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Abstract 
Purpose 

The ventilatory threshold (VT) is a physiological turning point that can be used to guide 

for exercise prescription, as a tool to monitor response to an intervention and as a 

prognostic marker, but the presence of respiratory disease may limit the reliability of its 

measurement. This project aimed to determine the reliability of the assessment of the 

ventilatory threshold among human and computerized observers, in patients with chronic 

obstructive pulmonary disease (COPD) and controls. 

 

Methods 

VT was identified from incremental exercise testing graphs of 115 subjects (23 controls 

and 23 in each COPD severity class) by two human observers and a computer analysis, 

using the V-slope method and the VEM. Agreement between observers for VO2 at VT 

(VO2VT) and heart rate at VT (HRVT) were evaluated using intra-class correlation (ICC) 

for humans and Passing-Bablok regression analysis (human vs computer).  

 

Results 

For humans, ICCs for VO2VT were higher in controls [0.98 (0.97-0.99) both with V-slope 

and with VEM] than in COPD patients [0.72 (0.60-0.81) with V-slope and 0.64 (0.50-

0.74) with VEM]. Human and computerized values of VO2VT were interchangeable in 

controls, but not in COPD patients. FEV1 and peak-ventilation were independent 

predictors of a lesser reliability of VO2VT. Inter-observer differences in HRVT ranged 

from 2±1 beats/minute (controls) to 10±3 beats/minute (GOLD 4).  

 

Conclusions 

In COPD, the reliability of human estimation of VO2VT is less in than in controls and not 

interchangeable with a computerized analysis. This should be taken into account when 

using VT in the clinical and research settings. 
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4. Theoretical context 
 

4.1 COPD 
 

4.1.1 Epidemiology of COPD 
 

Chronic obstructive pulmonary disease (COPD) is a constellation of conditions 

characterized by persistent expiratory airflow limitation. Among the many reported 

phenotypes of COPD, the most prevalent remain the emphysema and chronic bronchitis 

variants. The prevalence of COPD varies widely across geographic regions(1). This is an 

effect of both technical differences in the assessment of COPD (for example, the use of 

self-administered questionnaires vs objective spirometric values, or the use of a fixed 

FEV1/FVC ratio vs a lower-limit of normal model)(2) and real differences across 

countries. As an example, in the largest international study of the prevalence of the 

disease, Global initiative for Obstructive Lung Disease (GOLD) stage II COPD in 

women ranged from about 5% in China to 17% in South Africa, and in men from 4% in 

Mexico to 23% in South Africa(1). In 2012, the age-standardized prevalence of COPD 

among Canadian men was 3.5% and in women 4.3%, with fluctuations of about 1% 

across provinces(3). 

 

COPD is the fourth leading cause of death in Canada, being responsible for almost 12 

000 deaths in 2013(3). In the United States, COPD has risen to third place in mortality 

causes since 2008(4), and was one of the few diseases showing an increase in mortality 

rate between 2008 and 2011(5). Although cigarette smoking showed a slow decline in the 

last 10 years in Canada(6), the repercussions of the epidemic of cigarette smoking in the 

20th century are still evident today, as evidenced by the high prevalence and burden of 

COPD. As such, although the mortality associated with COPD in men peaked in the mid-

1980’s in Canada, mortality in women is still slowly increasing, representing the later 

peak in smoking prevalence in this population(7). These observations, coupled to the fact 

that COPD is a vastly underdiagnosed disease(8), underline the crucial importance of its 
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early detection to allow for a timely and effective management of both its risk factors and 

its complications. 

  

Along with being a major economic burden (COPD-related costs approximate 3.94 

billion dollars in 2010 in Canada, and are expected to rise to 9.45 billion by 2030)(9), 

COPD is a cause of significant decrease in quality of life, which is related to the disease 

severity(10). 

 

4.1.2 Risk factors, pathogenesis and clinical consequences of COPD 
 

Worldwide, cigarette smoking remains the main risk factor associated with the 

development of COPD(11). In the last decades, evidence for other new determinant 

conditions, such as passive exposition to second-hand smoke, occupational exposures 

such as organic and inorganic dusts (i.e. asbestos, gold, cadmium, isocyanates, welding 

fumes and industrial cotton manufacturing)(12, 13) has increased. A growing concern in 

developing countries is the threat of indoor pollution (i.e. from biomass cooking and coal 

heating, especially in poorly ventilated areas), which is a newly identified risk factor for 

COPD(14, 15).  

 

COPD results from a gene-environment interaction: among with people with the same 

smoking history, not all will develop the disease(16). The well documented 

predisposition of patients with alpha-1 antitrypsin (A1AT) deficiency(17) to develop 

emphysema, even in the absence of cigarette smoking, is an example of this phenomenon. 

The absence of A1AT, which normally inhibits the tissue-damaging effects of neutrophil 

elastase, promotes unregulated pulmonary destruction of elastase, which mimicks the 

effects of cigarette smoke on the lung parenchyma. 

 

Pathologically, COPD is characterized by chronic inflammation of the respiratory tract, 

mediated by cytokines, chemokines (CCL2, CXCL1-8-9-10), adhesion molecules, 

inflammatory enzymes and reactive oxygen species(18), expressed by epithelial cells and 

macrophages in response to an inhaled irritant(19). These mediators cause a local cellular 
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self-perpetuating inflammatory reaction involving fibroblasts, neutrophils, Tc1 

lymphocytes and monocytes, which, through proliferation and production of enzymes 

(neutrophil elastase and matrix metalloproteinase-9)(20) will result in the hallmark 

pathological changes seen in COPD: small airway fibrosis, alveolar wall destruction 

(emphysema) and mucus hypersecretion(19). These alterations in the airway will induce 

the fixed expiratory airflow limitation that is characteristic of COPD(21). 

 

Although chronic cough and sputum production are common symptoms in COPD 

patients, it is dyspnea, especially on exertion, that is the cardinal clinical finding in these 

patients(16). Airflow obstruction causes increased work of breathing, increased airway 

resistance, gas-exchange inefficiency, intrinsic positive end-expiratory airway pressure 

and dynamic hyperinflation on exertion(21, 22). The resulting shortness of breath is the 

first step in a downward spiral of breathlessness that includes fear of dyspnea and 

immobilisation, which itself induces muscle mass wasting (muscle atrophy) and exercise 

anxiety and intolerance(23). This phenomenon is known to negatively impact 

prognosis(24) and, coupled to the well-described systemic exercise-limiting effects of 

COPD(25) (nutritional anomalies and ‘’pulmonary cachexia’’(26), skeletal muscle 

dysfunction(27), coronary artery disease(28), depression(29), cognitive decline(30) and 

osteoporosis(31)) make increasing exercise capacity a key goal in the management of 

COPD patients.  

 

4.1.3 Management of COPD 
 

Current guidelines(16, 32) place emphasis on two goals in the management of COPD: 

risk reduction (preventing disease progression and exacerbations) and symptoms 

reduction (relieving dyspnea, improving exercise tolerance and improving health status). 

Although smoking cessation and pharmacological agents (using inhaled short- and long-

acting beta2-agonists and anticholinergics) remain the mainstay of COPD management, 

few interventions have proven to be as effective as pulmonary rehabilitation (PR) in 

reaching these goals. PR has clearly been shown to reduce dyspnea, increase exercise 



 8 

tolerance, improve quality of life, decrease healthcare utilisation and exacerbations in 

patients with even mild COPD(33-35).  

 

Compared with healthy controls however, COPD patients exhibit a wide range of 

ventilatory and circulatory anomalies during exercise, including a slower adaptation to 

increasing work (slower time constants for minute-ventilation (VE), VCO2 and O2 pulse), 

increased VE with decreased alveolar ventilation (VA) due to dynamic hyperinflation, 

increased work of breathing, oxygen desaturation and increase in right ventricular 

afterload(34, 36, 37), that all lead to marked exercise intolerance. Identifying the optimal 

intensity and modality of training in these patients, in order to balance the benefits of 

training with the risk/intolerance of exercising in these subjects, is therefore crucial, but 

difficult, and is still a matter of debate (34). Although the current PR guidelines(34) 

recommend endurance training based on the recommendations of the American College 

of Sports Medicine (i.e. with a goal of at least 60% of maximal work rate, either 

predicted or evaluated on an incremental exercise test(38), many patients with COPD 

cannot sustain or comply to this recommendation(39, 40). In light of these observations, 

and as an introduction to the following section, many studies have shown that an 

individualized training program based on each patient’s level of aerobic fitness (i.e. based 

on their ventilatory threshold) is both safe and effective in patients with COPD(41-45). 

 

4.2 Anaerobic threshold vs Ventilatory threshold 
 

4.2.1 Anaerobic threshold (AT) 
 

During exercise, muscle cells initially derive energy from adenosine triphosphate (ATP) 

molecules. ATP is the end-product of the aerobic cellular metabolism, in which glucose 

is sequentially converted to pyruvate and acetyl-CoA, which enters the Krebs cycle to 

produce ATP through oxidative phosphorylation. This aerobic process is highly efficient 

(30 ATP molecules per molecule of glucose)(46). During incremental exercise, a point is 

reached at which oxygen delivery (DO2) is insufficient to meet the increasing demands of 

muscle cells. From this point, anaerobic metabolism contribution to energy production 
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increases to further supplement energy production. This process is much less efficient 

(net gain of 2 ATP per glucose molecule) and results in the accumulation of lactic acid in 

the blood, as a by-product of pyruvate metabolism(47, 48). Lactic acid, having a very low 

pKa, will readily dissociate into lactate ions and protons, which are buffered by serum 

bicarbonates, producing water and carbon dioxide that can then be excreted by the 

lungs(49). Although there is controversy as to whether the AT is truly a ‘’threshold’’, (as 

some data suggests that blood lactate accumulation during exercise occurs continuously, 

or in a hyperbolic fashion(50, 51)), it is clear that the VO2 associated with the AT 

(VO2AT) represents a real metabolic turning point. Indeed, this point in exercise is 

associated with significant alterations in the ventilatory parameters – which form the 

premise for the concept of ventilatory threshold. 

 

4.2.2 Ventilatory threshold (VT) 
 

4.2.2.1 How to identify it 
 

With the advent of cardiopulmonary exercise 

testing (CPET) in the 1960’s, it was observed that 

both VE and VCO2 showed a break in the 

linearity of their increase during exercise, at a 

point approximately corresponding to AT(52-54). 

The term ‘’ventilatory’’ threshold was introduced 

to specify that this point in exercise had been 

identified using ventilation-derived parameters 

(figure 1), instead on relying directly on the 

measurement of serum lactic acid. 

 

Although the cut-off points of the respiratory 

coefficient (R) and VE were the first described 

methods of identifying VT, their correlation with 

serum lactate concentration (AT) was variable. 
Figure 1. Cut-off points of various indices 
during exercise – purportedly representing the 
AT. From reference 54. 
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Figure 2. V-slope method. The intersection point of 
2 regression lines show the inflection point of the 
relationship between VCO2 and VO2. From 
reference 64. 

Caiozzo et al. studied the correlation between different ventilatory indices and lactates 

values on 16 healthy individuals, and found correlations of 0.88 for VE and 0.39 for 

R(55). Green et al. showed that, in 10 healthy participants, the difference between AT 

and VT (estimated using VE plotted against VO2) was large when expressed as power 

output, reaching 383 kg/min)(56).  

 

Two non-invasive methods were showed to be more reliable in identifying the AT: 

1. The respiratory equivalent method (VEM). First described by Reinhard(54), the 

VEM uses a plot of both the ventilatory equivalent for O2 (VE/VO2) and for CO2 

(VE/VCO2) against work rate (W). VT is defined as the first point where there is 

an increase in VE/VO2 without a concomitant change in VE/VCO2. On 15 healthy 

subjects, correlation between the VEM and the AT was 0.94. Caiozzo et al. also 

evaluated VE/VCO2 for VT determination, and found a correlation of 0.93 with 

AT(55). 

2. The V-slope method, originally described by Beaver et al(57). This method uses a 

plot of VCO2 against VO2, with VT being the breaking point in the linearity of 

their relationship (figure 2). They proposed 

that the V-slope has the advantage of 

excluding minute ventilation (VE) from the 

graphical representation of the data, 

therefore truly only considering the 

metabolic compensation phenomenon 

(faster increase of VCO2 relative to VO2), 

without interference from the actual 

ventilatory rate or pattern, as can be seen in 

patients with hyperventilation syndromes, or COPD. In the original study, when 

compared with a mean value of VT derived from other methods (VEM, R, PETO2 

and PETCO2), with AT as a benchmark measure, the mean value of VT using the 

V-slope method was not different from the composite value, but much more 

reliable (coefficient of variance 0.023 vs 0.127). V-slope analysis was the only 

method that could identify a VT in all subjects. 
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4.2.2.2 Is there a true relationship between VT and AT? 
 

Although the rationale behind the VT is intuitive when considered under the 

aforementioned model where the excess CO2 produced by anaerobic metabolism has to 

be excreted by the lungs via an increase in minute ventilation and VCO2 (47, 49, 52, 53, 

57, 58), the link of causality between AT and VT has been challenged by some authors. 

Green et al.(56), Patessio et al.(59) and Gladden et al.(60) all showed that AT and VT 

occurred at significantly different moments during exercise in healthy subjects. More 

convincingly, Péronnet and Aguilaniu(61) argued that: 

1) It is impossible for any ‘’excess’’ nonmetabolic CO2 to be produced during exercise, 

as this would violate the law of mass conservation. The CO2 that is thought to be created 

from anaerobic metabolism in the Wasserman model is in fact already present in the 

blood, in the form of bicarbonates formed from CO2 during normal aerobic metabolism. 

Thus, the disproportionate increase in ventilation during exercise cannot be explained by 

‘’new’’ CO2 synthesis.  

2) The assertion that VCO2 (measured at the mouth, as in CPET) determines VE is wrong, 

as VCO2 at the mouth does not equal CO2 delivery to the lungs (QVCO2 – true CO2 

production). The fact that VCO2 increases disproportionally during exercise (as seen in 

the V-slope method) cannot be said to represent an increase in CO2 production, but rather 

could be due to hyperventilation, with an increase in CO2 release at the mouth, without 

change in CO2 production.  

 

This can be mechanistically shown using the developed equation of alveolar gases(61): 

VCO2 =
VE	×PaCO2	×(1 − VDVT)

K  

It clearly shows that, for a given value of dead space ratio, VCO2 is determined by VE 

(and PaCO2) – not the other way around. Of note, this argument was mentioned by 

Wasserman in the past(53), but dismissed on the grounds that the total quantity of CO2 

excreted ‘’in excess’’ of metabolic demands was too significant to be solely attributed to 

hyperventilation. 
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Finally, and most importantly, Hagberg et al.(62) conducted a study on 4 patients with 

McArdle syndrome, an autosomal recessive genetic disease in which patients lack the 

enzyme glycogen phosphorylase, and therefore are incapable of producing lactic acid 

during exercise. During incremental testing, all patients showed a distinct and 

disproportionate increase in VE similar to healthy controls, despite no change in serum 

lactate values and an increase, rather than a decrease, in serum pH. 

 

These observations led to the search for another potential trigger for the VT – other than 

lactate production(63). Potassium has been implicated as a potential humoral trigger of 

ventilation during exercise(64). In anesthetised cats, potassium stimulates ventilation 

through excitation of chemoreceptors in the carotid bodies, and surgical denervation of 

these receptors prevent this phenomenon(65). In patients with McArdle disease, serum 

potassium levels track VE better than serum lactate levels, both during exercise and 

recovery(66). It has also been shown that VT correlates well with a ‘’fatigue threshold’’ 

on EMG(67, 68), which leads to the possibility of a higher neural activity controlling 

ventilation during exercise, possibly in relation to motor unit recruitment(69).  

 

4.2.2.3 Use of the VT in clinical practice 
 

Despite the uncertainties outlined in the last section, there remains little doubt that, 

independently of its underling mechanism, the VT represent a pivotal point for 

metabolism during exercise, and is correlated to a wide variety of relevant clinical 

outcomes.  

 

Work beyond the VT is associated with significantly reduced exercise tolerance(58) and 

major metabolic changes such as metabolic acidosis, a slowing of VO2 and VCO2 

kinetics, an increase in oxygen debt, a disproportionate increase in minute ventilation 

increases compared to metabolic demand(47) and a sharp rise in subjective dyspnea(70). 

Conversely, exercise performed before VT, in the hypothetical availability of enough 

substrate, can theoretically be sustained indefinitely(71).  
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Figure 3. Mean blood lactate concentration during 

exercise when applying a fixed 70-75% VO2max 

intensity. From reference 81. 

 

VT is usually expressed either in ml or in %VO2max predicted, and its normal value 

varies with age, sex and fitness level, but usually lies between 50-60% of %VO2max 

predicted(71). VT is widely regarded as one of the best estimator of overall fitness(71-

74), and it is responsive to aerobic training, both in normal subjects and patients with 

chronic lung disease(75-79).  

 

One of the main clinical uses of the VT is for 

exercise prescription. Although the ACSM 

suggests heart rate (HR – in percentage of 

HR reserve or percentage of HRpeak) or a 

percentage of VO2 reserve as a guide to 

prescribe exercise(38), evidence suggests 

that this may not be appropriate for all 

patients, especially those with heart or lung 

disease. In 2011, Hofmann and 

Tschakert(80) published a review paper 

highlighting the fact that using fixed 

percentages of either HRR or VO2max to 

prescribe exercise can result in a wide range 

of different training intensities, both 

potentially above or below VT, which could respectively result in exercise inducing 

undue fatigue and intolerance (above VT) or of too low intensity to provide benefits 

(below VT). They suggested using an individualised threshold (either VT or AT) to 

prevent this. Figure 3 is taken from this article and illustrate the wide range of blood 

lactate values obtained in subjects training at a fixed percentage of their VO2max, 

representing a wide array of metabolic demand.  

 

In 2000, Zacarias and colleagues(81) studied 26 patients with COPD (mean FEV1 49% 

predicted) during incremental exercise on ergocycle, with the goal of evaluating if their 

heart rate at VT (HRVT) expressed as three different methods (%HRpeak, %HR predicted 
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and %HR reserve) fell within the recommended intensity range (+/- 5% of VT). Of note, 

despite using the V-slope method, they could identify VT in 18 patients only. The HRVT 

for the three methods corresponded to a wide range of exercise intensities, and to ensure 

that patients could be trained to +/- 5% of VT, a prescription based on HR alone would 

have had to be 80-85% of HRpeak or 40-45% HRR – which is discordant with current 

guidelines. The authors concluded that exercise prescription based on HR should be 

discouraged in COPD patients, highlighting the need for a different marker to guide 

exercise prescription in these patients. 

 

More recently, Diaz-Buschmann and colleagues(82) studied if using a fixed HR value 

(either with the Karvonen equation or as %HRR) for exercise prescription in 159 patients 

on beta-blocker treatment would result in exercise at too low or too high intensity 

(relative to VT, determined using the VEM). They found that a significant proportion of 

patients would be exercising significantly passed VT, or way below it, depending on the 

HR method used, and that, overall, no fixed HR value resulted in a satisfactory training 

regimen for all patients.  

 

In a study on the use of VT as a guide for exercise prescription in patients with COPD, 

Vallet and colleagues(41) randomized 20 patients with COPD (mean FEV1 about 1.8 l) to 

either an eight week, four times a week active training program at HRVT (using the V-

slope method) or usual care. They noted increases of 25% in symptom-limited VO2 

(VO2SL), 20% in maximal VE, 19% VO2VT and a decrease in VE and respiratory rate 

(RR) for work at 50% and 75% VO2SL. In another study(42), the same investigators 

randomized 24 patients with COPD (mean FEV1 54% and 63% for both arms) to a 4 

week, 5 days a week training program prescribed either using an ‘’individualised’’ 

protocol (HRVT using V-slope) or ‘’standard’’ protocol (using 50% of HRR). The 

individualised protocol (based of HRVT) resulted in significant increase in VO2SL (20%, 

p < 0.05), VO2VT (22%, p < 0.01) and O2 pulse (17%, p < 0.05). The standard protocol 

(based on %HRR) resulted in a significant increase in VO2VT (8%, p < 0.05), but 

significantly less so than the individualized group, and no change in VO2SL or O2 pulse. 

Of note, the actual mean HR during training for both groups was identical – a finding that 
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highlights the importance of trying to identify the personalized HRVT for each patient 

rather than aiming for a generic percentage of HR.  

 

Serres and colleagues(43) studied the adaptation of skeletal muscle to training in 8 COPD 

patients after a short 3-week exercise program, at an intensity corresponding to HRVT, 

and 6 controls. They showed that, along with a significant increase in VO2SL and VO2VT, 

the training group also showed better maximum voluntary contraction (MVC) of the 

quadriceps (+ 8%, p < 0.05), and critical power (+ 39%, p < 0.05). They concluded that 

an individualized training based on HRVT was effective at rapidly increasing peripheral 

muscle performance in COPD patients. 

 

More recently, Gimenez and colleagues(44) randomized 13 COPD patients (mean FEV1 

1.6 l) to either high-intensity training (1 minute at VO2peak alternating with 4 minutes at 

VO2VT) or moderate intensity training (40-50 W), 5 days a week for 6 weeks. The high-

intensity group showed decreased dyspnea at rest (p ≤ 0.01), decreased blood lactate 

levels during exercise (p < 0.001), increased VO2SL, maximal inspiratory and expiratory 

pressures, VE and VO2VT, while decreasing VE/VCO2 (all p ≤ 0.01). The moderate-

intensity group only improved on the 12-minute walk test. These findings support the use 

of the VT as a guide to individualize training regimen in patients with COPD.  

 

It is worth noting that, although the 2013 American Thoracic Society (ATS) guidelines 

on pulmonary rehabilitation recommends using the ACSM framework for exercise 

prescription, they acknowledge that using standard “high-intensity” (high workload) 

training may not be tolerable by COPD patients and that, in this context, a training 

program based on perceived exhaustion (Borg scale rating 4-6) is adequate(34). 

Coincidentally, this level of perceived exhaustion is well known to correspond to the 

VO2VT(70).  

 

Other than exercise prescription, the VT has many other clinical uses. It is known to be 

one of the best predictors of exercise endurance in patients with COPD(84) and an 

important prognostic marker in heart failure(85-88). In patients with primary pulmonary 
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hypertension, VT (measured using V-slope and VEM) stands out as an independent 

marker of disease severity(89), and in patients with idiopathic pulmonary fibrosis (IPF), a 

value of VE/VCO2 ≥ 45 when measured at VT was an independent predictor of the 

presence of systolic pulmonary hypertension and worse survival(90). 

 

Finally, VT is a significant prognostic marker in the peri-operative context. Older and 

colleagues(91) showed that, in 187 elderly patients undergoing major abdominal surgery, 

a pre-operative VO2VT < 11 ml/kg/min was associated with a major increase in per-

operative mortality rate (18% vs 0.8%, p < 0.001). Torchio and colleagues(92) studied the 

outcome of 54 COPD patients after lung-resection surgery and found that a pre-operative 

VT < 14.5 ml/kg/min could predict severe post-operative complications with a sensitivity 

of 91.6% and a specificity of 97.6%. Finally, West and colleagues(93) recently showed 

that, when using multiple physiological parameters to predict complications following 

colonic resection surgery, a multivariable logistic regression model identified only VO2VT 

and sex as reliable predictors of complications (with area under curve 0.71).  

 

4.3 Variance in the measure of VT 

 

4.3.1 Manual measure of VT 
 

As mentioned previously, the identification of VT during exercise relies on a manual 

manipulation by an observer. When using the V-slope method, the observer has to 

manually draw tangent lines on the graph of VCO2 vs VO2 to identify the inflection point 

in their relationship, and when using the VEM, the precise identification of the point 

where VE/VO2 increases without change in VE/VCO2 can be made difficult by the 

inherent irregularities of the graph(63). Alterations in breathing pattern (i.e. 

hyperventilation or irregular breathing) are expected to increase the potential difficulty of 

an observer to identify a precise VT by making the relationships between the different 

variables less clear. In patients with COPD, these alterations could be expected to be 

more prominent, as anomalies in breathing pattern are ubiquitous in this disease, 

especially during exercise(23, 34, 36, 49, 94, 95). Although the V-slope method was 
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initially presented as having the advantage of being independent of VE(57), evidence 

suggests that: 1) both in healthy and COPD patients, the V-slope sometimes fails to 

identify VT(81, 96) and 2) as discussed in section 4.2.2.2, VCO2 measured at the mouth 

is dependent on VE(61, 63), and therefore the V-slope method can be expected to be 

influenced by anomalies in VE. Thus, the inter-observer variance in the measure of VT 

has the potential of being large in the presence of ventilatory anomalies – a concerning 

finding that could pose problem when trying to use the VT for clinical purposes. Despite 

these implications, relatively few studies have evaluated this question. 

 

Yeh and colleagues(51) studied the inter-observer variance of the VEM on 8 healthy 

subjects undergoing incremental exercise testing using measures made by 4 experienced 

physiologists. The mean standard deviation of the VT value for each subject was 8% of 

VO2peak, equivalent to +/- 289 ml. For one subject, the range between the largest and 

smallest determination of VO2VT reached 890 ml/min (24% VO2peak). They concluded 

that their results cast doubt on the ability of the VEM to reliably identify VT.  

 

Gladden and colleagues(60) used nine experienced observers to determine the inter- and 

intra-observer reliability of the VEM on 24 normal exercise tests. They found a median 

inter-observer correlation coefficient of 0.70 and an excellent intra-observer correlation 

(analysis of duplicate tests) of 0.97. Another study from 1987(97) used 6 healthy subjects 

who each performed CPET six times, and evaluated the capacity of VE, VCO2, R and 

VE/VO2 (VEM) to reliably identify VT. The mean observer error in identifying VT from 

the tests was 24% for VE, 19% for VCO2, 29% for R and 15% for the VEM. For the 

VEM, which stood out as the most precise marker among observers, the error rate 

corresponded to a mean difference in VO2VT of 625 ml/min.  

 

Shimizu and colleagues(98) studied the variance between three observers in the measure 

of VT using the V-slope and the VEM in 17 patients with heart disease and six normal 

controls. The maximal inter-observer difference in VO2VT using both methods was 70 

ml/min, and the overall intraclass correlation coefficient for VO2VT among the reviewers 

was 0.60. V-slope was consistently associated with better agreement between observers.  
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More recently, Filho and colleagues(99) evaluated the inter-observer variability of the VT 

during incremental exercise in 14 healthy volunteers. Unusually, they used a single 

composite measure of VT per observer, derived from the mean of their estimation of V-

slope, VEM, VE x time and R x time. Overall, the mean inter-observer difference in the 

composite measure of VO2VT was 140 ml (equivalent to 2 ml/kg/min). Another group 

from the United Kingdom(100) recently evaluated the V-slope method using nine 

different observers, on 21 incremental exercise tests from patients undergoing pre-

operative evaluation. The technical error of measurement across observers (a measure of 

bias + random error) was 8.1% (i.e 0.9 ml/kg/min).  

 

Finally, the only study investigating the inter-observer reliability of the determination of 

VT in COPD patients was presented by Belman and colleagues in 1992(101). They 

investigated the variance in the determination of VT between two observers using V-

slope and VEM on 29 COPD patients (mean FEV1: 40% predicted), on two separate 

exercise tests. The inter-observer Pearson correlation using VEM was 0.79 for the first 

test (although analyses were performed only on 11 subjects because VT could not be 

identified by both observers in 18 cases) and 0.77 for the second (11 patients analysed), 

and 0.97 for the first test using V-slope (on 9 patients) and 0.98 for the second (on 7 

patients). This suggests the V-slope is better than VEM in patients with COPD, although 

the majority of patients had to be excluded from both analyses (VEM and V-slope) 

because their VT could not be defined by both observers.  

 

In summary, the available evidence, although heterogeneous and prone to methodological 

errors, suggests a wide range of inter-observer reliability when evaluating VT. This may 

be due to differences in the population studied, and in the choice of technique used to 

estimate VT. These results are difficult to generalize and command additional research, 

especially in patients with COPD, where the link between inter-observer variance and 

disease severity and other commanding factors remains to be quantified.  
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4.3.2 Computerized measure of VT 
 

To try to eliminate random measurement bias from human observers, a few studies have 

evaluated the value of automatic computerized algorithms for the identification of VT.  

Orr and colleagues(102) were the first to propose a computer algorithm, based on the 

identification of the breaking point in the increase in VE when plotted against VO2. The 

program is instructed to minimize the pooled residual sum of squares when analyzing the 

best-fit regression model of that graph, and VT is reported as the first break in that model. 

They compared the automatic VT determination to the mean of VT (estimated using VE 

as well) by four human observers, on 37 exercise tests, and found a correlation coefficient 

of 0.94 between the two measures (absolute mean difference 50 ml/min). The study by 

Gladden(60) mentioned earlier also included an analysis VT by a computer (with the 

same protocol as Orr and colleagues) and, when compared to the mean of 9 human 

observers (that used a different method: the VEM) showed poor correlation (0.58).  

A study by Solberg and colleagues(103) used 3 computerized algorithm (V-slope, VEM 

and R) on 12 healthy subjects and found that R had the best correlation to serum lactate 

concentration (AT). Finally, a recent study by Ekkekakis and colleagues(104) evaluated 

nine different computer protocols to estimate VT in healthy patients and showed that, 

although mean correlation between methods was relatively good (0.76-0.81), the absolute 

differences in VO2VT derived from the different protocols were often larger than 500 

ml/min.  

 

Overall, although the initial study by Orr was promising, the advent of many different 

algorithms for VT detection seems to have complicated, rather than simplified, the 

question of automatic VT determination. It seems unlikely that an automated analysis of 

variables as volatile and fluctuating as the ventilatory parameters during exercise will 

supplant a human analysis, which, although burdened with its share of bias, always leaves 

place to clinical judgment.  
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5. Rationale and objectives 
 

5.1 Rationale 
 

The ventilatory threshold is widely accepted as a marker of aerobic fitness. It is 

commonly used for exercise prescription, assessment of response to an intervention and 

as a prognostic marker in many diseases. Its measurement relies on the accurate 

identification of an inflection point in respiratory kinetics during aerobic exercise. 

Patients with COPD greatly benefit from aerobic training. However, these patients suffer 

from chronic airflow limitation that may alter their ventilatory kinetics and impair our 

ability to reliably identify their VT. The exact magnitude of this effect and its relationship 

to the severity of the disease are yet unknown. 

 

5.2 Objectives 
 

5.2.1 Primary research objective: 
 

To quantify and compare the inter-observer reliability of human observers in determining 

VT in control subjects and COPD patients, and to compare the performance of the V-

slope and VEM methods. 

 

5.2.2 Secondary research objectives: 
 

1. To compare human versus computerized analyses of VT. 

2. To determine if the inter-observer variation in the identification of the VT 

corresponds to a clinically significant difference in the determination of HRVT.  
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6. Hypotheses 
 

We expected that COPD would have a negative impact on the reliability of the 

determination of the VT. More specifically, we hypothesized that: 

 

1. The human inter-observer variation in the identification of the VT would be 

greater for patients with COPD than for healthy controls. 

 

2. The inter-observer reliability would be better with the V-slope method than with 

the ventilatory-equivalent method, both for patients with COPD and healthy 

controls. 

 

3. There would be a significant difference in the identification of the VT by 

clinicians compared with computerized analysis, both for the V-slope method and 

the VEM. 

 

4. Markers of airway obstruction and COPD severity (severity of airflow 

obstruction, presence of chronic hypercapnic respiratory failure and presence of 

significant exercise desaturation) would predict a larger inter-observer variation in 

the measure of the VT. 

 

5. The inter-observer variation in the measure of the VT would correspond to a 

clinically significant difference in the measure of HRVT (greater than 5 bpm). 
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7.1 Abstract 
Purpose 

The purpose of this study was to determine the inter-observer reliability of the assessment 

of the ventilatory threshold (VT) using two methods, in COPD patients and in control 

subjects.  

 

Methods 

VT was identified from incremental exercise testing graphs of 115 subjects (23 controls 

and 23 in each COPD GOLD class) by two human observers and a computer analysis, 

using the V-slope method and the ventilatory equivalent method (VEM). Agreement 

between observers in identifying VO2 at VT (VO2VT) and heart rate at VT (HRVT) across 

disease severity groups were evaluated using intra-class correlation (for humans) and 

Passing-Bablok regression analysis (human vs computer).  

 

Results 

For human observers, ICCs (95% confidence interval) in determining VO2VT were higher 

in controls [0.98 (0.97-0.99) both with V-slope and with VEM] than in COPD patients 

[0.72 (0.60-0.81) with V-slope and 0.64 (0.50-0.74) with VEM]. Passing-Bablok analysis 

showed that human and computerized determination of VO2VT were interchangeable in 

controls, but not in COPD patients. FEV1 and peak minute-ventilation during exercise 

were the only variables independently associated with greater inter-observer differences 

in VO2VT. Inter-observer differences in HRVT ranged from 2±1 beats/minute (controls) to 

10±3 beats/minute (GOLD 4).  

 

Conclusions 

In COPD patients, the reliability of human estimation of VO2VT is less in than in controls 

and not interchangeable with a computerized analysis. This should be taken into account 

when using VT for exercise prescription, as a tool to monitor response to an intervention, 

as a surrogate measure of overall aerobic fitness, or as a prognostic marker in COPD 

patients.  
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7.2 Introduction 
The concept and definitions of anaerobic and ventilatory thresholds have sparked 

considerable literature and debate over the years. One of the reasons for this may reside 

in the lack of a consensual definition of both concepts and the proliferation of terms used 

to describe them (105). The anaerobic threshold can be defined as the oxygen 

consumption above which aerobic metabolism is supplemented by anaerobic 

mechanisms, and after which a progressive increase in blood lactate concentration and 

metabolic acidosis occur (106). The onset of this pivotal event can be estimated using 

non-invasive techniques based on the non-linear evolution of carbon dioxide production 

(VCO2) and minute-ventilation (VE) relative to VO2 during incremental exercise (the so-

called ventilatory threshold – VT). In particular, the breaking point in the VCO2-VO2 

relationship (V-slope method) (57) and the moment at which there is a rise in the 

ventilatory equivalent for O2 (VE/VO2) without a concomitant rise in ventilatory 

equivalent for VCO2 (VE/VCO2) (the ventilatory equivalent method – VEM) (54) have 

been used to identify VT. Exercise above the VT is associated with reduced exercise 

tolerance, metabolic acidosis, a slowing of oxygen consumption (VO2) and CO2 

production (VCO2) kinetics (47), and a sharp rise in dyspnea (70).  

 

In the clinical setting, VT is used as a predictor of overall aerobic fitness and is 

responsive to training, both in healthy subjects and in patients with chronic diseases (42, 

107). It is a prognostic marker in chronic cardio-respiratory diseases (85-87) and in the 

perioperative period (92, 93). Because of its close relationship with overall exercise 

tolerance, the VT is also useful as a tool for exercise prescription. Patients with chronic 

obstructive respiratory disease (COPD) greatly benefit from exercise training, and 

pulmonary rehabilitation has become a standard of care in the management of these 

patients (34). Compared with healthy individuals however, patients with COPD exhibit a 

marked reduction in exercise tolerance caused in part by expiratory flow limitation and 

dynamic hyperinflation, increased work of breathing, abnormal breathing pattern, high 

VD/VT ratio and gas exchange anomalies (36, 108), and as such, may be unable to tolerate 

prolonged high-intensity training. Training programs using the VT as a tool to guide 

exercise intensity have been safely and successfully used in this population (41-44, 109), 
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and additional data suggest that such an ‘’individualised’’ prescription may offer an 

advantage over ‘’interval-based’’ regimen (80-82).   

 

Both the V-slope and the VEM rely on a manual manipulation by an observer or an 

automated computerized analysis, and as such are prone to variation and error. The 

presence of ventilatory and gas exchange anomalies in patients with COPD may further 

impair the reliable identification of VT using these techniques. A large intra- or inter-

observer variation may have consequences when using the VT for exercise prescription, 

when monitoring response to training or when performing prognostic evaluation in 

patients undergoing surgery or with heart failure that have concomitant COPD. In healthy 

subjects, the high intra-observer reliability of the measurement of the VT has already 

been demonstrated (60), but the inter-observer reliability showed more heterogeneous 

results (51, 60, 97, 99). In patients with COPD, one study (101) showed acceptable inter-

observer variability in the identification of the VT, but was limited by its small sample 

size and the lack of details regarding the clinical characteristics of the patients included.  

 

We hypothesized that COPD severity would negatively impact the inter-observer 

reliability of the identification of the VT as determined from the V-slope method and 

VEM. In accordance, the aims of this study were: 1) to quantify the reliability of human 

observers in determining VT in control subjects and COPD patients; 2) to compare 

human versus computerized analyses of VT, and 3) to evaluate if the inter-observer 

difference in VT identification amounts to a clinically significant difference in the 

corresponding heart rate (HRVT). 

 

7.3 Methods 
This study was based on an analysis of incremental exercise test data from individuals 

who completed an exercise test in the respiratory physiology laboratory at l’Hôpital du 

Sacré-Coeur de Montréal. Data from all pulmonary function tests, exercise tests, and 

blood gas analyses performed since March 2010 are stored in a common database located 

on a stand-alone computer in the physiology laboratory. Data for both COPD patients and 
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controls were extracted from this database. The study was approved by the institutional 

ethics committee. 

 

7.3.1 Subjects 

A convenience sample of individuals with COPD and controls was selected from the 

aforementioned database. For patients with COPD, inclusion criteria were: age ≥ 40 

years, a history of smoking of at least 20 pack-years, an objective diagnosis of COPD (as 

assessed by clinical evaluation and a spirometry result showing a post-bronchodilator 

FEV1/FVC ratio less than 0.70) and an exercise test duration time of at least 6 minutes. 

This last criterion was implemented to maximise the chance of observing a VT.  

With the assumption that patients with GOLD 4 disease would be less represented in the 

database, they were selected first. The database was then screened to identify, for each 

very severe patient, a matching subject amongst all other severity groups and amongst 

controls. Matching was based on age (+/- 4 years), sex, and body mass index (BMI, +/- 4 

kg/m2). Control subjects were defined as individuals with normal resting pulmonary 

function tests, normal VO2peak (i.e. ≥ 85% VO2max predicted) and normal 

cardiorespiratory response to exercise, and were matched to COPD patients for age, sex 

and BMI (see above). Reasons for referral to CPET in control patients were: unexplained 

dyspnea on exertion (16 patients), pre-operative evaluation (5 patients) and lung cancer 

(2 patients). 

Subjects were excluded from the study if their medical file suggested clinical disease 

worsening or a respiratory exacerbation in the four weeks preceding the exercise test, 

evidence of another condition that could limit exercise performance (asthma, unstable 

coronary heart disease, heart failure, cancer, symptomatic peripheral vascular disease or 

significant osteoarthritis), long-term oxygen therapy, or incomplete baseline evaluations.  

Twenty-three patients with GOLD 4 disease meeting inclusion criteria and having a 

suitable match in all other disease severity groups were identified and included in the 

study (total sample 115 patients). Based on the results of the means and standard 

deviations of the first 65 patients studied, a sample size of 22 patients per disease 

subgroup was necessary to identify a difference on 100 ml/min in VO2VT between 

controls and each COPD group with a power on 80% and α-level of 0.05. 
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7.3.2 Baseline measurements 

Demographic and clinical information were collected from medical files. These include 

age, sex, BMI, ethnicity, current medication, and self-reported smoking status. Lung 

function was assessed using spirometry (for expiratory flow rates), body 

plethysmography (for lung volumes) and single breath-hold technique (for lung diffusion 

capacity for carbon monoxide). All tests were performed and interpreted according to 

American Thoracic Society guidelines in a laboratory at sea level.  

 

7.3.3 Exercise testing 

Symptom-limited incremental exercise tests were performed according to published 

guidelines (110). More specifically, tests were realized on an electromagnetically braked 

cycle ergometer (Ergoline 200, Ergoline, Bitz, Germany), with a protocol including two 

minutes of rest and a three-minute period of initial unloaded cycling. Load was increased 

linearly until exhaustion (ramp was individually determined for each patient by the 

attending physician, based on either previous exercise testing result or expected maximal 

work rate as estimated by overall physical fitness and/or FEV1) with the goal of 

maintaining a cycling speed of 60 revolutions per minute. Breath-by-breath analysis of 

expired gases was performed using electronic analysis (Jaeger Oxycon Pro, CareFusion, 

Hoechberg, Germany). VE, VO2, VCO2, VE/VO2 and VE/VCO2 were computed using 

twenty-second averages of breath-by-breath values. Peak VO2 was the highest 20-second 

mean VO2 obtained. Patients using beta-blockers were not required to withhold them 

before performing CPET. Oxygen saturation was monitored using finger or ear pulse 

oximetry. Exercise capacity was defined as the highest work rate achieved for at least 20 

seconds at a rate of at least 50 revolutions per minute. Arterial blood gases were assessed 

at baseline using a standard blood gas analyzer (ABL800 Flex, Radiometer, Copenhagen, 

Denmark). Dyspnea and leg fatigue were evaluated at rest and at maximal exercise 

intensity using the modified 10-point Borg scale (111). Additional information regarding 

internal quality control can be found in the “Methods” section of the supplemental digital 

content file (Appendix A).  
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7.3.4 Ventilatory threshold 

For all patients, two manual methods were used to identify the VT: 1) the V-slope 

method and 2) the VEM. To optimize the validity of the V-slope method, care was taken 

to ensure that the ranges of VO2 and VCO2 in the plots were equal (57), and that the VO2 

scale was adequate to allow a precise identification of VO2VT. In addition, a computer-

generated analysis of VT (LABManager, version 5.3.0.4, CardinalHealth, Hoechberg, 

Germany) was used, again using both the V-slope method and the VEM. Human 

observers took care to exclude the first minute of exercise from analysis in order to avoid 

confounding VT with a “pseudo-threshold” (112) sometimes associated with 

hyperventilation at the onset of exercise. For all subjects, computerized determination of 

VT was allowed between the onset and the termination of incremental exercise; the 

warm-up and recovery periods were excluded from analysis by the software. In the event 

where a VT could not be identified, it was reported as ‘’undetermined’’.  

 

The VT was reported both as the VO2 at which it occurred (in absolute value) and as the 

corresponding heart rate (HRVT). Graphs for VT analysis for both methods were extracted 

from the database by a research assistant unrelated to the study, coded, duplicated, and 

submitted to two observers (B.P.D and M.M.), who blindly recorded the presence or 

absence of a VT, its value in millilitres of VO2, and the corresponding heart rate. The 

graphs used by the human observers were identical to the ones used for computerized 

analysis. Precise and identical instructions on how to identify VT using both the V-slope 

method and the VEM were given to both observers. For the V-slope method, VT was 

defined as “the breaking point in the line of the graphical representation of VCO2 against 

VO2” (57). For the VEM, VT was defined as “the point where VE/VO2 begins to increase 

while VE/VCO2 remains stable, when both are plotted against VO2” (54).  

 

To test for internal validity, a subsample of 50 graphs drawn randomly from COPD and 

controls was blindly resubmitted to the two observers for a second VT determination. 

Both observers were physicians with formal medical training in respiratory medicine, 

specific training in exercise physiology, but less than 5 years of clinical experience. VT 

analyses were performed in an independent and blinded manner. 
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7.3.5 Statistical analyses 

Agreement between the human observers in the determination of VO2VT was assessed 

using intra-class correlations coefficients (ICC 2,1 – two-way random single measure). 

Reliability using ICC was interpreted according to the following scale: virtually none for 

ICC £ 0.10, slight for ICC 0.11 – 0.40, fair for ICC 0.41 – 0.60, moderate for ICC 0.61 – 

0.80 and substantial for ICC ³ 0.81 (113).  

To test whether human and computer analysis of VO2VT are interchangeable, Bland-

Altman graphical analysis and Passing-Bablok regression analysis was performed (114). 

This non-parametric statistical tool allows the estimation of the interchangeability of two 

analytical methods and of the possible bias between them. It provides a numerical 

quantification of agreement levels and does not make any assumption about the 

distributions of the samples of their measurement errors and is non-sensitive to outliers. It 

does however require that data be continuously distributed and linearly related. 

The mean differences between the two human observers’ assessment of VO2VT were 

compared across disease category groups using one-way ANOVA with post-hoc 

Bonferroni correction.  

A stepwise multiple linear regression analysis that included baseline demographic data 

and pulmonary function and exercise test results was performed to identify independent 

predictors of a larger inter-observer difference in VO2VT. 

The mean inter-observer difference in HRVT for each of the five subgroups was compared 

using one way ANOVA with post-hoc Bonferroni correction. An empirical threshold of 

+/- 5 bpm (total range of 10 bpm) was chosen as the cut-off for clinical significance for 

this parameter, as we believe that when exercise training is based on a target heart rate 

value, the training heart rate should stay within this limit of the objective.  

Intra-observer reliability was assessed using intra-class correlation coefficients. All 

analyses were performed using SPSS version 21 (Chicago, IL, USA) and MedCalc 

(MedCalc Software, Ostend, Belgium). In all instances, a p-value of less than 0.05 was 

considered as the threshold for statistical significance. 
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7.4 Results 
The clinical characteristics of the 115 subjects are summarized in Table 1. Most were 

males (70%) and sex, age, and BMI were evenly distributed across subgroups, as 

projected by the recruitment design. Exercise performance evolved as expected with 

increasing COPD severity, with ventilatory limitation and gas exchange abnormalities 

becoming prominent in GOLD 3 and 4 patients.  

 

Table 1. Baseline patient characteristics. 
 
 

Controls 
n=23 

GOLD 1 
n=23 

GOLD 2 
n=23 

GOLD 3 
n=23 

GOLD 4 
n=23 

Sex (number of males) 16 16 16 16 16 
Age (y) 55 (7) 56 (7) 56 (7) 56 (5) 57 (6) 
BMI (kg/m2) 27 (4) 26 (5) 26 (5) 26 (5) 25 (6) 
Beta-blocker use, n 1 6 4 7 7 
Pulmonary function tests 
   FEV1/FVC 76 (3) 64 (3) 57 (8) 41 (7) 36 (7) 
   FEV1 (l) 3.49 (0.63) 2.65 (0.55) 2.21 (0.59) 1.23 (0.33) 0.95 (0.33) 
   FEV1 (% pred.) 111 (15) 86 (6) 70 (7) 39 (6) 28 (2) 
   FVC (l) 4.57 (0.83) 4.04 (0.85) 3.95 (1.22) 2.96 (0.54) 2.55 (0.67) 
   FVC (% pred.) 119 (18) 106 (8) 102 (19) 77 (14) 63 (12) 
   FRC (% pred.) 99 (18) 108 (19) 111 (24) 149 (25) 155 (50) 
   TLC (% pred.) 113 (14) 107 (10) 110 (18) 119 (18) 112 (37) 
   RV (% pred.) 93 (16) 104 (22) 115 (29) 179 (38) 188 (69) 
   DLCO (% pred.) 92 (10) 73 (18) 69 (18) 52 (12) 43 (10) 
Resting hypercapnia (n) 0 0 0 4 5 
Incremental exercise test 
   Ramp (W/min) 14 (3) 12 (5) 11 (4) 9 (5) 7 (4) 
   Peak Power (W) 156 (56) 121 (62) 100 (46) 62 (34) 45 (24) 
   Peak Power (% pred.) 108 (28) 82 (24) 70 (16) 44 (14) 33 (12) 
   Peak Heart rate (bpm) 157 (14) 138 (21) 137 (22) 124 (14) 119 (11) 
   Peak Heart rate (% pred.) 92 (8) 82 (12) 81 (14) 74 (8) 71 (6) 
   Peak VO2 (l/min) 2.20 (0.67) 1.74 (0.64) 1.63 (0.61) 1.27 (0.37) 1.07 (0.31) 
   Peak VO2 (% pred.) 110 (23) 86 (18) 81 (16) 63 (13) 50 (10) 
   Peak VE (l/min) 82 (28) 69 (23) 63 (19) 46 (15) 36 (12) 
   Peak VE (% pred.) 63 (13) 74 (20) 80 (16) 104 (26) 111 (22) 
   Exercise desaturation (n) 0 1 1 2 6 
All data presented as mean (standard deviation) unless stated otherwise. BMI = body mass index. FEV1 = Forced expiratory volume in 
1 second. FVC = forced vital capacity. FRC = functional residual capacity. TLC = total lung capacity. RV = residual volume. DLCO = 
Diffusion capacity of the lung for carbon monoxide. PaCO2 = arterial partial pressure of carbon dioxide. VO2 = oxygen uptake. VE = 
minute-ventilation. Resting hypercapnia = resting PaCO2 ≥ 45 mmHg. Exercise desaturation = a decrease in > 4% saturation during 
exercise. 
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7.4.1 Agreement in the determination of VT for human observers 

There were no instances of “undetermined” VT.  

Table 2 shows the agreement in the determination of VO2VT between human observers, 

assessed using ICC. Overall, reliability between human observers was higher in control 

subjects than in patients with COPD: in control subjects, ICC was 0.98 with V-slope and 

0.98 with VEM, whereas in patients with COPD as a whole, ICC was 0.72 with V-slope 

and 0.64 with VEM. The 95% confidence intervals of ICCs of the controls and COPD 

patients were mutually exclusive. There was also a progressive decline in agreement 

between the two observers with increasing disease severity. In patients with GOLD 4 

disease, agreement reached only “slight” levels.  

 

Table 2. Agreement of human observers in the determination of VO2VT. 
 V-slope VEM 

ICC 95% CI p ICC 95% CI p 
Controls 0.98 0.97 – 0.99 < 0.001 0.98 0.97 – 0.99 < 0.001 

All COPD 0.72 0.60 – 0.81 < 0.001 0.64 0.50 – 0.74 < 0.001 
GOLD 1 0.92 0.83 – 0.96 < 0.001 0.94 0.86 – 0.96 < 0.001 
GOLD 2 0.78 0.53 – 0.90 < 0.001 0.70 0.42 – 0.86 < 0.001 
GOLD 3 0.68 0.38 – 0.85 < 0.001 0.42 0.03 – 0.70 0.02 
GOLD 4 0.35 -0.34 – 0.66 0.04 0.15 -0.23 – 0.51 0.23 
p-values refer to individual intra-class correlations. ICC=intraclass correlation coefficient; CI=confidence interval; VEM=ventilatory 
equivalents method; COPD=chronic obstructive pulmonary disease; GOLD=Global initiative for Obstructive Lung Disease. 

 

ANOVA analysis revealed that the mean absolute differences in the measures of VO2VT 

using V-slope and VEM were statistically greater in COPD patients compared with 

controls, and that this difference increased with severity (table 3). 

 

Table 3. Mean (SD) inter-observer difference in VO2VT (ml/min) according 
to disease severity. 

 V-slope p-value VEM p-value 
Controls 42 (26) - 41 (26) - 

All COPD 189 (115) <0.001 204 (117) <0.001 
GOLD 1 111 (33) 0.12 94 (45) 0.29 
GOLD 2 165 (100) <0.001 194 (103) 0.001 
GOLD 3 209 (125) <0.001 222 (86) <0.001 
GOLD 4 270 (120) <0.001 307 (112) <0.001 

VEM: ventilatory equivalent method. GOLD: Global initiative for chronic Obstructive Lung Disease. VO2VT: oxygen uptake at the 
ventilatory threshold. 
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Comparison of human and computer observers in the determination of VO2VT 

E-table 1 and e-figure 1 of the supplemental digital content file (Appendix A) describe 

the results of the Passing-Bablok regression analysis comparing each human observer to 

the computerized analysis. In short, for both human observers, the relationship of VO2VT 

with the computerized analysis did not differ from linearity, confirming that the data can 

be used in Passing-Bablok analysis. Using V-slope, VO2VT values from human observer 1 

were interchangeable with computer analysis for controls, but not for patients with 

COPD. Similar results were obtained using the VEM. In an identical manner, observer 2 

was found to be interchangeable with computerized analysis when evaluating controls, 

but not COPD patients. Additional description of the Passing-Bablok regression analyses 

can be found in the supplemental digital content file (Appendix A). 

Bland-Altman plots for both methods are shown in figure 4, and similarly show that, 

although most data points remain inside of the limits of agreement, COPD patients 

generally have greater inter-observer differences and wider dispersion of values than 

control subjects. 

 

 
Figure 4. Bland-Altman procedures for inter-observer differences in VO2VT, when using 
(A) the V-slope method and (B) the VEM. The horizontal lines represent the average 
inter-observer difference in VO2VT (center) and 95% limits of agreement (top and 
bottom), calculated as: mean difference ± 1.96 standard deviation of the difference.  
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7.4.2 Inter-observer differences in HRVT 

Table 4 summarises the inter-observer differences in the evaluation of HRVT expressed 

both as absolute values and as a percentage of the peak heart rate attained during 

incremental exercise testing. Compared with controls using ANOVA, there was a 

statistically significant gradual increase in the inter-observer difference of HRVT with 

disease severity. On average, only patients in the most severe COPD subgroup reached 

the pre-specified threshold of clinical significance (+/- 5 bpm). For each subgroup of 

patients, there were no significant differences in the mean inter-observer difference in 

HRVT between patients with and without beta-blockers (complete data can be found in e-

table 2 of the supplemental digital content file – Appendix A).  

Table 4. Mean (SD) inter-observer difference in the measure of HR VT (absolute value and %peakHR) using 
two methods, by COPD severity. 

 HRVT - beats per minute HRVT - %peakHR 
V-slope p VEM p V-slope p VEM p 

Controls 2 (1) - 2 (2) - 1.3 (0.7 - 1.4 (1.1) - 
All COPD 6 (4) <0.001 7 (3) <0.001 4.9 (3.1) <0.001 5.6 (2.7) <0.001 
GOLD 1 3 (2) 0.99 4 (1) 0.01 2.1 (1.4) 0.99 3.0 (1.0) 0.01 
GOLD 2 5 (2) 0.02 6 (2) <0.001 3.5 (1.9) 0.002 4.6 (1.8) <0.001 
GOLD 3 7 (3) <0.001 8 (2) < 0.001 5.0 (2.6) <0.001 6.3 (1.8) < 0.001 
GOLD 4 10 (3) <0.001 10 (3) <0.001 8.3 (2.3) <0.001 8.6 (2.3) <0.001 
HRVT=heart rate at the ventilatory threshold; VEM=ventilatory equivalent method; GOLD=Global initiative for chronic 
Obstructive Lung Disease. 

 

7.4.3 Predictors of a larger inter-observer difference in VO2VT 

Table 5 describes the results of the stepwise multiple linear regression analysis. With V-

slope, FEV1, %predicted and peak minute-ventilation were the two sole independent 

predictors of a larger inter-observer difference in VO2VT (R2=0.41), whereas with VEM, 

only FEV1 %predicted reached statistical significance (R2=0.50). 
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Table 5. Multiple linear regression models for the prediction of a larger inter-observer difference 
in VO2VT when using V-slope or VEM.  

 V-slope VEM 
β p β p-value 

FEV1 (%pred) -0.431 <0.001 -0.708 <0.001 
PeakVE (%pred) 0.268 0.007 0.015 0.87 
Age -0.039 0.60 0.029 0.66 
Gender 0.097 0.20 -0.024 0.72 
BMI -0.006 0.94 -0.002 0.97 
FEV1/FVC -0.098 0.58 -0.071 0.65 
FVC (%pred) 0.114 0.42 0.012 0.93 
FRC (%pred) -0.003 0.98 0.066 0.43 
TLC (%pred) 0.022 0.76 0.050 0.46 
RV (%pred) 0.029 0.78 0.079 0.39 
DLCO (%pred) -0.014 0.90 0.048 0.64 
Hypercapnia -0.118 0.13 -0.096 0.18 
Peak workrate (W) 0.053 0.62 0.046 0.61 
Peak HR (% pred) -0.090 0.33 0.117 0.16 
Peak VO2 (% pred) 0.060 0.68 -0.052 0.87 
Desaturation -0.110 0.17 0.108 0.46 
VO2VT=Oxygen uptake at ventilatory threshold; VEM=ventilatory equivalents method; FEV1=Forced expiratory volume in 1 second; 
VE=minute-ventilation; BMI=body mass index; FVC=Forced vital capacity; FRC=Functional residual capacity; TLC=Total lung 
capacity; RV=Residual volume; DLCO=Diffusion capacity for carbon monoxide; Hypercapnia=Baseline PaCO2 > 45 mmHg; 
W=Watt; HR=Heart rate; VO2=oxygen uptake; Desaturation=Decrease of > 4% in saturation during exercise; %pred=percent of 
predicted value. 
 

7.4.4 Internal validity 

Intra-observer ICC measured on a subset of 50 patients showed relatively high reliability 

throughout the spectrum of disease severity (complete data shown in e-table 3 of the 

supplemental digital content file – Appendix A). For both observers and for both methods 

of observation, ICCs across disease severity groups were all higher than 0.81. 

 

7.5 Discussion 
To our knowledge, this is the first study to report on a direct evaluation of the reliability 

of human and computerized identification of VO2VT and HRVT across COPD severity 

groups. Our main results indicate that 1) reliability of human observers in the 

determination of VO2VT is lower in patients with COPD than in controls, for both the V-

slope and VEM methods; 2) human and computerized analyses of VO2VT are 

interchangeable in controls, but not in patients with COPD; 3) FEV1 (percent predicted) 

is an independent predictor of a larger inter-observer difference in measurement of VO2VT 
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(with peak minute-ventilation also being significant for V-slope) and 4) compared to 

controls, the increasing inter-observer disparity in VO2VT assessment in COPD patients 

corresponds to a gradually larger difference in the estimation of HRVT. These combined 

findings suggest that the baseline airflow obstruction and subsequent abnormalities in the 

ventilatory response of patients with COPD during exercise may be a causative factor in 

the increasing variance of inter-observer assessment of VO2VT (21, 108). This supports a 

common impression amongst clinicians that, when represented graphically, the 

ventilatory parameters of patients with COPD produce more irregular and noisy patterns. 

Coupled with the fact that these patients show higher-than-predicted ventilation for any 

work rate, these anomalies seem to hinder the precise identification of a breaking point in 

the kinetics of ventilatory variables.  

 

The available literature on this subject is scarce, especially in patients with COPD, and 

has produced inconsistent results. Our results for control subjects are similar to those of 

Gladden et al. (60), who showed that, in healthy volunteers, the intra-observer reliability 

of the VEM was high (ICC=0.97), that the inter-observer reliability (tested on nine 

observers) was lower (ICC=0.70) and that agreement between a human observer and a 

computerized value of VO2VT was only moderate (ICC=0.58). Filho et al. (99) also 

described similar results in a sample of 14 healthy subjects. In contrast, Garrard et al. (97) 

showed a higher intra-observer error when assessing VO2VT in healthy subjects. In this 

study, inter-observer error reached 29 and 24% using plots of the respiratory exchange 

ratio and VE, but the V-slope and VEM performed better (19% and 15% error, 

respectively). Yeh et al. (51) described a mean range of 560 ml/min among four 

observers trying to identify VO2VT using the VEM in healthy subjects. This is much 

larger than the difference found in our study in control subjects (44 ml/min).  

 

Our results seem in line with those of Belman et al. (101) who studied the intra- and 

inter-observer reliability of the determination of VT in patients with COPD using the V-

slope method and the VEM, on two separate exercise tests. They reported excellent intra-

observer reliability for both method (Pearson correlation 0.97 and 0.99 for the two 

observers) and good inter-observer reliability for all methods (Pearson correlations all 
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higher than 0.74). However, their analysis was performed on a small, uncharacterized 

subset (n=14 at the maximum) of their overall cohort, which contained subjects with 

widely variable FEV1 values. In addition, the use of Pearson correlation to assess 

agreement between observers is often inappropriate (115). Our study used a larger, 

matched, well-characterized population and adds the findings of a progressive decline in 

inter-observer reliability with disease progression and the poor relationship between 

human and automated analysis in patients with COPD. 

The clinical importance of the magnitude of inter-observer differences identified can be 

put into perspective by comparing it to reported improvements in VO2VT following an 

exercise-training program. In patients with moderate to severe COPD, prior studies have 

documented improvements in VO2VT ranging from approximately 83 to 350 ml/min 

following training (41-44). In our study, for moderate to very severe COPD patients, 

inter-observer differences in VO2VT ranged from 165 to 270 ml/min using the V-slope 

and from 194 to 307 ml/min using the VEM. It is therefore likely that inter-observer 

differences in VT determination have an impact on the evaluation of changes in VO2VT 

following an exercise-training program. In contrast, agreement for control subjects was 

much better (less than 50 ml/min difference in VO2VT) suggesting that inter-observer 

differences in VT play a lesser role in this population (116). In addition, our findings 

concerning the low inter-observer reliability of the determination of VO2VT should raise 

caution when using VO2VT or VE/VCO2 at VT as a prognostic marker in patients with 

heart failure or undergoing surgery if these subjects also have concomitant COPD.  

 

Data concerning the reliability of computerized measurements of VT is limited. Most 

manufacturers of exercise testing equipment provide a unique software algorithm and 

these different equations have been shown to provide variable estimates of VT, both 

when using V-slope and the VEM (104). Any comparison of results originating from 

different software calculations must therefore be made with caution. Our data show that 

for control subjects, both human observers could be considered interchangeable with 

computer analysis, which is in line with the results of Santos et al (117). In COPD 

patients however, human and automatic analysis were not interchangeable owing to 

significant systematic and proportional differences. This sheds an interesting light on the 
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use of these computerized algorithms in daily practice, and clinicians may want to take it 

into account when assessing VO2VT using only automated reported values. Indeed, we 

believe these findings emphasize the need for clinicians to manually confirm any 

automated measurements of VT. 

Our choice of using ± 5 bpm as a threshold for a significant difference in HRVT was 

mostly empirical. It seems likely, however, that an error in measurement reaching 10 bpm 

would lead to important differences in the corresponding workrate or VO2. This 

estimation is difficult to quantify as the slope of the HR/VO2 relationship during 

incremental exercise varies among individuals depending on baseline fitness level, use of 

negative chronotropic medication or underlying cardiopulmonary disease. A crude 

estimate of the impact of varying HR values on exercise intensity can be estimated using 

our cohort as a whole, where peakHR was linearly related to peak workrate. Using this 

relationship, a difference of 10 bpm in HR corresponded to an approximately 40W 

difference in workrate, a difference that is arguably clinically significant, especially when 

considering patients with severe disease. 

The optimal training intensity and modality for patients with COPD is an active matter of 

debate. Although current guidelines on pulmonary rehabilitation suggest using the 

American College of Sports Medicine framework for exercise prescription, they 

acknowledge that using standard “high-intensity” training may not be tolerable by COPD 

patients (118) and that, in this context, a training program based on perceived exhaustion 

(Borg scale rating 4-6) is adequate (34). Coincidentally, this level of perceived 

exhaustion is known to correspond to VO2VT (70). Moreover, the safety and efficacy of 

using fixed percentages of heart rate or VO2peak as training targets has been challenged by 

recent publications (80, 82). Our data show that the absolute inter-observer difference in 

HRVT in patients with COPD becomes increasingly large as disease worsens when 

compared to controls. In this context, if HRVT was used a marker for exercise intensity 

prescription in patients with very severe COPD, this target could translate into an 

unacceptably large array of actual training intensity, which could respectively result in 

exercise inducing undue fatigue and intolerance (above VT) or of too low intensity to 

provide benefits (below VT). In the other subgroups of patients, the inter-observer 
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difference in HRVT was less important, and therefore less likely to negatively impact a 

training regimen. 

 

This study has several limitations. First, VT measurement was performed on 

retrospectively collected data and as such there is a chance of selection bias. We tried to 

limit this effect by matching subjects on several relevant clinical parameters. Second, the 

external validity of the study is impaired by our choice of including only patients having 

performed at least six minutes on incremental exercise testing, a duration which might 

not be routinely sustained by the most severe patients with COPD. We believe this 

criterion is valid in a proof-of-concept framework, with the goal of maximizing the 

attainment of a true VT, but needs to be taken into account when generalizing these 

results to a wider COPD population. Third, we recognize that the relative lack of 

experience of the observers (< 5 years) may be of concern. Hansen et al. (119) showed 

that when measuring VT in patients with pulmonary hypertension, the agreement 

between two experienced observers was better than the one between inexperienced 

observers. However, the overall difference in agreement was small: while experienced 

observers had a mean difference of 20 ml/min in their measure of VO2VT between them, 

less experienced observers had a mean difference of 60 ml/min. The clinical relevance of 

such a small difference is unclear. The fact that our two observers strongly agreed with 

each other in patients with milder disease, maintained relatively high intra-observer 

reliability is reassuring.  

Fifth, the choice of using the V-slope and the VEM to measure VT was based on the 

abundance of their use in the literature and the available data regarding their reliability in 

healthy subjects. Current guidelines suggest the use of either techniques when measuring 

VT (110). Although other methods to assess VT have been reported, they are often 

lacking a standardized definition, scarcely used or known to relate closely to the V-slope 

or the VEM (i.e. changes in PETO2 and PETCO2 vs time, VE, VO2, VCO2 or RER vs work 

rate, VE vs VCO2, heart rate inflection point) (120). Therefore, we believe that the choice 

of using these two methods is representative of common clinical practice and allows a 

more thorough comparison the available literature. Sixth, our choice of reporting data 

using 20-second averages of breath-by-breath data could be criticized. This parameter 
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was chosen in accordance with current guidelines concerning the reporting of data during 

CPET(110) and as it allows, in our opinion, a balance between “noise” and the clear 

representation of respiratory kinetics. Whether the use of different time-averaging 

intervals could further influence the detection of VT requires further studies. Finally, the 

differences in ramp increment rate between subgroups are an expected finding, and 

whether this may have had an impact on the determination of VO2VT is unclear. However, 

studies have reported the lack of significant differences in the determination of VO2VT 

between ramp increments of 7 to 23 W/min in patients with heart failure (121), and 

between increments of 20 to 50 W/min in young healthy subjects (122). 

 

7.6 Conclusion 
In conclusion, results from the present study show that the agreement between human 

observers in the determination of VT in patients with COPD is lower than in controls, 

that human and computer analyses of VO2VT are not interchangeable in these patients and 

that these findings are directly related to the severity of airflow obstruction. Furthermore, 

the decline in precision in the identification of VO2VT corresponds to an increasing 

variability when evaluating HRVT. Clinicians should be aware of the discrepancy between 

software and human identification of VT when reporting automated values of VO2VT, and 

these findings should be taken into account when using VT for exercise prescription, as a 

tool to monitor response to an intervention, or as a prognostic marker in patients with 

COPD. 
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9. APPENDIX A: Supplemental digital content 
 

Methods 

Exercise testing 

Symptom-limited incremental exercise tests were performed according to published 

guidelines (110). More specifically, tests were realized on an electromagnetically braked 

cycle ergometer (Ergoline 200, Ergoline, Bitz, Germany), with a protocol including two 

minutes of rest and a three-minute period of initial unloaded cycling. Load was increased 

linearly until exhaustion (ramp was individually determined for each patient by the 

attending physician, based on either previous exercise testing result or expected maximal 

work rate as estimated by overall physical fitness and/or FEV1) with the goal of 

maintaining a cycling speed of 60 revolutions per minute. Breath-by-breath analysis of 

expired gases was performed using electronic analysis (Jaeger Oxycon Pro, CareFusion, 

Hoechberg, Germany). VE, VO2, VCO2, VE/VO2 and VE/VCO2 were computed using 

twenty-second averages of breath-by-breath values. Peak VO2 was the highest 20-second 

mean VO2 obtained. Patients using beta-blockers were not required to stop them prior to 

CPET. Oxygen saturation was monitored using finger or ear pulse oximetry. Exercise 

capacity was defined as the highest work rate achieved for at least 20 seconds at a rate of 

at least 50 revolutions per minute. Arterial blood gases were assessed at baseline using a 

standard blood gas analyzer (ABL800 Flex, Radiometer, Copenhagen, Denmark). 

Dyspnea and leg fatigue were evaluated at rest and at maximal exercise intensity using 

the modified 10-point Borg scale (111). The pneumotachograph and plethysmography 

box used for the tests was calibrated twice a day, while the turbine flow sensor of the 

CPET system was calibrated daily. Gas analyzers for DLCO measurements were 

calibrated before each test. Gas analyzers of the CPET system are calibrated daily using a 

high precision gas cylinder containing 16% O2 and 4% CO2. The O2 cell of the CPET 

system is changed every 18 months, or as soon as gas calibration becomes unstable. The 

cycle ergometer is calibrated using a standard procedure once a year. In the period from 

which the study’s tests were performed (2010-2014), a total of seven technicians operated 

the system in rotations. Six of these seven operators were present during the whole 4-year 
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period. Every operator received training by the same head technician of the laboratory, 

ensuring homogeneity. A structured and clear protocol was implemented for the 

realization of incremental exercise testing. This protocol was approved by the physician 

in charge of the pulmonary function test laboratory and is based on the latest ATS/ACCP 

guidelines. Every technician operating the system is familiar with the protocol, which is 

easily and readily available in written form in the exercise-testing laboratory. Every 

morning, the head technician of the laboratory reviewed the resting and exercise tests 

from the day before to ensure internal quality and conformity with the protocols. In the 

event of an error, the technician responsible for the test was informed, ensuring 

continuous training and retroaction. Physicians supervising the test based their evaluation 

of the ramp increment on the following parameters: the predicted maximal workrate was 

divided by 10 with the goal of reaching a test duration of 8-12 minutes. The resulting 

ramp was adjusted based on the physician’s judgment based on either a previous exercise 

test performed in our institution or lung function, as described. Reference values for 

spirometry, lung function, diffusing capacity and exercise testing were taken from 

standard sources (123-126). 

 

Results 

Comparison of human and computer observers in the determination of VO2VT 

E-table 1 and e-figure 1 describe the results of the Passing-Bablok regression analysis 

comparing each human observer to the computerized analysis. This technique generates a 

regression equation in the form “y=a + bx”, where “a” is the regression line’s intercept 

and “b” its slope. Each of these variables is associated to a 95% confidence interval that 

will explain if their value differ from zero for intercept and value one for slope only by 

chance. If the 95% CI for the intercept includes “0”, it can be concluded that there is no 

significant difference between obtained intercept value and value zero and there is no 

constant difference between two methods. In the same manner, if the 95% CI for “slope” 

includes “1”, it can be concluded that there is no significant difference between obtained 

slope value and value one and there is no proportional difference between two methods. 

In such case we can assume both analytical methods of measurement can be used 
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interchangeably. In addition, Passing-Bablok regression requires both variables to be 

linearly related. The test therefore evaluates if a significant deviation from linearity is 

present before beginning analysis (127).  

For both human observers, the relationship of VO2VT with the computerized analysis did 

not differ from linearity, confirming that the data can be used in Passing-Bablok analysis. 

Using V-slope, VO2VT values from human observer 1 were interchangeable with 

computer analysis for controls (the 95% CI for Intercept and Slope include “0” and “1” 

respectively) but not for patients with COPD (95% CI for Intercept and Slope do not 

include “0” and “1”, respectively). Similar results were obtained using the VEM. In an 

identical manner, observer 2 was found to be interchangeable with computerized analysis 

when evaluating controls, but not COPD patients.  

 

Internal validity 

Intra-observer ICC measured on a subset of 50 patients showed relatively high reliability 

throughout the spectrum of disease severity (see e-table 3). For both observers and for 

both methods of observation, ICCs across disease severity groups were all higher than 

0.81. Although ICCs remained high across disease subgroups, there is a small tendency 

for agreement between observers to get lower with disease progression.
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e-table 1 

 
e-table 1. Passing-Bablok regression analysis comparing computer analysis to each human observers.  

 
V-slope VEM 

Intercept A 95% CI Slope B 95% CI Deviation from 
linearity? p Intercept A 95% CI Slope B 95% CI Deviation from 

linearity? p 

Controls 

Observer 1 vs 
computer analysis 149 -546 – 675 0.99 0.53 – 1.77 No 0.89 -313 -1744 – 554 1.41 0.57 – 2.73 No 0.42 

Observer 2 vs 
computer analysis 299 -424 – 729 0.89 0.47-1.61 No 0.78 -282 -1652 – 603 1.43 0.56 – 2.52 No 0.42 

COPD 

Observer 1 vs 
computer analysis -391 -678 – -161 1.43 1.14 –1.80 No 0.13 -697 -1153 – -431 1.71 1.36 – 2.16 No 0.08 

Observer 2 vs 
computer analysis -481 -731 – -275 1.60 1.34 –1.91 No 0.64 -1008 -1498 – -594 1.99 1.53 – 2.53 No 0.33 
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e-table 2 

e-table 2. Mean (SD) inter-observer difference in HRVT according to the use of beta-
blockers 
 V-slope VEM 

BB No BB p BB No BB p 
Controls* 2 (-) 2 (1) 0.94 2 (-) 2 (2) 0.96 
All COPD 7 (4) 6 (3) 0.41 7 (4) 7 (3) 0.95 
GOLD 1 3 (1) 3 (2) 0.73 4 (2) 4 (1) 0.74 
GOLD 2 3 (1) 5 (2) 0.06 7 (1) 6 (2) 0.52 
GOLD 3 7 (2) 6 (3) 0.48 7 (3) 8 (2) 0.15 
GOLD 4 11 (3) 9 (2) 0.29 10 (4) 10 (2) 0.64 
Data presented as mean (standard deviation).  
P values refer to comparisons between BB and No BB for each severity subgroup, using independent-
samples t-tests. 
*=only 1 subject with BB in this group. 
HRVT=heart rate at the ventilatory threshold; BB=beta-blockers; VEM=ventilatory equivalent method; COPD=chronic 
obstructive pulmonary disease; GOLD=Global initiative for Obstructive Lung Disease. 
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e-table 3 
e-table 3 Intra-observer reliability in the determination of the VO2VT (ml/min) using two methods, on a subset 
of 50 patients. 
 Intra-class correlation - observer 1 Intra-class correlation - observer 2 

V-slope VEM V-slope VEM 
Controls 0.99 0.99 0.99 0.99 

All COPD 0.92 0.91 0.92 0.89 
GOLD 1 0.95 0.96 0.99 0.94 
GOLD 2 0.89 0.90 0.93 0.84 
GOLD 3 0.91 0.87 0.90 0.86 
GOLD 4 0.86 0.82 0.83 0.81 

GOLD = Global initiative for Obstructive Lung Disease. HRVT = heart rate at the ventilatory threshold. VEM = ventilatory equivalent method. VO2VT = 
oxygen uptake at the ventilatory threshold. 
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e-figure 1 
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