeoff between deployability and resource consumption. Modify-

ing the browser or underlying SSL library to leak the TLS secrets would result in the

enterprise to adopt only that version of the browser/SSL library. Patches for every

update to browsers/SSL library would have to be made and this would increase the

load on the administrators of the network.

On the middlebox end, Wireshark is used to provide access to the plain text. The

overhead of resource consumption by Wireshark for decrypting packets would increase

linearly with the number of connections made by the client and the size of the TLS

packets. In a production environment where resources for the middleboxes are higher,

we do not recommend to run Wireshark to capture data for long periods as Wireshark

may itself suffer from memory leaks or other vulnerabilities.

Triraksha design does not implicate high CPU overhead. In practice, any other

software which uses less CPU resources can be used for generation of TLS secrets/as

a decryption engine. Wireshark provides a neat way to see the network log in a

GUI (which helped us perform debugging and evaluation), but in practice, the GUI

87

is not really required for the functionality. We alternatively use the command line

version TShark which can also achieve the same functionality as Wireshark and uses

significantly lesser resources. TShark does not fork a separate child process to handle

capture of packets like in Wireshark and does not have a GUI component. We apply

filters to capture only TLS packets and discard the rest. This reduces the size of the

capture file.

88

Chapter 5

Discussion and extensions to

Triraksha

In this chapter, we discuss a possible extension for Triraksha to perform MAC verifi-

cation for the decrypted payload in a connection and how Triraksha handles Authen-

ticated Encryption with Associated Data ciphers (AEAD).

5.1 TLS 1.3 and AEAD ciphers

5.1.1 TLS 1.3

TLS has a long history of vulnerabilities based on implementation and cryptographic

security. The IETF (Internet Engineering Task Force) has been developing TLS 1.3

standard which would be the defacto standard for cryptographic protocols in the

TLS family. While the changelog extends to significant improvements like improv-

ing round trip times (RTT) for protocol messages, removing compression, improving

downgrade protection, adding a full handshake signature etc., we are interested in

the improved and robust crypto standard provided by TLS 1.3. TLS 1.3 removes

89

obsolete and insecure standards for cryptographic primitives. In short, all primi-

tives that would lead to a weak TLS configuration are being removed For example,

RC4, DES, 3DES, EXPORT-strength ciphers, weak and rarely-used elliptic curves,

AES-CBC, MD5, and SHA-1 are no longer part of TLS 1.3. The current list of cipher

suites in TLS 1.3 is subject to AEAD ciphers, mainly: AES-GCM, AES-CCM, ARIA-

GCM, Camellia-GCM, ChaCha/Poly. Besides this, TLS 1.3 does not support the old

static RSA handshake without Diffie Hellman as the static RSA handshake does not

support perfect forward secrecy. TLS 1.3 removes explicit nonces and support for

re-negotiation.

5.1.2 AEAD ciphers

Given the release updates in the TLS 1.3 draft, Triraksha should support the upcom-

ing TLS protocol. However, Triraksha does not work well with AEAD ciphers. We

discuss this and introduce AEAD ciphers here.

Authenticated Encryption with Associated Data (AEAD) is a form of encryption

which provides confidentiality, integrity, and authenticity assurances on the plaintext.

Authenticated encryption (AE) schemes are typically constructed by combining an

encryption scheme and a message authentication code (MAC). Approaches to such

schemes involve Encrypt then MAC or MAC then encrypt. AE schemes have evolved

to use encryption and MAC under a single interface for use with block ciphers. An

example of this approach is GCM (Galois counter mode). For the purpose of this

section, we are interested in the AEAD ciphers that encrypt and MAC under a single

interface and are supported by TLS 1.3. These ciphers involve the following schemes:

CCM, OCB, GCM, EAX etc. OCM is a strong AEAD cipher, but is patented and

is legally challenging to use in practice. CCM is a two-pass mode and does not work

well for streaming applications like Netflix and Twitch. GCM is a popular cipher and

90

is well known for its performance and efficiency as it parallelizable. It is commonly

used in SSL/TLS. The strength of AE implies IND-CCA2 (in-distinguishability under

adaptive chosen ciphertext attack) and NM-CCA2 (non-malleability under adaptive

chosen ciphertext attack) security.

We shall now describe the functioning for GCM, why it does not work with Tri-

raksha and how to tweak it such that it can be incorporated in our scheme.

GCM and GMAC: GCM is a mode of operation for symmetric key cryptographic

block ciphers to provide data encryption and authentication. Galois Message Authen-

tication Code (GMAC) is an authentication-only variant of the GCM which can be

used as an incremental message authentication code. Figure 7 represents the working

of GCM.

GCM has two operations [56]: authenticated encryption and authenticated de-

cryption. The authenticated encryption takes the following inputs:

1. A secret key K.

2. An initialization vector IV of length 1 and 264 bits. IV should be unique for

each key.

3. Plain text P for which encryption is performed.

4. AD (Additional data) The data is authenticated but not encrypted. Length of

AD can be 0 and 264 bits.

There are two outputs:

1. A cipher text C (length is equal to plaintext P).

2. An authentication tag.

91

Figure 7: Internal functioning of the GCM encryption operation.

The authenticated decryption operation has five inputs: K, IV , C, AD, and T.

It has only a single output which is the plaintext value P or a symbol ‘FAIL’ that

represents that the MAC failed for the input values. The AD is used to protect

additional information that needs to be protected, for example, in a network protocol

AD can be the IP address and port numbers. When the length of the plain text is

zero, GCM acts as a MAC on AD. This mode is called GMAC. The IV acts as a

nonce that is to be unique for each invocation of the encryption operation for a fixed

key. For example in TLS, the IV is split into two parts: the implicit salt (4 bytes,

generated in handshake, not changed in the whole session) and a explicit nonce of 8

bytes, chosen by the sender and carried in each SSL record (usually the TLS sequence

number for a record). The combination of the implicit salt and the explicit nonce

makes the IV unique. The two main functions used in GCM are the block cipher

encryption and multiplication over the field GF(2128).

92

Issue with GCM and Triraksha: The issue with using GCM in Triraksha with

minimal write permissions is that the MAC key is not revealed to the middlebox, only

the decryption key; however, in GCM the MAC key (which is GHASH0 in Figure 7) is

derived from the decryption key (which isK). Specifically GHASH0 = Enck(000 . . . 0).

Thus by revealing K, you effectively reveal GHASH0. There is no security reason

that the MAC key needs to computable from the decryption key, however GCM

does require that only one key is passed into the encryption/decryption operations.

Therefore, we suggest two solutions that would change the internal functioning of

GCM in a way that would allow Triraksha, as well as any other application where

one might want to selectively disclose sub-keys to allow only reading or only writing

to ciphertexts.

1. Consider the input key to GCM. Call it MK, for master key, instead of K in

Figure 7. We use MK to derive two independent subkeys using a counter: an

encryption key and a MAC key. Specifically: K = Encmk(000 . . . 0) (encryption

on counter 0) and GHASH0 = Encmk(000 . . . 1) (encryption on counter 1). See

Figure 8. This comes at the expense of an additional encryption (e.g., AES)

operation. We share only the new encryption key with the middlebox.

2. Alternatively to avoid the addition of an extra encryption operation, we could

simply swap the roles of K and GHASH0. The key supplied to the GCM oper-

ation could be consider the MAC key and thus GHASH0, while the value derived

from it can be considered the encryption key. Specifically,K = EncGHASH0(000 . . . 0).

We share only the new encryption key with the middlebox.

GCM is used in two modes: encryption/decryption with authentication and GMAC

(only authentication). We argue that both the approaches do not break GCM when it

is used to do encryption/decryption operations or when used in GMAC mode. We do

93

Figure 8: Deriving two keys from MK in GCM.

not make any changes to the way GCM performs encryption or MAC authentication.

The only changes we make to GCM involve deriving values for the encryption key and

the MAC key (which would be used for the block cipher encryption of the plaintext)

or swapping the value of the MAC key and the encryption key after the MAC key is

generated.

We also note that in this case Triraksha would not be server compatible as the

server would also have to be modified to use the same TLS library as used by the

client. The TLS library would have to be modified to support both the approaches.

94

5.2 Verification of TLS secrets and integrity of data

using MAC

Our current threat model allows the middlebox to trust the TLS secrets provided by

the client. Consider a model where we have a ‘malicious’ user who tries to bypass the

Triraksha protocol. The malicious user can simply send the middlebox bad/wrong

TLS secrets. The client can communicate messages with the server and the middle-

box would simply decrypt the traffic with the wrong TLS secrets resulting in garbage

decryption. We extend the Triraksha threat model to handle a malicious user. Under

this model, we let the middlebox perform MAC verification for the decrypted text.

The middlebox can then detect if the TLS secrets provided by the client are correct.

The extended model only helps in detection for integrity of data. A middlebox oper-

ator would be aware if MAC verifications fails for the decrypted plaintext. We do not

support prevention at the middlebox end; that is, even on MAC verification failure

for the TLS application data packets, we let TLS application data packets for that

connection to pass through (MAC verification is done only after packets pass through

the middlebox).

The extended model lets the middlebox trust the client for a grace period until it

receives the master secret for the TLS connections recorded by Wireshark. Wireshark

can use the master secret to verify integrity of the symmetric encryption keys and

the data by performing MAC verification. The MAC key derived from the master

secret will authenticate the payload of the TLS application data packets. The process

described above uses the GUI functionality provided by Wireshark to reload the

SSLKEYLOGFILE. This runs the TLS dissector code again decrypting the captured

packets based on the master secret provided in the new SSLKEYLOGFILE.

Under our threat model, the middlebox can introspect data but is not capable

95

of modifying it. We provide the master secret to the middlebox only when we know

that a TLS connection has ended or after it is re-negotiated. The latter approach,

which is to induce re-negotiations allowing us to set a grace time period after which

a connection would be renegotiated. By inducing forced re-negotiations for TLS

connections after a given time period we can give the middlebox the master secret.

The new negotiated handshake would have a different master secret for the client

and the server. The middlebox can no longer have access to the correct MAC key

for the current TLS connection and can perform MAC verification for the previously

recorded data with the old master secret provided by the client. Re-negotiation in

TLS usually happens in the client when:

1. The server requires a re-negotiation, typically because the client tries to access

a resource which requires a client certificate which the previous handshake did

not include; or

2. A re-negotiation is done for security reasons after some time or number of bytes

transferred. In OpenSSL, this can be tuned with BIO set ssl re-negotiate bytes

and BIO set ssl re-negotiate timeout; or

3. The 64-bit TLS sequence number overflows.

Since we do not make changes at the server end, we leave it to the application

developer using Triraksha to recompile the underlying TLS library/application to set

a re-negotiation time out period. With TLS 1.3, re-negotiation for TLS sessions are

no longer supported. In this case, we only provide the master secret to the middlebox

when the TLS connection has ended. In our implementation, we track the state of

a TLS connection by detecting TCP FIN packets. Whenever the client detects a

TCP FIN packet, it means the connection has ended and the client can share the

96

master secret with the middlebox. The middlebox would then use the master secret

to perform MAC verification of previously recorded data.

5.3 Extending Triraksha use cases and a note on

usability

In Triraksha, the client and the server continue to main integrity for messages sent

between them. The Triraksha middlebox is limited in its use cases. The middlebox

cannot perform functionality like compression and cache which requires modification

of the traffic sent between the client and the server. The Triraksha protocol can be

extended such that we also share the MAC key with the middlebox. This enables

the Triraksha middlebox to be used in other scenarios as well. We suggest to make

this decision only when the middlebox is trusted and perceptible by the client and

the server. A consequence to this decision would be that the middlebox can now

modify the traffic in a connection and the client and server would loose integrity for

the messages between them.

Triraksha is presented as a scheme that provides client side consent to the mid-

dlebox. In practice, Triraksha can be modified to provide server side consent to the

middlebox. While we do not list the specifics, the concept remains similar. The

server would leak TLS secrets to the middlebox instead of the client. This enables

the Triraksha middlebox to be used as a reverse proxy or a load balancer.

Scalability compared to Split TLS and possible improvements: The Tri-

raksha middlebox ideally can handle equal or more number of clients compared to

Split TLS. Relative to Split TLS, for each connection in Split TLS, the middlebox

needs to open 2 sockets for connections between the client and the server and the

97

client and the middlebox. In Triraksha, the middlebox needs to open 2 sockets: one

for handling the TLS secrets from the client and one for forwarding packets between

the client and the server.

In some RFCs, the TLS session encryption key/TLS secrets (encrypted with the

middlebox’s public key assuming RSA encryption key in middlebox’s cert) is included

in an ignorable header field in the TLS packet header itself. The header is added

after a certain point in the handshake or after knowing the TLS encryption key and

is packed into the TLS packet and parsed by the middlebox. The packet is parsed

before it reaches the server. With Triraksha, this kind of a scheme design (which would

involve opening only a single socket respective to a connection on the middlebox) can

be explored to improve scalability.

Usability configuration for end user and middlebox: In Triraksha, usability

for the end user and the middlebox administrator can be achieved by setting policies.

The objective for setting such policies is to communicate to the user ‘who can do

what’ in a simple and scalable manner. The policy communicates if a middlebox can

read/write the user’s data?

At the client end, for each website/group of websites, an user can set a policy such

that the middlebox would be allowed:

1. No read permission: The client does not leak the TLS secrets in this case.

2. Only read permission: The client leaks the TLS secrets to the middlebox.

3. Read and write permissions: The client includes the MAC key with the TLS

secrets used in Triraksha and leaks the TLS secrets to the middlebox.

98

Similarly the middlebox can be configured to have a central policy to allow/block

websites. Further, a policy can be configured on the middlebox for a website/group

of websites such that:

1. The middlebox does not intercept the connection. The middlebox would not

block TLS application data packets for this website and does not require the

TLS secrets from the client.

2. The middlebox requires to inspect packet payload. The middlebox follows the

Triraksha protocol and requires the client to leak the TLS secrets.

3. The middlebox requires read and write privileges over the traffic. The client

would have to include the MAC key with the TLS secrets and leak it to the

middlebox.

A note on the browser security indicator: HTTPS over the years has matured

and integrated with popular browsers visualizing to the user if the connection is

trusted or not. Browsers are one of the most popular applications used by a user for

making TLS connections to a server. A standard HTTP with SSL connection in a

browser is graphically shown to the user with a lock icon. The intended goal of using

the lock icon is to provide the user with the identity of page origin and indicate to

the user that page contents are not viewed or modified by a third party. However,

displaying the origin ID in the padlock is not always helpful as origin ID can easily

be manipulative and provide the user with similar looking origins. Using the padlock

icon tells the user that all the elements are fetched from a trusted server. Trust is reify

by performing security validations like if the HTTPS certificate is issued by a CA that

is trusted by the browser, if the HTTPS certificate is valid and if the common name

in the certificate matches the domain name in the URL. Most browsers recognize

EV (extended validation) certificates which are designed for large scale banks and

99

e-commerce websites. EV certificates provide the strongest encryption level available

and enable the organization behind a website to present its own verified identity

to website visitors and help block semantic attacks (phishing etc). A green colored

address bar is shown in browsers for the usage of EV certificates.

The visual cues for SSL (lock icon and green colored bar) sometimes do not not

reflect their intended purpose and fail to show the user, the trust of the connection.

There are number of attacks [76] identified by researchers on a SSL connection that

can trick the user to have a false sense of security while having the padlock icon

shown to them. SSL strip is one such attack in which an attacker can redirect the

server address to the attacker’s page where he can use similar looking lock icons on

the website instead of the address bar and trick a gullible user to enter his credentials.

There can be semantic attacks on certificates where the attacker can buy a certificate

for a domain looking similar to the legitimate domain name. The user may be tricked

into thinking he is visiting a legitimate website. Sometimes when certificates are

invalid and there are pop up warnings in the browser, user often ignore these warnings

thinking of it as a misconfiguration rather than an attack. It takes as much as 4-6

mouse clicks to accept invalid certificates in some of the browsers. In the case of a

server sending mixed content (HTTP and HTTPS), the padlock icon is modified to

show a ‘!’ along with the lock icon for Firefox. Safari does not detect mixed content

and no warnings or prompts are issued to the user. In a MITM attack the user can be

easily tricked into accepting a certificate from the attacker. The user would still be

shown a padlock icon and confidentiality is no longer maintained. Joshual et al. [76] in

his paper does an empirical study of SSL warning effectiveness. They recommend to

block users from making unsafe connections rather than displaying warnings in benign

situations. Schechter et al. [68] perform an evaluation of website authentication and

conclude that users enter credentials even when the passive HTTPS indicators are

100

absent. They also conclude that authenticated website lookalike images make users

disregard other security indicators.

Designing an interface for browsers: Browsers are one of the most popular TLS

applications. There is a need for browsers to have some kind of a security indicator

to visualize to the user the existence of a middlebox and to indicate trust for the

connections. Reusing the padlock seems to further mislead users and fails to indicate

if the connection is ‘secure’. In the proposal: any node refusal, the author suggests

to use a double padlock icon, each lock displaying a secure connection for the server

and a middlebox. We leave designing a satisfactory ‘connection security indicator’

for browser as future work.

Security indicator for Triraksha: Other common user applications which make

TLS connections on a general note do not have a connection security indicator and

do not display trust for the connection to the user (example: Spotify, Skype etc.).

With Triraksha, we envision a ‘VPN style indicator’ where the OS is aware if the TLS

connection is being proxied. A simple interface (example: button, notification) can

indicate if the client is sending TLS secrets for a connection. This extends visibility

for the connection security indicator to all applications and not just the browsers.

An OS level security indicator can support application layer gateways as well as

proxies (the latter approach of using a padlock icon works only for middleboxes that

act as proxies). We leave designing a satisfactory ‘connection security indicator’ for

Triraksha as future work.

101

Chapter 6

Conclusion

Middlebox are increasingly being deployed by organizations and provide a wide array

of valuable in-network services. Simultaneously, end-to-end encryption is adopted

increasingly across the Internet. Middleboxes do not work well with end-to-end en-

crypted sessions. The naive and popular solution Split TLS breaks end-to-end encryp-

tion and is not secure. While, there are other models that incorporate middleboxes

with end-to-end encryption, they are not adopted as they are not easy to deploy in

the real world. These schemes have varying threat models and their end goals are

not aligned with the deployment needs of users and service providers.

In this work, we introduce a benchmark based on the UDS framework that encom-

passes the threat models, entities and properties of the schemes and provides a clear

insight into the challenges and needs of using middleboxes with end-to-end encrypted

sessions. We introduce our scheme Triraksha which provides a packet inspection ser-

vice for TLS connections. Triraksha design and implementation highlights challenges

for a real world deployable scheme. We hope that researchers will continue to explore

the standing problem of enabling end-to-end encryption with middleboxes for future

versions of the TLS protocol.

102

Bibliography

[1] Any node refusal. https://github.com/bizzbyster/TrustedProxy/wiki/

Any-Node-Refusal.

[2] Ars technica. ATT fined 25 million after call center employees stole

customers data. http://arstechnica.com/techpolicy/2015/04/

att-fined-25-million-after-call-centeremployees-stole-customers-data/.

Article published on 04/2015.

[3] Delegation Oriented Architecture (DOA). https://suricata-ids.org/.

[4] IP sets. http://ipset.netfilter.org/.

[5] iptables. http://ipset.netfilter.org/iptables.man.html.

[6] List of user stories for HTTP proxies. https://github.com/http2/

http2-spec/wiki/Proxy-User-Stories.

[7] mitmproxy. https://mitmproxy.org/.

[8] Named Data Networking. https://named-data.net/project/.

[9] NDPI. http://www.ntop.org/wp-content/uploads/2013/12/nDPI_

QuickStartGuide.pdf.

[10] nfqueue. http://www.netfilter.org/projects/libnetfilter_queue/.

103

[11] Openssl server. https://wiki.openssl.org/index.php/Manual:

S_server(1).

[12] OSI model. http://www.itu.int/rec/T-REC-X/en.

[13] Qosmos deep packet inspection and metadata engine. http://www.qosmos.com/

products/deep-packet-inspection-engine/.

[14] rsync. https://linux.die.net/man/1/rsync.

[15] Scapy. http://www.secdev.org/projects/scapy/.

[16] Snort. https://www.snort.org/.

[17] Suricata. https://suricata-ids.org/.

[18] TCPcrypt. http://www.tcpcrypt.org/.

[19] TLS mailing list, industry concerns. https://www.ietf.org/mail-archive/

web/tls/current/msg21278.html.

[20] Wireshark. https://www.wireshark.org/.

[21] Wireshark bug 9461. https://bugs.wireshark.org/bugzilla/show_bug.

cgi?id=9461.

[22] Network traffic statistics for encryption. https://www.sandvine.com/trends/

encryption.html, 2015.

[23] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben

Greenstein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bo-

lian Yin. Flywheel: Google’s data compression proxy for the mobile web. In

NSDI, volume 15, pages 367–380, 2015.

104

[24] Palo Alto Networks. Statistics for HTTPS. https://www.paloaltonetworks.

com/.

[25] Sheehy Andrew. The structure of the internet.

http://www.forbes.com/sites/andrewsheehy/2015/09/21/

the-structure-of-the-internet-is-going-to-change-radically-in-the/

/-next-ten-years/6cca8c6f1372. News article 09/2015.

[26] Michael Backes, Rainer W Gerling, Sebastian Gerling, Stefan Nürnberger, Do-

minique Schröder, and Mark Simkin. Webtrust–a comprehensive authenticity

and integrity framework for HTTP. In International Conference on Applied

Cryptography and Network Security, pages 401–418. Springer, 2014.

[27] K Bhargavan, A Delignat-Lavaud, A Pironti, A Langley, and M Ray. Trans-

port Layer Security (TLS) session hash and extended master secret extension.

Technical report, 2015.

[28] Benn Sapin Bollay. Strong SSL proxy authentication with forced SSL renegoti-

ation against a target server, August 4 2015. US Patent 9,100,370.

[29] Benn Sapin Bollay and Erick Nils Hammersmark. Aggressive rehandshakes on

unknown session identifiers for split SSL, December 8 2015. US Patent 9,210,131.

[30] Benn Sapin Bollay, David Alan Hansen, David Dean Schmitt, and Jonathan Mini

Hawthorne. Proxy SSL handoff via mid-stream renegotiation, October 20 2015.

US Patent 9,166,955.

[31] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano.

The quest to replace passwords: A framework for comparative evaluation of web

authentication schemes. In Security and Privacy (SP), 2012 IEEE Symposium

on, pages 553–567. IEEE, 2012.

105

[32] Brian Carpenter and Scott Brim. Middleboxes: Taxonomy and issues. RFC 3234

IETF draft Category: Informational, 2002.

[33] Privacy Rights Clearinghouse. A chronology of data breaches, 2009.

[34] CloudFlare. Keyless SSL. https://www.cloudflare.com/keyless-ssl/.

[35] Mark Charles Davis, David G Kuehr-McLaren, and Timothy Glenn Shoriak.

Extending SSL to a multi-tier environment using delegation of authentication

and authority, April 2 2002. US Patent 6,367,009.

[36] Jayson DeMers. How the internet will change?

http://www.forbes.com/sites/jaysondemers/2016/04/18/

7-predictions-for-how-the-internet-will-change-over-the-next-15-years/

711b2a5a78dc. News article 04/2016.

[37] Tim Dierks and E Rescorla. The Transport Layer Security (TLS) protocol version

1.2. IETF, RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746,

5878, 6176, 7465, 7507, 7568, 7627, 7685, 2008.

[38] Tim Dierks and E Rescorla. The Transport Layer Security (TLS) protocol version

1.3. RFC 6961, IETF, 2015.

[39] Jeffrey Erman, Alexandre Gerber, Mohammad Hajiaghayi, Dan Pei, Subhabrata

Sen, and Oliver Spatscheck. To cache or not to cache: The 3G case. IEEE

Internet Computing, 15(2):27–34, 2011.

[40] Oprescu et al. A framework for consent and permissions in mediating TLS.

MaRNEW Workshop, 2015.

[41] Thomas Fossati, Vijay K Gurbani, and Vladimir Kolesnikov. Love all, trust

few: On trusting intermediaries in HTTP. In Proceedings of the 2015 ACM

106

SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Vir-

tualization, pages 1–6. ACM, 2015.

[42] Charles E Gero, Jeremy N Shapiro, and Dana J Burd. Terminating SSL con-

nections without locally-accessible private keys, December 14 2012. US Patent

App. 13/714,656.

[43] Mohammad A Hoque, Matti Siekkinen, and Jukka K Nurminen. On the energy

efficiency of proxy-based traffic shaping for mobile audio streaming. In Consumer

Communications and Networking Conference (CCNC), 2011 IEEE, pages 891–

895. IEEE, 2011.

[44] Jeff Jarmoc and DSCT Unit. SSL/TLS interception proxies and transitive trust.

Black Hat Europe, 2012.

[45] Suhairi Mohd Jawi, Fakariah Hani Mohd Ali, and Nurul Huda Nik Zulkipli.

Nonintrusive SSL/TLS proxy with JSON-based policy. In Information Science

and Applications, pages 431–438. Springer, 2015.

[46] Tushar Kanekar and Sivaprasad Udupa. Systems and methods for optimizing

SSL handshake processing, July 29 2014. US Patent 8,793,486.

[47] Mangesh Kasbekar. HTTPS request enrichment, September 29 2015. US Patent

App. 14/868,771.

[48] A Kingsley-Hughes. Gogo in-flight wi-fi serving spoofed SSL certificates. ZDNet

January, 5, 2015.

[49] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu.

Embark: securely outsourcing middleboxes to the cloud. In 13th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 16), pages

255–273. USENIX Association, 2016.

107

[50] Peter Lepeska. Trusted proxy and the cost of bits. In IETF proceedings, 2014.

[51] Chris Lesniewski-Laas and M Frans Kaashoek. Ssl splitting: Securely serving

data from untrusted caches. Computer Networks, 48(5):763–779, 2005.

[52] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping Wu.

When HTTPS meets CDN: A case of authentication in delegated service. In

Security and privacy (sp), 2014 ieee symposium on, pages 67–82. IEEE, 2014.

[53] S Loreto, J Mattsson, R Skog, H Spaak, G Gus, D Druta, and M Hafeez. Explicit

Trusted Proxy in HTTP/2.0. IETF Internet-Draft; Intended status: Standards

Track, 2014.

[54] John Ryan McGarvey. Authentication method to enable servers using public key

authentication to obtain user-delegated tickets, November 4 2003. US Patent

6,643,774.

[55] D McGrew, Dan Wing, Y Nir, and P Gladstone. TLS proxy server extension.

IETF Internet-Draft Intended status: Informational, 2012.

[56] David McGrew and John Viega. The Galois/counter mode of operation (GCM).

NIST Modes Operation Symmetric Key Block Ciphers, 2005.

[57] Gennady Medvinsky, Nir Nice, Tomer Shiran, Alexander Teplitsky, Paul Leach,

and John Neystadt. Authentication delegation based on re-verification of cryp-

tographic evidence, June 9 2015. US Patent 9,055,107.

[58] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco

Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. The

cost of the S in HTTPS. In Proceedings of the 10th ACM International on

Conference on emerging Networking Experiments and Technologies, pages 133–

140. ACM, 2014.

108

[59] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Black-

burn, Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez,

and Peter Steenkiste. Multi-context TLS (mcTLS): Enabling secure in-network

functionality in TLS. In ACM SIGCOMM Computer Communication Review,

volume 45, pages 199–212. ACM, 2015.

[60] C. Nikolouzakis. Encrypted traffic grows 40 percent post ed-

ward snowden NSA leak. http://www.sinefa.com/blog/

encrypted-traffic-grows-post-edward-snowden-nsa-leak.

[61] Yoav Nir. A method for sharing record protocol keys with a middlebox in TLS.

IETF Internet-Draft Intended status: Standards Track, 2012.

[62] M Nottingham. Problems with proxies in HTTP. IETF Internet-Draft Intended

status: Informational, 2013.

[63] Vern Paxson. Bro: A system for detecting network intruders in real-time. Com-

puter networks, 31(23):2435–2463, 1999.

[64] Roberto Peon. Explicit proxies for HTTP/2.0. IETF Internet-Draft Intended

status: Informational, 2012.

[65] E Rescorla and A Schiffman. The Secure Hypertext Transfer Protocol. 1999.

[66] Jesse Abraham Rothstein, Arindum Mukerji, David D Schmitt, and John R

Hughes. Accessing SSL connection data by a third-party, July 15 2014. US

Patent 8,782,393.

[67] R Sandvik. Security vulnerability found in Cyberoam DPI devices (CVE-2012-

3372). 2012.

109

[68] Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The

emperor’s new security indicators. In Security and Privacy, 2007. SP’07. IEEE

Symposium on, pages 51–65. IEEE, 2007.

[69] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu

Shi. Design and implementation of a consolidated middlebox architecture. In

Proceedings of the 9th USENIX conference on Networked Systems Design and

Implementation. USENIX Association, 2012.

[70] Vyas Sekar, Sylvia Ratnasamy, Michael K Reiter, Norbert Egi, and Guangyu

Shi. The middlebox manifesto: enabling innovation in middlebox deployment.

In Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM,

2011.

[71] Karen Seo and Stephen Kent. Security architecture for the Internet protocol.

IETF RFC 7619, 2005. Category: Standards Track, ISSN 2070-1721.

[72] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-

nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network

processing as a cloud service. ACM SIGCOMM Computer Communication Re-

view, 42(4):13–24, 2012.

[73] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox:

Deep packet inspection over encrypted traffic. In ACM SIGCOMM Computer

Communication Review, volume 45, pages 213–226. ACM, 2015.

[74] George J Silowash, Todd Lewellen, Daniel L Costa, and Lewellen. Detecting and

preventing data exfiltration through encrypted web sessions via traffic inspection.

2013.

110

[75] Douglas Stebila and Nick Sullivan. An analysis of TLS handshake proxying. In

Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 279–286. IEEE, 2015.

[76] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lor-

rie Faith Cranor. Crying Wolf: An Empirical Study of SSL Warning Effec-

tiveness. In USENIX security symposium, pages 399–416, 2009.

[77] Verizon RISK Team. 2015 data breach investigations report. 2015.

[78] Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary Thomp-

son. Internet X. 509 public key infrastructure (PKI) proxy certificate profile.

Technical report, 2004.

[79] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian Kreibich, Nicholas

Weaver, and Vern Paxson. Beyond the radio: Illuminating the higher layers of

mobile networks. In Proceedings of the 13th Annual International Conference on

Mobile Systems, Applications, and Services, pages 375–387. ACM, 2015.

[80] Nicholas Weaver, Christian Kreibich, Martin Dam, and Vern Paxson. Here be

web proxies. In International Conference on Passive and Active Network Mea-

surement, pages 183–192. Springer, 2014.

[81] Ofir Weisse, Timothy Trippel, and Jeremy Erickson. Ubicrypt: Making ubiqui-

tous encryption compatible with enterprise security. 2015.

[82] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sunghwan Ihm, and

KyoungSoo Park. Comparison of caching strategies in modern cellular backhaul

networks. In Proceeding of the 11th annual international conference on Mobile

systems, applications, and services, pages 319–332. ACM, 2013.

[83] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett, David Choffnes, and

Ramesh Govindan. Investigating transparent web proxies in cellular networks.

111

In International Conference on Passive and Active Network Measurement, pages

262–276. Springer, 2015.

[84] K Zetter. The feds cut a deal with in-flight wi-fi providers, and privacy groups

are worried. Wired Magazine, 2014.

112

Chapter 7

Appendix

7.1 TLS Message Header Values

Listing 7.1: TLS content type headers

CHANGECIPHERSPEC 20 (x‘14’)

ALERT 21 (x‘15’)

HANDSHAKE 22 (x‘16’)

APPLICATION_DATA 23 (x‘17’)

Listing 7.2: TLS version header values

SSL3 x ‘0300 ’

TLS1 x ‘0301 ’

TLS1.1 x ‘0302 ’

TLS1.2 x ‘0303 ’

113

Listing 7.3: TLS handshake message format

Byte 0 TLS record type = 22

Bytes 1-2 TLS version

Bytes 3-4 TLS Length of data in the record (excluding the

header itself).

Byte 5 TLS Handshake type (Value 0 for Client/Value 1

for Server)

Bytes 6-8 TLS Length of data to follow in this record

Bytes 9-n TLS Command -specific data

Listing 7.4: Format of a TLS record

Byte 0 TLS record type

Bytes 1-2 TLS version (major/minor)

Bytes 3-4 Length of data in the record (excluding the

header itself).

The maximum SSL supports is 16384 (16K).

7.2 Entities and definitions

The following terms are used in paper and are defined as follows:

1. User: A user is the human being who controls and initiates the use of an user-

agent/client.

2. User-agent/Client: The client is a program run in a computer by the user and

is responsible for starting a TLS/SSL session with a service provider/server.

Client and user-agents are synonyms. A client is also one of the endpoints in a

TLS/SSL connection.

114

3. Server/Service-provider: The server is a networking computer that completes

the requests of a client and responds back with data. A server is the other

endpoint in a TLS/SSL connection. Service-provider and server are synonyms.

4. Middlebox/Proxy: A middlebox is a generalized term for a networking device

that intercepts traffic between a client and a server and uses it for purposes like

inspection, manipulation, packet forwarding, caching, compression etc. Middle-

box and proxy are synonyms for the purpose of this paper.

5. Transparent proxy: A proxy that uses Split TLS. A networking device that

intercepts the traffic between a client and a server. This proxy acts on behalf

of the client by adding a trusted root certificate on the user’s device. Such a

proxy is transparent to both the end points during a TLS/SSL session. The

user himself may install the certificate on the device, an adversary may trick

the user into installing the certificate or the certificate is already present in the

device installed by the manufacturer.

6. Reverse proxy: A proxy interposed by the server (such as gateway or portal) is

called as a reverse proxy.

7. End-to-end encryption: Encryption of data between two entities with no inter-

mediates in the connection.

8. User-consent/user-permissions: The explicit grant provided by an user resulting

in the trust of a particular component. The user may or may not be aware of

this grant. User consent and user-permissions are synonyms.

9. Middlebox service: The functionality done by the middlebox.

115

7.3 Machine configuration for Triraksha implemen-

tation

Configuration for client and middlebox machine: Intel(R) Core(TM) i7-2000 2.3 Ghz,

1 Tb HDD, 8 Gb RAM. Speed for USB to ethernet adapter: USB 2.0 to 100 Mb/sec.

7.4 Definitions for Curl APIs

We leverage Curl’s inbuilt timing API’s to record logistics for one Curl request. The

following APIs are used for our evaluation of Triraksha.

1. time namelookup: The time, in seconds, it took from the start until the name

resolving was completed.

2. time connect: The time, in seconds, it took from the start until the TCP connect

to the remote host (or proxy) was completed.

3. time appconnect: The time, in seconds, it took from the start until the SS-

L/TCP/etc connect/handshake to the remote host was completed.

4. time pretransfer: The time, in seconds, it took from the start until the file

transfer was just about to begin. This includes all pre-transfer commands and

negotiations that are specific to the particular protocol(s) involved.

5. time starttransfer: The time, in seconds, it took from the start until the first

byte was just about to be transferred. This includes time pretransfer and also

the time the server needed to calculate the result.

6. time total: The total time, in seconds, that the full operation lasted. The time

will be displayed with millisecond resolution.

116

7. size header: The total amount of bytes of the downloaded headers.

8. size download: The total amount of bytes that were downloaded.

7.5 Definitions for Chrome’s HAR file

We leverage the Chrome developer tools to record logistics for web requests made

with the browser. The definitions for the parameters recorded are:

1. Number of requests: The number of requests made to the principal webserver.

2. Wait time: This is the amount of time waiting for the server to respond.

3. Recieve time: This is the amount of time used for the server to transfer the

required information to the client.

4. On load time: Total time taken for the page to be fully loaded, inclusive of

AJAX calls or any REST calls from Javascript to populate data on external

server.

5. SSL time: The time it took for the SSL handshake to complete.

6. Uploaded data: The total amount of bytes of the uploaded requests.

7. Downloaded data: The total amount of bytes that were downloaded from the

response.

117

