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Abstract

Community Detection in Evolving Networks

Tejas Puranik

Most social networks are characterized by the presence of community structure, viz. the

existence of clusters of nodes with a much higher proportion of links within the clusters

than between the clusters. Community detection has many applications in many kinds of

networks, including social networks and biological networks. Many different approaches

have been proposed to solve the problem. An approach that has been shown to scale

well to large networks is the Louvain method, based on maximizing modularity, which

is a quality function of a partition of the nodes.

In this thesis, we address the problem of community detection in evolving social net-

works. As social networks evolve, the community structure of the network can change.

How can the community structure be updated in an efficient way? How often should com-

munity structure be updated? In this thesis, we give two methods based on the Louvain

algorithm, to determine when to update the community structure. The first method,

called the Edge-Distribution-Analysis algorithm, analyzes the newly added edges in or-

der to make this decision. The second method, called the Modularity-Change-Rate

algorithm, finds the rate of modularity change in a given network, and uses it to predict

whether or not an update is required.

Due to the sparsity of real datasets of evolving networks, we propose three models

to generate evolving networks: a Random model, a model based on the well-known

phenomenon of homophily in social networks, and another based on the phenomenon

of triadic and cyclic closure. Starting with real-world data sets, we used these models

to generate evolving networks. We evaluated the Edge-Distribution-Analysis algorithm

and Modularity-Change-Rate algorithm on these data sets. Our results show that both

our methods predict quite well when the community structure should be updated. They

result in significant computational savings compared to approaches that would update

the community structure after a fixed number of edge additions, while ensuring that the

quality of the community structure is comparable.
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Chapter 1

Introduction

Graphs have become remarkably useful to represent a wide range of systems of interest

to scientists, engineers, and social scientists. Some examples are biological networks,

telecommunication networks, Internet, world wide web, social networks, citation net-

works and collaboration networks. Social network analysis started in 1930 [19] and has

become an important area of research in computer science. A social network is defined

as a set of nodes connected by edges. Nodes could represent people, molecules, comput-

ers or routers and edges represent the connections between nodes. For example, in an

email network, nodes represent a set of people in an organization, and an edge between

nodes a and y indicates that there was an email exchange between x and y in a given

time period. Advances in technology have made possible the collection of data on social

networks that contain millions of nodes and billions of edges. The ever growing nature of

such networks demands new methods to understand the hidden information from their

structure.

One promising approach consists of decomposing the networks into sub-units or

communities, which are sets of highly inter-connected nodes [9], [20]. The problem

of community detection has been studied extensively for static networks. However,

most social networks are not static in nature. Many social networks evolve rapidly

in terms of size over time. Nodes may join or leave social networks. Even the nodes

that stay, may lose connections or create new connections. In popular online social

networks like Twitter, Facebook, Livejournal, within 24 hours, millions of users update

their connections. Such networks may be termed dynamic social networks. For large

networks with millions of nodes and billions of edges, some thousands of edge additions

or deletions might seem insignificant, but over time they change the structure of the

network. In particular, communities in the network may evolve and change as a result
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of edge additions or deletions. This change in community structure raises the need of re-

identification of communities in the network [3]. In this thesis, we study the problem of

community (re)-identification in dynamic networks. We call this the problem of dynamic

community detection.

1.1 Community Detection

How do we define communities in a social network? A generally accepted, though

somewhat vague, definition is that a communities are groups of nodes that have denser

connections within the group than outside the group. We discuss different defintions of

a community in the literature in Chapter 2. A classic example of social network that

has been studied in this context is Zachary’s karate club network [52]. This network

contains 34 nodes and 78 edges. The nodes of this network represent the members of

karate club and the edges connect the people who had interactions outside the club.

This network was observed for a period of three years. During this period, the president

of the club and the instructor had a conflict which led to the breakup of the club into

two separate groups, supporting the instructor and the president. A key question of

interest is: Would it have been possible to predict this separation by simply examining

the structure of the network? From Figure 1, we can easily distinguish two groups of

nodes that have a lot of connections within the groups and few between the two groups.

The aim of community detection algorithms is to identify such communities.

For large networks, efficient algorithms for community detection become very im-

portant as it is impossible to visualize networks of millions of nodes. Community de-

tection has a lot of applications in real networks. An important application is for rec-

ommendation systems. It makes sense to make similar recommendations to a group of

people who are in the same community and possess similar interests [45]. Another exam-

ple is in research, the communities obtained from citation and co-authorship networks

like DBLP and Condmat can be used to develop new methods and theories and can help

to understand research patterns. In [17], the authors have tried to detect criminal ac-

tivities in criminal networks using clustering algorithms. Traditional methods focus on

the movement of an individual but here the authors claim that one should use commu-

nities to detect these events. Community detection is also used for refactoring software

packages in complex software networks [37] 1 There are a lot of applications in biological

networks, but one of the most significant is a community-based lung cancer detection

approach which focuses on high risk patients [7]. In a protein-protein interaction (PPI)

networks, communities correspond to functional groups, i.e to proteins having the same

1Refactoring code means restructuring the code without changing its external behavior. Such refac-
toring improves code readability and reduces complexity.
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Figure 1: Zachary’s karate club network [4]

or similar functions, which are expected to be involved in the same processes. Some

communities in these networks are related to cancer and metastasis, hence, detecting

these communities in PPI networks could be very important [18]. Community detection

can also be helpful in solving influence maximization or viral marketing problems.

1.2 Dynamic Networks

Social networks may be classified as static or dynamic. Static networks do not change or

evolve over time; in dynamic networks nodes may come and go, and edges might be added

or deleted. In simple terms, the network topology changes over time. Social network

researchers may seem to perceive the world as static but dynamic networks are present

everywhere. Fifty four years ago, Wilbert Moore said [31] that ”social sciences tended

to neglect the way the limits and flows of time intersect the persistent and changeful

qualities of human enterprises.” This observation was based on the dominance of static

models to study social networks. He further stated that ”all analytical sciences tend

to perfect their descriptions of elements and observations of combinations before they

develop the capacity to observe orderly transformations in the course of time.” Till this

date, static models are dominant in social network analysis.

3



A dynamic network is modeled as a sequence of graphs G0, G1, ..., Gn, where Gj =

(Vj , Ej) denotes the graph at snapshot j, which consists of Vj nodes and Ej edges

[43]. The example of Zachary’s karate club network is useful to be reconsidered here.

We run Louvain’s [9] community detection algorithm on network G0 which leads to four

communities which are represented by four different colors shown in Figure 2.(a). Figure

2.(b) shows the next snapshot G1 of the graph in which we have added two new nodes

(node 35 and node 36) and 3 new edges from these nodes. Due to the change in network

dynamics there is a need to re-run the community detection algorithm. The results of

running community detection on graph G1 are shown in Figure 2.(c). From this, we

can observe that some of the communities are merged or split and new communities are

created.

4



Figure 2: (a) Zachary’s karate club original network (b) Zachary’s karate club network
after addition of new nodes and edges (c) Result of the Louvain algorithm on Zachary’s

network [4]
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1.3 Problem Statement

In this thesis, we study the problem of community detection in dynamic networks. We as-

sume we are given a dynamic evolving network, represented by snapshots G0, G1, ..., Gn,

where Gj = (Vj , Ej) denotes the graph at snapshot j, which contains |Vj | nodes and |Ej |
edges. We assume that the only change to the network between the snapshots is the

addition of new edges. We aim to have up-to-date and accurate community information

for all snapshots. An obvious algorithm is simply to run a static community detection

algorithm for every Gj . However this would be prohibitively expensive in general, and

completely infeasible for large networks. In addition, community structure may not

change significantly between snapshots.

How many edges need to be added to the network until the community structure

changes? Are some kinds of edges likelier to change community structure than others?

Are some nodes likelier to switch communities than others? How do we model the

evolution of communities? We aim to get a better understanding of these questions in

this thesis. Our final goal is to find algorithms to decide in every snapshot, knowing only

which edges have been added to the network, whether or not the community structure

is likely to have changed, necessitating the execution of a static community detection

algorithm, to update the community structure.

1.4 Thesis Contribution

The contributions of this thesis are listed below:

• We classify edges into different categories and compute the minimum (threshold)

number of different types of edges that would need to be added to a network before

its community structure would change.

• We give several models for the addition of new edges to a social network.

• We give two new algorithms: the Edge-Distribution-Analysis algorithm , and the

Modularity-Change-Rate algorithm to solve the problem of identifying the snap-

shots Gi in which to run a static community detection algorithm.

• We implement and run our algorithms on seven different benchmark social net-

works, and analyze the results.

• Our experiments show that both our algorithms do a good job at identifying snap-

shots in which to update the community structure. Compared to an approach

6



of updating community structure after a fixed number of edge additions, our al-

gorithms obtain large savings in computation effort, while ensuring comparable

quality of community structure.

1.5 Thesis Outline

Chapter 2 presents a literature review on community detection topics. First, we briefly

explain the problem of community detection. Then we present different existing solutions

for the problem. Chapter 3 presents our two new algorithms to solve the problem of

dynamic community detection. Chapter 4 conducts a detailed study on generating

evolving networks. Chapter 5 presents a comprehensive study of the performance of the

proposed algorithms in the previous chapters. The final chapter concludes our thesis

and gives some leads for future work.
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Chapter 2

Related Work

In this chapter, we give a literature review on community detection. We start by at-

tempting to define a community in Section 2.1. In Section 2.2, we study a few community

detection techniques discussed within the literature. In Section 2.3, the literature on the

Louvain algorithm and its variants have been reviewed. Section 2.4 extends the concept

of community detection for evolving networks and details a few important algorithms

from the literature. Finally, the limitations of existing algorithms have been outlined in

Section 2.5.

2.1 What is a community?

In this section, we give the definition of community detection in depth and study some

of the fundamental concepts of graph clustering. Afterwards, a brief explanation of the

computation time for community detection is considered. There are many definitions

of community detection. No definition is universally acclaimed. Often, the definition

is based on the type of system under consideration or application dependent. After

a careful review of these definitions, it can be concluded that communities are the

subgraphs in which nodes are densely connected to each other when compared to the

rest of the network. There are two types of community definitions; local and global.

Local definitions focus on the subgraph under study but neglect the rest of the graph.

On the other hand, in the case of global definitions, communities are defined with respect

to the graph as a whole.

8



2.1.1 Local Definition

In social networks, a community often means a group whose participants are all friends

with each other. In graph theory, such a group is termed as a clique in which every two

distinct nodes are adjacent. This is a rather strict definition of community. According to

this definition, if a single pair of nodes is not connected to other nodes in the network,

it can be termed a community. Also a subgraph in which all but one pair of nodes

is connected would not qualify as a community. Another important limitation of this

definition comes about if we want to understand the hierarchical roles of nodes within

the community. Using the definition of community as a clique, it is simply not possible.

One can always relax the notion of clique and define an n-clique. An n-clique is

a maximal subgraph for which the distance between any pair of nodes does not exceed

n. There are problems associated with this definition as well which are stated in [18].

There are some definitions available that are based on the similarity of the nodes. Each

node ends up in a community whose nodes are most similar to it. This similarity can be

a local or global property of the network. For example it can be geographical distance

between the two nodes, the degree of the nodes etc. Therefore, two nodes who are not

connected to each other by a short path might appear in the same community. [16] and

[18] provide some number of suitable local definitions, however, in this work, our focus

is on global definitions.

2.1.2 Global Definition

In contrast to local definitions, in a global definition of community, we specify not only

the relationship between nodes within the community, but also their relationship to

nodes outside the community. A community is defined as a subgraph in which nodes

are densely connected to each other and sparsely to the rest of the network. Within

such a context, a global property of the graph is used in an algorithm which delivers

communities. A key idea in the literature is that if a network has community structure,

it is different from a random graph. Several definitions [18] draw on this notion. The

random graph defined by [15], will not have community structure. As any two nodes of

the graph have the same probability of being connected to each other, as a result, there

will not be any special group or community. In the literature, the null model is defined

as a random graph which matches the given graph in some of its structural properties.

This null model is used as a comparison tool in order to find out whether the original

graph exhibits community structure or not. The most famous proposed null model by

[34] rewires the edges randomly by keeping the degree of the node the same as it was in

the original graph. This new random graph is used as the null model.
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This null model is the basic concept behind the global parameter modularity.

There are a lot of definitions of modularity based on different null models. According

to [34], a subgraph is a community only if the total number of internal edges in the

subgraph are greater than the expected total number of edges that are inside the same

subgraph of the null model. Modularity also acts as a quality function which maps any

partition of the graph to a numerical value. Then the communities can be said to be

the partition that maximizes this value. Since we adopt this approach in our thesis, we

describe it in detail in the next section.

2.1.3 Quality function: Modularity

Modularity is a function that evaluates the quality of a given partition of nodes in a

graph as good communities. It is based on evaluating how much the graph, and the

given partition differ from null model.

Consider a graph G = (V,E) and let |V | = n and |E| = m. Suppose we are given

a community structure e for the graph where e = C1, C2, ..Ck is a partition of V into

communities. Define d(v) to be the degree of node v. Let A be the adjacency matrix for

G where Avw = 1 means there is an edge from node v to node w and Avw = 0 means

there is no edge from node v to node w.

To obtain a null model, the following procedure is described in [34]. For every

edge in the graph, we cut it in a half so we have two stubs. The total number of stubs

is 2m. We now reattach the stubs at random to obtain a null graph G
′
. If (v, w) ∈ e,

the probability that v and w are connected in G
′

is

d(v)d(w)

2m

Therefore, the difference between the actual number of edges and the expected number

of edges between v and w is

Avw −
d(v)d(w)

2m

The modularity of the partition e is now defined to be the summation of the difference

over all edges within communities [32]. In particular:

Q =
1

2m

∑
vw

[
Avw −

d(v)d(w)

2m

]
δ(cv, cw) (2.1)

where cv denotes the community to which node v belongs and δ(i, j) = 1 if i = j and 0

otherwise and v, w ∈ V . In [13], authors have simplified Equation 2.1. In order to do
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that, they define two variables which are:

ei,j =
1

2m

∑
vw

Avwδ(cv, i)δ(cw, j) (2.2)

ei,j denotes the fraction of edges connecting nodes in community ci and cj . Further let,

ai =
1

2m

∑
v

d(v)δ(cv, i) (2.3)

ai denotes the fraction of edges who have one endpoint in community i. It was shown

in [13] that

Q =
∑
i

(eii − a2i ) (2.4)

Notice that modularity can be seen in two different ways:

• Given a graph G and two different community structures e1 and e2 for G, the one

that has a higher associated modularity value reflects tighter connections within

communities. Thus modularity is a way of assessing different communities struc-

tures for a graph.

• Given two graphs G1 and G2 with similar structural characteristics (number of

nodes, edges, and node degrees), and best possible community structure for them,

the graph that has a higher modularity value can be said to have tighter commu-

nities. Thus modularity is a way of assessing how strong the community structure

is in a graph.

It can be shown that the value of modularity resides in between [−1

2
, 1). In [32], the

definition of this modularity is extended for weighted networks, but within this thesis,

we focus on unweighted networks.

2.1.4 Maximizing a modularity is NP-hard

Theorem [3] of [12] states that maximizing modularity is strongly NP-complete. The

proof is based on reduction from the 3-Partition decision problem which can be stated

as follows: Given 3k positive integer numbers a1, ..a3k such that the sum
∑3k

i=1 ai = kb

and b
4 < ai <

b
2 for an integer b and for all i = 1, .., 3k, is there a partition of these

numbers into k sets, such that the numbers in each set sum up to b. Therefore, they

suggest the use of heuristics for maximizing modularity.
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2.2 Techniques of Community Detection

There is a variety of algorithms for community detection that are based on different

definitions and the size of the networks. For every definition, there is at least one

algorithm in literature. In [18], the authors perform an in-depth review of the relevant

literature, detailing more than 20 algorithms for community detection. According to

[38] and [18], community detection methods are divided into different classes. In this

section, we describe several existing strategies from these classes namely traditional,

divisive, modularity based and some of the other methods.

2.2.1 Traditional algorithms

Traditional algorithms are further categorized into following four classes:

• Graph partitioning: The problem of community detection has been studied since

the 19th century. Earlier version of this problem resembled the problem of graph

partitioning. The problem of graph partitioning consists of dividing the graph into

fixed groups of a predefined size such that edges between groups are minimized.

This problem is quite well-known due to its applications in parallel computing

and circuit partitioning. Some of the popular approaches were Kernighan-Lin

[23], spectral bisection [42] etc. Such algorithms are not good for community

detection as they require the knowledge of the number of communities and the

size of communities in advance to run the algorithm. In reality, one should find

these values after running a community detection algorithm.

• Hierarchical clustering: Quite often, social network contain hierarchical structure.

In such cases, one can use hierarchical clustering techniques such as:

1. Agglomerative algorithms: Nodes are merged iteratively based on the some

similarity measure.

2. Divisive algorithms: Supernodes are split into nodes by removing edges which

connects the dissimilar nodes. This creates structure similar to a dendrogram.

From Figure 3, we can observe the hierarchical structure of nodes.

• Partitional clustering: Similar to graph partitioning, within partitional clustering,

one should know in advance the number of clusters for given graph. The main

goal is to divide the nodes into k clusters by maximizing or minimizing some

measure such as the shortest distance, similarity etc. Famous approaches include

k-median, k-clustering sum, minimum k-clustering sum. The cost function in case

12



Figure 3: Hierarchical dendrogram for Zachary’s karate network club [35]

of minimum k-clustering is the diameter of the cluster. For the largest cluster,

diameter should be as small as possible. The idea is to keep the clusters compact.

In case of an k-clustering sum, diameter is replaced by average distance for all

pairs of points of a cluster. This approach also faces the same problems as graph

partitioning.

• Spectral clustering: This type of clustering includes all the methods which use

eigenvectors of matrices based on similarity to group the nodes. for example,

algorithms given in [8] and [36].

2.2.2 Divisive algoritms

The Girvan and Newman algorithm [33] is a benchmark algorithm. It started a new

era of community detection. Betweenness of an edge is defined as the total number of

shortest paths for all the pairs of nodes that use the edge [18]. The steps of the algorithm

are as follows:

1. Compute the edge betweenness centrality for every edge.

2. Remove the one with largest centrality; choose randomly in case of a tie.

3. Recalculate centralities for current version of graph.

4. Repeat from step 2.
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The authors have used this algorithm for a network of jazz musicians and divided them

into communities that are based on their collaboration efforts with each other. The

worst case complexity of an algorithm is O(n3) which made it impossible to extend

the algorithm for networks with size greater than 10000. Authors have used the edge

betweenness as centrality measure in later versions to obtain better results. There are

many other algorithms which use different centrality measures such as node centrality

based on loops, similar to the clustering coefficient by [39].

2.2.3 Modularity based algorithms

The modularity function is by far the most used and most significant quality function.

Girvan and Newman used it as a stopping criteria for their divisive algorithm. Since

then a variety of algorithms have been proposed which focus on modularity optimization.

Spectral clustering, divisive techniques or simulated annealing [22] have been used for

modularity optimization. In 2008, a new heuristic for modularity optimization called the

Louvain method was introduced by Blondel [9]. Today this is the fastest algorithm, for

large networks. The modularity obtained by this algorithm is not the best as compared

to other algorithms provided in literature. However, considering the time-modularity

trade off, it gives exceptional results. This algorithm is further extended by Noack and

Rotta [41] to improve the proposed heuristic. Their algorithm is known as The Louvain

algorithm with multilevel refinement. In [30], they exploit the measure of edge centrality

for modularity optimization. Their approach is called Generalized Louvain method. In

2013, Waltman & Ludo [47] introduced a newer algorithm called SLM based on [9].

We have used the aforementioned algorithms in our thesis. A detailed discussion of

these algorithms is provided within Section 2.3. The limitations of modularity based

algorithms are discussed at the end of the chapter.

2.2.4 Other methods

In [18], the authors have published a book explaining all the community detection algo-

rithms present till 2010. Apart from the ones that we have mentioned, there are other

algorithms based on spin models, conformational space annealing [26], random walks and

synchronization. Also, there is separate section for methods based on statistical infer-

ence. Some of these algorithms address different aspects of community detection which

are not our focus. For example, our thesis does not focus on overlapping communities

but there are few algorithms which allow for this.
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2.3 Communities in large networks: The Louvain Algo-

rithm and its variants

As per our discussion in Subsection 2.2.3, the Louvain algorithm is a benchmark algo-

rithm for community detection in large networks. In this section, we give a detailed

explanation of this algorithm and its variants. A fundamental part of this algorithm

is the so-called local moving heuristic. The concept behind the local moving heuristic

is to move the nodes repeatedly from one community to another community as long as

there is gain in modularity. The gain in modularity by moving an isolated node v into

community Ci is calculated as follows:

∆Q =

[
Ei + 2 ∗ di(v)

2m
−
(
D(i) + d(v)

2m

)2]
−
[
Ei

2m
−
(
D(i)

2m

)2

−
(
d(v)

2m

)2]
(2.5)

where d(v) denotes the degree of the node, m denote the total number of edges, D(i) the

sum of the degrees of the nodes in community Ci, di(v) represents the number of edges

from node v to other nodes in community Ci and finally, Ei denotes the total number of

edges for which both the endpoints are in community Ci. The first part of Equation 2.5

represents the modularity obtained by moving node v into community Ci. The second

part of shows the modularity obtained when the node v is an isolated node. Equation

2.5 uses the simplified Equation 2.4 for modularity.

2.3.1 Local moving heuristic

In this section, we describe the Local Moving Heuristic. The local moving heuristic

has been used in [6], [9], [41], [29], [47] etc. Initially, every node is in its own commu-

nity. Next, we take an arbitrary node and see if including it in any of its neighboring

communities increases the modularity. We check all neighboring communities and find

the best community that v can move to. We repeatedly do this until no nodes switch

communities. The pseudocode is given in Algorithm 1.

In line 1, we shuffle the nodes randomly. According to [9], the order in which

nodes are chosen might affect the computation time. The do-while loop of lines 4-18

iterates as long as total number of stable nodes are less than total number of nodes. In

line 5, we choose the node for which we will calculate the best possible community. In

for loop of lines 6-11, we compute the gain in modularity by moving singleton node v to

adjacent community c using Equation 2.5. Here adjacent community means that node

v has direct edge to any of the nodes in community c. If the node v is already assigned

to some community then, before the next step, it is removed from that community &

similar expression to Equation 2.5 is used to calculate this change in modularity. In
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Algorithm 1 LocalMovingHeuristic(G)

1: V = Shuffle(V )

2: j = 0

3: update = false

4: do

5: v = V [j]

6: for each c ∈ G.Adj[cv] do

7: compute δQ for node v and community c using Equation 2.5

8: if δQ ≥ maxQ then

9: maxQ = δQ

10: bestCluster = c

11: end if

12: if bestCluster == cv then

13: nStableNodes← nStableNodes+ 1

14: else

15: nStableNodes = 1

16: update = true

17: end if

18: while nStableNodes < V

19: return update

practice, one considers this change and the gain obtained by moving node to community

c. Lines 8-11 keeps track of the maximum gain in modularity and best community

assignment for node v. Lines 12-13 checks whether the previous assignment of node v

is the still the best. In such case, we increase the total number of stable nodes by 1.

Otherwise, we initialize the update to true and the number of stable nodes to 1. This

means that algorithm might consider the same nodes many times. This procedure keeps

running until one does find the best possible assignment for every node.

Figure 4 shows an example of running local moving heuristic to the Karate club

network [52] that has 34 nodes and 78 edges. After running the Local Moving Heuristic,
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we observe that there are six communities. The green and red communities contain most

of the nodes.

2.3.2 Louvain Algorithm

The Louvain algorithm adds an additional level to the Local Moving Heuristic(LMH).

Essentially, it takes the communities given by LMH and creates a reduced graph in

which nodes correspond to the previously found communities. It then recursively finds

communities in this reduced graph. The recursive calls stop when every node in the

reduced graph stays in a singleton community when the LMH is applied. Finally, the

nodes of the reduced graph are used to assign communities in the original graph. The

pseudocode of the Louvain algorithm is given in Algorithm 2.

The Louvain algorithm works as follows: Lines 1-3 checks whether the graph has

more than one nodes and returns false in such cases. In line 4, we read the network

and assign every node to an individual singleton community. In line 5, we run the

LocalMovingHeuristic and pass graph G as parameter. The aim of the local moving

heuristic is to achieve the highest possible gain in modularity for every node. Lines 6-14

are executed only if the total number of communities are less than the total number of

nodes. In line 7, we create reduced network with less number of nodes based on the

resulting communities that are obtained from local moving heuristic. This is the first

phase of an algorithm. From line 8, we can observe that the Louvain algorithm is written

in recursive fashion. The reduced network is passed as a new instance for the Louvain

algorithm. Lines 9-13 are executed only if through running the Louvain algorithm we

have obtained positive gain in modularity. The for loop of lines 11-12 assigns the new

communities to nodes based on the output of every phase. This is the merging step of

the Louvain algorithm. After this we explain the construction of the reduced network

in depth.

We give an example of running the Louvain algorithm on the Karate club network

[52] which has 34 nodes and 78 edges. Figure 4 illustrates an example of running lo-

cal moving heuristic, we observe that there are six communities. Algorithm 3 gives the

pseudocode for the construction of the reduced network. In line 1, we create the nodes of

the reduced network. Every community obtained after running the local moving heuris-

tic will be considered as a node in reduced network. V
′
v denotes the new supernode in

the reduced network which containd node v. In the outer for loop, each community is

considered one by one. For all the nodes which belongs to community under consider-

ation, we check for every edge whose one of the endpoint is node v. The weight of the

edges between two supernodes denote the sum of all the links between the nodes in the
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Algorithm 2 LouvainAlgorithm(G)

1: if G.V == 1 then

2: return false

3: end if

4: ReadInput(G)

5: update = LocalMovingHeuristic(G)

6: if |G.C| < |G.V | then

7: G
′

= CreateReducedNetwork(G,C)

8: newUpdate = LouvainAlgorithm(G
′
)

9: if (newUpdate) then

10: update = true

11: for v = 1 to V do

12: C[v] = C[C
′
[v]]

13: end if

14: end if

15: return update

Algorithm 3 CreateReducedNetwork(G,C)

1: Let V
′

= 1, 2, ..C

2: for i = 0 to C do

3: for each v ∈ Ci do

4: for each edge (v, w) ∈ E do

5: e(V
′
v , V

′
w)← e(V

′
v , V

′
w) + 1

6: return G
′
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Figure 4: Result of applying local moving heuristic to karate club network [47].

corresponding two communities. Edges between the nodes of the same community are

treated as self loops for this supernode. This is achieved by line 5. In line 6, we return

the reduced network. Figure 5 gives the results of applying the Louvain algorithm for

the karate network. Figure 5.a represents the reduced network of six communities after

running local moving heuristic. We have not shown the self loops in it but they do exist.

After running local moving heuristic again on this reduced network we get Figure 5.b.

We can notice that nodes b and c now belong to same community. Similarly nodes e and

f also now belong to same community. The new reduced network consists of four nodes.

In the next phase, on running local moving heuristic, the change in modularity is not

positive. We use these nodes from reduced network to assign communities in original

graph. Hence, the final community structure is shown in Figure 5.c.

2.3.3 Louvain Algorithm with Multilevel Refinement

An extension of the Louvain algorithm was proposed in [41] in 2011. After running

the Louvain algorithm we observed that no further gain in modularity is possible by

merging communities. Actually, this is the stopping phase for the algorithm, in simple

words, we find the locally optimal solution with respect to merging of the communities.

In the Louvain algorithm, once the nodes are merged into supernode, individual nodes

from the supernode cannot be moved to other communities. However, the final com-

munity structure obtained by Louvain, can further be improved by allowing individual

movements for the nodes.
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Figure 5: Result of applying the Louvain algorithm to the karate club network[47].
(a) Reduced network before applying LMH (b) Reduced network after applying the

LMH (c) Final solution in the original network

The Louvain algorithm with multilevel refinement [41] improves the solution of

the Louvain algorithm so that it becomes locally optimal with respect to individual

node movements. In order to perform this, the authors run the local moving heuristic

twice. First, to obtain the initial community structure for the reduced network, and

after that, they run local moving heuristic again to allow individual node movements.

This procedure is applied to each level of an algorithm. Hence, it is called as multilevel

refinement. This algorithm gives a significant improvement over the Louvain algorithm

in terms of modularity, but the running time was also increased.

2.3.4 SLM Algorithm

Another extension of the Louvain algorithm was proposed by [47]. Their solution is also

locally optimal with respect to community merging and individual node movements. In
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addition to this, this solution checks for further improvements in modularity by splitting

up communities and moving a set of nodes from one community to other communities.

The idea of the algorithm can be summarized in 3 steps:

1. Run the Local Moving Heuristic on graph G to obtain an initial community struc-

ture e = C1, C2, ..Ck

2. Run separately the LMH on communities Ci to break (potentially) Ci into sub-

communities Ci,1, Ci,2, ..Ci,j

3. Create a reduced graph with Ci,1, Ci,2 etc. as nodes (for all i), but use the original

community structure e, and recursively call the algorithm on the reduced graph

and community structure.

Algorithm 4 gives the pseudocode of the SLM algorithm.

Lines 1-3 check whether the graph contains a single node; in such a case, it returns

false. In line 4, we read the graph and assign every node to individual community. In

line 5, we run local moving heuristic as in to the Louvain algorithm. Lines 6-17 are

executed only if number of communities obtained from local moving heuristic is less

than total number of nodes. From line 7, authors take different approach. Instead of

creating the reduced network right away, they construct a copy of subnetwork for every

community present in the current community structure. This copy will contain the

nodes belonging to particular community of interest of the original network. For loop

of lines 9-13, runs local moving heuristic for each of the subnetwork in order to identify

the communities inside the subnetwork. Similar to original procedure, every node of

the subnetwork is assigned to individual community and then local moving heuristic

is ran on it. The result after running the local moving heuristic on subnetwork might

be a single big community including all the nodes of subnetwork or it might consists of

multiple communities including some of the nodes from subnetwork. In line 13, nClusters

will contain total number of communities obtained by running local moving heuristic

on all the subnetworks. In line 14, one creates a reduced network where each node of

reduced network represents a community obtained from one of the subnetworks. Nodes

corresponding to communities in the same network are assigned to same community in

the reduced network. Therefore, for every subnetwork one gets single community in the

reduced network. This is achieved in lines 12-13. Once the reduced network is created,

we recursively call SLM on this network.

To illustrate the SLM algorithm, the karate club network is reconsidered. Figure

6(a) shows the six communities which are generated after running local moving heuristic.
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Each community is represented by different colour. For each community new subnet-

work is created. On every subnetwork, local moving heuristic is applied. For green,

blue, purple and yellow it results into all nodes being assigned to a single community.

In the case of red and orange, subnetworks are split into two communities. This is

represented by different shapes such as the squares and circles. Figure 6(b) shows the

reduced network that is obtained. In this reduced network, we have 8 nodes. Each node

represent a community in subnetwork. Nodes corresponding with communities in the

same subnetwork are assigned to the same community initially. The result of applying

local moving heuristic on it is shown in 6(c). We observe that nodes A1 and A2 remain

in the same community but nodes C1 and C2 now belong to different communities.

Afterwards, we again create subnetworks and run the local moving heuristic for every

subnetwork. We do not show the result of this, since it turns out that the community

structure shown in Figure 6(c) cannot be improved further.

2.3.5 Iterative variant of these algorithms

The authors of the [47], introduced an approach that aims to improve all of the stated

algorithms above. The basic idea of this approach is to run in iterative fashion, where

the output of previous iteration will be the starting community assignment for the next

iteration. In any of the algorithms like Louvain, Multilevel Louvain or SLM, they start

by assigning each node to an individual community. This approach will do the same,

but after the first iteration, the result of the first iteration is given to second iteration.

Therefore, for the second iteration, one does not start with every node as singleton

community. Instead one starts with the community structure of the first iteration.

The procedure is repeated for the number of iterations specified or one can stop the

algorithm when an additional iteration is not giving a gain in the modularity. Also in

the original paper of Louvain, it is mentioned that the order in which nodes are chosen

is important, hence, certain number of random starts are provided to obtain the best

result. Algorithm 5 explains the procedure. In line 6, by runAlgorithm we mean that

you can run Louvain, Multilevel Louvain or SLM.
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Algorithm 4 SLMAlgorithm(G)

1: if G.V == 1 then

2: return false

3: end if

4: ReadInput(G)

5: update = LocalMovingHeuristic(G)

6: if G.C < G.V then

7: G = CreateSubNetworks(G,C)

8: nClusters = 0

9: for each edge subnetwork Gi ∈ G do

10: LocalMovingHeuristic(Gi)

11: for j = 0 to Vi do

12: C[j] = nClusters+ Ci[j]

13: nClusters← nClusters+ Ci

14: G
′

= CreateReducedNetwork(G,C)

15: update = SLMAlgorithm(G
′
)

16: for v = 1 to V do

17: C[v] = C[C
′
[v]]

18: end if

19: return update
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Figure 6: Result of applying the SLM algorithm to karate club network[47]. (a)LMH
is applied on six subnetworks. Nodes in the subnetwork are displayed using either
square or circle. (b) Reduced network before applying the LMH. (c) Reduced network

after applying LMH.
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Algorithm 5 Iterative Variant for algorithms(G)

1: for i = 0 to randomStarts do

2: update = true

3: iteration = 0

4: do

5: IntializeCommunities(C)

6: update = runAlgorithm(G)

7: modularity = CalculateModularity(G,C)

8: iteration← iteration+ 1

9: while iteration < nIterationsandupdate

10: if modularity ≥ maxModularity then

11: maxModularity = modularity

12: end if

13: print maxModularity
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2.4 Dynamic Community Detection for Evolving Networks

Dynamic community detection is still in its infancy. The reason for this is, as the problem

is NP-hard, solving the problem of community detection for static graph is already

difficult. Thus, most of the studies focus on the practically efficient static versions of

this problem. In [18], it is mentioned that the main phenomena occuring in the lifetime

of community are birth, growth, contraction, merger with other communities, split and

death. In the literature, some of the studies like [44], [43], [10] have focused on predicting

the evolution of networks and then they use that information for community detection.

On the other hand some approaches like [3] focus on using the information from the

previous snapshots and perform community detection based on it.

2.4.1 DSLM Algorithm

The authors of [3] have extended the SLM algorithm for dynamic community detection.

The idea of the DSLM algorithm is summarized as follows:

1. Detect the new nodes which are added to the network and assign them as singleton

communities.

2. Read the previous community structure for the given graph G and assign the

current nodes to the communities based on it.

3. Run the SLM algorithm with this community structure as starting assignment.

Addition of edges, deletion of nodes and edges is handled by the SLM algorithm. This

algorithm does very well in terms of running time as compared to running SLM from

scratch on Gi. The main innovation in this algorithm is that rather than running SLM

from scratch on each Gi, we use the community structure of Gi−1 that was derived

previously as a starting point for SLM. This is responsible for saving time.

The authors of DSLM do not indicate how often to run the algorithm. For example

after the addition of how many nodes or edges should DSLM be run? In terms of

modularity DSLM gives more or less the same result as SLM.

2.4.2 Community Evolution Prediction Algorithm

In [44], the authors have proposed a machine learning model to accurately predict the

changes and transitions of the community based on structural and temporal properties.
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Community transitions and events are considered as response variables. They have used

features of communities such as density, clustering coefficient, number of nodes, cohesion,

average closeness, average degree, variance closeness and variance degree which influence

one of the response variables. Different snapshots of the networks are collected and

analyzed. Next, they have used logistic regression and various classification functions

to train the data and predict the community transitions. Their experiments show that

defined features are non overlapping and community transitions and events are predicted

accurately.

2.5 Limitations of existing algorithms

We have surveyed different definitions of communities and algorithms for community de-

tection problem. First of all, the solutions given in the literature are heuristics hence, it is

not possible to find the exact solution. Secondly, due to the plethora of application-based

definitions, it is hard to use one particular algorithm for all the community detection

problems. For example, the authors of [48], [50] have focused on finding overlapping

communities, while according to the Louvain algorithm, one node cannot be part of two

communities at the same time. In [5], the focus is on finding communities in bipartite

graphs. The authors of [51] give an algorithm to find out 2-mode communities or hidden

communities in which nodes might not have direct links to each other but they have

links to other nodes in coordinate way. For example, a network of politicians where

hidden community can be presidents of nations but in the network they might not be

connected at all but their degree distributions are similar.

In this thesis, we will be focusing on modularity-based algorithms. As per [12],

maximizing modularity is NP-hard. Also one of the major drawback for all the modu-

larity based approach is the so-called resolution limit [18]. Due to this, in large networks

sometimes such algorithms fail to resolve small communities even when they are well

defined. The reason behind this is that, in the null model, it is assumed that nodes can

get connected to any of other nodes in the graph. This assumption is a little unreason-

able as the horizon of the node is limited to a small network. As a result, the expected

number of edges between the two groups is decreased. In some of the cases, a single

edge between two small clusters might lead to their merging. In [46], the authors have

cited algorithms which do not suffer from the problem of resolution limit.

Finally, there are not many promising algorithms for the problem of dynamic

community detection for evolving networks. One of the most promising approaches is

[44] but it also predicts transition of communities with accuracy varying from 60 % to
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90 %. In the next chapter, we propose two algorithms for solving community detection

for evolving networks.
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Chapter 3

Two Algorithms for Dynamic

Community Detection

In this chapter, we propose two new algorithms for dynamic community detection. We

assume that we are given a partition of a graph into communities and a set of new edges

are subsequently added to the graph. Some existing approaches for dynamic community

detection in evolving networks were described in the previous chapter. The analysis of

dynamic communities is still in its infancy [18].

3.1 Notation and preliminaries

The following notations will be used throughout the chapter [43]. A dynamic evolving

network is modeled as a sequence of graphs G0, G1, ..., Gn, where Gj = (Vj , Ej) denotes

the graph at snapshot j, which contains Vj nodes and Ej edges. Let Gj .mod represent

the modularity for the graph Gj . We start with the discussion of the number of edges

that need to be added to the graph in order for the community structure to change.

Fix a graph G = (V,E). The remaining discussion in this section pertains to any

such graph G. Let C be a community structure for G obtained by running the SLM

algorithm. 1

We use d(v) to denote the degree of node v, and di(v) to denote the number of

edges from node v to other nodes in the community Ci. Furthermore, let D(i) be the

1 As per our discussion in Section 2.1.4, finding maximum modularity is NP-hard. This community
structure does not have maximum modularity.
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sum of degrees of nodes in the community Ci, that is:

D(i) =
∑
v∈Ci

d(v)

Finally, let m represent the total number of edges in the graph.

The gain in the modularity by moving an isolated node v to community Ci is

obtained from Equation 2.5.

δQ = di(v)− d(v)D(i)

2m
(3.1)

Fact 1. Let G be a graph and let C be a community structure for G computed by SLM

or DSLM [47],[3]. Then C is locally optimal in the sense that for every node v ∈ Ci and

Cj 6= Ci, we have:

di(v)− d(v)D(i)

2m
> dj(v)− d(v)D(j)

2m

Given a community structure C, and a node v ∈ Ci, we say v wants to switch

communities if there exists a community Cj with j 6= i such that

dj(v)− d(v)D(j)

2m
> di(v)− d(v)D(i)

2m

Also, community Cj will be a neighboring community of node v, if there is a direct edge

between node v and any node in community Cj . Node v might want to switch commu-

nities based on various factors like the addition of edges, deletion of edges, addition of

new nodes or deletion of new nodes. In this thesis we will be focusing on the addition

of edges. We can distinguish two types of edges. We call an edge an intra-edge if it

connects two nodes in the same community. We call an edge an inter-edge if it connects

two nodes in different communities.

3.2 Effect of edge additions on community structure

In this section, we study the effect of edge additions on community structure. We study

first the effect of adding intra-edges, then the effect of adding inter-edges.

The main question we seek to answer is : how many edges need to be added

to the graph before the community structure is changed. We focus on a single node

v in a community Ci. How many and what kind of edge additions would cause v to

switch communities? We study intra- and inter-edge additions separately in the next

two sections.
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3.2.1 Addition of intra community edges

In this section, our aim is to understand the effects of intra-edge additions on commu-

nity structure C in the graph G. We would like to identify the maximum number of

intra-community edges that can be added without affecting the community structure.

Consider a node v in Ci. From v
′
s vantage point, intra-edges can be further classified

into 4 types, as shown in Figure 7.

Figure 7: Types of intra edge additions-Cj is a neghboring community of node v, but
Cp is not.

We call an intra-edge a type A edge if it connects two nodes in Ci but it is not

incident on v itself. We call it a type B edge if it connects v to another node in Ci.

We call it a type C edge if it connects two nodes in community Cp where Cp is not a

neighboring community of node v. An intra-edge is a type D edge if it connects two

nodes in community Cj where Cj is a neighboring community of node v. Our results for

each type of intra edge addition are summarized in Table 1.

Type of edge Proposition

A Lemma 1

B Lemma 1

C Lemma 2

D Lemma 3

Table 1: Propositions for different types of intra edge addition
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Type A and B intra-edges

The following lemma considers the addition of type A and B intra-edges to the graph

G.

Lemma 1. Let G = (V,E) be an undirected graph, and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Let Cj be a neighboring

community of node v with j 6= i. Then node v does not want to switch to community

Cj, if at most κjv new type A and B intra-edges are added between nodes in Ci, where

κjv is given by:

κjv =
⌊2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v) + d(v))

⌋
and there is no other change to the graph.

Proof. Since C is a locally optimal community structure for G, observe that by Fact 1,

we have:

di(v)− d(v)D(i)

2m
≥ dj(v)− d(v)D(j)

2m

Now, suppose that k ≤ κjv new edges between nodes in Ci are added to G. First

v is not the endpoint of any of the k newly added edges that is, all the new edges are

Type A edges with respect to node v. Observe that d(v), di(v), dj(v), D(j) will remain

unchanged. However, D(i) and m are both incremented by 2k as a result of the addition

of the k new intra edges.

For node v, we will compare the change in modularity if v switches to Cj . We

only consider a neighboring community Cj since only D′(i) and m′ have changed. So,

in this new graph G′, when we compare the change in modularity for an isolated node
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v against community Ci and Cj , we have:

k ≤ 2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v) + d(v))

=⇒ 2dj(v)k + 2d(v)k − 2di(v)k ≤ di(v)2m− d(v)D(i) + d(v)D(j)− 2dj(v)m

=⇒ 2dj(v)m+ 2dj(v)k − d(v)D(j) ≤ di(v)2m+ 2di(v)k − d(v)D(i)− 2d(v)k

Dividing by 2m+ 2k on both sides, we obtain:

2dj(v)m + 2dj(v)k − d(v)D(j)

2m + 2k
≤ di(v)2m + 2di(v)k − d(v)D(i) − 2d(v)k

2m + 2k

=⇒ dj(v)− d(v)D(j)

2m+ 2k
≤ di(v)− d(v)(D(i) + 2k)

2m+ 2k
(3.2)

This implies that node v does not want to switch to community Cj . Next, we consider

the case when some of the newly added edges are incident to v, i.e type B intra-edges.

We need the following technical claim.

Claim 1.
D(i)−D(j)− 2m

dj(v) − di(v) + d(v)
≤ 0

Proof. Observe that

di(v) ≤ d(v)

∴ d(v)− di(v) + dj(v) ≥ 0

On the other hand,

D(i) ≤ 2m

∴ D(i)−D(j)− 2m ≤ 0

The claim follows.

Now, suppose we add k ≤ κjv new edges between pairs of nodes (u,w) where

u ∈ Ci, w ∈ Ci and u 6= w. Out of these k edges, let p be type B intra-edges, that is

33



v = u or v = w. We know that

k ≤ 2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v) + d(v))

After the addition of k edges, we have:

d′i(v) = di(v) + p,

d′(v) = d(v) + p,

D′(i) = D(i) + 2k,

m′ = 2m+ 2k

D(j) remains the same. Observe that

2k ≤
(

2m(di(v) − dj(v) + d(v)(D(j) − D(i)))

(dj(v) − di(v) + d(v))

)

=⇒ 2k + p

(
D(i)−D(j)− 2m

dj(v) − di(v) + d(v)

)
≤
(

2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

(dj(v) − di(v) + d(v))

)

where the implication follows from Claim 1

Simplifying, we obtain:

2k(dj(v)− di(v) + d(v)) + p(D(i)−D(j)− 2m) ≤ 2m(di(v)− dj(v)) + d(v)(D(j)−D(i))

Dividing by 2m+ 2k on both sides, we obtain:

2mdj(v) + 2dj(v)k − d(v)D(j)− pD(j)

2m+ 2k
≤
(

2mdi(v) + 2mp+ 2di(v)k

2m+ 2k

+
−d(v)D(i)− 2d(v)k − pD(i)

2m+ 2k

)

≡ dj(v)− (d(v) + p)D(j)

2m+ 2k
≤ di(v) + p− (d(v) + p)(D(i) + 2k)

2m+ 2k
(3.3)

Once again, this means that node v does not want to switch to community Cj .
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Type C intra-edges

The next lemma considers the addition of type C intra-edges to the graph G.

Lemma 2. Let G = (V,E) be an undirected graph, and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Let S(v) be the set of

all the neighboring communities of node v and Cj be a neighboring community and Cp

is non-neighboring community. Then node v does not want to switch to community Cj,

if we add at most αj
v new type C intra-edges to community Cp where, Cj ∈ S(v), and

αj
v is given by:

αj
v =

2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v))

and there is no other change to the graph.

Proof. Suppose we add k ≤ αj
v new edges between pairs of nodes (u,w) where, u ∈

Cp, w ∈ Cp, and Cp /∈ S(v). For the node v ∈ Ci. Clearly, d(v), di(v), dj(v) will remain

unchanged. Also, we have not added any edges to communities in S(v) hence D(i) and

D(j) will also remain unchanged.

In the new graph G′, when we will compare the change in modularity for an

isolated node v against community Ci and Cj , we have:

k ≤ 2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v))

≡ 2(dj(v) − di(v)) ≤ 2di(v)m − d(v)D(i) − 2dj(v)m + d(v)D(j)

≡ 2dj(v)m + 2dj(v)k − d(v)D(j) ≤ 2di(v)m + 2di(v)k − d(v)D(i)

Dividing by 2m+ 2k on both sides, we get:

2dj(v)m + 2dj(v)k − d(v)D(j)

(2m + 2k)
≤ 2di(v)m + 2di(v)k − d(v)D(i)

(2m + 2k)

≡ dj(v) − d(v)D(j)

(2m + 2k)
≤ di(v) − d(v)D(i)

(2m + 2k)
(3.4)

According to Equation (3.4), community Ci is still the best option for node v between

Ci and Cj , hence, there is no change in the community structure. So unless we add more
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than αj
v edges, node v will not switch its community to Cj . Similarly, we can calculate

αj
v for all the neighboring communities Cj ∈ S(v).

Type D intra-edges

The following lemma considers the addition of type D intra-edges to the graph G.

Lemma 3. Let G = (V,E) be an undirected graph, and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Let S(v) be the set of

all the neighboring communities of node v and Cj ∈ S(v). Then node v does not want

to switch to community Cj ∈ S(v), if we add at most βjv new type D edges to community

Cj where βjv is given by:

βjv =
2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v) − d(v))

and there is no other change to the graph.

Proof. Suppose we add k ≤ βjv new edges between pairs of nodes (u,w) where, u ∈
Cj , w ∈ Cj , and Cj ∈ S(v). For the node v ∈ Ci, we have not added any edges incident

on it, therefore, d(v), di(v), dj(v) will remain unchanged. Also, we have not added any

edges to community Ci, hence, D(i) will also remain unchanged. D(j) is incremented

by 2k.

In the new graph G′, when we compare the change in modularity for an isolated

node v against community Ci and Cj , we have:

k ≤ 2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v) d(v))

≡ 2k(dj(v) − di(v) − d(v)) ≤ 2di(v)m − d(v)D(i) − 2dj(v)m + d(v)D(j)

≡ 2dj(v)m + 2dj(v)k − d(v)D(j) − 2kd(v) ≤ 2di(v)m + 2di(v)k − d(v)D(i)

Dividing by 2m+ 2k on both sides, we obtain :

2dj(v)m + 2dj(v)k − d(v)D(j) − 2kd(v)

(2m + 2k)
≤ 2di(v)m + 2di(v)k − d(v)D(i)

(2m + 2k)

≡ dj(v) − d(v)(D(j) + 2k)

(2m + 2k)
≤ di(v) − d(v)D(i)

(2m + 2k)
(3.5)
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According to Equation (3.5), community Ci is still the best option for node v between

Ci and Cj , hence, there is no change in community structure. So unless we add more

than βjv edges, node v will not switch its community to Cj . Similarly, we can calculate

βjv for all the neighboring communities Cj ∈ S(v).

3.2.2 Inter community edge addition

Our objective in this subsection is to analyze the impact of inter community edge addi-

tions to community structure C in the graph G.

Figure 8: Types of inter edge additions

Consider node v ∈ Ci. There are four types of inter edge additions from the point

of view of v, which are shown in Figure 8. We call an inter-edge a type A edge if it

connects v to a node in any community except community Ci, Cj may or may not be

a neighboring community of v, but Cp and Cq are not neighboring communities. We

call it a type B edge if it connects two nodes from communities Ci and Cj , where Cj

is neighboring community of node v. An inter-edge is a type C edge if it connects two

nodes from communities Cp and Cq where Cp and Cq are not neighboring communities

of node v. We call it a type D inter-edge if connects two vetices from communities Cj

and CP where Cj is neighboring community of node v and Cp is not. Our results for

each type of inter edge addition in C are summarized in Table 2.
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Type of edge Proposition

A Lemma 4

B Lemma 5

C Lemma 6

D Lemma 7

Table 2: Propositions for different types of inter edge addition

Type A inter-edges

The following lemma considers the addition of type A inter-edges to the graph G.

Lemma 4. Let G = (V,E) be an undirected graph and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Then, v does not wish

to switch to community Cj if we add at most k ≤ γjv new type A inter-edges are added

between v and nodes in Cj, where Cj 6= Ci, and γjv is the solution to the quadratic

k2 + k(D(i) − 2di(v) + 2dj(v) + 2m − d(v) − D(j))

+ d(v)(D(i) − D(j)) + 2m(dj(v) − di(v)) ≤ 0

and there is no other change to the graph.

Proof. Observe that adding k edges has the following effect. D(j) and m are both incre-

mented by 2k and dj(v) and d(v) are incremented by k. On rearranging the quadratic

above, we get:

D(i)k − 2di(v)k + 2kdj(v) + 2km+ k2 − d(v)k − D(j)k ≤ 2di(v)m

− d(v)D(i) − 2dj(v)m + d(v)D(j)

Dividing by 2m + 2k on both sides, we obtain:

dj(v) + k − (d(v) + k)(D(j) + k)

(2m + 2k)
≤ di(v) − (d(v) + k)D(i)

(2m + 2k)
(3.6)

Therefore, according to Equation 3.6, node v would not change its community to Cj

as long as k ≤ γjv edges are added between node v and nodes in Cj . Similarly, we can

calculate γjv for all the other communities apart from Ci.

Type B inter-edges

The following lemma considers the addition of type B inter-edges to the graph G.
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Lemma 5. Let G = (V,E) be an undirected graph, and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Let S(v) be the set of

all the neighboring communities of node v. Let Cj be a neighboring community of node

v such that Cj ∈ S(v). Then node v does not want to switch communities to Cj, if we

add at most ζjv new type B inter-edges to communities Ci and Cj where ζjv is given by:

ζjv =
2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v))

and there is no other change to the graph.

Proof. Suppose we add k ≤ ζjv new edges between pairs of nodes (u,w) where, u ∈
Ci, w ∈ Cj , u 6= v and Cj ∈ S(v). Clearly, d(v), di(v), dj(v) will remain unchanged.

However, D(i) and D(j) are both incremented by k as a result of addition of k new inter

edges.

In the new graph G′, when we the compare change in modularity for an isolated

node v against community Ci and Cj , we have:

k ≤ 2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v))

≡ 2k(dj(v) − di(v)) ≤ 2di(v)m − d(v)D(i) − 2dj(v)m + d(v)D(j)

Subtracting kd(v) from both sides, we obtain :

2dj(v)m + 2dj(v)k − d(v)D(j) − kd(v) ≤ 2di(v)m + 2di(v)k − d(v)D(i) − kd(v)

Dividing by 2m+ 2k on both sides, we get :

2dj(v)m + 2dj(v)k − d(v)D(j) − kd(v)

(2m + 2k)
≤ 2di(v)m + 2di(v)k − d(v)D(i) − kd(v)

(2m + 2k)

≡ dj(v) − d(v)(D(j) + k)

(2m + 2k)
≤ di(v) − d(v)(D(i) + k)

(2m + 2k)
(3.7)

According to Equation (3.7), community Ci is still the best option for node v between

Ci and Cj , hence, there is no change in community structure. So, unless we add more

than ζjv edges, node v will not switch its community to Cj . Similarly, we can calculate

ζjv for all the neighboring communities Cj ∈ S(v).
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Type C inter-edges

The following lemma considers the addition of type C inter-edges to the graph G.

Lemma 6. Let G = (V,E) be an undirected graph, and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Let S(v) be the set

of all the neighboring communities of node v. Let Cj is a neighboring community and

Cp and Cq are non neighboring communities. Then node v does not want to switch to

community Cj, if we add at most ηjv new type C inter-edges to communities Cp and Cq

where ηjv is given by:

ηjv =
2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v))

and there is no other change to the graph.

Proof. The proof is exactly similar to Lemma 2.

Type D inter-edges

The following lemma considers the addition of type D inter-edges to the graph G.

Lemma 7. Let G = (V,E) be an undirected graph, and C be a locally optimal community

structure for G. Fix Ci ∈ C and let v ∈ Ci be an arbitrary node. Let S(v) be the set of

all the neighboring communities of node v. Let Cj be a neighboring community of node

v and Cp is non neighboring community such that Cj ∈ S(v), Cp /∈ S(v). Then, node v

does not want to switch to community Cj, if we add at most τ jv new type D inter-edges

to communities Cj and Cp, where τ jv is given by:

τ jv =
2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2dj(v) − 2di(v) − d(v)

and there is no other change in the graph.

Proof. Suppose we add k ≤ τ jv new edges between pairs of nodes (u,w) where, u ∈
Cj , w ∈ Cp, Cp /∈ S(v) and Cj ∈ S(v). For the node v ∈ Ci, we have not added any

edges incident on it, therefore, d(v), di(v), dj(v) will remain unchanged. Also we have

not added any edges to community Ci hence D(i) does not change. However, D(j) is

incremented by k as a result of addition of k new inter edges.
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In the new graph G′, when we will compare the change in modularity for an

isolated node v against community Ci and Cj , we have:

k ≤ 2m(di(v) − dj(v)) + d(v)(D(j) − D(i))

2(dj(v) − di(v))

≡ 2k(dj(v) − di(v)) − d(v)k ≤ 2di(v)m − d(v)D(i) − 2dj(v)m + d(v)D(j)

2dj(v)m + 2dj(v)k − d(v)D(j) − kd(v) ≤ 2di(v)m + 2di(v)k − d(v)D(i)

Dividing by 2m+ 2k on both sides, we get :

dj(v) − d(v)D(j)

(2m + 2k)
≤ di(v) − d(v)(D(i) + k)

(2m + 2k)
(3.8)

According to Equation (3.8), community Ci is still the best option for node v between

Ci and Cj , hence, there is no change in community structure. So, unless we add more

than τ jv edges, node v will not switch its community to Cj . Similarly, we can calculate

τ jv for all the neighboring communities Cj ∈ S(v).

3.2.3 Merging of communities threshold

In the next claim, we calculate the minimum number of edges that are required to be

added to the graph, in order to successfully merge the two communities.

Claim 2. In graph G = (V,E), we claim that the community Cj will not merge with

the community Ci, if at most k new edges are added between pairs of nodes (v, w), where

v ∈ Cp, w ∈ Cq, p ∈ C, q ∈ C, i ∈ C, p 6= i , q 6= i , p 6= j and q 6= j

kmerge = min
i|di(v)6=0

d(v)D(i) − 2mdi(v)

2di(v)

and there is no other change in the graph.

Proof. We consider a community as a supernode. Therefore, when we talk about merg-

ing of the two communities, we mean that the isolated supernodes change the stable

community structure C of the graph G by joining some other supernodes. At the final

stage of the algorithm, change in the modularity for every supernode is negative, hence

the structure is stable.
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After adding k ≤ kmerge new edges, we get the new graph G′(V,E + 2k). For this

new graph, let us fix supernode v, where v ∈ Cj . We have not added any edges to nodes

present in community Ci and Cj , so d(v), di(v), dj(v), D(i) will remain unchanged.

We have to check whether after adding k edges, the change in the modularity for su-

pernode v will become positive. We have:

k <
d(v)D(i) − 2mdi(v)

2di(v)

≡ 2k <
d(v)D(i)

di(v)
− 2m

≡ 2m+ 2k <
d(v)D(i)

di(v)

≡ 2di(v)m + 2di(v)k < d(v)D(i)

≡ di(v)(2m + 2k) < d(v)D(i)

≡ di(v) <
d(v)D(i)

2m + 2k

≡ di(v) − d(v)D(i)

(2m + 2k)
< 0 (3.9)

L.H.S of Equation (3.9) is less than zero, hence the gain in modularity is negative and

supernode v, i.e, community Cj will not merge with Ci. Therefore, in order to find the

minimum number of edge additions, up to which the communities Cj will not merge

with any other community, we choose the minimum value of all the possible values of

k.

3.3 Edge Distribution Analysis algorithm for dynamic com-

munity detection

We have computed the minimum number of different types of intra and inter edges that

would be need to be added to the network to cause v to switch communities. However,

the analysis assumes that there is only one type of edge being added. Analyzing the

effect of different types of edges being added to the same G is a much more complex

problem and we have not attempted it in this thesis.
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In this section, we propose a heuristic to decide when the community structure has

changed significantly enough to justify running a community detection algorithm such as

DSLM. While the community structure can change, even if a single threshold is crossed,

in practice, the difference in the modularity is not very high. Thus, the key idea of our

algorithm is to perform the community detection algorithm only if a certain percentage

of nodes have crossed their thresholds. This percentage is determined empirically.

To summarize, we first calculate the distribution of edges in different communities.

Next, we calculate the intra-edge and inter-edge thresholds κjv and γjv for every node.

Subsequently, we use the edge distribution to determine the number of nodes whose

thresholds have been crossed. Finally, if the percentage of nodes whose threshold is

crossed is over a certain specified MaxPercentCrossing, then we call a community

detection algorithm such as SLM or DSLM.

Algorithm 6 ThresholdPercentage(Gj , Gj−1,MaxPercentCrossing)

1: GenerateThresholds(Gj , Gj−1.cluster)

2: GenerateEdgeDistribution(Gj , Gj−1, Gj−1.cluster)

3: noOfNodesCrossingThr = 0

4: for v = 1 to Vj do

5: if intraDistribution[cluster[v]] > thrIntra[v] or

(interDistribution[v] > thrInter[v] and !(intraPerNode[v] > 0)) then

6: noOfNodesCrossingThr← noOfNodesCrossingThr + 1

7: end if

8: percentageCrossing =
noOfNodesCrossingThr

Vj
∗ 100

9: if percentageCrossing > MaxPercentCrossing then

10: Dslm(Gj)

11: else print no need to run DSLM Algorithm

12: end if

The ThresholdPercentage algorithm can be described as follows: In Line 1, we call

GenerateThresholds algorithm which calculates different thresholds for every node. In

line 2, we call GenerateEdgeDistribution algorithm which computes the intra vs. inter

edge distribution for newly added edges. The for loop of lines 4-7 considers each node

and checks whether intra threshold is violated. Basically the for loop checks whether

the community that has node v gets more intra edges than thrIntra[v]. If yes, then

we increase the number of nodes crossing the threshold by one. We also check whether

43



Algorithm 7 GenerateThresholds(Gj , Gj−1.cluster)

1: ReadInput(Gj) // Reads the graph and computes Vj , Ej , dv[]

2: let cluster[1..Vj ], thrIntra[1..Vj ] and thrInter[1..Vj ] be new arrays

3: for v = 1 to Vj do

4: cluster[v] = Gj−1.cluster[v]

5: for v = 1 to Vj do

6: thrIntra[v] =∞

7: for l = 1 to S(v) do

8: if thrIntra[v] > klv then //klv is # of intra edges needed for v to switch to

9: thrIntra[v] = klv //community l as per Lemma 1

10: end if

11: thrInter[v] =∞

12: for l = 1 to C do

13: if l 6= cluster[v] and thrInter[v] > γlv then //From Lemma 4

14: thrInter[v] = γlv

15: end if

16: return thrIntra and thrInter

inter threshold is violated or not. We modify the calculation of inter threshold for

experimental purposes. In principle, thrInter[v] computes minimum number of edges

that are added from node v to a particular community Cj to switch communities. So for

a large network, which has more than 0.1 million communities, storing such information

for every node will slow down the algorithm. Also, according to Lemma 4 we assume that

there is no other change in the graph, but, in reality, there might be other changes in the

graph. If node v is the recipient of newly added intra edges, then we state that the node

v will not switch communities. For similar reasons, we have only considered thresholds

from Lemma 4 and 1. So, once we have calculated the total number of nodes changing

their communities, in line 8, we calculate their percentage with respect to Vj . Based on

the comparison of MaxPercentCrossing and percentage of nodes crossing threshold,

lines 9 to 12 decide whether to run the DSLM algorithm or not. If the percentage of

nodes, which are changing their communities, is less than MaxPercentCrossing, we

save a lot of running time.

Algorithm GenerateThresholds calculates different thresholds givenGj andGj−1.cluster.

44



Algorithm 8 GenerateEdgeDistribution(Gj , Gj−1)

1: let intraDistribution[1..Gj .cluster] and interDistribution[1..Vj ] be new arrays.

2: intraPerNode[1..Vj ] be new array.

3: Ediff = Ej − Ej−1 // Store distinct edges which are present in Ej but not in Ej−1

4: for each edge (u, v) ∈ Ediff do

5: if cluster[u] == cluster[v] then

6: intraDistribution[cluster[u]]← intraDistribution[cluster[u]] + 1

7: intraPerNode[u]← intraPerNode[u] + 1

8: intraPerNode[v]← intraPerNode[v] + 1

9: else

10: interDistribution[u]← interDistribution[u] + 1

11: interDistribution[v]← interDistribution[v] + 1

12: end if

13: return intraDistribution, interDistribution and intraPerNode

Lines 1-2 reads the graphs Gj and computes total number of nodes Vj , total number of

edges Ej and dv[1..Vj ] stores the degree of every node. It also creates three new arrays,

thrIntra[] and thrInter[] in which we store the computed thresholds. Lines 3-4 assign

every node to community based on Gj−1.cluster. The for loop of the lines 5-15 consid-

ers every node and computes different thresholds. In line 6, we initialize the thrIntra

array to infinity. The for loop of the lines 7-10 calculates the intra threhshold using

Lemma 1. S(v) is the set of neighboring communities. We consider isolated node v

against all its neighboring communities one by one and calculate the number of edges

that need to be added to v
′
s community so that the node v will switch communities.

After the running of the for loop, we have computed the minimum threshold and stored

it in thrIntra[v]. In line 11, we initialize the thrInter array to infinity. Similarly Lines

12-15 compute inter threshold using Lemma 4. At this point, we do not restrict the

calculation only to S(v) but consider all the communities in the graph, apart from the

community that has the node v. We compute the minimum of all these thresholds and

assign it to thrIntra[v] in line 14. Finally, we return intra and inter threshold arrays.

Algorithm GenerateEdgeDistribution works as follows. In Line 1, we create two

new arrays in which we will store the number of intra-edges per community and number

of inter edges per node for the newly added edges. In line 2, we create another array

of size equal to the number of nodes. We want to mark the nodes which received intra
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edges. In line 3, we take the difference of Ej and Ej−1 to store the newly added edge in

Ediff . The for loop of lines 4-12 considers each edge from Ediff one by one. If both the

endpoints of an edge belong to same cluster then we increase the count of intra-edges

for that cluster and the count of intra-edges received for both the nodes. Otherwise,

we increment the count of inter-edges for both the endpoints. Finally, we return the

intraDistribution and interDistribution array containing the edge distribution per

community and per node along with the intraPerNode array.

3.4 Modularity Change Rate algorithm for Dynamic Com-

munity Detection

In this section, we describe another approach to determine for which Gi, the community

structure has changed significantly enough to justify re-running a community detection

algorithm such as DSLM. Consider the change in modularity as new edges are added to

the graph, but using the same community structure. After a certain number of edges are

added, we would obtain an improvement in modularity by computing a new community

structure. It is to be expected that this improvement will increase as more and more

edges are added to the graph. We hypothesize that the increase in improvement is

actually a linear function of the number of edges added to graph. 2 To this end, we

define the function,

δi,k = (Q(Gi, C
′)−Q(Gi, C0))− (Q(Gk, C

′′)−Q(Gk, C0))

where C ′ and C ′′ are the community structures obtained by running DLSM on Gi and

Gk respectively, C0 is some baseline community structure obtained by running DSLM

on some earlier version of the graph, and for any graph G and any community structure

C for it, Q(G,C) is the modularity value for the graph G with respect to the community

structure C.

We assume that a fixed percentage P0 of the edges in G0 is added to obtain

Gi from Gi−1 for every i. To obtain the rate of modularity change, we run DSLM

on the graphs G1 and G2 and obtain δ1,0 and δ2,0 and divide their difference by P0.

Let δm be a value which is the minimum significant difference in modularity for two

community structures for the same graph. That is, suppose we run DSLM on the graph

G0, and obtain a community structure C0, and subsequently perform a number of edge

additions. Once the difference between the modularity of the changed graph with respect

to community structure C0 and the modularity obtained by re-running DSLM on the

2This hypothesis is confirmed by our experiments as described in Section 5.4
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new graph exceeds δm, we would like to run a community detection algorithm. The

value of δm is determined empirically as described in Chapter 5. Using the predicted

rate of modularity change, and the value of δm, we can predict in which phase to run

the community detection algorithm.

Algorithm 9 DeltaModDslm(δm, Gj , P0)

1: j = 0

2: phase = 0

3: while true

4: if acsj == phase or j == phase + 1 or j == phase + 2 then

5: Gj .mod = Dslm(Gj)

6: else print no need to run DSLM

7: end if

8: if j == phase + 2 then

9: phase = phase + PhaseCalculation(δm, Gj , Gj−1, Gj−2, P0)

10: end if

11: j ← j + 1 do

Algorithm 10 PhaseCalculation(δm, Gj , Gj−1, Gj−2, P0)

1: if (δj−1,j−2 == 0 and δj,j−2 == 0) then

2: return false

3: end if

4: slope =
δj,j−2 − δj−1,j−2

P0

5: c = δj−1,j−2 − slope ∗ (P0)

6: phase =
⌈ δm − c
slope ∗ (P0)

⌉
7: return phase

Algorithm DeltaModDSLM works as follows: Since we want to find modularities

for graphs G0 onward, lines 1-2 initialize j and phase to zero. Line 3 indicates that we

will always run DeltaModDSLM for every snapshot Gj . Lines 4-5 run the dynamic
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community detection algorithm by [50] for the snapshots Gphase, Gphase+1 and Gphase+2.

As per Line 6, we do not run the DSLM algorithm when current snapshot does not

satisfy constraint specified in line 4. Line 8-9 points out the right phase to run the

algorithm by calling procedure PhaseCalculation.

The working of PhaseCalculation is as follows: Lines 1-2 evaluates whether the

δj,j−2 and δj−1,j−2 for these pair of graphs Gj−1, Gj−2 and Gj , Gj−2 is zero. In such

case, we predict that we will not run the DSLM algorithm in any of the future phases,

and hence, return false.

On other hand, we predict that, the change in modularity grows linearly with

the percentage of new edges added. Change in modularity is a linear function where x

axis is the percentage of new edges added with respect to Graph G0 and the y axis is

the difference in modularity as δphase,j . Lines 4-5 calculates the slope of this function

using following pair of points (Pj , δj−1,j−2), (2 ∗ Pj , δj,j−2). Using this slope and point

(Pj , δj−1,j−2), it further computes the constant c. Lines 6-7 rewrites the the function in

terms of x and then divides it by Pj to evaluate correct phase in which the change in

modularity will be greater than δm. In this chapter we proposed two new methods for

dynamic community detection.
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Chapter 4

Modeling Evolution of

Communities

In the previous chapter, we proposed two algorithms for dynamic community detection.

Both algorithms assume that we are given a sequence of graph G0, G1, G2...Gj where Gj

is the result of adding edges to Gj−1. This begs the question of what the characteristics

of these added edges are.

While there are many real-world data sets for social networks available in the

public domain, such as Facebook, collaboration networks such as DBLP etc., it is not

easy to find time stamped data on evolving networks. There are very few studies of such

real evolving networks [27],[25].

Instead, in order to test our algorithms, we study models for evolving social net-

works in this chapter. Sociologists studying social networks have pointed out that the

formation of new friendships/relationships are governed by a complex combination of

factors including homophily, triadic closure, and focal closure [14] shown in Figure 9.

Homophily is the idea that people are more likely to form ties with others like

them according to some attribute(eg. gender, race, or profession). Focal closure is the

idea that if A and B have a common focus (eg. an activity, or workplace), they are more

likely to form a tie. Triadic closure is the idea that if B and C share a common friend A,

they are more likely to ”close the triangle” and form a direct tie. Triadic closure can be

further generalized to cyclic closure, which can be said to happen when the formation

of a new tie creates a cycle of length > 2.

In this chapter, we propose three models for edge addition in social networks :Ran-

dom, the EdgeDistance model(based on cyclic closure) and the Geometric Probability

model(based on homophily)
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Figure 9: Effective factors for edge formation (a)Homophily (b)Triadic closure (c)
Cyclic closure

4.1 Random Model

In social networks, edge addition is not in general random. Rather, in any network which

possesses strong community structure, edges are added far from randomly. However, we

also study the effect of random edge addition as a baseline model. The pseudocode is

given in Algorithm 11.
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Algorithm 11 RandomModel(Gj , percentageOfEdges)

1: nEdgesToAdd =
Ej ∗ percentageOfEdges

100

2: let newEdges[1..nEdgesToAdd] be a new list.

3: while nEdgesToAdd > 0 do

4: validEdge = false

5: source = Random(1, Vj)

6: do

7: dest = Random(1, Vj)

8: for each v ∈ Gj .Adj[source] do

9: if dest == v or dest == source then

10: validEdge = false

11: end if

12: while (!validEdge)

13: if validEdge then

14: nEdgesToAdd← nEdgesToAdd− 1

15: if source < dest then

16: add e(source, dest) to newEdges

17: else

18: add e(dest, source) to newEdges

19: end if

20: end if

21: newEdges = Sort(newEdges)

22: Ej+1 = Merge(Ej , newEdges)

23: return Gj+1

The working of Random model is as follows. Lines 1-2 creates a new list in which

we store the newly created edges and calculates the total number of edges to be added

to the graph using the given percentage of edges. The while loop of lines 3-20 iterates

as long as there are still new edges left to be added. Line 5 chooses the source node

randomly between 1 to Vj . The do-while loop of lines 6-12 iterates as long as it does not
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find a valid edge for source node chosen in line 5. In line 7, we choose the destination

node randomly between 1 to Vj . Then, we check whether the source and destination

node are different and are not connected directly. Lines 13-19 are executed only if we

find a valid edge to add to the network. We decrement the number of new edges to add

by 1. We perform the necessary check that source should be smaller than destination

and then add the new pair to the list. In line 21, we sort the list of newly added edges.

In line 22, we merge the edges from Ej and newEdges list in a sorted manner. Finally,

We return the newly added inter edges as a list.

4.2 EdgeDistance Model

As mentioned earlier, one phenomenon thought to influence the formation of new links

in a social network is the phenomenon of cyclic closure- people are more likely to friends

with friends of friends, and then their friends and so on. In this section, we propose

the EdgeDistance model which is based [24] based on the idea that the probability of

adding edge (u, v) is inversely proportional to the distance between them. For example,

suppose node v is two hops away and node w is three hops away from node u, then the

probability of adding a new edge from node u to node v is more than the probability of

adding a new edge from node u to node w. We consider cycles of length at most 6; this

means we create new edges between pair of nodes which are separated by at least two

hops or at most five hops.

For hop distance i (where 2 ≤ i ≤ 5), we define the probability of adding a new

edge with hop distance i to be pi where:

pi =
1
i∑5

i=2
1
i

Then clearly
∑5

i=2 pi = 1, and the probability of picking an edge with hop distance i

is inversely proportional to i. The pseudocode for adding new edges according to the

EdgeDistance model is given in Algorithm 12.

Lines 1-2 creates new list in which we will store the newly created edges and

calculates the total number of edges to be added to the graph using the given percentage

of edges. The while loop of lines 3-42 iterates as long as there are still new edges left

to be added. Lines 4-14 choose the distance between nodes of newly added edge based

on probability which is inversely proportional to the distance between the nodes. Line

15 chooses the source node randomly between 1 to Vj . Line 16 runs Breadth First

Search algorithm starting from source node and store the distance to every node from

source. Line 18 initializes counter to 12. The while loop of lines 19-39 iterates as long
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as it does not find a valid edge from source node chosen in line 15 or until counter

goes below zero. We are using the counter because it is possible that for the chosen

distance, source does not have any neighbor with that distance. In line 20, we choose

destination node randomly between 1 to Vj . Lines 21-24 determine whether source and

node are separated by the distance chosen in previous steps. In case this is not true,

we decrement the counter. Lines 26-31 checks whether the source node already has an

edge to destination node. Lines 32-39 are executed only if we find a valid edge to add

to the network. We decrement the number of new edges to add by 1. We perform the

necessary check that source should be smaller than destination and then add the new

pair to the list. In line 40, we sort the list of newly added edges. In line 41, we merge

the edges from Ej and newEdges list in a sorted manner. Finally, We return the newly

added inter edges as a list.

The running time of the algorithm can be improved further. In line 16, we know

the currentEdgeDistance in advance, so we can perform Breadth First Search to that

level only. Furthermore, we can store the nodes in that level in temporary array. In

line 20, we are choosing destination node randomly from 1 to Vj . Instead of that, we

can choose destination from the temporary array we created. Also, we might not need

counter in this case. If all the nodes in this temporary array are invalid as destination

node, then we choose new source node.
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Algorithm 12 EdgeDistance(Gj , percentageOfEdges)

1: nEdgesToAdd =
Ej ∗ percentageOfEdges

100

2: let newEdges[1..nEdgesToAdd] be a new list.

3: while nEdgesToAdd > 0 do

4: currentEdgeDistance = −1

5: edgeDistance = Random(1, 154)

6: if edgeDistance ≤ 60 then

7: currentEdgeDistance = 2

8: else if edgeDistance > 60 and edgeDistance ≤ 100 then

9: currentEdgeDistance = 3

10: else if edgeDistance > 100 and edgeDistance ≤ 130 then

11: currentEdgeDistance = 4

12: else if edgeDistance > 130 and edgeDistance ≤ 154 then

13: currentEdgeDistance = 5

14: end if

15: source = Random(1, Vj)

16: Modified-Bfs(Gj , source)

17: invalidEdge = true

18: counter = 12
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19: while invalidEdge and counter > 0 do

20: dest = Random(1, Vj)

21: if dest.d == currentEdgeDistance then

22: invalidEdge = false

23: else

24: counter ← counter − 1

25: end if

26: if (!invalidEdge) then

27: for each edge (u, v) ∈ newEdges do

28: if (u == source and v == dest) or (u == dest and v == source) then

29: invalidEdge = true

30: end if

31: end if

32: if (!invalidEdge) then

33: nEdgesToAdd← nEdgesToAdd− 1

34: if source < dest then

35: add e(source, dest) to newEdges

36: else

37: add e(dest, source) to newEdges

38: end if

39: end if

40: newEdges = Sort(newEdges)

41: Ej+1 = Merge(Ej , newEdges)

42: return Gj+1

55



4.3 Geometric Probability Model

In chapter 3, we classified edges into 2 categories intra-edges and inter-edges. The

Geometric Probability model is based on the idea that people are more likely to form

ties within their community than the outside community [25]. In the absence of data

about other attributes of the individuals in the network, we can infer that if two nodes

belong to the same community(as identified algorithmically), they share the same value

for the ”community attribute”. Thus homophily can be said to dictate their bias towards

tie formation with other members of the community. To this end, when choosing new

edge, to add to the network, we pick an inter-edge with probability p and intra-edge

with probability 1 − p. We use the values p = 0, 0.4, 0.6 in our experiments, described

in the next chapter.

We mention a small technical point here. We want to compare the performance

of various algorithms like SLM, DSLM, Modularity-Change-Rate algorithm and Edge-

Distribution-Analysis algorithm on dynamic evolving networks. For this reason, we want

to use the same snapshots to compare the performance of these algorithms. For a given

snapshot, resulting community structure might vary based on which algorithm is ran on

graph. On that account, we chose to generate G1, G2... onwards from G0. Hence, the

new edges which are added in every snapshot are not with respect to Gprevious.cluster

but based on G0.cluster. By following this we make sure that the same snapshots are

used to compare different algorithms. The pseudocode for our algorithm to implement

this model is given in Algorithm 13.

The functioning of GeometricProbability algorithm is as follows. After initializing

nInterEdges and nIntraEdges to zero in lines 1-2, line 3 calculates the total number

of new edges to be added. Lines 4-10 generate random number between 0 to 1 and

depending on upon p which is probability of an inter-edge, it assigns every edge either

as inter or intra. Lines 11-13 calls procedure AddIntraEdges and AddInterEdges and

store the result in two new lists. In line 14, we merge these two lists in a sorted order

and return as a single list called newEdges. In line 15, we merge the edges from Ej and

newEdges list in a sorted manner. We return the new snapshot Gj+1 with newly added

edges.

The procedure AddIntraEdges works as follows. Lines 1-4 store the graph Gj in

adjacency list format and assign every node to community based on G0.cluster. The

while loop of lines 5-24 iterates as long as there are still new edges left to be added. Line

6 chooses the source node randomly between 1 to Vj . The do-while loop of lines 7-24

iterates as long as it does not find a valid edge from source node chosen in line 6. In line

9, we choose the destination node randomly from the given nodes Vj . Lines 10-13 checks
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Algorithm 13 GeometricProbability(Gj , p, percentageOfEdges)

1: nInterEdges = 0

2: nIntraEdges = 0

3: nEdgesToAdd =
Ej ∗ percentageOfEdges

100

4: for v = 1 to nEdgesToAdd do

5: rand =Random(0, 1)

6: if rand < p then

7: nInterEdges← nInterEdges+ 1

8: else

9: nIntraEdges← nIntraEdges+ 1

10: end if

11: let newEdgesIntra[1..nIntraEdges] and newEdgesInter[1..nInterEdges] be new

lists.

12: newEdgesIntra = AddIntraEdges(nIntraEdges,Gj , G0)

13: newEdgesInter = AddInterEdges(nInterEdges,Gj , G0)

14: newEdges = MergeAndSort(newEdgesIntra, newEdgesInter)

15: Ej+1 = MergeAndSort(Ej , newEdges)

16: return Gj+1

whether the source node already has an edge to destination node or do they belong

to same community or they are the same node. In any of such cases, we will discard

this destination node and choose a new candidate. Lines 14-23 are executed only if we

find a valid edge to add to the network. We add source and destination node to each

others adjacency list, in order to avoid choosing the same pair again. We decrement the

number of new intra edges to add by 1. In all the variants of the Louvain algorithm,

the unweighted graph is stored in such fashion that all the edges are in ascending order

based on nodes. Hence, we perform the necessary check that source should be smaller

than destination and then add the new pair to list. We return the newly added intra

edges as a list.

The procedure AddInterEdges works as follows. Lines 1-3 store the graph Gj in

adjacency list format and creates a new adjacency list of nodes per cluster. Line 4-

5 assign every node to community based on G0.cluster. The while loop of lines 5-28
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Algorithm 14 AddIntraEdges(nIntraEdges,Gj , G0)

1: let newIntraEdges[1..nIntraEdges] be a new list.

2: store adjacency list representation of Gj as edgesPerNode[1..Vj ][1..Adj[v]]

3: for v = 1 to V0 do

4: cluster[v] = G0.cluster[v]

5: while nIntraEdges > 0 do

6: source = Random(1, Vj)

7: do

8: validEdge = true

9: dest = Random(1, Vj)

10: for each v ∈ Gj .Adj[source] do

11: if dest == v or cluster[source]! = cluster[dest] or dest == source then

12: validEdge = false

13: end if

14: if validEdge then

15: nIntraEdges← nIntraEdges− 1

16: add source to Gj .Adj[dest]

17: add dest to Gj .Adj[source]

18: if source < dest then

19: add e(source, dest) to newIntraEdges

20: else

21: add e(dest, source) to newIntraEdges

22: end if

23: end if

24: while (!validEdge)

25: return newIntraEdges

58



Algorithm 15 AddInterEdges(nInterEdges,Gj , G0)

1: let newInterEdges[1..nInterEdges] be a new list.

2: store adjacency list representation of Gj as edgesPerNode[1..V j][1..Adj[v]]

3: store adjacency list representation ofGj .cluster as nNodesPerCluster[1..C][1..Adj[c]]

4: for v = 1 to V0 do

5: cluster[v] = G0.cluster[v]

6: while nInterEdges > 0 do

7: source = Random(1, Vj)

8: do

9: do

10: destCluster = Random(1, C)

11: while destCluster == cluster[source]

12: randomDest = Random(1, nNodesPerCluster[source].length)

13: dest = nNodesPerCluster[source][randomDest]

14: validEdge = true

15: for each v ∈ Gj .Adj[source] do

16: if dest == v or dest == source then

17: validEdge = false

18: end if

19: if validEdge then

20: nInterEdges← nInterEdges− 1

21: add source to Gj .Adj[dest] and add dest to Gj .Adj[source]

22: if source < dest then

23: add e(source, dest) to newInterEdges

24: else

25: add e(dest, source) to newInterEdges

26: end if

27: end if

28: while (!validEdge)

29: return newInterEdges
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iterates as long as there are still new inter edges left to be added. Line 7 chooses the

source node randomly between 1 to Vj . The do-while loop of lines 8-28 iterates as long

as it does not find a valid edge from source node, chosen in line 6. The do-while loop

of lines 9-11 chooses one cluster randomly apart from the cluster to which the source

node belongs. Lines 12-13 draws destination node randomly from the adjacency list of

cluster chosen in line 10. Lines 15-18 checks whether the source node already has an

edge to destination node or whether they are the same node. In any of such cases, we

will discard this destination node and choose a new candidate. Lines 19-27 are executed

only if we find a valid edge to add to the network. We add source and destination

node to each others adjacency list, in order to avoid choosing the same pair again. We

decrement the number of new inter edges to add by 1. We perform the necessary check

that source should be smaller than destination and then add the new pair to the list.

We return the newly added inter edges as a list.
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Chapter 5

Empirical Analysis

In this chapter, we describe our experimental results. First we describe the character-

istics of data sets such as percentage of edges added, number of intra vs. inter edges

added, edge to node ratio etc, and the computing environment. Then we explain our

performance metrics for the experiments. Next, we present the analysis of edge addition

models and results of Modularity-Change-Rate algorithm. After this we explain the

problems faced while running the experiments for Edge-Distribution-Analysis algorithm

and its results. We have combined the results of different phases and provided a com-

parative analysis over the time, modularity as well as the accuracy for the proposed and

existing algorithms.

5.1 Experimental Setup

In this section we describe the standard benchmark networks we have used, and mention

the computational environment for our experiments.

5.1.1 Data Sets

There are many standard benchmark networks available for research in social network

analysis. Most studies focus on the social networks, biological networks and citation

networks. The performance of the proposed algorithms was tested on five small and

medium sized networks and two large networks. The following networks are considered:

• Football network : Models American football games between NCAA Div IA colleges

in Fall 2000. Each node represents a football team, which belongs to a specific
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conference(Big Ten, Conference USA, Pac-10, etc.). An edge between two nodes

v1 and v2 means that the two teams played each other [40].

• Email network : This is the email communication network at the University Rovira

i Virgili in Tarragona in the south of Catalonia in Spain. Nodes are users and each

edge represents that at least one email was sent. The emails during the first three

months of 2002 are considered. The direction of emails or the number of emails

are not stored [2], [21].

• Facebook network : This network consists of ’circles’ (or ’friends lists’) from Face-

book. Facebook data was collected from survey participants using the Facebook

app. The dataset includes node features (profiles), circles, and ego networks.

Facebook data has been anonymized by replacing the Facebook-internal ids for

each user with a new value. Also, while the feature vectors from this dataset have

been provided, the interpretation of those features has been obscured. For instance,

where the original dataset may have contained a feature ”political=Democratic

Party”, the new data would simply contain ”political=anonymized feature 1”.

Thus, using the anonymized data, it is possible to determine whether two users

have the same political affiliations, but not what their individual political affilia-

tions represent [28].

• PGP network : This is the interaction network of users of the Pretty Good Privacy

(PGP) algorithm. The network contains only the giant connected component of

the network [1], [11].

• Condmat2003 network : The network Cond-mat-2003 is an updated version of

Cond-mat, the collaboration network of scientists posting preprints on the con-

densed matter archive at www.arxiv.org. This version is based on preprints posted

to the archive between January 1, 1995 and June 30, 2003. The largest component

of this network, which contains 27519 scientists, has been used by several authors

as a testbed for community-finding algorithms for large networks [33].

• DBLP network : This is the collaboration graph of authors of scientific papers from

DBLP computer science bibliography. An edge between two authors represents a

common publication. Edges are annotated with the date of the publication [49].

• Livejournal network : LiveJournal is a free online community with almost 10 million

members; a significant fraction of these members are highly active. (For example,

roughly 300,000 update their content in any given 24-hour period.) LiveJournal

allows members to maintain journals, individual and group blogs, and it allows

people to declare which other members are their friends [49].
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Table 3 displays some salient characteristics of the networks such as name, number of

nodes and edges, edges to nodes ratio and modularity of the network. Modularity of the

network is obtained by running the SLM algorithm with 10 random starts and we run

10 iterations for every random start. The best result obtained from one of these 100

iterations is reported. The only exception to this is the Livejournal network. Due to its

huge size, we run a single random start with 10 iterations.

Network #nodes #edges E/V Modularity

Football 115 613 5.330434782 0.6042

Email 1133 5411 4.775816417 0.5822

Facebook 4039 88234 20.47667672 0.8381

PGP 10680 24316 2.276779026 0.8860

Condmat2003 27519 116181 4.221846724 0.7695

DBLP 425957 1049866 2.464722965 0.8366

Livejournal 4036538 34681189 8.591815313 0.7707

Table 3: Characteristics of benchmark networks

5.1.2 Computational environment

Computations were made on the supercomputer Briarée from Concordia University,

managed by Calcul Québec and Compute Canada. The operation of this supercomputer

is funded by the Canada Foundation for Innovation (CFI), the ministére de l’Économie,

de la science et de l’innovation du Québec (MESI) and the Fonds de recherche du Québec

- Nature et technologies (FRQ-NT). All calculations reported below were performed on

a system with an Intel Xeon X5650 Westmere (2.67 GHz) and 48 GB internal memory.

The code is written in Java and is available on https://github.com/tejaspuranik/EDA-

MCR.git.

5.2 Analysis of edge distribution

In this section, we study the distribution of edges being added according to the different

edge addition models described in chapter 4, to the 7 networks described in Subsection

5.1.1.

5.2.1 Generating evolving networks

To run our experiments, we use each of the real world networks described above as

network G0. We then add edges according to the 3 edge addition models described in

Chapter 4. We take 5 snapshots of the network, each snapshot after 2% of the number of
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edges in the original graph G0 has been added. That is, |Ei+1| = 1.02|E0| for 0 ≤ i ≤ 4.

We call each of the five rounds of edge additions a phase.

For each G0, and for each edge addition model, we run 10 different random runs, so that

we obtain 10 different versions of Gi(1 ≤ 5). Thus, at the end of i phases, we have 10

different versions of Gi, each representing a different possible evolution of the graph G0

according to a specific model of edge additions. All our results for any given phase are

an average over the 10 graphs.

5.2.2 Distribution of edges for the Geometric Probability Model

For each of the seven networks, we generated 5 phases using the Geometric Probability

model with inter-edge probability p = 0, 0.4 and 0.6. We computed the intra vs. inter

distribution of newly added edges in each phase. We have taken the average of the

results obtained from 10 graphs for every phase. In the case of the Email network, the

inter probability = 0.4 gives, on an average 43.6 inter edges are added out of 110 newly

added edges. On the other hand, 66.4 intra edges are added in phase 1. We observe

similar results for the other phases.
43.6

110
≈ 0.4, which tells us that our algorithm has

generated the desired result. We also confirm this looking at the results of the other

networks.

5.2.3 Distribution of edges for the EdgeDistance model

In the case of the EdgeDistance, we computed the intra vs. inter edge distributions

and plotted graphs for each network. The x-axis represents different phases for different

models and y-axis represents a percentage of intra/inter edges for 10 graphs in each

phase. Based on Figures 10 to 16, we observe that the EdgeDistance model does not

generate the edges as we expected it. We expected that the majority of the edges being

added would be intra but from Figures 10, 11, 12, 13, 14, 15, and 16 we observe that

the percentage of intra-edges, is on an average 7, 18, 20, 15, 8, 35 and 29 respectively

which is shown in Table 4. So in reality, the majority of the edges added are inter edges.

In fact, along with the defined probability which is inversely proportional to distance

there should be another conditional probability for inter edges with lower value. For

example, consider node u is source node which is two hops away from node v and node

w. Also lets assume that the nodes u and v belong to same community while node v

and w belong to different communities. Then in such case, the probability that node

u will form a direct edge with node v should be more than the probability of forming

a direct edge with node w. Our model does not take care of this. Also from Table 4,

we observe that its hard to find direct relation between modularity and percentage of

intra-edges added.
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Network Modularity % of intra edges added

Email 0.5822 18

Football 0.6042 7

Condmat2003 0.7695 8

Livejournal 0.7707 29

DBLP 0.8366 35

Facebook 0.8381 20

PGP 0.8860 15

Table 4: Edge distribution analysis over modularity for EdgeDistance model

Network Modularity % of intra edges added

Email 0.5822 11

Football 0.6042 5

Condmat2003 0.7695 3

Livejournal 0.7707 4

DBLP 0.8366 1

Facebook 0.8381 9

PGP 0.8860 2

Table 5: Edge distribution analysis over modularity for Random model

5.2.4 Distribution of edges for the Random model

We can observe that in Figures 10, 11, 12, 13, 14, 15, and 16 percentage of intra-edges,

is on average 5, 11, 9, 2, 3, 1 and 4 which is shown in Table 5. We can confirm that on

adding edges randomly to network, 90 percent of the edges will be inter community edges.

As a deduction the real model which portrays the evolution of social networks will have

very less percentage of inter community edges as compared to intra community edges.

Also from Table 5, we observe that its hard to find direct relation between modularity

and percentage of intra-edges added.
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Figure 10: Football network edge distribution

Figure 11: Email network edge distribution
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Figure 12: Facebook network edge distribution

Figure 13: PGP network edge distribution
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Figure 14: Condmat network edge distribution

Figure 15: DBLP network edge distribution
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Figure 16: Livejournal network edge distribution

5.3 Performance evaluation approach

The goal of the community detection algorithms described in Chapter 3 is to determine

for each snapshot Gi whether or not to update the community structure by running

a community detection algorithm such as DSLM. Ideally, we should not update if the

change in modularity is not significant, but we should indeed update if the change in

modularity is significant. We choose δm = 0.005 to be the minimum change of modularity

necessitating an update of community structure.

In order to know whether such an update is really needed in our given data sets, we

run DSLM after every phase for every graph. We denote by Q(Gi, Ci) the modularity of

graph Gi with respect to the new community structure computed by DSLM. We denote

by Q(Gi, C0) the modularity of the graph Gi with respect to the old community structure

computed by DSLM for G0. In other words, Q(Gi, C0) is the modularity obtained by

not running an update for Gi. Finally we define δi0 to be the observed actual difference

in modularity obtained by running an update for Gi versus not running an update for

Gi and for other snapshots upto Gi. That is,

δi0 = Q(Gi, Ci)−Q(Gi, C0)

We conclude that an update to the community structure is required if and only if δi0 >

δm.

In Figures 17 to 23, we plot the value of δi0 for all our data sets. The value of δm

is shown in blue. Observe that for Football, Email, Facebook and Condmat networks,
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Figure 17: Difference in modularity with DSLM and without DSLM for Football n/w

Figure 18: Difference in modularity with DSLM and without DSLM for Email n/w

the value δi0 stays below δm for all phases. In other words, there is no need to update

the community structure for any of the phases. On the other hand, for PGP, DBLP and

LiveJournal, the modularity changes sufficiently for some of the edge addition models

and some phases for an update to be desirable.

We summarize the desired update decisions in Table 6. A notation of Y implies

that an update is required and a notation of N implies that an update is not required.

Observe that for the PGP network, in the 5th phase, we say an update is not required

even though δ50 > δm in this case. This is because if an update is performed in the

fourth phase, then the difference in modularity δ54 is expected to be less than δm. The

same reasoning is applied to derive the ideal update decision for the 4th and 5th phase

and 5th phase of Random model of Livejournal network.

In the following sections, we analyze the results of our algorithms and compare

them with the desired update decisions in Table 6.
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Figure 19: Difference in modularity with DSLM and without DSLM for Facebook
n/w

Figure 20: Difference in modularity with DSLM and without DSLM for PGP n/w

Figure 21: Difference in modularity with DSLM and without DSLM for Condmat
n/w
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Figure 22: Difference in modularity with DSLM and without DSLM for DBLP n/w

Figure 23: Difference in modularity with DSLM and without DSLM for Livejournal
n/w
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Network Model Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Football P=0 N N N N N

P=0.4 N N N N N

P=0.6 N N N N N

EdgeDistance N N N N N

Random N N N N N

Email P=0 N N N N N

P=0.4 N N N N N

P=0.6 N N N N N

EdgeDistance N N N N N

Random N N N N N

Facebook P=0 N N N N N

P=0.4 N N N N N

P=0.6 N N N N N

EdgeDistance N N N N N

Random N N N N N

PGP P=0 N N N N N

P=0.4 N N N N N

P=0.6 N N N N N

EdgeDistance N N N Y N

Random N N Y N N

Condmat P=0 N N N N N

P=0.4 N N N N N

P=0.6 N N N N N

EdgeDistance N N N N N

Random N N N N N

DBLP P=0 N N N N N

P=0.4 Y Y Y Y Y

P=0.6 Y Y Y Y Y

EdgeDistance N Y N Y N

Random Y Y Y Y Y

Livejournal P=0 N N N N N

P=0.4 N N N N N

P=0.6 N N N N N

EdgeDistance N N N N N

Random N N N Y N

Table 6: Ideal phases to update community structure
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5.4 Modularity-Change-Rate algorithm

In this section, we report the results of running our modularity-based algorithm for our

7 base networks. Recall that according to this algorithm, we run the DSLM algorithm

for the first two phases, and based on the calculation of the change in modularity, we

predict the next phase in which to update the community structure. The results are

shown in Table 7. In all the intervening phases, we obtain an advantage in terms of

running time by not updating the community structure while being reasonably certain

that it has not changed significantly.

On that note, in case of an P = 0 edge addition model, we do not run DSLM algorithm

at all after the first 2 phases as the δ1,0 and δ2,0 are zero. Hence, the slope of the line and

constant c from algorithm 10 is also zero. When p = 0.4 or p = 0.6, we get an advantage

of not running the algorihthm for more than 100 phases in case of the Football network

and Facebook network. Also in the Condmat2003 network we get a significant advantage

of not running until 77th and 29th phases respectively. In the Email network, we do not

run DSLM until 16th and 12th phases respectively. In the PGP network, we are saving

time by not running in a few phases. However, the DBLP network is an exception to

this. We do not get any advantage; rather, on top of running the DSLM algorithm,

we are running our algorithm, hence, it increases the running time. In the Livejournal

network, we are getting a significant advantage by not performing an update for a few

phases. The Livejournal network is very large and the running time of DSLM, even after

using memory clusters, is not small. So even if we save a few phases, we are saving a lot

of time. For EdgeDistance and Random model also our algorithm gives good results but

as these models have majority of inter-community edges, δi,j crosses 0.005 faster than

other edge addition strategies. As a result, we do not get an advantage like we got in

case of p− 0 or p = 0.4 model but still we get some advantage. For example, in the case

of the Facebook network we do not run DSLM until 36th and 27th phase but for large

networks like DBLP and Livejournal we do not get much advantage.

For the first 5 phases of edge additions, Table 8 summarizes the positive and negative

errors made by our algorithm as compared to the ideal update decisions shown in Table

6. FP indicates a false positive error, that is, our algorithm suggests an update but

the ideal decision would be not to update. FN indicates a false negative; our algorithm

suggests not to update, but a ideal decision would be to update. TP indicates a true

positive; our algorithm suggests to update and so does the ideal decision. TN indicates

a true negative, that is, our algorithm suggests not to run the update and so does the

ideal decision. We remind the reader that in the first two phases, our algorithm always

74



runs, resulting in many false positive decisions, but in most cases, this would result in a

huge gain in time far beyond the 5 phases we have shown here.

Table 9 summarizes total number of TP, TN, FP, FN and accuracy of the Modularity-

Change-Rate algorithm for each network. Each network has 5 phases and 5 different

edge addition models. We observe that an accuracy for each network varies in between

36 to 60. We have low accuracy rate due to the fact that there are lot of FPs for the

first two phases.
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Network Model Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Football P=0 1 2 N/A

P=0.4 1 2 125 126 127

P=0.6 1 2 97 98 99

EdgeDistance 1 2 21 22 23

Random 1 2 11 12 13

Email P=0 1 2

P=0.4 1 2 16 17 18

P=0.6 1 2 12 13 14

EdgeDistance 1 2 6 7 8

Random 1 2 6 7 8

Facebook P=0 1 2 N/A

P=0.4 1 2 101 102 103

P=0.6 1 2 99 100 101

EdgeDistance 1 2 36 37 38

Random 1 2 4 5 6

PGP P=0 1 2 N/A

P=0.4 1 2 7 8 9

P=0.6 1 2 5 6 7

EdgeDistance 1 2 3 4 5

Random 1 2 4 5 6

Condmat P=0 1 2 N/A

P=0.4 1 2 77 78 79

P=0.6 1 2 29 30 31

EdgeDistance 1 2 7 8 9

Random 1 2 7 8 9

DBLP P=0 1 2 N/A

P=0.4 1 2 3 4 5 6

P=0.6 1 2 3 4 5 6

EdgeDistance 1 2 3 4 5 6

Random 1 2 3 4 5 6

Livejournal P=0 1 2 29 30 31

P=0.4 1 2 8 9 10

P=0.6 1 2 5 6 7

EdgeDistance 1 2 4 5 6

Random 1 2 3 4 5 6

Table 7: Modularity-Change-Rate algorithm results
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Network Model Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Football P=0 FP FP TN TN TN

P=0.4 FP FP TN TN TN

P=0.6 FP FP TN TN TN

EdgeDistance FP FP TN TN TN

Random FP FP TN TN TN

Email P=0 FP FP TN TN TN

P=0.4 FP FP TN TN TN

P=0.6 FP FP TN TN TN

EdgeDistance FP FP TN TN TN

Random FP FP TN TN TN

Facebook P=0 FP FP TN TN TN

P=0.4 FP FP TN TN TN

P=0.6 FP FP TN TN TN

EdgeDistance FP FP TN TN TN

Random FP FP TN TN TN

PGP P=0 FP FP TN TN TN

P=0.4 FP FP TN TN TN

P=0.6 FP FP TN TN FP

EdgeDistance FP FP FP TP FP

Random FP FP FN FP FP

Condmat P=0 FP FP TN TN TN

P=0.4 FP FP TN TN TN

P=0.6 FP FP TN TN TN

EdgeDistance FP FP TN TN TN

Random FP FP TN TN TN

DBLP P=0 FP FP TN TN TN

P=0.4 TP TP TP TP TP

P=0.6 TP TP TP TP TP

EdgeDistance FN TP FN TP FN

Random TP TP TP TP TP

Livejournal P=0 FP FP TN TN TN

P=0.4 FP FP TN TN TN

P=0.6 FP FP TN TN FP

EdgeDistance FP FP TN FP FP

Random FP FP FP TP FP

Table 8: Modularity-Change-Rate algorithm false positives and false negatives
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Predicted

T N Accuracy(%)

Football Actual
T 0 0 60

N 10 15

Predicted

T N Accuracy(%)

Email Actual
T 0 0 60

N 10 15

Predicted

T N Accuracy(%)

Facebook Actual
T 0 0 60

N 10 15

Predicted

T N Accuracy(%)

PGP Actual
T 1 1 36

N 15 8

Predicted

T N Accuracy(%)

Condmat Actual
T 0 0 60

N 10 15

Predicted

T N Accuracy(%)

DBLP Actual
T 17 3 80

N 2 3

Predicted

T N Accuracy(%)

Livejournal Actual
T 1 0 40

N 15 9

Table 9: Confusion Matrix and Accuracy for Modularity-Change-Rate algorithm

5.5 Edge-Distribution-Analysis algorithm

In this section, we present the results of our Edge-Distribution-Analysis algorithm

. To run the ThresholdPercentage algorithm, we need to know the correct value of

MaxPercentCrossing. In order to find the correct value of MaxPercentCrossing, we run

the lines 1-8 of ThresholdPercentage for every snapshot and calculate the percentage

of nodes crossing their thresholds. We made the following modification while running

this code: We use the community structure of graph G0 in all the snapshots instead
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of Gprevious. The results of these experiments are displayed in following figures. For

Figures 24, 25, 26, 27, 28, 29, and 30, we have plotted the phases on x-axis and

percentage of nodes on y-axis. Five different lines represents the five different edge

addition models. After careful observation, we reached the conclusion that we cannot

generalize a particular value of MaxPercentCrossing to all the networks, the primary

cause of this is that the percentage of nodes crossing their thresholds vary from network

to network. For example, in case of the Email network, the percentage of nodes crossing

thresholds varies between 0 to 3, on the other hand, in case of a PGP network it varies

from 0 to 1.5. So, if we choose MaxPercentCrossing as 2 or above, we will not run

DSLM algorithm in any phase of PGP network for any of the edge addition strategies.

We believe that choosing correct value of MaxPercentCrossing depends on various

factors such as modularity of the network, total number of edges to total number of

nodes ratio, average degree of the nodes, number of triangle in the graph etc. Due to

the scope of our thesis, we have chosen
E

V
ratio as the single deciding parameter. We

assign α ∗ E
V

as MaxPercentCrossing where Table 10 displays the value of α based on

percentage of nodes crossing their thresholds.

Percentage of nodes 0 to 4 4 to 8 8 to 12 12 to 16 16 to 20 20 to 24

crossing their thresholds

α 0.3 0.6 0.7 0.75 0.8 0.825

Table 10: Deciding parameter α

Next, we calculate the different values of MaxPercentCrossing of each network for

all the phases. The values are displayed in Table 11. By following this strategy, we can

observe that for the PGP network, the values of MaxPercentCrossing vary between

0.6966 to 0.7513, on other hand in case of an Email network it varies in between 2.9237

to 2.9819. Hence, for every network, we have a predefined range. Using these values

of MaxPercentCrossing, we run our experiments. The results are displayed in Table

12. There are the five phases for each edge addition strategy and each phase have

10 graphs. For any of the graphs if the percentage of nodes crossing their thresholds

exceeds MaxPercentCrossing then we run the DSLM algorithm. Otherwise we do not

run DSLM algorithm.

We want to observe, whether the Edge-Distribution-Analysis algorithm gives the de-

sired results specified in Table 6. For the first 5 phases of edge additions, Table 12

summarizes the positive and negative errors made by our algorithm as compared to the

ideal update decisions shown in Table 6. FP indicates a false positive error, that is, our

algorithm suggests an update but the ideal decision would be not to update. Comparing

with Table 6, we observe that we obtain a best result in case of an P = 0, P = 0.4 and
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Network Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Football 3.2608 3.3234 3.3860 3.4486 3.5113

Email 2.9237 2.9819 3.0402 3.0984 3.1567

Facebook 18.4310 18.8395 19.2480 19.6566 19.6566

PGP 0.6966 0.7103 0.7239 0.7376 0.7513

Condmat2003 2.5837 2.6344 2.6850 2.7357 2.7863

DBLP 0.7535 0.7675 0.7816 0.7957 0.809846

Livejournal 6.1345 6.2548 6.3751 6.4954 6.6156

Table 11: Values of MaxPercentCrossing for different phases

P = 0.6 for all of the networks except DBLP. In all the networks apart from DBLP, the

change in modularity is less than 0.005 and our algorithm advises not to run DSLM.

In case of DBLP network, the change in modualarity is quite high. For example, when

P = 0.4 it varies from 0.05 to 0.30, but we advise not to run the algorithm. In all the

other cases, we save a lot of time by not running the DSLM algorithm. In case of an

EdgeDistance model, for PGP network the change in modularity is greater than 0.005

from the 4th phase, but we fail to catch it. For the Random model of an PGP network

and Email network, the change in modularity is approximately 0.005 in the 2nd phase

and the 5th phase but in both the cases we advise to run from the 2nd phase onwards

hence we have 2 false negatives in Table 12. For the DBLP network, we should run in

all the phases but we run from the 3rd phase onwards. For Random model of Football,

Condmat, and Facebook network, our algorithm gives correct results. For Livejournal

network, we get one false positive.

Table 13 summarizes total number of TP, TN, FP, FN and accuracy of the Edge-

Distribution-Analysis algorithm for each network. Each network has 5 phases and 5

different edge addition models. For Football, Email, Facebook and Condmat networks,

we have 100 % accuracy. We also get good results for Livejournal and PGP network,

only exception is DBLP network in which we predict the correct snapshot to run a

DSLM with lower accuracy rate.
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Figure 24: Percentage of nodes crossing thresholds per phase for Football n/w

Figure 25: Percentage of nodes crossing thresholds per phase for Email n/w

Figure 26: Percentage of nodes crossing thresholds per phase for Facebook n/w
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Figure 27: Percentage of nodes crossing thresholds per phase for PGP n/w

Figure 28: Percentage of nodes crossing thresholds per phase for Condmat n/w

Figure 29: Percentage of nodes crossing thresholds per phase for DBLP n/w
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Figure 30: Percentage of nodes crossing thresholds per phase for Livejournal n/w
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Network Model Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Football P=0 TN TN TN TN TN

P=0.4 TN TN TN TN TN

P=0.6 TN TN TN TN TN

EdgeDistance TN TN TN TN TN

Random TN TN TN TN TN

Email P=0 TN TN TN TN TN

P=0.4 TN TN TN TN TN

P=0.6 TN TN TN TN TN

EdgeDistance TN TN TN TN TN

Random TN TN TN TN TN

Facebook P=0 TN TN TN TN TN

P=0.4 TN TN TN TN TN

P=0.6 TN TN TN TN TN

EdgeDistance TN TN TN TN TN

Random TN TN TN TN TN

PGP P=0 TN TN TN TN TN

P=0.4 TN TN TN TN TN

P=0.6 TN TN TN TN TN

EdgeDistance TN TN TN FN TN

Random TN FP TP FP FP

Condmat P=0 TN TN TN TN TN

P=0.4 TN TN TN TN TN

P=0.6 TN TN TN TN TN

EdgeDistance TN TN TN TN TN

Random TN TN TN TN TN

DBLP P=0 TN TN TN TN TN

P=0.4 FN FN FN FN FN

P=0.6 FN FN FN FN FN

EdgeDistance TN FN TN FN TN

Random FN FN TP TP TP

Livejournal P=0 TN TN TN TN TN

P=0.4 TN TN TN TN TN

P=0.6 TN TN TN TN TN

EdgeDistance TN TN TN TN TN

Random TN TN TN TP FP

Table 12: Edge-Distribution-Analysis algorithm false positives and false negatives
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Predicted

T N Accuracy (%)

Football Actual
T 0 0 100

N 0 25

Predicted

T N Accuracy(%)

Email Actual
T 0 0 100

N 0 25

Predicted

T N Accuracy(%)

Facebook Actual
T 0 0 100

N 0 25

Predicted

T N Accuracy(%)

PGP Actual
T 1 1 84

N 3 20

Predicted

T N Accuracy(%)

Condmat Actual
T 0 0 100

N 0 25

Predicted

T N Accuracy(%)

DBLP Actual
T 3 14 44

N 0 8

Predicted

T N Accuracy(%)

Livejournal Actual
T 1 0 96

N 1 23

Table 13: Confusion Matrix and Accuracy for Edge-Distribution-Analysis algorithm

5.6 Comparison of algorithms: Modularity and Time

In this section, we evaluate the performance of our two algorithms to two approaches

from the literature in terms of both modularity and time. In the first approach, denoted

SLM, we simply run SLM [47] from scratch for each of the graphs G0, G1, G2, G3, G4. In

the approach denoted DSLM, we run the DSLM algorithm [3] after every phase; recall

that this is essentially running SLM but starting with the known community structure

for G0. Using the two algorithms we proposed in Chapter 3, after every phase, we
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decide whether or not to update the community structure. If we decide to update, we

run DSLM. Clearly, by deciding not to update, we may end up with a lower modularity

value; however we hope to save in terms of time. In the following sections, we present our

experimental results comparing the modularity and time taken by the four approaches.

5.6.1 Comparative Performances: Modularity

For Figures 31 to 37, the x-axis represents phases and y-axis represents modularity.

From these figures, it can be seen that regardless of the model for edge addition, the

difference in modularity obtained by different algorithms is generally less than 0.005 for

all the networks.

Figure 31: Modularity Analysis for Football Network for different edge addition mod-
els
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The exceptions are PGP and DBLP network. For PGP network, from Figure 34, we

observe the difference is 0.0064 only for 5th phase of an EdgeDistance model. For

other edge addition models, we observe that it is less than 0.005. In case of the DBLP

network, the modularities obtained from our Edge-Distribution-Analysis algorithm are

significantly lower than DSLM and SLM for some of the phases. As previously explained,

the reason for low modularity is the approximate prediction of threshold cut off value.

We also observe that PGP and DBLP networks have lower E/V ratio; this could be the

reason for the anomalous behavior.

Figure 32: Modularity Analysis for Email Network for different edge addition models
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Figure 33: Modularity Analysis for Facebook Network for different edge addition
models
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Figure 34: Modularity Analysis for PGP Network for different edge addition models
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Figure 35: Modularity Analysis for Condmat Network for different edge addition
models
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Figure 36: Modularity Analysis for DBLP Network for different edge addition models
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Figure 37: Modularity Analysis for Livejournal Network for different edge addition
models
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5.6.2 Comparative Performances: Time

For Figures 38, 39, 40, 41, 42, 43, and 44 x-axis represents phases and y-axis represents

time in seconds. For the Football network, we can observe from Figure 38 that the

Modularity-Change-Rate algorithm gives the least running time as it is not running from

the 3rd phase onwards. The time taken by SLM and DSLM is almost equal whereas the

Edge-Distribution-Analysis algorithm gives the worst running time. The reason behind

this is that we are storing the generated thresholds in separate file, so, even though we

are not running the DSLM algorithm in Edge-Distribution-Analysis algorithm , the I/O

time to write the results is at least 0.05 seconds. This happens only for this network.

Figure 38: Time Analysis for Football network with different models
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Figure 39: Time Analysis for Email network with different models

For the Email, Facebook, and the Condmat networks, from Figures 39, 40, and 42,

we observe that the Edge-Distribution-Analysis algorithm takes the least time for first

two phases and that the Modularity-Change-Rate algorithm takes the least time from

3rd phase onwards. As expected, the SLM algorithm takes the highest running time for

all the edge addition models for all of the phases.
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Figure 40: Time Analysis for Facebook network with different models

For PGP network from Table 7, we observe that we are running the DSLM algorithm

in Modularity-Change-Rate algorithm for the 1st, 2nd & the 5th phase of the p = 0.6,

for all the phases of EdgeDistance and for the 1st, 2nd, 4th and the 5th phase of Random

model. Similarly, from Table 12 we see that we are running the DSLM algorithm in

Edge-Distribution-Analysis algorithm for the 5th phase of P = 0.6 and EdgeDistance

model. We also run DSLM in all the phases of the Random model. Hence we will have

different run-time behavior for PGP network as compared to other networks.
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Figure 41: Time Analysis for PGP network with different models

In terms of overall running time, from Figure 41, we realize that Edge-Distribution-

Analysis algorithm gives better results in general as compared to all the other algorithms.

Modularity-Change-Rate algorithm is still running the DSLM algorithm in some of the

phases where the difference in modularity is actually not greater than 0.005. The SLM

algorithm gives the worst running time.
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Figure 42: Time Analysis for Condmat network with different models

For DBLP network, DSLM and Modularity-Change-Rate algorithm gives better re-

sults. Edge-Distribution-Analysis algorithm fails to predict correct phase in which it

should run an update. The SLM algorithm takes the highest running time. For p = 0

Modularity-Change-Rate algorithm gives better results than DSLM algorithm.
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Figure 43: Time Analysis for DBLP network with different models

From Figure 44, we understand that, on an average, it takes about 1200 seconds to

run SLM algorithm and approximately 550 seconds to run DSLM algorithm for a single

snapshot of Livejournal network. From Figure 23,we can observe that the change in

modularity is greater than 0.005 for the 4th and 5th phase of the Random model. From

Figure 44, we realize that the Edge-Distribution-Analysis algorithm runs only in the 4th

and 5th phase of Random model hence giving the best running time as compared to

other models. The Modularity-Change-Rate algorithm gives good results for P = 0 and

P = 0.4. When P = 0.6 it runs the DSLM algorithm even though the actual change in

modularity is less than 0.005. The same thing happens for the 4th and the 5th phase of

EdgeDistance model. For the Random model, it runs DSLM in all the phases. The SLM
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Figure 44: Time Analysis for Livejournal network with different models

algorithm gives the worst running time performance as compared to other algorithms.

99



Chapter 6

Conclusion and Future Work

In this thesis, we studied the problem of updating community structure for evolving so-

cial networks. In particular, we assume that a modularity-maximization based algorithm

for community detection, such as DSLM, is being used. After the addition of a certain

number of edges to the network, we attempt to determine whether or not the community

structure has changed sufficiently to justify running a community detection algorithm.

We give two algorithms to make this determination. The Edge-Distribution-Analysis

algorithm analyzes the newly added edges to estimate how many nodes would switch

communities as a result of the newly added edges. It then uses the percentage of such

nodes to determine if the community structure would change significantly, and decides

whether or not to re-run DSLM. The Modularity-Change-Rate algorithm is based on the

idea that the rate of change of modularity is network-specific and linear in the number

of edges added. It finds the rate of modularity change in a given network, and uses it

to predict when an update is required.

We proposed three models to generate evolving networks: the Random model, the

Geometric-Probability model, which is based on the well-known phenomenon of ho-

mophily in social networks, and the Edge Distance model, that is based on the phe-

nomenon of triadic and cyclic closure. Starting with real-world data sets, we used

these models to generate evolving networks. We implemented SLM, DSLM, Edge-

Distribution-Analysis algorithm , and Modularity-Change-Rate algorithm on these

data sets. Our results show that both the Edge-Distribution-Analysis algorithm and

Modularity-Change-Rate algorithm predict quite well when the community structure

should be updated. They result in significant computational savings compared to run-

ning SLM or DSLM after a fixed number of edge additions, while ensuring that the

quality of the community structure is comparable.
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6.1 Future Work

There is lot of scope for future work on this topic. As social networks are getting larger

day by day there is an increasing need for effective strategies that can handle a lot of

changes in the network. We have only focused on edge additions. In a real network,

apart from edge addtions there are edge deletions, node additions and node deletions as

well. In this thesis, we proposed three models for edge additions. It would be interesting

to see how well the EdgeDistance model and the GeometricProbability models match the

real-life evolution of networks. In general, finding an accurate model for social network

evolution would be an interesting avenue for research.

For the Edge-Distribution-Analysis algorithm , we have given a few threshold calcu-

lations for adding edges of specific types. A study of how the simultaneous addition

of different types of edges affects whether a node would switch communities needs to

be undertaken. Also, it is far from clear how to determine the maximum percentage of

nodes that would cross their thresholds before the community structure changes. We

have suggested that it is based on the E/V ratio, but in reality, there are many other

factors which could be considered, such as the betweenness centrality, degree of the

node, number of triangles the node participates in, etc. An approach using machine

learning to find which parameters are most important in compelling a node to switch

communities might be useful. In the Modularity-Change-Rate algorithm, we run the

DSLM algorithm for the first two phases and then predict the next phase in which we

should run the DSLM. Once we reach that phase, we run the DSLM for that phase and

for the two more subsequent phases. We suggest that we might not have to run the

algorithm for those two subsequent phases. Instead we could run for a single phase and

predict the change in modularity, and obtain even more savings in time.
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