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ABSTRACT 

Use of the LDPC Codes Over the Binary Erasure Multiple Access Channel 

Sareh Majidi Ivari. 

Concordia University, 2017 

 

Wireless communications use different orthogonal multiple access techniques to access a 

radio spectrum. The need for the bandwidth efficiency and data rate enhancing increase with the 

tremendous growth in the number of mobile users. One promising solution to increase the data 

rate without increasing the bandwidth is non-orthogonal multiple access channel. For the 

noiseless channel like the data network, the non-orthogonal multiple access channel is named: 

Binary Erasure Multiple Access Channel (BEMAC). To achieve two corner points on the 

boundary region of the BEMAC, a half rate code is needed. One practical code which has good 

performance over the BEMAC is the Low Density Parity Check (LDPC) codes. The LDPC 

codes receive a lot of attention nowadays, due to the good performance and low decoding 

complexity. However, there is a tradeoff between the performance and the decoding complexity 

of the LDPC codes.  In addition, the LDPC encoding complexity is a problem, because an LDPC 

code is defined with its parity check matrix which is sparse and random and lacks of structure.  

This thesis consists of two main parts. In the first part, we propose a new practical method to 

construct an irregular half LDPC code which has low encoding complexity. The constructed 

code supposed to have a good performance and low encoding complexity. To have a low 

encoding complexity, the parity check matrix of the code must have lower triangular shape. By 

implementing the encoder and the decoder, the performance of the code can be also evaluated. 

Due to the short cycles in the code and finite length of the code the actual rate of the code is 

degraded. To improve the actual rate of the code, the guessing algorithm is applied if the Belief 

Propagation is stuck. The actual rate of the code increases from 0.418 to0.44. The decoding 

complexity is not considered when the code is constructed. 

Next in the second part, a regular LDPC code is constructed which has low decoding 

complexity. The code is generated based on the Gallager method. We present a new method to 

improve the performance of an existing regular LDPC code. The proposed method does not add 
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a high complexity to the decoder. The method uses a combination of three algorithms: 1- 

Standard Belief Propagation 2- Generalized tree-expected propagation 3- Guessing algorithm. 

The guessing algorithm is impractical when the number of guesses increases. Because the 

number of possibilities increases exponentially with increasing the number of guesses. A new 

guessing algorithm is proposed in this thesis. The new guessing algorithm reduces the number of 

possibilities by guessing on the variable nodes which are connected to a set of check nodes. The 

actual rate of the code increases from 0.41 to 0.43 after applying the proposed method and 

considering the number of possibilities equal to two in the new guessing algorithm.  
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1.Chapter 1  Introduction 
 

 

In wireless communications and mobile networks, channel access method allows several 

terminals connecting to the same spectrum or transmission medium. Channel access method has 

different types like FDMA, TDMA, and CDMA etc. For example, in frequency division multiple 

access (FDMA) a frequency spectrum is divided into several bands and each band is allocated to 

one user. Therefore, users use separated frequency bands and there is no interference between 

them. In time division multiple access (TDMA) the whole frequency spectrum is allocated to a 

user at each time and one user transmits and uses the whole channel at any time. Therefore, there 

is no interference between users. In all channel access methods, users transmit over the 

orthogonal channels, therefore, there is no interference between them. However to increase the 

bandwidth efficiency, users can transmit over the non-orthogonal channels. The existing channel 

can be exploited between sources and the destination. This channel is multiple access channel 

(MAC). This channel is not any more orthogonal. The MAC increases the channel capacity and 

the bandwidth efficiency and finally results in increasing the transmission rate. If the channel is 

noiseless, therefore the MAC is named Binary Erasure Multiple Access Channel (BEMAC). The 

BEMAC is a channel which is simple to analyze. After the emergence of the internet, the 

BEMAC is promoted onto the class of “real world” channel. To model data networks, binary 

erasure multiple access channel is used.  

Achieving the capacity of the binary erasure multiple access channel is not possible without 

using forward error correcting codes. Turbo codes and low-density parity-check (LDPC) codes 

and also rate less codes like the Raptor codes are good candidates for the BEMAC. They have 
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good performance and achieve rates near the channel capacity 𝐶. Due to the randomness of the 

LDPC codes and their simple and fast decoding and they receive a lot of attention nowadays and 

they are more popular than the Turbo codes.  Also, the complexity of the Raptor code is higher 

than the LDPC codes and the LDPC codes are one of the main blocks of the Raptor codes. 

Therefore, the LDPC codes are selected in this thesis to evaluate their performance and encoding 

and decoding complexity. 

There are two different types of LDPC codes: regular and irregular. The performance of the 

irregular LDPC codes is higher than regular ones.  Although, the LDPC codes are popular and 

have the good performance over the BEC however, there are some disadvantages of the LDPC 

codes. One of the disadvantages of the LDPC codes is its encoding complexity which is not time 

linear.  Also, there is a tradeoff between the performance of LDPC codes and their encoding and 

decoding complexity. In this thesis we investigate the LDPC codes in terms of the encoding and 

decoding complexity and also the performance.  

In this thesis an irregular half rate LDPC code is constructed. The generated code has low 

encoding complexity, because the shape of the parity check matrix of the code is lower 

triangular. The actual rate of the code is less than one half, due to the limited length of the code 

and short cycles. The actual rate of the generated irregular LDPC code can be increased by 

applying the guessing algorithm. If we fix the number of guesses at one, then, the actual rate can 

increase from 0.418 to 0.44. Next, a regular Gallager half rate LDPC code with low decoding 

complexity is generated. The theoretical threshold of the code is 0.429. But, the actual rate is less 

than 0.429. In this thesis with proposing a new decoding method the performance of the regular 

LDPC code can be increased. By applying this method, the performance of the regular code 

increases from 0.41 to 0.43. The decoding complexity does not increase highly. 
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In this Chapter, we present the motivation, the problem statement, the literature review, the 

contribution of the thesis and finally the thesis outline. In the next Chapter, we present the 

background of the encoding and decoding of LDPC codes over the binary erasure channels. 

Also, in Chapter 2, the techniques to generate the LDPC parity check matrix and the decoding 

algorithms will be investigated. In Chapter 3 an irregular LDPC code will be constructed. The 

constructed code has low encoding complexity. To improve the performance of the code the 

guessing algorithm will be used after the decoding. In Chapter 4, the performance of a Gallager 

LDPC code will be evaluated. The code has low decoding complexity. A method will be 

presented in this chapter to improve the performance of a regular LDPC code without increasing 

the decoding complexity highly. 

1.1 Motivation 

In 1948, Shannon with his paper “A mathematical theory of communication” opened up a very 

important new field for modern digital communications, called information theory [1]. In his 

famous channel coding theorem, he showed that information can be transmitted reliably, i.e., 

with an arbitrarily small probability of error, across a given channel at any rate below the 

channel capacity. The construction of the practical capacity-achieving codes has been the main 

goal of the coding theory. Shannon analyzed the channel capacity for a single user scenario. 

However, a channel is usually share by more than one user. Actual communication systems are 

consisting many networks links. In 2-user MAC when one source is using the channel, another 

source as an interfering source can use the same channel. At the destination, messages of both 

sources can be detected and decoded correctly. Figure 1 shows the MAC in wireless network. In 

this channel each source has independent data to transmit to the destination. The destination 
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receives two messages from two sources simultaneously. If we consider the channel noiseless 

then the channel is called binary erasure multiple access channel (BEMAC). Figure 1.2 shows 

system model for 2-users BEMAC. 

 

Figure 1.1. Multiple access channel 

In 2 users-BEMAC, if each sources transmits equally likely binary data {0,1}, the destination 

received the combined stream. The combined stream is {0,1,2} with probability of 

{0.25,0.5,0.25} respectively. It means that if the source one sends 0 with probability of 0.5 and 

the second source also sends 0 with probability of 0.5, then the destination receives (0 + 0 = 0) 

with probability of 0.25. When the destination receives {0 𝑜𝑟2}, it knows that both sources have 

sent 0 𝑜𝑟 1 respectively. But, if one source sends 0 and the other one sends 1 the destination 

receives 1 and it does not know which one sent  0 and 1. The destination considers this bit as 

erasure. On the average, half of the time the received message is erased or lost. To solve this 

problem, a code of half rate is required to determine erased bits in the destination. Shannon 

shows that the capacity of BEMAC is 1.5. Figure 1.3 shows Shannon capacity region of the 

BEMAC.  
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If the main or primary source sends at rate one and the other one as the secondary or interfering 

source sends at rate of half, then the corners of the capacity region is achieved. It means that the 

main transmitter should not change its transmission rate and also its transmission power.  

Therefore, it sends at rate one. The interfering source has to change its transmission rate and 

sends at half rate. Because, in BEMAC half of the time received steam is lost or erased. 

Therefore, if the secondary source encodes its data with a code of rate half, then the receiver can 

decode the received stream if half of it is erased. The receiver at destination has to detect two 

signals and decode each signal successfully. It uses successive decoding. In successive decoding, 

the receiver first decodes the message of the second transmitter with half rate coding, then 

substrates it from the received stream to determine the message of main source. Two corner of 

the capacity region are achieved by this scheme and the other points can be achieved with time 

sharing. 

S1

+

D

S2

 

Figure 1.2. System model for MAC 
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0.5

 

Figure 1.3. Capacity region for binary erasure multiple access channel 

A lot of work has been done to achieve the Shannon capacity of MAC. Jabbari Hagh et al. in [2] 

showed that the capacity is achievable if one source encodes at rate one and the other one 

encodes at rate of one half using Rateless codes like Raptor code. The destination performs 

successive interference cancellation and the data for both sources can be recovered and also, two 

corners of the capacity region are achieved. Khoueiry in his thesis [3] proposed a new scheme 

for achieving the capacity. The proposed scheme uses joint decoding. In the proposed scheme 

two sources encode their data and joint decoding is used at the destination. Low-Density Parity-

Check codes are used. Both sources can encode their data at any rate and different points of the 

capacity region are reached. If two sources use codes of half rate then the middle point of the 

capacity region is achieved. All of these works improve the capacity of the MAC to achieve near 

the Shannon capacity. Another way for achieving the Shannon capacity is to improve the 

performance of the code in the MAC. Low-Density Parity-Check codes are good candidate over 

the BEMAC, due to their good performance over the binary erasure channel.  
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1.2 Problem statement 

Low-Density Parity-Check (LDPC) codes were introduced by Gallager in the early 1960’s [4]. At 

that time, computers could not simulate codes with large length. Hense, LDPC codes were not 

practical and they were forgotten for several decades. In 1990’s they were rediscovered by D. 

MacKay and Neal [5]. Due to the good performance and simple and fast decoding, they received a 

lot of attentions. LDPC codes show good properties over the Binary Erasure Channel (BEC). 

Therefore, they can be good candidate for BEMAC and achieve near the Shannon capacity. LDPC 

codes utilize iterative decoding algorithms [6]. This class of algorithms is named message passing 

algorithms. One of the important classes of these algorithms is the belief propagation algorithm 

(BP) [6]. BP is a suboptimal decoding procedure, but, approximates near the maximum likelihood 

decoding [6]. LDPC codes are usually easy to decode due to sparseness of their parity check 

matrices. However, due to the randomness of their parity check matrices their encoding is 

complex. Also, there is a tradeoff between complexity of decoder and performance of the LDPC 

codes. 

A significant research has been done for designing LDPC codes with good performance. The 

objective of these works is to determine the pair distribution (𝜆, 𝜌) which yields the best 

performance. These codes are known as performance-optimized codes [7], [8]. The problem with 

these codes is that their decoding complexity. The decoding complexity increases because the 

number of iterations for the convergence of the decoder is large. For some applications when real 

time decoding is needed, decoder would stop after a defined number of iterations. Thus, the 

decoder cannot get to the maximum achievable rate. On the other hand, a part of the research has 

been done to design low complexity LDPC codes. These codes are denoted by complexity-
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optimized codes [9]-[10]. All these optimizations have been done to design a desired LDPC code 

that achieves the best tradeoff between complexity and performance.   

Some works have been done to reduce the complexity of decoder or increase the speed of 

decoding for a given code by improving the iterative algorithms. In [11] Layered Belief 

Propagation L-BP algorithm has been proposed. In [11] standard Belief propagation has been 

modified. In this algorithm the check nodes are divided into subgroups called layers and each 

iteration is broken into multiple sub-iterations. It has been shown that the convergence for 

decoding LDPC codes improves by using a simple and efficient layering strategy.  

Authors in [12] took a different approach. Instead of trying to find a good degree distribution, the 

performance of an existing code have been improved over the binary erasure channel (BEC). In 

[12] for the first time, the performance of an existing code was improved by guessing on 

unknown variable nodes for short-length LDPC codes. Authors in [12] proposed three algorithms, 

algorithm A is the same as the standard belief propagation. In algorithm B, if algorithm A fails, it 

makes some assumption on some of the erased bits, check-sum determines if guesses are correct 

or not. Algorithm B guesses on the variable nodes with higher degree. The drawback of this 

method is that the complexity of decoder grows exponentially with increasing the number of 

guesses and there is a limitation on the number of guessing variable nodes and also it has the 

probability of error greater than the maximum likelihood. For reducing the complexity and 

improving the probability of error, they proposed algorithm C. In algorithm C, the decoder defines 

a set of equations as basic equations and if and only if the set of basic equations have a unique 

solution then the received codeword is maximum likelihood decodable.  

When iterative algorithms like Belief Propagation are used for decoding of LDPC code, density 

evolution is used to determine the performance of LDPC codes over BEC [14].  density evolution 
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uses asymptotic analysis that assume that the Tanner graph of a LDPC code is cycle free and also 

code length is infinite [14]. The actual rate of a LDPC code is lower than the Maximum a 

posteriori (MAP) decoder, due to the cycle in the Tanner graph and also the LDPC code length 

being finite. In [13] Maxwell decoder is presented to achieve MAP capacity when BP gets stuck 

i.e. when there is no more check nodes of degree one and there is still erased bits in the codeword. 

In this situation, Maxwell decoder makes assumption on one or more remaining erased bits, until 

a check node of degree one is created. Then, BP runs. The process of guessing is repeated until all 

the erased bits are recovered successfully. The check sums determine whether the assumptions 

made were correct or not. If check sums are zero, then our assumptions are correct otherwise the 

decoder has to make another assumption.  Maxwell decoder is not practical because the 

complexity of decoder grows exponentially with increasing number of guesses. Maxwell decoder 

is a powerful tool to derive the LDPC codes MAP capacity and its performance [21]. 

Authors in [15] proposed Tree-Structure Expected Propagation (TEP) algorithm. TEP works as 

Maxwell decoder. But, its complexity is the same as BP algorithm. TEP in each iteration removes 

one check node of degree two and one of the variable nodes connected to it. If two variable nodes 

connected to a check node of degree two were also connected to a check node of degree three, 

then a check node of degree one is released. Then, BP can continue decoding. In [16], Authors 

proposed Generalized TEP (GTEP) algorithm. GTEP removes one check node and one variable 

node in each iteration. TEP is a special case of the GTEP. In this paper [16], the authors proposed 

that at the beginning it is better to put some constraints on the structure of the matrix to improve 

performance of GTEP decoder.   

The objective of a lot of research on LDPC codes is either finding a good pair distribution that 

achieves better performance and achieves near Shannon capacity with complexity as low as 
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possible or try to improve the performance of existing codes without adding higher complexity. 

The complexity of the LDPC codes is the sum of the complexity of encoder and decoder. The 

complexity of LDPC decoder is related to the number of ones in the parity check matrix. The 

complexity of LDPC encoder is related to the gap in the parity check matrix [17]. In [17] greedy 

algorithms for transforming the parity check matrix to a lower triangular matrix are proposed.  

 Related works 

1.3.1 LDPC encoder 

Low-Density Parity-Check (LDPC) codes received a lot of attention due to the fast and simple 

decoding. LDPC codes have good performance with small probability of error. The problem of 

the LDPC codes is their encoding complexity. A LDPC encoder has complexity quadratic in the 

block length. It means for a code of length 𝑛, the encoder has a complexity of 𝑛2. However, 

Turbo codes can be encoded in linear time. A lot of work has been done for reducing the 

complexity of the encoder.  

In [18] and [19] instead of using bipartite graph, they use cascade graph. In this method each stage 

is cascade to the next one and each stage acts like a small code which the size of these sub codes 

is considerably smaller than the overall code. According to the density evolution, the performance 

of the code degrades if the code length decreases.  The drawback of this method is reducing the 

performance of the overall LDPC code, but, results in the real time encoding.  

For decreasing the encoding complexity, the parity check matrices in LDPC codes have to be 

lower triangular. Authors in [20] proposed a new method for generating parity check matrices that 

are lower triangular. In this method, for generating a parity check matrix, two constraints have 
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been applied. One of them is the degree constraint and the other is the constraint for having a 

lower triangular matrix. Generally, this method results in performance reduction. 

In [22] proposed iterative encoding.  The proposed algorithm is based on an iterative matrix 

inversion technique. The proposed algorithm can find the value of parity check bits if and only 

if (𝐻𝑃⨁𝐼) 
𝑘 = 0. A parity check matrix which satisfies this condition can be used in this method. 

This method can results in loss of performance in general. 

Richardson et al. [17] proposed greedy algorithms for making an existing parity check matrix to 

a lower triangular matrix. Richardson proved that greedy algorithms don not change the degree 

distributions and just transform a matrix to lower triangular. Greedy algorithms with column and 

row permutation change the parity check matrix to lower triangular. In [17], authors showed that 

the complexity of encoder for a LDPC matrix with gap of 𝑔 is Ο(𝑛 + 𝑔2). They proved that the 

minimum achievable gap for a regular a (3,6) LDPC code is 0.017𝑛, 𝑛 is the code length. They 

proved that the expected gap is of order less than √𝑛 which results in real time encoding, 

because the encoding complexity is Ο(𝑛 + √𝑛
2
) = Ο(2𝑛). 

1.3.2 LDPC decoder 

Low density parity check (LDPC) codes constitute a class of the powerful codes. Based on 

traditional sum-product and max-product algorithms, various modified algorithms are used to 

improve the performance of LDPC codes in terms of error rate, complexity and latency.  Large 

size of LDPC codes leads to large complexity in both encoding and decoding LDPC codes. This 

is why LDPC codes were ignored for a long time.  

Tanner graph were introduced to describe linear block codes [21]. The graphical representation 

such as factor graphs promotes the trend of iterative processing in signal processing [18]. The 
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decoder will pass messages between variable nodes and check nodes iteratively. Iterative decoder 

decreases the complexity and makes the implementation of LDPC codes practical. For LDPC 

decoding when hard decision is applied, decoder will decode the codeword iteratively until a legal 

codeword is found. LDPC decoder will not guarantee the result is the true codeword that was sent 

from the transmitter. But it will make sure it is a legal codeword.  

Message passing algorithm is an iterative algorithm and is a powerful way to compute the 

marginal probabilities in a graph. Good LDPC codes should avoid short cycles because short 

cycles will lead to bad performance. When the factor graph is cycle-free, message passing 

algorithm is guaranteed to converge and offer an optimal result. However, when the graph 

contains cycles, it may converge to a local optimum or even fail to converge [19]. 

The two main message passing algorithms are sum-product algorithm (or belief propagation 

algorithm or probability propagation algorithm) and max-product algorithm (or min-sum 

algorithm). Sum-product decoder is an iterative process and aims at computing the sum-marginal. 

In the message passing algorithms, messages are often computed in the logarithmic domain. Max-

product decoder (MPD) aims to compute the Max-marginal.  

Another way for decoding the LDPC code is linear programming. The goal of linear 

programming decoder is to find the maximum likelihood codeword [20]. The complexity grows 

exponentially when the degree of check nodes increases. It is too high to implement for large size 

LDPC codes. It is optimal for small length codes. 

1.3 Contribution of the thesis 

In thesis, we consider all challenges in constructing an LDPC code i.e., the complexity of encoder 

and the decoder and also their performance. We generate regular and irregular LDPC codes. Since 
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an irregular LDPC code has a better performance, an irregular half rate LDPC code with low 

encoding complexity is generated. To have low encoding complexity LDPC code, the parity 

check matrix of the code must be in the lower triangular shape. In this thesis we propose a method 

to generate a lower triangular matrix. The method keeps the density of the LDPC parity check 

matrix uniform. The gap in the lower triangular matrix can be any desired value. In the method 

three constraints in constructing the LDPC code is applied. One constraint is the degree 

distribution and another one is for the gap. The last constraint is for the density of the parity check 

matrix. The proposed method considers all these constraints and the constructed code has low 

encoding complexity and good performance. The low complexity encoder and the decoder are 

implemented. The performance of the code is evaluated and to increase the performance of the 

code the guessing algorithm is added. We apply the guessing algorithm on this code and 

investigate the performance improvement. Therefore, a half rate LDPC code with low encoding 

complexity and good performance is constructed. Next, we want to generate a half rate code 

which has low encoding complexity and improve the performance of the code. The ensemble 

(3,6) is selected. This ensemble has the best performance and the lowest complexity among the 

other ensembles.  

In this thesis we generate a regular LDPC according to the ensemble (3,6). The parity check 

matrix of this code is not lower triangular. Hence, the complexity of encoder is not low. However, 

the complexity of the decoder is low which and the theoretical threshold of the code is 0.429. The 

Performance of the code is lower than irregular LDPC codes. We propose a new method to 

improve the performance of the existing regular LDPC code. The proposed method improves the 

performance of existing LDPC codes without increasing the decoding complexity dramatically. It 

has been done by applying three decoding algorithm efficiently which results in the performance 
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improvement while keep the decoding complexity low. Applying GTEP and guessing algorithm 

can improve the performance of standard BP. The complexity of GTEP is the same as iterative 

decoding. However, the complexity of the guessing algorithm is not as low as BP and GTEP. The 

complexity of the guessing algorithm increases with increasing the number of guesses. Running 

the GTEP before the guessing algorithm decreases the complexity of the guessing algorithm. In 

this thesis to reduce the complexity of guessing algorithm, instead of guessing on any unknown 

random variable node, the decoder guesses on variable nodes connected to a check node. The 

number of possibilities reduces by half. 

1.4 Thesis outline 

In Chapter 2 we review the required background material. In this chapter, the different 

representation of the LDPC codes and various method of constructing these codes are studied. 

The methods of decoding from the iterative decoding algorithms to the maximum likelihood 

decoding are discussed. Next, the performance of the iterative decoding algorithms is evaluated.  

In Chapter 3, after investigating parameters which affect the encoder complexity, we propose a 

method to generate an irregular half rate LDPC parity check matrix that is lower triangular. In 

the proposed methods in addition to the degree distribution constraint, two other constraints are 

applied to have a lower triangular shape matrix and keep the density of the matrix uniform. The 

performance of the generated matrix is evaluated in this chapter. Also, to improve the 

performance of the code the guessing algorithm is applied. Simulation results are presented in 

this chapter.  

In Chapter 4, a regular half rate LDPC code is generated. The LDPC code has low decoding 

complexity. We present a new decoding algorithm that increases the actual rate of an existing 
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LDPC code. The main advantage of the proposed scheme is that it improves the performance of 

an LDPC code without changing the degree distribution and increasing decoding complexity 

considerably. The proposed algorithm uses a combination of three algorithms: 1- standard belief 

propagation 2- Generalized tree-expected propagation 3- guessing algorithm. If the decoder 

cannot recover the erasure in the received codeword at the first step of the algorithm, then the 

next step is run, until, all the erased bits are solved. The guessing algorithm at the third step 

increases the decoding complexity. Therefore, in this chapter some ideas to improve the actual 

rate and reduce the complexity of the guessing algorithm is investigated. 

Finally, in Chapter 5, we conclude our work and offer suggestions for future research. 
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2.Chapter 2  Background 
 

 

 

2.1 Introduction 

In this chapter we will discuss about the background material required in the rest of thesis. First 

we will overview different presentation of Low-Density Parity-check (LDPC) codes. Then we 

will take a look at the structure of LDPC codes which is needed in constructing an LDPC code 

and also we talk about ways to construct an LDPC code. Then, we will talk about the LDPC 

decoding algorithms. Since LDPC codes use message-passing algorithms, the analysis of their 

performance is different from the linear block codes.  Therefore, the performance and the 

analysis of the LDPC codes will be presented and at the end we will conclude the chapter. 

2.2 The Representation of LDPC codes 

In this section, first we talk about matrix, graphical and polynomial representation methods of 

LDPC codes. The advantages of the LDPC codes are also presented. These representation 

concepts help in the designing LDPC codes and analyzing the performance of the code.  

2.2.1 The Matrix Representation 

Linear channel error correction codes are expressed by both the generator matrix 𝐺 and the parity 

check matrix 𝐻, since there is: 

𝐺. 𝐻𝑇 = 0                                                          (2.1) 
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There are some linear block codes which are defined just by parity-check matrix 𝐻. One 

important code of this class is Low-Density Parity-check (LDPC) codes. LDPC codes are 

specified by the parity check matrix 𝐻. The 𝐻 matrix should be very sparse, i.e., the number of 

ones or nonzero elements in the parity check matrix 𝐻 should be much smaller than the total 

elements in the 𝐻 matrix. Because of this, this class of linear block codes are named Low-

Density Parity-check codes. The dimension of the parity-check matrix 𝐻 is 𝑚 × 𝑛. Where, 𝑛 is 

the length of the codeword and 𝑚 is the number of parity bits. The 𝐻 matrix has 𝑛 columns and 

𝑚 rows. The design rate 𝑅 of the code, which also called design rate, is: 

𝑅 =  
𝑛−𝑚

𝑛
                                                          (2.2) 

In this thesis, the field is considered Galois field. Therefore, the elements in the 𝐻 matrix are 

either 0's or 1's. A codeword in linear codes is the null space of the parity check matrix 𝐻: 

�⃗�𝐻𝑇 = 0                                                          (2.3) 

Where �⃗� = [𝑣1, 𝑣2, … , 𝑣𝑛] is a 𝑛 − 𝑡𝑢𝑝𝑙𝑒 codeword and 𝑣𝑖𝜖{0,1}. In every Gallager LDPC code, 

the parity check matrix H has the following structural properties: 

1- Each row consists of 𝜌 ones.  

2- Each column consists of 𝜆 ones. Properties 1 and 2 determine degree distribution of 

LDPC codes. 

3- The number of ones in common between any two columns is no longer than 1. This 

property guarantees that the matrix is cycle free. 

4- The code is random and has no structure. 
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5- The length of LDPC codes is much larger than  𝜌 and 𝜆. This property ensures the 

sparseness of 𝐻. 

According to the definition of the parity check matrix, there is a cycle in the parity check matrix 

when the number of ones in common between any two columns is greater than one. Cycles in the 

LDPC codes are destroying and cause the degradation in the code performance. We will explain 

the cycle in LDPC codes by using the graph representation in the next section. 

2.2.2 The Bipartite Representation 

Tanner for the first time represented an LDPC code by using bipartite graph in 1981 [21]. After 

that the representation of the LDPC codes using bipartite graph is called the Tanner graph. A 

Tanner graph is used to demonstrate the iterative decoding process of an LDPC code. 

A Tanner graph is composed of a set of nodes or vertices and a set of edges. The nodes are 

grouped into two subgroups: variable nodes and check nodes. Edges are used to connect nodes of 

these two subgroups together. An edge can only connect two nodes of two different subgroups in 

the Tanner graph. When two nodes are connected by an edge in the Tanner graph, we say that 

this edge is incident with these two nodes. The degree of a node is the number of edges that are 

connected to it. The Tanner graph can be derived from the parity check matrix 𝐻 with 𝑚 rows 

and n columns easily. The graph can be induced by using the following rules: 

1- The m rows corresponding to the set of parity check constraints form the m check nodes 

(or check sum vertices), denoted by 𝑐1, … , 𝑐𝑚 while the n columns corresponding to the 

codeword bits form n variable nodes (or code bit vertices), denoted by 𝑣1, … , 𝑣𝑛.  
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2- There is an edge between a check node and a variable node if and only if the element in 

H is equal to one. 

According to the above rules, we can obtain two conclusions. The first conclusion is that the 

degree of a check node (or variable node) is equal to its corresponding row (or column) weight. 

The second one is that there is at most one edge between any two nodes. A cycle in a Tanner 

graph is referred to as a closed loop. In the Tanner graph, the length of a loop is the number of 

the edges in the loop. The length of the shortest cycle in the graph is called the graph’ girth. In 

the LDPC codes the cycle of length four is avoided strongly. 

Based on these rules, the Tanner Graph of the following matrix H can be induced, which is 

shown in Figure 2.1. In the Tanner graph, the variable nodes are shown by circles and the check 

nodes by squares. 

This example shows a Gallager LDPC code. The number of ones in each row and column is four 

and two, respectively. Therefore, the rate of the code is half.  In Figure 2.1, the four green edges 

indicate a cycle. In fact, this cycle is four which is the shortest cycle. Therefore, the girth of the 

graph is four. The girth plays an important role in an LDPC code. The girth affects the 

performance in the iterative decoding algorithms. In constructing LDPC codes, large girths are 

always desired. The role that the girths play in the LDPC codes will be discussed in detail when 

we describe the Belief Propagation. 
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Figure 2.1. The Tanner graph for the parity check matrix of (2.6) 

2.2.3 The Degree Distribution Polynomial 

Another representation of the LDPC codes is the degree distribution polynomial. The degree 

distribution polynomials were introduced by Richardson to represent an ensemble of LDPC 

codes combined with the Tanner graph [31]. The degree distribution polynomial is used to 

specify the degree distributions of the variable nodes and check nodes in Tanner graph or the 𝐻 

matrix by using the following format [14], [31-32]: 

𝜆(𝑥) = ∑ 𝜆𝑖
𝑑𝑣
𝑖=2 . 𝑥𝑖−1 for variable nodes                                 (2.4) 

𝜌(𝑥) = ∑ 𝜌𝑖
𝑑𝑐
𝑖=2 . 𝑥𝑖−1 for check nodes                                    (2.5) 

Where 𝑑𝑣and 𝑑𝑐 are the maximum degrees of the variable nodes and check nodes respectively; 

𝜆𝑖 and 𝜌𝑖 denote the fraction of all edges incident to variable nodes with degree 𝑖 and check 

nodes with degree 𝑗. Based on a pair of degree distribution polynomials and a given code length, 

we can calculate some parameters of this given LDPC code. We can see that the degree 

distribution polynomials describe an ensemble of LDPC codes, but not a specific LDPC. 

However, this definition is very helpful in expressing a code’s structure and in generating an 

LDPC code, which will be demonstrated in the next section. However, the Tanner graph and the 

𝐻 matrix describe a specific LDPC code.  
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2.3 Construction of the LDPC codes 

The selection of a particular Tanner graph or a parity check matrix 𝐻 from the ensemble is an 

issue in constructing a good LDPC code. At a particular block lengths and degree distribution 

pair, certain Tanner graphs (or certain parity check matrices 𝐻) have the best performance 

among all the other graphs. Due to the distribution of edges in the bipartite graph or ones in the 

parity check matrix which results in the larger girth.  Thus, the problem of the code construction 

in the LDPC codes is choosing a Tanner graph (or a matrix) among all the possible Tanner 

graphs (or matrices). The selected graph must satisfy all the constraints of the code and also 

provides a good performance under iterative decoding like belief propagation algorithm.  

Several approaches to constructing a good LDPC code have been proposed. It is worth to 

mention that the related graph to a good LDPC code should have large girth and fewer cycles 

and fewer stopping set. We will introduce some methods for constructing LDPC codes in this 

section. In the next chapter we will talk about the proposed constructing method.  

2.3.1 Pseudorandom codes 

2.3.1.1 Gallager codes 

Gallager in his thesis proposed LDPC codes in the 1960s [4]. Gallager in his thesis proposed a 

general method to construct pseudo-random regular codes. Also, he investigated the performance 

of LDPC codes.  In his thesis he just talked about regular LDPC codes in which each row has 𝜌 

ones and each column has 𝜆 ones. For constructing a regular LDPC code, he proposed to 

construct sub-matrices 𝐻1, 𝐻2, … , 𝐻𝜆. 
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[

𝐻1
𝐻2
⋮
𝐻𝜆

]                                                                  (2.6) 

The sub-matrices have the following structure properties: 1- every row of each sub-matrix has 𝜌 

ones but every column of each sub matrix has a single one. 2- The number of ones in each sub-

matrix is: 𝜌 ×
𝑚

𝜆
. 3- The other submatrices are the column permutations of the first sub-

matrix 𝐻1. 4- In the first sub-matrix 𝐻1, for 1 < 𝑖 <
𝑚

𝜆
, the 𝑖th row of  𝐻1 contains 𝜌 ones in 

columns (𝑖 − 1)𝜌 + 1 to 𝑖𝜌. For example, the ensemble (12,3,6) is given; the 𝐻 matrix is given 

as follow: 

𝐻 =

[
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                             (2.7) 

The parity-check matrix generated by the above rules is called Gallager parity-check matrix or 

Gallager code. The Gallager construction method does not purposely avoid forming the cycles of 

length four. Therefore, the Gallager matrix may contain these kinds of cycles which will severely 

degrade the performance of iterative decoding. In order to improve the performance of a 

Gallager code, we should try to eliminate the cycles with length four, i.e., to avoid more than one 

1s in any two rows or two columns in the parity-check matrix H when constructing H. 

2.3.1.2 Mackay codes 

Another class of pseudo randomly LDPC codes are Mackay codes, which are presented by 

Mackay in 1997 [5]. In the Mackay method for generating LDPC codes the parity check matrix 
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is constructed column by column. New columns with appropriate weight randomly generated 

and added to the matrix until appropriate matrix with predefined row distribution is constructed. 

If the desire matrix is not generated, then the whole part of the matrix or partially is reset and the 

process restarted.  In addition to the row distribution, another constraint has to be checked. The 

constraint is the cycle of length 4. Also, at each column placement the short cycles has to be 

checked. The complexity of generating codes increases as longer cycles are considered. 

2.3.2 Random codes 

Mackay and Gallager method for generating LDPC codes are not fully random. Also, 

construction of the code is based on the parity check matrix. The random code construction 

approach has been presented in [14] and [23]. In the random method is based on the bipartite 

graph. In the random process, an appropriate number of sockets for each variable node and check 

node are set. A random interlivear determines the connection between two types of sockets 

(variable node and check node). Finally, the graph has to be checked. Checking the graph is 

performed to ensure that randomly graph satisfies the basic constraints for designing LDPC 

codes. One of constraints is that there should be at most on connection between any variable 

node and check node pair. Another constraint is to check the cycles of short length.  If any of the 

constraints is not satisfied the graph is reset and reconstructed. The first constraint grantees that 

the graph satisfying the design rules and parameters. The second constraint improves the 

structural properties and the performance of the code. 
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2.3.3 Structured LDPC codes 

2.3.3.1 Quasi-cyclic LDPC Codes  

Quasi-cyclic LDPC codes have the main characteristics of both cyclic codes and low-density 

parity-check (LDPC) codes. The main characteristic of the LDPC code is their performance and 

for the Quasi-cyclic codes is their structured which results in low encoding complexity. 

Therefore, Quasi-cyclic LDPC codes achieve good performance while exploiting the structure of 

Quasi-cyclic codes for reducing the encoding and decoding complexity.  

Quasi-cyclic LDPC codes are a particular class of Quasi-cyclic codes characterized by parity-

check matrix 𝐻 while the 𝐻 matrix is sparse. Every row in the parity check matrix of Quasi-

cyclic (QC-) LDPC codes is 𝑡 circular shift of the previous row [24]. The implementation of the 

encoder is based on the shift register and results in the low-complexity encoding [33] [34]. 

Therefore, the encoding complexity is related linearly to the block length of the code. In [35]-

[37] demonstrate the algebraic method to construct QC-LDPC codes. 

The structure of the QC-LDPC parity-check matrix 𝐻𝑄𝐶 is as the following: 

𝐻𝑄𝐶 =

[
 
 
 
𝐻1,1
𝐻2,1
⋮

𝐻𝑚′,1

𝐻1,2
𝐻2,2
⋮

𝐻𝑚′,2

⋯
⋯
⋱
…

𝐻1,𝑛′

𝐻2,𝑛′

⋮
𝐻𝑚′,𝑛′]

 
 
 

                                         (2.8) 

According to the equation (2.7), the parity check matrix 𝐻𝑄𝐶 is consist of submatrices 𝐻𝑖𝑗, 

𝑖 𝜖{1,2, … ,𝑚′} and  𝑗𝜖{1,2, … , 𝑛′}. Each submatrix is either a circulant permutation matrix or a 

null matrix. 
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2.3.3.2 Repeat Accumulate Codes 

Repeat Accumulate (RA) codes were discovered by Divsalar et al. in 1998 [30]. It is a class of 

low-density parity-check codes. The construction of the RA code is based on the parity-check 

matrix 𝐻. To have a good insight about RA codes, it is better to start from the encoder of the RA 

code. The encoder of the RA codes works as follow: 

1- The encoder take 𝑘 source bits. 

𝑠1𝑠2𝑠3…𝑠𝑘, 

2- Repeat each bit 𝑘′ times, where 𝑁 = 𝑘′𝑘 bits. 

3- Permute 

4- Accumulate and then transmit. 

The form of the parity check matrix 𝐻 is like: 

𝐻𝑅𝐴 = [𝐻1 𝐻2],                                                         (2.9) 

Where 𝐻2 is the dual-diagonal matrix with one column of weight one: 

𝐻2 =

[
 
 
 
 
1     

1 1    

 1 ⋱   

  ⋱ 1  
   1 1]

 
 
 
 

,                                                     (2.10) 

The reason for the structure of 𝐻2 is for the accumulator in the encoder. There are two types of 

RA codes: 1- regular RA codes, 2- Irregular RA codes. The 𝐻1 matrix determines that the code is 

regular or irregular. In the regular RA code, the 𝐻1 matrix is low density and all columns have 

the same weight and the weight is equal to the repetition of the sequential encoder. Also, the 
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weight of all rows is one. For the irregular version of the regular RA which named the Irregular 

Repeat Accumulate (IRA) class of codes, the column weights of 𝐻1 vary and correspond to a 

variable repetition code and row weights correspond to the combined inputs to the accumulator 

represented by 𝐻2. In both case, the position of the entries in 𝐻1 define the interleaver in the 

sequential view of the code. Figure 2.2 shows the block diagram of systematic encoder of RA 

codes. According to figure 2.2, an encoder consists of a repetition R, interleaver and combiner C 

and generaor polynomial 
1

1+D
. The repetition R defines the column and row weights in the H 

matrix. The pair distribution λ(x), ρ(x) defines the repetition R and combiner C. According to the 

row weight of the matrix H1, the bits emerging from the interleaver are combined with the 

combiner C. The current input and the previous output of that block are simplified with the 

generator polynomial 
1

1+D
.  

 

Figure 2.2. The schematic of the encoder of the RA Codes 

2.4 LDPC codes structures 

In this section, we talk about the structure of Low-Density Parity-Check (LDPC) codes. There 

are two types of LDPC codes: regular and irregular LDPC codes. Gallager’s LDPC codes are 

referred to as regular LDPC codes because of their regular structures in the parity-check 𝐻 

matrices. In the regular LDPC code, the degree of each check node or row is 𝜌 and the degree of 

each variable node or column is 𝜆. The total number of ones in the 𝐻 matrix or the number of 

edges in the Tanner graph is 𝐸, and there is: 
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𝐸 = 𝑛. 𝜆 = 𝑚. 𝜌 → 𝑚 =
𝑛.𝜆

𝜌
                                    (2.11) 

Since, the design rate of a linear code is: 

𝑅 = 1 −
𝑚

𝑛
                                                          (2.12) 

Therefore, by substituting (2.8) in (2.9) the code rate 𝑅 can be computed as: 

𝑅 = 1 −
𝜆

𝜌
                                                         (2.13) 

R is referred as design rate. The rows of the 𝐻 matrix are considered linear independent. Usually, 

independencies among rows of the 𝐻 matrix are not possible. Therefore, the actual rate is lower 

than the design rate. 

The ensemble of a regular LDPC code is described as (𝑛, 𝜆, 𝜌). Where 𝑛 is the length of the code 

and 𝜆 and 𝜌 are the column and row weight, respectively. For example a (𝑛, 2, 4) LDPC code 

refers to a code with variable nodes of degree 4 and check nodes of degree 2. The design rate of 

this code from (2.10) is 
1

2
. In asymptotic analysis of the LDPC codes, if 𝑛 is large enough, the 

average behavior of almost all instances of this ensemble concentrates around the expected 

behavior [12]. Although regular LDPC codes show good performance over the binary erasure 

channels (BEC) but still they show a larger gap to capacity than Turbo codes. The main 

advantage of regular LDPC codes over turbo codes is their better “error floor” and their simple 

and fast decoding.  

Another type of LDPC codes is irregular LDPC codes. If the degree of check nodes and variable 

nodes are not fixed any more, the structure of the LDPC code is called irregular LDPC code. 
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Luby et. al showed that the capacity of the irregular LDPC codes reaches more close to the 

Shannon capacity than the regular one [32]. By designing the irregular LDPC codes carefully, 

LDPC codes perform very close to the capacity.  An ensemble of irregular LDPC codes is 

defined by the degree distribution of its variable nodes {𝜆1, 𝜆2, … , 𝜆𝑑𝑐} and check 

nodes {𝜌1, 𝜌2, … , 𝜌𝑑𝑣}. Where 𝜆𝑖 denotes the fraction of edges incident on variable nodes of 

degree 𝑖 and 𝜌𝑗 denotes the fraction of edges incident on check nodes of degree 𝑗. Another way 

of describing the ensemble of the irregular LDPC code is by the degree distribution polynomial 

using the equations (2.4) and (2.5). The Tanner graph of the irregular LDPC code is presented 

in the terms of the fraction of edges of each degree. In this thesis to define an irregular LDPC 

code, a variable (check) distribution means a variable (check) edge degree distribution. 

Similar to regular codes, it is shown in [42] that the average behavior of almost all instances of 

an ensemble of irregular codes is concentrated around its expected behavior, when the code is 

large enough. Also, the expected behavior of the ensembles converges to the cycle-free case. The 

number of edges in the Tanner graph or the number of ones in a parity-check matrix 𝐻 of an 

irregular LDPC code is 𝐸 and there is: 

𝑛 = 𝐸 ∑
𝜆𝑖

𝑖
= 𝐸 ∫ 𝜆(𝑥)𝑑𝑥

1

0𝑖                                                    (2.14) 

𝑚 = 𝐸∑
𝜌𝑖

𝑖
= 𝐸 ∫ 𝜌(𝑥)𝑑𝑥

1

0𝑖                                                    (2.15) 

Therefore, the design rate of an irregular LDPC code is achieved by substituting (2.14) and 

(2.15) in (2.13): 

𝑅 = 1 −
𝑚

𝑛
= 1 −

∫ 𝜌(𝑥)𝑑𝑥
1
0

∫ 𝜆(𝑥)𝑑𝑥
1
0

                                                   (2.16) 
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As far as the performance of the irregular LDPC codes is better than the regular codes, a lot of 

researches have been done to find irregular LDPC codes which have the best performance. 

Finding a good asymptotically long family of irregular codes is equivalent to finding a good 

degree distribution. A lot of researches have been done for finding the best degree distribution of 

the LDPC codes over the binary erasure channel [25] and [38]. 

2.5 Decoding of LDPC codes 

Decoding over the binary erasure channel (BEC) is a process in which a decoder makes a 

decision on the erased bits to find a codeword that minimizes the probability of error. It means 

that the decoder chooses a codeword that maximizes a posteriori probability (MAP) which is 

called MAP decoding. A MAP decoder tries to find a codeword based on the received codeword 

r such that [29]:  

max
vjϵV

Pr {vj|r}                                                   (2.17) 

In the random codes like Low-Density Parity-Check (LDPC) codes, the code length is large. The 

size of the code set |𝑉| grows exponentially with the size of code length. Therefore, searching for 

a codeword is practically impossible in the LDPC codes with the large code length. Thus, 

another way to find the most likelihood codeword is needed. First we will discuss the maximum 

likelihood decoding of the LDPC codes over the BEC.  
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2.5.1 Maximum Likelihood decoding of LDPC codes over the binary 

erasure channel 

Considering that the codeword 𝑣 is sent and 𝑟 is received then the maximum likelihood decoder 

chooses a codeword from a set of codewords which maximizes the following probability: 

Pr (𝑣|𝑟)                                                       (2.32) 

The maximum likelihood decoding tries to find the closest codeword to the received message. 

The maximum likelihood decoding achieves the MAP solution [39]. The set of codewords for 

LDPC codes is large, due to the large length of the codeword. Therefore, searching for finding a 

codeword takes time and the decoding is not time linear.  

If the transmitted codeword is 𝑣 = (𝑣1, … , 𝑣𝑁) and the received message is 𝑟 = (𝑟1, … , 𝑟𝑁) 

where 𝑣𝑖 ∈ {0,1} and 𝑟𝑖 ∈ {0,1, 𝑒}. e denoted erasure. Then there is [39]: 

𝐻𝑘. 𝑣𝑘
𝑇 = 𝐻�̅�. 𝑣�̅�

𝑇 = 𝐻𝑘. 𝑟𝑘
𝑇 = 𝑧𝑇                                   (2.33) 

Where 𝑘 is the set of known bits in 𝑟, 𝑘 = {𝑖: 𝑟𝑖 ≠ 𝑒}. Similarly, �̅� is the set of erasures 

which �̅� = {𝑖: 𝑟𝑖 = 𝑒}.  𝐻𝑘 and 𝐻�̅� corresponding to the columns of 𝐻 which are known and 

unknown respectively [39]. 𝑧 is the length of known bits. Maximum Likelihood (ML) over the 

BEC sums up to solve the above linear system. If the probability of channel erasure is 휀, then 

according to the weak law of large number: 

| �̅�| = 𝑁(휀 + 𝑜(1))                                         (2.34) 
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Therefore, | �̅�| is the number of erased bits. If and only if the columns of 𝐻�̅� are linearly 

independent then, ML will have a unique answer for the equation (2.34). The equation is a linear 

system with | �̅�| variables.  In the maximum likelihood decoding, the decoder to solve the 

equation (2.34) uses Gaussian elimination. Totally, the complexity of solving the equation (2.34) 

is equal to: 

((1 −  𝑅)𝛽 +  𝛾𝛿) 휀2𝑁3                                         (2.35) 

The value of β and γ are chosen, according to the algorithm is used to solve the equation. The 

first method that reduced the number of operation to perform Gaussian elimination was proposed 

by Stassen.  According to the Stassen method, the number of required operation is 𝑂(𝑁2.81) 

operations [40]. Another method which is the fastest method and impractical is presented in [41] 

and requires 𝑂(𝑁2.376) operation to perform the Gaussian elimination.  Therefore, ML is 

impractical for LDPC codes, due to the large length of the codes. 

In [39] proposed an algorithm for reducing the complexity of ML decoding for LDPC codes over 

the BEC. In the proposed algorithm the complexity of ML decoding remains O(N3). The 

constants are while significantly reduced and the proposed method is a practical method. In [39] 

a simple practical probabilistic algorithm is presented for efficient ML decoding of LDPC codes 

over the BEC. Generally, these algorithms to perform Gaussian elimination can be views as the 

standard iterative decoding algorithm.   

The iterative decoding algorithms like BP can be reinterpreted as a Gaussian elimination 

procedure. In the iterative algorithms, in each iteration one column of the parity check matrix is 

left with a nonzero entry, like the Gaussian elimination procedure. BP performs the Gaussian 
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elimination in which we only process columns that have at least one connected row of degree 

one, i.e., a row with a single nonzero entry. TEP and GTEP also perform Gaussian elimination 

[16]. The TEP accounts for rows of degree two and the GTEP is able to process any column, no 

matter the degree of the connected rows [16]. 

Iterative algorithms are the best candidate for the decoding of LDPC codes. Gallager in his thesis 

[4] proposed several iterative decoding algorithms for LDPC codes over the binary erasure 

channel (BEC). The proposed algorithms are message-passing algorithms. In the message 

passing algorithms messages pass iteratively between nodes through the edges in the bipartite 

graph. The message can be the probability of being a symbol. For example in the Galois binary 

field 𝐺𝐹(2), symbols are 0 or 1, then the messages through the edges are the probability of being 

0 or 1. MacKay and Neal [5] rediscovered LDPC codes over the Additive White Gaussian Noise 

(AWGN) [5]. They proposed Belief Propagation algorithm which is sum-product algorithm for 

the decoding. They showed that BP reaches the same result as the MAP decoder when a code has 

no short cycles in the bipartite graph and received symbols are independent of each other. Since, 

the parity check matrix 𝐻 is sparse the iterative decoding algorithms reduce the decoding 

complexity. We will talk about the BP algorithm. Iterative algorithms are the best choice for the 

LDPC codes decoding. 

2.5.2 Message passing algorithm 

One class of iterative decoding is Message Passing algorithm. Message passing algorithm uses 

the structure of the Tanner graph. In the message passing algorithm the messages pass from 

variable nodes to check nodes and from check nodes back to variable nodes. Variable nodes 

calculate the message based on the values they observed and the message passed from their 
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adjacent check nodes. In the algorithm, the message that is sent from the check node 𝑐 with 

degree 𝑖 to the variable node 𝑣 with degree 𝑗 through the edge 𝑒 at 𝑙𝑡ℎ iteration calculates as 

follow: the message is the summation of the messages came from the adjacent variable nodes to 

the check node 𝑐 through the edges other than 𝑒 in the previous iteration. Then the variable nodes 

sent their message to the check nodes. Iterations continue until the variable nodes reach the fixed 

point or after a defined number of iterations.  

2.5.3 Belief Propagation algorithm 

One of the important subclass of the message-passing algorithm is Belief Propagation (BP) 

algorithm.  BP supposes that the Tanner graph is tree. It means that there is no cycle in the graph 

or rows are linearly independent. When the graph is tree, BP calculates the exact marginal 

probability. If the Tanner graph is not cycle free, BP cannot calculate the exact marginal 

probability and it approximates maximum likelihood decoding. In each iteration the message 

sent from a check node to its adjacent variable node and comes back from the variable node to 

the check node. In the other word, the message passed from the variable node v to the check 

node c is the probability. This probability is computed based on the observed value of the 

variable node v and the messages come from check nodes to the variable node v in the previous 

iteration.  More precisely, the message passed from a message node v to a check node c is the 

probability that v has a certain value given the observed value of that message node, and all the 

values communicated to v in the prior round from check nodes incident to 𝑣 other than 𝑐. 

Though, the message passed from c to v is the probability that v has a certain value given all the 

messages passed to c in the previous round from message nodes other than v.  
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In the BP algorithm, if the messages for each variable node converge to a fixed point or after a 

defined number of iterations the beliefs for each of the variable node are obtained. In the BP 

likelihoods or even log-likelihoods are used instead of probabilities or beliefs. Likelihood of a 

binary random variable is: 

𝐿(𝑥) =
Pr (𝑥=0)

Pr (𝑥=1)
                                                   (2.18) 

Given another random variable 𝑦, the conditional likelihood of 𝑥 denoted 𝐿(𝑥|𝑦) is defined as 

[6]: 

𝐿(𝑥|𝑦) =
Pr (𝑥 = 0|𝑦)
Pr (𝑥 = 1|𝑦)                                                   (2.19) 

The relation between the conditional likelihood of 𝑥 (𝐿(𝑥|𝑦)) and the conditional likelihood of 𝑦 

(𝐿(𝑦|𝑥)) is: 

𝐿(𝑥|𝑦) =

Pr(𝑦|𝑥 = 0) Pr(𝑥 = 0)
Pr(𝑦)

Pr(𝑦|𝑥 = 1) Pr(𝑥 = 1)
Pr(𝑦)

=
Pr (𝑦|𝑥 = 0)

Pr (𝑦|𝑥 = 1)
.
Pr (𝑥 = 0)

Pr (𝑥 = 1)
, 

𝐿(𝑥|𝑦) = 𝐿(𝑦|𝑥).
Pr (𝑥=0)

Pr (𝑥=1)
                                                   (2.20) 

If the probability of Pr(𝑥 = 0) = Pr (𝑥 = 1) then: 

𝐿(𝑥|𝑦) = 𝐿(𝑦|𝑥)                                                   (2.21) 

Similarly, the log-likelihood of x is ln L(x) and the conditional log-likelihood of x given y 

is ln L(x|y). If 𝑦1, 𝑦2, … , 𝑦𝑛 are independent random variables, because we assumed 

independence assumption, then [6]: 
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𝑙𝑛𝐿(𝑥|𝑦1, 𝑦2, … , 𝑦𝑛) = 𝑙𝑛
Pr(𝑥 = 0|𝑦1, 𝑦2, … , 𝑦𝑛)

Pr(𝑥 = 1|𝑦1, 𝑦2, … , 𝑦𝑛)
= ln (

Pr(𝑥 = 0|𝑦1)

Pr(𝑥 = 1|𝑦1)
…
Pr(𝑥 = 0| 𝑦𝑛)

Pr(𝑥 = 1| 𝑦𝑛)
) 

= 𝑙𝑛∑
Pr (𝑥 = 0|𝑦𝑖)
Pr (𝑥 = 1|𝑦𝑖)𝑖=1                                                     (2.22) 

We would like to calculate 𝑙𝑛𝐿(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛). Where (𝑥1, 𝑥2, … , 𝑥𝑛) are 

binary random variables and (𝑦1, 𝑦2, … , 𝑦𝑛) are random variables.  

In [6] consider 𝑝 = 2Pr(𝑥1 = 0|𝑦1) − 1 and 𝑞 = 2Pr(𝑥2 = 0|𝑦2) − 1, 

then Pr(𝑥1 + 𝑥2 = 0|𝑦1, 𝑦2) =
1+𝑝+𝑞+𝑝𝑞

4
+
1−𝑝−𝑞+𝑝𝑞

4
=
2+2𝑝𝑞

4
→ 2Pr(𝑥1 + 𝑥2 = 0|𝑦1, 𝑦2) − 1 =

𝑝𝑞. 

Then: 

2Pr(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 0|𝑦1, 𝑦2, … , 𝑦𝑛) − 1 = ∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖) − 1
𝑛
𝑖=1 )             (2.23) 

Therefore, L (𝑥1 + 𝑥2 +⋯+ 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛) is [6]: 

ln L(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛) = ln
Pr(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 0|𝑦1, 𝑦2, … , 𝑦𝑛)
Pr(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 1|𝑦1, 𝑦2, … , 𝑦𝑛)

             (2.24) 

Then according to the (2.6), we can simplify (2.7) as follows: 

ln
Pr(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 0|𝑦1, 𝑦2, … , 𝑦𝑛)

Pr(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 1|𝑦1, 𝑦2, … , 𝑦𝑛)
= ln

1/2(1 + ∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖) − 1
𝑛
𝑖=1 ))

1 − 1/2(1 + ∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖) − 1
𝑛
𝑖=1 ))

 

= ln
1/2(1+∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖)−1

𝑛
𝑖=1 ))

1/2(1−∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖)−1𝑛
𝑖=1 ))

= ln
1+∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖)−1

𝑛
𝑖=1 )

1−∏ (2Pr(𝑥𝑖 = 0|𝑦𝑖)−1𝑛
𝑖=1 )

             (2.25) 

𝐿 =
Pr (𝑥 = 0)

Pr (𝑥 = 1)
=

Pr (𝑥 = 0)

1 − Pr (𝑥 = 0)
→ 𝐿 − 𝐿 Pr(𝑥 = 0) = Pr(𝑥 = 0) → Pr(𝑥 = 0) =

𝐿

𝐿 + 1
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→ 2Pr(𝑥1 = 0|𝑦1) − 1 =
𝑙−1

𝑙+1
= tanh (

𝑙

2
)                                  (2.26) 

Then the log-likelihood of ln L(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛) is: 

ln L(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛|𝑦1, 𝑦2, … , 𝑦𝑛) = ln
1+∏ tanh (𝑙𝑖)

𝑛
𝑖=1

1+∏ tanh (𝑙𝑖)
𝑛
𝑖=1

                                  (2.27) 

Where 𝑙𝑖 = ln 𝐿(𝑥𝑖|𝑦𝑖). According to these formulas, we can calculate the message at variable 

nodes. The messages from check node 𝑐 to variable node 𝑣 and from variable node 𝑣 to check 

node 𝑐 in 𝑙𝑡ℎ iteration are defined as 𝑚𝑐𝑣
𝑙  and 𝑚𝑣𝑐

𝑙 , respectively. Belief propagation algorithm 

continues the iterations until the 𝑚𝑣𝑐
𝑙  reaches the fixed point or after a defined number of 

iterations. 

𝑚𝑣𝑐
𝑙 = {

𝑚𝑣                                                                                          𝑙=0
𝑚𝑣 + ∑ 𝑚𝑐′𝑣

𝑙−1
𝑐′𝜖𝐶𝑣\{𝑐}                    𝑙 ≥ 1                                   (2.28) 

𝑚𝑐′𝑣
𝑙 = ln

1+∏ tanh (
𝑚
𝑣′𝑐

𝑙

2
)𝑣′𝜖𝑉𝑐\{𝑉}

1−∏ tanh (
𝑚
𝑣′𝑐

𝑙

2
)𝑣′𝜖𝑉𝑐\{𝑉}

                                  (2.29) 

The belief propagation algorithm for LDPC codes can be derived from these two observations. In 

round 0, for example the variable node 𝑣 observes the received message and sends the log-

likelihood of the observed message 𝑚𝑣 along all its outgoing edges. Then, the check node 𝑐 

calculates 𝑚𝑐𝑣 and sends it to the variable node 𝑣. In the calculation of  𝑚𝑐𝑣, the message that is 

sent from the variable node 𝑣 from the previous iteration is excluded. 
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2.6 Asymptotic analysis of LDPC Codes 

In the asymptotic analysis of LDPC codes, we consider that an ensemble represent the behavior 

of the all LDPC codes. The behavior of an LDPC code is close to its ensemble if the code length 

is large and the code does not have the short cycle. In this section, we evaluate the performance 

of the LDPC codes over the binary erasure channel based on the asymptotic analysis. 

2.6.1 Density evolution for LDPC codes 

In the iterative decoding algorithms like Belief Propagation (BP) over the Binary Erasure 

Channel (BEC), the probability of erasures reduces after each iteration. In the BP, consider that 

the bipartite graph is tree. In the other words, there is no cycle in the graph. 

The probability that a message has erasure at the 𝑙𝑡ℎ iteration is denoted by 𝑃𝑙
𝐵𝑃(휀). Therefore, 

the probability of erasure at the first iteration  𝑃𝑙0
𝐵𝑃(휀) is equal to the channel erasure 휀. 

If 𝑃𝑙
𝐵𝑃(휀) = 𝑥𝑙, then 𝑃𝑙+1

𝐵𝑃 (휀) < 𝑥𝑙.  

A check node of degree 𝑖 along a particular edge is erasure in the (𝑙 + 1)𝑡ℎ iteration if any of the 

(𝑖 − 1) messages coming from the variable nodes to this check node in the 𝑙𝑡ℎ iteration is 

erasure. The probability that all (𝑖 − 1) messages coming from the variable nodes are not erasure 

is (1 − 𝑥𝑙)
𝑖−1. Therefore, the probability that any of them is erasure is 1 − (1 − 𝑥𝑙)

𝑖−1. The 

probability that a check node has a degree 𝑖 is equal to 𝜌𝑖. Thus, the expected erasure probability 

of a check node to variable node message in the (𝑙 + 1)𝑡ℎ iteration is equal to ∑  1 −
𝑑𝑐
𝑖=2

(1 − 𝑥𝑙)
𝑖−1 which can be written as 1 − 𝜌(1 − 𝑥𝑙). Next, we can consider the erasure probability 

of the variable node to the check node in the (𝑙 + 1)𝑡ℎ iteration. If the message along a particular 
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edge of a variable node of degree 𝑗 is erasure, if the received value of the associated variable 

node is an erasure and all incoming message to the (𝑗 − 1) edges are erasure. It can be written 

as 휀(1 − 𝜌(1 − 𝑥𝑙))
𝑗−1. Since the edge has probability 𝜆𝑗 to be connected to a variable node of 

degree 𝑗 then the erasure probability of a variable node to check node in the (𝑙 + 1)𝑡ℎ iteration is 

equal to ∑ 휀(1 − 𝜌(1 − 𝑥𝑙))
𝑗−1𝑑𝑣

𝑗=2 = 휀𝜆(1 − 𝜌(1 − 𝑥𝑙)).  Since the probability of erasure at 

(𝑙 + 1)𝑡ℎ iteration is 𝑥𝑙+1, then 휀𝜆(1 − 𝜌(1 − 𝑥𝑙)) = 𝑥𝑙+1. The probability of erasure after 

iteration reduces therefore 휀𝜆(1 − 𝜌(1 − 𝑥𝑙)) > 𝑥𝑙+1.  

Density evolution equation gives a precise characterization of the asymptotic performance of 

Low-Density Parity-Check codes. The threshold 휀 in the density evolution gives on the average 

of the codes with ensemble (𝑛, 𝜆, 𝜌). In the asymptotic analysis of the Low-Density Parity-Check 

codes, the length of the codes consider infinite. Therefore, for the codes with finite length the 

performance would be less than the expected performance 휀. 

2.6.2 Threshold 

According to the density evolution, if probability of channel erasure is zero, it means that the 

probability of the erasure after 𝑙𝑡ℎ iteration is zero. It is worth to mention that this condition is 

satisfied if the number of iteration goes to infinity. Also, if the probability of channel erasure is 

one then the probability of the erasure after 𝑙𝑡ℎ iteration is one [26]. 

𝑃𝑟𝑙
𝐵𝑃(휀 = 0) = 0        And           𝑃𝑟𝑙

𝐵𝑃(휀 = 0) = 0         for          𝑙 → ∞                       (2.30) 

There is a well-defined supremum of 휀 for which 𝑃𝑟𝑙
𝐵𝑃(휀)

𝑙→∞
→  0. This supremum is called the 

Threshold. For a given pair degree distribution, the threshold is defined as [26]: 
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휀𝐵𝑃(𝜆, 𝜌) ≜ 𝑆𝑢𝑝{휀 ∈ [0,1]: 𝑃𝑟𝑙
𝐵𝑃(휀)

𝑙→∞
→  0}.                                  (2.31) 

Over a binary erasure channel with erasure of ε, messages can be transmitted reliably over the 

channel using Low-Density Parity-Check codes with large length and pair degree distribution 

(λ, ρ) with 휀 < εBP(λ, ρ). It means that for the channel with probability of erasure 휀 and 휀 <

εBP(λ, ρ) after 𝑙 iteration the probability of erasure in the codeword goes to zero 𝑃𝑟𝑙
𝐵𝑃(𝜖)

𝑙→∞
→  0. 

Reliable transmission is not guaranteed over the channel with 휀 > εBP(λ, ρ). Also, the threshold 

is defined as the minimum of 𝑇(𝑥) =
𝑥

𝜆(1−𝜌(1−𝑥))
. 

For the codes with small length or for the codes with small cycles, the actual threshold is smaller 

than this theoretical threshold. The threshold determines the actual rate of the LDPC codes. The 

actual rate of the LDPC codes is less than the design rate. Thus, the threshold shows the 

performance of the LDPC codes. 

2.7 Conclusion 

In this chapter, we presented some background about Low-Density Parity-Check (LDPC) codes 

and decoding techniques which will be used for these codes. First, we discussed about different 

presentations of LDPC codes which are helpful in understanding of the decoding and the 

performance of these codes. Then, we presented the iterative decoding and the performance of 

this class of decoding. We also explained about the way that evaluates the performance of the 

iterative decoding. Finally, we presented the concept of maximum likelihood decoding for LDPC 

codes over the binary erasure channel. 
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3. Chapter 3  Fast encoding of the LDPC 

codes over the binary erasure multiple access 

channel (BEMAC) 

 

 

3.1 Introduction 

Two robust and practical channel codes are: Turbo codes and Low-Density Parity-Check 

(LDPC) codes which nearly reach Shannon capacity. There are some advantages of LDPC codes 

over Turbo codes [29]. The advantages are: 1- they do not need a long interleaver to improve the 

performance, 2- Thrills methods are not used in the decoding, 3- they decrease block error and 

the Bit Error Rate (BER) of error floors. Due to these advantages, LDPC codes are more popular 

than Turbo codes. LDPC codes are one of the hottest topics in error correcting codes. They have 

good performance under message-passing decoding, and achieved significant fraction of the 

channel capacity at low decoding complexity. Therefore, a lot of research and development has 

been done on LDPC codes, and they are used in digital communication standards like DVBS2. 

The LDPC code is specified with its parity check matrix 𝐻. A codeword in the LDPC code is the 

null space of the parity check matrix 𝐻 which is random, sparse and large. LDPC codes use 

iterative algorithms for the decoding. Due to the sparseness of the parity check matrix 𝐻 and 

using the iterative algorithms, the decoding of the LDPC code is fast and simple. On the other 



41 
 

hand, the encoding complexity of an LDPC code is an issue. Since the 𝐻 matrix lacks structure 

and is random, the encoding complexity is high. Encoding complexity grows quadratically with 

increasing code length. The encoding complexity of the LDPC code is not time linear. However, 

the encoding complexity of Turbo codes is time linear, which is an advantage over LDPC codes. 

A lot of work has been done to reduce the encoding complexity [17]-[20].  

The research shows that one way of reducing the encoding complexity is the cascade code [18], 

[19]. Authors in [20] proposed a method to construct the LDPC parity check matrix in a lower 

triangular shape. In this method the ensemble of the code is restricted by both degree distribution 

and parity check matrix has lower triangular shape. Authors in [22] showed that if 𝐻𝑝 is an 

identity matrix, then encoding complexity is time linear. The problem of all these method is the 

performance loss. 

In this chapter we construct a lower triangular LDPC code, where the size of the gap can be 

flexible. In this method, a lower triangular LDPC code is constructed without a loss of 

performance. This is achieved with permutations in the elements of the matrix. In this chapter we 

talk first about the binary erasure multiple access channel. In section 3.2, we show how a half 

rate code can be helpful in recovery of erased bits in the binary erasure channel, therefore the 

goal is designing a half-rate code. The low-density parity check code is a good candidate for use 

over the BEC.  The problem of the LDPC codes is their encoding complexity.  

In section 3.3, we talk about the best ensemble of the half rate LDPC codes and show the 

simulation results. In section 3.4, we will evaluate the encoding complexity of the LDPC codes. 

Next, in this section we show that the encoding complexity of the LDPC code reduces if the 

parity check matrix 𝐻 is lower triangular in shape. In section 3.5, we present the generating 

parity check matrix for lower triangular and non-triangular shape scheme. In section 3.5, we will 
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construct an irregular LDPC code and present the simulation results, and Section 3.6 concludes 

the chapter. 

3.2 Binary Erasure Multiple Access Channel 

For increasing bandwidth efficiency, multiple access channel (MAC) is used. In multiple access 

channel more than one user uses the channel simultaneously. It is a non-orthogonal multiple 

access channel. Consider two binary users use the noiseless channel simultaneously. The channel 

is called 2-users binary erasure multiple access channel (2-users BEMAC). The sources are 

denoted by S1 and S2. Each source generates the binary bits equally {0,1}. Since, the channel is 

noiseless the received signal at the destination is superposition of both source messages and is 

given by 𝑦 = 𝑢 + 𝑣, where 𝑢 and 𝑣 are messages of sources S1 and S2, respectively.  

If both sources sent the same bits, i.e. both sent 0 or 1, at the destination the received signal is 0 

or 2. Then the receiver can decide that both sources sent 0 or 1. If both sources sent 0 with 

probability of 0.5 then the received signal is 0 with probability of 0.25. At the destination the 

receiver can decode both messages successfully. Also, if both sources sent 1 with probability of 

0.5, the received signal is 2 with probability of 0.25. At the destination both messages can be 

decoded successfully. However, if sources sent different bits which means one source sent 0 and 

the other one sent 1 then the received signal is 1. The decoder cannot decide which source sent 1 

and which one sent 0. The decoder just knows that sources sent opposite bits. Therefore, those 

bits at the destination are erased. If one source sent 1 with probability of 0.5 and the other one 

sent 0 with probability of 0.5, then, the received signal is 1 which is erased with probability of 

0.25. We can conclude that the probability of erasure at the destination is also 0.5. The 

probability of known bits in the received signal at the destination is 0.5. For example if source 1 
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sent the message (1 0 0 1) and the second source sent (1 1 0 0), the received signal is (2 1 0 1). 

The decoder at the destination can decide that both sources sent (1 e 0 e).  Figure 3.1 shows the 

binary erasure channel with erasure probability of 휀. In 2- users binary erasure multiple access 

channel the erasure probability of 휀 is 0.5. 

0

1

0

1

e

1-ε 

1-ε 

ε 

ε 

 

Figure 3.1. Binary erasure channel with erasure probability ε 

Since half of the received signal at the destination is erased; a code of half rate can recover 

erased bits. Assume source 1 transmits at full rate 𝑅1 = 1 bit per channel use (uncoded stream) 

and source 2 can transmit at rate 𝑅2 ≤ 0.5 bit per channel use (coded stream). This channel can 

be modeled as a binary erasure channel (BEC) as shown in figure 3.1 with probability of 

erasure 휀 equal to 0.5. Therefore, on average half of the received message at the destination is 

erased. The receiver first decodes the message of the second source.  The second source has 

encoded its data with a half rate code. It means that if half of its messages at the destination is 

erased, it can be recovered by decoding the message. Therefore, the receiver can first decode the 

message of the second source and then the message of the source one can be determined. The 

capacity of this channel is 1 − 𝜖 = 0.5. This means that the maximum sum rate which is 𝑅1 + 𝑅2 

≤ 1.5 can be achieved on this channel. Thus, for a binary erasure multiple access channel the 

secondary source needs to encodes its data with a code of half rate. It is worth mentionly, in this 

chapter we generate half rate codes. 
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3.3 Half rate LDPC codes 

In 2-users binary erasure multiple access channel, for recovering the erased bits at the 

destination, a code of half rate is needed. Since, the design rate of the LDPC code with the 

ensemble (𝑛, 𝜆, 𝜌) is: 

𝑟 =
𝑘

𝑛
= 1 −

𝑛−𝑘

𝑛
= 1 −

∫𝜌(𝑥)𝑑𝑥

∫𝜆(𝑥)𝑑𝑥
                                         (3.1) 

To have a code of half rate, 𝑛 should be equal to 2𝑘 or 2 ∫ 𝜌(𝑥) 𝑑𝑥 = ∫ 𝜆(𝑥)𝑑𝑥. The length of 

the codeword is twice the message length. The ensemble of the half rate regular LDPC code can 

be written as: 

(𝑛,𝑚, 2𝑚),       𝑚𝜖{2,3, … }                                        (3.2) 

According to the density evolution, the actual rate or the threshold of the half rate codes is: 

𝑥 = 휀𝜆(1 − 𝜌(1 − 𝑥))    𝑓𝑜𝑟 𝑥 ∈ (0,1) → 

𝑥 = 휀(1 − (1 − 𝑥)2𝑚−1)𝑚−1                                        (3.3) 

Where 𝑚 is the number of ones in each column which is integer and 𝜆(. ) and 𝜌(. ) are the pair 

degree distribution. The pair degree distribution of the regular half rate code is as follows: 

𝜆(𝑥) = 𝑥𝑚−1  ,     𝜌(𝑥) = 𝑥2𝑚−1                                        (3.4) 

According to the threshold, we would like to find the best value of 𝑚 which results in the 

maximum threshold 𝛼. To find the threshold we have to take the derivative of 𝛼(𝑥) with respect 

to 𝑥 as the following: 
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휀 =
𝑥

(1 − (1 − 𝑥)2𝑚−1)𝑚−1
→ 

𝜕휀

𝜕𝑥
=
𝜕

𝜕𝑥
(

𝑥

(1 − (1 − 𝑥)2𝑚−1)𝑚−1
) → 

𝜕

𝜕𝑥
=
(1−(1−𝑥)2𝑚−1)𝑚−1−𝑥[(𝑚−1)(2𝑚−1)((1−(1−𝑥)2𝑚−1)

𝑚−2
)(1−𝑥)2𝑚−2]

((1−(1−𝑥)2𝑚−1)𝑚−1)2
       (3.5) 

Then, we put 
𝜕

𝜕𝑥
= 0 to find the value of 𝑥 which is a function of 𝑚: 

1 − (1 − 𝑥)2𝑚−1 − 𝑥[(𝑚 − 1)(2𝑚 − 1)(1 − 𝑥)2𝑚−2] = 0 → 

1 − (1 − 𝑥)2𝑚−2 = x(m(2m − 3))(1 − 𝑥)2𝑚−2 →                                      (3.6) 

After finding roots of the equation (3.6), we choose one of the roots which is between 0 and 1, 

then put in the equation (3.3). Table 3.1 shows 𝑇(𝑥) versus 𝑥 according to the different values of 

m. However, the threshold is the minimum of 𝑇(𝑥) and 𝑇(𝑥) =
𝑥

𝜆(1−𝜌(1−𝑥))
. 

According to the table 3.1, the equation (3.6) does not have a root between 0 and 1 for 𝑚 = 2. If  

𝑚 is equal to 3 then the threshold peaks at 0.428. The threshold of the LDPC decreases 

after 𝑚 = 3. It means that with increasing the density necessarily the threshold does not increase. 

Thus, the best ensemble is (𝑛, 3,6) which results in the best threshold in regular LDPC codes. 

Figure 3.2 shows the performance or the threshold of these ensembles.  

Also, authors in [43] showed that the ensemble (n, 3,6) is the best ensemble and achieves the 

best performance among all the other ensembles over the BEC.  
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Table 3-1. The threshold according to the different values of m 

 𝒙 𝜺 

m=2 
2𝑥3 − 3𝑥2 = 0 → 𝑥 = 0,

3

2
 

𝑥∄(0,1) 

m=3 (𝑥 − 1)5 − 10(1 − 𝑥)4𝑥 + 1 = 0 → 

𝑥 = 0.26057 , 1.5115 

휀 =
𝑥

(1 − (1 − 𝑥)2𝑚−1)𝑚−1
→ 

𝑥 = 0.26057 → 휀 = 0.42944 

m=4 1

(1 − (1 − 𝑥)7)3
−

21(1 − 𝑥)6𝑥

(1 − (1 − 𝑥)7)4
= 0 

→ 𝑥 = 0.263641, 𝑥 = 1.56061 

𝑥 = 0.263641 → 

휀 = 0.383447 

m=5 (𝑥 − 1)9 − 36(1 − 𝑥)8𝑥 + 1 = 0 → 

𝑥 = 0.246559 , 𝑥 = 1.60313 

𝑥 = 0.246559 → 

휀 = 0.34155 

m=6 1

(1 − (1 − 𝑥)11)5
−

55(1 − 𝑥)10𝑥

(1 − (1 − 𝑥)11)6
= 0 

→ 𝑥 = 0.263641, 𝑥 = 1.56061 

𝑥 = 0.2228108 → 

휀 = 0.307646 
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Figure 3.2. T(x) versus x for different values of m 
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3.4 Encoding complexity of LDPC codes 

The drawback of LDPC codes is their encoding complexity which is not time linear. The order of 

the encoding complexity is 𝑛2. In this section we show the encoding complexity of the LDPC 

code, also how this complexity reduces if the parity check matrix 𝐻 is lower triangular.  

For a linear code which has a generator matrix of 𝐺, the generated codeword is 𝑥: 

𝑆. 𝐺 = 𝑥                                                               (3.7) 

The encoding complexity is:  

Ο (𝑛(𝑛 − 𝑚))                                                          (3.8) 

Since LDPC codes are specified by parity check matrix 𝐻, they do not have a generator matrix. 

For a (𝑛, 𝑘) LDPC code, a codeword is the null space of the parity check matrix and there is: 

𝐻. 𝑥𝑇 = 0𝑇                                                             (3.9) 

Which shows a codeword is the null space of parity check codes. If the encoding is considered 

systematic, therefore, the codeword is (𝑥𝑠, 𝑥𝑝) which 𝑥𝑠 and 𝑥𝑝are the message and parity, 

respectively. Therefore, the encoder has to find 𝑥𝑝: 

𝐻. (𝑥𝑠, 𝑥𝑝)
𝑇 = 0𝑇                                                           (3.10) 

(𝐻𝑠, 𝐻𝑃). (𝑥𝑠, 𝑥𝑝)
𝑇 = 0𝑇                                                       (3.11) 

𝐻𝑠. 𝑥𝑠
𝑇 = 𝐻𝑃 . 𝑥𝑃

𝑇                                                       (3.12) 
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𝐻𝑃
−1(𝐻𝑠. 𝑥𝑠

𝑇) = 𝑥𝑃
𝑇                                                       (3.13) 

To encode a message and determine the parity bits, the encoder has to calculate the inverse 

of 𝐻𝑃. The Dimensions of  𝐻𝑠 and 𝐻𝑃 are 𝑚 × (𝑛 −𝑚) and 𝑚 ×𝑚, respectively.  

The complexity (the number of operation) of calculating 𝐻𝑠. 𝑥𝑠
𝑇 is equal to:  

Ο ((𝑛 − 𝑚))                                                       (3.14) 

The complexity of calculating the inverse of  𝐻𝑃 is: 

Ο (𝑚2)                                                       (3.15) 

The complexity (the number of operation) of calculating 𝐻𝑃
−1(𝐻𝑠. 𝑥𝑠

𝑇) is equal to:  

Ο ((𝑛 − 𝑚) +𝑚 +𝑚2)                                                       (3.16) 

Then the total number of calculation for calculating the parity bits is: 

Ο (𝑛 + 𝑚2)                                                       (3.17) 

If the matrix is lower triangular and the complexity of inversion is: 

Ο (𝑔2)                                                       (3.18) 

Then the encoding complexity of an LDPC code is: 

Ο (𝑛 + 𝑔2)                                                       (3.19) 

Where 𝑔 is the gap in the 𝐻 matrix. Figure 3.3 shows the lower triangular 𝐻 matrix with a gap 

of 𝑔 and parity check matrix 𝐻 of LDPC codes of DVBS2. With reducing the gap in the 𝐻 
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matrix, the encoding complexity reduces quadraticly. Richardson in [17] proposed greedy 

algorithms for transforming a parity-check matrix 𝐻 to a lower triangular shape. Using the 

greedy algorithms does not change the pair distribution of the matrix 𝐻. 

1
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00001
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K+g

n
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Figure 3.3. a) lower triangular parity check matrix 𝐻 with gap of 𝑔, b) - Shape of the DVBS2 Matrix 

However, using greedy algorithms does not always guarantee to reach the considered gap. Here 

we propose a method for generating a parity-check matrix 𝐻 which has lower triangular shape 

with the considered gap. In this situation, the matrix is restricted not only by the degree 

constraints but also by the constraint that the parity-check matrix has a lower triangular shape. 

After generating LDPC matrix, the encoding procedure is the same as Richardson proposed in 

[17].  
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3.5 Constructing LDPC codes 

In a 2 users BEMAC, to recover messages, a code of half rate is needed. An LDPC code is used 

in the 2-users BEMAC. The problem with the LDPC code is its encoding complexity. To reduce 

the encoding complexity, a lower triangular parity-check matrix 𝐻 is needed. First, we need to 

generate a lower triangular LDPC code. In chapter two we talked about the different way for 

constructing an LDPC code. One of the conventional method is the Gallager method. We will 

use this method in the next chapter for generating a regular LDPC code. In this section, we 

propose a method for constructing LDPC code and lower triangular LDPC codes. Next, we 

calculate the probability of decoding failure and the outage capacity. 

3.5.1 The method for constructing regular LDPC code 

In order to generate a random regular low-density parity-check matrix 𝐻, we must first specify 

the ensemble (𝑛, 𝜆, 𝜌). According to the ensemble, 𝜌 represents the number of ones each row, 

whereas 𝜆 represents the number of ones in each column. The number of columns is 𝑛 and the 

number of rows is 
𝑛𝜆

𝜌
. According to the LDPC ensemble, if we put 𝜌 ones randomly in a row of 𝑛 

elements then, the probability that each elements being one is 
𝜌

𝑛
. The probability that a column 

does not contain 1 is: 

𝜆0 = (1 −
𝜌

𝑛
)𝑛−𝑘                                                       (3.20) 

The probability that a column has just one non-zero elements is: 

𝜆1 = (
𝑛 − 𝑘
1
) 
𝜌

𝑛
(1 −

𝜌

𝑛
)𝑛−𝑘−1                                                       (3.21) 
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As we can see from the equation (3.20) the probability that a column has no 1 is not zero. 

Therefore, the dimension of the matrix decreases from (𝑛 − 𝑘) × 𝑘 to (1 − 𝜆0)𝑛 × (𝑛 − 𝑘).  

Hence, reducing the design rate of the code to: 1 −
𝑛−𝑘

(1−𝜆0)𝑛
=

𝑘−𝑛𝜆0

(1−𝜆0)𝑛
 which is less than 1 −

𝑛−𝑘

𝑛
. 

A way to maintain the design rate as1 −
𝑛−𝑘

𝑛
, is to permute the elements of the matrix. This 

problem can be solved without changing the design rate or the matrix dimension. For example, 

figure 3.4.a shows a matrix in which the column 𝑐𝑥 does not have 1 in its elements and 𝑐𝑦 has 

two or more ones. One of the elements in the column 𝑐𝑦 which is 1 chosen randomly.  The 

selected one is permuted with the elements in its same row of the column 𝑐𝑥. It results that the 

row distribution is remained unchanged and all columns have at least one 1. With this 

permutation the weight distribution of the rows does not change but the weight distribution of 

columns is changed as needed. According to the figure 3.4.b, the weight of the second column is 

zero. On the other hand the weight of the last column is 8.  If we choose one of the 1s in the last 

column randomly and swap it with the corresponding element in the second column, the 

distribution of row remains unchanged and the columns of weight zero are removed. 

𝑐𝑥 … 𝑐𝑦

[
0 … 1
⋮ ⋱ ⋮
0 … 1

]
 

(a) 
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(b) 

Figure 3.4: a) a matrix with columns of weight zero and non-zero, b) the permutation in a matrix with a column of weight zero   

We can construct regular LDPC codes in a way in which there is no need for permutation. In this 

way, at each row we choose 𝜌 elements randomly and put 1s at those places.  This means that 𝜌 

places are chosen randomly out of the 𝑛 places. The elements corresponding to the chosen places 

would be 1 and the reset elements are zero. After choosing a place or elements, that element or 

place have to be removed from the available places or elements. Then in the next row, 𝜌 places 

have to be chosen randomly out of 𝑛 − 𝜌 places. Continue until there no available places. Until 

now, this method guaranties there is no column of having no 1. If there is no more available 

places, and there are rows not corresponding to 𝜌, then the available places reset to 𝑛 and 

continue until the weight of all rows is 𝜌. This method guarantees that all rows have the weight 𝜌 

and also, the weight of columns is 𝜆. Therefore, there is no need for permutation. If a regular 

matrix is required, then we continue this method until all columns have 𝜆 ones.  

The problem of this method is that the degree of freedom reduces at each row, because the 

number of available places reduces after each row. This method is explained for a regular LDPC 

code with the ensemble (12,36). 

At the first row the number of available places is 12 and they are: {0,1,2,3,4,5,6,7,8,9,10,11}. 

Six places are chosen randomly. For example, at the first row {2,3,6,7,8,10} are chosen. The 
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available places for the second row are: {0,1,4,5,9,11}. Hence, we have to choose six places out 

of these six places. There is no available place anymore. Therefore, for the next row, the 

available places reset to {0,1,2,3,4,5,6,7,8,9,10,11}. Six places are chosen out of twelve places in 

the third row. These places are: {0,2,4,6,8,10}. This process continues until the weight of all 

rows is 6. The equation (3.22) shows the constructed matrix. 

[
 
 
 
 
 
0 0 1 1 0 0 1 1 1 0 1 0
1 1 0 0 1 1 0 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 1 0 0 1 0 1 0
1 0 0 1 0 0 1 1 0 1 0 1]

 
 
 
 
 

                                (3.22) 

3.5.2 Proposed method for generating lower triangular LDPC matrix 

To generate a lower triangular matrix, the parity-check matrix of the code is restricted not only 

by the degree constraints, but also by the shape of the matrix. To construct a lower triangular 

parity check matrix, first we must determine the desire gap. The size of the gap 𝑔 can even be 

zero.  

In this work, first we consider that the density of a lower triangular LDPC matrix 𝐻 should be 

the same as a standard LDPC matrix 𝐻 and remain unchanged. We can describe this position as 

follows: 

In the parity-check matrix 𝐻, 𝜌 ones are spread among 𝑛  positions in each row. However, in the 

lower triangular parity-check matrix, 𝜌 ones are spread among (𝑛 − 𝑚 + 𝑔) positions.  The gap 

is equal to g. Therefore the rest (𝑚 − 𝑔) positions have to be zero. Therefore, the density is 

changed in the lower triangular matrix. For keeping the density unchanged, the number of ones 
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at each row should not be 𝜌. In this case, if 𝜌 ones are spread in 𝑛 places, then 
𝜌(𝑛−𝑚+𝑔)

𝑛
 ones are 

spread in (𝑛 − 𝑚 + 𝑔) places.  

For a lower triangular LDPC code with the ensemble (𝑛, 𝜆, 𝜌), the number ones at each row can 

be achieved as follows: 

𝜌′(𝑖) =
𝜌

𝑛
× [𝑛 −𝑚 + 𝑖 + 𝑔(

𝑚−𝑖

𝑚
)]  𝑖 𝜖 {1,2, … ,𝑚}                          (3.22) 

Where 𝜌 is the number of ones in each row and 𝑛 and 𝑚 are the number of columns and rows. 𝑔 

is the gap in the parity check matrix, 𝑖 is the number of each row. For example for a regular (3,6) 

LDPC code, there are six ones in each row. If the gap is 0, then the number of ones in the first 

row (𝑖 = 0) is 
𝜌

𝑛
∗ [𝑛 − 𝑚] = 𝜌 ∗ [1 −

𝑚

𝑛
] = 𝜌 ∗ 𝑟 = 6 ∗ 0.5 = 3. 

First, we evaluate the performance of the generated matrix by considering this constraint for the 

density. The total number of ones in the 𝐻 matrix is the summation of ones in each row. Then, 

according to (3.3) the total number of ones in the matrix is: 

∑𝜌′(𝑖) =
𝜌

𝑛
× [𝑛 − 𝑚 + 𝑖 + 𝑔 (

𝑚 − 𝑖

𝑚
)] =

𝜌

𝑛

𝑖=𝑚

𝑖=1

× [∑𝑛 −𝑚 + 𝑔 + (1 −
𝑔

𝑚
)∑𝑖

𝑚

𝑖=1

𝑚

𝑖=1

] 

=
𝜌

𝑛
× [(𝑛 − 𝑚 + 𝑔)(𝑚) + (1 −

𝑔

𝑚
)(
𝑚(𝑚+1)

2
)]                            (3.23) 

Where 𝑙𝑎𝑣𝑔 and 𝑟𝑎𝑣𝑔 are the average variable and check degrees [26]. Then, the average check 

degree is: 

𝑟𝑎𝑣𝑔 =
∑ 𝜌′(𝑖)𝑚
𝑖=1

𝑚
=
1

𝑚
(
𝜌

𝑛
× [(𝑛 − 𝑚 + 𝑔)(𝑚) + (1 −

𝑔

𝑚
)(
𝑚(𝑚 + 1)

2
)]) 

=
𝜌

𝑛
× [(𝑛 − 𝑚 + 𝑔) + (1 −

𝑔

𝑚
) (

(𝑚+1)

2
)]                            (3.24) 
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And the average variable degree is: 

𝑙𝑎𝑣𝑔 =
∑ 𝜌′(𝑖)𝑚
𝑖=1

𝑛
=
1

𝑛
(
𝜌

𝑛
× [(𝑛 − 𝑚 + 𝑔)(𝑚) + (1 −

𝑔

𝑚
) (

𝑚(𝑚+1)

2
)])                            (3.25) 

Since 𝜆 =
𝑚𝜌

𝑛
, then we can rewrite the equation (3.25) as the following: 

𝑙𝑎𝑣𝑔 =
𝜆

𝑛
× [(𝑛 − 𝑚 + 𝑔) + (1 −

𝑔

𝑚
) (

(𝑚+1)

2
)]                            (3.26) 

We can show that 𝑟𝑎𝑣𝑔 ≤ 𝜌 and 𝑙𝑎𝑣𝑔 ≤ 𝜆.  

𝜌

𝑛
× [(𝑛 − 𝑚 + 𝑔) + (1 −

𝑔

𝑚
)(
(𝑚 + 1)

2
)] ≤ 𝜌 → 

1

𝑛
× [(𝑛 − 𝑚 + 𝑔) + (1 −

𝑔

𝑚
) (

(𝑚+1)

2
)] ≤ 1                            (3.27) 

And 

𝜆

𝑛
× [(𝑛 − 𝑚 + 𝑔) + (1 −

𝑔

𝑚
)(
(𝑚 + 1)

2
)] ≤ 𝜆 → 

1

𝑛
× [(𝑛 − 𝑚 + 𝑔) + (1 −

𝑔

𝑚
) (

(𝑚+1)

2
)] ≤ 1                            (3.28) 

According to the equations (3.27) and (3.28), if the ensemble (𝑛, 3,6) is chosen, the ensemble of 

the generated matrix is (𝑛, 𝜆 ≤ 3, 𝜌 ≤ 6).  

If the gap is equal to 𝑚, then the ensemble of the resultant matrix 𝐻 is (𝑛, 3,6). If the gap is zero 

then the resultant ensemble is: 

(𝑛,
3

𝑛
× [(𝑛 − 𝑚 + 0) + (1 −

0

𝑚
)(
(𝑚 + 1)

2
)] ,
6

𝑛
× [(𝑛 − 𝑚 + 0) + (1 −

0

𝑚
)(
(𝑚 + 1)

2
)]) 

= (𝑛,
3

𝑛
× [(𝑛 −

𝑚

2
+
1

2
) ,
6

𝑛
× (𝑛 −

𝑚

2
+
1

2
)] = (𝑛, 3 (1 −

𝑟

2
) , 6 (1 −

𝑟

2
))                            (3.29) 
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Therefore, this constraint results in decreasing the performance. We can first apply this 

constraint on the number of ones in the row distributions; then according to the column 

distribution, construct the column by adding more ones in the columns. The constructed matrix 

has the desire degree distribution and gap while keeping the density as minimum. 

3.6 Simulation Results and Discussion 

We generate a lower triangular LDPC code based on the method which is presented in the 

previous section. The pair distribution and the actual rate of the generated matrix must be 

checked. Richardson in [17] proposed the encoding method of the lower triangular LDPC matrix. 

We will use the method for the encoding. The complexity of the encoding is low. After 

encoding, the decoding must be designed based on the Belief Propagation (BP) over the Binary 

Erasure Channel (BEC). Then, for increasing the performance and compensating the drop in the 

performance, the guessing algorithm will be used. The performance of the generated code is 

improved after assuming the values of the erased bits. This section we will demonstrate the 

simulation results of the code. 

3.6.1 Construction of half rate LDPC code 

In constructing the parity check matrix H, three aspects must be considered: 1) the encoding 

complexity 2) the decoding complexity 3) the performance. The gap g in the H matrix 

determines the encoding complexity. A smaller gap results in a lower encoding complexity. The 

decoding complexity is proportional to the number of ones in the 𝐻 matrix or the number of 

edges in the Tanner graph. The decoding complexity increases with the density of the matrix. 

The pair degree distribution is the key to having good performance; for example, irregular pair 
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distribution has a better performance than a regular one. There is a tradeoff between the decoding 

complexity and the performance in LDPC codes. The code with better performance has higher 

complexity. The degree distribution is designed to maximize the performance, also increases the 

density, hence, increasing the complexity.  

The starting point in designing 𝐻 matrix is choosing an appropriate gap. The next step is 

choosing the degree distribution pair (λ, ρ) that achieves the best threshold for a given finite 

codeword length and rate. Here, the best degree distribution is the primary concern, making the 

decoding complexity the second concern. A lot of work has been done to find the best degree 

distribution [25] and [38]. We use the degree pair distribution which was obtained and used in 

[3]. Authors in [3] used an optimization tool for finding the best right regular degree distribution 

[26].  The pair distribution is as the following [3]: 

𝜆(𝑥) =  0.4021𝑥 +  0.2137𝑥2 +  0.0768𝑥3 +  0.3902𝑥7                            (3.29) 

𝜌(𝑥)  =  𝑥5,                                                           (3.30) 

This pair degree distribution yields a threshold of 휀𝐵𝑃 = 0.472. Figure 3.5 shows 𝑇(𝑥) versus 𝑥 

and the minimum of 𝑇(𝑥) is the threshold. Therefore, the pair distribution is chosen and the 

theoretical threshold of this pair distribution is 0.472.  

The next step is choosing an appropriate gap. For choosing the gap of the matrix, we can choose 

any gap as we want. Here, according to the Richardson greedy algorithm [17], the minimum 

achievable gap is 0.017n. Therefore, we consider the gap equal to 0.02𝑛.  
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Figure 3.5: T(x) versus 𝑥 and the threshold 

The design rate of the code is 0.5. The code length is chosen to be103. The dimension of the 𝐻 

matrix is equal to 500 × 1000. We consider the gap equal to 20. The simple way of constructing 

𝐻 starts from setting all elements of the matrix 𝐻 equal to zero except the diagonal of the lower 

triangular matrix. Figure 3.6 shows the matrix. 

The number of ones that is inserted uniformly in each row is then drawn from the variable degree 

distribution 𝜌′. According to the degree distribution and lower triangular constraints, we put 𝜌′ 

ones in each row. 

𝜌′(𝑖) =
6

1000
× [500 + 𝑖 + 20(

500−𝑖

500
)]  𝑖 𝜖 {1,2, … ,500}                            (3.31) 

𝜌′(𝑖) =
6

1000
× [520 +

24

25
𝑖]  𝑖 𝜖 {1,2, … ,500}                                   (3.32) 

The second step is to first check the resulting matrix from the columns perspective to avoid 

columns with weight 𝑤𝑐  < 2.  To have columns 𝑤𝑐  < 2, some permutation in the elements of 

the matrix is needed. It is worth to mention that the permutation should not change the triangular 

shape. The next step is to have the column degree distribution like the equation (3.29). 
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Figure 3.6. The Lower triangular matrix with the gap of 20 

To have the column degree distribution similar to equation (3. 29), we need to increase the 

weight of some of the columns by adding some ones. This results in changes of the row degree 

distribution.  

In each realization of 𝐻, we check the following:  

1- The matrix should be lower triangular with the gap of 20. 

2- According to the figure 3.6 the sub-matrix D should be invertible. 

3- According to the constructed matrix, the pair degree distribution and the theoretical 

threshold should be checked. 

Then we select the matrix which achieves the highest threshold. Also, the related D matrix 

should be invertible. At this stage, 𝐻 is produced. Note that the construction of 𝐻 is done 

once throughout the simulation algorithm for a specific dimension 𝑚 × 𝑛.  

According to the constructed H matrix, the pair distribution of the generated matrix is as 

follows: 
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𝜌(𝑥) = 0.0159𝑥2 + 0.073𝑥3 + 0.153𝑥4 + 0.225𝑥5 + 0.173𝑥6 + 0.168𝑥7 + 0.062𝑥8 +

0.07𝑥9 + 0.03𝑥10 + 0.011𝑥11 + 0.004𝑥12 + 0.008𝑥13                            (3.33) 

 𝜆(𝑥) = 0.346𝑥 + 0.22𝑥2 + 0.102𝑥3 + 0.33𝑥7,                            (3.34) 

Or we can rewrite them as: 

𝜌(𝑥) =
3∗17

3190
𝑥2 +

4∗59

3190
𝑥3 +

5∗98

3190
𝑥4 +

6∗120

3190
𝑥5 +

7∗79

3190
𝑥6 +

8∗67

3190
𝑥7 +

9∗22

3190
 𝑥8 +

10∗23

3190
𝑥9 +

11∗9

3190
 𝑥10 +

12∗3

3190
𝑥11 +

13∗1

3190
𝑥12 +

14∗2

3190
𝑥13                            (3.35) 

𝜆(𝑥) =
2∗552

3190
𝑥 +

3∗234

3190
𝑥2 +

4∗82

3190
𝑥3 +

8∗132

3190
𝑥7,                            (3.36) 

The threshold of the generated code is equal to the 0.468. Figure 3 shows the threshold versus 

the different value of 𝑥. 

 

 

 

 

Figure 3.7: 𝑇(𝑥)of the constructed matrix versus x 

3.6.2 Encoding of the lower triangular parity-check LDPC matrix 

Encoding of the lower triangular parity-check LDPC matrix is described in [17]. The encoding 

complexity is reduced in the lower triangular 𝐻 matrix. The table 2 shows the size of the 

constructed submatrices in the equation (3.37). 
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𝐻 = (
𝐴 𝐵 𝑇
𝐶 𝐷 𝐸

)                                                     (3.37) 

Table 3-2: The size of the submatrices in the equation (3.37) 

The matrix Size of the matrix 

H 𝑚 × 𝑛 = 500 × 1000 

A (𝑚 − 𝑔) × (𝑛 − 𝑚) = 480 × 500 

B (𝑚 − 𝑔) × 𝑔 = 480 × 20 

C 𝑔 × (𝑛 −𝑚) = 20 × 500 

D 𝑔 × 𝑔 = 20 ×  20 

T (𝑚 − 𝑔) × (𝑚 − 𝑔) = 480 × 480 

E 𝑔 × (𝑚 − 𝑔) = 20 × 480 

∅ ≔ −𝑬𝑻−𝟏𝑩+ 𝑫 𝑔 × 𝑔 = 20 × 20 

In the process of systematic encoding, the encoder gets the message 𝑠 and produces parity bits 

𝑃1 and 𝑃2. The encoder sends [𝑠, 𝑃1, 𝑃2] to the channel. The table (3.3) shows the process of the 

encoding. According to the table 3.3 the encoder can encode the messages with low complexity. 

Table 3-3: The procedure of the encoding 

The procedure of the encoding Size of the 

output matrix 

A𝒔𝑻 (𝑚 − 𝑔) × 1 

𝑻−𝟏[𝐀𝒔𝑻] (𝑚 − 𝑔) × 1 

−𝑬[𝑻−𝟏[𝐀𝒔𝑻] 𝑔 × 1 
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𝑪𝒔𝑻 𝑔 × 1 

−𝑬[𝑻−𝟏[𝐀𝒔𝑻] + 𝑪𝒔𝑻 𝑔 × 1 

𝑷𝟏 = −∅
−𝟏[−𝑬[𝑻−𝟏[𝐀𝒔𝑻] + 𝑪𝒔𝑻] 𝑔 × 1 

𝑩𝑷𝟏
𝑻 (𝑚 − 𝑔) × 1 

𝑩𝑷𝟏
𝑻 + 𝐀𝒔𝑻 (𝑚 − 𝑔) × 1 

𝑷𝟐 = −𝑻
−𝟏[𝑩𝑷𝟏

𝑻 +𝐀𝒔𝑻] (𝑚 − 𝑔) × 1 

 

3.6.3 Decoding of the lower triangular parity-check LDPC matrix 

Belief propagation is an iterative decoding algorithm and one of the powerful tools for decoding 

of the LDPC codes. Due to the features of the binary erasure channel, positions of the erased bits 

are known and the value of bits is 0 or 1. Therefore, BP algorithm is very simple and fast over 

the BEC and can be described as following [6]: 

1- Put the value of each check nodes equal to zero. 

2- If each variable node is received, then, calculate the value of all adjacent check nodes. 

Remove all known variable nodes and their associated edges from the graph.  

3- Look for a check node of degree one. If there is a check node of degree one, substitute its 

value into its adjacent variable node. Then remove all known variable nodes and their 

edges from graph and again look for a check node of edge one. Continue until either there 

is no more check node of degree one or all unknown variable nodes are de-erased. 
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We implement the BP algorithm. According to the BP, the performance of the generated code is 

evaluated. Figure 3.8 shows the capability of correcting code versus the different number of 

iterations. Figure 3.8 shows how the probability of erasure versus the number of iteration. 

According to the Figure 3.8, the probability of erasure drops with increasing the number of 

iterations. If the threshold of the code is closer to the channel erasure, the code converges faster 

and the number of decoding iteration decreases. However, if the channel erasure is greater than 

the threshold of the code 𝜖 >  휀, then the probability of erasure does not go to zero even if the 

number of iterations goes to infinity. The actual rate of this code on the average is 𝑟 = 1 −

0.418 = 0.482. 

3.6.4 Guessing algorithm 

Due to the short cycles in the code and the finite length of the code, the performance of the code 

is less than the theoretical threshold. The short cycles can be removed when the code is 

constructed. Another way for preventing the short cycles in the low-density parity check codes is 

increasing the code length. The probability of short cycles decreases with increasing the code 

length. If the cycles do not remove from the code, the performance of the code can be increased 

in another way. To improve the performance of the code, the guessing algorithm can be added at 

the decoder.  
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Figure 3.8: The simulation result of the constructed code; the probability of erasure versus the number of iteration 

The guessing algorithm is proposed in [12]. Authors in [12] took a different approach. Instead of 

trying to find a good degree distribution, the performance of an existing code have been 

improved over the binary erasure channel (BEC). In [12] for the first time, the performance of an 

existing code was improved by guessing on unknown variable nodes for short-length LDPC 

codes. Authors in [12] proposed three algorithms, algorithm A is the same as the standard belief 

propagation. In algorithm B, if algorithm A fails, it makes some assumption on some of the 

erased bits, then check-sum determines if guesses are correct or not. Algorithm B guesses on the 

variable nodes with higher degree. The drawback of this method is that the complexity of the 

decoder grows exponentially with increasing the number of guesses and there is a limitation on 

the number of guessing variable nodes and also it has probability of error greater than the 

maximum likelihood. To reduce the complexity and improve the performance, they proposed 

algorithm C. In algorithm C, the decoder defines a set of equations as basic equations and if and 

only if the set of basic equations have a unique solution then the received codeword is maximum 

likelihood decodable. 
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The simulation results show that the code can correct up to 418 continuous erased bits out of 

1000 bits. Figure 3.8 depicted the simulation results. It shows that if the number of erasures is 

equal or bellow of 418, the decoder can decode successfully. Then, we apply the guessing 

algorithm B on this code. If we make just one guess then the performance of the code can be 

improved. It can correct up to 440 erased continuous bits out of 1000 bits. Figure 3.9 shows the 

simulation results. If we make more than one guess on the 𝑉 set, the performance would improve 

more, however on the other side, the complexity of the decoder increases more. We can see from 

the simulation results that just with one guess, the performance of the code increases by 2%.  

 

Figure 3.9: The probability of erasure versus the number of iteration for the constructed code after adding the guessing 

algorithm 
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3.7 Comparison with the half rate LDPC code in DVBS2 

Standard  

In this chapter we generated an LDPC code which has a low encoding complexity. In this section 

we would like to compare the decoding and the encoding complexity and also the performance 

of the constructed code in this chapter with a half rate LDPC code of the standard DVBS2.   

The pair distribution of the constructed code is given in the equations (3.35) and (3.36).  

Therefore the theoretical threshold for these pair distribution degrees is equal to 0.468.  As far as 

the gap of the constructed code is 20, therefore the encoding complexity of the code is 𝜊(𝑔2) =

𝜊(202) = 𝜊(400). While the gap for the DVBS2 LDPC codes is equal to zero then the encoding 

complexity of this code is equal to zero. 

The pair distribution of the half rate LDPC code of the standard DVBS2 is as the following [44]: 

𝜌(𝑥) =
6

226799
 𝑥5 +

7∗32399

226799
𝑥6                                      (3.38) 

𝜆(𝑥) =
1

226799
+
2∗32399

226799
𝑥 +

3∗19400

226799
𝑥2 +

8∗12960

226799
𝑥7                       (3.39) 

According to the density evolution and the pair distribution in the equations (3.38) and (3.39) is 

equal to 0.465. Therefore, both codes have the same theoretical performance. 

The decoding complexity of an LDPC code is in correspondence with number of edges in Tanner 

graph of the code or the number ones in the its parity check matrix𝐻.  Therefore, the decoding 

complexity of the LDPC codes is defined in term of the density. The density of parity-check 

matrix in the LDPC codes is defined as the following [26]: 
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Δ(𝐻) =
1

𝑛𝑟
|{(𝑖, 𝑗):𝐻𝑖,𝑗 ≠ 0}|.                                                    (3.40) 

Since, the number of one in the parity check matrix of the constructed code is equal to 3190 and 

according to the equation (3.40), the density of the constructed code in this chapter is equal to: 

Δ(𝐻) =
1

𝑛𝑟
|{(𝑖, 𝑗):𝐻𝑖,𝑗 ≠ 0}| =

1

1000×0.5
× 3190 =

3190

500
= 6.38                       (3.41) 

The number ones in the half rate LDPC code is equal to 226799 then, the density of the DVBS2 

LDPC code is equal to: 

Δ(𝐻) =
1

𝑛𝑟
|{(𝑖, 𝑗):𝐻𝑖,𝑗 ≠ 0}| =

1

64800×0.5
× 226799 =

226799

32400
= 6.99                       (3.42) 

After comparing the equations (3.41) and (3.42), we can conclude that the density of the DVBS2 

is greater than the constructed code in this chapter. Therefore, the decoding complexity of the 

DVBS2 LDPC codes is greater than the generated code in this chapter. 

3.8 Conclusion 

In this Chapter, we studied 2-users binary erasure multiple access channel (2-users BEMAC). 

From 2-users BEMAC we conclude that a code rate of half is needed. Low-Density Parity-Check 

codes (LDPC) are one of the good candidates for 2-user BEMAC. Due to the good performance 

of the LDPC codes over BEC. The problem of the LDPC codes is the encoding complexity 

which is not time linear. In this chapter we talked about the encoding complexity and how lower 

triangular LDPC matrix reduces the encoding complexity. 

For the half rate LDPC code, using the LDPC codes which their matrices are lower triangular 

decreases the encoding complexity. Also, in this chapter we proved that which ensembles results 
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in the best threshold. We proposed a method for generating the lower triangular LDPC matrix 

which its density remained unchanged. The performance of the constructed code is evaluated. 

Also, for increasing the performance of the code guessing algorithm is used. Applying the 

guessing algorithm at the decoder increased the performance of the code by 0.02. 

 

 

 

 

 

 

 

 

 



69 
 

4. Chapter 4  Fast decoding of LDPC codes 

over binary erasure multiple access channel 

(BEMAC) 

 

 

 

4.1 Introduction 

In the previous chapter an irregular Low-Density Parity-Check (LDPC) code with low encoding 

complexity has been generated and also the performance of the generated code increased. In this 

chapter, we have developed a regular LDPC code which has low decoding complexity. Also, a 

new method has been proposed that increases the actual rate.  

Since the parity check matrix of the LDPC codes is sparse and they utilize iterative algorithms 

for the decoding process, their decoding complexity is low. Iterative algorithms are named 

message passing algorithms [6]. One important class of these algorithms is the belief propagation 

algorithm (BP) [6]. BP is a suboptimal decoder, but, approximates the maximum likelihood 

decoding [6].  

There is a tradeoff between complexity of decoder and performance in LDPC codes. 

Performance-optimized LDPC codes, usually needs large number of iteration to convergence, 

therefore, they are not complexity-optimized codes. Irregular LDPC codes have a better 
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performance than regular codes; however, the regular LDPC codes are lower complex.  In the 

half rate LDPC code, regular (3,6) LDCP codes have best performance and lowest complexity 

among all the regular ensembles of rate half. 

In this chapter, a technique is presented for improving the performance of the existing codes, 

without increasing the complexity greatly. Instead of using an optimized-performance code, the 

performance of an existing code is improved. We do this by applying iterative decoding 

algorithms, standard BP, generalized tree-expected propagation (GTEP) and guessing algorithm. 

Complexity of the iterative decoding algorithms like BP and GTEP is low. However, the 

complexity of the guessing algorithm increases exponentially with the number of guesses. A new 

guessing algorithm is proposed, which reduces the number of possibilities, hence the decoding 

complexity. In the new guessing algorithm, instead of making assumption on a set of variable 

nodes, the decoder makes assumption on the variable nodes which are connected to a set of 

check nodes. Regarding the binary field, the number of possibilities is reduced by half. The 

proposed method is applied to a regular LDPC (3, 6) codes with lengths of 1000 and 2000.  The 

threshold of a regular LDPC code is 0.428 according to the density evolution. Due to the cycles 

and finite code length, the performance of the code decreases to less than 0.42. Applying this 

new method and considering a maximum 3 set of guesses, the actual rate increases to 0.43. With 

increasing the number of guesses the actual rate increases more. 

In the next section the relationship between performance and complexity of the LDPC code is 

evaluated.  



71 
 

4.2 Performance and complexity of LDPC codes 

Iterative decoding algorithms are suboptimal. It means that the performance of LDPC codes 

would be degraded if there are cycles in the Tanner graph. In this case the actual rate of the code 

is less than the design rate. Performance of the iterative decoder is evaluated by density evolution 

technique [6]. For evaluating performance of iterative decoders, assumed that the Tanner graph 

is a tree or in other words, rows are linearly independent. When rows are linearly independent it 

means that the 𝐻 matrix is cycle free. An LDPC code is cycle free [6], if the number of ones in 

common between any two columns in 𝐻 matrix is no greater than one. According to the density 

evolution, the performance of LDPC codes is characterized by the threshold, denoted by 휀. The 

threshold can be calculated according to the pair distribution [6] and as the following: 

휀. 𝜆(1 − 𝜌(1 − 𝑥)) < 𝑥 𝑓𝑜𝑟 𝑥 𝜖 (0, 휀)                                        (4.1) 

𝜆(. ) and 𝜌(. ) are degree distribution of columns and rows of the LDPC matrix. To have an 

optimized-performance LDPC codes, pair distribution have to be selected carefully [27]. The 

performance of an LDPC code is related to the weight distribution of the columns and rows in 

the 𝐻 matrix and usually the performance of the irregular LDPC code is better than the regular 

one.  

On the other hand, the complexity of the decoder is related to the number of edges in the Tanner 

graph, or, the number of ones in the 𝐻 matrix. According to Richardson [26], the density of 

parity check matrix of LDPC code 𝐻 denoted by Δ(𝐻) is defined as the following [26]: 

Δ(𝐻) =
1

𝑛𝑟
|{(𝑖, 𝑗):𝐻𝑖,𝑗 ≠ 0}|.                                                    (4.2) 
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This shows that if the number of ones in the matrix increases, the density of the matrix increases, 

and therefore, the complexity of decoder increases. The lower bound on the density of LDPC 

matrices in terms of the threshold and design rate has been defined as [26]: 

lim
𝑁→∞

inf ∆𝑁> 
𝐾1+𝐾2𝑙𝑛

1

𝛿

1−𝛿
                                                     (4.3) 

𝐾1 =
𝑙𝑛
1−

(1− )𝑙𝑛
1

1−

                                                     (4.4) 

𝐾2 =
(1− )𝑙𝑛

1

1−

                                                     (4.5) 

Where 𝛿 is multiplicative gap and defined as follows [26]: 

𝑟 = (1 − 휀)(1 − 𝛿)                                                     (4.6) 

𝛿 =
1− −𝑟

1−
                                                     (4.7) 

 If the actual rate is equal to the design rate, then, the gap would be zero. The value of 𝛿 

increases with decreasing performance and we can conclude that the lower bound on the 

complexity decreases. If we simplify the equation (4.3) then we have: 

lim
𝑁→∞

𝑖𝑛𝑓 ∆𝑁> 𝑟

𝑙𝑛
1− −𝑟

𝑙𝑛
1

1−

→                                                     (4.8) 

𝑁𝑜.𝑜𝑓 𝑜𝑛𝑒𝑠

𝑛𝑟
>
𝑟

𝑙𝑛
1− −𝑟

𝑙𝑛
1

1−

→                                                     (4.9) 

𝑁𝑜. 𝑜𝑓 𝑜𝑛𝑒𝑠 > 𝑛휀
𝑙𝑛
1− −𝑟

𝑙𝑛
1

1−

→                                                    (4.10) 

 𝑁𝑜. 𝑜𝑓 𝑜𝑛𝑒𝑠 > 𝑛
(𝑙𝑛

1− −𝑟
)

𝑙𝑛
1

1−

                                                    (4.11) 
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The equation (4.11) shows the minimum number of ones for a certain performance. This shows 

that an increase in the threshold 휀 of the LDPC code results in a logarithmic increase in the lower 

bound on the density.  

A. Khandekar and et al. in the paper “One the complexity of Reliable Communication on the 

Erasure Channel,” show the relationship between the decoding complexity under iterative 

message-passing algorithm and the asymptotic achievable rate [28]. The authors show how the 

decoding complexity increases if the gap between the design rate 𝑟 and the asymptotic 

achievable rate 휀 tends to zero 𝛿 → 0 [28].  

The encoding and decoding complexity in [28] are dented as 𝑥𝐸̅̅ ̅(𝛿, 𝜋) and 𝑥𝐷̅̅ ̅(𝛿, 𝜋), respectively. 

Where, 𝜋 is a decoded error probability and 𝛿 is the multiplicative gap. The multiplicative gap is 

defined in the equation (4.7).  

Authors in [28] presented that for the ensemble of the LDPC code of rate 𝑟, the encoding 

complexity and the decoding complexity with maximum-likelihood decoding over the binary 

erasure channel can be obtained as the following [28]: 

lim
𝛿→0

 𝑥𝐸̅̅ ̅(𝛿, 𝜋) = 𝑂(
1

𝛿2
)                                                    (4.12) 

lim
𝛿→0

 𝑥𝐷̅̅ ̅(𝛿, 𝜋) = 𝑂(
1

𝛿4
)                                                    (4.13) 

Also, the authors in [28] demonstrate that for the irregular ensemble of LDPC codes under the 

message passing algorithms over the binary erasure channel, the complexity of the decoder per 

each iteration is equal to [28]: 

lim
𝜋→0

 𝑥𝐷̅̅ ̅(𝛿, 𝜋) = 𝑂(log 1/휀)                                                    (4.14) 
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The equation (4.14) shows that if the gap between the achievable rate and the design rate 

decreases, the complexity of the decoder increases logarithmically in each iteration. Therefore, 

decreasing the gap between the design rate and the actual rate increases the complexity of the 

decoder and also the encoder. The pair degree distribution determines the actual rate and the gap 

between the design rate and the actual rate. Therefore, if the performance is the primary concern 

in constructing an LDPC code, then an appropriate pair distribution has to be chosen which have 

a good performance. Irregular pair distribution has better performance. Though, the decoding 

complexity increases in the regular pair distribution. 

The actual performance of a constructed LDPC code is less than the theoretical threshold due to 

the cycles in the graph. To improve an existing code and overcome the cycles, a new method will 

be presented in the next section. 

4.4 Proposed method 

Standard belief propagation (BP) algorithm is very fast and simple over the binary erasure 

channel. In the BP algorithm, the decoder after removing known variable nodes and their 

associated edges in the Tanner graph, looks for check nodes of degree one. The decoder transfers 

the value of the degree one check node to its adjacent variable node [6]. BP stops and declares 

failure when there is no more check nodes of degree one. 

When belief propagation gets stuck the erased bits are either the member of a stopping set or not, 

therefore, there are two scenarios. The first scenario happens when the number of unknown 

variable nodes is equal to the number of independent equations. In other words, the matrix is full 

rank and there is a unique answer for the equations, however, BP cannot find. The erased bits are 
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the member of the stopping set. Figure 4.1 shows the Tanner graph after removing known 

variable nodes and associated edges when the first situation happens. 

 

Figure 4.1. The Tanner graph of the first scenario 

Equations at the check nodes for the Tanner graph in Figure 4.1 are equal to: 

{
 
 

 
 
𝑒1 + 𝑒2 + 𝑒4 = 𝐶0 
𝑒1 + 𝑒2 = 𝐶1    
𝑒3 + 𝑒4 = 𝐶2 
𝑒1 + 𝑒3 = 𝐶3

𝑒2 + 𝑒3 + 𝑒4 = 𝐶5

                                                    (4.15) 

The number of erased bits in this Tanner graph is four. The number of independent equation and 

rank of the matrix is also four. Therefore, there is a unique answer for the set of equations in the 

(4.15), however BP cannot solve them. Due to the cycles in the Tanner graph, the erased bits are 

in the stopping set. However, the unknown variables in the equation (4.15) can be determined by 

Gaussian elimination; the answer for 𝑒4 is equal to 𝑒4 = 𝐶0 + 𝐶1, after finding 𝑒4 the next erased 

bit 𝑒3 can be determined. Finally 𝑒1 and 𝑒2 would be found.  

e2

e3

e1

e4
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C2

C3
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The second scenario happens when the number of unknown bits is more than the number of 

independent equations. The matrix of coefficients is not full rank. Therefore, there is no unique 

answer for the unknown bits. Figure 4.2 shows the Tanner graph for the second scenario.  

e1

e3

e0 C0

C1

C2

C3

e2

 

Figure 4.2. The Tanner graph for the second scenario 

Equations at the check nodes in figure 4.2 are: 

{

𝑒0 + 𝑒1 = 𝐶0
𝑒2 + 𝑒3 = 𝐶1
 𝑒0 + 𝑒3 = 𝐶2
𝑒1 + 𝑒2 = 𝐶3

                                                       (4.15) 

The rank of the matrix for the set of equations in the equation (4.15) is three and there are four 

unknown variable nodes. The matrix is not full rank. Therefore, there is no unique solution for 

these equations and BP cannot solve these equations.  

This is the weakness of the standard BP which cannot find the erased bits in the first and second 

scenario due to the cycle in the Tanner graph. To solve these undesirable situations, we propose a 

new algorithm in which the performance of an LDPC code can be improved without increasing 

the decoding complexity considerably. A couple of researches have been done to improve the 

performance of the Belief Propagation algorithm, however, these methods are not always 

efficient. It means that sometimes they add high complexity, however, the performance can be 

improved without increasing the complexity too highly. We proposed a method which improves 
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the performance of the code according to the scenario that happened. Therefore, the proposed 

method is more efficient. The proposed algorithm is a combination of three decoding algorithms: 

standard BP, Generalized Tree-expected propagation (GTEP), and guessing algorithm. Figure 

4.3 shows the proposed algorithm. 

If s=0 Run GTEP

If s=1

S++

Run 
guessing 
algorithm

S++

If s=2 Fail

S=0

BP

If BP is  
successful

END

Yes

No

 

Figure 4.3. The block diagram of the proposed method 

The complexity of GTEP is the same as BP and this algorithm can solve some of the erased bits 

in the first scenario. Therefore, it does not add more complexity. Though sometimes, GTEP can 

solve all the erased bits and there is no need to run guessing algorithm and adds more 

complexity. The guessing algorithm adds a higher complexity. The complexity of the guessing 

algorithm increases exponentially with increasing the number of guesses. Therefore, the guessing 

algorithm is run after GTEP. Running GTEP decreases the number of unknown variable nodes 

and results in decreasing the number of guesses in the guessing algorithm, which results in 

reducing the decoding complexity. In addition, the complexity of the guessing algorithm can be 

reduced, if the decoder chooses a check node and makes an assumption on the variable nodes are 

connected to it, instead of choosing a set of variable nodes and making an assumption on them. 

At the next section we will talk about the GTEP and the guessing algorithm. 
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4.3.1   Generalized tree-expected propagation 

Generalized tree-expected propagation (GTEP) is like belief propagation and at each iteration 

one check node and one variable node are removed from the graph. If the condition for the 

successful decoding of GTEP is satisfied, then it can solve the erased bits. After solving one 

erased bit, a couple of erased bits can be defined with standard BP. Generalized TEP (GTEP) can 

find the value of some of the erased bits if the first scenario happens. GTEP works as a Maxwell 

decoder but with the same complexity as BP [16]. GTEP algorithm is as the following [16]: 

1- In each iteration, it selects one check node. 

2- If the degree of the check node is one it runs BP. 

3- If the degree of the check node is greater than one then, it removes the check node and 

one of the variable nodes and its associated edges. The check nodes that are connected to 

the removed variable node are reconnected to all of the variable nodes connected to the 

removed check node. If the removed variable node is parity one, then, flip the check 

nodes. 

4- Continue and go to step 1 until there is no check node of degree one or all the check 

nodes are removed. 

Tree-expected propagation (TEP) is a special case of GTEP. In TEP, the decoder looks for check 

nodes of degree two and removes it from the graph with one of its associated variable node. The 

condition to decode successfully is that two variable nodes of a check node degree two also share 

a check node of degree three. If this condition is satisfied, then check nodes of degree one are 

appeared and BP can start the decoding again. GTEP decodes successfully, if 𝑦 variable nodes 

are connected to a check node of degree 𝑦 and also are connected to another check node of 
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degree 𝑦 + 1. For example if three eased bits share a check node of degree three and also share a 

check node of degree four, then the forth bit can be solved by GTEP. Figure 4.4 shows the 

process of TEP. It shows that after one iteration, two check node of degree one is released.  

 

Figure 4.4. a) The Tanner graph before running GTEP b) The Tanner graph after running GTEP 

GTEP have the complexity as low as BP. Since, at each iteration it remove one check node and 

one variable node its complexity is the same as BP. GTEP works successfully in the first 

scenario, if the condition for successful GTEP decoding is satisfied. Then, it can solve the erased 

bits. Otherwise, if the conditions for successful decoding are not satisfied, GTEP fails. The 

remaining erased bits can be solved by the guessing algorithm. 

4.3.2 The new guessing algorithm 

If BP and GTEP could not find the value of some of the erased variable nodes, the guessing 

algorithm will be used. In the first scenario, when the equations at the check nodes have a unique 

answer but standard BP cannot find it, the guessing algorithm by guessing on the erased bits can 

find the answer. The guessing algorithm in the first scenario finds the unique answer. One of the 

problems of the guessing algorithm is its complexity. The complexity of the guessing algorithm 
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grows exponentially if the number of guesses increases linearly. Hence, there is a limitation on 

the number of guesses [12]. Another problem of the guessing algorithm is its probability of error. 

When the second scenario happens and there is no unique answer for the equations, it is possible 

that the guessing algorithm declares a wrong codeword as the output of the decoding.  

In the guessing algorithm, the algorithm makes assumption on a set of erased variable nodes. We 

consider that the size of the set is 𝑥. In the binary field, for 𝑥 guesses on the erased variable 

nodes there are 2𝑥 possibilities. The guessing algorithm for finding the correct guess it has to 

check all 2𝑥 possibilities. The way for finding the correct assumption is checking the check 

nodes. The correct assumption gives zero check-sum. If there is one unique answer, then there is 

only one possibility gives the zero check-sum among all the 2𝑥 possibilities. 

In a binary field, we can reduce the number of possibilities using the new guessing algorithm. In 

the guessing algorithm, the decoder chooses a set of variable nodes and poses assumptions on 

them. However, in the new guessing algorithm the decoder chooses a set of check nodes and 

makes assumption on the variable nodes connected to them. In this algorithm if the decoder 

chooses a set of 𝑘 check nodes {𝑐0, 𝑐1, … , 𝑐𝑘} which are: 

{
𝑏11. 𝑎1 + ⋯ +𝑏1𝑁. 𝑎𝑁 + 𝑐1 = 0

⋮ ⋱ ⋮  ⋮  ⋮
𝑏𝑘1. 𝑎1 + … +𝑏𝑘𝑁 . 𝑎𝑁 + 𝑐𝑘 = 0

,            b's and c's 𝜖{0,1}                    (4.16) 

Where (+) is the addition in a binary field (Galois field). The number of unknown variables in 

these equations is 𝑁′: 

𝑁′ = ∑ 𝑚𝑎𝑥({𝑏𝑖𝑗|𝑖 = 1,… , 𝑘})
𝑁
𝑗=1                                 (4.17) 

Then the number of possibilities is: 
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2𝑁
′−𝑘                                                              (4.18) 

Proof: All possible combinations of the binary N-tuple (𝑎1, … , 𝑎𝑁) is 2
𝑁. In linear algebra, given 

𝑀 binary independent set of linear equations, the number of the possible solutions is 2𝑁−𝑀 [29]. 

For example if one check node is selected and the degree of the chosen check node is two like 

Figure 4.5 (a), then the number of possibilities and the independent equation are two and one, 

respectively. Table 4.1 shows the possibilities for 𝑒1 and  𝑒2 according to the value of 𝑐. 

Table 4-1: The possible values for the variable nodes in the figure 4.5.a 

𝑒1 𝑒2 C 𝑒1 𝑒2 C 

1 0 1 0 0 0 

0 1 1 1 1 0 

If the decoder chooses two check nodes of degree two and they have one in common variable 

node similar to Figure 4.5.b then the number of unknown variable nodes and independent 

equations are three and two, respectively. Therefore, the number of possibilities is two. The 

decoder poses assumptions on three variable nodes 𝑒1𝑒2𝑒3 in the new guessing algorithm while 

the number of possibilities is two which is equal to one guess in the guessing algorithm. Table 

4.2 shows the possibilities if 𝑐 = 1 and 𝑐𝑥 = 0. In this paper we consider 𝑒1𝑒2𝑒3 as one set of 

guess.  



82 
 

(a)

e1
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e2
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e3

(b)
 

Figure 4.5. a) A check node of degree two and its associated variable nodes b) two check nodes of degree two and their 

associated variable nodes 

Table 4-2: the possible values of the variable nodes in the figure 4.5.b 

𝑒1 𝑒2 𝑐 𝑒1 𝑒3 𝑐𝑥 𝑒1 𝑒2 𝑒3 𝑐 𝑐𝑥 

1 0 1 0 0 0 1 0 1 1 0 

0 1 1 1 1 0 0 1 0 1 0 

 

3.9 Simulation Results  

In this section, the proposed method will be first applied on an existing LDPC code, then the 

performance of the code would be evaluated. The regular LDPC codes are chosen for the test of 

the method. In this thesis two regular (3,6) half-rate LDPC codes are constructed based on the 

Gallager method. The lengths of the constructed codes are 103 and 2 × 103. These two codes 

have the same design rate and theoretical threshold. However, they have different performance, 

due to different code length. The pair distribution of these two codes is: 

𝜆(𝑥) = 𝑥2                                                            (4.19) 
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𝜌(𝑥) = 𝑥5                                                            (4.20) 

According to the equation (2. 29) the theoretical threshold for the pair distribution of (4.19) and 

(4.20) is equal to 0.428. Figure (3.2) shows the threshold of the ensemble (3,6) versus 𝑥. 

However, the performance of the codes is less than 0.429, due to the cycles in the graph and 

length of the code. The performance of these codes is evaluated according to the different 

channel erasure rates. Figure 4.6 shows the probability that a packet for the code of length 103 

received correctly over different channel erasure rates. This figure depicts that for the small 

channel erasure rate, less than 0.41, the probability that a packet received correctly is almost one. 

It means that all the erased bits solved by the decoder. With increasing the channel erasure rate 

after 0.41, the probability that the decoder can correct all the erasure drops sharply.  

Figure 4.6 also shows that how applying the proposed method (BP+ GTEP+ Guessing algorithm) 

improves the performance from 0.41 to 0.42. The new guessing algorithm is applied. In this 

code, one check node according to figure 4.5.a or two check nodes similar to the figure 4.5.b are 

chosen. Therefore, the number of possibilities is two which is equal to the guess on one variable 

node. As we can see from the results, if the channel threshold is 0.43, the probability that a 

packet has erasure after running BP is 0.7 and this probability reduces to 0.55 after running 

GTEP algorithm. At the last step, after running the new guessing algorithm, this probability is 

reduced to 0.23. 
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Figure 4.6. The simulation results for the code of length 103 

 

Figure 4.7. The simulation results for the code of length 2 × 103 

Figure 4.7 shows the simulation results for the code of length 2 × 103. The performance of this 

code is more close to the theoretical threshold than the code with length of 103. Simulation 

results in figure 4.7 show that the performance of this code increased after applying the proposed 

method. At the channel erasure rate of 0.43, the probability of erasure before and after the 

applying the method are 0.1 and 0, respectively. The number of guesses used for both codes is 
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identical. Therefore, both simulations in figure 4.7 and 4.8 use the same maximum number of 

guesses.  

Another simulation is done for the number of guesses for both codes. Figure 4.8 shows the 

probability of guesses number that the decoder needs to make on the erased variable nodes for 

correcting a codeword. In this simulation, the channel erasure rate is considered to be 0.43. 

According to the simulation results, on average the LDPC code of length   2 × 103 needs larger 

number of guesses than the code of length 103.  It is obvious that codes with larger length need 

more number of guesses.  

Another comparison is done between the guessing algorithm and the new guessing algorithm. 

Figure 4.9 presents the number of guesses in the guessing algorithm and the new guessing 

algorithm. In this simulation, the channel erasure rate and the code length are 0.43 and  2 × 103, 

respectively. The simulation result shows that the new guessing algorithm needs smaller number 

of guesses than the guessing algorithm. Therefore, the complexity of the new guessing algorithm 

is less than the guessing algorithm.  

4.4 Conclusion 

In this chapter, we proposed a new method for improving the performance of an existing regular 

LDPC code without increasing the decoding complexity dramatically. In this work we showed 

that the combination of the three decoding algorithms: the standard BP, GTEP, the guessing 

algorithm increases the performance of the LDPC code. The problem of the guessing algorithm 

is its complexity. The complexity of the guessing algorithm reduces by reducing the number of 

possibilities. The number of possibilities can be degraded, if the decoder chooses a set of check 

nodes and poses assumptions on their adjacent variable nodes. The complexity of the new 
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guessing algorithm does not increase exponentially with increasing the number of guesses. We 

applied the proposed algorithm on a regular (3,6) LDPC code, the simulation results in this 

paper show that the performance of a regular LDPC code can be increased from 0.42 to 0.43 

with considering the maximum number of guesses equal to three. 

 

Figure 4.8. Probability of guesses number for channel erasure rate of 0.43 

 

Figure 4.9. Probability of guesses number for channel erasure rate of 0.43 and code of length  2 × 103 
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5. Chapter 5 Conclusion and Future Works 

 

 

5.1 Introduction 

In this thesis we evaluated Low-Density Parity-Check (LDPC) codes in different terms. From 

constructing the LDPC code to the encoding and the decoding procedure of the LDPC code was 

evaluated. The performance and the encoding and the decoding complexity and the tradeoff 

between then are investigate in this thesis. Some methods to construct an LDPC code and to 

improve the performance are proposed in this thesis. 

To increase the bandwidth efficiency, multiple access channel is needed. In chapter 3, first we 

investigated the 2 users-binary erasure multiple access channel (BEMAC). Since, the 

transmissions over the multiple access channel are not orthogonal, 2 users send information 

simultaneously.  On the average half of the received message is erased and because of that, the 

channel is named BEMAC. In order to recover the messages for both sources a half rate code is 

needed. If one source send at full rate and the other one encode its message with a half rate code, 

at the receiver both messages can be recovered. According to the Shannon capacity, the capacity 

of the 2 users-BEMAC is 1.5. To achieve near the Shannon capacity a code of half rate which 

has a good performance over the Binary Erasure Channel (BEC) is needed. LDPC codes are 

good candidate and have good performance over the BEC. Therefore, an LDPC code of half rate 

is needed.  
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In this chapter, according to the density evolution, the best ensemble for the regular half rate 

code was theoretically found. The best ensemble is (𝑛, 3,6) which has the highest threshold 

among all the other ensembles. This ensemble can be considered as an optimum ensemble which 

results in the best performance with lowest decoding complexity. Therefore, the ensemble 

(𝑛, 3,6) is an optimum ensemble. There is two types of the LDPC codes; regular and irregular. 

The performance of the irregular LDPC code is better than the regular one. Since, the best 

ensemble is (𝑛, 3,6) and irregular LDPC codes have better performance, then an irregular LDPC 

code with a degree distribution was achieved from this ensemble is our interest. 

There are advantages of the LDPC codes over the Turbo codes. However, the problem or the 

disadvantage of the LDPC code is its encoding complexity. The encoding complexity of the 

turbo codes is time linear, since the encoding complexity of the LDPC code of the length 𝑛 is 

equal to the 𝑛2. Therefore, the encoding complexity of the LDPC code is not time linear. In this 

chapter, we proved that to reduce the encoding complexity, the parity check matrix of the code 

must be approximately in the lower triangular shape. In this chapter we want constructed a half 

rate LDPC code which has good performance and low encoding complexity.  

We proposed a method to construct LDPC codes. In the proposed method, 1’s are spread in each 

row randomly. At the end the columns weight must be checked. We showed that in this method 

the probability that all columns have the weight greater than zero is zero. To remove the columns 

or rows of weight zero, some permutations are needed. Another method is that we can put a 

constraint that 1’s are put in the selected places in each row. The selected place is removed from 

the available places list. This method guaranteed the weight of all columns and rows are greater 

than one. Next, we proposed a method to construct a lower triangular parity check matrix. To 

construct a lower triangular parity check matrix there are more constraint. The first constraint is 
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the degree distribution pair. The second one is the constraint to keep the shape of matrix the 

lower triangular. In this thesis, we also consider the density of the parity check matrix in all rows 

of the matrix equally. For example, according to the ensemble (𝑛, 3,6) the number of ones in 

each row is equal to 6. This results in the different density in the rows of the lower triangular 

matrix. However, in the proposed method we kept the density in each row equally. It was done 

by changing the number of ones according to the number of elements that can be non-zero in 

each row.  

In the rest of this chapter, an irregular half rate LDPC code is generated. The selected pair degree 

distribution polynomial has the same right degree distribution as the ensemble (𝑛, 3,6). The 

theoretical performance or the threshold of the constructed code according to the density 

evolution is 0.468. The generated parity check matrix of the code has the density as low as 

possible and also the density of the matrix in all rows is remained approximately equal. The 

encoder and the decoder for the generated code is implemented. The performance of the code is 

evaluated and the actual performance of the code is less than 0.468, due to the short cycles and 

finite length of the code. To overcome these problems and improve the performance of the code 

the guessing algorithm is applied. After the Belief Propagation (BP) algorithm gets stuck, the 

guessing algorithm is run. The guessing algorithm makes an assumption on a set of erased bits. 

After the assumption, the BP again starts the decoding. If all the erased bits are solved, then there 

is no need for another assumption otherwise another assumption is needed. The correct 

assumption results in the zero check-sum. If the check-sum is not zero, then the decoder change 

the value of assumed bits and continue the decoding until the check-sum zero is achieved. 

In the chapter 4, the encoding complexity is not the primary concern. In this chapter, the 

performance and the decoding complexity is the primary concern. The decoding complexity of 
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an LDPC code is first evaluated in this chapter. The lower bound of the code density to achieve 

the actual rate demonstrated that to have a better actual rate the lower bound on the density 

increases. Therefore, there is a tradeoff between the performance of the code and the complexity. 

In this thesis, we decided to choose a code with low decoding complexity and then improve the 

performance of the code.  

To evaluate the performance of an LDPC code we started with the iterative decoding algorithms. 

One important class of these algorithms is BP. We investigate two scenarios when BP gets stuck 

and cannot solve the erased bits, therefore, the performance of the code degraded. The first 

scenario happened when there is a unique answer for the remained erased bits. BP cannot solve 

them due to the cycles in the graph and however, using the Gaussian elimination can find the 

answer. The second scenario happened when there is no unique answer for the erased bits. Bits in 

the first scenario can be found by Generalized Tree-Expected Propagation (GTEP) Algorithm if 

the successful decoding is satisfied for this algorithm.  The complexity of the GTEP is as low as 

BP; therefore it does not add higher complexity.  

The rest of the erased bits can be solved with the guessing algorithm.  The complexity of the 

guessing algorithm is higher than the BP and GTEP. The complexity of the guessing algorithm 

increases exponentially with increasing the number of guesses. In this thesis to improve the 

performance of the existing code, we proposed a method. The proposed method is the 

combination of these three algorithm; BP, GTEP, guessing algorithm. The proposed method 

improves the performance of the code without increasing the complexity highly. The proposed 

method improve the performance is an efficient way. 

In the proposed method first BP is run. If BP gets stuck then GTEP is run. Final, if there are still 

erased bits guessing algorithm is run. If after the BP guessing algorithm is run, the complexity of 



91 
 

the decoder increases highly. When GTEP is run before the guessing algorithm the number of 

erased bits reduces and the set of guesses reduces. As a result, the decoding complexity reduces 

if the set of guesses decreases. Also, to decrease the decoding complexity more, a new guessing 

algorithm is proposed. In the new guessing algorithm the algorithm chooses a set of check nodes 

and makes an assumption on the variable nodes connected to them. However, the guessing 

algorithm chooses a set of variable nodes and makes an assumption on them. In the new guessing 

algorithm the number of possibilities reduces by the half. Therefore, the complexity of this 

algorithm reduces more. The proposed algorithm was applied on a regular half rate code. The 

optimum ensemble (𝑛, 3,6) was chose. The code was constructed based on the Gallager method. 

The proposed method was applied on the code and the simulation results showed an 

improvement in the code performance. 

5.2 Future work 

In this thesis, we just considered the 2 users-BEMAC. The performance and the complexity of 

the LDPC are improved over the binary erasure channel which is noiseless.  In the future we will 

consider the Binary Symmetric Channel (BSC). The performance and the complexity of the 

LDPC code will be improved over the BSC. 

Also, the proposed method to improve the performance of the regular LDPC code will be applied 

on the LDPC code of the Raptor code. In the future after applying the method, we will 

investigate the Raptor code in terms of the performance and complexity.   
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