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Abstract

Collocation Methods for Nonlinear Parabolic Partial Differential Equations

Xu Chen

In this thesis, we present an implementation of a novel collocation method for solving nonlin-

ear parabolic partial differential equations (PDEs) based on triangle meshes. The temporal partial

derivative is discretized using the implicit Euler-backward finite difference scheme. The spatial

domain of the PDEs discussed in this thesis is two-dimensional. The domain is first triangulated

and then refined into appropriately sized triangular elements by the Rivara algorithm. The solution

is approximated by piecewise polynomials in the elements. The polynomial in each element is re-

quired to satisfy the PDE at collocation points of the element and keep a certain degree of continuity

with the polynomials in the neighboring elements via matching points. Nested dissection is used

recursively, from the elements up to the entire domain, to merge all pairs of sibling sub-regions

for eliminating the variables at the matching points on the common sides shared by the merged

sub-regions. Then by applying global boundary conditions, we solve for the solution values at the

boundary points of the entire domain. The solutions at the boundary points of the domain are back-

substituted to solve the variables at the matching points of the sub-regions. This back-substitution

is repeated until every element is reached. The accuracy of the solution is affected by the time

step, granularity of the subdivision, the number and location of matching points, and the number

and location of collocation points. Increasing the number of matching points or collocation points

does not always improve the accuracy. Instead, it may cause singularity. We have given several

layouts of specific numbers of collocation and matching points which bring high accuracy. Our so-

lution visualization algorithm directly renders mathematical surfaces instead of any approximation

of them. Thus each pixel of the rendered surfaces exactly reflects the corresponding fragment on

the mathematical surfaces.
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Chapter 1

Introduction

In this chapter we introduce partial differential equations (PDEs), especially nonlinear PDEs,

and numerical methods for solving PDEs. The objectives of this thesis are also discussed.

1.1 Partial differential equations

A differential equation is a mathematical equation that relates a function and its derivatives [3].

A partial differential equation (PDE) is a differential equation that contains unknown multivariable

functions and their partial derivatives. An ordinary differential equation (ODE) is a differential

equation containing one or more functions of one independent variable and its derivatives. ODEs

can be considered as a special case of PDEs, which deal with functions of a single variable and their

derivatives [3]. The solution of PDEs are functions, which are written as u(x1, x2, · · · , xn). For

time-dependent PDEs, the temporal variable is distinguished from the others because it has special

significance. In this case, the solutions would be written as u(x1, x2, · · · , xn−1, t), where t denotes

the time dimension and X = (x1, x2, · · · , xn−1)T ∈ Rn−1 represents the spatial variables. In

engineering, often if not always, problems are in 2D or 3D space plus one temporal dimension. In

2D the spatial variable is usually written as X = (x, y) ∈ R2; in 3D, X = (x, y, z) ∈ R3. In

this thesis we solve only PDEs in 2D spatial domains with one dimension of time. The order of

a PDE is the order of the highest order derivative that appears in the PDE. Differential equations

of order higher than two are rarely used to describe physical phenomena. This may be explained
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by the Ostrogradsky instability [6], which states that PDEs with higher order derivatives tend to be

unstable and their solutions blow up. If we solve a PDE with higher order terms, then we may get

solutions that are unstable in the sense that any small change in input parameters may result in a

wildly different solution. Since there is always uncertainty in the initial conditions, the solutions

may not be meaningful [4]. On the other hand, there are methods for solving high order PDEs by

splitting them into systems of lower order equations [7]. For this reason, much research has been

done for second order PDEs.

1.2 Linear and nonlinear second order partial differential equations

Our discussion will be limited to PDEs in 2D space plus one temporal dimension. In this thesis,

a 2D PDE means the spatial domain of the PDE is in 2D, not including its temporal dimension.

PDEs are either linear or nonlinear.

A second order 2D PDE is linear if and only if it is of the form

A1
∂2u

∂x2
+A2

∂2u

∂y2
+A3

∂2u

∂t2
+B1

∂u

∂x
+B2

∂u

∂y
+B3

∂u

∂t
+ Cu = D , (1.1)

where u = u(x, y, t), each of Ai, Bj , C, and D is a function of (x, y, t) but not of u, ux, uy, or ut.

If a PDE is not linear, it must be nonlinear. Most real-world physical systems, including gas dynam-

ics, fluid mechanics, elasticity, relativity, ecology, neurology, thermodynamics, and many more, are

modeled by nonlinear partial differential equations [1]. Although linear approximations of some

simplified real-world nonlinear phenomena can bring accurate solutions of limited scopes, solving

nonlinear PDEs is still required in more general cases. In this thesis we will focus on nonlinear

second order PDEs.

1.3 Nonlinear parabolic partial differential equations

Second order PDEs can be classified into hyperbolic, parabolic, and elliptic. Such classification

is valid for both linear and nonlinear PDEs, but limited to PDEs of second order. Classification

of PDEs is important because analytical theories and numerical methods usually apply only to a
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specific class of equations. The collocation method discussed in this thesis is appropriate for solving

nonlinear or linear parabolic PDEs.

The most important properties of PDEs depends only on the form of their highest order terms.

The classification of PDEs relies on the highest order terms. As prescribed, we focus on second

order PDEs in 2D space with one temporal dimension. Let all Ai > 0 in (1.2), (1.3), and (1.4).

A1
∂2u

∂x2
+A2

∂2u

∂y2
+ F (x, y, u, ux, uy) = 0 (1.2)

∂u

∂t
= A1

∂2u

∂x2
+A2

∂2u

∂y2
+ F (x, y, t, u, ux, uy) (1.3)

∂2u

∂t2
= A1

∂2u

∂x2
+A2

∂2u

∂y2
+ F (x, y, t, u, ux, uy, ut) (1.4)

PDEs in the form of (1.2) are elliptic PDEs, which are time-independent. PDEs in the form of

(1.3) are parabolic PDEs. (1.4) represents the general form of hyperbolic PDEs. Suppose Ai are

all positive constants. In this case, a PDE in any of the above forms has unique type in the entire

domain. If any of u, ux, uy, and ut appears in nonlinear terms of F (. . . ), the PDE is nonlinear. In

this thesis, we consider only the PDEs with constant Ai.

The representative examples of 2D elliptic PDEs include Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f(x, u, ux, uy) (1.5)

and the 2D Laplace equation
∂2u

∂x2
+

∂2u

∂y2
= 0 . (1.6)

A typical example of hyperbolic PDE in 2D space is the wave equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
. (1.7)

Parabolic equations are typical for dissipative processes. Classical examples are heat conduction

and diffusion. The incompressible Navier-Stokes equations, governing the dynamics of fluid flow,
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is a system of parabolic PDEs, whose 2D case is defined as

(a)
∂�u

∂t
= ν∇2�u− (�u · ∇)�u+ f

(b)
∂ρ

∂t
= k∇2ρ− (�u · ∇)ρ+ S

(c) ∇ · �u = 0

�u = �u(x, y, t) ∈ R2 , ∇2 ≡ ∇ · ∇ ≡ Δ ≡ ∂2

∂x2
+

∂2

∂y2
,

(1.8)

where equation (a) defines the change of velocity of the fluid flow, equation (b) defines the moving

of density in the fluid flow, and equation (c) constrains the incompressibility of the fluid. There

are terms of dissipation of velocity and density in (a) and (b), respectively. The ν and k are the

coefficients of viscosity. The lower the values of viscosity efficients, the less viscous diffusion of

the fluid; if the viscosity efficients are 0, the dissipation or diffusion will vanish. The Navier-Stokes

equations can be generalized to 3D space. (1.8) is a system. We do not solve systems of PDEs in

this thesis.

The heat and reaction equation is another example of a parabolic PDE.

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ f(x, y, t, u, ux, uy) , (1.9)

where f(. . . ) defines the reaction, i.e., the source of heat.

There is a wide range of scientific problems modeled by parabolic PDEs. Chapter 3 is dedicated

to a more detailed discussion of parabolic PDEs. In this thesis we focus on nonlinear parabolic

PDEs.

1.4 Numerical methods

The emphasis of this thesis is on the collocation method. To explain the principle of the collo-

cation method, it is helpful to compare it to other numerical methods, such as the finite difference

methods and finite element methods (FEM). For this purpose, such numerical methods are briefly

introduced in this section. Our discussion in this section is still limited to the problem domain of

2D space, where X = (x, y)T .
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1.4.1 The finite difference method

The finite difference method is the most basic numerical method, and relatively easy to imple-

ment for regular domains. However, it is difficult to support irregularly shaped domains. Multi-step

finite-difference methods can improve the accuracy. In our collocation method, the time derivative

is discretized with a finite-difference method. For the simplicity of implementation, we use single-

step difference method, which introduces a local truncation error of O(h2) and an accumulated

error of O(h) at a specific time t, where h is the size of a time step. The forward (or explicit) finite-

difference method has the limitations on step size to ensure numerical stability. The limitations of

step size make this method inefficient for stiff systems. The backward (or implicit) finite-difference

method is A-stable[?], thus it is used in our collocation method for discretizing the time derivative.

1.4.2 The finite element method

The finite element method (FEM) is a numerical method widely used for finding numerical

solutions of boundary value problems (ODE/PDEs) on complicated problem domains. Meshes are

generated to discretize problem domains into elements, and the size of the elements depends on the

expected accuracy. Each element connects to its neighboring elements only at some nodes. In each

element Ωj , the exact solution u(X) is approximated by piecewise polynomial, which is defined as

u(X) ≈ p(X) =

n∑
i=1

uiφi(X) , X = (x, y)T ∈ Ωj ⊂ R2 (1.10)

where u1, u2, . . . , un are the unknown nodal values to solve for on the boundary δΩj , and {φi} are

shape functions, which must be appropriately chosen such that

p(Xi) =

n∑
i=1

uiφi(Xi) = ui = u(Xi) ,

where Xi = (xi, yi) is the nodal location. Then discretize the PDEs into weak forms. The most

common method used for transforming the PDEs into weak formulations is the Galerkin method.

However, choosing appropriate basis functions is usually a difficult issue for Galerkin methods.

After the discretization, an integration by parts is performed on the initial weak form, and further
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Green’s theorem is used to convert some items of the integral over Ωj into line integrals over δΩj .

As the result, a local linear system of unknown nodal values ui in element Ωj is constructed. Such

linear system is constructed for every element. Then all the local systems are appropriately merged

to generate a global system, to which the boundary condition is applied to solve it.

1.4.3 The collocation method

Collocation methods are another way for finding numerical solutions of ODEs or PDEs. The

principle of collocation method is to approximate the exact solutions u(X) of an ODE or a PDE by

determining an appropriate linear combination of a group of linearly independent basis functions

{φ1, φ2, . . . , φK}

u(X) ≈ p(X) =
K∑
i=1

ciφi(X) (1.11)

such that p(X) satisfies the given ODE or PDE at a number of appropriately located points (called

collocation points), and at the same time, satisfies the boundary conditions. The dimension K of

the polynomial space is determined by the number of the collocation points and the points on the

boundary at which the boundary condition is satisfied.

A collocation method which solves the approximate polynomial p(X) in the entire problem do-

main is called a global collocation method. Consider 1-dimensional or 2-dimensional domains. For

the differential equations whose solutions are complex-shaped curves or surfaces, we have to use

polynomials of higher degree to approximate the exact solutions. Theoretically, this can be achieved

by increasing the number of collocation points and boundary points. However, once the numbers

exceed a certain range, the collocation scheme will tend to cause singularities, divergence, or insta-

bilities. Differential equations with irregularly shaped domains also require more collocation points

and boundary points and therefore bring the same problem. In either of the cases we need to sub-

divide the entire domain into smaller regions, called elements. This leads us to the finite element

collocation method (or discontinuous piecewise polynomial collocation method).

In the finite element collocation method, we discretize the domain Ω into elements Ωi [17],

each of which has its own collocation points (called local collocation points) and matching points

on its borders shared with its adjacent elements. The process of subdividing a mesh is also called
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mesh refinement. For each element Ωi, we determine a polynomial pi(X) which satisfies the dif-

ferential equation at the local collocation points, and at the same time achieves a certain degree

of continuity with the polynomials of the adjacent elements at matching points. As the result, we

get an approximation of the exact solution at the matching points in the entire domain Ω. Suitable

interpolation will then be used to evaluate the approximated solution anywhere in the computational

domain [11]. Mesh-based numerical techniques are not feasible, however, for solving mathematical

problems defined in spaces of high dimensions (higher than 3D). The reason is that their number of

degrees of freedom grows exponentially with the dimensionality of the problem [11]. In this thesis

we use a finite element collocation method to solve nonlinear parabolic PDEs in 2D space. Thus,

by default, all “collocation method”s appearing in the remainder of this thesis refer to the finite

element collocation method (or discontinuous piecewise polynomial collocation method) applied to

2D problems. An example solution is visualized as Figure 1.1, which shows that a generally shaped

2D domain is refined into a 2D triangular mesh, and each element has a piecewise-smooth local

polynomial surface patch, which has a certain level of continuity with the surface patches of the

adjacent elements. However, the connection between each pair of adjacent surface patches is not

smooth. Gaps are visible between some pairs of adjacent surface patches, as continuity is guaran-

teed only at the matching points. In this thesis, “surface patch” is the synonym of the surface of a

piecewise polynomial. The advantage of collocation methods over finite difference methods is their

Figure 1.1: A numerical solution of the Bratu problem in an irregularly shaped 2D domain by the
discontinuous piecewise polynomial collocation method. (Visualized by our visualization module.)

potentially higher accuracy and the fact that nonuniform meshes can be used. Applying collocation

methods to nonlinear parabolic PDEs will be explained in detail in the following chapters.
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1.5 Organization of the thesis

This thesis is organized as follows. Chapter 1 gives an overview of the classification of PDEs

and the numerical methods, where the collocation method is also briefly introduced. Chapter 2 de-

scribes triangulation of irregularly shaped problem domains and generation of adaptive triangular

meshes over the domains. The Rivara algorithm is also introduced. In Chapter 3, we explain in

detail the principle of the collocation method. In Chapter 4, we extend the local system of the piece-

wise collocation method from a single element to the subdivision hierarchy. We also estimate the

complexity of the method. Chapter 5 describes the software architecture and data structure. Chapter

6 discusses five test PDEs and an application of the collocation method to the Bratu problem. From

the large number of the test results we find the configurations of collocation points and matching

points which bring high accuracy and best performance. Chapter 7 is dedicated to explaining the

principle and algorithms of our 3D visualization program. In Chapter 8, we give a summary and

conclusions of the research, and we point to several possible improvements.
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Chapter 2

Mesh Generation

As shown in Figure 1.1 in Section 1.4, the collocation method for solving 2D PDEs relies on

discretizing the problem domain with 2D meshes. In this chapter we discuss 2D mesh generation.

The generation of 3D mesh, which is necessary for a 3D collocation method, is also mentioned

briefly at the end of this chapter.

2.1 Local adaptive mesh refinement

The 2D mesh for our collocation method is a triangular mesh, composed of triangular elements

only. In some other implementations of the collocation method, square-element meshes have been

used [17], [27], [28]. However, square (or more generally, quadrilateral) elements have two main

limitations. First, a quadrilateral-element mesh cannot easily support locally adaptive mesh re-

finement. Local refinement refers to recursively subdividing only the local regions where smaller

elements are needed to reach the required accuracy. The recursive subdivisions must be limited to

the local regions and not spread over the global domain. Based on locally refined meshes, collo-

cation methods can achieve high accuracy with fewer elements, thereby at less computational cost,

in comparison to using globally refined meshes. However, refinement in any square element must

spread to all elements that are geometrically adjacent in horizontal and / or vertical directions in the

span of the global domain. Therefore, square elements do not easily support local refinement. For
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general quadrilateral-element meshes, local refinement usually cannot be achieved, either. Trian-

gular meshes support local refinement; two locally adaptive triangle meshes generated by Rivara’s

refinement algorithm ([42],[46]) are shown in Figure 2.1 and 2.3.

Figure 2.1: A locally refined triangular
mesh adapted to a 2D Gaussian func-
tion.

Figure 2.2: The profile of the 2D Gaus-
sian function from [30]

Figure 2.3: A locally refined triangular
mesh adapted to an ideal 2D low-pass
filter Figure 2.4: The ideal 2D low-pass filter

Evaluation methods are needed by locally adaptive mesh refinement schemes to determine

whether a region needs to be further refined or not. The evaluation methods estimate local er-

rors. If an estimated local error is larger than a given threshold, then continue to locally refine the

related elements. “Mesh adaptation is based on a posteriori error estimator or error indicator that is

evaluated in function of the current numerical solution at each discrete place of the mesh” [44]. For
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finite element methods, a Posteriori Error Estimation techniques have been developed [34][35][36].

For the collocation method there is no existing theoretically proved local error estimator. Thus

evaluation methods for collocation methods evaluate error indicators instead of directly estimating

errors. An error indicator can approximately reflect how big the local error could be. One practically

used error indicator is the absolute difference between the two (n− 1)th order outward directional

derivatives of the two n degree polynomials over each pair of neighboring elements at each of their

matching points. (The outward directional derivative will be explained in Section 3.2 by Figure 3.1

and equation (3.12)) If such error indicator is larger than a specified threshold, the elements need

to be further refined. In this thesis we have tried another error indicator, which computes the quasi-

curvature of the polynomial surface patch over each element. If the quasi-curvature of a polynomial

surface patch is larger than a certain threshold, the corresponding element will be further refined.

The quasi-curvature is calculated the way illustrated in Figure 2.5. Triangle ABC is an element.

Figure 2.5: Measuring how much a piecewise polynomial surface is bent. The picture on the right
side simplifies the view of 3D into 2D, where the curve represents the surface, and L represents the
plane of triangle A′B′C ′.

A′B′C ′ is the surface patch over element ABC. α is the plane defined by the vertices A′, B′, and

C ′. To measure how much A′B′C ′ is bent, i.e., its quasi-curvature, we follow the steps below:

(1) Choose one or multiple sample points inside element ABC, such as the S in Figure 2.5.

(2) Emit a line from S, perpendicular to the plane of ABC and towards the surface patch A′B′C ′;
as a result, the line intersects with the plane α at the point S′.
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(3) From S′, emit another line perpendicular to plane α, penetrating the surface patch A′B′C ′ at
the point S”. Denote the length of the line section between S′ and S” as h.

(4) Cimpute the ratio of h to the circumference of triangle A′B′C ′. The ratio reflects the curvature
of the surface patch A′B′C ′.

Multiple sample points can be chosen. In that case, do the above computation for each sample point,

and then calculate the mean value of the results. This evaluation method is based on the “ansatz”

hypothesis that larger curvature implies more details, more complexity, and therefore bigger numer-

ical errors. Reducing element size can result in surface patches with smaller curvatures, thereby

obtaining solutions with smaller error. We have implemented this evaluation method and generated

adaptive meshes as shown in Figure 2.1 and 2.3. However, we have not integrated dynamical mesh

refinement and re-meshing into our current collocation solver at run time, because of the program-

ming complexity. The adaptive process includes the steps of evaluating local errors of the current

solution, refining the current mesh, evaluating the outward derivatives and the polynomials at the

matching points and collocation points on/in the newly generated edges and elements, and re-doing

Newton’s method for the current time step. This must be repeated at each time step until all the

local error indicators are smaller than the given threshold. More difficulties arise when further local

mesh refinement moves from region A to region B as time passes. This occurs when the solution is

time-dependent. At time t1, the error indicator is large in region A and therefore region A is further

locally refined. At time t2, the solution changes and, consequently, the error indicator becomes

smaller than the threshold in region A but larger in region B. Thus region B is further locally refined

and region A is derefined [33]. The derefinement, which is the inverse of refinement, removes any

added elements by refinement where the numerical solution presents low variations [47]. For the

possible derefinement, an extra data structure is needed to backup the original coarser mesh before

the refinement. The emphasize of this thesis is on the collocation method. Integrating the dynamical

mesh refinement into the solver is left for future work.

2.2 Triangulation of polygonal domains

Another limitation of square-element meshes is that they cannot precisely represent irregularly

shaped domains, especially those with curved boundaries. A collocation method for practical use
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must be applicable to domains of general shape. For simplicity, in this thesis we consider only

polygonal domains with unique boundary. Triangular elements can cover such domains, as illus-

trated in Figure 2.3. Our solver can generate meshes for irregularly shaped polygonal domains by

triangulation and by refining the resulting triangles into final elements. Some examples are shown

in Figures 2.7 and 2.9. Triangulation should be optimized to result in well-shaped triangles; other-

wise, as the result of refinement, some elements will also have poor shapes. The shapes of elements

in a mesh have a pronounced effect on numerical methods [31][32]. The aspect Ratio, defined to be

the ratio of the maximum and the minimum widths of an element [31][32], is introduced to measure

how good (or poor) its shape is. “In general, elements of large aspect ratio are bad. Large aspect

ratios can lead to poorly conditioned matrices, worsening the speed and accuracy of linear solver”

[31]. Elements of poor aspect ratio however, can seriously degrade accuracy [32]. Two types of

shapes with large aspect ratios are given in Figure 2.6. Our current triangulation algorithm does

not optimize shapes. It simply recursively cuts off the first convex corner it detects in the remain-

ing polygon without evaluating the shape of the new triangle. As a result, there may exist large

aspect ratio elements in the result meshes of the triangulation. Even so, our tests indicate that, with

local coordinates, our collocation method still converges and obtains accurate solutions with such

meshes. Only in some extreme cases, we observe less local accuracy and / or poor convergence

(i.e., more Newton iterations are needed for the convergence, or we have nonconvergence) caused

by large aspect ratio elements. Tests also show that the collocation method becomes more sensitive

to large aspect ratio shapes when not using local coordinates. The optimization of triangulation is

not a focus of this these. It is expected that users of our collocation method solver have made a

good triangulation and then, based on the result of the triangulation, our solver performs further

refinement if necessary. In Section 2.5, we will talk about our collocation method using existing

meshes.

2.3 The Rivara algorithm

Given a well shaped triangulation, the next step is to construct a locally refined triangulation,

such that the smallest (or the largest) angle is bounded [45]. The refinement process is continued
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Figure 2.6: Shapes with large aspect ratios: (a) angle too large; (b) angle too small.

Figure 2.7: (a) Generating a triangular
mesh by triangulation.

Figure 2.8: (b) Refinement of the trian-
gular mesh.

Figure 2.9: (a) Generating a triangular
mesh by triangulation.

Figure 2.10: (b) Refinement of the tri-
angular mesh.

14



recursively until the evaluation criterion is satisfied. Nesting is an expected feature of candidate

refinement algorithms, “i.e., the triangles in the refined mesh are nested within the previous mesh

level. Moreover, nesting means that a unique discrete place generates others without changing the

edges and coordinates of its neighbors in a refinement process. This process may provide low

computational cost because few nodes of the data structure should be traversed and updated in order

to correctly represent the new mesh.”[44] There are various triangulation refinement algorithms,

as described in [44], among which we choose the Rivara algorithm. The Rivara algorithm can be

described as follows:

(1) Scan all triangles one-by-one. When encountering an “un-refined” triangle Δ1, evaluate whether

it needs to be refined using the error estimate. If yes, insert a new edge, l1, into it, which links

the midpoint of its longest edge, L1, to the opposite vertex. Δ1 is thereby bisected into two

new triangles, Δ11 and Δ12. Δ11 and Δ12 are called sibling nodes, which is a critically im-

portant concept in the nested dissection explained in Section 4.2. A pair of geometrically

adjacent nodes are neighboring, but not necessarily sibling. Only a pair of neighboring nodes

which are generated by bisecting the parent node are sibling nodes.

(2) If the bisected edge, L1, is shared by Δ1 and its neighboring triangle Δ2, L1 is called pending

edge until Δ2 is accordingly subdivided in either one of the following ways:

(2.1) If L1 is also the longest edge of Δ2, insert a new edge, l2, into Δ2, connecting the

midpoint of L1 to the opposite vertex in Δ2, thereby generating Δ21 and Δ22. Then go

to step (1) to detect next un-refined triangle.

(2.2) Otherwise, the longest edge of Δ2 is L2. Then bisect L2, connect the midpoint of L2

to the opposite vertex, thereby generating Δ21 and Δ22. Then, link the midpoint of L2

to the midpoint of L1, thereby generating Δ211 and Δ212 (or Δ221 and Δ222, depending

on whether L1 is in Δ21 or Δ22). Finally, check whether L2 is a pending edge. If yes,

there exists a neighbor Δ3, so, go to step (2) to work on Δ3; if no, go to step (1) to work

on next un-refined triangle.

Mark each new triangles as “already refined” as soon as it is generated in order to prevent

them from being refined again in the current round of refinement.
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(3) When all triangles have been processed then the current round of refinement is completed. Reset

all the triangles to “un-refined”, and then start the next round of refinement. Repeat this loop

until no more refinement is needed. The jth round corresponds to the jth level of refinement.

Rosenberg and Stenger have proved that the interior angles do not go to zero as the level of

refinement tends to infinite (i.e., j → ∞). Specifically, if α is the smallest interior angle of the

originally given triangle, and θ is any interior angle of the new triangles generated at the jth level of

refinement, then θ � α/2 [44]. The Rivara refinement maintains the feature that any interior angle

of the resulting triangles is bounded away from 0 or π and the resulting triangles satisfy a shape

regularity property [44]. In addition, the Rivara algorithm has been proven to terminate in a regular

mesh in a finite number of steps [20]. The algorithm has also the advantage that since it is a local

refinement operation it can be parallelized to deal with the refinement of very large meshes [44].

The steps of the refinement processes are illustrated in Figure 2.11 and 2.12.

Figure 2.11: A domain triangulated and
refined at the first level.

Figure 2.12: The domain after 2 levels
of refinement: level 1 and 2.

2.4 3D mesh refinement

The significance of generalizing the 2D adaptive mesh refinement algorithms discussed in the

preceding sections, such as the Rivara algorithm, to 3D mesh generation is obvious. “Adaptivity

of the mesh is particularly important in three-dimensional problems because the problem size and

computational cost grow very rapidly as the mesh size is reduced” [49]. Much research has been

done on this problem.
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“Rivara and Levin suggested an extension of longest-edge Rivara refinement to three dimen-

sions. . . . Rivara and Levin provide experimental evidence suggesting that repeated rounds of

longest-edge refinement cannot reduce the minimum solid angle below a fixed threshold, but this

gurantee has not been mathematically proved.” [31, 115]

In [40], A. Selman, A. Merrouche, and C. Knopf-Lenoir have presented and implemented adap-

tive 3D refinement procedures for tetrahedral meshes using the bisection and Rivara algorithms

based on an explicit mesh density function coupled with an automatic 3D mesh generator which

subdivides 3D problem domains into assemblies of tetrahedral elements [40]. Furthermore, they

have also given benchmark examples to measure the performance of their refinement methods in

terms of the following criteria specified in [40]:

- produce meshes of a desired density,

- generate conforming elements of good quality, and

- avoid the generation of an excessive number of elements (nodes).

Their conclusion is that the Rivara 3D algorithm produces meshes of optimal quality.

In [49], Angel Plaza, Miguel A. Padrón, and Graham F. Carey have presented and discussed

several practical 3D local refinement/derefinement algorithms for tetrahedron meshes. They state

the following: “There are still several open questions related to a mathematical proof of the non-

degeneracy of the meshes obtained, and the existence of a bounded number of similarity classes

(that, perhaps, depend on the geometry of the initial 3D triangulation). Although theses properties

have been proved in two dimensions, the generalization to three dimensions is not yet solved” [49].

And in [42], M.-C. Rivara points out that “even when the algorithms have been successfully used

in practice in 3D, a theory on (longest edge) bisection in 3-dimensions such as that presented for

2-dimensions has not been yet developed”.

In conclusion, many 3D mesh refinement/derefinement algorithms have been presented, imple-

mented, and practically applied to solving numerical problems. However, in theory it is still an open

problem to mathematically prove whether (longest edge) bisection algorithms (such as the Rivara

algorithm) can terminate in a finite number of steps with a regular mesh that has its smallest interior

angle bounded. Meshes and problems in 3D are outside the scope of this thesis.
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2.5 Other mesh generation methods

In Section 2.2, we have introduced a simple method of triangulation, which in some cases may

result in regions with large aspect ratios and thereby lead to less accuracy, poorly conditioned matri-

ces, or lower rate of convergence. Fortunately, there exist other mature triangulation methods, such

as the Delaunay triangulation and refinement. From a mesh generated by the Delaunay algorithm,

we must construct a hierarchy of recursive subdivisions, which is required by our nested dissection

discussed in Section 4.2. The hierarchy of subdivisions is expressed as a binary tree, called subdi-

vision tree, each internal node of which represents subdividing a region Ω into two subregions, Ω1

and Ω2, where Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = 0. The border-line between Ω1 and Ω2 is an arbitrary

polyline and not necessarily a straight line as required in the subdivision by the Rivara algorithm. In

the context of parallel computing, the computational tasks in the two sub-trees under the subregions

Ω1 and Ω2 are assigned respectively to two threads running in parallel. For balancing the workload

of the two threads, the subregions Ω1 and Ω2 should be composed of a nearly equal number of

elements. For minimizing interference between the two concurrent computational tasks, Ω should

be appropriately bisected to minimize the length of the border-line between the subregions Ω1 and

Ω2. There may be various ways to generate subdivision trees from existing meshes. As long as a

subdivision tree is generated, we can then proceed the nested dissection on the subdivision tree.

Additionally, as mentioned in Section 2.4, the extension of the longest-edge Rivara refinement to

3D is not mathematically proved. Therefore, if we want to expand the application of our collocation

method and nested dissection to 3D space, we will have to choose some other well proved 3D mesh

generation algorithms, such as the Delaunay triangulation and refinement.
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Chapter 3

A Collocation Method for Nonlinear

Parabolic PDE BVP

In this chapter we will explain the principle of the piecewise collocation method and how it is

applied to solving nonlinear parabolic PDEs. Throughout this thesis, we will follow the notation

defined below:

– X = (x, y)T ∈ R2 is the spatial variable.

– zMi represents a matching point, and zCj represents a collocation point.

– u represents the exact solution of PDEs.

– �u = (u1, u2, . . . , uk)
T where ui is the value of u evaluated at a matching point zMi, and k is

the number of these matching points.

– �v = (v1, v2, . . . , uk)
T where vi is the directional derivative of u evaluated at a matching point

zMi in the outward direction, and k is the number of these matching points.

– p represents the polynomial values used for approximating the solution of PDEs.

These items will be explained in the following sections.

3.1 Nonlinear parabolic PDE problems

The piecewise polynomial collocation method is efficient for solving boundary value problems

of ODEs and PDEs. In this thesis we apply the collocation method to solving 2D parabolic PDEs
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with scalar-valued solutions. This type of parabolic PDEs is in fact a generalized Heat equation,

which can be written in the form

∂u

∂t
= (

2∑
i=1

∂(ai(X, t)( ∂u
∂xi

))

∂xi
) + f(X, u,∇u, t), (3.1)

where X ∈ Ω ⊂ R2 and i = 1, 2. The sum of second order derivatives represents the diffusion, or

heat transfer, and f() is the source of heat. The following are some typical equations of this type.

The 2D Fisher equation [18][48]:

∂u

∂t
= DΔu+ ru(1− u), (3.2)

where D and r are parameters, also known as Kolmogorov–Petrovsky–Piscounov equation, KPP

equation or Fisher–KPP equation, which is for modeling Reaction–diffusion systems [48]. The

diffusion term is given by the Laplacian Δu, and the reaction term is ru(1− u).

The 2D Gelfand-Bratu equation:
∂u

∂t
= Δu+ λeu , (3.3)

with given initial condition and boundary condition, where λ is a parameter. The 2D Gelfand-Bratu

equation models the distribution of temperature in a sheet, which represents the problem domain in

2D. The 2D Gelfand-Bratu equation will be considered in detail in Section 6.4.1.

In addition to the scalar-solution PDEs introduced above, there are vector-solution PDEs; for

example, the 2D Burgers equation:

∂�U

∂t
=

1

Re
Δ�U + �U · ∇�U , (3.4)

where �U = (u1, u2)
T ⊂ R2.

A vector-solution PDE is a system of individual scalar-solution PDEs. With conceptionally minor

modifications of implementation, the collocation method will be able to solve systems of parabolic

PDEs.
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3.2 Collocation with discontinuous piecewise polynomials

The collocation method presented in this thesis for solving nonlinear parabolic PDEs is derived

from the idea used for elliptic PDEs by E. J. Doedel in [27][28] and for nonlinear elliptic PDE BVP

by Sharifi in [17]. We give a quick review of collocation methods for ODEs and PDEs. A dis-

continuous piecewise polynomial collocation method has been used by Doedel for developing the

AUTO package, which is one of the most widely used continuation and bifurcation analysis soft-

ware packages for ODE problems [17]. Doedel has generalized this method for solving linear and

nonlinear elliptic PDEs [27][28]. Sharifi generalized the method for solving linear and nonlinear el-

liptic PDE systems using an alternative nested dissection solution procedure [17]. In his Ph.D thesis,

Sharifi introduced the use of this method for solving linear and nonlinear PDEs. He has developed

an AUTO-like continuation prototype for solving linear and nonlinear elliptic PDEs in 2D space

[17].The method and the prototype implementation of Doedel and Sharifi are based on a square

mesh. As explained in Chapter 2, a square mesh has its limitations. Zheng Qiang implemented a

linear parabolic PDE solver based on the collocation method with adaptive triangular meshes [20].

Also based on the work of Doedel and Sharifi, are the results of He, Sun, Wu, and Zhang, who

have derived error estimates for some specific collocation schemes for square or triangular meshes.

In this thesis we further extend the use of the collocation method to nonlinear parabolic PDEs in

irregular polygonal domains, using triangular meshes.

Our goal is to solve parabolic PDEs of the general form

∂u

∂t
= Δu+ f(X, u,∇u, t), X = (x, y) ∈ Ω ⊂ R2, u, f ⊂ R, (3.5)

where Δ is the Laplacian operator, ∇ is the operator of gradient; in R2, namely, ( ∂
∂x ,

∂
∂y )

T , and

f(X, u,∇u, t) is linear or nonlinear function of u and ∇u. We specify a function D(X) as boundary

condition

u(X) = D(X), X ∈ δΩ. (3.6)
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For the temporal dimension, we use the Backward Euler method to discretize the partial differential

derivatives with respect to time.

uk − uk−1
δt

= Δuk + f(X, uk,∇uk, tk), k = 1, 2, 3, . . . (3.7)

where δt represents time interval and k is the index of the time steps. Multistep finite difference

methods can also be used to improve the numerical accuracy with respect to δt; however, they bring

additional complexity to the implementation. For the purpose of testing the collocation method, the

Euler method is sufficient.

Introducing the nonlinear operator N , we can rewrite equation (3.7) as

Nuk = Δuk + f(X, uk,∇uk, tk)− uk
δt

+
uk−1
δt

= Δuk + h(X, uk,∇uk, tk)

= 0, k = 1, 2, 3, . . . , n ,

(3.8)

where

h(X, uk,∇uk, tk) = f(X, uk,∇uk, tk)− uk
δt

+
uk−1
δt

,

uk is the unknown to solve for at tk, and uk−1

δt is a constant.

For the spatial dimensions, we generate a mesh over the problem domain as discussed in Chapter

2. As shown in Figure 3.1 and 3.2, the zci are local collocation points (where the ’c’ stands for

”collocation”), the zMj are local matching points (, where the ’M ’ refers to ”matching point”), and

the ηj are unit outwards vectors at the zMj . For each element we need to construct a polynomial of

the following form to approximate the exact solution u(X):

u(X) ≈ p(X) =
n+m∑
i=1

ciφi(X), p() ∈ Pn+m, (3.9)

where n and m are the number of local matching points and collocation points, respectively. The

ci are the unknown constant coefficients to be solved for. Such ci are not related to the ’ci’ in

’zci’which stand for “Collocation point”. The set {φ1, . . . , φm+n} is a specific basis, and Pn+m =
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Figure 3.1: A triangular mesh for the
2D collocation method.

Figure 3.2: Collocation and matching
points of an element.

Span{φ1, . . . , φm+n} is the polynomial space of dimension n+m. The following two conditions

must be satisfied by p. First, p must satisfy the collocation equation; that is, p satisfy the PDE at

each of the collocation points.

Np(zci) = 0, i = 1, 2, 3, . . . ,m, (3.10)

where N is the nonlinear operator defined in (3.8), and the zci are the local collocation points.

Secondly, p must have a certain degree of continuity with the polynomials of its adjacent elements;

that is, each pair of adjacent polynomials must have the same value of ui at each of the matching

points zMi they share:

p(zMi) = u(zMi) = ui , (3.11)

and they must also have the same derivative in the direction of the outward normal at the matching

point:

ηi · (∇p(zMi))
T = ηi · (∇c1φ1(zMi)

T + · · ·+∇cn+mφn+m(zMi)
T ) = vi (3.12)

Since the two outward normal vectors of each pair of sibling elements point in opposite direction, the

derivatives of the two polynomials projected onto these two outward normal vectors have different

23



signs. Let

�u =

(
u1
:
un

)
δ�u =

(
δu1
:

δun

)
�v =

(
v1
:
vn

)
δ�v =

(
δv1
:

δvn

)
�c =

(
c1
:

cn+m

)
δ�c =

(
δc1
:

δcn+m

)
,

adhere �u and δ�u are written in explicit vector form to distinguish them from the u in (3.5).

Let

Φ =

⎛
⎜⎜⎜⎜⎝

φ1(zM1) · · · φ1(zMn)

: :

φn+m(zM1) · · · φn+m(zMn)

⎞
⎟⎟⎟⎟⎠ , (3.13)

and

RΦ =

⎛
⎜⎜⎜⎜⎝

η1 ·∇φ1(zM1)
T . . . ηn ·∇φ1(zMn)

T

: . . . :

η1 ·∇φn+m(zM1)
T . . . ηn ·∇φn+m(zMn)

T

⎞
⎟⎟⎟⎟⎠ . (3.14)

Then the continuity equations can be written as

(a) �u− ΦT�c = 0, (b) �v −RT
Φ�c = 0. (3.15)

In summary, the principle of 2D collocation method is to solve the unknown �c of the collocation

equation (3.10) and the continuity equation (3.15) for an element. We use Newthon’s method to

solve these equations.

3.3 Newton’s method

To solve for the unknown �c ∈ Rn+m of (3.10) and (3.15) using Newton’s method, we need

to construct the corresponding linearized formulation. First, set up the residual formulation. The

residual formulation of (3.10) is

�rN =

(
Np(zC1)

:
Np(zCm)

)
. (3.16)
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The linearization (i.e., Jacobian) of �rN about �c is

JrN
c =

∂�rN
∂�c

=

⎛
⎜⎜⎜⎜⎝

∂Np(zC1)
∂c1

. . . ∂Np(zC1)
∂cn+m

: . . . :

∂Np(zCm)
∂c1

. . . ∂Np(zCm)
∂cn+m

⎞
⎟⎟⎟⎟⎠ . (3.17)

We use LΦ to denote (JrN
c )T and Li(zj) to denote ∂Np(zj)

∂ci
. By transposing, we make the elements

of LΦ arranged as those of matrix Φ in (3.13) and the matrix RΦ in (3.14).

LΦ =

⎛
⎜⎜⎜⎜⎝

L1(zC1) · · · L1(zCm)

: :

Ln+m(zC1) · · · Ln+m(zCm)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∂Np(zC1)
∂c1

· · · ∂Np(zCm)
∂c1

: :

∂Np(zC1)
∂cn+m

· · · ∂Np(zCm)
∂cn+m

⎞
⎟⎟⎟⎟⎠ . (3.18)

From (3.8), we have

Np = Δp+ h(X, p,∇p, t),

thus, the general form of the elements in matrix LΦ in (3.18) is

∂Np

∂ci
=

∂(Δp+ h(X, p,∇p, t))

∂ci

=
∂(c1Δφ1 + · · ·+ ciΔφi + · · ·+ cn+mΔφn+m)

∂ci
+

∂h(X, p,∇p, t)

∂ci

= Δφi +
∂h(X, p,∇p, t)

∂ci

= Δφi +
∂h

∂p

∂p

∂ci
+

∂h

∂∇p
· ∂∇p

∂ci

= Δφi +
∂h

∂p
φi +

∂h

∂∇p
· ∇φi

Recall that, in order to simplify the form of nonlinear operator N in (3.8), we have introduced h()

defined as

h(X, uk,∇uk, tk) = f(X, uk,∇uk, tk)− uk
δt

+
uk−1
δt

,
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where uk represents u(X, tk), which can be replaced by its numerical approximation p(X, tk), and

similarly, uk−1 is replaced by p(X, tk−1). Thus,

Li =
∂Np

∂ci

= Δφi +
∂h

∂p
φi +

∂h

∂∇p
· ∇φi

= Δφi + (
∂f

∂p
− 1

δt
)φi +

∂f

∂∇p
· ∇φi

(3.19)

Also note that since f() is a nonlinear function of p, ∂f
∂p may also be a function of p. Since p

changes within each Newton iteration, the matrix LΦ in (3.18) must be re-computed in each Newton

iteration. We can now formulate Newton’s method for the collocation equation (3.10) as

LT
Φδ�c = −�rN , (3.20)

where LΦ is defined by (3.18), and �rN is defined by (3.16).

Then we formulate Newton’s method for the continuity equations (3.15). The residual form of

(3.15) is

(a) �ru = �u− ΦT�c (b) �rv = �v −RT
Φ�c. (3.21)

Thus we need to solve for the unknown �c such that the residuals �ru and �rv approach 0 with high

accuracy. Linearizing (3.21a) gives

Jru
c =

∂�ru
∂�c

=
∂(�u− ΦT�c)

∂�c
=

∂�u

∂�c
− ∂(ΦT�c)

∂�c
=

⎛
⎜⎜⎜⎜⎝

∂u1
∂c1

. . . ∂u1
∂cn+m

: . . . :

∂un
∂c1

. . . ∂un
∂cn+m

⎞
⎟⎟⎟⎟⎠− ΦT (3.22)

Thus the formulation of Newton’s method for (3.21a) is

Jru
c δ�c = δ�u− ΦT δ�c = −�ru; (3.23 a)
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Similarly, the formulation of Newton’s method for (3.21b) is

Jrv
c δ�c = δ�v −RT

Φδ�c = −�rv. (3.23 b)

We now have a linear system composed of (3.20), (3.23a), and (3.23b), the unknown of which is

δ�c. Rewrite the equations (3.23a) and (3.20) in the form

(
ΦT

LT
Φ

)
δ�c =

(
δ�u+ �ru−�rN

)
. (3.24)

Using (3.24) to substitute the δ�c in (3.23b), we have

δ�v = RT
Φ

(
ΦT

LT
Φ

)−1 (
δ�u+ �ru−�rN

)
− �rv.

Let A be a n× n matrix and let B be the n×m matrix so that

(A|B) = RT
Φ

(
ΦT

LT
Φ

)−1
. (3.25)

Then we have
δ�v = (A|B)

(
δ�u+ �ru−�rN

)
− �rv,

which is equivalent to
δ�v = Aδ�u−B �rN − �rv +A�ru . (3.26)

Let
�g = −B �rN − �rv +A�ru. (3.27)

A and B can be solved from (3.25). However (3.25) is a conceptual formulation. In fact, we do not

compute the inverse matrix. Instead, we solve A and B by LU-decomposition of the matrix:

(Φ|LΦ)

(
AT

BT

)
= RΦ (3.28)

It is important to note that (Φ|LΦ) may be non-invertible (i.e., singular) for certain choices of the

basis functions, the number and location of matching points, or the number of collocation points.

We now present a brief discussion of the singularity of (Φ|LΦ) based on our observations.
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If (Φ|LΦ) is singular then there exists a nonzero vector �a = (a1, . . . , an+m)T ∈ Rn+m such that

(
ΦT

LT
Φ

)
�a = 0 , (3.29)

which means

S1(X) = a1φ1(X) + · · ·+ an+mφn+m(X) = 0 , (3.30)

at all the matching points {zM1, zM2, . . . , zMn} of an element, and simultaneously,

S2(X) = a1L1(X) + · · ·+ an+mLn+m(X) = 0 , (3.31)

where Li is defined in (3.18) and (3.19), at all collocation points {zC1, zC2, . . . , zCm} of the same

element. The geometrical significance of Equation (3.30) and (3.31) is that the surface S1(X) passes

through all the matching points, and at the same time, the surface S2(X) passes through all the

collocation points. Furthermore, because the surfaces S1(X) and S2(X) are smooth enough, they

must intersect with the plane of (x, y) at least near the matching points and collocation points.

Thus, we have the curves shown in Figure 3.3 and 3.4. Our collocation method solver can plot such

Figure 3.3: 4x3 matching points with 3
collocation points.

Figure 3.4: 6x3 matching points with 10
collocation points.
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curves when (Φ|LΦ) is singular. Rewrite Equation (3.29) in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1Φ1(zM1) + a2Φ2(zM1) + · · · + an+mΦn+m(zM1) = 0 (1)

a1Φ1(zM2) + a2Φ2(zM2) + · · · + an+mΦn+m(zM2) = 0 (2)

...
...

. . .
...

...
...

a1Φ1(zMn) + a2Φ2(zMn) + · · · + an+mΦn+m(zMn) = 0 (n)

a1L1(zC1) + a2L2(zC1) + · · · + an+mLn+m(zC1) = 0 (n+ 1)

...
...

. . .
...

...
...

a1L1(zCm) + a2L2(zCm) + · · · + an+mLn+m(zCm) = 0 (n+m)

, (3.32)

where the a1, . . . , an+m are the unknowns and Li is defined in (3.19). It is easy to see that system

(3.32) is composed of n + m equations for the n + m unknowns. Since the R.H.S of (3.32) is

zero, and if there are really n +m equations for n +m unknowns, there would not be a nontrivial

solution. However, (Φ|LΦ) being singular implies that there must be nontrivial solution for the

n + m unknown ai. Thus, the only possible conclusion is that some of the equations are linearly

dependent. This means that, for every Φi or Li, its values at some matching points or collocation

points are linearly dependent. For instance, assume equations (1), (2), and (n) in (3.32) are linearly

dependent, thus

b1(1) + b2(2) + b3(n) = 0 ,

the related matching points are zM1, zM2, and zMn. Then there must be the same linear dependence

for every Φi, as shown below:

b1Φ1(zM1) + b2Φ1(zM2) + b3Φ1(zMn) = 0 ,

b1Φ2(zM1) + b2Φ2(zM2) + b3Φ2(zMn) = 0 ,

. . . . . .

b1Φn(zM1) + b2Φn(zM2) + b3Φn(zMn) = 0 ,

b1Φn+1(zM1) + b2Φn+1(zM2) + b3Φn+1(zMn) = 0 ,

. . . . . .

b1Φn+m(zM1) + b2Φn+m(zM2) + b3Φn+m(zMn) = 0 .
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Our tests and observations show that this type of linear dependence does exist at matching points

(not collocation points) if

– there are at least 3 matching points per edge of an element, and

– the matching points on the same edge are regularly (for example, evenly or symmetrically)
distributed, and

– n + m is not large enough with respect to n, where n and m are the numbers of matching
points and collocation points per element, respectively; therefore, this linear dependence can
easily take place to every Φi, as illustrated in the above example.

The existence of such linear dependence is a necessary condition for the singularity. In the case

shown in Figure 3.3, the matrix (Φ|LΦ) has been shown to be singular by our tests. Further ex-

periments indicate that we can make the (Φ|LΦ) non-singular by moving any one matching point

either away from the edge, to reduce the number of collinear matching points, or along the edge to

make the distribution of matching points less regular. However, neither of the moves is acceptable

because matching points must be on the edges and regularly distributed. A correct way to avoid the

singularity is to add more collocation points and thereby increase the ratio of n+m to n.

This necessary condition can be equivalently expressed like the following: after Gaussian Elim-

ination on (Φ|LΦ), the resulting (n+m)× (n+m) matrix M is of the form (3.33).

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × . . . × × × . . . ×
0 × × . . . × × × . . . ×
0 0 × . . . × × × . . . ×
0 0 0 . . . × × × . . . ×
: : : . . . : : × . . . ×
0 0 0 . . . × × × . . . ×
0 0 0 . . . 0 0 × . . . ×
0 0 0 . . . 0 0 0 . . . ×
: : : . . . : : : . . . :

0 0 0 . . . 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.33)

The square block in the frame is a n × n sub-matrix, which corresponds to the n matching points.

The sub-matrix has an all-zero row, which means that the sub-matrix is singular and there exists a

curve

S0(X) = a1φ1(X) + · · ·+ anφn(X) = 0 ,

which passes through all the n matching points. Thus, the existence of such a curve is the necessary
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condition of (Φ|LΦ) being singular. In the case of 1 matching point per edge, there are totally 3

matching points for an element. Because we use localized power polynomials as basis functions,

i.e., {φ1, φ2, φ3, φ4, φ5, φ6, . . . } = {1, (x−x0), (y−y0), (x−x0)(y−y0), (x−x0)
2, (y−y0)

2, . . . }.

The reason for which we use local coordinates (x − x0) and (y − y0) will be explained in Section

3.4. The corresponding S0(X) is

S0(X) = a1φ1(X) + a2φ2(X) + a3φ3(X)

= b1 + b2x+ b3y

= 0, X = (x, y) ,

which is a straight line. It is impossible for a straight line to pass the 3 non-collinear matching points.

Thus, the necessary condition does not hold and, therefore, the (Φ|LΦ) of this case is nonsingular.

In the case of 2 matching points per edge, there are totally 2× 3 = 6 matching points per element,

and the curve

S0 = a1φ1 + a2φ2 + a3φ3 + a4φ4 + a5φ5 + a6φ6

= b1 + b2x+ b3y + b4x
2 + b5xy + b6y

2

= 0 ,

is a conic section. According to the Bézout’s theorem, two conic sections generally intersect in

four points. This implies that 5 points, among which any 3 points are noncollinear, uniquely define

a conic section. Thus, there exists not any single conic passing through the 6 matching points in

this case. Thus, the necessary condition does not hold and, therefore, the (Φ|LΦ) of this case is

nonsingular.

Collocation points influence the singularity by the number rather than their locations. Our tests

show that, if (Φ|LΦ) is singular, then relocating the collocation points does not change the sin-

gularity. Figure 3.5 shows the same case as in Figure 3.4, with the collocation points rearranged.

However, the (Φ|LΦ) is still singular because the singularity is not caused by the location of the

collocation points. The function Li(X), defined in (3.18) and (3.19), depends not only on the basis

functions Φi, but also on the PDE. Thus, it is more difficult to analysis the linear dependence related

to the Li(X) at the collocation points. We only use the number of collocation points, m, to control
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Figure 3.5: 6x3 matching points with 10 relocated collocation points.

the number of basis functions, n +m, as mentioned in the preceding paragraph. If n +m is large

enough with respect to a specific n, the singularity can be avoided. This has been confirmed by our

experiments.

3.4 The choice of basis polynomials

Because a numerical solution is a linear combination of basis polynomials, the accuracy of

the numerical solution depends heavily on the choice of basis polynomials. In this thesis we use

localized power basis polynomials, {1, (x−x0), (y−y0), (x−x0)(y−y0), (x−x0)
2, (y−y0)

2, . . . },

because it is easy to compute their first and second order derivatives. The coordinate must be

localized and even normalized; otherwise, matrix (Φ|LΦ) may be ill-conditioned if some elements

are very small or have high aspect ratio (defined in Section 2.2), or the collocation and matching

points are not well located. We localize and normalize the coordinate by replacing x and y of the

basis functions with (x− x0)/L and (y − y0)/L, respectively, where (x0, y0) may be the center of

gravity or any vertex of the local element, and L is longest edge of the element.

Lagrange basis functions can also be used. An important feature of Lagrange basis functions

is that each of them is equal to 1 at a certain collocation point or matching point and equal to

0 at any other collocation point, matching point, and anywhere else in the domain. This feature

makes solving Equation (3.28) to obtain the matrices A and B much more efficient because the

matrix Φ = (I|0)T , where I represents the identity matrix. This is explained in [28] and [27]. A
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Lagrange basis is easy to use with square meshes. For using a Lagrange basis with triangular meshes

in irregular domains, each arbitrary triangle must first be transformed to the Standard triangle by

affine transformation.

Bernstein basis functions can also be used for the collocation method. However, any Bernstein

polynomial can be written in terms of the power basis [37]. Thus, in substance, a Bernstein basis is

equivalent to the power basis.

3.5 The collocation method with initial and boundary conditions

In this section we will show how the equations and matrices presented in Section 3.2 and 3.3

are involved in the Newton iteration and the time integration to solve PDEs. To focus on the most

essential principles of our collocation method, in this section we will use a single-element triangle

mesh; that is, the problem domain is triangular and not refined. This is the global collocation

method mentioned in Section 1.4, which has more educational sense than practical use. It is a good

preparation for discussing the case of multi-element mesh, i.e., piecewise polynomial collocation

method, which will be explained in Chapter 4. The steps of the single-element mesh case are listed

below:

• Apply the initial condition to �u, �v, and �c;

• Compute Φ (3.13) and RΦ (3.14) only once, i.e.,do not re-compute them for all time steps;

• Loop of time integration; at each time step, do the following tasks:

◦ Loop of Newton iteration for solving equation (3.24), until sufficiently converged.
In each loop of the iteration:
∗ Compute LΦ (3.19); —– (1)
∗ Solve (3.28) to get matrix A and B; —– (2)
∗ Compute �rN (3.16), �ru, and �rv (3.21);
∗ Construct system (3.26);
∗ Compute the δ�u and δ�v on the boundary from B.C and (3.26); –(3)
∗ Solve equation (3.24) (with the current LΦ, δ�u, �ru, and �rN ) to get the current δ�c;
∗ �c+ = δ�c, �u+ = δ�u, �v+ = δ�v;

◦ Save the current �u, �v, and �c for the use as initial values and uk−1 when computing �rN
(3.16), (3.8) at next time step;

• End.

Further discussion on the above steps marked with (1), (2), and (3):

For the sake of performance, and also for stability in some cases, (1) can be computed only in the
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first one or two loops of Newton iteration, and then kept constant in all following loops. This is

equivalent to Newton Chord Method.

(2) and δ�v are not always necessary for single-element cases; their necessity depends on the type of

boundary condition (B.C.).

The B.C. are applied in (3) to compute δ�u, which is indispensable for solving equation (3.24). If

the B.C is Dirichlet boundary condition, which specifies the values that a solution takes on along

the boundary of the domain [41], then we can directly compute δ�u at matching points on boundary

from

δ�u = b− �u ,

where b = b(x, y, t) is the Dirichlet boundary condition. In this case, (2) and δ�v are not involved

and, therefore, not necessary. If the B.C. is of Neumann type, which specifies the values that the

derivative of a solution is to take on the boundary of the domain [39], (2) and δ�v are necessary. In

this case, we will have to first compute δ�v from the B.C, and then compute δ�u from the δ�v using

(3.26). δ�v is absolutely necessary in the case of the piecewise polynomial collocation method for

enforcing the continuity between each pair of sibling regions.

The main characteristics of the methods are: 1. High order of accuracy can be attained for the

space dimensions. 2. The piecewise polynomial solutions need not be globally continuous. We only

require the continuity of first-order derivatives at matching points. The second-order derivative is

not required to match. We can reduce the difference between each pair of second-order derivatives

at the same matching point by choosing appropriate numbers and locations of matching points and

collocation points, or subdividing the domain to into more elements.
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Chapter 4

Numerical Linear Algebra

In Chapter 3 we have explained the essential principle of the collocation method. Based on

this principle we have constructed the local linear system (3.26) of an element. In this chapter we

discuss how to assemble all the local linear systems together to construct the global system and then

apply boundary conditions to numerically solve a PDE in the entire problem domain. The nested

dissection is introduced for solving the global system in parallel. This is a natural advantage of the

collocation method. Chapters 3 and 4 together explain the entire principle of piecewise polynomial

collocation method.

4.1 The global linear system

In Section 3.2, we mentioned that piecewise polynomial collocation method needs a mesh which

decomposes the problem domain into elements. The local linear system (3.26) of each element can

be re-written in the form
Dδ�v = Aδ�u+ �g, (4.1)

where D is initially an identity matrix for each element, and

�g = −B �rN − �rv +A�ru. (4.2)

Then we construct the global linear system from the local linear systems (4.1) of all elements. First,

we use an example to show how to do it. The problem domain of the example is illustrated in
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Figure 4.1, which is discretized into 4 elements. Suppose there are k matching points per side of

Figure 4.1: The global domain Ω is composed of elements Ω1, Ω2, Ω3, and Ω4. i represents a
group of k matching points on one side of an element.

each element. We denote by δ�uij the δ�u of element Ωi at the k matching points on its edge shared

with a neighboring element Ωj . The order of ”ij” is not invertible because δ�uij and δ�uji refer to

different quantities, which are evaluated respectively by the two different polynomials of Ωi and

Ωj , although at the same matching point(s). The former is the local polynomial over Ωi, whereas

the latter is the local polynomial over Ωj . Similarly, δ�vij and δ�vji are also denoted this way. If the

edge is a part of the boundary of the entire domain, there is not any other element on the other side

of the edge. Thus, the δ�u and δ�v on such kind of edges are denoted as δ�ui and δ�vi, respectively.

For example, at 2 , δ�u12 and δ�v12 are evaluated by the local polynomial over Ω1, whereas δ�u21 and

δ�v21 by the local polynomial over Ω2. At 1 , there is only δ�u1 and δ�v1. The local linear systems of

the elements, Ω1, Ω2, Ω3, and Ω4, are established in :

⎛
⎜⎜⎜⎜⎝
D1

11 0 0

0 D1
22 0

0 0 D1
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�v1

δ�v12

δ�v14

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
A1

11 A1
12 A1

13

A1
21 A1

22 A1
23

A1
31 A1

32 A1
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�u1

δ�u12

δ�u14

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

�g11

�g112

�g114

⎞
⎟⎟⎟⎟⎠ (4.3)
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⎛
⎜⎜⎜⎜⎝
D2

11 0 0

0 D2
22 0

0 0 D2
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�v4

δ�v21

δ�v23

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
A2

11 A2
12 A2

13

A2
21 A2

22 A2
23

A2
31 A2

32 A2
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�u4

δ�u21

δ�u23

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

�g24

�g221

�g223

⎞
⎟⎟⎟⎟⎠ (4.4)

⎛
⎜⎜⎜⎜⎝
D3

11 0 0

0 D3
22 0

0 0 D3
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�v6

δ�v32

δ�v34

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
A3

11 A3
12 A3

13

A3
21 A3

22 A3
23

A3
31 A3

32 A3
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�u6

δ�u32

δ�u34

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

�g36

�g332

�g334

⎞
⎟⎟⎟⎟⎠ (4.5)

⎛
⎜⎜⎜⎜⎝
D4

11 0 0

0 D4
22 0

0 0 D4
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�v8

δ�v43

δ�v41

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
A4

11 A4
12 A4

13

A4
21 A4

22 A4
23

A4
31 A4

32 A4
33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�u8

δ�u43

δ�u41

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

�g48

�g443

�g441

⎞
⎟⎟⎟⎟⎠ (4.6)

From the continuity equation (3.11) and (3.12), we have

δ�u12 = δ�u21 , δ�v12 = −δ�v21

δ�u14 = δ�u41 , δ�v14 = −δ�v41

δ�u23 = δ�u32 , δ�v23 = −δ�v32

δ�u34 = δ�u43 , δ�v34 = −δ�v43

Now we merge all the local systems together to establish the global system as the following.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1
11 0 0 0 0 0 0 0 −A1

11 0 0 0 −A1
12 −A1

13 0 0

0 0 0 0 D1
22 0 0 0 −A1

21 0 0 0 −A1
22 −A1

23 0 0

0 0 0 0 0 D1
33 0 0 −A1

31 0 0 0 −A1
32 −A1

33 0 0

0 D2
11 0 0 0 0 0 0 0 −A2

11 0 0 −A2
12 0 −A2

13 0

0 0 0 0 −D2
22 0 0 0 0 −A2

21 0 0 −A2
22 0 −A2

23 0

0 0 0 0 0 0 D2
33 0 0 −A2

31 0 0 −A2
32 0 −A2

33 0

0 0 D3
11 0 0 0 0 0 0 0 −A3

11 0 0 0 −A3
12 −A3

13

0 0 0 0 0 0 −D3
22 0 0 0 −A3

21 0 0 0 −A3
22 −A3

23

0 0 0 0 0 0 0 D3
33 0 0 −A3

31 0 0 0 −A3
32 −A3

33

0 0 0 D4
11 0 0 0 0 0 0 0 −A4

11 0 −A4
13 0 −A4

12

0 0 0 0 0 0 0 −D4
22 0 0 0 −A4

21 0 −A4
23 0 −A4

22

0 0 0 0 0 −D4
33 0 0 0 0 0 −A4

31 0 −A4
33 0 −A4

32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ�v1

δ�v4

δ�v6

δ�v8

δ�v12

δ�v14

δ�v23

δ�v34

δ�u1

δ�u4

δ�u6

δ�u8

δ�u12

δ�u14

δ�u23

δ�u34

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�g11

�g112

�g114

�g24

�g221

�g223

�g36

�g332

�g334

�g48

�g443

�g441

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.7)

In system (4.7), there are totally 16k unknowns and 12k equations, where k is the number of match-

ing points on each side of an element. However, from the boundary condition, (δ�u1, δ�u4, δ�u6, δ�u8)

(in the case of Dirichlet boundary condition) or (δ�v1, δ�v4, δ�v6, δ�v8) (in the case of Neumann bound-

ary condition) has already been known. Thus, there remain only 12k unknowns, as many as the

equations. Thus, there exists a unique solution of system (4.7) if the matrix is nonsingular. Theo-

retically, we can obtain the numerical solution by solving this global system. Some software (such

as Trilinos) can be used for solving such large scale systems. In the next section, we will present

another method, our nested dissection method, which solves large systems in an effective way.

4.2 Nested dissection

In this section we introduce how to partition a single large system like (4.7) into smaller subsys-

tems which can then be solved in parallel. In Chapter 2 we have discussed how to generate a mesh

by recursively subdividing a region into two subregions. In the course of generating the mesh this

way, a subdivision tree is constructed to record the hierarchical subdivision, in which any region

(except the elements) Ωi is composed of two adjacent sub-regions, Ωi1 and Ωi2, which are called

sibling regions for distinguishing them from other geometrically adjacent regions, explained in Sec-

tion 2.3. The common boundary shared by Ωi1 and Ωi2 is not a part of the outer boundary of Ωi.
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Accordingly, the unknowns, δu’s and δv’s, at the matching points on the common boundary (de-

noted as “internal unknowns”) are “hidden” inside Ωi and not exposed to any other regions outside

of Ωi. Therefore, when we assemble the linear systems of Ωi1 and Ωi2 to set up the merged linear

system of Ωi, we exclude the parts corresponding to the internal unknowns and only assemble the

remaining parts together. In the course of such assembling, the internal unknowns are eliminated.

This is the substance of the nested dissection algorithm. The nested dissection algorithm does four

tasks. First, starting from the level of elements, recursively merging the local systems of sibling re-

gions until reaching the root region, i.e., the global domain, with the global system. (It is important

to note that this global system is only a small subset of system (4.7), and can be solved effectively.)

Second, applying the boundary condition to compute the δ�u and δ�v at the matching points on the

global boundary. Then recursively back-substituting the δ�u and δ�v on boundaries of regions to solve

the internal unknowns. Such back-substituting is recursively repeated from regions to their child-

regions until reaching the level of elements. Finally, solve equation (3.24) in each element. The

advantage of the nested dissection is that the merging and back-substituting in different branches of

the subdivision tree as well as solving (3.24) can be done in parallel.

Different from the merge in Section 4.1, in the process of the nested dissection, the merge is

made only between each pair of sibling sub-regions or elements. For a pair of sibling elements, Ωi1

and Ωi2, as illustrated in Figure 4.2, equation (4.1) can be re-written in the form of matrix as (4.8)

Figure 4.2: Region Ωi, its pair of sibling sub-regions Ωi1 and Ωi2, and the boundaries.

and (4.9), respectively:

⎛
⎜⎝D1

11 D1
12

D1
21 D1

22

⎞
⎟⎠

⎛
⎜⎝ δ�v1

δ�v12

⎞
⎟⎠ =

⎛
⎜⎝A1

11 A1
12

A1
21 A1

22

⎞
⎟⎠

⎛
⎜⎝ δ�u1

δ�u12

⎞
⎟⎠+

⎛
⎜⎝�g11

�g112

⎞
⎟⎠ (4.8)
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⎛
⎜⎝D2

11 D2
12

D2
21 D2

22

⎞
⎟⎠

⎛
⎜⎝ δ�v2

δ�v21

⎞
⎟⎠ =

⎛
⎜⎝A2

11 A2
12

A2
21 A2

22

⎞
⎟⎠

⎛
⎜⎝ δ�u2

δ�u21

⎞
⎟⎠+

⎛
⎜⎝�g22

�g221

⎞
⎟⎠ (4.9)

where δ�v12, δ�u12, δ�v21, and δ�u21 are on the common edge, δΩi12, shared by Ωi1 and Ωi2. The other

δ�v’s and δ�u’s are on δΩi1 and δΩi2, respectively. From continuity equation (3.11) and (3.12), we

must have

(a) δ�u12 = δ�u21 (b) δ�v12 = −δ�v21 , (4.10)

Merging system (4.8) and (4.9) together, and taking equation (4.10) into consideration, we obtain

the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D1
22 −A1

22 D1
21 −A1

21 0 0

−D2
22 −A2

22 0 0 D2
21 −A2

21

D1
12 −A1

12 D1
11 −A1

11 0 0

−D2
12 −A2

12 0 0 D2
11 −A2

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ�v12

δ�u12

δ�v1

δ�u1

δ�v2

δ�u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�g112

�g221

�g11

�g22

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.11)

We use scaled row pivoting. Scaled pivoting is a variation of the partial pivoting strategy. In

this approach, the algorithm selects as the pivot element the entry that is largest relative to the

entries in its row. This strategy is desirable when entries’ large differences in magnitude lead to the

propagation of round-off error. Scaled pivoting should be used in a system where a row’s entries

vary greatly in magnitude [38]. The system in our collocation method is of this case. Using scaled
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row pivoting, apply incomplete Gaussian Elimination to system (4.11) to get the following system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ # # # #

0 ∗ # # # #

0 0 × × × ×
0 0 × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ�v12

δ�u12

δ�v1

δ�u1

δ�v2

δ�u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ĥ12

ĥ21

ĥ1

ĥ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.12)

System (4.12) indicates that, for any region, if the (�v1, �u1, �v2, �u2)T on its boundary has been known,

then the value of (�v12, �u12)
T on the border shared by its two child-regions can then be solved.

Furthermore, from system (4.12), we can extract

⎛
⎜⎝× × × ×
× × × ×

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ�v1

δ�u1

δ�v2

δ�u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝ĥ1

ĥ2

⎞
⎟⎠ , (4.13)

which has the same form of system (4.8) or (4.9). Thus, when merging this region with its sibling

region, we can repeat the above process. We repeat such merging recursively until we reach the en-

tire domain Ω. For the system (4.11) at the level of the entire domain Ω, we will be able to compute

the (δ�v1, δ�v2)
T or (δ�u1, δ�u2)T from the given Neumann boundary condition or Dirichlet boundary

condition, respectively. Then we back-substitute it into the subsystem (4.12) to solve (δ�u1, δ�u2)
T

or (δ�v1, δ�v2)T . We have now (δ�v1, δ�u1, δ�v2, δ�u2)
T which we can back-substitute into system (4.11)

to obtain (δ�v1, δ�v2)
T . Repeat such back-substitution recursively until the level immediately above

the individual elements. Then in each element, we solve equation (3.24) to obtain the δ�c of the

element. The steps of the piecewise case are listed below:
• Apply the initial condition to the �u, �v, and �c of all elements.

• Loop over all elements. For each element, compute Φ (3.13) and RΦ (3.14).

• Loop of time integration. At each time step, do the following tasks:

◦ The Newton iteration for solving equation (3.24), until sufficiently converged.
In each round of the Newton iteration:
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∗ Loop over all elements. For each element:
· Compute LΦ (3.19). —– (1)

· Solve (3.28) to get matrices A and B. —– (2)

· Compute �rN (3.16), �ru, and �rv (3.21).
· Construct the local system (3.26) of the element.

(These computations can be done simultaneously in multiple elements.)
∗ Loop of recursively merging elements/child-regions, as shown from (4.8) to (4.13),

until the entire domain is reached; (This can be done in parallel.)
∗ Apply boundary conditions to the δ�u or δ�v on the boundary, then solve the global

system (4.12) for the internal unknown δ�u and δ�v. —(3)

∗ Loop of recursively solving the local system (4.12) of sub-regions for the internal
unknown δ�u and δ�v until reaching the individual elements. (This can be done in
parallel.)

∗ Loop over all elements; for each element:
· Solve equation (3.24) (with current LΦ, δ�u, �ru, �rN ) to get current δ�c;
· �c+ = δ�c, �u+ = δ�u, �v+ = δ�v;

(This can be done in parallel.)
◦ Save the current �u, �v, and �c for the use as initial values and uk−1 when computing �rN

(3.16), (3.8) at next time step.

• End.

The steps marked with (1), (2), and (3) in the above sequence have the same comments as given in

Section 3.5.

4.3 Generalization of the nested dissection

In Section 2.2 and 2.3, we have introduced generating meshes by recursively subdividing re-

gions into pairs of sub-regions with single straight lines. Then we proceed the nested dissection;

that is, recursively merging the pairs of sub-regions until finally reaching the entire domain. How-

ever, the nested dissection algorithm is not limited to being used with the meshes generated by

subdivision. In fact, the nested dissection algorithm can be used with any meshes as long as we

can find a way to construct a hierarchy of recursive subdivisions on the top of its elements, no mat-

ter how the elements have been generated or whether the border-line between each pair of sibling

sub-regions is a straight lines or polyline. In Section 2.5, we have described how to establish such

subdivision hierarchy (i.e., subdivision tree) from existing elements which have been generated by

no matter which triangulation and refinement algorithms. Figure 4.3 ∼ 4.6 illustrate some examples

of subdivision constructed from the existing elements. Except for the bisection in Figure 4.3, the

regions in all the other figures are subdivided by generally shaped polylines. We can recursively
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construct such subdivisions in sub-regions until the level of elements. In the subdivisions shown in

the figures, each border-line, no matter split into how many segments, can be stored and manipu-

lated as a single chain of the edges of the elements. Our current data structure does support such

edge chains; therefore, it potentially supports this generalized application of the nested dissection

procedure.

Figure 4.3: A region bisected into a pair
of equal subregions by a single straight
line.

Figure 4.4: A region subdivided into
a pair of irregularly-shaped and -sized
subregions by a polyline.

Figure 4.5: A region subdivided into a
pair of nested subregions by a closed
polyline.

Figure 4.6: A region subdivided into a
pair of subregions by 2 separate poly-
lines.

4.4 Complexity analysis

To estimate the complexity, we count the number of arithmetic operations and memory transfers

involved in Newton iteration and time integration. We do not count one-time computations.

For each element, we need to compute matrix LΦ (3.18), which is of dimension (m+ n)×m.

Thus, there are (m + n) × m items to compute, each of which involves arithmetic operations

and/or complex mathematical functions, such as sin(), log(), exp(), etc., depending on the PDEs in

43



question. For the complexity brought by arithmetic operations, we count only the multiplications

and divisions, as done in [20]. For the complexity caused by the mathematical function f(), which

is a ”black box” to us, we can only denote it as C(f), where the ”C()” stands for complexity. Also

taking the number of elements, k, into consideration, the total complexity of the step is

O(k(m+ n)2C(f)) (4.14)

arithmetic operations.

For each element, computing �rN (3.16), �ru, and �rv (3.21) causes O((m+ n)C(f)) operations.

In comparison to the complexity of (4.14), this step can be ignored.

For each element, to perform a LU-decomposition on the system (3.28) to solve matrix A and

B, we need 1
3((m+ n)2 − 1)(m+ n) arithmetic operations [20], where m,n represent the number

of collocation and matching points, respectively. Thus, for all the k elements, we need

O(k(m+ n)3) (4.15)

arithmetic operations.

Now we estimate the work load in the merged regions at all levels in the bisection tree. The

work load includes copying matrix blocks of the child regions to the matrices of the merged re-

gions, the Gaussian Elimination and back-substitution for solving its internal (δ�v, δ�u)T , and the

Gaussian Elimination and back-substitution for solving the outer (δ�v, δ�u)T on its boundary. The

complexity of Gaussian Elimination is O(N3), where the N is the size of the matrix. Thus, we

need to determine the values of N . From Equation (4.8) and (4.9), we know that the size of the

merged matrix in (4.11) depends only on the sizes of matrices A1 and A2. According to Equation

(3.25), the size of matrix Aj depends only on the number of the matching points on its boundary.

Thus, the size of the merged matrix has nothing to do with the number of collocation points. We

roughly estimate that any merged region at level (i + 1) has on average 4
3ni matching points on

its boundary, where ni is the number of matching points on the boundary of either its child-region

at level i. Elements are at level 0. We also estimate the merged matrix of any merged region at

level (i + 1) is of the size of 4
3ni × 4

3ni, i.e., N = 4
3ni. Thus, for a square domain with a mesh
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of k elements, each of which has n matching points, the Gaussian Eliminations in all merged re-

gions at level 1 (i.e., the level directly above individual elements) take O(k2 (
4
3n)

3) = O(k2 (
43

33
)n3)

arithmetic operations. At level 2, where the N = n2 = 4
3n1 = 4

3(
4
3n0) = (43)

2n, the Gaussian

Eliminations in all merged regions take O( k
22
N3) = O( k

22
((43)

2n)3) = O( k
22
(4

3

33
)2n3) arithmetic

operations. At level 3, they take O( k
23
((43)

3)3n3). At level i, they take O(k(
( 4
3
)3

2 )in3). Summing

up the work load of Gaussian Elimination at all the ln(k) levels, we have

O(k(
1.185L+1 − 1

1.185− 1
)n3) (4.16)

arithmetic operations, where the 1.185 =
( 4
3
)3

2 , L = ln(k) is the number of levels of subdivision,

k is the number of elements, and n is the number of matching points per element. Further, because

k = 2L, we rewrite (4.16) as

O((2L)(
1.185L+1 − 1

1.185− 1
)n3) (4.17)

The other part of work load on all the merged regions is data block copying. We assume that

a constant ratio of the items of any merged matrix are copied from the matrices of its two child

regions. Thus, for a merged matrix at level i, the work load of data copying is

O(
k

2i
(
42

32
)in2D) , (4.18)

where D is the complexity of unit data copying. Sum up this work load in all regions at all levels,

we have

O((2L)(
0.89L+1 − 1

0.89− 1
)n2D) (4.19)

operations, where the 0.89 =
( 4
3
)2

2 , and L is the number of levels of subdivision.

All complex estimates defined by (4.14), (4.15), (4.17), and (4.19) should be considered to-

gether.
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Chapter 5

Implementation

The collocation method is an effective algorithm, which brings high accuracy solutions with

fewer elements. The basic simplicity of the collocation procedure, also makes programming of the

method reasonably straightforward [51]. On the other hand, in our collocation method, manipula-

tion of matrices leads to complexity of programming and adds overhead to the performance of our

collocation solver. Stability, accuracy, and performance rely on robust and efficient implementation

of the software prototype. There have already been some collocation method software packages in

practical use for BVP, such as the widely used AUTO[56] for continuation and bifurcation problems

in ODEs, ColSys for Boundary-Value ODEs [51], CONTENT[52], MatCont[53][54], and DDE-

Biftool[55] for ODEs, PDEs, and Bifurcation analysis. Additionally, Sharifi has implemented his

software prototype for linear / nonlinear elliptic PDEs, which relied on square meshes[17]. Qiang

Zheng has developed a prototype based on triangular meshes for linear (parabolic) PDEs. In this

thesis, we went one step further to implement a prototype which works in generally shaped do-

mains, discretized with triangular meshes, and for nonlinear parabolic PDEs. In this chapter we will

describe in detail the architecture of the software, its data structures, algorithms, and performance

consideration.
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5.1 Overview of the prototype implementation

Our implementation of the collocation method in this thesis is a prototype, used for demonstrat-

ing a generalization of this method to nonlinear BVPs in irregularly shaped domains with triangular

adaptive meshes. The prototype is expected to achieve the following design goals:

(1) Most importantly, getting solutions with high accuracy, as shown in Chapter 6.

(2) Supporting multi-threading for parallel computation, which could improve performance. We

have actually implemented the multi-threading in the current prototype and seen a significant

acceleration of the computations.

(3) As the ”icing on the cake”, supporting dynamical adaptive mesh generation (see Section 2.1 )

at runtime (i.e., in the course of time integration of the solver), which requires

(3.1) Any element can be further subdivided at runtime for sufficient accuracy in it.

(3.2) Any pair of sibling elements can be merged into one element at runtime if enough ac-

curacy can be achieved with fewer elements. This functionality is necessary for keeping

the number of elements minimized when solving some time-dependent problems where

the solution surfaces change with time and, as a result, subdivision in some regions

would become no longer necessary as time passes by.

(3.3) For (3.1) or (3.2), vertices, edges, and elements must be created or deleted at runtime,

the values of u, v, and p at the related matching points and collocation points must be

re-evaluated, and the matrices Φ and RΦ, defined by (3.13) and (3.14), respectively,

must be re-computed.

We have already implemented the adaptive mesh refinement as a separate functionality for

examining our error estimator, refinement algorithm (i.e., Rivara algorithm), and the underly-

ing data structure supporting dynamically adding or removing vertices, edges, and elements.

We have succeeded in this aspect. However, integrating the mesh refinement into the solver at

runtime involves many elaborate programming details, which are less significant for the main

purpose of this thesis, i.e., for showing that the collocation method is feasible for nonlinear
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BVPs based on triangular meshes in irregular domains. Thus, runtime refinement remains as

future work.

The current prototype is composed of two main component: a graphical user interface (GUI)

and the solver, following a Model–view–controller (MVC) software architectural pattern.

model

user

view controller

Figure 5.1: Software architect pattern of Model-View-Controller

In the above architecture, the model is the component in which the kernel algorithm is imple-

mented. The output of the model goes to the view, where the output is visualized in ways users

can understand. The user gives an input to the controller, which will interpret the user input and

tell the model what to do. The purpose of this structure is separating the functionality modules

so that changes in any module can be encapsulated in its own without influencing other modules.

This makes software systems maintainable and extensible. Correspondingly, in our prototype the

model represents the solver based on the collocation method, which accepts as input the parameters

defining the PDEs, the boundary and / or initial conditions, and the geometry of problem domains

from the controller, and outputs the solutions to the view. The view gives 2D and 3D visualization

of the solutions and displays some related information. The controller is the module which receives

and interprets user commands about how the problems (i.e., PDEs) and their domains are defined.

The 2D visualization view is shown in Figure (5.2). Currently, it is implemented on Windows
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platforms with GDI (Microsoft Windows graphics device interface ) and MFC (Microsoft Funda-

mental C++); however, if needed, it can be adapted to any other GUI frameworks on any OS. This

view is not only used for visualization, but also a user interface (UI) through which users can define

the vertices of problem domains simply by clicking mouse.

The view also includes 3D visualization of the solutions, as shown in Figure (5.3). It is an stand-

alone web-based cross-platform application, implemented by ourselves. It imports the solution

description files yielded by the model (i.e., the collocation solver), interprets the content of the files,

and renders the solution surfaces in real time. The details of our implementation of 3D visualization

and the related technologies is explained in Chapter 7.

The controller of the current prototype is a simple dialog box, in Figure (5.4), through which

users can select any one of the predefined test PDEs together with the necessary parameters. For

simplicity, we predefine the test PDEs and hard-code them in the controller. For practical use, we

need to design and implement a mechanism which expresses various PDEs in general forms and a

parser which interprets the forms and thereby constructs the context for solving the specific PDEs.

Figure 5.2: View: 2D visualization of
solutions

Figure 5.3: View: 3D visualization of
solutions
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Figure 5.4: Controller: parameters and selection of test PDEs

5.2 Work flow for solving a PDE

Here we explain the work flow (as shown in Figure 5.5) of our collocation method (i.e., the

model in Figure 5.1). The first step is triangulation, as described in Section 2.2. The result of

triangulation is a group of triangle sub-regions, each of which can already be used as an element

because it is triangle. However, for getting certain levels of accuracy, some elements need to be

refined (see Section 2.1). The refinement step is repeated; in each loop, all the elements are scanned

one-by-one to check whether any of them should be further refined; if yes, refine it; if there is no

element to further refine, exit the repetition and go to next step. The next step is the iteration of

time integration marked with 1 in Figure 5.5. At each time step t, first, the numerical solution

(i.e., the values of piecewise polynomials) at time (t−1) must be set as the initial guess for Newton

iteration at time t. The Newton iteration is marked with 3 in Figure 5.5. The nested dissection

discussed in Chapter 4 is executed in each loop of 3 . In the simplest case where we solve PDEs

in the whole domain as a single element without subdividing it, and therefore no subdivision tree or

nested dissection would be involved, the 1 and 2 as a whole would be the procedure described in

Section 3.5. Constructing and traversing the subdivision tree will be discussed in detail a little after

in this section.

Note also the extended time integration iteration 2 , which includes the step of mesh refinement.

This is the unimplemented dynamical adaptive mesh refinement into the solver, mentioned at point

(3) in Section 5.1. For the dynamical adaptive mesh refinement, the dashed parts in the figure

should also be included for merging any pairs of elements in which the accuracy is more than

enough. In addition, after the dynamical refinement or merging, numerical solutions (i.e., the values

of piecewise polynomials) at time (t− 1) must be re-evaluated at the new collocation and matching

points; this would be done at the step of ”set/save the solution at time step (t-1)”.
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user input:
selected PDE,
params, region

vertices, ...

triangulation of domain

mesh refinement
(Rivara algorithm)

any element
to be refined?

merge the over-refined
sibling elements

any element
over-refined?

Apply Initial Condition

set/save the solution
at time step (t-1)

go bottom-up subdi-
vision tree; merge

the matrices;

apply the boundary
condition at root node;

go top-down sub-
division tree;

back-substitute;

not enough
converged in

any
elements?

continue time
integration?

output solution

1

2

3

yes

no

yes

no

yes
no

yes

no

Figure 5.5: Work flow of the solver based on the collocation method
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2 3

4 5 6 7

8 9 10 11 14 15

16 17 28 29

58 59

Figure 5.6: The subdivision tree

Now, we consider the subdivision tree shown in Figure 5.6. The triangle leaves of the tree are

elements. For our collocation method, the elements are triangular, so it is intuitive to represent the

elements with triangles. The red directional curves represent the pointers linking preceding elements

to their following elements, constructing a linked list, which is the result of mesh refinement. The

other nodes in the tree are merged nodes. Both elements and merged nodes are nodes, derived from

the same base class CNode. The two nodes generated by subdividing a node are child or sibling

nodes; the subdivided node is the parent node. As explained in Chapter 4, the matrix of a parent

node is generated by merging the matrices of its child nodes. By illustrating the merged nodes with

dashed instead of solid circles, we indicate that those nodes and the tree did not exist before the

first time step; the nodes must be dynamically created and the tree must be built up on-the-fly from

the current list of elements. Furthermore, if 2 is implemented, the elements would change at each

time step, so the merged nodes and the tree would have to be changed accordingly at each time step.

The process of constructing the subdivision tree is described below:

(1) The recursive subdivision operations (including domain triangulation, mesh generation, and

mesh refinement) finally generates a linked list of elements, as illustrated by the red curves in

5.6. In the course of the subdivision, we always follow an essential rule to keep the order in

which the elements are linked one after another; that is, in the current linked list, we replace

the subdivided element with the two new sibling elements, with the left brother pointing to
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the right brother.

(2) Each node (an element or a merged node) had a subdivision ID, as shown the numbers in Figure

5.6, generated by

parentId× 2 + 0|1 ,

where parendId is the subdivision ID of its parent node. If the current node is the left child,

+0; for right child, +1. Thus, from the subdivision IDs, it is easy to recognize whether two

nodes are sibling or not.

(3) Prepare an empty stack;

(4) Set the first element in the linked list as the current node, go through all the elements in the list

and repeat the following operations:

(4.1) Check whether the current node is the brother of the top-most node (merged or element)

in the stack; if no, push the current element into the stack; if yes, do (4.2);

(4.2) Pop the top-most node out of the stack, merge it with the current node; as the result,

create a new merged node and parent-child relation; set this merged node as the current

node; then, do (4.1);

(4.3) Push the current node into the stack; move to the next element in the linked list, set it

as the current node, and do (4.1). If there is no more element in the list, it means the

whole subdivision tree has been built up, and the top-most and unique node in the stack

is the root node of the tree.

The subdivision tree can be built up one time and not rebuilt or changed any more if we do not

implement the solver as 2 ; however, the operations of merging the matrices have to be done in

each loop of 3 because the matrices change. More than 60% of the time is cost for the merge. The

algorithm itself, our data structure, and our implementation described above support multi-threading

for the operations of the merge. As shown in 5.6, we mark the elements with two colors to indicate

two threads used to do the merging in parallel. In general, more than two threads can be used.

There should also be synchronization for the threads. We have implemented multi-threading in this
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prototype.

5.3 Data structure

In this section we describe in more detail the data structure supporting the work flow in Section

5.2. The core process of solving PDEs is done by an instance of CSolver (Figure 5.7),

CSolver
CMesh* m pMesh

stack< CNode∗ > m nodeStack
CNode* m pRoot

Figure 5.7: CSolver

where

(1) m pMesh is a pointer pointing to an instance of CMesh, which represents a mesh and, therefore,

contains all the necessary ingredients of a mesh, including vertices, edges, and elements. The

CMesh instance defines the domain of the problems.

(2) m nodeStack is a stack, which is used for constructing the subdivision binary tree from the

elements; see (3) and (4) in Section 5.2.

(3) m pRoot points to the root node of the subdivision tree after the tree has been built up; the step

of applying boundary conditions in 3 in Figure 5.5 is done on the root node; then the step

of backward substitute in 3 starts from the root node and goes downward the tree until the

level immediately above elements.

CSolver provides the following methods to fulfill its functionality:

(1) InitialCondition(): apply initial conditions to all the matching points;

(2) GoUp BuildTree(): construct the subdivision binary tree;

(3) SetBoundaryValues(): apply boundary conditions to all the matching points on the boundary of

the entire domain;

(4) GoDown BackSubstitute(): backward substitution;
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(5) SaveSolutionOnBoundary(): save numerical solution (i.e.,�u in 3.21 ) at matching points on

boundary for applying Boundary Conditions (B.C) to compute δ�u in 3.26;

(6) SaveLastPolynomialValAtColloPoints(): save current polynomial values (equivalent to the uk−1

in 3.7) at collocation points for use in next time step;

CMesh represents a mesh, so it contains all the necessary ingredients of a mesh, including vertices,

edges, and elements, but not including the merged regions. We will call CMesh or instance of

CMesh simply as mesh in any context where there is no ambiguity.

CMesh
int m VerticeNum
int m EdgeNum

int m ElementNum
CVertex *m pVerticeLst head

CEdge *m pEdgeLst head

CElement *m pElementLst

CElement *m pCurrElmt

v1 v2 . . . vn−1 vn null

s1 s2 . . . sk null

e1 e2 . . . em null

Figure 5.8: Container CMesh contains all mesh information: vertices, edges, and elements.

In the mesh, we need containers to accommodate the vertices, edges, and elements. We choose

a linked list (as shown in Figure 5.8) rather than an array for the consideration of supporting dy-

namical mesh at runtime (see Section 2.1 and (3) in Section 5.1). When further subdivision is

done in an element for runtime mesh adaptation (Section 2.1), new elements together with new

edges and vertices will be created and added into the corresponding containers. Furthermore, the

new elements which, as a whole, take the place of the original subdivided element, must inherit its

neighborhood with the preceding and following elements in the element container. For an array,

keeping such neighborhood means physically inserting the new elements onto the position of the

original element, which requires physically moving all the following elements to make room for the

new elements. This is not acceptable in our situation. When adding new edges, similar conditions
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must be satisfied. On the other hand, when existing elements in a region are no longer necessary

and therefore merged together, these elements together with some related edges and vertices will be

removed from the corresponding containers, and the memory these object have been allocated must

be released. Arrays cannot support this change without physically moving the remaining elements.

In summary, arrays always keep its memory space physically contiguous; this nature makes it not

suitable for our algorithms. On the other hand, this feature makes it better for caching; however,

this advantage replies on how the elements in it would be accessed. In our algorithm, in the course

of 1 and 3 in Figure 5.5, the elements, edges, vertices, matching points, and collocation points

are accessed in the orders completely different from the orders in which they have been initially

arranged in memory space when created. This is due to the difference between 2D and 1D spatial

locality; that is, locality (or neighborhood) in 2D space cannot be kept in 1D linear containers, no

matter array or linked list. Additionally, a linked list supports multi-threading better than an array

does.

CVertex
int m vertexID
double x
double y

CVertex *m pNextVertex

CVertex
int m vertexID
double x
double y

CVertex *m pNextVertex

. . .

Figure 5.9: CVertex and linked list of vertices.

CVertex represents one end of an edge (CEdge). If two or more edges share a common vertex, there

is only one instance of CVertex created for representing the shared vertex. m vertexID is the index

used for 3D visualization. as explained in Chapter 7.

CEdge

CVertex *pV1

CVertex *pV2

CElement *m pElmt1

CElement *m pElmt2

CValuedPoint2 *m pMchPtLst;

CPoint2 m vNormal
CEdge *m pNextEdge

CEdge *m pOtherHalf

CEdge

CVertex *pV1

CVertex *pV2

CElement *m pElmt1

CElement *m pElmt2

CValuedPoint2 *m pMchPtLst;

CPoint2 m vNormal
CEdge *m pNextEdge

CEdge *m pOtherHalf

. . .

Figure 5.10: CEdge and the linked list of edges.
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CEdge represents a side of an element. For a merged region (CMergedRegion), which is at least

composed of two elements, some of its sides may be conposed of a sequence of collinear edges

linked in series. Each of such multi-edged sides is represented by a chain of CEdge objects (i.e.,

edge chain), linked by m pOtherHalf, and identified by header and tail. We will describe in more

detail how to build up this type of chains when discussing CMergedRegion. For now, it is enough

to know that an edge chain is a multi-edged side of a merged region. pV1 and pV2 point to the

two vertices; m pElmt1 and m pElmt2 points to the two elements sharing this edge; m pMchPtLst

points to a list of CPoint2D objects, representing the matching points on this edge; m vNormal is a

unit vector perpendicular the edge; specified positive direction, this vector will be the outwards unit

vector, ηi, in (3.12); m pOtherHalf has the following two uses. First, marking pending edges in the

course of mesh generation. When an edge is still pending (defined in Section 2.3), m pOtherHalf

points the new edge separated from it; when it is no longer pending, its m pOtherHalf is set to null.

Secondly, as mentioned previously, constructing edge chains of merged regions.

CElement represents elements. An element is a special type of node, so CElement derives from

base class CNode, as shown in Figure 5.11. In the figure, the gray part represents CNode, which

defines the essential geometrical features and parent-child relationship of a region; the light part

is the extra attributes of CElement, which correspond to the matrices and vectors mentioned in

Section 3.2 and 3.3; in addition, CElement also defines operations on these attributes, among which

the following:

(1) GenerateMat CopyToMerged(. . . ) : locate collocation points, generate the matrices, compute

matrix A and vector �g in (3.26), and copy them into the sub-matrices, m pMat Triangles,

m pMat 2, m pMat All 0, and m pMat DA of CMergedRegion. We will explain it in more

detail when discussing CMergedRegion;

(2) LocateColloPoints( ) : called by GenerateMat CopyToMerged(. . . ) to place collocation points;

(3) InitMatrices(. . . ) : called by GenerateMat CopyToMerged(. . . ) to create and compute the

matrices in Section 3.2 and 3.3;

A pair of sibling elements have the same parent merged region, as shown in 5.11.
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CElement : CNode
int m subTree ID == 2n+ 0

int m Edge num == 3

CEdge** m ppEdge

CNode* m pChld[0] == null

CNode* m pChld[1]

CNode* m pMother

int m dSignOfDeltaV

byte m Status

CPolynomial m objPolynomial

CPoint2D* m pColloPtLst

VectorXd* m pVectC

double* m prU

double* m prN

MatrixXd* m pMat RF

MatrixXd* m pMat negA B Transposed

double* m pMat negFai Data

double* m pMat RF Data

double* m pMat L Data

double* m pVect P collo LastT

VectorXd* m pU

VectorXd* m pV

bool m bIsConverged

CElement : CNode
int m subTree ID == 2n+ 1

int m Edge num == 3

CEdge** m ppEdge

CNode* m pChld[0] == null

CNode* m pChld[1]

CNode* m pMother

int m dSignOfDeltaV

byte m Status

CPolynomial m objPolynomial

CPoint2D* m pColloPtLst

VectorXd* m pVectC

double* m prU

double* m prN

MatrixXd* m pMat RF

MatrixXd* m pMat negA B Transposed

double* m pMat negFai Data

double* m pMat RF Data

double* m pMat L Data

double* m pVect P collo LastT

VectorXd* m pU

VectorXd* m pV

bool m bIsConverged

CMergedRegion

int m subTree ID == n
int m Edge num � 3

CNode* m pChld[0]

CNode* m pChld[1]
. . .

Next CElement

Figure 5.11: CElement and the linked list of elements.
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CMergedRegion represents a merged region which has been subdivided into two parts, either

of which may be an element or still a CMergedRegion-type region, as shown in Figure 5.12. A

merged region is a CNode-type region in essential, plus a merged matrix defined by class CEq411.

CEq411 defines data structure of the merged matrix and implements operations on it, including

triangulization, pivoting, copying its blocks into the merged matrix of parent merged region when

building up the subdivision tree, and solving the δ�u’s and δ�v’s on its internal shared edge chain in

the course backward substitution. in Figure 5.12, the light gray part represents CNode; the dark

gray part corresponds to class CEq411; the other attributes are dedicated for class CMergedRegion,

describing the geometrical features of the merge.

CMergedRegion : CNode, Ceq411

int m subTree ID == 2n+ 0

int m Edge num == 3

CEdge** m ppEdge

CNode* m pChld[0] == null

CNode* m pChld[1]

CNode* m pMother

int m dSignOfDeltaV

CSubMatrix* m pMat Triangles

CSubMatrix* m pMat 2

CSubMatrix* m pMat All 0

CSubMatrix* m pMat DA

double* m pVectData g

CSubMatrix* m pCurr Mat

double* m pCurrDestAddr

int* m pEdgeLength

CEdge** m ppEnd

CEdge* m pChildrenSharedSideHeader

CEdge* m pChildrenSharedSideTail

const CMergeInfo* m pMergeInfo

CMergedRegion

int m subTree ID == n
int m Edge num � 3

CNode* m pChld[0]

CNode* m pChld[1]
. . .

CMergedRegion OR CElement

int m subTree ID == 2n+ 1

int m Edge num == 3

CEdge** m ppEdge

CNode* m pChld[0] == null

CNode* m pChld[1]

CNode* m pMother

int m dSignOfDeltaV

Figure 5.12: CMergedRegion
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The merging of elements and merged regions is illustrated in Figure 5.13:

Figure 5.13: Merging of elements and merged regions

The layout in Figure 5.13 is the result of 3 levels of subdivision. The i is the index of the edges; the

numbers inside the elements are m subTree ID’s, which are used for recognizing sibling nodes.

The red circles and blue triangles visualize the pairs of sibling nodes. Now, look at the blue triangle

marked as No.2. It is a merged region, so it is an instance of class CMergedRegion; we name it as

region2. It has 3 sides, each of which is an edge chain. One side is composed of edge edge 13 and

4 ; this edge chain is defined the following way:

(1) region2.m ppEdge[0] → edge 4 ;

(2) region2.m ppEnd[0] → edge 13 ;

(3) edge 4 .m pOtherHalf → edge 13 ;

(4) in this simple subdivision scenario, there is no more edge in the chain following edge 13 , so

edge 13 .m pOtherHalf == null;

The other two sides of region2 have also such structure; that is:

{
region2.m ppEdge[1] → edge 3 ;
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region2.m ppEnd[1] → edge 15 ;

edge 3 .m pOtherHalf → edge 15 ;

edge 15 .m pOtherHalf == null;

}
and

{
region2.m ppEdge[2] → edge 5 ;

region2.m ppEnd[2] → edge 6 ;

edge 5 .m pOtherHalf → edge 6 ;

edge 6 .m pOtherHalf == null;

}
Some geometrically collinear edges are not in a same edge chain because they are never in a same

merged region at any level of subdivision; for example, edge 7 and edge 8 . Finally, it should be

mentioned that, in more complicated subdivision scenarios, edge chains are usually composed of

more than 2 edges; furthermore, an edge chain may be a subset of a longer edge chain.

CSubMatrix represents the blocks of the merged matrix illustrated in Figure 5.12. All the ma-

nipulations on the merged matrix are implemented in CSubMatrix.

CSubMatrix
int m nRowNum
int m nColNum
double* m pDataBuff

memory in
system heap or
memory pool

Figure 5.14: CSubMatrix and its data buffer.

CMergeInfo defines how two CNode-type objects, either of which may be an element or a

merged regions, are merged together.

Some of the attributes are described below:

(1) m nodeID1 : ID of child node #1;

(2) m nodeID2 : ID of child node #2;

(3) m nNumOfSides 1 : number of sides of child node #1;
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CMergeInfo

unsigned int m nodeID1

unsigned int m nodeID2

unsigned int m nNumOfSides 1

unsigned int m nNumOfSides 2

unsigned int m nNumOfSides Merged

unsigned int m nMatchPntNumber

int m nLength SharedEdge

int m nLength Merged Head

int m nLength Merged Tail

int m nRowsFirstChild
int* m p Child Merged

int stackMem[0]
. . .

int stackMem[8]

memory in
system heap or
memory pool

Figure 5.15: CMergeInfo

(4) m nNumOfSides 2 : number of sides of child node #2;

(5) m nNumOfSides Merged : number of sides merged region;

(6) m nLength SharedEdge : number of edges in the edge chain shared by child node #1 and #2;

(7) m nLength Merged Head : in the merged edge chain, how many edges are from child node #1;

(8) m nLength Merged Tail : in the merged edge chain, how many edges are from child node #2;

(9) m nRowsFirstChild : in the merged matrix, how many rows correspond to child node #1;

(10) m p Child Merged : among all the sides of child #1 and #2, which are shared, which are

merged;

These attributes tell how many rows and columns the merged matrix and its sub-matrices contain

and how to arrange the blocks copied from child #1 and #2.

Finally, relationship of the classes are shown in Diagram 5.16. . . .

5.4 Optimization

In the course of the nested dissection, many operations can be done in parallel as shown in

Section 4.2. The most substantial optimization of performance is to implement the parallelism.
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CPoint2D

x,y : double
. . .

CVertex

vertexID
pNextVertex
. . .

CValuedPoint

u, v
deltaU, deltaV
. . .

CEdge

x,y : double
. . .

CNode

x,y : double
. . .

CEq411

x,y : double
. . .

CElement

vertexID
pNextVertex
. . .

CHidden

u, v
deltaU, deltaV

CMergedRegion

u, v
deltaU, deltaV
. . .

CSubMatrix

x,y : double
. . .

CMergeInfo

vertexID
pNextVertex
. . .

collo-points

MEnd-points

2

Matching points

N

sides of region

K

merged matrix

4

how to marge

1

Figure 5.16: Class Diagram 1
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CMesh

vertex Num
edge Num
element Num
curr element
. . .
. . .

CVertex
. . .
. . .

CEdge
. . .
. . .

CElement
. . .
. . .

CSolver
. . .
. . .

CNode
. . .
. . .

CPolynomial
. . .
. . .

<<interface>>
IBasis

. . .

. . .

CPhai
. . .
. . .

chain of elements
1..*

chain of edges

1..*

chain of vertices
1..*

contain
exactly 1

B-Trees
1..*

linear combination
..

..
basis

linear combination
..

..
basis

linear combination
..

..
basis

Figure 5.17: Class Diagram 2
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There exist various frameworks and application programming interfaces (APIs) supporting parallel

computing, for example: OpenMP, Message Passing Interface (MPI), OpenCL, CUDA, and mul-

tithreading. Multi-threading would be easiest way for harnessing the power of multi-core CPUs.

We have implemented the multi-threading at the steps of computing the matrices of all the elements

and merging the local systems. Our tests indicate that these steps are the bottleneck of perfor-

mance; therefore, we only make these steps executed in parallel. Additionally, integrating the mesh

refinement with the time evolution would bring excellent effect of mesh-moving when solving time-

dependent PDEs. For these improvements, the data structure will still be based on linked list because

it supports effectively adding or removing nodes. On the other hand, a linked list takes more time

for accessing individual nodes and it breaks locality of reference, which is critically important for

CPU cache. Thus, customized memory management system is needed for solving these problems.

We leave the optimization for future work.

5.5 The Eigen library

When implementing our collocation method, we make use of Eigen library for solving and

checking singularity of the essential and basic linear systems, like the following:

M�x = �b,

where M is matrix. We need not implement this kinds of computation; reinventing a wheel is

meaningless. Eigen is an existing wheel ready for use.

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related

algorithms.[57] It is fast, easy to integrate into C++ projects, and cross platform. It is well supported

and documented, and has plenty of learning resources and a large user group. Its official website is

eigen.tuxfamily.org.

Additionally, although we base the very basic algebraic computations on the Eigen library, we

have made our implementation of the algorithms independent with this library. The benefit of doing

so is that we would easily migrate to any other more advanced 3rdparty libraries if necessary.

Suppose we find a library which can make use of the enormous computation power of GPU’s, we
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would easily replace the current library with that one simply by modifying some source code to

follow the interface specification of that library.

66



Chapter 6

Numerical Results

In this chapter we use sample parabolic PDEs to test the accuracy and convergence of our

collocation method. The sample PDEs include nonlinear and linear parabolic problems with or

without stationary solutions. By means of these tests, we determine the key factors influencing

the accuracy of the numerical solutions. For our collocation method, there are no well-established

analytical error estimates.

6.1 Factors determining accuracy and convergence

Accuracy and convergence of the collocation method are affected by mesh size, the number of

collocation points and matching points, and the locations of the collocation points and matching

points. If the mesh size is very small, local and relative coordinate must be used; otherwise, the

collocation method may not converge. The accuracy of time-dependent PDEs is also affected by the

size of time step.

6.1.1 Mesh size

We need to provide error estimates for our algorithm with respect to different mesh sizes. This

will make it possible to evaluate our numerical results. However, based on our knowledge, there is

no well-established analytical theory which formulates general relations between the size of meshes

with triangular elements and the order of accuracy. Even so, there exist some theoretical analysis
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given for some special cases. In [21], Yinnian He and Weiwei Sun have given optimal error estimate

for a low-order nonconforming spline collocation method on triangular mesh. Their theoretical

analysis is limited to a low-order collocation method based on triangular elements with (nc, nm) =

(1, 3), which means 1 collocation point at center and a total of 3 matching points on the 3 edges.

We include this case into our tests and we will evaluate the errors according to the error estimate

given by the theorems in section 3 of [21]. A high-order case using a triangular elements with

(nc, nm) = (6, 9) is tested in [22] without mathematical analysis. It is implied in [21] that an error

analysis for high-order collocation methods remains under investigation.

An error analysis for higher order cases is given by Theorem 3.5 in [22]. However, it is based

on rectangular meshes and cannot be extended to triangular meshes [21]. This theorem states that

‖u− uh‖1 ≤ Ch3,

where the u and uh are the exact and numerical solution, respectively, h is the mesh size, and ‖ · ‖1
is the energy norm, defined as

‖u− uh‖1 =
(∫

Ω
|∇u−∇uh|2dxdy

)1/2
.

The above error analysis in Section III of [22] is based on the equivalence between the noncon-

forming spline collocation method and a special high-order finite difference method in the case of

a rectangular mesh on a rectangular domain [21][22]. After the collocation system is reduced to an

equivalent finite difference system, the truncation error and energy error are derived based on the

finite difference system.

A less precise but more general error estimate is given by Lemma 3.9.1 on Page 43 in Section

3.4 of Sharifi’s thesis [17]. The principle is identical to the one mentioned above [22]; that is,

converting the collocation system into an equivalent finite difference system, which is formulated

by (3.5) in the case of an ODE with 1D mesh, or (5.3) in the case of PDE with 2D mesh in [17],

and then apply Taylor expansions to the finite difference system to prove the truncation error is of

order O(h2), where h is the mesh size. The conversion from a collocation system to an equivalent

finite difference system is not limited to a rectangular mesh. It is also applicable to a triangular
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mesh, as proved in Theorem 1 in [20]. Thus, for a collocation system with triangular mesh, the

truncation error given in Section 3.4 of Hamid’s thesis [17] still holds.

All the above analytical error estimates are derived from linear collocation systems. They will

also be valid for our nonlinear collocation system because, by the collocation method, we have

linearized the nonlinear PDE (and constructed a Newton iteration system) and then, by local elim-

ination, reduced the original collocation system into a finite difference system, as formulated by

(6.14) in [17]:

Dδv = Aδu+ g ,

which is in the same form of the (3.5) in [22] and (5.3) in [21] as discussed above. Therefore, the

error analysis for nonlinear collocation systems follows the same principle.

6.1.2 The number of collocation points and matching points

Within some limits, increasing the number of collocation points in each element can make PDEs

better satisfied by local polynomials; increasing the number of matching points can bring better

continuity between neighboring elements. Therefore, more accurate solutions can be obtained by

appropriately increasing the numbers of collocation points and matching points. This will be shown

by the test results in Section 6.3. However, if the numbers exceed the limits, the collocation method

tends to become singular and fail to converge.

Furthermore, in some schemes of matching points and collocation points, neither the number of

matching points nor that of collocation points is large, but the difference between the two numbers

is large. For example, 3 matching points (i.e., 1 per edge) with 7 collocation points per element, or

12 matching points with less than 3 collocation points. In these cases, matrix (Φ | LΦ) will easily

become non-invertible. This type of singularity was explained at the end of Section 3.3 by Equation

(3.29), (3.30), and (3.31), with geometrical significance. Here, we enumerate more examples of

this type of singularity in Figure 6.1− 6.4.
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Figure 6.1: 4x3 matching points with 1
collocation point.

Figure 6.2: 4x3 matching points with 2
collocation points.

Figure 6.3: 6x3 matching points with 4
collocation points.

Figure 6.4: 6x3 matching points with 7
collocation points.
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6.1.3 Location of collocation points and matching points

The location of collocation and matching points strongly influence accuracy. This means that,

without computational overhead, which is an inevitable consequence of increasing the number of

collocation and matching points or granularity of mesh, we can get higher accuracy. Out test results

show that, in some cases, higher order of accuracy can be obtained from fewer but well located

matching points and collocation points. Furthermore, because slightly adjusting the locations usu-

ally result in small change of accuracy, this method is stable. In most cases, the highest accuracy

and order of convergence can be obtained when we take the Gauss points on each side of elements

as the location of matching points and, at the same time, certain special collocation points inside the

elements as collocation points. The Gauss points will be described in more detail in 6.1.4. Our test

results clearly show that this rule of thumb holds for all tested PDEs and for all mesh sizes. On the

other hand, badly located collocation and matching points may cause singularity or divergence.

6.1.4 Templates of collocation and matching points

We refer to the layout of collocation and matching points as templates. A template describes

the numbers of collocation and matching points per element and how they are located. We need to

determine templates of matching and collocation points which bring stable numerical results with

high order of accuracy and convergence rate. For the matching points, their number can be selected

from 1 to 4 per edge, and they may be evenly distributed or at Gauss points on each element edge.

The definition of Gauss points is shown in Figure 6.5. For collocation points, their number can be

selected from 1 to 7 per element, and their locations are controlled by parameters. The scheme for

positioning collocation points is illustrated in Figure 6.6. We categorize the collocation points of

each element into 3 groups. Group 1 has only one collocation points which is at the center of gravity

of the element. Group 2 has 3 collocation points, located on the sections between pi
′s and the center

of gravity in Figure 6.6. Their locations on the sections are controlled by parameter P defined as

below

P =
2Lzi

Lpi

,
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Figure 6.5: Locations of Gauss points. Column n is the number of Gauss points. Column i is the
index of the Gauss points. Column ti is the location of the Gauss points. Column ci is the weight,
which is unrelated to our collocation method. (This is TABLE-12.2 of [26])

Figure 6.6: Location of collocation points in a triangular element
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where Lzi represents the distance by which collocation point zi is away from the center of gravity,

and Lpi is the distance between pi and the center of gravity. For example, P = 1.0 means that

all of the Group-2 collocation points are located at the mid-points of their sections. The bigger the

value of P is, the further the Group-2 collocation points are located away from the center of gravity.

Group 3 has also 3 collocation points, located on the sections between qi
′s and the center of gravity

in Figure 6.6, and controlled by parameter Q defined as

Q =
2Szi

Lqi

,

where Szi represents how far Group-3 collocation point zi is away from the center of gravity, and

Lqi is the distance between qi and the center of gravity.

The notation for templates is as follows:

(nc, nm[G][; (P,Q)]) ,

where nc and nm represent the number of collocation and matching points of each element, respec-

tively; the presence of G means the matching points are located at Gauss point, and the absence

of G implies the matching points are evenly arranged on each edge of elements; P and Q are the

parameters controlling locations of the collocation points, as defined above. For templates with

nc = 1, P or Q is unnecessary. For templates with nc = 2, 3, or4, only P is needed, and if P is not

given explicitly, it takes its default value 1.0. For templates with nc = 5, 6, or7, P and Q are both

necessary, and their default values are 1.0.

Some examples are given below:

(1) (1, 3): 1 collocation point and 3 (i.e., 1 per edge) matching points for each element.

(2) (6, 9G; (1.45, 1.35)): 6 collocation points at the specified locations, with 3 matching points per

edge at Gauss points.

(3) (7, 12; (1.5, 1.25)): 7 collocation points at the specified locations, with 4 matching points evenly

distributed on each edge.

The templates of collocation points tested in our research include (but not limited to) the following:
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(1) (7, nm; (P = 1.5, Q = 1.25)).

(2) (4, nm; 1.25).

(3) (3, nm; 1.0), which corresponds to the 3-quadrature-point Area coordinate given in TABLE I

on Page 6 of [22]. (See Figure 6.7)

(4) (4, nm; 0.8), which corresponds to the 4-quadrature-point Area coordinate given in TABLE I

on Page 6 of [22]. (See Figure 6.7)

(5) (6, nm; (P = 1.45, Q = 1.35)), which corresponds to the 6-quadrature-point Area coordinate

given in TABLE I on Page 6 of [22]. (See Figure 6.7)

Figure 6.7: A copy of the TABLE I from [22].

6.2 Initial condition and time integration

For solving a parabolic PDE using our collocation method, we need to specify an initial con-

dition, written as u(x, y, 0) or u|t0 , from which to start time integration. At each time step ti of

the time integration, the Newton iteration is executed to find the solution at ti. (For details, see the

steps listed at the end of Section 4.2.) We first compute �u, �v, and �c of every element from the initial

condition u(x, y, 0), and take them as the initial guess for the Newton iteration at t1. We always

take the result �u, �v, and �c at ti−1 as the initial guess for the Newton iteration at ti. The Newton

iteration may be globally convergent, which means that it always converges to a solution for any
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initial guess, or locally convergent if it only converges to a solution from an initial guess sufficiently

close to the solution. Having global or local convergence depends on the PDE, the time interval δt.

and/or the u(x, y, 0). There are several strategies to define the initial condition and make the initial

guess of �c, as described below:

1. If the initial condition u(x, y, 0) has been given together with the parabolic PDE, we apply
u(x, y, 0) to all the collocation points and matching points in the entire domain, and choose
either of the following methods to make the initial guess of �c :

1.1 Simply set the ci’s of all the �c ’s to 0. This arbitrary initial guess is usually not close to
the solution. We can only hope the Newton iteration has global convergence.

1.2 For each element, construct a linear system of �c based on the values of u(x, y, 0) eval-
uated at the collocation points and matching points of the element. Then solve this
system and take the solution of �c as the initial guess, which is better than an arbitrary
initial guess.

2. If we need to try various u(x, y, 0) (for detecting different stationary solution families, for
example), and the boundary condition has been given as B(x, y, t), where (x, y) ∈ δΩ, we
can choose either of the following options to define the u(x, y, 0):

2.1 Specify u(x, y, 0) = a, where a is constant. Then follow either the above 1.1 or 1.2
for the initial guess of �c. The u(x, y, 0) is not necessarily equal to B(x, y, 0) at the
matching points on the boundary. If the difference between the two is large, and δt is
very small, then at the first several time steps, there would be sudden changes over the
elements close to the boundary.

2.2 Let u(x, y, 0) = B(x, y, 0) + bF (x, y), where (x, y) ∈ Ω, b is a coefficient for scaling,
and F (x, y) is defined as any one below:

F (x, y) = x1/16(1− x)1/16y1/16(1− y)1/16 , shown in Figure 6.8(a)

F (x, y) = x1/8(1− x)1/8y1/8(1− y)1/8 , shown in Figure 6.8(b)

F (x, y) = x1/4(1− x)1/4y1/4(1− y)1/4 , shown in Figure 6.8(c)
F (x, y) = 4x(1− x)y(1− y) , shown in Figure 6.8(d)

Thus, u(x, y, 0) = B(x, y, 0) on the boundary because F (x, y) = 0 there, and u(x, y, 0)
is still smooth and continuous near the boundary. This feature eliminates the sudden
change near the boundary and leads to more smooth solution surfaces near the boundary.
Then choose either the above 1.1 or 1.2 for initial guess of �c.

Figure 6.8: Profile of F (x, y).
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6.3 Example PDEs for numerical experiments

6.3.1 A linear parabolic PDE with a stationary solution

Linear PDEs can be considered as special cases of nonlinear PDEs. It is well known that the

application of Newton iteration to a linear problem converges in one iteration step. However, for

ill-conditioned linear problems, more than one iteration steps correspond to residual correction.

This test PDE is from [20] with modified initial condition and an extra parameter a, which is

used for scaling the height of the solution surface. If a = 1.0, this test PDE is identical to the PDE

given in [20], so we can use the results provided in [20] as a reference for evaluating the accuracy

of our method. At the end of this test, we will compare the accuracy of the numerical solutions of

PDE 6.1 obtained by our collocation method to the results in [20].

The PDE is defined as the following:

∂u

∂t
= Δu− 2ae(x+y), (x, y) ∈ Ω ⊂ R2

u(x, y, 0) = 0, for (x, y) ∈ Ω

u(x, y, t) = ae(x+y), for (x, y) ∈ ∂Ω .

(6.1)

We start the time integration of the PDE from the initial condition, u(x, y, 0) = 0. A stable station-

ary state is reached by the time integration in about 3 time units, as shown in Figure 6.14. At the

stationary state, ∂u
∂t = 0, thus the parabolic PDE is equivalent to the elliptic PDE below:

0 = Δu− 2ae(x+y) , (6.2)

the exact solution of which is

u(x, y, t) = ae(x+y) . (6.3)

Therefore the stationary solution of PDE (6.1) must be (6.3). For evaluating the accuracy of our

collocation method, we first start the time integration of PDE (6.1) with a = 1.0 until reaching the

stationary state. Then we evaluate the polynomial values at matching points and compare them to

the corresponding values of (6.3). Because the initial condition is different from the stationary
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Figure 6.9: The solution at t = 0.004,
observed from below Figure 6.10: The solution at t = 0.008

Figure 6.11: The solution at t = 0.02 Figure 6.12: The solution at t = 0.05

Figure 6.13: Solution at t = 0.1
Figure 6.14: A near stationary solution
when t � 3.0.
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solution, we see the transient solutions evolving during the time integration. The transient solutions

of PDE (6.1) with a = 1/8 are visualized in Figure 6.9 ∼ 6.13. We then test other initial conditions

such as

u(x, y, 0) = ae(x+y) + 10x(1− x)y(1− y), for (x, y) ∈ Ω . (6.4)

This initial condition is consistent with the boundary condition. As the result, at each time step, the

transient solutions are smooth surfaces. Starting from the initial condition (6.4), we go through

Figure 6.15: At t = 0, the initial condi-
tion (6.4) with a = 1/8.

Figure 6.16: The transient solution at
t = 0.05

Figure 6.17: The transient solution at
t = 0.1

Figure 6.18: The transient solution at
t � 1.0

a different time evolution, as shown in Figure 6.15 ∼ 6.18, but finally reach the same stationary

solution in Figure 6.14.
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After reaching the steady state, we measure the average of the maximum errors, Ej , of all

elements, which is defined as

ẽ =

∑K
j=1Ej

K
, and Ej = max

zMi∈δΩj

{| u(zMi)− p(zMi) |} , (6.5)

where K is the number of elements, Ωj is an element, δΩj is the boundary of Ωj , zMi are the

matching points of Ωj , u() is the exact solution, and p() is the local polynomial of Ωj . This error

measure is similar to that defined for the numerical experiments in [21] and [22].

Templates: 1, 3 4, 9G 6, 9G 7, 9G
Mesh size center 1.25 1.45, 1.35 1.5, 1.25

1/2(16) 2.39e−3 6.04e−6 2.53e−6 1.35e−6

1/4(64) 6.13e−4 (3.90) 2.31e−7 (26.15) 7.85e−8 (32.20) 4.30e−8 (31.42)
1/8(256) 1.54e−4 (3.99) 1.23e−8 (18.78) 2.45e−9 (32.07) 1.57e−9 (27.26)
1/16(1024) 3.84e−5 (3.99) 7.25e−10 (17.01) 7.73e−11 (31.67) 6.34e−11 (24.85)
1/32(4096) 9.61e−6 (3.99) 4.41e−11 (16.42) 2.50e−12 (30.96) 2.87e−12 (22.12)
1/64(16384) 2.40e−6 (3.99) 2.74e−12 (16.14) 8.33e−14 (30.02) 1.44e−13 (20.00)

Table 6.1: ẽ and convergence rate of PDE (6.1)

In Table 6.1, the convergence rate of template (1, 3) is around 3.9 · · · ≈ 22 when the mesh sizes

are scaled by 2. For example, the mesh size 1/4 is 2 time as large as mesh size 1/8; correspondingly,

the ẽ of the former (i.e., 6.13e−4) is 3.999 ≈ 22 times as large as the ẽ of the latter (i.e., 1.54e−4).

This implies the order of accuracy is O(h2), where h = 1/N is the mesh size [21]. This result is

consistent with Theorem 3.3 in [22],

‖u− uh‖0,h ≤ Ch2(‖u‖2,Ω + ‖f‖2,Ω)

where the u and uh are the exact and numerical solution, respectively; ‖u−uh‖0,h can be considered

equivalent with ẽ , and (‖u‖2,Ω + ‖f‖2,Ω) is constant for the given u, f , and Ω. The theoretical

analysis in [21] and [22] is based on linear PDEs; however, the conclusions hold also for nonlinear

PDEs if the nonlinear PDEs can be linearized, and the Jacobian matrices are nonsingular. Template

((6, 9G); (1.45, 1.35)), with its collocation points located at the 6-quadrature-point given in [22],

brings a nearly uniform convergence rate as high as 25 for all the mesh sizes, exhibiting the accuracy
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O(h5), which is also identical to the test results in [21][22], but not theoretically proved. In addition,

the accuracy of ((6, 9G); (1.45, 1.35)) is almost as high as or even higher than ((7, 9G); (1.5, 1.25)),

so we may take ((6, 9G); (1.45, 1.35)) as the best 9-matching-point template. In the remainder of

this chapter, we will present more tested results that support this hypothesis.

Templates: 4, 12G 4, 12G 6, 12G 7, 12G
Mesh size 0.8 1.25 1.45, 1.35 1.5, 1.25

1/2(16) 5.71e−5 1.80e−5 7.40e−6 2.62e−7

1/4(64) 2.02e−6 (28.33) 7.55e−7 (23.84) 2.88e−7 (25.69) 9.01e−9 (29.08)
1/8(256) 8.18e−8 (24.62) 3.55e−8 (21.26) 1.01e−7 (2.8) 4.30e−10 (20.96)
1/16(1024) 3.13e−9 (26.12) 2.02e−9 (17.57) 1.40e−9 (71.89) 2.42e−11 (17.78)
1/32(4096) 1.51e−10 (20.73) 1.24e−10 (16.29) 1.12e−10 (12.50) 1.56e−12 (15.53)
1/64(16384) 9.01e−12(16.76) 7.62e−12 (16.27) 3.12e−12 (35.90) 8.95e−14 (17.40)

Table 6.2: ẽ and convergence rate of PDE (6.1)

All templates in Table 6.2 have 4 matching points per edge. Template ((4, 12G); 0.8) gives

a good convergence rate for all mesh sizes, except the smallest size (i.e., 1/64). Template of

(6, 12G); (1.45, 1.35) is not preferable because of not giving a consistent convergence rate. Tem-

plate ((4, 12G); 1.25) and ((7, 12G); (1.5, 1.25) are preferable for 4-matching-point cases in gen-

eral. Template ((4, 12G); 0.8) is preferable for all the mesh sizes except 1/64. The results in 6.3

Templates: 1, 6G 3, 6G 4, 6G 6, 6G 7, 6G
Mesh size Center 1.0 0.8 1.45, 1.35 1.5, 1.25

1/2(16) 5.34e−3 1.50e−4 N.S N.S N.S
1/4(64) 1.08e−3 (4.94) 1.05e−5 (14.3) N.S N.S N.S
1/8(256) 2.17e−4 (4.97) 8.14e−7 (12.9) N.S N.S N.S
1/16(1024) 4.85e−5 (4.47) 7.77e−8 (10.48) N.S N.S N.S
1/32(4096) 1.13e−5 (4.29) 9.74e−9 (7.98) N.S N.S N.S
1/64(16384) 2.81e−6 (4.02) 1.22e−9 (7.98) N.S N.S N.S

Table 6.3: ẽ and convergence rate of PDE (6.1). NS means we cannot reach the stationary solution.

indicates that, the templates (nc, 6) with nc � 4 do not give a numerical solution. The template of

(3, 6) is the best among the templates of (M, 6).

Finally, we compare the templates with and without Gauss points with the results in Table 6.4,

Table 6.5, and Table 6.6. Template {(7, 12G); (1.5, 1.25)} brings orders of accuracy that are much

higher than {(7, 12); (1.5, 1.25)} for all the mesh sizes. However, template {(7, 9G); (1.5, 1.25)}
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does not show any advantage in comparison to {(7, 9); (1.5, 1.25)}. Furthermore, with mesh sizes

of 1/32 and 1/64, the non-Gauss point template, {(7, 9); (1.5, 1.25)}, behaves better.

From the above test results (Table 6.1− 6.6 ), we conclude that, for this test PDE,

(1) Our nonlinear collocation method can solve linear PDEs. The number of Newton iteration is 1.

(2) Smaller mesh size always brings higher accuracy.

(3) More collocation and/or matching points does not necessarily bring higher accuracy. The com-

bination of these numbers, the locations, and the mesh sizes is more important.

(4) In most of the cases, using Gauss points as matching points brings higher accuracy than uni-

formly arranging the matching points. However, for some templates, with small mesh size

(e.g., 1/64), the latter gives higher accuracy.

Templates: 7, 9G 7, 9 7, 12G 7, 12
Mesh size 1.5, 1.25 1.5, 1.25 1.5, 1.25 1.5, 1.25

1/2(16) 1.35e−6 2.64e−6 2.62e−7 5.21e−7

1/4(64) 4.30e−8 (31.42) 7.97e−8 (33.08) 9.01e−9 (29.08) 2.79e−8 (18.67)
1/8(256) 1.58e−9 (27.26) 2.46e−9 (32.36) 4.30e−10 (20.96) 1.58e−9 (17.68)
1/16(1024) 6.34e−11 (24.85) 7.76e−11 (31.75) 2.42e−11 (17.78) 9.22e−11 (17.11)
1/32(4096) 2.87e−12 (22.12) 2.57e−12 (30.17) 1.56e−12 (15.53) 5.53e−12 (16.67)
1/64(16384) 1.44e−13 (20.00) 1.02e−13 (25.7) 8.95e−14 (17.40) 3.39e−13 (16.33)

Table 6.4: Comparison between the 7-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.1).

Templates: 6, 9G 6, 9 6, 12G 6, 12
Mesh size 1.45, 1.35 1.45, 1.35 1.45, 1.35 1.45, 1.35

1/2(16) 2.53e−6 6.95e−6 7.40e−6 2.48e−6

1/4(64) 7.85e−8 (32 : 20) 2.60e−7 (26.71) 2.88e−7 (25.69) 3.63e−7 (6.83)
1/8(256) 2.45e−9 (32 : 07) 1.00e−8 (25.88) 1.01e−7 (2.8) 2.77e−7 (1.31)
1/16(1024) 7.73e−11 (31 : 67) 4.08e−10 (24.60) 1.40e−9 (71.89) 4.40 ∼ 4.60e−9 (37.66)
1/32(4096) 2.50e−12 (30 : 96) 1.82e−11 (22.44) 1.12e−10 (12.50) N.S
1/64(16384) 8.33e−14 (30 : 02) 9.01e−13 (20.19) 3.12e−12 (35.90) N.S

Table 6.5: Comparison between the 6-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.1). ’N.S’
means No Solution; 4.40 ∼ 4.60e−9 means the value keeps changing between 4.40e−9 and 4.60e−9

.
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Templates: 4, 9G 4, 9 4, 12G 4, 12
Mesh size 1.25 1.25 1.25 1.25

1/2(16) 6.04e−6 1.31e−5 1.80e−5 1.64e−5

1/4(64) 2.31e−7 (26.15) 3.76e−7 (34.78) 7.55e−7 (23.84) 1.07e−6 (15.37)
1/8(256) 1.23e−8 (18.78) 1.44e−8 (26.14) 3.55e−8 (21.26) 3.96e−8 (26.93)
1/16(1024) 7.25e−10 (17.01) 6.80e−10 (21.15) 2.02e−9 (17.57) 2.72e−9 (14.6)
1/32(4096) 4.41e−11 (16.42) 3.97e−11 (17.13) 1.24e−10 (16.29) 1.56e−10 (17.38)
1/64(16384) 2.74e−12 (16.14) 2.47e−12 (16.10) 7.62e−12 (16.27) 1.00 ∼ 1.06e−11 (14.74)

Table 6.6: Comparison between the 4-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.1).

At the end of this test, we compare the errors of our collocation method to the counterparts in Table

6.4 of [20]. The compared cases have the same number of collocation points, matching points, and

the same mesh size. Note: in Table 6.7 and 6.8, our errors, which are in column 2 and 4, are the

maximum absolute values instead of the ẽ defined by (6.5). It shows that our method gives higher

accuracy. One possible reason is that we use Newton iteration, which has the effect of residual-

Templates: n = 3× 1G 1, 3 n = 3× 3G 4, 9G
Mesh size m = 1 [20] m = 4 [20] 1.25

1/2(16) 8.27e−2 3.63e−3 4.04e−4 1.20e−5

1/4(64) 2.44e−2 1.01e−3 3.18e−5 4.28e−7

1/8(256) 6.63e−3 2.66e−4 2.23e−6 2.66e−8

1/16(1024) 1.73e−3 6.92e−5 1.55e−7 1.74e−9

1/32(4096) 4.41e−4 1.77e−5 1.07e−8 1.14e−10

1/64(16384) 1.11e−4 4.48e−6 7.14e−10 7.44e−12

Table 6.7: Compare the maximum absolute error at the matching points, Part 1. Compare column 1
to column 2, and compare column 3 to column 4. Column 1 and 3 are from [20].

Templates: n = 3× 3G 6, 9G n = 3× 4G 7, 12G
Mesh size m = 6 [20] 1.45, 1.35 m = 7 [20] 1.5, 1.25

1/2(16) 2.62e−5 5.06e−6 2.58e−5 3.50e−7

1/4(64) 1.19e−6 1.77e−7 1.14e−6 1.44e−8

1/8(256) 6.53e−8 5.87e−9 4.32e−8 8.01e−10

1/16(1024) 3.74e−9 1.89e−10 1.48e−9 4.81e−11

1/32(4096) 2.24e−10 5.98e−12 5.07e−11 5.89e−12

1/64(16384) 1.39e−11 2.02e−13 5.30e−12 2.97e−13

Table 6.8: Compare the maximum absolute error at the matching points, Part 2. Compare column 1
to column 2, and compare column 3 to column 4. Column 1 and 3 are from [20].
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correction. Another possible reason may be that we have chosen better location of collocation points

in our tests.

6.3.2 Another linear parabolic PDE with a stationary solution

We test multiple sample PDEs to support our observation in Section 6.3.1. In this section, we

give the results of another test linear PDE,taken from 11.1 of [17]. The original PDE is an elliptic

PDE, defined as follows:

Δu = (2x2y2 + 2x2y + 2xy2 − 6xy)e(x+y) ,

where u = u(x, y, t) and (x, y) ∈ Ω ⊂ R2,

u(x, y) = 0, for (x, y) ∈ δΩ.

(6.6)

The analytical solution is given by

u(x, y) = x(x− 1)y(y − 1)e(x+y) for (x, y) ∈ Ω ⊂ R2 (6.7)

From the elliptic PDE (6.6), we construct this parabolic PDE:

∂u

∂t
= Δu− (2x2y2 + 2x2y + 2xy2 − 6xy)e(x+y) ,

u(x, y, t) = 0 for (x, y) ∈ δΩ,

u(x, y, 0) = 0 for (x, y) ∈ Ω

(6.8)

After time integration of PDE (6.8), u can reach the steady equilibrium state defined by the elliptic

PDE (6.6). We compute ẽ, which is defined by (6.5), between the numerical stationary solution and

the exact solution given by (6.7). The stationary solution is visualized in Figure 6.19 and 6.20.

The errors of the numerical solutions of PDE (6.8) for different templates having Gauss points are

listed in table 6.9, 6.10, and 6.11. From these tables, we find the same features as those of the results

in section 6.3.1.

We compare the results for the templates with Gauss and uniform matching points. The results are

83



Figure 6.19: The stationary solu-
tion of PDE (6.8); center value ≈
0.1699.

Figure 6.20: The stationary solution of
PDE (6.8).

Templates: 1, 3 4, 9G 6, 9G 7, 9G
Mesh size center 1.25 1.45, 1.35 1.5, 1.25

1/2(16) 2.93e−2 6.96e−4 3.27e−5 4.40e−5

1/4(64) 7.32e−3 (4.00) 4.45e−5 (15.65) 9.51e−7 (34.38) 1.35e−6 (32.52)
1/8(256) 1.82e−3 (4.02) 2.79e−6 (15.95) 2.96e−8 (32.13) 5.01e−8 (27.02)
1/16(1024) 4.56e−4 (3.99) 1.75e−7 (15.94) 9.33e−10 (31.73) 2.03e−9 (24.68)
1/32(4096) 1.14e−4 (4.00) 1.09e−8 (16.06) 3.00e−11 (31.10) 9.17e−11 (22.14)
1/64(16384) 2.84e−5 (4.01) 6.84e−10 (15.94) 9.91e−13 (30.27) 4.61e−12 (19.89)

Table 6.9: ẽ and convergence rate of PDE (6.8)

Templates: 4, 12G 4, 12G 6, 12G 7, 12G
Mesh size 0.8 1.25 1.45, 1.35 1.5, 1.25

1/2(16) 2.48e−3 8.40e−4 3.50e−3 4.37e−5

1/4(64) 7.91e−5 (31.35) 2.71e−5 (30.99) 1.51e−4 (23.18) 1.42e−6 (30.77)
1/8(256) 2.66e−6 (29.73) 2.16e−6 (12.55) 4.31e−5 (3.5) 4.60e−8 (30.87)
1/16(1024) 1.35e−7 (19.70) 7.96e−8 (27.14) 4.97e−7 (86.72) 1.50e−9 (30.67)
1/32(4096) 7.69e−9 (17.55) 4.79e−9 (16.63) 1.23e−8 (40.41) 5.13e−11 (29.24)
1/64(16384) 4.54e−10 (16.95) 2.98e−10(16.03)∗ 5.70e−9(2.15)∗ 1.89e−12 (27.08)

Table 6.10: ẽ and convergence rate of PDE (6.8)

Templates: 1, 6G 3, 6G 4, 6G 6, 6G 7, 6G
Mesh size Center 1.0 0.8 1.45, 1.35 1.5, 1.25

1/2(16) 7.41e−2 5.52e−3 N.S N.S N.S
1/4(64) 1.10e−2 (6.75) 7.78e−4 (7.09) N.S N.S N.S
1/8(256) 2.10e−3 (5.23) 1.02e−4 (7.63) N.S N.S N.S
1/16(1024) 4.63e−4 (4.5) 1.32e−5 (7.73) N.S N.S N.S
1/32(4096) 1.09e−4 (4.23) 1.67e−6 (7.9) N.S N.S N.S
1/64(16384) 2.68e−5 (4.07) 2.11e−7 (7.91) N.S N.S N.S

Table 6.11: ẽ and convergence rate of PDE (6.8)
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in Table 6.12, 6.13, and 6.14:

Templates: 7, 9G 7, 9 7, 12G 7, 12
Mesh size 1.5, 1.25 1.5, 1.25 1.5, 1.25 1.5, 1.25

1/2(16) 4.40e−5 1.30e−4 4.37e−5 5.02e−5

1/4(64) 1.35e−6 (32.52) 5.72e−6 (22.77) 1.42e−6 (30.77) 2.02e−6 (24.85)
1/8(256) 5.01e−8 (27.02) 2.86e−7 (20.0) 4.60e−8 (30.87) 9.26e−8 (21.81)
1/16(1024) 2.03e−9 (24.68) 1.54e−8 (18.53) 1.50e−9 (30.67) 4.78e−9 (19.37)
1/32(4096) 9.17e−11 (22.14) 8.83e−10 (17.47) 5.13e−11 (29.24) 2.67e−10 (17.86)
1/64(16384) 4.61e−12 (19.89) 5.26e−11 (16.79) 1.89e−12 (27.08) 1.57e−11 (16.98)

Table 6.12: Comparison between the 7-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.8).

Templates: 6, 9G 6, 9 6, 12G 6, 12
Mesh size 1.45, 1.35 1.45, 1.35 1.45, 1.35 1.45, 1.35

1/2(16) 3.27e−5 1.57e−4 3.50e−3 8.03e−4

1/4(64) 9.51e−7 (34.38) 7.69e−6 (20.42) 1.51e−4 (23.18) 1.61e−4 (4.99)
1/8(256) 2.96e−8 (32.13) 3.93e−7 (19.56) 4.31e−5 (3.5) 1.78e−4 (0.90)
1/16(1024) 9.33e−10 (31.73) 2.10e−8 (18.71) 4.97e−7 (86.72) 2.78e−6 (64.08)
1/32(4096) 3.00e−11 (31.10) 1.19e−9 (17.64) 1.23e−8 (40.41) NS
1/64(16384) 3.85e−12 (7.8) 7.03e−11 (16.93) 5.70e−9(2.15)∗ NS

Table 6.13: Comparison between the 6-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.8). ’N.S’
means we cannot reach the stationary solution.)

Templates: 4, 9G 4, 9 4, 12G 4, 12
Mesh size 1.25 1.25 1.25 1.25

1/2(16) 6.96e−4 7.40e−4 8.40e−4 7.02e−4

1/4(64) 4.45e−5 (15.65) 4.73e−5 (15.66) 2.71e−5 (30.99) 4.58e−5 (15.33)
1/8(256) 2.79e−6 (15.95) 2.97e−6 (15.92) 2.16e−6 (12.55) 1.42e−6 (32.25)
1/16(1024) 1.75e−7 (15.94) 1.96e−7 (15.16) 7.96e−8 (27.14) 9.22e−8 (15.40)
1/32(4096) 1.09e−8 (16.06) 1.24e−8 (15.83) 4.79e−9 (16.63) 5.57e−9 (16.55)
1/64(16384) 6.84e−10 (15.94) 7.78e−10 (15.91) 2.98 ∗ e−10(16.03) 3.39e−10 (16.43)

Table 6.14: Comparison between the 4-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.8).

85



6.3.3 A nonlinear parabolic PDE with a stationary solution

In this section, we choose an example nonlinear parabolic PDE with known analytical stationary

solution to measure the accuracy of our collocation method. Furthermore, because the example

PDE has been appropriately constructed to simulate the Bratu problem, it has parameters, solution

families, and bifurcation point as in the Bratu problem. Thus, our experiment on this PDE is a good

warm-up for solving the real Bratu problem in the following section. The example PDE is given by

S. A. Odejide and Y. A. S. Aregbesola in [23]. They consider the solution of the Bratu problem in

2D

Δu+ λeu = 0, for (x, y) ∈ Ω ⊂ R2 (6.9)

in a way they called near exact solution, explained as the following. First, they carefully construct a

function of the form

u(x, y) = 2 ln(
cosh( θ4) cosh[(x− 1

2)(y − 1
2)θ]

cosh[(x− 1
2)

θ
2 ] cosh[(y − 1

2)
θ
2 ]
) (6.10)

From this function, they construct the following Bratu-alike PDE:

0 = Δu+ λeu + f(x, y) for (x, y) ∈ Ω = [0, 1]× [0, 1] ⊂ R2 , (6.11)

where

f(x, y) =− 2θ2[(x− 1

2
)2 + (y − 1

2
)2][1− tanh2[(x− 1

2
)(y − 1

2
)θ]]

+
θ2

2
[1− tanh2((x− 1

2
)
θ

2
)] +

θ2

2
[1− tanh2((y − 1

2
)
θ

2
)]

− λ(
cosh( θ4) cosh((x− 1

2)(y − 1
2)θ)

cosh((x− 1
2)

θ
2) cosh((y − 1

2)
θ
2)
)2 ,

(6.12)

in which θ and λ are two related parameters.

Then they force PDE (6.11) to be equivalent to the PDE of the Bratu problem (6.9) at the center of

Ω, i.e., (0.5, 0.5). This requires the following equality:

f(0.5, 0.5) = θ2 − λ cosh2(
θ

4
) ≡ 0,
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Figure 6.21: The values of θ for various
values of λ from [23]

Figure 6.22: The values of u(0.5, 0.5)
for various values of λ from [23]

which leads to

λ = (
θ

cosh( θ4)
)2 (6.13)

Thus the parameter λ is a function of parameter θ, as shown in Figure 6.21. Figure 6.21 and 6.22

from [23]. The authors of [23] find a fold of λ at θc ≈ ±4.7987 and λc ≈ 7.02766 by solving

dλ

dθ
= 0

Thus by making λ and θ satisfy equation (6.13), they make the function (6.10) satisfy the PDE of the

Bratu problem at (and only at) the center of domain Ω. Function (6.10) also has the fold with respect

to parameter λ, as show in Figure 6.22 [23], which is similar to that of the real Bratu problem.

For measuring the accuracy, we still need to do time integration from an initial condition (for

this example, the initial condition is identically 0) until reaching a stationary solution. For this

purpose, we construct the corresponding parabolic PDE from (6.11):

∂u

∂t
= Δu+ λeu + f(x, y) ,

B.C : u(x, y, t) = 0 for (x, y) ∈ δΩ,

I.C : u(x, y, 0) = 0 for (x, y) ∈ Ω

(6.14)

The stationary solution must be stable; otherwise, we cannot detect it or stay on it. Thus, we need

to choose a good value of the parameter λ (in fact θ) such that the PDE has a reachable stationary
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solution. For this purpose, we assume that we are currently just on a stationary solution, u1, and

the corresponding parameters are λ1 and θ1, which satisfy equation (6.13). For simplicity, only

consider u1(0.5, 0.5) because, at this point, PDE (6.14) reduces to a simpler PDE:

∂u

∂t
= Δu+ λeu . (6.15)

Thus, we have

0 = Δu1 + λ1e
u1 .

Then, choose λ2, which is close to λ1, and λ2 > λ1, at the same time, keep u = u1, so

∂u

∂t
= Δu1 + λ2e

u1 > Δu1 + λ1e
u1 = 0 .

Let the value of u for λ2 be u2. From Figure 6.21 and 6.22, we know that u1 < u2 if and only if

θ < θc. In this case, ∂u
∂t > 0 means we are moving towards the solution u2 from our current state

u1. This implies that any deviation from the solution will get a negative feedback and be pull back

to the solution. Thus, the stationary solution is stable. On the contrary, if θ > θc, the solution is

unstable. Our accuracy test for PDE (6.11) is done with θ = 2.0 (Thus, λ ≈ 3.1458). The errors of

the numerical solutions of PDE (6.11) with the templates having Gauss matching points are listed

in Table 6.15, 6.16, and 6.17. From these tables, we find the same features as those of the preceding

test PDEs.

Templates: 1, 3 4, 9G 6, 9G 7, 9G
Mesh size center 0.8 1.45, 1.35 1.5, 1.25

1/2(16) 3.5870e−2 3.54e−4 1.72e−5 1.89e−5

1/4(64) 8.92e−3 (4.02) 2.31e−5 (15.32) 3.45e−7 (49.87) 4.51e−7 (41.83)
1/8(256) 2.23e−3 (3.99) 1.47e−6 (15.71) 1.02e−8 (33.86) 1.83e−8 (24.62)
1/16(1024) 5.57e−4 (4.00) 9.19e−8 (15.99) 3.25e−10 (31.35) 8.22e−10 (22.27)
1/32(4096) 1.39e−4 (4.00) 5.75e−9 (15.997) 1.10e−11 (29.68) 4.08e−11 (20.17)
1/64(16384) 3.48e−5 (4.01) 3.59e−10 (15.999) 4.04e−13 (27.12) 2.21e−12 (18.44)

Table 6.15: ẽ and convergence rate of PDE (6.11)

We compare the results for the templates with and without Gauss matching points. The results are
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Templates: 4, 12G 4, 12G 6, 12G 7, 12G
Mesh size 0.8 1.25 1.45, 1.35 1.5, 1.25

1/2(16) 1.36e−3 3.54e−4 3.14e−4 1.88e−5

1/4(64) 2.22e−5 (61.26) 6.39e−6 (55.33) 3.86e−5 (8.15) 8.32e−7 (22.54)
1/8(256) 8.54e−7 (26) 2.78e−7 (22.95) 2.01e−6 ∗ (19.19) 3.44e−8 (24.17)
1/16(1024) 6.97e−8 (12.25) 1.33e−8 (20.87) 4.70e−8 (42.82) 1.48e−9 (23.18)
1/32(4096) 2.50e−9 (27.84) 7.82e−10 (17.06) 4.64e−7 (??) 6.88e−11 (21.57)
1/64(16384) 1.27e−10 (19.74) 4.78e−11 ∗ (16.35) 2.85e−9 () 3.50e−12 (19.67)

Table 6.16: ẽ and convergence rate of PDE (6.11)

Templates: 1, 6G 3, 6G 4, 6G 6, 6G 7, 6G
Mesh size Center 1.0 0.8 1.45, 1.35 1.5, 1.25

1/2(16) 6.21e−2 7.70e−3 N.S N.S N.S
1/4(64) 9.12e−3 (6.81) 1.06e−3 (7.30) N.S N.S N.S
1/8(256) 1.90e−3 (4.80) 1.38e−4 (7.66) N.S N.S N.S
1/16(1024) 4.39e−4 (4.33) 1.77e−5 (7.80) N.S N.S N.S
1/32(4096) 1.06e−4 (4.16) 2.24e−6 (7.89) N.S N.S N.S
1/64(16384) 3.11e−5 (3.40) 2.81e−7 (7.95) N.S N.S N.S

Table 6.17: ẽ and convergence rate of PDE (6.11)

in Table 6.18, 6.19, and 6.20. A solution of PDE (6.11) with parameters λ = 5.37 (θ = 3.0)

Templates: 7, 9G 7, 9 7, 12G 7, 12
Mesh size 1.5, 1.25 1.5, 1.25 1.5, 1.25 1.5, 1.25

1/2(16) 1.89e−5 6.32e−5 1.88e−5 1.66e−5

1/4(64) 4.51e−7 (41.83) 1.48e−6 (42.67) 8.32e−7 (22.54) 1.23e−6 (13.54)
1/8(256) 1.83e−8 (24.62) 9.11e−8 (16.26) 3.44e−8 (24.17) 5.54e−8 (22.16)
1/16(1024) 8.22e−10 (22.27) 5.08e−9 (17.95) 1.48e−9 (23.18) 2.48e−9 (22.36)
1/32(4096) 4.08e−11 (20.17) 2.89e−10 (17.59) 6.88e−11 (21.57) 1.19e−10 (20.88)
1/64(16384) 2.21e−12 (18.44) 1.70e−11 (16.99) 3.50e−12 (19.67) 6.207∼e−12 (19.13)

Table 6.18: Comparison of the accuracy between the 7-collocation-point templates with matching
points at Gauss points (marked with ’G’) and those with evenly distributed matching points (without
’G’) for PDE (6.11); the ’∼’ means the following numbers keep vibrating; for example, ’6.207∼’
means this value constantly vibrates in the range of 6.2070 ∼ 6.2080.

is visualized in Figure 6.23 ∼ 6.26. By comparing the results of the visualization with different

configurations of collocation points and matching points, we see how the configurations make a

difference. Figure 6.23 shows that the configuration with 3 matching points per edge results in

better continuity between each pair of adjacent elements with a coarse mesh (i.e., meshes with very
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Templates: 6, 9G 6, 9 6, 12G 6, 12
Mesh size 1.45, 1.35 1.45, 1.35 1.45, 1.35 1.45, 1.35

1/2(16) 1.72e−5 6.79e−5 3.14e−4 3.02e−4

1/4(64) 3.45e−7 (49.87) 1.53e−6 (44.32) 3.86e−5 (8.15) 1.49e−5 (20.28)
1/8(256) 1.02e−8 (33.86) 9.91e−8 (15.46) 2.01e−6 ∗ (19.19) 1.79e−5 (0.83)
1/16(1024) 3.25e−10 (31.35) 5.57e−9 (17.80) 4.70e−8 (42.82) 7.22e−7 (24.88)
1/32(4096) 1.10e−11 (29.68) 3.16e−10 (17.60) NS NS
1/64(16384) 4.04e−13 (27.12) 1.86e−11 (17.02) 2.85e−9 () NS

Table 6.19: Comparison between the 6-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.11). N.S
means we cannot reach the stationary solution.

Templates: 4, 9G 4, 9 4, 12G 4, 12
Mesh size 1.25 1.25 1.25 1.25

1/2(16) 6.09e−4 7.46e−4 3.54e−4 2.63e−4

1/4(64) 3.79e−5 (16.06) 4.73e−5 (15.77) 6.39e−6 (55.33) 7.15e−6 (36.72)
1/8(256) 2.38e−6 (15.91) 2.97e−6 (15.92) 2.78e−7 (22.95) 2.54e−7 (28.21)
1/16(1024) 1.49e−7 (16.02) 1.86e−7 (15.97) 1.33e−8 (20.87) 1.42e−8 (17.83)
1/32(4096) 9.30e−9 (16.01) 1.16e−8 (15.98) 7.82e−10 (17.06) 8.68e−10 (16.37)
1/64(16384) 5.81e−10 (16.00) 7.28e−10 (15.99) 4.78e−11 ∗ (16.35) 5.46∼e−11 (15.9)

Table 6.20: Comparison between the 4-collocation-point templates with different matching point
distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.11).
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large elements). The 64-element mesh results in a surface as smooth as that generated from the 256-

element mesh in Figure 6.25. On the contrary, applying the configuration with 2 matching points

per edge to the same mesh, we obtain poor continuity, as shown in Figure 6.24. For achieving better

continuity with this configuration, we need a further refined mesh with at least 1024 elements, as

shown in Figure 6.26.

Figure 6.24 and 6.26 indicate that fewer matching points per edge lead to less continuity; how-

ever, more levels of subdivision (i.e., smaller mesh size) improves.

Figure 6.23: θ=3, λ=5.37, 3x3 match-
ing points, 4 collocation points, 64 ele-
ments

Figure 6.24: θ=3, λ=5.37, 2x3 match-
ing points, 1 collocation point, 64 ele-
ments

Figure 6.25: θ=3, λ=5.37, 3x3 match-
ing points, 4 collocation pointss, 256 el-
ements

Figure 6.26: θ=3, λ=5.37, 2x3 match-
ing points, 1 collocation point, 1024 el-
ements

In the remaining part of this section, we show the solution families of PDE (6.11) found by our

collocation method. This is an experiment before solving the real Gelfand-Bratu problem in Section

6.4.
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Figure 6.27: Solution families found by our collocation method.
Family 1: A stable stationary solution family defined by function (6.10), the numerical solutions of
which can also be detected by our collocation method and therefore we can measure the error.
Family 2: An unstable stationary solution family defined by function (6.10), which cannot be
detected by our method because it is unstable.
Family 3: The stable stationary solution family found by our collocation method; however, its
analytical form is unknown.

λ θ1 family#1 θ2 family#3

0.1 0.3173 0.00628 19.196 3.723
0.5 0.71854 0.03210 14.985 2.40
1.0 1.03355 0.06605 13.0383 1.87
2.0 1.51715 0.14057 10.9387 1.40
3.0 1.93974 0.27036 9.5817 1.18
4.0 2.35755 0.32904 8.507 1.08
5.0 2.81155 0.45817 7.548 1.05
6.0 3.37355 0.64039 6.5766 1.11
7.0 4.55207 1.08594 5.0545 1.2965
7.02 4.66823 1.13360 4.932 1.2439
7.0277 4.8 1.18837 4.8 1.18837

Table 6.21: Solution families found by our collocation method.
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6.3.4 Another nonlinear parabolic PDE with a stationary solution

Based on the time-independent function below

u(x, y) =
1

cos(y) + ex
,where (x, y) ∈ Ω, (6.16)

we construct the following nonlinear parabolic PDE:

∂u

∂t
= Δu− (2− cos2(y) + e2x)u3,

for (x, y) ∈ Ω

B.C : function (6.16) for (x, y) ∈ δΩ .

(6.17)

The initial condition can be defined as discussed in Section 6.2. Besides measuring the accuracy

with one more PDE, another purpose of this test is to prepare for the next test PDE in section 6.3.5.

Accuracy data are listed in the following tables.

Templates: 1, 3 4, 9G 6, 9G 7, 9G
Mesh size center 0.8 1.45, 1.35 1.5, 1.25

1/2(16) 4.19e−3 2.41e−5 6.32e−7 8.24e−7

1/4(64) 1.03e−3 (4.08) 1.03e−6 (23.35) 1.92e−8 (32.97) 2.72e−8 (30.28)
1/8(256) 2.55e−4 (4.028) 6.45e−8 (16.03) 5.92e−10 (32.39) 1.06e−9 (25.76)
1/16(1024) 6.36e−5 (4.008) 4.04e−9 (15.97) 1.86e−11 (32.91) 4.68e−11 (22.53)
1/32(4096) 1.59e−5 (4.002) 2.52e−10 (15.987) 5.94e−13 (31.24) 2.33e−12 (20.11)
1/64(16384) 3.97e−6 (4.0007) 1.58e−11 (15.998) 1.98e−14 (29.95) 1.27e−13 (18.38)

Table 6.22: ẽ and convergence rate of PDE (6.17)

Templates: 4, 12G 4, 12G 6, 12G 7, 12G
Mesh size 0.8 1.25 1.45, 1.35 1.5, 1.25

1/2(16) 2.52e−5 8.87e−6 1.28e−4 2.58e−6

1/4(64) 1.15e−6 (21.88) 3.03e−7 (29.3) 1.36e−5 (9.4) 8.56e−8 (30.16)
1/8(256) 6.23e−8 (18.48) 1.32e−8 (22.95) 4.12e−6 (3.29) 3.05e−9 (28.06)
1/16(1024) 4.04e−9 (15.44) 7.39e−10 (17.86) 5.07e−8 (81.37) 1.16e−10 (26.42)
1/32(4096) 10.0e−11 (40.37) 4.73∼e−11 (15.62) 2.91e−8 (1.74) 4.74e−12 (24.35)
1/64(16384) 3.3∼e−12 (29) 3.0∼e−12 (15.77) N.S 2.16∼e−13 (21.9)

Table 6.23: ẽ and convergence rate of PDE (6.17). The ’∼’ means the following bits keep vibrating.
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The process of time integration starting from u(x, y, 0) = 0 in the entire domain is visualized

in Figure 6.28 ∼ 6.35:

Figure 6.28: t = 0.01 Figure 6.29: t = 0.02

Figure 6.30: t = 0.03 Figure 6.31: t = 0.04
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Figure 6.32: t = 0.06 Figure 6.33: t = 0.07

Figure 6.34: t = 0.08 Figure 6.35: The steady state (t > 2.5)
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6.3.5 A nonlinear parabolic PDE without stationary solution

All parabolic PDEs used in the preceding tests have stationary solutions that can be reached by

time integration. The steady states are the solutions of the corresponding elliptic PDEs, which are

time-independent. Because we know the analytical solutions of the elliptic PDEs, we can measure

the accuracy of the numerical stationary solutions of the PDEs. The accuracy of the steady state

depends on the layout of matching points and collocation points, mesh size, and the collocation

method. In this section we want to see how accuracy is related to the time dimension. For this

purpose, we need to know the analytical solution of the parabolic PDE itself (instead of the corre-

sponding elliptic PDE). Therefore such an analytical solution must be a function of time. Making

reference to the general analytical solution of the Fisher Equation given by Christophe Picard in

[18], we construct a nonlinear parabolic PDE of this type. The analytical solution is defined as

following:

u(x, y, t) =
A

cos(By) + e(Cx+Dt)
,

where (x, y) ∈ Ω

(6.18)

By choosing appropriate values for the coefficients of the above general closed-form solution, we

get the following function:

u(x, y, t) =
1

cos(y) + e(x−2t)
,

where (x, y) ∈ Ω ,

(6.19)

and construct the corresponding nonlinear parabolic PDE:

∂u

∂t
= Δu+ u(1− 2u2),

for (x, y) ∈ Ω

B.C : u(x, y, t) =
1

cos(y) + e(x−2t)
for (x, y) ∈ δΩ

(6.20)

Note that function (6.19) at t = 0 is identical to function (6.16). We first do time integration for

PDE (6.17) until the solution has reached its steady state. Then we take this steady state as the initial

condition from which to start the time evolution for PDE (6.20). We need to reset t = 0. Another
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method to set an initial condition is to explicitly apply function (6.19) with t = 0 to the entire do-

main Ω. The state evolution shown in Figures 6.36 ∼ 6.41 start from the function (6.19) with t = 0.

Figure 6.36: t = 0 Figure 6.37: t = 0.4

Figure 6.38: t = 0.8 Figure 6.39: t = 1.2
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Figure 6.40: t = 1.4 Figure 6.41: t = 1.8

Table 6.24 shows the relation among the total error, Δt, and mesh size. The column with

“1/4(64)” represents the case where the mesh is composed of 64 elements, each of which is of size

1/2. The column with “1/2(16)” represents the case with fewer elements (only 16 elements) and

larger element size (size = 1/2).

Errtotal = Errs + Errt ,

where Errtotal represents the total error, Errs is the error caused by the spatial discretization, and

Errt refers to the error caused by the temporal discretization. Errs is influenced by the mesh size,

the number of collocation points and matching points, and the location of the collocation points and

the matching points. Because we are using the one-step Euler-backward finite difference method,

from the Taylor Expansion we know that the local truncation error (defined as the error made in

one step) is O(Δt2). “If the local truncation error is O(hp+1), then the global truncation error is

O(hp)”[65]. Thus Errt is determined by Δt. In the case of Δt = 0.0125, Errtotal ≈ Errs because

Errt is very small and can be ignored. That is why, even though the Δt is narrowed down by 2

from 0.025 to 0.0125, Errtotal in the column with “1/2(16)” in Table 6.24 is nearly unchanged.

However in the column with “1/4(1024)”, Errs is small and negligible, therefore the Errt is the

main part of Errtotal. In this case we can clearly see that Errtotal is of the order O(Δt).
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time, mesh size t = 2.0 t = 2.0 t = 2.0
Δt 1/16(1024), 4collo 1/4(64), 4collo 1/2(16), 4collo

0.2 5.3339e−4 6.6908e−4 1.1555e−3

0.1 2.5153e−4 (2.12) 3.3625e−4 (1.99) 8.0404e−4 (1.44)
0.05 1.2210e−4 (2.06) 1.8720e−4 (1.79) 6.6274e−4(1.21)
0.025 6.0163e−5 (2.03) 1.1541e−4 (1.62) 5.9983e−4 (1.11)
0.0126 2.9878e−5 (2.01) 8.4404e−5 (1.36) 5.6986e−4 (1.05)

Table 6.24: Dependence of the errors on Δt

6.4 Application

6.4.1 The Gelfand-Bratu problem

The Bratu problem, also called as Liouville–Bratu–Gelfand problem, is an parabolic PDE which

defines a solid fuel ignition model, and is derived as a model for the thermal reaction process in

a combustible, nondeformable material of constant density during the ignition period [63]. This

problem is also often used as a benchmarking tool for numerical methods [62].

∂u

∂t
= Δu+ λeu ,

x ∈ Ω ⊂ R2

B.C : u(x, y, t) = 0 for (x, y) ∈ δΩ,

I.C : u(x, y, 0) = 0 for (x, y) ∈ Ω,

(6.21)

where u is the temperature in the problem domain and λ is the parameter. The general Bratu

problem is defined in Rn, but we focus on its 2D case. The heat is generated by the combustion,

diffused in the problem domain, and lost through the boundary of the domain. The temperature is

kept at 0 on the boundary. The combustion is defined by λeu, and the speed of the heat generation

is controlled by parameter λ. For certain values of λ, starting from a specified initial condition and

after a certain period of reaction, the temperature distribution will be stabilized at a stationary state.

With the same values of λ, starting from some other initial condition, the temperature distribution

may approach an equilibrium in a certain period of reaction, but cannot stay at it. Such equilibrium

is an unstable solution of the PDE. For other values of λ, in some or all regions of the domain, the
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heat is generated always faster than it is transferred away; as the result, the temperature in those

regions keeps increasing until blow-up.

We want to determine the stable stationary solutions of (6.21).

6.4.2 Numerical solution of the Gelfand-Bratu problem in 2D

Starting from λ = 1.0, we do time integration from the initial condition in (6.21). Afterward,

we increase λ by 1 and for each such increased value of λ we start the time integration from the

current stationary solution and, as a result, reach a new stationary solution. This situation continues

until we encounter the critical value of λ at λ ≈ 6.85, where we can no longer reach any steady

state, as shown in Figure 6.42 and Table 6.25.

Figures 6.43 − 6.46 show the stable stationary solutions for cases with λ < 0, which can be

considered as some kind of chemical reaction absorbing heat.

Figure 6.42: The stationary solution families of the Bratu problem. The stationary solution family 1
is stable. The stationary solution family 2 is unstable. We can only determine the stable stationary
solution by time integration.
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Figure 6.43: λ = −20.0 Figure 6.44: λ = −15.0

Figure 6.45: λ = −10.0 Figure 6.46: λ = −5.0

Figure 6.47: λ = 3.0 Figure 6.48: λ = 5.0

Figure 6.49: λ = 6.0 Figure 6.50: λ = 6.8
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Figure 6.51: The blow-up during time integration with λ = 6.85
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λ CenterV alue

1.0 0.077
2.0 0.165
3.0 0.268
4.0 0.393
5.0 0.554
6.0 0.797
6.5 1.014
6.6 1.086
6.7 1.191
6.8 1.322

Table 6.25: Bratu solution family found by our collocation method.

Figure 6.52: Test the Bratu problem in another domain, which is smaller than the unit square. The
blow-up takes place when λ = 21.0
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6.5 Summary of numerical results

In this chapter we have established a scheme, including different configurations of the numbers

and locations of matching points and collocation points, various mesh sizes, etc., to test the accuracy

of numerical solutions found by the piecewise collocation method. Based on the large number of

test results in the preceding section, we have been able to extract some common features about the

relation between accuracy and the schema, as shown in Table 6.26. From the table, we can prac-

tically predict which configurations usually bring more accurate solutions than others, but without

supporting mathematical theory. More research on this topic is needed.

mch−\collo− 1 4 6 7
points :\points at center at 0.8 or 1.25 at (1.45, 1.35) at (1.5, 1.25)
1G× 3 (22)
2G× 3
3G× 3 2, (24) 1, (25) 1, (24∼5)
4G× 3 2 1, (24∼5)

Table 6.26: Accuracy levels and convergence rates of different configurations.

In Table 6.26, ’G’ means the matching points are Gauss points. The values 0.8, 1.25, (1.45, 1.35),

and (1.5, 1.25) indicate collocation point locations, as illustrated by Figure 6.6 in Section 6.1.3. The

colors of cells indicate different performance, including mainly the accuracy, together with conver-

gence rate i.e., the values in () and/or singularity, of the corresponding configurations:

- The white cells represent the preferred configurations with high accuracy and high convergence

rates. The accuracy level 1 is even higher than level 2. Some convergence rates, which are

shown in the parenthesis, are uniform for all mesh sizes. Non-uniform convergence rates are

not shown in the table although some of them are quite high.

- The light gray cells represent workable but un-preferable configurations which bring lower accu-

racy, usually with irregularly varying convergence rates.

- The dark gray cells represent the configurations to be avoided, which cause a non-invertible matrix

(Φ|LΦ), or give divergent results.
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In all cases, the configurations with the Gauss matching points give higher accuracy than those with

on equally-spaced matching points.

We have also visualized the process of time integration (i.e., state evolution) of the parabolic

PDEs, which is a distinctive feature in comparison to elliptic PDEs. We have shown that, for

finding any stationary solutions of a PDE, different Initial conditions can be chosen and thereby

causing different processes of state evolution, which may (but not necessarily) reach different steady

states (i.e., stationary solutions). Thus, by choosing different initial conditions, it is possible to find

multiple solution families, as shown in test example 6.3.3.

Finally, we applied our method to solving the Bratu problem, where we have found out a family

of stable stationary solutions. We have also located the position of the fold of this family.
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Chapter 7

Visualization

We have implemented functionality of visualization, which realistically illustrates problem do-

mains, solutions, and any other related info. We have briefly mentioned 2D and 3D visualization in

Section 5.1, when describing the Model-View-Controller architecture. Visualization of data makes

the info “hidden” behind the raw data visible and intuitive for human understanding. Moreover,

visualization makes inter-person communication about the data more effective. However, visualiza-

tion is not for reporting precise values, which should be done by data tables.

The 2D visualization visualizes solutions as height-field, which reflects roughly the shape of

the solution surfaces. Two example solutions are visualized as shown Figure 7.1 and 7.2:

Figure 7.1: 2D visualization of a solu-
tion

Figure 7.2: 2D visualization of another
solution
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The gray level reflects values within the range of 0.0− 0.1. Once the values exceed this range, the

gray level wraps back; therefore, we can see the “growth rings” or contour bars, which can be used

for imagining the shape of surface and estimating values. We can also get the height value at the

center point of the square domain from a message box, then by counting the number of contour bars

and observing the gray level, we can roughly estimate the value at any specific point. Of course, we

can show the values wherever there is a mouse-click or mouse-over; however, this is not necessary

for this research project. In this chapter we will emphasize the visualization in 3D.

7.1 Pixel-correct mathematical surface rendering

Our visualization guarantees mathematical correctness at each screen space pixel by using the

Ray casting rendering. Pixel-correctness is emphasized in our visualization to make sure the polyno-

mial patches are honestly visualized without any artifact. Figure 7.3 shows the surface of a solution

of the Bratu problem with λ = 4.0 obtained by our discontinuous piece-wise smooth collocation

method. Figure 7.4 shows the same surface after zooming in. It is important to note that, in order

to exaggerate the piecewise, we have chosen a less smooth (or less accurate) configuration for our

collocation method (i.e., 2 matching points per edge, 1 collocation point per element, and less sub-

division, i.e., bigger mesh size) to solve for the solution shown in the figures. Thus, the solution

surface have higher curvature. It is easy to achieve enough smooth and accurate results like those

shown in figure 6.23 and 6.25 with a configuration of more matching or smaller mesh size.

Figure 7.3: A surface over a 64-element
mesh. Each element has 1 collocation
point and 2 matching points per edge.

Figure 7.4: A zoomed-in view of the
surface for showing the shapes of the
patches and the gaps between each pair
of adjacent patches.
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No matter how largely zoomed in, the surface patches, their silhouettes, and patch edges are always

smooth, as show in the above figures. For our discontinuous piece-wise smooth collocation method,

the visualization must show the conceptual features of the solution surfaces; that is, discontinuity

between two adjacent surface patches, C1 continuity at the matching points, and the local smooth-

ness of patches. If we had used polygon-based rendering, when zooming into the surfaces, we

would have seen polylines (instead of curves) on the silhouettes and edges, and faceted (instead of

smooth) patch surfaces. This kind of artifact or distortion would hide some essential natures of our

collocation method. In general, this problem exists in visualization of many mathematical surfaces

(parametric, explicit, and implicit). Much research has been done for pixel-accurate visualization of

mathematical surfaces; for example, [58], [59], [60], and [61], in which the researchers make use of

geometry shader or tessellation shader of GPUs to dynamically subdivide the original facets. The

researchers of [58] point out that ”no fixed set of levels (of tessellation) can avoid faceted display

or overtessellation”. Thus, tessellation levels should be changed dynamically; in [59], the author

”use the screen space distance between the tessellated surface and the corresponding surface point

as an error metric”, and then adjust tessellation level accordingly to make ”the sampling distance

to meet any given tolerance”. A reasonable threshold of tolerance is that the projection of the dis-

tance to screen space is less than a pixel. This principle is similar to that of our error estimator

for adaptive mesh discussed in Section 2.1. These tessellation-based methods can smooth surfaces;

however, tessellation cannot smooth the edges of patches in our problem, and ”Coarse tessella-

tions near silhouette edges are easily detected” [59], according to the author. Thus, we use the Ray

casting method for rendering, which is absolutely mathematically pixel-correct (not only visually

pixel-accurate), and straightforward to implement. Although this brutal-force method is compu-

tationally expensive, fast technical progress in hardware will compensate the computational cost.

Furthermore, our visualization emphasizes mathematical correctness rather than frame rate (FPS).

Thus, the speed of rendering is not our top consideration as long as the interactivity is acceptable.
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7.2 The principle of our rendering algorithm

Our visualization is based on the Ray casting rendering algorithm. In this section, we explain

how to use this algorithm for Pixel-correct surface rendering. Visualization is rendering data onto

graphical devices. In our project, the graphical device is a computer screen. 3D rendering is pro-

jecting surfaces (or polygons) in 3D space onto 2D screen space. For simply understanding the Ray

casting rendering algorithm, consider a computer screen as a sieve and pixels on the screen as the

holes on the sieve. Thus, through each hole, the viewer can see a fragment of the surface in 3D or

nothing. To clarify two concepts: a pixel is a tiny square piece of the screen; a fragment is a piece of

3D surface which is projected to a corresponding pixel. The Ray casting algorithm does two tasks:

first, detecting the first intersection between the ray and the surface, and second, compute the color

of the fragment at the intersection point and set the color to the pixel. All the colored pixels as a

whole makes up the rendered image. Figure 7.5 illustrates the principle of the algorithm. The line

Figure 7.5: Cast a ray from viewer and through each pixel on screen. If the ray intersects with the
3D surface, set the screen pixel with appropriately computed color. If the ray does not intersect with
the surface, discard the screen pixel.

representing the casted ray is defined by the following equation:

�vxyz = s ∗ �vray, where �vxyz, �vray ∈ R3, s ∈ R, s > 0. (7.1)
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The �vray should be unit vector. We will explain in detail how to compute the �vray. For now, simply

suppose that there is an existing �vray for each pixel on screen so that we can directly make use

of it to probe a fragment. The 3D surface can be any arbitrary mathematical surface. However,

because we are here talking about visualizing the results of our collocation method, we are only

concerned with the surfaces defined in the form of (3.9). Here, we re-write the expression with

some necessary changes to make it conform to the naming convention of the coordinate system in

3D Computer Graphics, which is illustrated in figure 7.5.

y = p(x, z) =
n+m∑
i=1

ciφi(x, z) ∈ Pn+m. (7.2)

In 3D Graphics, y represents height, which is significantly different from the y in all the preceding

chapters of this thesis.

We need to find the intersection between (7.1) and (7.2); that is, finding a value of s such that point

�vxyz is on the surface.

R(s) = �vxyz.y − p(�vxyz.x, �vxyz.z) = 0, (7.3)

where R(s) is the residual. The unknown s can be solved by using Newton’s method, with the

intersection between the ray and the near clip plane as the initial guess. However, in order to

guarantee Newton iteration converge, the initial guess should be close to the solution. Thus, we

need to find on the ray a point as close as possible to the surface, and then start the Newton iteration

from that point. We use a straightforward method to find such a point; that is, starting from the

near clip plane and tracing the ray, we specify a series of uniformly distributed sampling points.

We denote by s1, s2, . . . , sk these sampling points ordered by their distances away from the viewer.

Then we substitute the values of si into (7.3) to evaluate R(si). If there exist R(sj) and R(sj+1)

having different signs, it indicates that point sj and point sj+1 are located on different sides of

the surface, so the ray must have penetrated the surface and the intersection must be somewhere

between point sj and point sj+1. Thus, sj can be taken as the initial guess of s. If all the values of

R(si) have the same sign, then there are two possibilities: first, the ray does not intersect with the

surface, or second, the ray has penetrated the surface for even times in between certain pair(s) of sj

and sj+1. In the latter case, the interval of probing is not small enough so that the intersection points
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are skipped and missed. This problem can be solved by redoing the probing from a shifted starting

point, as shown in figure 7.6. Shortening sampling point interval may also be a solution, but it would

increase the number of sampling points and therefore require more computational cost, so it is not

preferable. In figure 7.6(A), all the intersections are missed, but this is not the worst case because at

Figure 7.6: The correct intersection may be missed as illustrated in this figure.
The curve represents a surface. The grayed and un-grayed areas represent the two sides of the
surface, respectively. The intersection marked with the red X is expected to be detected as the
correct intersection because it is the closest one to the viewer S1 . In (A), the sampling points,
S1, S2, S3, and S4, with uniform interval L, are all on the same side of the surface and therefore
miss all the intersections; in (B), generate new sampling points S′i by shifting the Si by L/2; as
the result, S′1 and S′2 are still on the same side of the surface, so the expected intersection is still
missed; however, S′2 and S′3 are on different sides of the surface, so the intersection between S′2 and
S′3 can be detected, but it is not the expected. The problem is that, when we have detected such an
intersection, we have no idea about whether it is the expected or not.

least the algorithm knows that it must try again with shifted sampling points. The worst case is figure

7.6(B), in which the algorithm has missed the correct intersection but instead detected a wrong one

(between S′2 and S′3) and took it as the correct intersection. Additionally, correct intersections might

also be missed in some other possible cases with complicated surfaces. Fortunately in practice, the

prerequisite of using this method to determine the initial guess is that the surface patch over each

element has already been sufficiently ”flattened” by adaptive mesh generation. In consequence, the

case in 7.6(B) is very rare. In this algorithm, we stop probing once hitting the first intersection.

(For rendering semi-transparent surfaces, we would have to detect all intersections along the ray

and compute weighted average color of them.)

Up to this point, we have explained the essential principle of our ray casting rendering method.

It seems to be perfect except for one problem; that is, time consuming because we have to do the

above computation one-by-one for all the pixels on screen. In fact this is not true because the
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rendering and the related computation of all the pixels will be done in parallel at the same time by

GPU, which will be discussed in next section.

7.3 Technical details

We will begin this section with briefly explaining OpenGL’s rendering pipeline because it is the

base on top of which our visualization method has been designed and implemented. Then we will

explain how our ray casting algorithm is involved into the rendering pipeline. Our algorithms and

methods are generally feasible on any graphics libraries which supports directly GPU programming,

including OpenGL/GLSL, WebGL, and DirectX/HLSL, with C++, Java, C#, or JavaScript.

A visualization application is conceptually composed of two sides: the CPU side and GPU

side. On the CPU side, we construct the 3D objects to render. A 3D object is a group of triangular

facets. The geometric data (vertices, normal vectors, vertex indices, etc.) of each facet is generated

on the CPU side by computing it on-the-fly or loading it from 3D model files. Then the data

is transferred to the GPU side and stored into the appropriate buffers through OpenGL functions

(or DirectX functions, depending on which 3D library we are using). Then OpenGL begins to

process the data. OpenGL implements what’s commonly called a rendering pipeline, which is a

sequence of processing stages for converting the data your application provides to OpenGL into a

final rendered image [64]. OpenGL then processes the data through a sequence of shader stages:

vertex shading, tessellation shading (which itself uses two shaders), and finally geometry shading,

before it’s passed to the rasterizer. The rasterizer will generate fragments for any primitive that’s

inside of the clipping region, and execute a fragment shader for each of the generated fragments

[64]. Tessellation and geometry shading are two optional stages, which are not involved in our

rendering algorithm; our algorithm replies on only two stages: vertex shading and fragment shading

(also called pixel shading). We use an example to explain how our algorithm is implemented in

the vertex shader and fragment shader in OpenGL’s rendering pipeline. In the example, we will

render a single mathematical surface, y = f(x, z), where (x, z) ∈ [0, 1]. For simplicity, we assume

the range of f(x, z) is also [0, 1]. Thus, in the application on the CPU side, we construct a unit

cube, which means 8 vertices, 2 × 6 triangle facets, and the corresponding vertex indices. Also
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on the CPU side, we prepare matrices which defines the transformation (i.e., translation, rotation,

and scaling) of the cube. Then we start OpenGL’s rendering pipeline to render this set of geometry

data. First, vertex shading, which is a programmable stage. For our visualization, we write a simple

vertex shader which does nothing more than computing the vertex transformation and declaring a

few in-GPU variables which will be accessed from within fragment shader. The vertex shader can

see only each individual vertex. It does not have any knowledge about facets (or primitives, in

the term of OpenGL). Facets are constructed at next stage: Primitive Assembly, which organizes

the vertices into their associated geometric primitives in preparation for clipping and rasterization

[64]. After rasterization, a facet will be decomposed into a group of fragments, each of which

will be computed and assigned appropriate color at the stage of fragment shading (also called pixel

shading). Fragment shading is also a programmable stage, and the program is called fragment

shader. Instead of computing the color and light for the fragments composing the planar facets

of the cube, our fragment shader computes the color and light for the corresponding fragments on

the mathematical surface, y = f(x, z), the 3D location of which is determined by using our ray

casting algorithm explained in Section 7.2. in Section 7.2, we have omitted the explanation of how

to compute the ray vector �vray to this section. Now, it can be easily explained. We can get the 3D

location of each individual fragment via the in-GPU variable declared and set in the vertex shading

stage. Thus, �vray can be calculated the following way:

�vray = normalize(�vfrag − �vviewer), (7.4)

where �vfrag is the location of fragment and �vviewer is the location of viewer. �vray is normalized and

therefore unit vector.

After determining the 3D location of a fragment on the mathematical surface, we can compute the

normal vector at that point on the surface, and thereby compute the light at that point. The result of

this example is shown in figure 7.7 and 7.8.

The main idea of our ray casting method is, first, constructing a container object (in this exam-

ple, the unit cube), then make OpenGL’s rendering pipeline draw the container object, and thereby
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Figure 7.7: Surface of y = −(x2 + z2)
rendered by our ray casting method.

Figure 7.8: Surface of the Gaussian dis-
tribution rendered by our ray casting
method.

trigger our vertex shader and fragment shader to draw the mathematical surface instead. For ren-

dering the solutions of our piece-wise collocation method, for each polynomial patch, we need one

such container object (box), which means as many boxes as the number of elements. Each box is

prism-shaped because the corresponding elements are triangular. in Section 7.2, we have explained

that, if probing along the casted ray does not find any intersection, we have to re-do such prob-

ing with sifted starting point. Such probing has to be repeated several time until an intersection is

detected or the specified maximum number of probing is reached. This implies that, in each box,

the space in which there is no intersection between the ray and surface costs more computation in

the course of intersection probing. Thus, in order to improve performance, we need to make the

boxes as thin as narrowly accommodating the surface patch it it. Such kind of thin boxes can be

constructed in geometry shader. However, for the current prototype of visualization, we simply use

the prism-shaped boxes with constant and uniform height.

Our visualization module is a standalone application, separated from our solver program. The

solver solves PDEs, then saves the mesh geometry data and the coefficients (i.e., the �C in (3.12)) of

each element into files. The visualization application loads such files and visualizes the data the way

explained above. The current prototype of visualization application is implemented with WebGL,

the big advantages of which are high compatibility with OpenGL 4.3 and OpenGL ES (with only
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some minor differences) and platform-independent. It can run on all web browsers (IE11, FireFox,

etc.) on all OSs (Window, Mac/OS, Linux, ...).

Also because our visualization prototype is a standalone application and web-based, it is easy

to be further developed as a formal on-line mathematical surface visualization tool. Any users can

make use of this on-line tool to visualize their numerical solutions as long as they follow our data

file structure and use the same set of basis.
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Chapter 8

Conclusions and Discussion

In this thesis we have presented the implementation of a novel collocation method for solving

nonlinear parabolic partial differential equations (PDEs). The temporal partial derivative is dis-

cretized using the implicit Euler backward finite difference scheme. The 2D spatial domain of the

PDEs is discretized with triangular adaptive meshes. We have designed and implemented our algo-

rithm of error estimate and the mesh refinement based on it. The refinement method is based on the

Rivara algorithm. For simplicity, our current mesh refinement works separately from time integra-

tion, i.e., mesh refinement is not executed in the course of time integration. Furthermore, we can

generate meshes for irregular polygonal domains. The goal of triangular mesh refinement, support-

ing domains of complex shapes, and solving nonlinear PDEs has been achieved by our collocation

method prototype.

We have used a large number of test cases to measure the accuracy of our collocation method in

Chapter 6. The test results have shown high accuracy. The accuracy of collocation methods depends

on mesh size, mesh shape, the number of collocation points, the location of collocation points, the

number of matching points, and the location of matching points. There is no completely established

mathematical theory for error estimate based on these factors. Some researchers have mathemat-

ically proved the error estimates for some special cases, but not for general cases. However from

the results of our tests we have extracted patterns (i.e., the layouts of various number of collocation

points and matching points) which bring high accuracy and good performance of convergence prop-

erties, as summarized in Section 6.5 and Table 6.26. We have also found some bad patterns which
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lead to singularity or non-convergence. We have analyzed the singularity caused by some patterns

at the end of Section 3.3. Furthermore, we have used our collocation method solver to find a family

of stable stationary solutions of the Bratu problem.

We have also designed and implemented our own visualization algorithm to display the nu-

merical solutions. Our visualization algorithm is pixel-correct, which means that each pixel of the

rendered 2D image of the mathematical surface in 3D space accurately reflects the position, cur-

vature, and orientation of the corresponding fragment on the surface. For the pixel-correctness, we

directly render the original surfaces instead of polygonal facets generated to approximate the math-

ematical surfaces. We have made use of GPU programming techniques and WebGL to implement

this algorithm. Our visualization program is Web-based and therefore fully platform independent.

It can be further developed as a more general on-line visualization tool.

From the view point of software engineering, it would be interesting optimize our current solver.

In this prototype, we have implemented multi-threading for taking advantage of the parallelism

of the nested dissection algorithm and multi-core CPUs. The acceleration brought by the multi-

threading is obvious in our tests. Integrating the mesh refinement with the time evolution would

bring excellent effect of mesh-moving when solving time-dependent PDEs. For these improve-

ments, the data structure will still be based on linked list because it supports effectively adding or

removing nodes. On the other hand, linked list costs more time for accessing individual nodes and it

breaks locality of reference, which is critically important for CPU cache. Thus, customized memory

management system will be needed for solving these problems.
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Appendix A

Code of Visualization Program

Our visualization program is based on WebGL. The core of this program are the fragment

shader, written in a C-like language, GLSL. Here we give a part of the pseudo-code of the most

important functions.

Figure A.1: Pseudo-code of the visualization program (Part 1)
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Figure A.2: Pseudo-code of the visualization program (Part 2)
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Figure A.3: Pseudo-code of the visualization program (Part 3)
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