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Abstract

The combined utilization of climate scenarios, climate models and Geographic Information 

Systems  [GIS] represent the most reliable tools  to spatially determine the potential impacts  

of climate change in the near to end-of-century time horizons. With affordable computation, 

massive  and  open  online  courses,  open  access  journals,  cloud-based  data  visualization 

platforms,  countless  repositories  of  environmental  and climate  data  available  through the 

Internet, and the Free and Open Source [FOS] software movement, geospatial analysis is 

becoming  an  increasingly  accessible  field  for  professional  researchers,  the  technically 

inclined, and the general public. 

I present here a Master's thesis that has been developed primarily using FOS software 

and openly accessible environmental data with few usage restrictions. The analysis is a multi-

criteria-based  suitability  and  climate  categorization  of  Southern  Quebec  for  European  V. 

vinifera wine grape viticulture. Using several openly available GIS data sources, I identify and 

categorize the wine regions of Quebec according to a series of climate metrics developed 

specifically  for  wine  studies.  My  analysis  is  based  on  both  NASA Daymet  present-day 

satellite-observed  climate  grids  (Thornton  et  al.,  2015) and  ClimateNA  (Wang,  Hamann, 

Spittlehouse, & Carroll, 2016), a statistically downscaled gridded data set of 30-year climate 

normals  extending  from  years  1980  to  2100  for  two  climate  change  scenarios,  the 

Representative Concentration Pathways scenarios [RCP] 4.5 and 8.5  (Moss et al., 2010). I 

perform  my  analysis  by  examining  the  results  of  these  viticultural  metrics  and  climate 

variables both at  the regional  scale and at  locations of  presently-operating vineyards.  All  

results  are  determined  spatially  using  QGIS  (QGIS Development  Team,  2016) and other 

Open Source GNU/Linux utilities (Debian Project, 2015). 

My results show that present-day Saint Lawrence Seaway Valley barely exceeds the 

needed thermal suitability threshold for  V. vinifera viticulture with most of  Montérégie and 

Estrie at  or  below  most  “Cool  Climate”  categorizations  and  other  agricultural  zones  are 

located well below climatic suitability for European viticulture. For future projections both RCP 

scenarios mirror an increase of ~200 growing degree-days [GDDs, ºC] from 1981-2010 to the 

2011-2040 period and strongly diverging for periods afterwards. Results using the RCP 4.5 

“Stabilization” show present-day vineyard locations may experience an increase in climate 

region category by roughly one or two climate categories (“Temperate” and “Warm”), while the 
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RCP 8.5 “Business as Usual” scenario shows some present vineyard locations may become 

unsuitably hot with “Warm” viticultural climates extending above 50 ºN.

I also present an extended literature review and methodology chapter that summarizes 

and explores my experience in employing almost exclusively FOS software and unrestricted 

data.  This  chapter  is  structured  in  a  non-traditional  fashion  and  is  meant  to  provide  an 

introductory background and discussion of the history of Open Source/Data/Access and Open 

Government  movements.  An  extended  methodology  explores  FOS  software,  Open  Data 

resources, and showcases an example methodology for an agriculturally-focused FOS-GIS 

analysis. While the FOS movement is not presently capable of replacing all proprietary tools 

or present models of knowledge dissemination, Open Source approaches and a fostering of 

the Open ecosystem can be greatly beneficial for both the individual and at societal levels. 
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Foreword

I get asked often how some guy from Quebec who has never once stepped foot in a vineyard  

decided to spend years examining them virtually. The truth is, like most odd things, it's a long  

story; my personal justifications for focusing on wine stems from a passion in discovering the 

intricate  complexities  of  wine  and  a  scholarly  interest  in  developing  my  aptitude  in  the 

geospatial and climate sciences. 

The research that I present here is meant to offer a concise examination of a few key areas of 

interest  that  center  around  the  themes  of  climatic  change  and  geospatial  agricultural  or 

viticultural analysis techniques, and I have purposely highlighted the near exclusionary use of 

Open Source software, data and/or materials held in the Public Domain. In performing the 

background research for this thesis, I was able to immerse myself into these very different yet 

intersecting  topics,  was  fortunate  enough  to  integrate  knowledge  gained  and  data  sets 

discovered in the pursuit of seemingly-unrelated research projects, and found a way to bring  

this  all  together  using  methods  and  technologies  that  continue  to  amaze  me.  While  I 

recognize  that  this  document  is  quite  long  and  unnecessarily  verbose,  this  manuscript 

represents an enormous amount of work, headaches, and perseverance that I am immensely 

grateful to have had the opportunity to draft it. 
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Chapter 1 - Introduction

Section 1.1 - Key Concepts

     1.1.1    -     Tackling Climatic Change

Global scale environmental problems, according to policy researchers, are considered to be 

“wicked problems” (Ludwig, 2014; Rittel & Webber, 1973): problems with numerous conflicting 

goals,  without  clear  definitions of  success,  and without  precedents or  space for  potential  

replication. Global Warming and Climate Change, the recent global-scale increase in mean 

annual temperatures worldwide and the resultant climatic anomalies experienced at regional 

and local scales, are beyond reasonable doubt an observed climatic departure since the last  

glacial maximum and a problem of anthropogenic origin requiring immediate action (J. Cook 

et al., 2016; IPCC, 2014a; Marcott, Shakun, Clark, & Mix, 2013).1 The combined impacts from 

anthropogenic sources such as increasing levels of industrialization, population affluence, and 

land  use  change  are  together  increasing  the  amount  of  greenhouse  emissions  and 

decreasing the ability of natural sinks to draw down these emissions are contributing to the 

carbon saturation of the atmosphere and other natural carbon sinks (Rosenzweig, Neofotis, & 

Vicarelii, 2008). These problems are compounded by the complexity of fragmented global-

scale politics/policies and climate mitigation negotiations (Ludwig, 2014; UNFCCC, 2015), a 

dwindling global carbon emissions allowance (Zickfeld, Eby, Matthews, & Weaver, 2009), and 

the  asynchronous  timescales  and  severity  of  climate  change  impacts  expected  between 

wealthier and poorer regions  (Harrington et al., 2016). Research groups, Non-Government 

Organizations [NGOs], corporations and government agencies have been increasingly taking 

part in the adaptation planning process by analyzing, localizing, and planning for the potential  

dangers of inaction, as they have been comprehensively reviewed by the Intergovernmental 

Panel  on  Climate  Change  (IPCC,  2014a;  Warren  &  Lemmen,  2014;  World  Bank  Group, 

2014), as well as accounting for the pledged greenhouse emission reductions following the 

COP21 meeting in Paris (FAO, 2016; Gignac & Matthews, 2015).

1 A compendium of consensus statements from major research institutions and societies assembled by NASA can be found 
at the following website: http://climate.nasa.gov/scientific-consensus/
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One method proposed by the scientific community as a means of reducing complexity  

and visualizing the potential policy approaches with regards to climate change mitigation is 

scenario  development  (Levin,  Cashore,  Bernstein,  &  Auld,  2012;  Moss  et  al.,  2010; 

Nakicenovic et al., 2000). Quantifying and temporalizing the different pathways available for 

collective global mitigation is particularly useful as a means of weighing the costs and benefits 

of actions (or inaction). The most recent climate change scenarios adopted by the IPCC, the 

Representative Concentration Pathways (Moss et al., 2010), provide a set of estimates based 

on end-of-century anomalies to the global radiation budget [Figure 1-1].2 Predicting climate 

impacts using these pathways usually involves climate model simulations at global scales that 

are  then  reanalyzed  to  regional,  and/or  local  scales  and  for  anthropogenic  sectors  and 

interests,  moving  from  the  abstract/conceptual  to  the  tangible/sensible,  with  each  step 

introducing parameterizations and new levels of uncertainty  (Prather et al., 2009). Caveats 

aside,  these  scenarios  and  their  gridded  climate  model  estimations  present  the  most 

approachable and easily replicable means of performing climate prediction analysis [Figure 1-

2].

2 RCPs 2.6, 4.5, 6.0, and 8.5 all refer to potential radiative forcing (W/m2) anomalies experienced at year 2100, though 
some scenarios may peak at higher radiative values than their namesake within the century before falling.  
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     1.1.2    -     Performing Geospatial (Bio-)Climatology

One among many major applications of climate model output is to predict potential climatic 

departures  (or  anomalies)  from  present-day  and  to  determine  the  potential  impacts  of 

anomalies  on  human  and  environmental  systems  (e.g.  flood  risk,  labour  productivity, 

agriculture)  (Bootsma, Gameda, & McKenney, 2005; Kjellstrom, Kovats, Lloyd, Holt, & Tol, 

2009;  Muis,  Güneralp,  Jongman,  Aerts,  &  Ward,  2015).  Determining  local-scale  daily 

meteorological changes or seasonal trends between multi-decade normalization periods is 

particular importance in performing agroclimatology – determining the climatic suitability for  

agricultural production in an area or modelling the shifting of important phenological dates for  

a major crop species – which focuses not only affects yields but can extend to examine 

impacts  on economic,  financial,  cultural,  and other  systems  (Bernetti,  Menghini,  Marinelli, 

Sacchelli, & Sottini, 2012; IPCC, 2014b; Lesk, Rowhani, & Ramankutty, 2016; Lobell, Field,  
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Cahill, & Bonfils, 2006). Agroclimatic metrics such as growing degree days [GDDs], Growing 

Season Precipitation [GST], Frost Free Period [FFP], and other biolcimatic indicators that can 

characterize crop suitability  and risk are of  immense importance in  determining the type, 

amount, and timing of crop planting and cultivation by agricultural operators (Bryant, Singh, & 

André,  2007;  Mosedale,  Wilson,  & Maclean,  2015;  Shen,  Basist,  &  Howard,  2010).  This 

information can be gathered directly from weather station point sources and then interpolated 

across landscapes or gathered though raw or processed satellite imagery (remote sensing). 

For climatology, particular emphasis is placed on multi-decadal periods in order to obtain a 

statistically  representative  sample  of  expected  monthly  and  seasonal  precipitations  and 

temperatures that allow for comparisons between other multi-decade periods (normalization 

periods). 

Of  particular  importance  for  predictive  climatology  is  that  Geographic  Information 

Systems [GIS] can be used in translating coarse global data to finer regional and local levels 

(Daly, 2006; Daly et al., 2008); As raw general circulation model outputs are coarse in spatial 

resolution, techniques that integrate local topography, convective patterns, and the existing 

climate  record  are  used  to  create  predictive  masks  that  aid  in  translating  coarse-scale 

phenomena (Daly et al., 2008; Wang, Hamann, Spittlehouse, & Aitken, 2006). These masks 

can then be combined with additional raster and vector data allowing for innumerably diverse 

and specialized approaches to site characterization and suitability analyses depending on the 

temporal  and  spatial  scales  as  well  as  the  technologies  (GPS,  GIS,  satellite  imagery) 

available on hand (Fraga, Malheiro, Moutinho-Pereira, Cardoso, et al., 2014; Kurtural, Dami, 

& Taylor, 2007; Tomasi, Gaiotti, & Jones, 2013; Vaudour & Shaw, 2005). As technologies to 

perform geospatial  viticulture  have  become  more  accessible  both  financially  and  from  a 

technical perspective (with developments such as cloud-based GIS), these types of viticultural 

analyses have become more accessible to the scientific and professional communities as well  

as small-holder vineyard operators (Tomasi et al., 2013). 

     1.1.3    -     Engaging in Free and Open Source GIS

With the rise in popular use in recent decades of GIS techniques and software, methods of 

integrating and analyzing gridded climate data as well as remotely sensed, locally surveyed, 

and  other  cartographic  data  sets  has  become  a  financially  affordable  and  technically 
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accessible approach for establishing spatial relationships and phenomena; on the technical 

side of this accessibility, this is largely due to the declining cost of computation power, the 

wide array of available specialized GIS software (OSGeo Contributors, 2013), the enormous 

number of standardized and open data sets now produced (Hengl et al., 2014; Sinha, 2015), 

and the expanding availability  of  high-speed  Internet;  from the  legal  and policy side,  the 

development and release of software, data, and knowledge under the principles of “Open 

Source” – where the source materials or source code, the human-readable basis of software, 

are available to be distributed, scrutinized, modified, and recompiled with very few restrictions 

– has revolutionized the way that research and the production of knowledge is performed 

between individual  researchers, institutions, and agencies  (Open Knowledge International, 

2016a, 2016b). This emerging technical and ideological climate has changed the way that 

research is performed across the world today. 

In abandoning the subscription-payment model of proprietary GIS, Free and Open Source 

GIS [FOS-GIS] analysis is becoming a more widely-adopted skill at the fingertips of those 

interested,  and  not  so  much  a  specialization  unique  to  geographers  and  environmental 

researchers.  For  general  researchers.  the  number  of  FOS resources available  for  spatial 

analysis  and  visualization  by  way  of  platforms,  data  sources  and  accompanying 

documentation are plentiful. For traditional desktop GIS analyses, QGIS [Figure 1-3]  (QGIS 

Development  Team,  2016) and  other  FOS-GIS  platforms  are  quickly  becoming  a  major 
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competitor to proprietary GIS for education, research, and web services, while written and 

audiovisual documentation and training resources are being constantly developed and made 

available for all levels of technical proficiency. 

Spatial  analysis,  and  even  more  so  climate-focused  spatial  analysis,  has  become  more 

accessible than ever thanks to the rapid development of FOS-GIS and “Open Science”. It is 

within this context that I present the following thesis and research project that builds upon the 

themes of climatology, spatial analysis and “Open” approaches. Working from this intersection 

of disciplines and within the context of the “Open” movement, this research is a summary of 

approaches and background for performing “Open Science” in geography. 
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Section 1.2 - Structure of the Thesis

The supporting works and knowledge that builds upon the background necessary in achieving 

the goals outlined in the previous section, largely borrowed from Climate Change studies, 

agroclimatology, GIS, and vineyard site suitability, are elaborated on in Chapter 2.

Throughout the entirety of this research, I  have pursued where possible to use Free and 

Open Source software, operating systems, and data. My research concerning the history of 

the  Open  Source  movement  and  its  influences  on  creative  use  rights,  government 

transparency and spatial data infrastructure have been summarized in the first half of Chapter 

3.  An  example  for  performing  a  total  agricultural  extent  analysis  in  Southern  Quebec  is 

illustrated in the second half of Chapter 3, ending with some limitations, lessons learned and  

some comments on Open Source use in academia.

The  primary  analysis  of  viticultural  physical  climate  for  Southern  Quebec,  with  methods, 

results  and discussion detailing the majority  of  findings and predictions for viticulture and 

geospatial bioclimatology are illustrated in Chapter 4.

The thesis concludes with a brief statement stressing the need for greater global cooperation 

if global societies wish to avert the worst possible outcomes of climatic change in Chapter 5.

Additional tables and example methodologies present in Annexes 1 – 5 are representative of  

further  analyses  and  additional  work  that  may  be  part  of  an  upcoming  research  project 

extending  from Chapter  4.  The  text  of  the  Creative  Commons  license  that  this  work  is 

distributed under can be found in Annex 6.
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Chapter 2 - Literature Review

Section 2.1 - Overview

The research reviewed in this section bridges the fields of viticulture, spatial analysis, and 

climatology, and stems from numerous backgrounds ranging from climate science, biology, 

statistics, geography, anthropology, history and economics. For the purpose of this research,  

the literature is categorized as follows: Viticulture, Agriculture and Climate Change; Spatial 

Analysis  and  Assessment  Techniques;  Wine  Geography,  History  &  Society;  Metrics, 

Phenology and Horticulture; and General Atmosphere & Earth Science [Figure 2-1].

     2.1.1    -     Climate Change and Potential Agricultural Impacts

The  beginnings  and  rise  of  industrialism,  made  possible  through  fossil  fuel  combustion 

technology  over  the  course  of  the  past  250  years,  has  led  to  a  significant  release  of  

greenhouse gas emissions,  contributing  to  the  enhanced greenhouse effect.  Atmospheric 

loading of greenhouse gases from anthropogenic origin, which alter the radiation budget of 

Earth  by  trapping or  repelling  incoming and outgoing  radiation,  has resulted  in  a  steady 
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increase in energy retained from the Sun (Ramanathan, 1988). The ongoing and accelerated 

emissions associated with the need to satisfy demands of energy, transportation, food and 

societal affluence has resulted in a growing number of adverse effects  (Sawyer, 1972). The 

resultant  compounding effects of  climatological  phenomena on Earth's  basic  systems are 

typically referred to as impacts of climate change.

Atmospheric greenhouse loading at the global scale has resulted in an unequivocal 

rise  in  global  temperatures  (IPCC,  2014a;  Rosenzweig  et  al.,  2007).  The  latest 

Intergovernmental  Panel  on  Climate  Change  (IPCC)  report  suggests  that  the  1880-2012 

average  global  temperature  increase  was  approximately  0.85°C  (+0.21/-0.20)  above 

preindustrial  temperatures  (Stocker  et  al.,  2013),  with  large  variability  in  its  regional 

distribution. This global temperature increase has resulted in numerous broad-scale changes 

to physical and biological earth system components (Rosenzweig et al., 2007).

Cryospheric changes from increased temperatures are reduced overall sea ice extent 

as well as reduced glacial volume. On land, temperature increases have modified drainage 

systems by increasing snow and ice melt while simultaneously raising water temperatures in 

lakes and rivers. Ultimately, this has resulted in global decreases in seasonal and annual total  

frozen water and an influx  of water volume to the world oceans, raising sea levels along 

coasts and in open oceans (Rosenzweig et al., 2007). In North America, for example, climate-

induced changes to hydrological systems have in many cases led to enhanced and earlier 

seasonal  snow  melt,  with  resulting  average  increases  in  spring  runoff  and  river  flows. 

Meanwhile, areas prone to water deficit have become increasingly stressed (Rosenzweig et 

al., 2007).

Biological  impacts  have  also  been  observed.  Seasonal  changes  in  climate, 

hydrological systems and other environmental conditions have impacted phenological cycles, 

or the seasonal  timing of events for plant  and animal  species  (Rosenzweig et al.,  2007). 

Climatic  changes expressed through earlier  spring and later  autumn arrival,  coupled with 

numerous  anthropogenic  pressures  (such  as  intensive  agricultural  operations,  land-use 

changes  and  landscape  fragmentation)  contribute  to  shifting  animal  migration  dates  and 

constrict  mating opportunities.  Among plant  species,  longer growing seasons and warmer 

mean monthly temperatures have contributed to altered timings of spring and summer events 
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such as budburst  and flowering  (Rosenzweig et al.,  2007).  The shifting of  climatic  zones 

towards the poles has been accompanied by a poleward shift of plant and animal species.

As a result  of  this  poleward shift  of  climatic  zones,  plant  and animal  species may 

experience enhanced climate-based stresses in their current habitats (Easterling et al., 2007). 

This may affect agriculturally valuable species through variability in the timing and severity of 

pest  events,  lower  crop  yields,  and  heat  and  water  stress,  ultimately  resulting  in  food 

insecurity  (Falloon  &  Betts,  2010).  Among  the  innumerable  plant  species  that  are 

commercially and culturally important, wine grapes are particularly sensitive to these climatic 

effects (Duchêne & Schneider, 2005; G. V. Jones, White, Cooper, & Storchmann, 2005).   

     2.1.2    -     Viticulture and North American Oenology

Grapevines (specifically,  the “Vitis” species of wine grapes) have long been an important 

agricultural crop for several thousands of years  (Dougherty, 2012; Schultz & Jones, 2010). 

Viticulture (the cultivation of wine grapes), and oenology (the science of winemaking), can be 

traced back as far as to the Bronze Age and its practices are mentioned in religious texts 

written thousands of years before present (J. Robinson, 2006; Winkler, Cook, Kliewer, & Lider, 

1974). From viticulture's beginnings in Asia Minor, the specific range of agreeable climates for 

particular grapevine varieties have been ascertained and regimented. This is also reflected in 

their  production standards has lead to  strict  oversight  of  viticultural  methods. As a result,  

particular  varieties  of  the  European  V.  vinifera have  been  horticulturally  adapted  and 

proliferated throughout  most  of  Western  Europe and,  more  recently,  to  particular  regions 

within most continents (Dougherty, 2012). 

As  viticultural  regions  have  expanded  and  become  specialized  in  their  choices  of 

cultivars and their particular  winemaking practices in Europe and the Mediterranean (which 

are commonly referred to as as the “Old World”), knowledge and practices of viticulture and 

oenology have spread to other continents as well (Dougherty, 2012; J. Robinson, 2006). The 

“New World”  is  the  common name for  winemaking regions outside  of  the  Mediterranean 

established after the 15th century European explorations  (J. Robinson, 2006), and typically 

refers to bottles produced in the former colonies of South Africa, the Americas, Australia and 

New Zealand. While endemic grape vines, particularly in North America, were found to grow 

wild,  the first  attempts  to  cultivate the European variety,  V. vinifera,  were not  successful, 
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largely due to lack of experience with pests and diseases but primarily due to non-analogous 

climatic conditions compared to those in the wine regions of Europe (J. Robinson, 2006; Ulin, 

2007). 

In North America, native Vitis varieties that were better adapted to local environmental 

stresses than imported V. vinifera (particularly V. labrusca or “Fox Grape”) became the subject 

of oenological experimentation as a means of supplementing growing wine demand not met 

with European imports  (Ackerman, 2007; J.  Robinson, 2006; Ulin,  2007). One of the first 

American  successes  in  winemaking with  native  species  was  from  Nicholas  Longworth's 

experiments with  V. labrusca in the early 19th century  (Ulin, 2007). Further experimentation 

led to the development of  grafting techniques and hybridized  vinifera x labrusca varieties 

organized under the subgroup of V. labruscana, such as the Concord, Niagara, Catawba and 

other varieties in the American Northeast and Southern Ontario (J. Robinson, 2006). Up until 

the mid-19th century, cold-resistant V. labruscana varieties and French vine hybrids3 were the 

primary wine grapes cultivated in North America. However, attempts to cultivate true vinifera 

varieties have now begun to show greater successes (Bramble, Cullen, Kushner, & Pickering, 

2007; J. Robinson, 2006). 

     2.1.3    -     Wine Geography and “Terroir”

Alongside these developments in North America and abroad, the widespread expansion of 

viticulture and oenology has led to the development of strong ties between the human and 

physical realms of geographical research (Dougherty, 2012). Geographical inquiry into local 

and regional physical and topographical characteristics and their intersection with the cultures 

of  the  vine  across  the  globe  have  invoked  cross-disciplinary  development  in  the 

climatological, pedological and biological sciences with landscapes and societies, contributing 

to the concept of terroir (Burns, 2012; Dougherty, 2012; G. V. Jones, Reid, & Vilks, 2012). 

From a winemaker and enthusiast's perspective,  terroir refers to the most important 

physical  criteria  necessary for  making a palatable and geographically representative wine 

(Stevenson,  2005).  Latitude,  climate,  topography and soil  are the most  common physical 

3 The most popular Southern Ontarian and Eastern Canadian varieties of wine grapes include Baco Noir, Marechal Foch, 
Vidal, Riesling, Chardonnay and Gamay Noir (Shaw, 1999).
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characteristics considered to situate a wine within a 'landscape' or 'place'. These factors also 

determine the suitability of grape vines from an agricultural perspective.

From a scientific research perspective, “terroir” is described by Dougherty as a heavily 

geographical  concept  in  that  it  “brings  together  the  spatial  elements  of  the  natural  

environment and synthesizes them with the socioeconomic factors...” (2012, p. 22). The term 

is  often  employed in  the  wine industry  to  denote  a  geographically  defined region  with  a 

“...complex interaction among physical, cultural and socioeconomic factors that defines the 

wine styles and quality that come from a particular region” (Holland & Smit, 2010, p. 131). The 

contemporary concept of terroir4 is often associated with guaranteed wine quality, a particular 

variety or sets of grapes cultivated and the particular winemaking practices and production 

volumes allowed within a specific region. It can be enforced through social conventions or 

through regimented laws governing  delimited  viticultural  areas,  as  seen in  the  Apellation 

Origine  Controllée [AOC] system  for  France,  Denominazione  di  Origine  Controllata  e  

Garantita  [DOCG] for  Italy,  American Viticultural  Areas [AVAs]  for  the  United  States, and 

similar  origin  certification  systems  in  neighbouring  regions  (J.  Robinson,  2006;  White, 

Whalen, & Jones, 2009). For New World winemaking, regional wine laws are typically not as 

restrictive,  allowing  winemakers  more  freedom  to  experiment  with  grape  varieties  and 

winemaking  practices  (Yau,  Davenport,  &  Rupp,  2013).  The  AOC  system  is  primarily 

employed in New World winemaking as a method of typifying and codifying wines according 

to regions that share a generally similar topographical, hydrological and pedological features, 

as well as a marketing criteria for distinguishing vineyards adhering to a regional association's 

production  standards  (Yau  et  al.,  2013).  As  these  terroirs  and  winemaking  regions  have 

begun to experience the impacts of climate change, there is great concern over the future 

viticultural  viability  of  currently  established  winemaking  regions,  driving  the  need  for 

specialized research in this field (Santos, Malheiro, Pinto, & Jones, 2012).

4 The history of terroir and its association with quality wines is not without its critics: While one of the main employments of 
terroir in recent years are to base legal controls for fraud and to guarantee wine quality, some authors suggest that its 
historical usages did not exclude exercising class power over peasant producers by enforcing standards that excluded or 
quashed smaller-scale winemakers (Ulin, 2007), and to entrench narratives that the best wines were only derived from 
grapes sown on French soils (White, Whalen, & Jones, 2009)
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     2.1.4    -     Current Research in Wine and Climatic Change

While  North  American  winemakers  have  been  exploring  new  viticultural  and  oenological 

methods since the 18th century, current research in grape and wine can be seen in practice 

across  the  world's  established winemaking regions.  As mentioned earlier,  climatic  factors 

have a had a strong influence over the suitability of  V. vinifera in many regions (Amerine & 

Winkler,  1944) and  the  many  research  approaches  performed  to  determine  grape  vine 

suitability are aimed at  furthering our understanding of  past  climatic trends and expected 

future changes to wine quality and wine-growing regions (Ashenfelter & Storchmann, 2014; 

Hood, Cechet, Hossain, & Sheffield, 2006; G. V. Jones, Duff, Hall, & Myers, 2010; G. V. Jones 

et  al.,  2005;  Koufos,  Mavromatis,  Koundouras,  Fyllas,  &  Jones,  2014;  Moriondo,  Bindi, 

Fagarazzi, Ferrise, & Trombi, 2011; Sadras & Petrie, 2011) as well as to the potential of novel 

viticultural  regions  under  potential  climate  change  (Fraga,  Malheiro,  Moutinho-Pereira,  & 

Santos, 2012; Gustafsson & Mårtensson, 2005; Hannah et al.,  2013a; Kryza et al.,  2014; 

Olsen,  Olesen,  Breuning-Madsen,  &  Balstrøm,  2011).  Research  in  adaptation  planning 

specifically  for  agricultural  and  viticultural  practices  also  encompasses  many  facets  of 

socioeconomic  and  socioecological  dynamics,  with  some studies  focusing  on  the  human 

dimensions of  winemaking under  uncertain  and highly  variable future climates  (Belliveau, 

Bradshaw, & Smit, 2007; Bryant et al., 2007; Lereboullet, Beltrando, & Bardsley, 2013; Viers 

et al., 2013; Viguié, Lecocq, & Touzard, 2014); However, before exploring the particular case 

studies, it is necessary to establish the base criteria required for viticulture to be conducted 

within a region. 

     2.1.5    -     Criteria Necessary for Cool Climate Viticulture

The literature on grapevine suitability is focused specifically on V. vinifera  as this varietal is 

most often associated with the majority of high quality commercial winemaking efforts. The 

most  important  and  limiting  factors  in  grapevine  cultivation  region  are  climate  and  soil 5 

(Amerine  &  Winkler,  1944;  Fraga  et  al.,  2012;  Kurtural  et  al.,  2007;  Olsen  et  al.,  2011;  

Stevenson, 2005; Watkins, 1997; Yau et al., 2013). The oenological goal in cultivating cool 

climate wine grapes is to achieve a balance of sugar, acid and alcohol content that fosters a 

5 The versatility of V. vinifera to grow in many different regions adheres to the idea that grapes are infused with the “gout de 
terroir”, or the taste of the landscape, which could refer directly to soil but is not necessarily exclusive of other factors 
(Stevenson, 2005).
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“fruity” flavour (Shaw, 1999). As such, careful consideration is placed on optimizing a balance 

between ensuring adequate heat, available water and maximizing sunshine available to the 

grapevines in cooler climates throughout the growing season. Thermally, the growing season 

necessary  for  a  vine  to  begin  grape  production  requires  a  minimum  consistent  daily 

temperature of 10°C before V. vinifera budding (“bud break”) can occur (Amerine & Winkler, 

1944; Stevenson, 2005).  Areas with risk of temperature extremes in the form of severe frost 

after  budding,  and  drought-like  severe  heating  are  typically  avoided  as  both  these 

occurrences have the  potential  to  decimate  crop yields  and damage vines  (Shaw,  2001; 

White, Diffenbaugh, Jones, Pal, & Giorgi, 2006; Wolf & Boyer, 2003). Following bud-break, V. 

vinifera grape productivity can be fatally impacted if temperatures consistently drop below -1 

to -3° C (Olsen et al., 2011). During winter dormancy, average temperatures that below those 

limits risk significant damage to the xylem and phloem tissues of most V. vinifera vines, with 

constant temperatures below -20° C seen as the lower limit  before plants are destroyed, 

should  they  not  be  adequately  insulated  or  protected  (Ashenfelter  &  Storchmann,  2014; 

Webb, Watterson, Bhend, Whetton, & Barlow, 2013). 

The upper limit of average growing temperatures is also significant to the effectiveness 

and quality of grape production during the typical growing season (Gladstones, 1992; Gornall 

et al., 2010; G. V. Jones et al., 2005; Lereboullet, Beltrando, & Bardsley, 2013). While the 

optimal range of temperatures for most intermediate climate grapevines is suggested at 14-16 

°C (Stevenson, 2005), the ideal ranges for most V. vinifera grapes can be as high as 20-22 °C 

(Gladstones, 1992). Consecutive daily temperatures well in excess of 30 °C, exceeding “hot” 

viticulture climates, have been estimated to have negative impacts on some varieties of  V. 

vinifera species (Schultz & Jones, 2010). For most agricultural crops, continuous temperature 

extremes above 35 °C during the flowering period can damage flowering structures, reducing 

pollen  viability  (Wollenweber,  Porter,  &  Schellberg,  2003).  These  temperature-based 

particularities  thus  constrict  the  V.  vinifera  vine  climatic  range  to  regions falling  between 

average growing season temperatures of around 12 – 22 °C [Error: Reference source not

found] (G. V. Jones et al., 2012). 

For the average grape-growing region, the minimum necessary precipitation to support 

grapevine production is estimated to be 500 mm for cooler climates and 600 – 750 mm for 

warmer climates  (Gladstones, 1992), while phenological patterns  require there to be lower 
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levels of precipitation during the early growing season (to discourage early mildew growth)  

followed  by  higher  levels  of  precipitation  with  greater  humidity  and  more  moderate 

temperatures later on (Yau et al., 2013). Extreme rainfall events also present a major concern 

for grapevines, as wash-away and water-logging of soils can also lead to structural damage 

and anaerobic conditions of organic matter, also potentially leading to mildew growth (Gornall 

et al., 2010; Olsen et al., 2011). 

Topographically, slight inclines (3-8.5°) on southward facing (for Northern Hemisphere) 

slopes are the better candidates for vineyard placement as these terrains provide optimal  

conditions for soil drainage, maximizing solar radiation, and does not place heavy strain on 

agricultural  machinery  (Yau  et  al.,  2013).  Other  authors,  however,  suggest  that  slopes 

exceeding  a  range  of  12°  C  can  also  be  appropriate  (Olsen  et  al.,  2011). The  edaphic 

components  needed  for  viticulture  mainly  require  good  drainage  or  irrigation  to  prevent 

waterlogged soil conditions which can lead to vine mildew and disease (Olsen et al., 2011; 

Yau et al., 2013). Placement of vineyards in relation to topographical features also plays an 

important  role in the mesoclimatic phenomena that  can occur  at  the smaller scale within  

vineyards,  suggesting  that  higher  elevations  and  slightly  westward  slopes  are  ideal  for 

maximizing  solar  radiation  input  in  relation  to  the  surrounding topography  (Gustafsson & 

Mårtensson, 2005; Kurtural et al., 2007). While shelter against harsh elements is necessary, 

shade is generally regarded as an impediment to the potential of grapevines to use solar 

resources, thus demanding creative and careful placement of vines on the landscape at the 

smaller scale.

     2.1.6    -     Heat Summation Indexes and Climate-Viticulture Regions

Much of  the early and ongoing research into  the placement and effectiveness of climatic 

regions for viticulture relies on techniques to spatially index the thermal and solar capacity of  

regions according to the dynamics of the growing season for a particular landscape. The most  

employed metric, in this regard, for determining regional climate classification for grapevines 

and in  general  horticulture is  the Growing Degree Day [GDD]  (Amerine & Winkler,  1944; 

Winkler et al., 1974).  Building upon the basis of de Candolle's research establishing spring 

temperatures of 10° C as the necessary threshold for the departure of vegetative dormancy, 

vine growth,  budding and fruit  ripening  (J.  Robinson,  2006),  the heat  summation method 
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proposed  by  Amerine  &  Winkler  (1944),  commonly  known  as  the  Winkler  Index  [WI], 

summates the averaged daily low and high temperatures between April  and October and 

subtracts  a  baseline  temperature  (in  the  case of  V vinifera,  10°  C):  the  total  of  monthly 

temperature  values  in  exceeding  the  baseline  are  then  used  to  typify  climatic  regions. 

According to Winkler Viticulture climate zones are broken into several categories ranging from 

“cool” to “hot”, with regions scoring less than 1370° C considered the coolest regions and 

those in excess of 2200° C  the hottest (Amerine & Winkler, 1944; Winkler et al., 1974). The 

use of growing degree-day functions to categorize climatic regions is a nearly universally-

applied method for most vineyard site selection suitability studies  (Hood et al., 2006; G. V. 

Jones et al., 2010; Koufos et al., 2014; Kryza et al., 2014; Kurtural et al., 2007; Yau et al.,  

2013). 

Building  upon the GDD equation,  more comprehensive  indexes began to  integrate 

factors  such  as:  daily  (Heliothermal/Huglin  Index,  [HI])  (Huglin,  1978) and  maximum 

biologically effective degree days [BEDD]  (Gladstones, 1992);  latitudinal  position for more 

accurate solar radiation calculation (Latitude-Temperature Index, [LTI])  (Kenny & Harrison, 

1992); multi-criteria heat indexes that integrate potential soil water balance (Dryness Index, 

[DI])  and  night  temperatures  (Cool  Night  Index,  [CI])  (Fraga,  Malheiro,  Moutinho-Pereira, 

Jones, et al., 2014; Tonietto & Carbonneau, 2004); and extreme cold and hot events (White et 

al., 2006). These numerous climate regionalization methods have contributed to the growing 

number of vineyards and vineyard research assessing the suitability of viticulture in many 

geographic areas. More importantly, from the perspective of climate change research, these 

indexes  and  metrics  have  been  useful  in  tracking  environmental  changes  within  current 

winemaking regions as they begin to be impacted by the onset of  global  climate change 

(Fraga et al., 2012; G. V. Jones et al., 2010; Moriondo et al., 2011; Santos et al., 2012).

     2.1.7    -     Impacts to Viticulture and Vineyard Systems under Climate 
Change

The effects of recent climate changes on vineyards and the quality of wine from well-known 

winemaking regions has already been established in the literature. One study by G. V. Jones 

et al. (2005) has established an average rise in temperatures for winemaking regions across 

the globe of around 1.26°C over the period of 1950 to 1999, suggesting that vineyards around  
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the world may already be experiencing anomalous climate conditions from anthropogenic 

warming. The same study also predicted that temperatures for these regions could potentially 

further elevate another 0.42°C per decade in subsequent years. Variability in vintage rating (a 

metric used for the quality of wine produced during a typical growing season) across regions  

was determined to have been 10-60% attributed to  climatic  changes  (G. V.  Jones et  al., 

2005).

Due  to  the  complexities  of  climate  change  impacts  on  Earth's  systems,  projected 

changes are expected to vary significantly between major regions as global temperatures rise  

(Hannah et al., 2013a). Quantitative studies of climate change impacts on presently-defined 

vineyard regions have typically relied on raster output from multiple general circulation model  

[GCM] ensembles and Geographic Information Systems [GIS]  approaches to determine a 

range of estimates for average annual temperature and precipitation levels for both the global  

regional scale (Gornall et al., 2010; Hannah et al., 2013a; Lereboullet, Beltrando, Bardsley, & 

Rouvellac, 2013; Lobell et al., 2006; Moriondo et al., 2013; Webb et al., 2013). As the major 

winemaking regions are distributed across several continents and as the modelling methods 

strongly differ, unsurprisingly, there is large variability among numerical estimates of physical  

environmental  impacts.  An  intrinsic  factor  that  also  strongly  influences  future  viticulture 

suitability is the preparedness of operators to tackle climate change as well as the dynamic 

socioeconomic conditions they operate within  (Belliveau et  al.,  2007;  Bryant  et  al.,  2007; 

Lereboullet, Beltrando, & Bardsley, 2013). For simplicity, I will briefly mention here general 

trends and common concerns identified as important among a majority of studies.

The most pressing concerns for site suitability of the majority of economically important  

wine regions have largely to do with changes in global average temperature and temperature 

variability as well as changes to precipitation and hydrological systems (Hannah et al., 2013a; 

Lereboullet, Beltrando, Bardsley, et al., 2013; Moriondo et al., 2013). In turn, these factors 

compound  into  potential  impacts  on  phenology  and  crop  quality  (e.g.  growing  season 

variability, shifts in ripening periods, crop yields) (Gornall et al., 2010; G. V. Jones et al., 2005; 

Sadras  &  Petrie,  2011), and  on  socioeconomic  dynamics  (e.g.  globalized  markets,  crop 

insurance,  farming practices,  tourism impacts,  legal  frameworks),  which together  increase 

uncertainty with regards to the operational viability of vineyards (Belliveau et al., 2007; Bryant 

et al., 2007; Lereboullet, Beltrando, & Bardsley, 2013). While some studies of economically 
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important Mediterranean locations point to the challenges in adhering to strict vinicultural laws 

and  policies  covering  areas  such  as  region-specific  cultivars,  yields,  irrigation  and  other 

winemaking practices  (G. V.  Jones et al.,  2005; Lereboullet,  Beltrando, & Bardsley, 2013; 

Schultz  &  Jones,  2010), most  general  studies  focused  on  global  trends  highlighted  the 

challenges from physical changes to environmental systems and the opportunity costs and 

competing interests at play in the choice of crop or land development under uncertain climate 

scenarios (Gornall et al., 2010; Lobell et al., 2006; Webb et al., 2013). 

Phenological changes – changes  to the seasonal timing of specific agricultural events 

(e.g. budbreak, veraison (ripening), harvest date) for grape species – in many other viticultural 

areas experiencing the local impacts of global climate change have been well documented in 

Europe and abroad  (Fraga et  al.,  2012;  Hannah et  al.,  2013a;  Koufos et al.,  2014).  The 

advancement of bud break dates and the shortening of growing seasons are among many 

impacts predicted, and observed in some cases, for major agricultural regions (Bock, Sparks, 

Estrella, & Menzel, 2011; Gornall et al., 2010; Lobell et al., 2006), presenting a challenge for 

the future well-being of vineyards globally (Hannah et al., 2013a; Webb et al., 2013). 

While there are strong uncertainties and concerns over the future  viability of global 

viticulture, it should be noted that not all  predictions suggest solely negative impacts from 

climate  change.  Many  studies  agree  that  as  global  warming  manifests  itself  in  major 

agricultural regions, climate regions may shift and expand poleward to open new territory for  

agriculture development (Fraedrich, Gerstengarbe, & Werner, 2001; G. V. Jones et al., 2005; 

Moriondo et al., 2013; Viers et al., 2013; Webb et al., 2013). For colder viticultural regions like 

Canada, one study by Holland & Smit  (2010) suggests that climate change may help more 

northern climates in moderating harsh winters by increasing mean growing temperatures, 

favouring  greater  production  and  extent  of  vineyard  suitability.  The  authors  do,  however,  

agree  with  most  prediction  studies  that  finer-scale,  regional-level  analysis  is  needed  to 

determine specific environmental variability for specific locations (Daly et al., 2008; Holland & 

Smit, 2010; Wang et al., 2006).

     2.1.8    -     Industrial Figures

At the global scale, vineyards in 2012 accounted for 7.528 Million Hectares (M Ha or 75280 

Km2)  of  the  world's  arable  lands.  Global  wine production  accounts  for  nearly  252 Million 
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Hectolitres (MhL), and – if  comparing production against world consumption in 2012 (243 

MhL) – wine production  was recently  exceeding overall  global  demand  (OIV,  2013).  The 

Canadian  figures  for  wine  suggests  that  overall  production  has  slightly  increased  in  a 

relatively unsteady fashion since 1961 (FAO, 2014). While the rise of a globalized economy 

adds  complexity  to  discerning  any  trends,  this  increase  in  production  may  have  been 

influenced by both a more favourable climate and individual provincial policies with regard to  

their respective agricultural and wine industries (Ackerman, 2007; Bramble et al., 2007). One 

contributing region to this growing trend in Canadian wine production, and the focus of this 

research  project,  is  the  Canadian  province  of  Quebec.  As  of  early  2016,  province-wide 

viticulture has cultivated roughly 640 Ha of  planted vines;  the membership of the largest  

vintner association in Quebec,  l'Association des Vignerons de  Québec, account for roughly 

365 Ha of this area, producing nearly 11,150 hL of wine (or ~1.5 Million bottles)  (Gagné, 

2015a).
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Section 2.2 - Research Objectives

In this thesis project, I perform climate categorizations of agroclimatic regions as well as site  

suitability  evaluations  of  the  potential  for  viticulture  with  respect  to  other  physical 

characteristics within Southern Quebec. The literature with regards to viticulture suitability 

suggests that the primary limiting factor to the growth and development of grape vines is air 

temperature (Amerine & Winkler, 1944; Kurtural et al., 2007), with the growing season length 

being the most  important bioclimatic indicator in achieving grape ripeness  (Wolf  & Boyer, 

2003), and a mean growing temperature of around 12 – 22 ºC typically considered as the 

ideal range for grape growing (G. V. Jones et al., 2012, 2005). In order to further categorize 

the areas falling within this zone to define “hot”, “cool”, “humid”, “dry”, and other intermediary  

climates for viticulture, an array of agricultural indexes based on temperature, precipitation 

and other annual trends have been developed over the past century  (Amerine & Winkler, 

1944;  Gladstones,  1992;  Huglin,  1978).  More  recent  thermal  indexes  have  attempted  to 

integrate  factors  such as  latitude,  drought  and frost  potential,  aiding  in  further  specifying 

spatial  areas  that  would  potentially  be  suitable  for  grape  varietal  cultivation  (Jackson  & 

Cherry,  1988;  Tonietto  &  Carbonneau,  2004;  White  et  al.,  2006).  For  some researchers, 

combining these indexes to generate multi-criteria evaluation systems is often used in order 

to  identify  terroirs  by  multiple  climate  variable  patterns  producing  maps  and  even  more 

specified methods of categorizing climate regions (Fraga, Malheiro, Moutinho-Pereira, Jones, 

et  al.,  2014;  Tomasi  et  al.,  2013;  Tonietto  &  Carbonneau,  2004).  Furthermore,  specific 

methodological approaches to viticulture suitability in select regions, with climates categorized 

as  “cool”,  have  been  conducted  by  national  research  institutes  and  general  researchers 

(Hood et al., 2006; Koufos et al., 2014; Moriondo et al., 2011; Olsen et al., 2011). Climate 

categorization indicators, as expressed through these indexes and supporting methodological 

approaches, provide for a reliable tool  set to identify the spatially-defined extent of  these 

climate regions in Quebec. 

My  primary  analysis  climatically  categorizes  the  agricultural  areas  within  southern 

Quebec for wine grape viticulture. At present, the viability of Quebec viticulture is limited by 

climatic characteristics of northern latitudes, most notably harsh winters and short growing 

seasons, constraining the present regional extent of Quebec appropriate for viticulture well  
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below the generally observed upper extent of 50º latitude North  (N. K. Jones, 2012; Shaw, 

1999). That said, the number of winegrowing operators in the region of Southern Quebec is 

steadily  increasing  over  time,  offering  wine  from  numerous  grape  varietals  that  are 

successfully grown throughout the area (AVQ, 2012a). 

In  order  to  evaluate  the  characteristics  and  historical  conditions  of  Quebecois 

viticulture  operations,  I  present  an  evaluation  of  present-day  and  recent-past  climate 

characteristics  at  vineyard  locations  and  throughout  the  geography  of  Quebec.  While 

viticulture is a well established activity in present-day Quebec, the recent re-emergence and 

growth of the industry spans roughly 40 years (Ackerman, 2007; AVQ, 2012a). Instrumental 

climate records are available for the region of interest and the entirety of this time period 

through government agencies  (Environment Canada, 2011). Temperature and precipitation 

anomalies from climate change expressed within the meteorological record during this time 

period have been established at many weather stations near popular viticulture regions in 

Southern Quebec from the 1970s to recent years  (N. K. Jones, 2012).  By establishing the 

spatial extent of suitable area for viticulture within Quebec across the recent historical record  

and for present-day, forward projections of climate realizations will be possible to determine 

the expansion, constriction, and/or shifting of suitable areas or climate regions under future 

scenarios of climate change (Hannah et al., 2013a; White et al., 2006). 

Within the dialogue on future climatology, a large volume of the literature concerning 

predictions of  climate change impacts  have either  been based on the Special  Report  on 

Emissions  [SRES]  Scenarios  (Nakicenovic  et  al.,  2000) and,  more  recently,  the 

Representative Concentration Pathway [RCP] scenarios  (Moss et al.,  2010). For the most 

part, potential trends among global and regional climatic changes are typically for the year 

2050 and 2100 time horizons (Bourque & Simonet, 2008; Easterling et al., 2007; van Vuuren 

et  al.,  2011;  Webb  et  al.,  2013).  In  addition,  finer  scale  spatial  predictions  for  potential 

changes in the climatology of North America, Canada and Quebec have been produced with  

an  emphasis  on  environmental,  social  and,  specifically,  agricultural  impacts  (Bourque  & 

Simonet, 2008; Field et al., 2007; Lobell et al., 2006). A particular study by Hannah et al. 

(2013a),  outlines the future climatological impacts specific to grape vines, suggesting that 

future outcomes from climate change may render some present-day major viticultural areas 

unsuitable for winemaking, however there is heated debate as to the effectiveness adaptation 
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measures  and  the  range  of  suitable  average  growing  season  temperatures  for  major  V. 

vinifera varietals  (Hannah et al., 2013b; van Leeuwen et al., 2013). The lack of a regional-

scale  future  climate  change  prediction  for  viticultural  climate  and/or  suitability  in  Quebec 

motivates the secondary objective of the main research.

My next secondary climate analysis determines the spatial extent of regions of Quebec 

that are predicted to be suitable for viticulture under a selection of possible climate change 

scenarios for normalization periods hovering around the 2030's (2011-2040), 2050s (2041-

2070),  and 2080s (2071-2100). This objective is examined through climate model data that 

has been reanalyzed (downscaled) through spatial interpolation techniques using data from 

GCMs and high  resolution  climate  conversion  grids  (Hijmans,  Cameron,  Parra,  Jones,  & 

Jarvis,  2005;  Loubier,  2007;  Moriondo et al.,  2011).  The purpose for  performing a spatial 

projection of the possible characteristics of a future Quebec climate is, in a similar method as 

objective (1.a), to generate a gridded climate geometry that can be integrated along with the 

spatial components of non-climatic characteristics to determine changing areas of viticulture 

suitability across time. Focusing specifically on the climatic changes within southern Quebec 

in considering two RCP realizations (Scenarios 4.5 and 8.5), I will be able to quantitatively 

and/or qualitatively prediction for the climate anomalies potential climatic suitability and spatial 

extent for viticulture for normalization years 2030s, 2050s and 2080s.

Extending from the evaluation of recent historical vineyard operations, past viticulture 

suitability can also be interpreted from practices by vineyard operators and trends observed in 

the phenological characteristics of cultivated grape vines over time. For example, G. V. Jones 

et  al.  (2005) have shown that  changing trends in cultivation volumes,  lengths of  growing 

seasons and values of wine vintages from across regions and time are useful indicators of 

impacts of climate change as experienced by vineyards. 
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Section 2.3 - Research Questions

The emergence of Southern Quebec's wine industry has coincided with climate change in the 

20th century, arguably to the benefit of the winemaking and wine tourism industry. Within this 

context:

1. What  will  the  continuing  effects  of  climate  change  mean  for  Quebec's  viticultural 

bioclimatology?

2. How well placed are present day winegrowing operations with regards to climate? How 

might they be impacted climatically by end of century?

And additionally, 

3. What is Free and Open Source Software and Open Data, and how can we integrate 

Open Source knowledge and Open platforms to  better  society  as  well  as  perform 

environmental GIS research?
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Section 2.4 - The Significance of My Research

The purpose of performing this type of suitability analysis for Quebec's vineyards can be seen  

from both  an industry-focused perspective  and climate  change mitigation  perspective.  As 

mentioned  earlier,  Quebec's  wine  industry  is  relatively  new  and  accounts  for  a  small 

percentage of the Canadian total of wine production. The potential for the industry to adopt 

more economically valuable vinicultural grape varietals and to expand potential growing areas 

poleward hinges upon the characteristics of expected warming regimes from climate change 

in the region and the availability of agroclimatic information directed at operators. 

Additionally,  the  recent  popularity  of  non-academic  articles  suggesting  that  climate 

change  may  benefit  the  wine  industry  is,  in  my  opinion,  providing  an  oversimplified 

perspective of the phenomenon.  While some warming may be beneficial to some areas – 

such as Quebec which presently lies at the edge of a suitable climate region – I believe that 

the  distinction  must  be  made  that  unmitigated  carbon  emissions  and  unchecked  climate 

change  will  negate  any  potential  positives  of  change  that  could  be  realized  under  more 

restrictive emissions scenarios.

At the time of my choice to adopt this project, to my current knowledge, there was yet  

to be performed a comprehensive longitudinal spatial study of the Southern Quebec  region 

from a climate change and viticultural suitability perspective. With this project, I present a 

relatively  parameterized  scientific  inquiry  to  base  future  climate-viticulture  projections  for 

industry-focused general information purposes. Ideally, this research would be reproduced at 

a  more  comprehensive  scale,  integrated  with  a  greater  economy-based  focus  on  the 

economic impacts of climate change to the winemaking industry of Quebec. 
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Chapter 3 - Free and Open Source Software, Data, and Access for 

Society and Research

My aim in writing a chapter specifically focused on the “Open Source” aspect of my approach 

is both to  dispel  the anxiety  accompanied by the decision place ones technical  research 

capabilities upon the freedom, technical capability, and altruistic intent of the development 

community  and  to  promote  the  value  of  adopting  Open  Source  tools  by  researchers, 

especially those beginning their careers and learning how to employ learned theory using the 

available tools, both open- and proprietary-developed. I felt that my particular experience in 

navigating an enormous amount of information concerning geospatial tools, data sources and 

methods for utilizing Open Source software to the exclusion of most proprietary tools and 

confidentially  held  data  sets  merited  an  extended  chapter.  While  my  initial  reasons  for 

adopting “Open” criteria in my research may have been motivated simply by my interest in 

learning something new, my lessons learned have given me a more concise criticism of the 

technical and legal challenges as well as ethical dilemmas associated with the proprietary 

control of knowledge, information and applications within the software realm.
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Section 3.1 - Abstract

The  Free  and  Open  Source  movement,  initially  championed  by  firmware  and  software 

developers, is a call for the opening of access to source code and the adoption of permissive 

licensing  agreements  to  challenge  the  proprietary  control  and  commercialized  model  of 

software, data, and information and to empower all. In recent years, government agencies, 

not-for-profit organizations and researchers have begun to adopt these same principles by 

opening access of data sets to the general public to encourage usage by users, developers 

and for the benefit of the general public. In Canada, this has translated into adoption of the  

Open Government initiative, among others, to provide free-to-use information, reports, and 

geospatial data for researchers, industry and other Canada-interested parties. 

In this mini-chapter, I begin by briefly describing the Open Source ideology and licensing, the  

Open  Government  initiative  and  the  Canadian  government  approach  to  Open  Source 

geospatial information, and some of the repositories and data sources available for geospatial  

analysis. I then focus on geospatial data with coverages that encompass Canada, comparing 

available project data for environmental analyses, the benefits and potential trip-falls in using 

Open Source or Public Domain data, and the general experience and lessons learned in my 

decision to almost exclusively use Open Source data and software.

26



Section 3.2 - Context: The Open Source Ideology

     3.2.1    -     Open Source and the “Freedoms” of Free Software

The Free (and Open Source) [FOS] software ideology – the policy of releasing the human-

readable source code of software and explicitly allowing others to contribute or build upon and 

redistribute it (and under some conditions, sell it) –  is not a new concept. The philosophy 

behind  its  approaches  and  its  employment  by  governments,  researchers,  librarians, 

programmers,  and  other  developer  communities  have  helped  populate  and  pioneer  the 

information and idea economy that shape the digital world. Similarly, knowledge of scientific 

or of any other form would not be possible without the sharing of ideas, methods, and tools 

that allow us to collectively gather it and build upon established conclusions. 

The term “FOS” and what constitutes FOS is a very complex debate6, with a lot on confusion 

within  and  outside  of  the  programmer  community;  the  most  reliable  approach  to 

understanding  what  is  meant  by  “Free”  is  to  understand  the  justification  behind  its 

development. A major influence in the development of FOS, the Free Software Foundation 

[FSF],  defines  “Free  Software”  as  software  adhering  to  the  following  four  conditions  (or 

freedoms):

1. The freedom to run the program as you wish, for any purpose (freedom 0). 
2. The freedom to study how the program works, and change it so it does your  

computing  as  you  wish  (freedom  1).  Access  to  the  source  code  is  a  
precondition for this.

3. The freedom to redistribute copies so you can help your neighbor (freedom 2).
4. The freedom to distribute copies of your modified versions to others (freedom  

3). By doing this you can give the whole community a chance to benefit from  
your changes. Access to the source code is a precondition for this. 

(Free Software Foundation, 2015)

Software and other products that don't follow these principles don't necessarily imply that the  

products are commercial but they would be “proprietary” - “non-free” or “owned” - suggesting 

that the source code is not distributed and only released as a compiled product, or that the 

code  is  available  to  examine  but  integration/modification/distribution  is  prohibited  (Free 

Software Foundation, 2015; Steiniger & Bocher, 2009). Proprietary software implies that the 

6 For background, a detailed categorization of the definitions of types of free and non-free software is actively maintained 
by the Free Software Foundation https://www.gnu.org/philosophy/categories.html 
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algorithms and base code are not openly shared (“closed source”) and that payment-based 

preconditions,  such as  software  purchasing,  access fees,  or  licensing  fees,  are  payment 

barrier to its use.7 

For major software developers, closed source approaches reflect the model where – in 

order to support and finance internal ongoing software development – the one-time or annual 

licensing of a finished product may be a primary source of revenue, with technical support an 

ongoing expense. All software undoubtedly contains some degree of unintended behaviour 

(“bugs”) or vulnerabilities and, under this model, the task of identifying the cause and fixing 

this behaviour falls on the publishers/developers (Raymond, 1999a); one characteristic of this 

model is that once the product is abandoned or the publishers/developers shutter, the value of 

these software products drops significantly as their inner workings remain unknowable and 

the technical support and development base has evaporated  (Raymond, 1999b).  The FOS 

model contrasts this approach by shifting development from the “Cathedral” to the “Bazaar” 

where,  rather than having a small  group develop software internally  and release finished 

products (the “Cathedral”),  software is made available to many in the development stage 

regularly and the developers rely on strong communication between themselves, beta-testers 

and other developers to improve the software (the “Bazaar”) (Raymond, 1999a).89 

In essence, these criteria attempt to foster a software environment where the monetary 

value of software isn't derived the sale of finished products; the free software definition fosters  

an economy where interested developers can examine and contribute to the code base, or 

where users and agencies who use free software can finance the research, and even help  

direct developmental progress to better suit the user base and cater better to an enterprise-

level need (Raymond, 1999b). These freedoms go so far as to enable software developers to 

7 A similar relationship can be found in the dynamics of researchers and journal publishing houses which is largely the 
focus of the “Open Access” debate.

8 The metaphor for this development approach was coined by Eric S. Raymond (1999a) based on his account of the 
success of Linus Torvald's development style of the Linux kernel in the early 1990s and his experiences in adopting a 
similar approach for software development. 

9 This essay is famous among FOS advocates and developers for coining the phrase commonly referred to as Torvald's 
Law (“Given enough eyeballs, all bugs are shallow”).
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sell products stemming from free software such as, for instance, development, distribution, 

implementation, and management services (Scott, 2002)10,11.

     3.2.2    -     Open Licensing

Within  the  software  community,  these  ideas  have  been  made  manifest  into  numerous 

practices and models including the practice of relinquishing most copyrights, which gave rise  

to legal documents like the GNU General Public Licenses [GPL], MIT and BSD licenses and 

the  Creative  Commons  [CC]  sets  of  licenses  (Free  Software  Foundation,  2015;  Lessig, 

2004)12,13. These licenses serve different purposes and are targeted for use by programmers, 

developers,  artists,  composers  and  other  types  of  content/software/media  creators  with 

varying degrees of  openness and restrictions.  One defining characteristic  for  all  of  these 

licenses is that they all imply the “free” usage of the intellectual property of the creator for the 

the usage of anyone, with some restrictions. While some CC and other licenses can be very 

restrictive on usage (e.g. the CC No-Derivatives licenses) or demand that products built from 

FOS software may only be released through a FOS license to maintain “Free” cultures (e.g. 

the  GPLv3,  CC  Share-Alike  licenses)14,  even  these  restrictive  options  provide  more 

opportunity for users to distribute, share and use source material than what would otherwise 

be fully rights restricted content. 

Justifications  for  FOS-compatible  licensing  adoption  specifically  aimed  at  software 

developers – the group that has largely responsible for the development and popularization of 

these concepts through online discussion and collaboration – cite the economic, ethical, and 

10 For some free software developers, the service provider-based approach to FOS has been a very financially successful 
business model (Canonical Ltd., 2016; Red Hat Inc., 2016).

11 A colloquial saying repeated among free software advocates to demystify these differences is “Free as in 'Freedom', not 
as in 'Beer'” (Balter, 2015; Free Software Foundation, 2015; Raymond, 1999c; Scott, 2002; Steiniger & Bocher, 2009; 
Thompson, 2012).

12 All these licenses are hosted online for developers and content creators to use. Full text versions are available through 
the following references (Creative Commons, 2016; Free Software Foundation & Stallman, 1989, 1991, 2007; MIT, 1988).

13 Steiniger and Bocher (2009), provide a useful analysis of the differences between these licenses and illustrate the major 
changes between the GPL, LGPL, and works in the Public Domain.

14 An ongoing debate within the Open Source community concerns “CopyLeft” or ensuring that products derived from free 
software remain as free software. Some licenses thus demand that any derived products must also be released under a 
compatible open license. For more information: https://www.gnu.org/copyleft/.
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professional  arguments  that  benefit  end-users,  programming  communities,  societies, 

governments and the  Internet as a whole.  The increasing popular use of  FOS and open 

media is seen by some advocates as a response to a philosophical need to decentralize and 

democratize  software  and  information  while  dismantling  the  monopoly  of  corporate 

“malware”15 or, more pragmatically, as communities are recognizing the immediate benefits of 

its  use  such  as  lowering  development  and  maintenance  costs,  fostering  opportunity  for 

integrating end-user feedback, and its increasing democratize software16.

This approach to and dialogue focused on creation, distribution and easing of restrictions on  

source materials has had many far-reaching and socially empowering benefits not just for the 

programmer/end-user  communities  but  also  for  government/citizen,  researcher,  and 

organizational relations.

     3.2.3    -     “Opening” Government

At  the  government  ministerial  level,  we  see  the  FOS  ideology  manifest  itself  as  “Open 

Government” initiatives (Government of Canada, 2013; Kerski & Clark, 2012; Lenihan, 2015; 

Statistics Canada, 2014). The “Open Government” approach, comprising three dynamics of 

sharing between citizens,  non-government  groups,  and government  agencies,  pays close 

attention to methods informing government/citizen dialogue, government transparency, and 

the implementation of technical measures like machine-readable data protocols, typically built 

upon FOS infrastructure (Lenihan, 2015). From a policy standpoint, enacting measures that 

favour the release of government information concerning environmental and public health, 

economy, industry, and inner workings increases the transparency of the government to the 

general public, reducing the need for redundant or duplicated analyses between otherwise-

opaque ministries and organizations, thereby lowering research costs both within and outside 

of  the  government,  and  provides  civil  society  with  timely  and  reliable  information  for 

15 I defer to one FOS movement founder, Richard Stallman, for his usage of the term as “software whose functioning 
mistreats the user.” https://www.gnu.org/proprietary/proprietary.html 

16 Many essays that elaborate on these points can be found on the websites of important Open Source advocates like 
software developer and author Eric S. Raymond (Raymond, 1999b), GNU developer and Free Software Foundation 
founder Richard Stallman (2015), and GitHub Product Manager Ben Balter (2015).
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socioeconomic and environmental decision-making (Kerski & Clark, 2012; Open Government 

Partnership, 2011)17.

In  the  United  States,  this  initiative  was  formalized  with  the  2011  Public  Online 

Information  Act  (POIA)  (Kerski  &  Clark,  2012) while  for  Canada,  the  federal  government 

formalized  its  modern  Open  Government  initiative  with  the  submission  of  the  Open 

Government  Action  Plan  at  the  2012  OGP summit  in  Brazil  (Treasury  Board  of  Canada 

Secretariat,  2014a).  For  the Canadian context,  the justification for  the Open Government 

approach  is  perhaps  best  illustrated  from  the  text  of  the  Open  Government  Directive 

definition:

“The objective of the [Open Government] directive is to maximize the release of  
government information and data of business value to  support  transparency,  
accountability, citizen engagement, and socio-economic benefits through reuse,  
subject  to  applicable  restrictions  associated  with  privacy,  confidentiality,  and  
security.” (Treasury Board of Canada Secretariat, 2014b, sec. 5.1)

With the intended results of this policy approach being that:

“Canadians are able to find and use Government of Canada information and  
data to support accountability, to facilitate value-added analysis, to drive socio-
economic benefits through reuse, and to support meaningful engagement with  
their government.” (Treasury Board of Canada Secretariat, 2014b, sec. 5.2)

For Canadian citizens and other interested parties, by releasing data concerning environment, 

economy,  and  demographic  statistics  in  standardized  and  online  accessible  formats, 

researchers, developers, industries and not-for-profit groups are then able to uptake these 

files and be better equipped to study, provide services and information that in turn benefit the 

financial and knowledge economies18. One of the most successful case studies of the benefits 

of  Open  Source  ideology  can  be  seen  in  the  development  of  Canada's  geospatial  data 

infrastructure. 

17 As of the end of 2015, the Open Government Partnership lists 70 countries worldwide as members with varying degrees 
towards full adoption and implementation of open and online data transparency measures. 
http://www.opengovpartnership.org/countries 

18 At the time of this writing, more than 121,000 open data sets and 170,000 government technical reports were available 
through open.canada.ca, this number is not inclusive of the preexisting geographic data presently available through 
Natural Resources Canada, Environment Canada, Statistics Canada, and other government-administered spatial 
databases.
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     3.2.4    -     Success Story: Canada's Spatial Data Infrastructure

The Canadian government has been adept at responding to and keeping pace with the need 

for accurate, diverse, and openly accessible online geospatial information  (Lenihan, 2015). 

Government-level  acknowledgement  of  the  economic value in  assembling networked and 

user-accessible  Canadian  geodatabases  of  land,  hydrological,  soil,  weather,  climate, 

administrative, demographics and other geographical characteristics and extents – despite 

the substantial initial and operational maintenance costs – was acknowledged by at least the 

late 1990's (Fong, 2000; Johnson & Singh, 2003). 

In response to a growing need to standardize Canadian geographic information and 

faced with the task of compiling data from among federal, provincial, and municipal agencies,  

the  Canadian  government  established  the  GeoConnections  program  under  Natural 

Resources Canada [NRCan] in 1999. The primary goals of this program were enable online 

accessibility of geospatial information and  direct, develop and maintain the Canadian GDI 

which, prior to the program, was fragmented and largely inaccessible to end-users at the time 

(GeoConnections, 2005; Johnson & Singh, 2003). The financial cost of performing this task 

was high due to the expansive geographic extent of Canada and therefore the approach to 

information collection focused on quality, consistency, reducing redundancy, and compliance 

with international standards, working closely with groups such as International Organization 

for  Standardization  [ISO]  and  the  Open  Geospatial  Consortium  [OGC],  both  agencies 

collectively  responsible  for  developing  production,  storage,  and  delivery  methods  for 

geographic data and metadata (Fong, 2000; GeoConnections, 2005).  

By 2005, GeoConnections had largely achieved its initial goals by working alongside 

many agencies from both within  and outside government,  establishing the GeoBase data 

repository, and was continuously innovating on Open Source standardization, and adapting to 

a  changing  information  needs  environment  (GeoConnections,  2005).  GeoConnections 

correctly predicted that with the rise in popular use of broadband  Internet that “[t]he rapid 

growth of Web service standards and specifications will tremendously impact geospatial data 

infrastructures” (GeoConnections, 2005, p. 7). As of 2015, the program has achieved several 

goals in developing geospatial  data access standards, quality,  and user accessibility  built  

upon Open Source infrastructure and principles of open access throughout (KPMG, 2016).
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This is one example of a GDI initiative that not only solved an issue of researcher and 

inter-department data access, but also streamlined data delivery methods, fostered a version 

control method and standardization movement for Canadian geodata and information, and 

increased the availability of environmental and other information from numerous sources for 

the general public. 
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     3.2.5    -     Adopting Open Source in Environmental Analyses

At the global scale, the proliferation of GDI technology between countries, at sub-national  

levels,  and  spanning  the  Internet has  broadened  the  availability  of  data  on  the  Internet 

between researchers, research agencies and government departments. Open Data projects 

initiated  and  maintained  by  government  agencies,  research  groups,  and  independent 

researchers are providing valuable and important environmental data for the benefit  of all  

[Figure 3-1]. Environmental agencies and research units such as NASA, the United States 
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Geological  Survey  [USGS],  the  National  Center  for  Atmospheric  Research  [NCAR],  and 

others are examples of providers for environmental data integral to the research efforts of  

individuals, universities and other research agencies connected via the Internet.

As  mentioned  earlier,  a  major  application  of  this  data  as  well  as  a  major  reason  for 

government investment in precise and representative geographic data is for the benefit of the 

commercial  and  industrial  sectors  (Fong,  2000).  Agricultural  analyses  for  planning  and 

adaptation  is  one of  the  major  interests  behind Canada's  digital  investments  in  GIS and 

stands  out  as  a  major  strength  of  the  Canadian  GDI  (Shen  et  al.,  2010).  Using  openly 

accessible GIS data concerning interpolated soil characteristics (Hengl et al., 2014),  climate 

normals and projections  (Hijmans et al.,  2005),  combined with Canadian remotely-sensed 

land use and topography (Agriculture and Agri-Food Canada, 2015a, 2016; Statistics Canada, 

2015),  determining the characteristics of agricultural  operations is a relatively easy spatial 

analysis to perform.

To illustrate this point, the second half of this chapter provides an account of my learning 

process and decisions taken in performing environmental spatial analyses, some of the tools  

and solutions I've employed in my workflows, some of the data repositories I've referred to in 

performing environmental GIS research. The section that follows showcases an analysis of 

how FOS-GIS and Open data can be used for agricultural evaluation. The chapter concludes 

with a brief discussion of some limitations of the Open movement and some final thoughts. 
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Section 3.3 - Considerations for FOS software and GIS

     3.3.1    -     GNU/Linux, FOS-GIS, and Open Ecosystems

FOS-GIS solutions have, in recent decades, become a major component in the geospatial 

infrastructure  around  the  world.  The  different  types  of  FOS-GIS  available  for  research 

institutions, corporations, technicians and other groups and individuals include tools built for 

visualizing  spatial  data  online,  organizing  and  developing  data  repositories  and 

geodatabases, and for performing traditional raster and vector data based operations. 

In order to perform a good deal of the environmental GIS research I outline in Chapter 4, I 

relied on as much as possible FOS solutions for my analysis and data needs. Given the 

robust development and online accessibility of FOS, specifically FOS-GIS, this was easily 

achievable.  My  primary  software  needs  for  performing  research  were  a  FOS-compatible 

operating system [OS],  basic writing/spreadsheet  software and a FOS-GIS.  Steiniger and 

Bocher (2009, p. 1354) list some of the dimensions necessary to consider prior to deciding on 

a FOS-GIS project ecosystem and include the following:

1. Features/Functionality
2. Documentation
3. Modular Software
4. User Community
5. Support
6. Useability 
7. Support for OGC Standards
8. A Transparent Development Team
9. Developer Community
10. Software Licence
11. Supported Operating Systems and System Requirements
12. A Functioning and Actively Developed Application Programming Interface [API]

With these consideration in mind, I decided that I wanted to try my hand at using a near-fully 

open sourced workstation. In order to accomplish this, I opted not to use Apple or Windows 

systems. In order to satisfy my OS needs, I adopted use of the GNU/Linux OS. GNU/Linux is  

a universal  FOS OS back-end available for virtually all  computer architectures with many 

versions (distributions/”flavours”)  available  customized for  general  or  specific  purposes as 

well as for varying levels of computer literacy. For standard operations, I chose to use the 
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Debian  GNU/Linux  distribution  (Debian  Project,  2015) whose  standard  installer  image 

includes many commonly-used desktop utilities such as LibreOffice suite,  a file  manager, 

graphical user interface, and programming language compilers19. Debian is a customizable 

and stable distribution that strives to deploy FOS software and drivers wherever possible and 

has  a  vibrant  online  support  community,  comprehensive  support  documentation,  and  an 

approachable learning curve, making it a good candidate for technical-minded researchers. 

Additional software, themes, and command libraries are available from the Debian software 

library via its software package manager “apt” allowing for greater customization and utility.  

Other  software  libraries  can  also  be  added  to  enable  access  to  the  newest  versions  of 

software directly from source providers.

19 This distribution and its software library form the basis of the popular Ubuntu GNU/Linux distribution.
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For geospatial analyses, FOS-GIS desktop solutions are numerous20. As of the time of this 

writing, nearly 20 different FOS-GIS clients were completed or in active development,  not 

including Web-Mapping or Web-Feature Services [Figure 3-2]. 

My research needs required a desktop GIS with functions similar to ESRI's ArcGIS Desktop 

suite but released under an Open license. In satisfying my FOS-GIS needs, I opted to use 

QGIS (QGIS Development Team, 2016), a fully featured and modular graphical FOS-GIS built 

in Python. QGIS includes functions built  for several different GIS software such as SAGA 

(Conrad  et  al.,  2015) and  GRASS  (GRASS Development  Team,  2012) and  integrates  a 

model-builder and command-line tools such as the GDAL/OGR raster and vector analysis 

library (GDAL Development Team, 2013) as well as the statistical programming language, R 

(R. Development Core Team, 2013). QGIS also includes a plug-in installer providing access 

to user-built modules that aid in performing specialized analyses, visualizing GIS data, and 

provide web-GIS functionality among other functions. The software runs natively on Windows, 

Apple  and  Linux  operating  systems  and  is  regularly  maintained  through  contributors  on 

GitHub21. In addition to my OS and FOS-GIS needs, I also relied on a number of other FOS 

software solutions [Table 3-1].

20 An actively maintained list of GIS software organized by license, operating system, and features can be found at 
https://en.wikipedia.org/wiki/Comparison_of_geographic_information_systems_software 

21 While the Debian software repository includes QGIS and other GIS software, the versions are intentionally held back in 
order to ensure system stability. The most up-to-date GNU/Linux binaries of QGIS are available directly through the 
www.qgis  .org software repositories.
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Table 3-1: Examples of Free and Open Source Software used in this Research Project

Free and Open Source Software Solutions
Name Version Purpose Home Page

Debian GNU/Linux 8.5 “Jessie” Operating System

GDAL/OGR 2.1.1 GIS Library

GRASS 6.4.4 and 7.0.4 GIS

Iceweasel/Firefox 45.3.0 Web Browser

LibreOffice 4.3.3.2 Office Utilities

ownCloud 9.1 Server Cloud Storage Backup

QGIS 2.16.1 GIS

R 3.1.1 Statistical Environment

SAGA 2.1.2 GIS

Wine 1.6.2 Windows Application Environment

www.debian.com

www.gdal.org

http://grass.osgeo.org

www.mozilla.org/en-US/firefox/new/

www.libreoffice.org

https://owncloud.org/ 

http://qgis.org/en/site/

https://cran.r-project.org/ 

www.saga-gis.org/

www.winehq.org 

http://www.qgis.org/
http://www.qgis.org/
https://en.wikipedia.org/wiki/Comparison_of_geographic_information_systems_software


The software ecosystem I present here is not meant to represent the ideal assemblage of  

options for performing Open Source GIS analysis, but simply a possible configuration based 

on needs and preferences. Many programming languages integrate GIS analysis libraries 

natively (e.g. Java, Python, R) and different Open Source projects are regularly developed 

from the code bases of existing projects to suit the needs of specific activities/analyses.
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Section 3.4 - Extended Analysis: Identifying Agricultural Area in Southern 
Quebec Using Open Source

     3.4.1    -     Background

The French concept of Terroir is seen as the characteristic basis for successful viticultural  

operations, reflecting the climate, topography, soil, and culture of a wine region. While climate  

is generally considered the most defining factor in performing viticulture, soil, hydrological, 

and topographical characteristics can also present limitations or heavily influence the grape 

characteristics of vineyard operations (Barriault et al., 2013; van Leeuwen et al., 2004). 

A major  factor  important  for  mitigating  the  risk  of  pest  outbreaks  on  newly  established 

vineyards is ensuring that the vineyard site is not situated on newly cleared terrain. Areas that 

have been consistently used for agricultural operations are favourable in order to prevent the 

risk of introducing agricultural pests that can thrive for some time after a forest has been 

cleared  (Nowlin & Bunch, 2016; Wolf  & Boyer,  2003).  For this analysis, I  treat viticultural 

operations as specific type of agricultural activity, albeit with a different set of specific climatic, 

soil,  and topographical criteria22.  In Quebec, the spatial  extent of agricultural operations is 

roughly  limited  to  the  areas  residing  within  the  Saint  Lawrence  Seaway  Valley  and  the 

southern areas below it – limited by New York, Vermont and Maine –  as well as some areas  

east of Lac Saint-Jean and around Saguenay Valley, some areas bordering the Quebec shore 

of the Ottawa River, and some areas of the Gaspé Peninsula bordering the Gulf of Saint 

Lawrence23.  These  areas  are  identified  by  many  Canadian  government  data  sets  and 

government  researchers  as  suitable  for  agricultural  operations  (Agriculture  and Agri-Food 

Canada,  2015b;  Lepage,  Bourgeois,  & Bélanger,  2012;  Rochette  & Dubé,  1993a,  1993b; 

Statistics Canada, 2015). 

Methods  and  definitions  used  for  determining  the  specific  boundaries  of  recognized 

agricultural  areas  within  this  region  vary  between  agencies  and  at  different  scales.  For  

instances, the CanSIS Soil Landscapes of Canada data set used in recent editions of the 

22 For a detailed table of some criteria for assessing the suitability of a location for viticulture based on soil, and topography 
see annexed Table 7-3. For a table detailing a multi-criteria system in development for evaluating climate, soil, and 
topography, see Table 7-16.

23 Due to their remoteness of location, I exclude Anticosti and Les Îles-de-la-Madeleine from both major analyses.
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Agroclimatic Atlas of Canada ranks soil units at the national scale with “High”, “Medium”, and 

“Low” agricultural probability based on drainage, soil composition, distance to root restricting 

layer, and other factors  (Canada Soil Information Service, 2013), or based on the National 

Census of Agriculture  (Statistics Canada, 2015). Provincial agencies may base the area of 

agriculture  on  reported  limits  of  zoned  agricultural  and  operating  areas  (Commission  de 

Protection du Territoire Agricole du Québec, 2016), or estimate the area of viable agricultural 

operations  on  proximity  to  modern  weather  stations  (Financière  Agricole  Quebec,  2016). 

These different definitions lead to many different zones considered as agricultural areas and 

are all available as polygons in Shapefile format.

Another method of estimating agricultural land is through remotely sensed data for Land Use, 

Land Classification, and Forestry [LULUCF], another geospatial data product readily available 

through open access. AAFC's Canadian Land Use Maps (Agriculture and Agri-Food Canada, 

2015a) detailing agricultural operations from land inventories are available for years 1990, 

2000,  and  2010,  while  another  raster  product  based  on  remote  sensing  of  agriculture 

throughout Canada for recent years (2011 – 2015) is available as the AAFC Annual Crop 

Inventory (Agriculture and Agri-Food Canada, 2016). Both of these data sets provide gridded 

geographic extents of agricultural operations as they have been planned and as they have 

been sensed using satellite imagery and are a valuable resource for specifying agricultural  

areas based on gridded observations. 
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     3.4.2    -     Methodology: Data Treatment and Evaluation

For this analysis I  treat  the CPTAQ shapefile for present-day agricultural  operations as a 

coarse-scale delimitation of agricultural areas, and consider for the finer scale evaluation of 

agricultural  areas the  regions  where  both  land use  and land  classification  rasters  are  in  

agreement (ie: pixels identified as either “Agricultural” or “Cropland”). I further limit the region 

through the negative selection of roads, highways, railways, and waterways.  

After comparing the various formats and data types between the agricultural extent shapefiles 

and gridded data, the final boundaries I used to determine the areas of existing agricultural 

operations were a combination of both the agricultural boundaries available from Quebec as 

determined by CPTAQ and a combination of both gridded AAFC products. 

I then gathered, compared, and determined the total agricultural area using a combination of  

vector polygons identifying coarse-scale agricultural, removing roads, highways, and railways, 

then used land use, land cover and forestry [LULUCF] satellite estimates to determine the 

exact total agricultural area in Southern Quebec. With this estimate, I integrated elevation, soil  

and drainage data, and scored these variables according to suitability criteria developed for  

non-climate spatial components important for common viticultural operations and practices. 

Using site quality indicators for non-climatic characteristic in a multi-criteria evaluation system, 

I present here a point-based suitability scoring system for the geometry ensembles to provide 

relative viticultural favourability across the Southern Quebec region.

The coarse geometry outlining areas of agricultural  operations not  limited by critical  non-

climatic  variables was developed using  both Boolean and weighted multi-criteria  analysis 

operations to delimit suitable areas. I began by combining vector and raster data sources, 

removing roads, rails and industrial, and urban areas to focus specifically on areas specific to 

agricultural  operations.  I  then weighed topological,  pedological,  and  hydrological  features 

according to suitability criteria for viticulture operations. The regional suitability values were 

then  examined  with  the  locations  of  currently  operating  vineyards  to  assess  non-climate 

vineyard characteristics from a spatial analysis perspective.
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     3.4.3    -     Results: Identification of Consistent Agricultural Land
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As mentioned previously, In order to determine the exact areas recognized as agricultural 

land, I began with the CPTAQ boundaries (Commission de Protection du Territoire Agricole du 

Québec, 2016) as the rough estimate of agricultural boundaries with areas that were identified 

as  roads,  highways,  and  rail  infrastructure  being  removed  [Figure  3-3,  areas  in  green]. 

Additionally,  areas consistently marked for agricultural  land use and recent estimates that 

consistently identified agricultural operations via remote sensing data were used to determine 

the exact amount of agricultural area within this region [areas in red, yellow, and brown]. Grid 

pixels falling outside this region were eliminated. I identify this region as the final suitable 

zone [areas in blue].

When  comparing  the  raster-based  estimates  of  agriculture  to  the  region  minus  roads, 

highways,  and railways,  Land Use estimates  identifying  the  agricultural  area in  Southern 

Quebec show that agriculture accounts for more than 1/3 of the Southern Quebec CPTAQ 

region. The region experienced an increase of 1% by way of agricultural land use (“Cropland” 

= grid value '51')  but has stayed roughly at around 35.75% since year 2000.
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Figure 3-4: Proportion of Actual Agricultural Areas from CPTAQ Agricultural Estimates as  
determined from Land Use Categories (Agriculture and Agri-Food Canada, 2015a)

[Passing Land Use (“Cropland”) Code = 51; All Others Failed]
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The  Annual  Crop  Inventory  data  offers  much  more  diversity  in  the  types  of  agricultural 

operations  measured.  Some  specific  categories  include  “Cereals”  and  its  subcategories 

(codes: 132 – 146), as well as categories for “Corn” (code: 147), “Soybeans” (code: 158), and  

“Hemp” (code: 197).24 By considering all agricultural operation areas as those with coded for 

any existing agricultural operations and areas that otherwise would be (e.g. areas too wet to  

be seeded that season), I determine that agricultural areas have comprised roughly the same 

proportion of Southern Quebec. 

24 While “Vineyards” is a designated crop type category (code = ‘190’), no regions within Southern Quebec are categorized 
as such. This is likely due to the small and heavily dispersed region failing to be recognized as “Vineyards” in comparison 
to the provinces of British Colombia and Ontario.
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Figure 3-5: Proportion of Actual Agricultural Areas from CPTAQ Agricultural Estimates as  
determined from remotely-sensed Annual Crop Inventory Data (Agriculture and Agri-Food 

Canada, 2016)
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By  combining  the  more  recent  Crop  Year  rasters  using  a  Boolean  test  for  agricultural 

suitability within the CPTAQ region, I determine here that in actuality the five rasters overlap 

continuously for 36.1% of all areas within the region. This translates to a total area of nearly 

22,850  sq.  Km with  the  remaining  40,450  sq.  Km identified  either  as  urban,  developed, 

forested, rivers or lakes, or inconsistent and transitioning agricultural land. 
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Figure 3-6: Total Agricultural Area as determined by Selective Removal of Rail,  
Roads, and History of Agricultural Land Use or Crop Inventory

[Area in square Kilometres]

Passed Failed
0

10,000

20,000

30,000

40,000

50,000

22849.7

40448.4

Total Historically Consistent Agricultural Area Based on
Land Use Categories (1990, 2000, 2010) and Crop Type Maps (2011 - 2015)

Southern Quebec, Based on CPTAQ Agricultural Boundaries

Passing or Failing Agricultural Activity

To
ta

l A
re

a
 (

sq
. K

m
)



Section 3.5 - Conclusion: Open Limitations and Lessons Learned

The popular rise of the FOS ideology have changed a lot of the ways that researchers and 

developers  work  together  and  has  the  capacity  to  continue  changing  major  systemic 

institutions and help build more inclusive societies. That said, the choice to adopt a fully open 

source approach is not without limitations. The idea of “Opening” science for the benefit of all  

is  limited based on the relative access of the source material,  physically,  temporally,  and 

intellectually. The more academic-focused “Open Access” movement – whose aims are to 

“liberate”  the  wealth  of  knowledge published in  circulated  journals  by  encouraging article 

authors to release their  works under Open licenses – is not focused explicitly on making 

journal  access  more  accessible  to  those  without  the  base  knowledge  necessary  to 

comprehend  the  material;  Open  Access  is  designed  to  give  access  to  anyone,  with  the 

understanding  that  exclusive  access  models  costly  and  have  few  benefits,  and  that 

researchers whose work and accomplishments benefit the general audiences which depend 

on exposure to new literature might make better use of it (Suber, 2012). 

Open Access as an academic movement is still a work in development and is not as 

popular relative to more traditional methods of journal publication due to many factors, such 

as the added cost of publishing in Open journals, both from a financial sense and from a 

professional sense (e.g. lower journal impact factors)  (Evelith, 2014). Publication rates for 

Open journal  articles  and the creation  of  new Open journals  however  have been rapidly  

expanding with publications significantly increasing in numbers since the beginning of the 

commercial Internet (Laakso et al., 2011).25

From  a  business  standpoint,  Open  Source  options  have  yet  to  effectively  tackle 

problems  of  small  and  medium  enterprise  operations,  due  to  the  speed  at  which  FOS 

software and solutions are developed and issues of  compatibility  with  Microsoft  Windows 

legacy  infrastructure  or  exclusive  software  and  data  formats.  While  desktop  operating 

systems built  on Ubuntu have been deployed as the standard for some government-level 

desktop operating systems – with some major examples being Andalusia, Spain (Canonical, 

25 That said, an up-to-date listing of all reputable Open Access journals online can be found online (https://doaj.org/), 
identifying 2.4 Million articles across 9,426 journals at the time of this publication.
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2010) and Munich, Germany (Heath, 2013)26 - and Red Hat Inc. provides Linux certification 

programs  (Red  Hat  Inc.,  2017) as  well  as  both  desktop  and  workstation  solutions  for 

businesses, some barriers to adoption by other educational and public institutions persist in  

the  costs  of  conversion,  the  reluctance  of  paid  developers  to  release  Open  code,  and 

perceived reliability, compatibility and maturity of Open Source solutions (Thacker & Knutson, 

2015; van Rooij, 2007).

Issues related to the need for capable hardware, reliable network infrastructure, time 

needed to familiarize oneself with Open models, and language and physical capabilities can 

also be considered other major limitations of Open media  (Suber, 2012). All Open styles of 

data,  development,  and  knowledge  access  are  built  upon  and  facilitated  by  Internet 

infrastructure. For communities without reliable Internet access – due to high access fees, low 

available speeds,  hardware support/needs,  lack of social  support,  or  a combination of  all  

these  factors  –  the  benefits  of  these  Open  approaches  are  negligible.  Where  networks 

speeds and online capabilities have gotten faster and more all-encompassing, regions such 

as developing countries and rural and remote locations may continue to experience a lack of  

adequate  network  infrastructure  due  to  high  access  fees  and  persistent  low  quality 

connections, contributing to the “Digital Divide” (Graham, 2011); this reality is particularly true 

for indigenous communities (McMahon, 2014; Samaras, 2005). That said, the arguments for 

greater  Internet access to help bridge the gap in  Internet society have been identified for 

some time (WSIS, 2003) and, for Canada, efforts have been put forward by non-government 

groups,  such  as  the  First  Mile  Connectivity  Consortium and  others,  to  hold  government 

responsible  for  responsive  and  self-determined  Internet infrastructure  development 

(McMahon et al., 2011). 

In many ways, these criticisms of Open movements help us in identifying where the 

weaknesses lie and where to put forward efforts to make these movements stronger and to 

have more positive impact for societies and peoples. Open models, licenses, standards and 

projects are continuously innovating and evolving to better serve communities and reshape 

26 At the time of this writing, the city of Munich, Germany was considering shifting from LiMux, a personalized version of 
Ubuntu to Microsoft Windows 10 due to Information Technology infrastructure problems. It is worth noting that these 
problems are largely due to the fact that this infrastructure had not been updated during or since the LiMux conversion 
began in roughly 2006, suggesting that many of the issues are falsely-attributed to LiMux when those problems would 
have persisted under Windows (Heath, 2017).
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the digital  landscape both physically and virtually.  The sheer quantity of data now openly 

available  is  difficult  to  track  and  many  efforts  to  provide  universal  catalogues,  or 

categorization schemes or access mechanisms have further divided the Open environmental 

data landscapes.27 As such the need for data curation and management services of libraries 

and archives are integral to the next steps in the evolution of Open platforms (Recker, Müller, 

Trixa, & Schumann, 2015); this need extends as well to the systems and principles by which 

libraries conduct  and innovate to  remain on the cutting  edge of  these new digital  needs 

(Thompson, 2012). From an academic standpoint, the universities are in a unique position 

with regards to Open Source, as they are publicly-funded institutions with archival resources 

and data needs and should not only pursue a more collective and Open knowledge-sharing 

but also strive for a more Open education and research pedagogy reliant on FOS solutions 

(Recker et al., 2015). By supporting those actively using and building upon FOS, universities 

and research institutions add value and learning experience to the code and knowledge-base 

which can be beneficial to others in direct and in indirect ways (Recker et al., 2015).

More technically,  FOS software and Open standards are moving very fast  and the 

number of solutions and web services built on FOS is already fundamentally changing the 

software  landscape.  For  GIS,  FOS  has  changed  the  way  we  visualize  our  world  and 

surroundings and given independent researchers and smaller agencies the tools to better 

represent  local-level  to  global-scale  goals  and  needs.  By  adopting  Open  methods  and 

practices,  barriers  to  environmental  spatial  analysis  are  significantly  lessened.  While  the 

knowledge  needed  to  use  some  FOS software  and  perform and  interpret  environmental 

analyses  may  be  beyond  the  reach  of  non-technical  users  and  other  independent 

researchers,  resources  like  online  support  communities  and  movements  such  as  Open 

Access  or  the  popular  phenomena  of  Massive  Open  Online  Courses  [MOOCs]  provide 

opportunities for most anyone to learn without payment barriers.

My experience in working in Open Source has changed many of the ways in which I 

approach  technology  and  society.  The  knowledge  I  gained  in  searching  for,  using  and 

troubleshooting Open Source solutions for my technical and academic needs has opened for 

me many opportunities to develop my Informational Technology skills and aid my performance 

27 One such active listing of all open environmental GIS data maintained by Dr. Robin T. Wilson that I relied upon and 
contributed to in my search for data can be found online at http://freegisdata.rtwilson.com/. 
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and success in the realm of environmental and socioeconomic research. As a  movement, I  

find it inspiring and I hope one day to adequately “commit” myself to it.
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Chapter 4 - Manuscript: The Agroclimatic Impacts of Climate Change 

for Quebec's Physical Viticultural Climate

I present here the main results of my wine climatology research, roughly adapted for future 

academic publication for perhaps the Journal of Wine Climatology, Regional Environmental 

Change, or the universally open access journal, PLoS One. This research was built as an 

comprehensive spatial reproduction of some of the wine climatology studies authored by 

European and American viticultural researchers, namely Helder Fraga (Universidade de Trás-

os-Montes e Alto Douro) and Gregory Jones (Southern Oregon University), and extending 

upon the research of Canadian geographers professors Norman Jones (Bishop's University) 

and Anthony Shaw (Brock University) who've speculated on the potential for Southern 

Quebec to enter the “Big League” of wine producing regions of Canada. This research project 

would not have came to be without the continuing research and enthusiasm of the Wine 

Specialty Group of the American Association of Geographers who I had the opportunity to 

present some of this work to in San Francisco earlier in 2016. 

51



Section 4.1 - Abstract

The anticipated impacts of climate change and global society's ability to adapt to changing 

and uncertain atmospheric and meteorological conditions suggests that there will be “winners” 

and “losers”. Future agricultural changes, specifically for viticulture, are expected to 

significantly impact most “old world” wine countries in negative ways creating non-analogous 

growing conditions to present, while some viticultural studies suggest that the “new world” 

wine regions may experience more favourable growing conditions for more marketable 

European V. Vinifera grape species. In the past 40 years, commercial winemaking in Québec 

has become popular in corresponding with changes to legal alcohol frameworks and, 

coincidentally, as the effects of climatic changes have been felt through the region. My 

research compares historical, present-day and future climatic conditions for an artisan grape-

growing and winemaking area located in Southern Québec. 

I examine the region's existing and potential viticultural capacity by employing a 

spatiotemporal climatic analysis using open source GIS software, open data portals and 

viticultural growing season metrics, incorporating annually-observed and 30-year normalized 

climate records, as well as regionally downscaled climate model output for two radiative 

forcing scenarios (RCP 4.5, RCP 8.5). Results suggest that observed changes in the area 

from climate change are already being experienced throughout the region and that path-

dependent scenarios will significantly impact the degree of suitability and agroclimatic stability 

of the region.
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Section 4.2 - Introduction

     4.2.1    -     Canadian Wine, Québecois Climate

When people think of the culture of Canada and its identity, wine does not immediately come 

to mind. Despite this absence of cultural tradition, the production of wine and the development 

of the wine industry has become a strong and distinctive niche within the Canadian milieu 

throughout  the  history  of  the  country.  Each  province  has  different  cultural  and  historical  

landscape of production and identity.  In Quebec, the history of wine and its production is 

heavily entwined with the historical prominence of the Catholic Church, the Nation of Quebec, 

and the traditional French Canadian identity that has developed over 400 years which have all 

come together,  creating  a  rather  unique Canadian region  (Ackerman,  2007).  The French 

influence that permeates the province extends well beyond Quebec's borders and Canada's 

French  communities.  It  therefore  should  come  as  no  surprise  that  much  like  in  France, 

Canada has a vibrant wine culture.

The growth of commercial wine production in Canada is a relatively new phenomenon 

that was only popularized in the 20th century. The most recent available data from the FAO 

place Canada's 2012 wine production at 57000 Million Hectolitres (MhL,  or 10-1 Tonnes) 

(FAO, 2014), roughly doubling the wine production 50 years previously [Figure 4-1]. Prior to 

this period, Canadian winemaking was primarily limited to artisan production. The present-day 

Canadian industry is dominated by the Okanagan and Fraser Valleys of British Columbia and 

the Lake Erie North Shore and Niagara Peninsula of Ontario (Shaw, 1999, 2001). 
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Reflecting on its harsh winters and recent history, Southern Quebec has been called 

“the least likely of all Canadian wine regions” (J. Robinson, 2006, p. 133), a statement echoed 

by Shaw (1999). The earliest known attempts to establish European V. vinifera vineyards in 

Quebec can be traced back to a lot founded in Montreal in the late 19 th century under the 

name “Beaconsfield Vineyards” after the British prime minister, Benjamin Disraeli, the Earl of 

Beaconsfield (Ackerman, 2007; Ville de Beaconsfield, 2012). Within five years, this vineyard 

was destroyed due to a series of harsh winters and the lot was auctioned by its owner; this is  

where the current municipality of Beaconsfield is now located (Ville de Beaconsfield, 2012). 

The first permits for artisan winemaking issued under the newly established provincial liquor 

commission and corporate distributor, la Commission de contrôle des permis d’alcool and la 

Société des alcools du Québec  (SAQ), respectively,  were only granted in the late 1970's 

(Ackerman, 2007; AVQ, 2012a). By 1987 a regional wine quality board, the Association des 

Vignerons du Quebec  (AVQ), was established in order to certify quality, specificity and the 

origin of Quebec wines and to negotiate for better government support of the industry  (AVQ, 

2012a; Ben Hassen & Tremblay, 2016). As of 2014, approximately 64 vineyards registered 

with AVQ were actively producing wine in southern Quebec, with the highest concentration of 

operations located in  the  Montérégie and  Estrie wine regions (40 in  total)  (AVQ, 2012b). 
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Figure 4-1: Canadian Wine Production, 1961-2012 (adapted from FAO, 2014)
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According to Ben Hassen & Tremblay  (2016), AVQ members included, there are presently 

around  270  wineries  throughout  Quebec,  with  around  20  operating  under  the  Vignerons 

Indépendants  du  Québec and  the  remaining  operating  independently.  A large  portion  of 

Quebecois  vineyards are found within  the  Saint  Lawrence river  valley and straddling  the 

United States border, between 45 and 45.5°N (N. K. Jones, 2012).

The regional climate of southern Quebec is mostly a 'Dfb' Köppen-Geiger categorized 

climate [Figure 4-2], well-known for its harsh, snowy winters, hot summers, and short growing 

season  accompanied  with  late  spring  intermittent  frosts,  making  viticultural  practices, 

particularly those relying on  V. Vinifera,  a risky investment  (Peel,  Finlayson,  & McMahon, 

2007; Shaw, 1999). Vineyard site location in Quebec places emphasis on cultivating vines 

around topographic features that protect vines from harsh winter and spring elements while 

attempting to maximize direct insolation on vine foliage  (N. K. Jones, 2012; Shaw, 1999). 

While numerous studies summarized by the IPCC in recent decades have suggested that 

climate change has already begun to present itself within North America (Field et al., 2007), 
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and many studies have focused on the viticultural and oenological impacts of climate change 

in many well-established  winemaking regions across the world  (G. V. Jones et al.,  2005), 

there is a lack of extensive knowledge centered on wine and climate change focused on the 

relatively new southern Quebec wine region. According to N.K. Jones (2012), some vineyards 

in the Montérégie and Estrie wine regions have begun experimenting with European varietals 

of  V. vinifera despite the historical hostility of the Québecois climate.28 The rationale behind 

this new effort is for vineyard operators to potentially capitalize on what they have observed 

as longer and warmer growing seasons, likely attributed to the onset of climatic changes from 

Quebec regional-level warming of the climate system (N. K. Jones, 2012). 

Climate  change,  a  direct  result  of  ever-increasing  greenhouse  gas  emissions,  is 

presently  affecting  numerous  atmospheric,  biological  and  hydrological  systems  that 

agricultural operations rely upon (Bourque & Simonet, 2008; Rosenzweig et al., 2007). Wine 

grape (V. vinifera and particular  to  Canada and the American northeast,  V. labrusca and 

American-European  Labruscana  hybrids)  cultivation  dates  and  wine  production  quantities 

have historically been used as climate proxies for their phenological sensitivity to climate-

dependent  growing  conditions  (Schultz  &  Jones,  2010;  Tonietto  &  Carbonneau,  2004), 

particularly mean seasonal temperatures, precipitation and extreme weather events (Holland 

& Smit, 2010). Numerous studies conducted for regions and  terroirs, or areas with specific 

climate, aspect and soil favourable for grapevine cultivation (G. V. Jones, Snead, & Nelson, 

2004; Stevenson, 2005) have historically focused on locations throughout Europe, particularly 

France (Bonnefoy et al., 2013; B. I. Cook & Wolkovich, 2016; Laget, Tondut, Deloire, & Kelly, 

2008; Lereboullet,  Beltrando, Bardsley, et al.,  2013) and in Australia  (Hall & Jones, 2009, 

2010; Sadras & Petrie, 2011; Webb et al., 2013; Webb, Whetton, & Barlow, 2007, 2011), and 

the western United States  (G. V. Jones et al.,  2010, 2004; Watkins, 1997). The region of 

southern  Quebec  and  its  recent  emergent  commercial  wine  industry  has  yet  to  be 

comprehensively  studied  using  a  Geographic  Information  Systems-based  viticultural 

categorization analysis approach (Fraga, Malheiro, Moutinho-Pereira, Cardoso, et al., 2014; 

Kurtural et al., 2007; Tomasi et al., 2013; Vaudour & Shaw, 2005). 

28 This claim is supported by my personal communications with vineyard operators throughout the region at SAQ-sponsored 
wine events and agricultural festivals.
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In recent years, the spatial extent of vineyards  within southern Quebec is primarily 

located  within  Montérégie, the  Eastern  Townships  (Estrie),  and  neighbouring  regions 

comprising the Saint Lawrence Seaway Valley, constrained by cold weather conditions and 

comparatively short growing seasons typical of Northern regions (N. K. Jones, 2012; Shaw, 

1999).  However,  under  scenarios  of  future  impacts  from expected climate  change,  many 

studies suggest that anticipated temperatures and precipitation patterns from climate change 

could  alter  existing  viticulture  operations,  possibly  increasing  the  potential  for  greater 

widespread cultivation of more economically valuable, thermally-demanding grape varietals 

as well as contribute to the expansion of viticulture climate regions northward from the extent 

of presently suitable areas (Fraga et al., 2012; Moriondo et al., 2013).
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     4.2.2    -     Agroclimatic and Viticultural Studies of Quebec

From  a  general  agroclimatic  perspective,  historical  studies  of  mid-to-late  20 th century 

Southern Quebec have described the region as one of high climate risk on account of its cold 

climate  with  high  potential  for  late  spring  frost  (when  temperatures  dip  below 0  ºC after 

grapevine  budbreak),  extreme cold  air  temperatures,  and ground dehardening (based on 

cumulative degree-days exceeding 0  ºC during the winter season) which combine to make 

Quebec a very hostile environment for perennial crops that are not well cold-adapted (Lepage 

et  al.,  2012;  Rochette  &  Dubé,  1993b,  1993a).  That  said,  many  of  these  agriculturally 

important indicators are predicted to change under most scenarios of global climate change, 

potentially becoming more temperate and with less cold- and frost-associated risks (Lepage, 

Bourgeois, & Bélanger, 2011). The predictive agroclimatic study performed by Lepage et al.  

(2011) using regional-scale climate model data showed that average summer temperatures in 

Southern Quebec may rise between +1.9 and +3.0 ºC while average winter temperatures may 

see anomalies exceeding +2.5 to +3.8  ºC by end of century relative to a mid-20th century 

baseline. For precipitation, trends are much harder to establish using climate models due to 

the high uncertainty and disagreements between climate models and their outputs however 

precipitation  (rain  and  snow)  patterns  may  change  alongside  large  regional  temperature 

changes (Lepage et al., 2011). 

Focusing specifically on wine, Quebec's viticultural potential has been briefly examined 

by a handful of scholars in both global-scale climate studies (Tonietto & Carbonneau, 2004; 

Vaudour & Shaw, 2005) and more extensively in case studies focused specifically on the 

Southern  Quebec  region  (N.  K.  Jones,  2012;  Shaw,  1999).  According  to  Tonietto  and 

Carbonneau  (2004),  Quebec is a moist,  cold climate wine region, with very cold  veraison 

temperatures,  a  borderline  suitable  climate  for  viticulture  comparable  to  regions  such  as 

Geisenheim, Stuttgart and Trier in Germany or Maidstone in the UK. Shaw (1999) described 

Southern Quebec as a continental climate with a very short growing season and an overall 

poor quality of soil drainage, where viticulture hinges on local knowledge as “...growers must  

choose sites that will protect the vines in the winter from polar winds and in the spring from 

frost, and maximize solar energy to prolong the growing season” (1999, p. 89). At the time of 

writing, Shaw estimated that the total area of vineyard operations comprised 121 Ha, with the 
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most popular hybrid grape varieties being Seyval Blanc, de Chaunac, Vidal, Maréchal Foch 

and Geisenheim  clones,  with  some  cold-adapted  V.  Vinifera (Riesling,  Cabernet  Franc, 

Gamay and Merlot) experimental plots found in a select few locations  (Shaw, 1999, p. 90). 

While vineyards in Quebec have risen in number in recent years  (Ben Hassen & Tremblay, 

2016), many of the same grape varietals remain in high production today among the AVQ 

membership [Figure 4-3]  (Gagné, 2015b). The majority of these grape varietals and most 

others typically grown in Quebec require a growing season ranging from between 850 to 1250 

growing degree-days, achievable by regularly cold northeastern climates [Figure 4-4] (Dubé & 

Turcotte, 2011).
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Figure 4-3: Most Popular Grape Varietals Among the Membership of the AVQ, 2015 
(adapted from Gagné, 2015b)

[Red wine grapes in maroon; White wine grapes in green]
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Figure 4-4: Thermal Needs for Most Popular Quebec Grape Varietals to Achieve  
Veraison (onset of ripening) (adapted from Dubé & Turcotte, 2011)

[Red wine grapes in maroon; White wine grapes in green]

Baltica
Skandia

Delisle
D.M. 8521-1

Adalmiina
E.S. 4-23-60*

E.S. 10-18-30*
Léon Millot

Eona
Osceola Muscat

Prairie Star
E.S. 10-18-14*

Beta
Lucy Kuhlman

Maréchal Foch
Pionnier**

Radisson
Sabrevois

Louise Swenson
Saint-Cliche

Vandal-Cliche
Marquette

St. Croix
Kay Gray

St. Pepin
New York Muscat

Seyval Noir
Petite Perle*

TP 1-1-12*
Frontenac Blanc

Frontenac Gris
La Crescent

Seyval
Baco Noir

De Chaunac
Geisenheim

Swenson White
Chancellor

Frontenac
S.V. 18-307*

Cayuga White
Hibernal

Chardonnay
Vidal

Traminette*
Gamay

Chambourcin
Riesling

0 200 400 600 800 1000 1200 1400 1600

Popular Quebecois Grape Varietals by Thermal Need
Winker Degree Days (ºC)

Grape Varietal



The study presented by N.K. Jones  (2012) established statistically that some present-day 

vineyard regions have begun to experience a trend consistent with climate warming for many 

bioclimatic  indicators  important  for  viticulture,  namely  higher  growing  degree-days,  fewer 

winter chilling days, warmer mean minimum temperatures, and a longer frost free growing 

season throughout the 1979 – 2009 climate period. These conclusions were not organized 

spatially  nor  were  they extrapolated into  the  future using climate  modelling  and are also 

limited to a select few weather stations representative of the majority  of  vineyards in the 

Southern Quebec region. In order to determine a spatial pattern of climatic and bioclimatic 

changes for  the region, I  present  here a new methodology and analysis of  the Southern  

Quebec viticultural climate using GIS and climate model projections.
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     4.2.3    -     Research Goals

My research goals here are to contribute t the Quebec climate-viticulture by estimating and 

projecting  climatic  suitability  of  the  Southern  Quebec region  for  viticultural  operations for  

present-day and future climate scenarios, using a range of bioclimatic indicators and climate-

viticulture metrics. 

In the following sections, I present: a spatial analysis of the extent of thermal region 

categories  that  delimit  the  suitability  of  southern  Quebec  to  accommodate  present-day 

viticultural operations; the spatial extent of thermal regions of Quebec that are predicted to be 

suitable for  viticulture under a selection of  possible  climate change scenarios for  30-year 

periods spanning from  2010 to 2100; and a validation and contextualization of my results by  

examining these climatic variables at Québecois vineyard locations to determine common 

characteristics for the Quebec vineyard industry.
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Section 4.3 - Research Methodology

     4.3.1    -     Overview of Methods

The general aim of my research methodology was to develop a regional climate estimation of 

viticultural suitability defined by favourable and unfavourable characteristics for viticulture in 

the southern Quebec region. In order to perform this, I applied approaches and techniques 

borrowed  from  the  supporting  literature  within  the  disciplines  of  agriculture,  climatology, 

geographical information science and remote sensing. The approach can be summarized in 

the following steps:

1. I examined temperature and precipitation data using viticulture-specific climate criteria 

(cumulative Growing Degree Days Above 10°C and other similar climate indices) to 

determine the current spatially-defined climate-only potential of viticulture operations 

within  southern  Quebec  (roughly  below  52°  North).  Using  spatially  interpolated 

historical  observed  and  modelled  temperature  and  precipitation  data  from 30-year 

intervals spanning the previous 50 years, I performed a climatic suitability analysis of  

Southern  Quebec  to  establish  baseline  climatic  conditions.  This  methodology  was 

performed for a pseudo-climatology of the 5-year period from 2011-2015 to establish 

30-year normalized climate conditions for the present-day period, and for the recent 

historical (1961 – 1990 and 1981 – 2010) and future periods (2011 – 2040, 2041 – 

2070, and 2071 – 2100) projected using the Representative Concentration Pathways 

[RCP] scenarios for 4.5 W/m2 (“Stabilization”) and 8.5 W/m2 (“Business as Usual”) to 

year 2100. To categorize the viticultural climate regions between periods and data sets,  

I  employed a set of accepted climate classification systems and multi-criteria-based 

classification system used for categorizing viticulture climate regions.

2. My  climate  suitability  analysis  continues  by  considering  present-day  locations  of 

vineyards and their potentials for changes to climate and bioclimatic conditions. Using 

the climate results determined for the Quebec region and data acquired through web 

scraping techniques, I then geolocated vineyards and related local climate predictions 

to  determine  the  climatic  suitability  of  present-day  winegrowing  locations  and  how 

these areas and vineyards may undergo climatic changes from present-day climate 

conditions.
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Throughout, I have adhered to the principles of Open Source, and have ensured that all data 

sets and analysis tools used here are available via free and Open Access policies, under 

Open  Source  licenses,  or  through  the  public  domain.  Thanks  in  part  to  Canadian  Open 

licensing  policies  (Government  of  Canada,  2013) and  the  wealth  of  data  released  by 

individual  researchers  and  agencies  under  similar  Open-style  licenses  (for  example,  see 

Creative Commons, 2015), it was fairly effortless to achieve the coverage required for the 

region in question. In addition, I  opted to, where feasible, exclusively use Free and Open 

Source [FOS] software and GIS platforms to conduct all  analyses. As such, QGIS  (QGIS 

Development  Team,  2016),  an  open  source  GIS  built  in  Python  that  integrates  mapping 

libraries of GDAL/OGR  (GDAL Development Team, 2013),  GRASS  (GRASS Development 

Team, 2012), SAGA (Conrad et al., 2015), R (R. Development Core Team, 2013), and other 

analysis programs was used exclusively throughout the research for data formatting, analysis 

and visualization. 
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     4.3.2    -     Defining the Area of Interest

The area of interest for the main climate analysis is the southern portion of Quebec [Figure 4-

5], encompassing primarily all southern regions up to Sept-Îles, roughly the northern shore of 

Quebec bordering the Gulf of Saint Lawrence (around 50 degrees North). While interpolated 

climate coverages available for Quebec extend beyond this boundary, the density of weather 

stations  North  of  the  Saint  Lawrence  Valley  quickly  drops off  for  the  sparsely  populated 

interior areas of Northern Quebec, reducing the reliability of climate variable surfaces from 

historical climate records.
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     4.3.3    -     Historical and Present Climate Data

For  the  historical  portion  of  my  analysis,  I  considered  climate  data  from  the  WorldClim 

database which maintains relatively  high-resolution historical  and projected raster tiles for 

many climate and basic bioclimatic variables (Hijmans et al., 2005), the NASA Daymet project 

which offers daily and monthly temperature and precipitation estimates based on satellite 

observations (Thornton et al., 2015), and the Quebec Agroclimatic Atlas which offers climate 

and bioclimatic estimates focused on the recent 30-year normal period for Southern Quebec 

(Agriculture and Agri-Food Canada, 2015b). 

From the WorldClim, Daymet,  and Quebec Agroclimatic Atlas data sets,  I  collected 

monthly averaged maximum and minimum temperature and average monthly precipitation 

grids for several different time periods (30-year normals and measured months) which were 

then used to create the tools for calculating most viticulture-climate metrics. While these three 

data source options presented me with many time periods to proceed with my formal analysis, 

I  elected to use solely the NASA Daymet data to examine near-recent climate trends and 

relied  on  another  data  set,  ClimateNA  (Wang  et  al.,  2016),  for  two  historical  climate 

normalization periods (1961 – 1990 and 1981 – 2010).

I treat the time period of 2011-2015 as an example of present climate conditions and 

monthly observation from this time period were extracted from the NASA Daymet data set and 

used to calculate a pseudo-climatology of monthly averages. It should be noted that while 

these  climate  conditions  represent  the  most  recent  five  years,  the  short  time  period 

considered  is  not  reflective  of  normal  trends,  as  interannual  variability  and compounding 

factors such as the El Niňo Southern Oscillation and the influence of solar cycles have not 

been controlled for.
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Future Climate Data and Precalculated Climate Indices

For the future analysis, I considered two potential realizations of climate change from the 

IPCC-developed Representative Concentration Pathways [RCP] scenarios (van Vuuren et al., 

2011):  RCP 4.5  (Thomson et al.,  2011) and RCP 8.5  (Riahi  et  al.,  2011).  The numerical 

naming  conventions  for  these  scenarios  refer  to  the  total  radiative  forcing  [RF]  anomaly 

predicted  at  the  end of  year  2100 given different  assumptions of  decarbonization,  green 

energy developments, and international cooperation on climate. I refer to these scenarios as 

“Stabilization” (in reference to stabilized radiative forcing levels by 2050) and “Business as 

Usual” (in reference to continuous carbon emission growth), respectively.29 

I  sourced climate data for  the RCP scenarios from the ClimateNA North American 

climate project  (Wang et al., 2016). ClimateNA is freely accessible via University of Alberta 

and  which  provides  ensemble  averages  of  spatially  downscaled  climate  and  bioclimatic 

variables, generated from 15 atmosphere-ocean general circulation models. The project’s aim 

is to create regionally downscaled and ensemble averaged temperature, precipitation, and 

other  climate  grids  from  climate  models  of  the  Coupled  Model  Intercomparison  Project 

[CMIP5]  that  most  accurately  portray  historical  climate  conditions  across  North  America 

(Wang et al., 2016).30 These models are averaged for monthly climate conditions according to 

two historical normal periods (1961 – 1990, 1981 – 2010) and three future periods (2011 – 

2040, 2041 – 2070, 2071 – 2100) and downscaled using the PRISM technique (Daly et al., 

2008) to account for orographic and topographical influences on local climate. The results are 

available for all land areas of North America at the 1 Km spatial resolution.

In  addition  to  monthly  averages for  temperature  and precipitation,  I  also  relied  on 

precalculated indices determined through the ClimateNA project. In order to determine factors 

such as soil moisture demand and other agriculturally important climate indicators, I use the 

bioclimatic  indicators  provided  by  ClimateNA,  specifically  soil  moisture  demand  as  the 

29 Both of these scenarios suggest an end of 21st century climate warming at or in excess of 2 °C. While the goal of 
maintaining the global climate anomaly below  2 °C is necessary to prevent harmful climate system interruption, in my 
opinion the RCP 2.6 “Peak and Decline” scenario is unachievable under present-day climate change mitigation 
leadership.

30 The CMIP5 models used to create ensemble averages are CanESM2, ACCESS1.0, IPSL-CM5A-MR, MIROC5, MPI-
ESM-LR, CCSM4, HadGEM2-ES, CNRM-CM5, CSIRO Mk 3.6, GFDL-CM3, INM-CM4, MRI-CGCM3, MIROC-ESM, 
CESM1-CAM5, GISS-E2R.

67



Climatic Moisture Deficit [CMD], extreme minimum temperature [EMT], average length of the 

frost free period [FFP], and precipitation in the form of snow [PAS].31

The  CMD  is  a  monthly  calculated  index  for  normalization  periods  that  uses  the 

modified Penman-Monteith soil  moisture approximation outlined by Hogg, Barr,  and Black 

(2013) that  examines  baseline  soil  moisture  as  a  function  of  climate-based  reference 

evaporation  (Eref,  mm) and  precipitation  (P,  mm).  Where  precipitation  exceeds  potential 

evaporation, no deficit is recorded, and where evaporation is equal to or exceeds precipitation 

the amount of moisture required for vegetation from non-precipitation sources to prevent soil 

desiccation or drought, the value is recorded as a positive integer [Equation 4-1].

The  remaining  indices  are  calculated  annually  and  are  approximations  of  the  bioclimatic 

conditions experienced in the average year for the normalization period of interest. 

31 For more information, the calculations for CMD, EMT, FFP, and PAS are detailed in-depth in the appendix section of 
Wang, Hamann, Spittlehouse, and Murdock (2011).
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CMD={ 0,Eref <Pm

Eref−P , Eref≥Pm

Equation 4-1: The Climatic Moisture Deficit Index



     4.3.4    -     Climate Metrics and Parameterizations

All climate metrics used in this study rely on temperature (ºC) and/or precipitation (mm) at 

various scales (daily, monthly, and/or annual).32 The gridded climate data I used included only 

monthly averages; in cases where the calculation of climate metrics required accumulated 

daily  values (e.g.  for  accumulated growing degree days),  I  approximated daily  values by 

multiplying monthly data by the number of Julian calendar days in each month. All climate 

metrics were programmed using the QGIS graphical modeller using combinations of GDAL, 

GRASS, and SAGA algorithms, and were saved as Python scripts.

Growing degree-days [GDDs] with a threshold temperature of 10 ºC, generally referred 

to as the Winkler Index [WI]  (Winkler et al., 1974), is a standard wine bioclimatic metric for 

determining the category of growing season that an area experiences based solely on mean 

and max monthly temperatures (T) [Equation 4-2]. 

The Huglin Heliothermal Index [HI], another popular metric for wine bioclimatology, considers 

daily average max and mean temperatures between April  and September and relies on a 

latitude-based modifier (k) in order to account for longer day length experienced during the 

growing season at higher latitudes (Hall & Jones, 2010; Huglin, 1978) [Equation 4-3]. 

The  “true”  curve  of  this  value  is  non-linear  and  heavily  dependent  on  latitude,  angle  of 

incidence with the Sun, and the number of days within the growing season. For the sake of 

32 These climate categorizations as presented among the source literature can be found in tabular format throughout Annex 
3 – Climate Indexes and Climate Scoring Tables.
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Equation 4-3: The Huglin Heliothermal Index for Growing Degree-Days

HI= ∑
April1

September 30

(
(T max−10)+(T average−10)

2
)∗k

Equation 4-2: The Winkler Index for Growing Degree-Days

WI= ∑
April

October

(
T max+T min

2
−10)



simplicity, I forwent the calculation presented in Hall and Jones (2010) and approximated a 

pseudo-exponential curve based on the original formula by Gladstones (1992) that assumes k 

= 1.04 at 45º N, 1.06 at 50º N, 1.10 at 55º N, and 1.15 at 60º N (the northern limit of present-

day Quebec agriculture doesn't exceed 52º N).33

Another wine climate metric developed by specifically by Gladstones (1992) considers 

the  mean  diurnal  temperature  ranges  in  addition  to  an  adjustment  for  latitude.  For  the 

Biologically-Effective Growing Degree-Days [BEDD] metric, daily temperature ranges below 

10 ºC and above 13 ºC are emphasized using conditional modifiers to approximate the curve 

of daily temperatures [Equation 4-4 and Equation 4-5].

Where:

Another major climate metric I considered is the Latitude-Temperature Index [LTI] (Jackson & 

Cherry, 1988) [Equation 4-6]. This metric is based solely on the Mean Temperature of the 

Warmest  Month  [MTWM]  of  growing  season  (June,  July,  or  August  in  the  Northern 

Hemisphere) and latitude.34 

33 The full equations used by Hall and Jones (2009) for calculating day length and twilight period are available here:  
http://herbert.gandraxa.com/length_of_day.xml 

34 In order to calculate latitude at pixels, I generated a shapefile of latitudinal lines in the NAD83(CSRS) projection and 
interpolated a grid of latitudinal values per pixel extending along the East/West longitude of Quebec. 
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Equation 4-4: The Biologically Effective Growing Degree-Days Index

BEDD= ∑
April1

October 31

max(min ((
(T max−10)+(T min−10)

2
),0)∗k+TRadj ,9)

Equation 4-5: The BEDD Temperature Range Adjustment

TRadj {0.25[T max−T min−13 ] ,[T max−T min]>13
0,10<[T max−T min]<13

0.25 [T max−T min−10 ] ,[T max−T min]<10

http://herbert.gandraxa.com/length_of_day.xml


As this metric is typically based on point measurements at weather stations to determine the  

warmest month, for spatial calculations I performed a test to return the highest monthly value 

of LTI determined at each location. 

Another climate metric shown to be effective at categorizing winegrowing regions is 

based on mean temperatures of the growing season [GST] (Hall & Jones, 2009; G. V. Jones 

et al., 2005), considering the growing season as the period where daily average temperatures 

regularly meet or exceed 10 ºC [Equation 4-7]. 

Where 'n' is the number of number of days in the growing season. In an article by Hall and 

Jones  (2009), the authors combined this climate metric with BEDD and the results of GST 

alone were shown to be just as reliable of an indicator (G. V. Jones et al., 2005).

While not a true heat summation metric for establishing wine regions, I also perform 

calculations  for  the  Branas,  Bernon,  and  Levadoux  Hydrothermal  Index  [BBL]  (Branas, 

Bernon,  &  Levadoux,  1946) [Equation  4-8].  This  metric  has  historically  been  used  to 

approximate for the risk of mildew as a function of monthly temperature and precipitation 

(P).35

35 Criticisms of this metric due to its dependence on total monthly precipitation rather than soil moisture conditions, as well 
as due to the complexities of climate modelling for rainfall patterns (Lorenzo, Taboada, Lorenzo, & Ramos, 2012) 
increase metric uncertainty and reduce the reliability of some estimates of negative growing conditions based on this 
metric alone. This metric is described here for general information purposes.
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Equation 4-7: Average Growing Season Temperature

GST=
∑

April 1

October 31

(
T max+Tmin

2
)

n

Equation 4-6: The Latitude-Temperature Index

LTI=MTWM∗(60−Latitude)



36

36 I am looking into making these Python and QGIS models available online through a GitHub repository and/or through the 
Concordia University Spectrum research archive http://spectrum.library.concordia.ca/.
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BBL= ∑
April

August

T Mean∗PTotal

Equation 4-8: The Branas, Bernon, and 
Levadoux Hydrothermal Index

http://spectrum.library.concordia.ca/


     4.3.5    -     Multi-Criteria Classification Systems

For bioclimatic analyses, a single climate metric is often not sufficient to determine areas 

suitable for viticulture. As such, several studies present multi-criteria systems for determining 

suitable  viticultural  regions  (Blanco-Ward,  Queijeiro,  &  Jones,  2007;  Fraga,  Malheiro, 

Moutinho-Pereira, Jones, et al., 2014; Kurtural et al., 2007; Mills-Novoa, Pszczólkowski, & 

Meza, 2016; Nowlin & Bunch, 2016; Tonietto & Carbonneau, 2004). The second objective of 

my analysis, to determine the multi-criteria-based suitability of viticulture in Quebec, relies on 

additional  bioclimatic  variables  and  multi-criteria  weighting  systems.  My  approach  to  this 

objective  was  to  perform  a  spatial  analysis  using  the  Categorized  Index  for  Viticultural 

Climates [CatI, Equation 4-9] as presented by Fraga et al. (2014) based on the GeoViticulture 

Multi-Criteria  Classification  System  [GeoVitMCC]  developed  by  Tonietto  and  Carbonneau 

(2004) [Table 4-1]. Both of these classification system rely on the HI Index (Huglin, 1978) as 

well as a Soil Dryness Index [DI,  Equation 4-10] (Riou et al., 1994) and a Cool Night Index 

[CNI,  Equation  4-12]  (Tonietto  &  Carbonneau,  2004).  The  CatI  Index  (Fraga,  Malheiro, 

Moutinho-Pereira, Cardoso, et al., 2014) divides climate categories into 16 general regions 

according to different thresholds exceeded for the aforementioned climate indexes, while the 

GeoVitMCC index provides options for more distinct climate categories:

where DI, an approximation of soil moisture is reliant on Initial soil water reserves (WO, mm) 

as well as seasonal values for precipitation (P, mm), transpiration (TV, mm), and evaporation 

(ES, mm). 

For the calculation of DI, I needed to make a few assumptions. I began by setting the initial  

soil  WO for all  areas to 200 mm while monthly values for P,  ES and TV were included to 

determine the soil water budget. Where E + Tv surpassed P for a given month, I assume that  

water demand is met through depletion of the initial soil  reserve. As I did not have these  
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Equation 4-9: The Categorized Index for Viticultural Climates

CatI≃GeoVitMCC=HI+DI+CNI

Equation 4-10: The Dryness Index

DI=WO+P −TV − ES



variables  in  a  gridded  format,  I  substituted  E  +  Tv  for  the  modified  Penman-Monteith 

estimation  of  Climatic  Moisture  Deficit  [CMD]  (Hogg  et  al.,  2013) as  calculated  in  the 

ClimateNA data set (Wang et al., 2016) [Equation 4-11];

For the CNI value, Tonietto  and Carbonneau  (2004) suggest using the minimum average 

temperature  (Tmin)  observed  during  the  ripening  period  (September  in  the  Northern 

hemisphere) [Equation 4-12].

.
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Equation 4-11: Approximation of the Dryness Index

DI≃WO−CMD

Equation 4-12: The Cool Night Index

CNI=T min(September)
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     4.3.6    -     Vineyard-Scale Analysis

The second portion of the climate evaluation involved examining the climate conditions for 

existing  vineyards  through  Southern  Quebec.  While  I  expect  that  global  warming  will 

fundamentally change the grape-growing climate for all southern areas of Quebec, evaluating 

these changes at specific locations where vineyards are presently operating can help in better 

understanding impacts to the industry and vineyard operators.

In order to do this, a data set of existing vineyards with their addresses and geographic 

locations was necessary. To build this data set, I began by consulting  the  Association des 

Vignerons du Quebec [AVQ] and obtained a  comprehensive data set from them (n = 192) 

which  included all  AVQ member  vineyards as  well  as  all  vineyards listed  on the  Google 

search engine that  claim to  be producing wine grapes.3738 For  this  data set,  all  locations 

contained measurements of vineyard sizes by hectares determined from measurements of 

the size of vineyard plots in Google Earth. 

While exact geographic coordinates for the centres of plots were provided for many 

locations,  other  locations  were  only  available  as  street  addresses  and  needed  to  be 

geocoded. In order to add geographic coordinates to these addresses I geocoded them using 

QGIS  with  the  Google  Maps  API  and  ground-truthed  using  Google  Satellite  Imagery  to 

determine the accuracy of the tool at determining exact vineyard locations and modified point 

placement by hand where it seemed appropriate.

37 Quebec wines produced from fruits such as raspberries, blueberries, and strawberries are typically advertised by 
operators, in addition to other alcoholic beverages such as apple cider, craft beer, and mead. While grape-based wine 
has become popular pursuit in contemporary for Southern Quebec agricultural producers, wine-grape viticulture 
accounted for only ~0.6% of all fruit production by tonnage in Quebec in 2015 (Statistics Canada, 2016). 

38 This number includes all commercially-operated wineries under the AVQ, the members of the Canadian Vintners 
Association, and the members of les Vignerons Indépendants du Québec (VIQ) asd well as small producers that offer on-
site vineyard tours, typically auberges,
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Section 4.4 - Results: Regional-Scale Climate Conditions

     4.4.1    -     Climate and Bioclimatic Condition Anomalies

Climatic conditions between the earlier historical (1961 – 1990) and more recent historical 

(1981 – 2010) periods show indications of an average warming trend with a slight rise in the 

average  expected  Extreme  Minimum  Temperature  [EMT,  Figure  4-6],  a  decrease  in  the 

annual average of Frost Free Period [FFP, Figure 4-7], and decreases in the average annual 

Precipitation as Snow [PAS, Figure 4-8] throughout the region, with changes most notable in 

the southern and southwestern agricultural region. The Climatic Moisture Deficit index [CMD, 

Figure 4-9] which approximates expected soil moisture need does not show change over this 

time period. The Branas, Bernon, and Levadoux Hydrothermal Index [BBL, Figure 4-10], an 

indicator for potential mildew incidence, shows a slight expansion of heightened mildew risk  

extending around Estrie, with some novel higher risk areas near Quebec City.

Focusing on conditions in future periods, we can see that for most indicators, both 

RCP scenarios are strikingly similar in the 2011–2040 period. An average rise of +2.5 ºC in 

EMT can be seen throughout the the northern Quebec interior,  Montérégie and the  Gaspé 

Peninsula with lesser gains throughout the Saint Lawrence Valley. An increase in FFP and 

CMD can  also  be  seen  during  this  period  throughout  the  entire  province,  particularly  in 

southwestern Quebec. PAS shows marked decreases throughout most of northern Nunavik 

during this period while a large area of heightened mildew risk emerges from Estrie stretching 

north towards Saguenay – Lac-Saint-Jean and encompasses most of Montérégie. 

The climate scenarios begin to diverge for the bioclimatic variables during the 2040–

2070  period, becoming very distinct by the end-of-century. For the RCP 4.5 “Stabilization” 

scenario,  climatic changes continue to follow a warming trend with EMT for areas below the 

50 degree latitude line no longer experiencing temperatures below -35 ºC while FFP in this 

area begins to exceed 140 for most Southern Quebec areas as well. Areas bordering James 

Bay and the Ottawa River see some decline in PAS, with  Montérégie and western  Estrie 

experiencing declines exceeding 60 mm in most affected areas, while a similar trend in CMD 

can be seen for this region, with some moisture deficit extending from the Saint Lawrence 

Valley  towards  Saguenay  –  Lac-Saint-Jean.  The  BBL  mildew  risk  for  Southern  greatly 

expands during this time period, comprising most of the populated areas of Southern Quebec, 
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extending  westward  from  the  Gaspé Peninsula  to  easternmost  areas  of  Abitibi-

Témiscamingue and portions of southwest Quebec.

The RCP 8.5 “Business-as-Usual” scenario replicates many of the same patterns seen 

by end-of-century in the “Stabilization” scenario, except these changes are realized in the 

earlier 2041–2070 period. By end-of-century, bioclimatic changes accelerate and show the 

strongest  anomalies  as  compared  to  the  1981–2010  period.  For  northern  Nunavik  and 

Southern Quebec, this scenario predicts substantial reductions in PAS as well as elevated 

EMT surpassing  temperatures  found  throughout  present-day  Southern  Quebec.  Regions 

south of 50 degrees are by this point well established with annual FFP exceeding 170 days.  

Predictions for CMD show much elevated soil water depletion may occur due to high water 

demand from potential evapotranspiration and reductions in PAS. Reading for BBL indicate 

that most areas below the 52 degree latitudinal line may experience elevated mildew risk not  

seen in present-day Southern Quebec, with most of the Montérégie, Estrie, and Quebec City 

regions experiencing the highest potential of mildew risk in the region.
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     4.4.2    -     Recent Historical, Present, and Near Future Climate Index 
Comparisons for Modelled and Observed Climate Data

Results from the initial climate metric analyses of the recent historical normal period (1981 – 

2010), a pseudo-climatology of the last 5 years (2011 – 2015), and the near future RCP 4.5 

normal  period (2011 – 2040)  all  denote a progressive warming trend [Figure 4-11].  The 

historical and future periods are calculated from the ClimateNA ensemble average data set,  

while the pseudo-climatology is developed from an average of the Daymet SRTM-based data 

set. 

The normal periods for 1981 – 2010 and 2011 – 2040 show a warming progression 

extending along the Saint Lawrence Valley from Montreal towards Quebec City, towards the 

North above the Ottawa River and Eastward throughout  Montérégie and Estrie. For the HI, 

LTI and WI indexes, Saguenay – Lac-Saint-Jean region and the region extending southward 

through  La Tuque to  Trois-Riviѐres begin to show signs of warming, becoming much more 

pronounced  in  the  2011-2040 period.  Areas  of  the  Southern  Gaspé Peninsula  along  the 

border of Maine and New Brunswick also begin to show borderline climate suitability for the 

2011 – 2040 period.

Present-day viticultural climate regions show an expansion of present-day climate conditions 

eastward  throughout  Montérégie and  Estrie  with  areas  south  of  Montreal  showing  a 

transitional change from a cooler climate region to a warmer one in all metrics from present-

day to the 2011 – 2040 period. 

LTI-based  Climate  category  values  for  the  Daymet  data,  however,  shows  a  few 

departures  from the recent historical period with colder areas seen for more mountainous 

terrain  and  warmer  areas  extending  from  Saguenay  –  Lac-Saint-Jean to  Abitibi-

Témiscamingue.39 Additionally,  this  climate  index  suggests  that  much  more  of  Southern 

Quebec has been climatically suitable for viticulture in the historical period compared to other 

metrics with many regions proximal to populated zones categorized as Climate Region B or 

C. 

39 A lack of weather stations records reduces the reliability of Daymet v2.0 data estimates above 50 degrees North.
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     4.4.3    -     Winkler Index Comparisons

In this and the following section, I focus on the Winkler Index as being representative of the 

changes captured by the metrics shown previously [Figure 4-11]. Looking at spatiotemporal 

changes exclusively from the Winkler Index, the ClimateNA data presents us with normal 

periods for recent historical and future projections [Figure 4-12]. From visual examination, the 

WI  Index shows very marginal  changes to  climate  for  the  1961 – 1990 to  1981 – 2010 

historical  periods.  Most  regions  besides  Montérégie are  unsuitably  cold  and  Montérégie 

barely registers a Winkler Category 1 climate during the 1981 – 2010 period.40

Upon examining the end of century changes to regions and RCP scenario differences, 

changes become striking by end of century. For both the RCP 4.5 and 8.5 scenarios in the  

2011 – 2040 period, the WI index shows that viticulture climate regions greatly expand along 

the Saint Lawrence Valley, and south throughout Montérégie. Divergence becomes noticeable 

in 2041 – 2070 normal periods, with the Business As Usual scenario showing the Saguenay – 

Lac-Saint-Jean region  establishing  itself  as  a  Region  1  Winkler  climate  and  Montérégie 

surpassing a Region 2 Winkler climate.

Differences between scenarios become most striking for the 2071 – 2100 period as 

viticultural  thermal  climate  for  the  Business  As  Usual  scenario  show  Gaspé  Peninsula 

becoming a Region 1 Winkler climate, western Montérégie nearly crossing into a Region IV 

Winkler climate and most other regions increasing by one thermal region prior to the last 

normal  period.  On  visual  inspection,  the  thermal  regions  determined  for  the  Stabilization 

scenario for this period strongly resemble the 2041 – 2070 Business As Usual scenario.

40 Although this region the region at this time was not suitable for V. vinifera viticulture, hybrid grape varietals and other 
species endemic to North America were successfully ripening with climate categories  barely exceeding 800 degree-days.

86



87



     4.4.4    -     Inter-Period Degree-Day Anomalies

The next  analysis  of  the WI index shows the average anomalies relative to the previous 

period,  organized for  each scenario [Figure 4-13].  By comparing the anomalies,  temporal 

progressions between scenarios show a decreasing trend in degree days gained between 

periods for the Stabilization scenario, with Montérégie experiencing a gain of ~+200 degree-

days in  the  2011  –  2040  period,  while  the  Business  As Usual  values  show areas  at  or  

exceeding gains of +240 degree-days from the historical period. Most areas northward of 50 

degrees latitude experience some (<100 degree-day) thermal gains before tapering off at 60  

degrees latitude.

The same thermal gains are seen in the Stabilization scenario for the 2041 – 2070 

period. Changes in the Business As Usual however show sharp gains of nearly +200 degree-

days between 50 – 52 degrees latitude, and average gains of +310 degree-days for areas 

directly  north  of  the Saint  Lawrence Valley.  Montérégie experiences the  highest  thermals 

gains with roughly a +350 degree-day anomaly from the previous period.

By end of century, the scenario comparison is most contrasted. Climatic change in the 

Business As Usual scenario shows accelerated changes, with southernmost areas between 

Montérégie and  Quebec  City  eliciting  gains  exceeding  +500  degree-days.  Northernmost 

regions  of  Nunavik  (North  Shore)  experience  gains  of  +100  degree-days  while  regions 

delimited by James Bay, The Saint Lawrence Valley and the Laurentian Mountains experience 

gains between +375 and +450 degree-days. The Stabilization scenario for this period shows 

some positive anomaly from the previous period but overall warming is less by comparison to 

both previous periods with no region exceeding +125 degree-days.
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     4.4.5    -     Multi-Criteria Climate Evaluations

Results  from the  CatI  index for  viticulture  regions [Figure  4-14]  shows the  same shift  in 

regional climates that is shown for most other climate metrics. CatI region values are non-

linear with primary colour groupings referring to thermal regions (Cool: 1 – 4 ; Temperate: 5 – 

8; Warm: 9 – 12; Hot: 13 – 16) which are then subdivided according to growing season soil 

moisture  conditions  and  the  threshold  for  average  minimum  temperature  in  September 

surpassing 14 ºC (Tmin <14 ºC: Odd numbers; Tmin >14 ºC: Even numbers).

For the historical period,  Montérégie shows the warmest category for the regions (5: 

“Temperate, Dry, with Cool Nights; and 7:“Temperate, Dry, with Cool Nights”) while most areas 

outside of  Montérégie can be classified as a colder viticulture region (3: “Cool, Humid, with 

Cool Nights”). It's worth noting that this climate-viticulture region extends Northwest to James 

Bay  and  North,  eventually  surrounding  the  Lac  Saint-Jean  region,  westernmost  areas  of 

Gaspé Peninsula. All areas outside these climate regions are categorized as having a CatI 

value of 0 (“Unsuitably Cold and/or Excessively Dry”).

The 2011 – 2040 climate periods show an expansion of the warmer categories already 

present  in  Montérégie and eastward along the Saint  Lawrence Valley.  Notably,  the areas 

surrounding Ottawa undergo enough warming to be reclassified as regions 5 and 7, while 

westernmost areas of Estrie experience a warming shift in their HI index category [see Table

4-1]. Gaspé Peninsula also experiences novel expansions of viticulture climate regions in its 

Southernmost areas along the Maine-New Brunswick borders.

The 2040 – 2071 period begins to show a departure of the RCP 8.5 “Business as 

Usual” scenario from the RCP 4.5 “Stabilization” pathway. Both scenarios show a complete 

climate warming shift in CatI index for regions outside Montérégie relative to earlier periods; 

for “Stabilization”, most areas that were categorized as CatI region 3  in the 1961 – 1990  

period are now CatI region 5, 7 or higher, while for “Business as Usual” the same is true  

except in reference to the more recent 1981 – 2010 climate period. During this period we see 

a major shift in Montérégie as both scenarios suggest September temperature minimum rising 

above 14 ºC and Huglin degree-days exceeding 2100 throughout the growing season (CatI 

regions 10 and 12); the “Business as Usual” scenario sees this warming extend northward to  

westernmost areas of the Saint Lawrence Valley.
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The end of century period shows the most marked contrast between scenarios. The 

“Stabilization”  scenario  results  strongly  resemble  the  2041  –  2070  “Business  as  Usual” 

climate conditions, with the warmer areas of  Montérégie extending slightly northward. The 

“Business  as  Usual”  climate  categories  show  the  most  drastic  CatI  value  change  from 

present-day. All the previous period's viticultural areas experience a shift to a warmer thermal 

region, particularly Montérégie which experiences the highest thermal conditions in excess of 

2700 Huglin degree-days. Most continental interior areas below 52 degrees latitude and the 

1981 – 2010 agricultural regions exhibit temperate and humid climate conditions while the 

Gaspé Peninsula shows potential for temperate viticulture throughout the entire region.
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Section 4.5 - Results: Vineyard Location Climate Evaluation

In this section I evaluate climate changes at the locations of presently-operating vineyards 

throughout Quebec. As regional changes to the agroclimatic conditions of Quebec will impact 

all  crops  grown  throughout  the  area,  determining  the  environmental  conditions  where 

vineyards  have  been  operating  for  several  decades  can  provide  greater  insight  into  the 

degree and time-line over which operators can be expected to experience climate changes in 

the future.

     4.5.1    -     Distributions and Locations

Using a combination of methods mentioned earlier I was able to identify vineyard locations (n 

= 192) throughout Southern Quebec [Figure 4-15]. 
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As shown in  Figure 4-16, the vast majority of present-day vineyards tend to be distributed 

within Montérégie (n = 93) and neighbouring Estrie (n = 17), with most remaining vineyards 

grouped in along the Ottawa River, and throughout the Saint Lawrence Valley near Montreal, 

Trois Riviѐres, and Quebec City. The most Northern vineyards can be found near Lac Saint-

Jean and along the eastern shores of the Saint Lawrence River (n = 6), while the easternmost  

and westernmost vineyards are found on the south side of Gaspé Peninsula and on L'Île-du-

Collège, on the Ontario border, respectively.

94

Figure 4-16: Quebec Vineyards (2016) organized by Economic Regions (derived from 
Statistics Canada, 2015)
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     4.5.2    -     Temporal Change in Viticulture Climate Metrics

For the following charts, climate metric values for each vineyard in the 1981 – 2010 reference 

period  are  plotted  along  the  horizontal  axis,  with  the  warmer  vineyards  generally  found 

throughout  Montérégie clustered further along the axis. The anomalies at these vineyards as 

modelled using the “Low” RCP 4.5 (“Stabilization”, square symbols in blue) and “High” RCP 

8.5 (“Business-as-Usual”, diamond symbols in Red) scenarios are plotted along the Y-axis for 

several time periods (2030s, 2050s, and 2080s). An estimate of present-day metric values 

based on NASA Daymet climate data is shown alongside the future scenario to illustrate 

average conditions during 2011 – 2015 relative to the 1981 – 2010 baseline (ribbon symbols  

in green). Each set of vertically-stacked symbols therefore represents all potential changes 

experienced  at  at  an  individual  vineyard  location  depending  on  time  period  and  climate 

scenario.
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For the BEDD metrics [Figure 4-17], the 1981 – 2010 conditions illustrate that the majority of 

vineyards tend to experience around 825 to 1250 degree-days on average. The Daymet data 

shows average anomalies of +120+/-100  BEDD with some outliers at -156 and -61 BEDD's. 

For the “Stabilization” emissions scenario, end of century estimates see the warmest 
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Figure 4-17: Biologically Effective Growing Degree-Day Anomalies for "Stabilization" and  
"Business-as-Usual" Scenarios at Quebec Vineyards
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vineyards experiencing between +500 and +600 BEDD gains with cooler vineyards gaining 

between +400 and +500 BEDD's; changes in the “Business-as-Usual” emissions scenario are 

more pronounced with vineyards at present with 1000 BEDD's or more experience gains in 

excess of 1000 – 1100 BEDD's, while the vineyards below 700 BEDD's at present see less 

total gains, relative gains in BEDD's vary between 130% – 200% from present-day. 
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The GST values show the average increase of max and min temperatures between April and 

October  [Figure  4-18].  Values  here  show an  increase  of  ~1.5  ºC for  the  2030's  in  both 

scenarios  relative  to  the  reference  period,  while  Daymet  values  suggest  average 
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Figure 4-18: Growing Season Temperature Anomalies based on "Stabilization" and "Business-
as-Usual" Scenarios for Quebec Vineyards
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temperatures may already have increased relative to the reference period with anomalies as 

high as 1.25 ºC for some vineyards. For the “Stabilization” scenario, end-of-century warming 

predicts average increases of 3.25 ºC across vineyards, while “Business-as-Usual” scenario 

predicts  an  increase  of  nearly  5.85  ºC  by  end  of  century,  with  mid-century  anomalies 

surpassing the “Stabilization” period for end-of-century by 0.25 ºC.
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The HI Index values [Figure 4-19] show roughly uniform increases of HI between periods for 

all  scenarios.  Daymet  values for  2011 – 2015 average +75 with  a margin  of  +125/-175, 

suggesting that most vineyards have already seen a measurable increase in latitude-adjusted 
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Figure 4-19: Huglin Heliothermal Index Anomalies for "Stabilization" and "Business-as-Usual"  
Scenarios at Quebec Vineyards
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degree-days since 1981 – 2010. While warming trends are very close for the 2011 – 2040 

period between scenarios, the “Business-as-Usual” scenario register an average gain of +25 

over the “Stabilization” scenario. Overall warming trends for end of century shows vineyards 

gaining between +580 and +675 in HI for the “Stabilization” scenario, and nearly +1120 in HI 

for the “Business-as-Usual” scenario. 
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The LTI index [Figure 4-20] shows an increasing trend that is markedly similar to values 

obtained for the BEDD index. Most vineyards presently range in LTI regions from the lower 'B' 

(200 – 275) to mid-'C' (275 – 375), with some outliers in the coldest 'A' region (below 195) 

102

Figure 4-20: Latitude-Temperature Index Anomalies for "Stabilization: and "Business-as-Usual"  
Scenarios and Quebec Vineyards
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(Jackson & Cherry, 1988). Daymet values indicate an average increase of ~7 LTI units, with 

high variation for warmer vineyards.  For the “Stabilization” scenario, end-of-century estimates 

show average gains of ~55 LTI units, while the “Business-as-Usual” scenario estimates 

average gains of 90 LTI units. Across data points, the high scenario gains reflect average 

increases of 25% to 35% for most vineyards.
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The WI index [Figure 4-21] shows an increasing degree-day trend with value ranges similar to 

that of the BEDD calculations. The 1981 – 2010 period shows a more constrained range for 

WI values, with most vineyards experiencing around 850 to 1150 degree-days on average. 
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Figure 4-21: Winkler Growing Degree-Day Anomalies for "Stabilization" and "Business-as-
Usual" Scenarios at Quebec Vineyards
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The  Daymet  average  shows  vineyards  experience  +140  with  a  margin  of  +220/-150  WI 

degree-days with one outlier at -70 WI units from the reference period. For the “Stabilization”  

emissions scenario,  similar to end of century estimates for the BEDD index, the warmest 

vineyards experiencing between +450 and +550 WI degree-day gains with cooler vineyards 

gaining  between  +390  and  +500  WI  degree-days;  the  “Business-as-Usual”  emissions 

scenario registering 1000 WI degree-days or more in 1981 – 2010 experience gains in excess 

of  1000  –  1100  WI  degree-days.  Again,  the  coolest  vineyards  today  see  much  greater 

proportional gains in WI degree-days with some vineyards experiencing +130% to +190% 

gains from the reference period. 
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     4.5.3    -     Temporal Changes to Categorized Index Values

The changes experienced by vineyards according to Categorized Index values illustrates the 

fundamental type of climate that Quebec vineyards may need to operate and plan for. Figures 

4-22 and 4-23 show the first two historical climate periods (1961 – 1990, 1981 – 2010) and 

then future periods for the RCP 4.5 “Stabilization” scenario [Figure 4-22] and the RCP 8.5 

“Business-as-Usual”  scenario  [Figure  4-23].  While  16  categories  are  listed,  some climate 

categories (e.g. CatI values of 2, 6, 8, 13, and 15) within thermal regions (1 – 4, 5 – 8, 9 – 12,  

and 13 – 16) are seldom experienced at vineyards within Quebec. NULL values shown here 

are due to edge-case suitability conditions (e.g. too cold, too dry) or due to vineyards being 

located beyond the spatial  region of  the data set  (particularly  true for  coastal  and island 

locations).

Examining  solely  the  historical  periods,  vineyards  have  already  undergone  some 

degree of change to growing conditions, with 27 vineyard locations upgrading from a Cool to  

Temperate climate region between 1961 – 1990 and 1981 – 2010 and overall fewer vineyards 

experiencing humid growing conditions. These trends continue at different rates depending on 

the scenario examined.
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For the “Stabilization” scenario [Figure 4-22],  changes between the 1981- 2010 reference 

period and the 2021 – 2040 period show a marked decline in the number of Cool climate 

vineyards, with more locations experiencing Temperate and drier growing conditions (n = 177, 

up from 112 locations). The 2041 – 2070 period shows warming at 58 locations that causes 

them to upgrade their status to a “Warm” climate region with relatively the same proportion of 

vineyards experiencing humid growing conditions. We also see an emergence of locations 

with  “Warm  Nights”  near  the  warmer  end  of  the  spectrum  as  September  minimum 

temperatures begin exceeding 14  ºC.  The end of century period (2071 – 2100) shows a 

widening  of  the  number  of  locations  with  “Warm,  Dry  and  Cold/Warm  Night”  growing 

conditions, while the number of Temperate locations decreases. Only one vineyard location 

continues to experience 'Cool” growing conditions during this period.
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Figure 4-22: The Categorized Index Values for Vineyards (Historical – 2100) under Low  
Emissions Projections
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For  the  “Business-as-Usual”  scenario  [Figure  4-23],  we  can  see  that  the  number  of 

“Temperate” climate vineyards in the 2011 – 2040 period increases in size and dry/humid 

proportion similarly to the “Stabilization” scenario (RCP8.5: 175 versus RCP4.5: 177). For the 

2041 – 2070 period, a very noticeable shift in climate categories can be seen in the rapid 

growth of “Warm” climate vineyards.  These “Warm” vineyards also overwhelmingly shows 

September minimum temperatures above 14  ºC. This also marks a climatic departure from 

the stabilization scenario (RCP8.5: 130 locations versus RCP4.5: 58 locations). The end-of-

century period sees this warming trend accelerate, as the number of “Temperate” locations 

drops to 1 with the remainder exhibiting climate that are either “Warm, humid or humid, with  

warm nights” (n = 136) or “Very Warm, dry, with warm nights” (n =  56). By this time period, 

there are no “Cool” climate locations.
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Figure 4-23: The Categorized Index Values for Vineyards (Historical – 2100) under  
High Emissions Projections
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Section 4.6 - Discussion

     4.6.1    -     Overview

The discussion here is based on the results from all of my analyses and is divided into four 

main sections:

1. Agroclimatic changes to the southern Quebec regions based upon bioclimatic variables 

calculated by Wang et al. (2016) and through viticulture-specific climate metrics.

2. Potential direct and indirect risks due to climate change specifically for vineyards and 

some considerations for adaptive planning.

3. Technical strengths, limitations and potential complexities associated with my research 

approach.

4. Conclusions  and  next  steps  in  building  upon  the  viticulture-climate  analysis  and 

expanding the research beyond regional physical climate modelling. 
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     4.6.2    -     Potential Bioclimatic Changes and their  Impacts on Agriculture 
throughout Southern Quebec

From my analyses using a combination of regional-scale indices of bioclimatic change as 

determined from the ClimateNA data set  (Wang et al., 2016) and climate indices calculated 

using a number of viticulture-specific categorization metrics, I am able to illustrate here some 

of the potential future changes to agricultural operations in Quebec, as a function of various 

models of future climate change pathways. 

The ClimateNA bioclimatic indicators which comprised surfaces for average expected 

Extreme Minimum Temperate [EMT,  Figure 4-6]; the modified Penman-Monteith method for 

Climatic Moisture Deficit [CMD, Figure 4-9] (Hogg et al., 2013); the average annual Frost Free 

Period length [FFP, Figure 4-7]; and the amount of Precipitation As Snow [PAS, Figure 4-8], 

all  showed trends associated with that  of  a region undergoing warming climatic changes. 

Areas experiencing longer frost-free periods, much less precipitation as snow, and higher 

minimum  temperatures  will  experience  to  a  more  temperate  winter  season,  with  longer 

growing  seasons  and  less  risk  of  extreme  low  temperatures  damaging  cold-sensitive 

vegetation. 

These changes to bioclimatic variables correspond with Canada-wide  (Qian, Zhang, Chen, 

Feng, & O’Brien, 2009) and provincial  (N. K. Jones, 2012) historical trends, showing that 

these patterns are not  solely  limited  to  the southernmost  areas of  Quebec where  higher  

numbers of vineyards are presently operating. In fact, many of these changes can be seen 

operating at  much higher  latitudes,  leading to  major  anomalies  from present-day climatic 

norms in Nunavik, along the shores of Hudson Bay and Ungava Bay. While these areas are 

not viable for traditional  agriculture, severe and rapid climatic changes, such as the ones 

shown for the high emissions scenario (see Figures  4-6 and  4-7 in particular) may prove 

disastrous for phenological patterns (ie: reproduction and migration cycles) of arctic species 

that the Nunavik peoples rely upon (Berteaux, Réale, McAdam, & Boutin, 2004). 

Hydrological changes seen in the CMD estimates show that due to a combination of 

warmer temperatures and longer growing seasons, soil water reserves may become stressed 

due  to  higher  potential  evapotranspiration  in  the  future,  particularly  for  all  present-day 

agricultural areas west and northwest of Estrie. For most areas of Quebec, soil moisture and 
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river flow are strongly influenced by snow melt  and thus regions experiencing much less 

precipitation as snow may need to employ water conservation techniques or irrigation to fulfill  

the demands of longer, warmer growing seasons (Gornall et al., 2010). While it is difficult to 

determine whether drought conditions may occur on the basis of period-normalized model 

ensemble estimates for the region, the risk of drought under a much warmer climate is higher 

as the environmental conditions that preclude drought may occur more often, while increased 

precipitation  variability  may  contribute  to  drought  conditions  where  they  currently  aren't  

common (Trenberth et al., 2013). Because of warmer temperatures, agricultural managers will 

need to take into account water demand and risk of drought conditions, as well as the risk of 

atypically wet growing seasons, considering their crop mix or planting schedule  (Bradshaw, 

Belliveau, & Smit, 2012). 

This warming trend greatly increases the area and number of regions for agricultural 

operations  as  unfavourably  cold  climates  become  less  and  less  a  limiting  factor  in  the 

delimitation of agricultural  areas. As most existing agricultural  areas tend to be within the 

warmer and lower elevation areas such as along the Saint  Lawrence Lowlands,  western 

GaspéPeninsula, and around Lac-Saint-Jean, there will be greater agricultural potential along 

the North Shore of the Gulf of Saint Lawrence under even moderate scenarios of climate 

change.  These  observations  by  and  large  agree  with  previous  estimates  for  agricultural  

potential  due  to  greenhouse  gas  induced  climate  change  throughout  Quebec  (Singh  & 

Stewart,  1991).  The  many  limiting  factors  for  agriculture  throughout  Quebec's  Canadian 

Shield region to the north of the Lowlands, such as lower population density, public (“Crown”) 

land, and expansive boreal forested areas, with large areas under environmental protection 

status (“Zones d'Exploitation Controllées”),  will  probably prevent agricultural  expansions to 

this region even under a warming climate. Additionally,  the topography of the shield,  with 

greater variation in relative elevation, places potential vineyard sites at risk of sudden frosts 

due to cold air drainage which can be devastating to vineyards  (Dietrich & Böhner, 2008; 

Olsen et al., 2011).

A major factor evident from  Figure 4-13 is the path-dependent nature of inter-period 

climatic changes. The relative gain of thermal degree-days over subsequent 30-year periods 

may contribute to environmental stresses if the rate of change is greater than the ability of the  

socioecological system to acclimatize. For agricultural operators who rely on a few varieties of 
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annual crops, making informed choices of crops requires extensive information and tools such 

as  preexisting  knowledge  of  local-level  climate  trends,  a  degree  of  climate  forecasting 

knowledge,  capital  to  adapt  to  a  changing environment,  and the  financial  and  insurance 

mechanisms  in  place  to  endure  a  few  potentially  “bad  years”  (Bradshaw  et  al.,  2012). 

Environmental risks to operators can also stem from the potential for new and emergent crop 

diseases as well as the migration of pests, both of which are associated with atypical warmer 

climates  (Gornall et al., 2010; Shannon & Motha, 2015). While both high and low emissions 

scenarios may result in damaging effects, the higher degree of climate variability associated 

with much warmer environmental conditions will likely exacerbate all of these problems. 

An additional concern associated with more extensive climate changes projected for 

end-of-century are the risks associated with extreme weather events and their impacts on 

agricultural yields. While some agricultural crops that are presently limited by short growing 

season may see some more favourable growing seasons in the near to mid-term, extreme 

heat  waves  can  decimate  a  season's  harvest  and  kill  livestock  even  with  adequate 

precipitation and irrigation  (Lesk et al., 2016; Shannon & Motha, 2015). Additionally, under 

more extreme warming scenarios, crops may experience negative impacts to potential yields 

because photosynthesis and productivity are strongly impacted by high temperature growing 

conditions, as can be seen for many agricultural areas in the United States  (Lobell et al., 

2006; Schlenker & Roberts, 2009).

For agricultural operations in Montérégie, Estrie, and the lower Saint Lawrence Valley, 

winters that are less severe and growing seasons that are longer and warmer reduce the 

need for agricultural managers to rely on cold-hardy cash crops that are optimized for quicker 

yields  but  produce  less  quantity.  The  choice  of  crop will  ultimately  need  to  reflect  these 

changing climate anomalies and more research in the field of agricultural modelling will need 

to be met with operator experiences and adaptation measures for the industry to successfully 

adapt  to  the  new  normal  (Bradshaw  et  al.,  2012;  Challinor,  Smith,  &  Thornton,  2013; 

Rosenzweig et al., 2014).  

While  conventional  cash  crop  agricultural  operations  may  experience  some  more 

favourable  near-  and  mid-term  conditions  with  longer  growing  seasons  and  less  severe 

winters,  other  season-dependent  industries  may  experience  negative  impacts.  Reduced 

snowfall  and  warmer  winter  temperatures  could  have  direct  and  indirect  impacts  on  the 
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potential for winter tourism activities such as skiing and skating as well as the service industry 

that is based around it (Damyanov, Matthews, & Mysak, 2012). These impacts extend to other 

economically important seasonal activities such as maple syrup production, which is strongly 

influenced by the temperature seasonality, snow cover, and tree health (Skinner, DeGaetano, 

& Chabot, 2010). As seasonal tourism throughout the region may be impacted by climatic, the 

impacts on loosely related sectors may be compounded, which is of particular concern for 

Quebec's wine country.
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     4.6.3    -     Wine Climatology and Adaptation Considerations for Viticulture

The majority  of  Quebec's  vineyard operations,  situated throughout  Montérégie and Estrie 

[Figure 4-15,Figure 4-16], are in a region that is not only currently the warmest, but has the 

potential  to undergo some of  the highest warming anomalies under scenarios of extreme 

climate change by the end of this century; for other vineyards throughout Southern Quebec 

which are presently located at the climatic threshold for grape production, they can expect to  

see  warmer  conditions  compared  to  present-day  conditions,  in  some  places  and  under 

warmer scenarios, even surpassing the warmest areas today [Figure 4-18].

A major interest on the part of the industry is to increase the acreage of more economically  

sought after grapes like European V. vinifera. Unfortunately, true forms of these varietals have 

a high thermal need typically not experienced even throughout the warmest areas of Quebec. 

For present-day operators, most wine grapes cultivated in Quebec, a mix of cold hardy  V. 

labrusca and American-European Labruscana hybrids, tend to require between 800 and 1250 

WI degree days to reach veraison (onset of ripening) [Figure 4-4]. Many of these varietals are 

specifically adapted to the northeastern North America region and their  characteristic and 

growing habits are well  documented  (Dubé & Turcotte,  2011).  The interest here, with the 

potential of a warming regional climate, is the possibility of introducing “true”  V. vinifera into a 

novel terroir and advance Quebec's wine industry (Patriquin, 2013).

As expressed in a number of studies, climatic changes are expected to translate into 

poleward shifts in the latitudinal isotherms of the ~12 – ~22  ºC average growing season in 

both hemispheres (G. V. Jones et al., 2012; Moriondo et al., 2013). The significance of these 

isotherms are that they represent the lower and upper thresholds for successful European-

style viticulture, as shown in Error: Reference source not found (G. V. Jones et al., 2005). We 

can already see in the warming patterns from Canadian wine climatologies  (N. K. Jones, 

2012; Rayne & Forest, 2016) and from visual comparisons between modelled and remotely-

sensed climate data [Figure 4-11] that the changing values for most bioclimatic metrics that 

Southern Quebec are beginning to show areas exceeding the base thermal need thresholds 

needed for European V. vinifera viticulture. For most climate metrics, this shift is seen early on 

along the Saint-Lawrence Lowlands, and North of Ottawa, expanding around the Lac-Saint-

Jean area and extending along the Gaspé Peninsula. 
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As mentioned earlier, changes in CMD, PAS, EMT, and FFP as bioclimatic indicators 

all have resounding impacts on vegetative performance, agricultural management and risk of 

cold damage and yield loss (Davenport, Keller, & Mills, 2008; Mosedale et al., 2015; Qian et 

al.,  2009).  At  present,  the  major  deterrents  to  operators  adopting  European  V.  vinifera 

viticulture are harsh cold temperatures and the risk of late spring frost events. Cold hardy 

endemic grapes such as  V. Labrusca and European-American hybrid varietals tend to fare 

much better under colder average conditions, but their wines are less sought after for their 

perceived inferior wine quality (Köse, 2014; J. Robinson, 2006; Shaw, 1999). Under climatic 

change, these limiting factors become less of a hindrance, presenting new opportunities for 

operators to try their hand at V. vinifera viticulture.

In addition to unfavourable climate, challenges in introducing  V. vinifera can also be 

attributed to the these vines' higher susceptibility to mildew conditions and pest-born diseases 

such as Phylloxera and Pierce's Disease  (Nowlin & Bunch, 2016; Rayne & Forest, 2016). 

Endemic North American and hybridized grape species, particularly  V. riparia, are naturally 

resistant not only to cold temperatures, but wines made from these species are not sought 

after due their “foxy” flavour (J. Robinson, 2006). The Branas, Bernon, and Levadoux Index 

(Branas et al., 1946)(Branas, Bernon, & Levadoux, 1946) is an approximation of mildew and 

pest outbreak risk for vineyards. The results [Figure 4-10] from this index suggest that the 

Montérégie region has experienced a moderate amount of mildew and disease risk likely due 

to comparatively higher temperatures as compared to other Quebec regions. 

For the present-to-near future period, the expected climatic changes for normal periods 

in the Southern Quebec region do not show much path-dependency, decreasing the level of 

uncertainty associated with shorter-term climate predictions [Figure 4-12,  Figure 4-22, and 

Figure 4-23]. The presently-defined cool climate growing areas in the Saint Lawrence River 

Valley will increase in overall area while the annually expected Growing Degree Days (GDDs) 

in  the  southern  valley  region  will  shift  to  a  warmer  growing category,  which  would  likely 

contribute to earlier onset of ripening in present-day grape vines (Sadras & Petrie, 2011) or 

allow for operators to cultivate different, more thermally demanding, varietals for at vineyards.  

If  we consider only the average expected climate conditions, the Southern Quebec region 

may become more amenable to European V. vinifera viticulture, even under high emissions 

climate scenarios in the near future [Figure 4-14]. Within a context of the vineyard-specific 
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growing season,  changes  determined from the  Categorized  Index for  viticultural  climates 

(Fraga,  Malheiro,  Moutinho-Pereira,  Jones,  et  al.,  2014) further  illustrate  the  potential  for 

higher numbers of humid and temperate growing conditions and many fewer cool climate 

wineries throughout the 2010 – 2040 period compared to previously[Figure 4-22,Figure 4-23]. 

Much of this change can be attributed to a longer and warmer growing season (a decreasing 

FFP and an increasing GST), providing more opportunity for vineyard locations to amass the 

necessary GDDs to meet the thermal requirements for most European vines to produce fruit  

and reach veraison. 

Spring  frost  events  are  typically  disastrous  to  vine  buds  and  can  set  back  grape 

production or, in extreme cases, destroy vines, ruining growing seasons (Stafne, 2008). While 

the rise in GDDs and a warming growing season will  likely have an impact on grapevine 

phenology (Köse, 2014), there is some debate as to the impact these changes may have on 

the risk of spring frost events  (Kartschall et al., 2015; Molitor et al., 2014; Mosedale et al., 

2015; Roy, 2017 (Personal Communication)). Some research shows signs of risk increase for 

German and French terroirs  (Kartschall  et al.,  2015; Molitor et al.,  2014) as risk of future 

spring frost events will largely be dependent upon the continentality of local climate, with risk  

potential particularly high for extreme warming scenarios; meanwhile forthcoming research 

using modelling ensemble results for Quebec suggest that warmer growing conditions and an 

advancing budbreak date has very little impact on the risk of spring frost events (Roy, 2017); 

finally  Mosedale  et  al.  (2015) predict  that  for  the  UK  that  while  grapevine  frost  risk  is 

dependent on choice of varietal,  this risk may generally decrease under extreme warming 

scenarios. More research is needed on these changes as spring frost can be economically 

devastating for vineyards, particularly for smallholder operations (Bradshaw et al., 2012).

Regional estimates for all viticultural climate metrics – the BEDD, HI, GST, LTI, and WI 

indices  (Gladstones,  1992;  Hall  &  Jones,  2009;  Huglin,  1978;  Jackson  &  Cherry,  1988; 

Winkler  et  al.,  1974) –  show that  southernmost  areas of  Quebec might  expect  to  see a 

continued  warming  trend  not  unlike  the  warming  trend  observable  by  comparing  of  the 

downscaled 1981 – 2010 period to the 2011 – 2015 remotely sensed climate [Figure 4-11]. 

Basing  the  estimates  of  climatically  suitable  areas  from these  indices,  it  comes  as  little 

surprise that many regions predicted to become ideal areas for cool or temperate climate 

viticulture, namely the Saguenay – Lac-Saint-Jean area, the western Gaspé Peninsula (Singh 
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&  Stewart,  1991),  and  areas  to  the  north  of  Ottawa  are  all  locations  of  some  newly-

established vineyards [Figure 4-15].

For  longer  term climate projections,  the  potential  for  a  climate-aided wine industry 

begins to look less promising. The RCP climate scenarios begin to drastically diverge by the 

end  of  century,  with  the  high  emissions  scenario  showing  a  potential  for  much  warmer 

temperatures compared to present day and the lower emissions scenario showing very little 

progression from mid-century warming estimates [Figure 4-12]. Integrating other bioclimatic 

indicators,  as is  performed for  the Categorized Index  (Fraga,  Malheiro,  Moutinho-Pereira, 

Jones, et al., 2014), we can see how average growing conditions may dramatically change 

over  time  for  most  already-established vineyard  locations [Figure  4-22 and  Figure  4-23]. 

Where the majority of vineyards in Quebec are typically “Cool” climates at this point in time, 

mid-century  and end-of-century projections show the predominance of “Warm” with some 

“Temperate” growing conditions for the lower emissions scenarios, while the higher emissions 

scenarios see a complete drop-off  of  “Temperate” climates and nearly  a  third  of  wineries 

showing  indications  of  “Very  Warm/Hot”  growing  conditions.  In  addition,  for  the  higher 

emissions scenario, these changes are accompanied by much drier soil conditions, reflecting 

the  changes  seen  in  potential  evapotranspiration  from  hotter,  more  productive  growing 

conditions [Figure 4-9]. 

Present-day Quebec wineries experience a temperature range of roughly 11 ºC to 15 

ºC as their average GST, with the majority of vineyards warmer than 12.5  ºC [Figure 4-18]. 

Under climate change, the expected anomalies for GST range between a minimum change 

by  2100  of  roughly  +3  to  +3.5  ºC  for  lower  emissions  scenarios,  with  higher  emissions 

scenarios showing changes in excess of +5.75 ºC. As such, the warming presented in both of 

these scenarios  has the  potential  to  drastically  alter  the  bioclimatic  characteristics  of  the 

growing  season  at  all  vineyards  within  Southern  Quebec,  rendering  present-day  grape 

varietals climatically incompatible with future growing conditions.

Jones (2005) and Hall & Jones (2009, 2010) present a classification method based on 

average GST as an index for identifying the optimal V. vinifera  grape vines for a range of 

climates  [Figure  4-24].  While  this  classification  system is  relatively  simplistic  and  fails  to 

integrate  many  important  bioclimatic  variables,  it  serves  as  useful  proxy  for  viticultural 

planning within a context of macro-scale, long-term environmental changes. 
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According  to  the  GST index,  under  present  climate  conditions,  the  majority  of  Quebec's 

warmest vineyards fall into the range of “Cool” considered adequate enough to grow grape 

species such as Müller-Thurgau (white), Pinot Gris (white), Gewürztraminer (white), Riesling 

(white), Pinot Noir (red), and possibly Chardonnay (white). While the thermal requirements for  
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V. vinifera species may technically be met under present-day conditions, most of the grapes 

cultivated  in  Quebec are  European-American  hybrids  owing  largely  to  their  resistance to 

harsh winters and pest diseases, as mentioned earlier  (Davenport  et  al.,  2008; Nowlin & 

Bunch, 2016). As of mid 2014, only a handful of operators claimed to be cultivating “true”  

Pinot Noir grape vines (personal communication).41 Given these limitations, pest management 

and cold  protection  techniques would  technically  provide  the  opportunity  for  operators  to 

introduce these varietals: a possible motivating factor behind the modern experimentation in 

cultivating “true” V. vinifera.

Under moderate climate change, the majority of Quebec vineyard operators will likely need to 

change the type of grape vines they presently cultivate. Again referring to the GST index 

[Figure 4-24], it is reasonable to suggest that should changes be limited to +3.25 ºC by end-

of-century, most of the less thermally demanding, cold-hardy vines might fade from viticultural 

practices among operators, as warmer climates might give way to cultivation of higher valued, 

more  chemically  complex  European  grape  vines.  One  present-day  V.  vinifera varietal 

cultivated  in  present-day  Quebec  that  might  remain  under  lower  emissions  scenarios  is 

Riesling,  which  has  a  broad  range  of  acceptable  climates  mostly  within  “Cool”  and 

“Temperate” zones. 

Moderate and extreme scenarios of climate change will likely see the introduction of a 

broad range of  different  V.  vinifera grapes,  many of  them presently  cultivated throughout 

southern  areas  of  Europe,  as  operators  attempt  to  capitalize  on  warmer  temperatures 

propelling the climate from “Cool” to “Warm” or “Very Warm”, encouraging experimentation 

and adaptation techniques as climatic changes create never-before-seen growing conditions. 

Environmental risks in the form of mildew diseases will greatly impact the suitability for new 

grape varietals. The BBL Index results [Figure 4-10] for end-of-century scenarios suggest that 

even under moderate scenarios of climatic change the risk of mildew-based vine diseases is  

expected to increase drastically, particularly for Estrie and neighbouring regions. The extreme 

scenario  suggests  that  mildew  potential  will  exceed  even  higher  thresholds.  Several 

detractors  already  present  in  current-day  beyond  mildew  and  pest  risk  will  need  to  be 

41 Even then, these claims are dubious at best as Pinot Noir-based hybrids such as Baco Noir are known to be a popular 
grape vine producing wines of very similar taste to its parent varietal but are benefited by a much higher cold resistance 
(Shaw, 2012).
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mitigated,  as  the  drastic  departures  expected  for  both  moderate  and  extreme  climate 

scenarios for agricultural operations will foster an enormous degree of complex risks.

For both scenarios, from many studies, a strong relationship has been established between 

advance of harvest date and the increasing amount of thermal units accumulated during the 

growing  season  (Köse,  2014;  Molitor  et  al.,  2014;  Ruml,  Korać,  Vujadinović,  Vuković,  & 

Ivanišević, 2015; Webb et al.,  2011). Within this context, another concern stems from the 

relationship between phenological shifts and bioclimatic changes; as bioclimatic anomalies 

contribute  to  a  set  of  non-analogous  climate  conditions,  potentially  causing  vine  buds to 

appear early in the growing season, operators will need to plan carefully when it comes to the 

overwintering and the risk of frost during early bud-burst periods for grape vines. (Ruml et al., 

2015; Singh & Stewart, 1991)

Regardless of the degree to which these climate scenarios may reflect the realized future 

climate, operators will need to constantly be adapting and innovating; the ways in which the 

lessening amount of snowfall, hydrological system changes, the advance of the beginning of 

growing  seasons,  warmer  thermal  potential  changes,  the  lessening  risk  of  extreme  cold 

events, and the heightening risk of pest and vine diseases are factors that all  need to be 

considered by operators when choosing an appropriate wine grape to cultivate (Bryant et al., 

2007; Holland & Smit, 2010). At present, these warming climatic changes have already begun 

to show the early signs of negative impacts for some ice wine producers in Quebec  (CBC 

News,  2015) (as  well  as in  Germany for  their  eiswein  (Webb et  al.,  2013))  and positive 

impacts for some small-holder vineyards (Zarrinkoub, 2016), while the risks associated with 

hydrological system variability are beginning to show new challenges in the practice of grape 

vine overwintering (Piché, 2014). The practice of viticulture is also strongly tied to culture and 

socioeconomic choices in addition to climate conditions; on-the-ground adaptation practices, 

technological  innovations  as  well  as  predictive  crop  modelling  integrating  socioeconomic 

information and non-climate environmental information will be necessary to provide reliable 

information to inform choices (Challinor et al., 2013; Nicholas & Durham, 2012). A continued 

and accelerating warming trend (as can be seen for the higher emissions scenario [Figure 4-

13]) may contribute to the decoupling of climate and hydrological systems that could affect 

grape vine phenology in hard-to-predict ways, or drastically alter the operational capabilities 

and context, contributing to a more complex socio-ecological system compared present and 
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forcing operators to adapt to rapidly changing environmental and operational conditions that 

are extremely difficult  to  operate within  (B.  I.  Cook & Wolkovich,  2016;  Easterling,  Seipt, 

Terando, & Niu, 2012).
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     4.6.4    -     Strengths, Limitations, and Research Considerations

The main research I present here is based on a large array of different climate model data as  

well  as  remotely-sensed  climate  data,  and  vineyard  locations  extracted  from  online 

databases. Each data source introduces or is subject to uncertainties and for each data type, 

the relative applicability to  agricultural/viticultural  planning needs to be contextualized and 

considered for its strengths and limitations.

Normalized Climate Data

The ClimateNA data set  (Wang et al., 2016), which uses model ensembles and PRISM-like 

dynamical  downscaling  is  particularly  useful  for  determining  average trends over  30-year 

normalization periods. Average estimates over these time-spans helps in understanding and 

planning for the impacts of short-term regional effects of climate forcings such as the El Niño 

Southern Oscillation, solar cycles, and natural variability which can influence average climate 

conditions  over  multi-annual  time  periods.  That  said,  the  effects  of  climate  change  as 

estimated by ClimateNA using model averages and PRISM-like downscaling methods cannot 

effectively  capture  or  represent  changes  experienced  at  scales  below  the  1  Km  grid 

resolution; Wang et al.  (2016) also rely on some simplifications in modelling vegetation and 

the local effect of topography (slope, aspect)  This data set, an expansion of the ClimateBC 

and ClimateWNA projects (Hamann & Wang, 2005; Wang, Hamann, Spittlehouse, & Murdock, 

2011), is reliant on the availability of weather station data to generate an interpolated surface  

of temperatures and other climate variables that comprise the baseline of the delta method 

applied in modelling the climate anomalies of general circulation models [GCMs]; as a result,  

this approach is not as reliable in assessing northern and remote areas with sparse weather 

station distribution.42

Comparing ClimateNA data against the Daymet data  (Thornton et al.,  2015) shows 

how variable climate measurements can be at locations according to shorter-term pseudo-

climatologies, as is the case for Quebec’s vineyards. This data set was included to illustrate 

that  the  impact  of  climate  variability  and  multi-year  climate  forcings  can  result  in  large 

fluctuations above or below the mean climate average for several consecutive years at a time, 

42 The data set authors however estimate that the average error for monthly temperatures compared to similar gridded 
climate projects is small (+/- 0.77 °C) (Wang, Hamann, Spittlehouse, & Carroll, 2016).

122



obfuscating conclusions drawn from them. With this  in mind,  I must clarify that though the 

Daymet pseudo-climatology (2011 – 2015) is reflective of average temperatures during this 

short time period, this is not a statistically valid sample on which to generate a baseline or  

normalization period and any results drawn from it are likely dominated by natural variability. 

Climate estimates that reduce the impacts of signal noise and uncertainty are useful for 

long-term estimates,  and  are  generally  useful  for  determining  trends  and  curves  for  the 

purpose of regional long-term planning. When considering the needs of industry operators 

however,  information  that  is  timely  and considers  inter-annual  variability  is  necessary  for 

short-term agricultural management and decision-making on activities such as choice of crop 

sub-species, quantities, and insurance coverage (Bradshaw et al., 2012; Dunn, Lindesay, & 

Howden,  2015).  In  order  to  provide  the  best  information  for  planning  by  operators,  an 

approach  that  statistically  integrates  data  from  daily  observations  to  determine  potential 

variability is necessary for the information to be useful for operators who work within shorter 

time-horizons (Dunn et al., 2015).

Climate Scenarios

It is also worth mentioning again that the path-dependent nature of climate change prediction 

introduces an inescapable uncertainty in the quantifying of how global-scale climate change 

mitigation  plans  will  be  actualized,  their  relative  effectiveness,  and  the  overall  climate 

response from these actions. The RCP scenarios that my research is based on are highly 

educated guesses as to how organized and motivated the global community will be in tackling 

climate change (Moss et al., 2010). As such, it's likely that the resulting RF experienced at the 

end  of  century  may  not  precisely  reflect  the  results  of  either  the  RCP 4.5  or  RCP 8.5  

scenarios.43 Instead,  I  present  the  results  of  these  analyses  as  the  upper  and  lower 

boundaries of what regional climate change may look like given varying degrees of effort to  

address carbon emissions, with “Stabilization” as a pragmatically optimistic goal for end-of-

century efforts  (Thomson et al., 2011). The path dependent climate impacts from these two 

scenarios may also only become clear once RF anomalies begin increasing either marginally 

or drastically from present-day. This would suggest that the reliability of climate models may 

43 As both of these scenarios reflect a >2 ºC world, a decisive and organized global movement to drastically curb emissions 
could potentially lead to more optimistic scenario forecasts, such as those outlined in RCP 2.6 .
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be held as the dominant source of uncertainty in climate predictions in short term planning, 

while the accuracy of RCP scenarios in predicting global climate trends presents the greater 

amount  of  uncertainty  in  long  term  planning.  For  on-the-ground  operators,  this  climate 

prediction information will need to be contextualized and communicated regularly to provide 

operators with benefits in the agricultural or viticultural planning and in the development of 

climate adaptation efforts at the seasonal to multi-year scales (Bradshaw et al., 2012; Dunn et 

al., 2015).

Vineyards and Geocoding

When determining vineyard locations, I relied mainly on manually entered centroid of plots for 

a significant portion vineyards (n = 82) and the geocoded addresses of vineyards for the 

majority  remaining  (n  =  110).  For  aggregated  analyses  at  the  regionally  scale  this  is 

adequate, but for finer-scale site suitability analysis, as would be necessary for activities such 

as precision agriculture, this approach is insufficient. There is a degree of uncertainty in the 

geocoding process as addresses are typically placed a certain distance along a center line 

(e.g. roads) as an interpolated estimate of distance between known addresses. While this 

method  is  relatively  accurate  for  urban  centres,  according  to  one  study,  rural  areas  can 

experience geocoded positional errors in excess of 3 Km from their true location  (Cayo & 

Talbot,  2003).  In addition,  the placement of  geocoded points along roads requires further 

post-processing  to  adjust  location  potentially  hundreds  of  meters  to  the  location  of  the 

vineyard plot.  Given that the highest grid resolution for both major climate data sets was 

roughly ~1 Km, and the positional  uncertainty presented by geocoded vineyard locations, 

meso-to-microscale variability in terrain were not considered in the climate analysis.

Viticulture-Climate Metrics

For the agroclimatic metrics, the thermal thresholds set in the literature defining viticultural 

climate indices are all used to denote the regions that best accommodate different varieties of  

grapes used in winemaking. Each of these climate metrics are adapted to and aim to reflect 

the climates that they were built  to describe, typically regions of western Europe  (Huglin, 

1978;  Jackson  &  Cherry,  1988;  Winkler  et  al.,  1974) and  in  few  instances  Australia 

(Gladstones, 1992; Hall & Jones, 2010). As such, the relative accuracy and applicability of 
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many of these climate metrics,  is limited for use in Quebec due to its largely continental  

climate and by the high latitudinal profiles of most vineyards operating throughout the region.  

That said, the LTI index might be better suited for determining viticulture climates at higher 

latitudes than the WI Index due in part to their inclusion of a simple latitudinal modifier (Huglin, 

1978; Jackson & Cherry, 1988; Rayne & Forest, 2016), however the HI and BEDD Indices 

use a similar method to Winkler for heat summation in addition to a more comprehensive 

latitude  modifier  function  (Gladstones,  1992;  Huglin,  1978);  this  partly  why  Tonietto  and 

Carbonneau integrate HI into their Geo-viticulture Multi-Criteria Climate classification system 

over other heat summation metrics (Tonietto & Carbonneau, 2004). 

While many of these indices can provide in-depth recommendations of the most appropriate 

wine  grape  to  cultivate  based  on  climate  characteristics,  I  defer  to  the  GST metric  for 

assessing the  V. vinifera grapes based on regional GST (Fraga et al., 2012; Hall & Jones, 

2009, 2010).  This is largely due to the fact that most other viticulture-climate metrics are 

specifically to categorize  V. vinifera  varietals grown within specific environmental conditions 

typically found in Europe and fail to include factors such as frost, mildew and pest risks which 

are region-specific – and of particular concern for Quebec – and not well understood within 

the emerging context of global climate change. As such, the on-the-ground choices of grape 

species  will  need to  carefully  planned and experimented with  by  vineyard  operators  and 

horticulturists as climatic and other growing conditions evolve.

Ground-Truth and Operator Experiences

For  the  entirety  of  this  research,  my  approach  has  relied  on  readily-available  remotely-

captured Open data processed using GIS with very little verification from operators on-the-

ground. While multi-criteria evaluations using the best available climate data represents a 

“best guess” in objectively determining present and future climate conditions, this approach 

fails to capture cultural contexts and operator-held knowledge that is of key importance to 

determining  the “ground-truth”  of  performing viticulture in  Quebec.  Climatic  variability  and 

specific  bioclimatic  indicators  that  greatly  influence  vineyard  operations  require  not  only  

precise data collected at the micro-scale, but also the observations and experiences of the 

operators themselves.
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Agricultural and Viticultural Practice Changes

When considering vineyard locations and industry conditions projected forward to the end-of-

century, a major assumption taken is that present-day agricultural areas will remain the same 

throughout time. In practice, changes to rural land use planning, seasonal climate trends and 

industrial economic conditions greatly impact the extents of agricultural areas on long time 

scales  as  well  as  inter-annually.44 The  present-day  placement  of  vineyards  throughout 

Montérégie and southernmost regions of Quebec arguably reflects the operator need to seek 

out the warmest regions of Quebec to satisfy the thermal needs of V. vinifera and other hybrid 

grape species. As the region becomes warmer, traditional practices and grape varietals will  

need to be adapted and a degree of risk due to inter-annual climate variability and other  

environmental concerns will need to be planned for. These changes may require operators to 

purchase crop insurance plans, dissuading smaller operators from attempting to experiment 

or engage in the wine-growing industry. 

Additionally,  as  these  present-day  warm  regions  in  particular  become  much  warmer,  

accelerating the inter-period heating potential for most viticulture-climate metrics, regions that 

better  reflect  climate conditions of  today may be more sought-after  for  their  capability  to  

sustain varietals developed for present-day climates. While warming in Quebec may shift the 

suitability of climates to reflect those of warmer areas, climates present throughout already 

warm areas of the United States are already nearing threshold where further warming may 

result in negative impacts to yields for already-established crops and fruits; extreme heating 

events could mimic these conditions in the short-term and overall warmer average conditions 

could  exacerbate  the  situation  (Lepage  et  al.,  2011;  Lobell  et  al.,  2006).  Phenological 

modelling,  using  multiple  bioclimatic  indicators  and Bayesian statistical  methods are  thus 

necessary to determine species-specific development and fruition patterns with a measure of 

certainty  (Köse,  2014).  More information is thus needed from operators themselves, from 

instrumental  records  and  personal  observations  and  experiences,  to  understand  their 

perceptions of climate risk and considerations when developing agricultural plans (Belliveau 

et al., 2007; Bradshaw et al., 2012)

44 For an in-depth example of some of these changes for Southern Quebec see Chapter 4, section 3.4. 

126



     4.6.5    -     Summary of Conclusions and Avenues for Further Research

To conclude my analysis, I have determined that Southern Quebec can expect to experience 

some climatic changes in the near and distant future that may be of concern to vineyard 

operators throughout the region. Climate model ensembles compared to satellite-determined 

average of  the previous five years of  climate conditions show that  this  region may have 

already experienced visible warming from the 1981 – 2010 reference period and if  these 

trends continue, observed warming will likely resemble average climate conditions for both 

RCP 4.5 and 8.5 scenarios in the short term. In the near future, present-day suitable climates  

may extend to the North-East following the Saint Lawrence River, with the vineyard-populated 

Montérégie region experiencing the warmest average climate conditions. These changes may 

create opportunities for operators to experiment more with more economically sought-after 

European  grape  species  that  typically  have  greater  thermal  demands  than  endemic  or 

hybridized wine grape species. In the longer term, climatic changes will become more path-

dependent, diverging according to the relative successes of the global community to curb 

carbon emissions and mitigate climatic change. Gradual and stabilizing climatic conditions 

may yield a Southern Quebec that is moderately warmer than present-day and better suited 

to more temperate viticultural activities while a climate reflecting more accelerated inter-period 

warming may contribute to environmental condition that prove  difficult to plan for when it  

comes to agricultural practices that demand long-term investments such as viticulture. Under 

higher  emissions  scenarios,  drastic  changes  to  growing  season  conditions  may  risk 

negatively impacting other annual and perennial crops as well fundamentally changing the 

agricultural landscape of Southern Quebec and the provincial food and tourism economy. This 

analysis can be considered the first step in the broader challenge of performing regional-

scale, projected viticulture-climate assessments in Quebec. 

Moving  forward  from  here,  several  methods  of  following  up  on  this  research  are 

necessary in order to derive greater utility  to industry and operators.  The development of 

much more sensitive phenological models using daily weather and normalized climate data is 

necessary in order to better understand the unique local  climate conditions necessary for 

growth for specific grape vines (Köse, 2014; Webb et al., 2007); this of particular importance 

for  economically  valuable  V.  vinifera  as  well  as  endemic  and  hybridized  varietals  that 
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vineyards presently rely upon. Information like this will be essential to determine the species-

specific responses to greater heating degree-days and the particularities of frost risk with an 

advancing start to the growing season  (Molitor et al.,  2014; Mosedale et al., 2015).  While 

multi-variable crop models have been developed for particular species of  V. vinifera, more 

research would be needed to assess their applicability for modelling typical Quebec-specific 

grape varietals, and such an analysis could serve as an interesting follow-up to this work.  

Knowledge of vineyard-scale data, such as phenological dates of importance, annual yields 

and  production  values,  and  local-level  weather  data  would  be  of  key  importance  to  the 

development of these models. Much of this work would need to be conducted by contacting 

individual  operators  and  academics  who  maintain  agricultural/viticultural  research 

relationships with commercial vineyards. Data sets pertaining to grape and wine production 

held by MAPAQ and the AVQ might also be useful to determining industry-level trends in 

annual  wine production,  however  individual  vineyard-level  data  would be more reliable  in 

determining smaller-scale trends by local area or region.

Another potential follow-up to much of this work would be to facilitate the sharing much 

of the technical methodologies and tools I've developed throughout the course of this project, 

including  but  not  limited  to  metric  calculation  scripts,  data  formatting  models,  listings  of 

technical resources, and  documentation of pre- and post-processing techniques. These GIS 

script resources could be shared online as scripts via developer platforms such as GitHub, or 

compiled  into  a  QGIS  plug-in  specifically  built  for  viticulture-climate  analysis  while 

documentation and methods could be explicitly  summarized in a working paper or article 

released under an Open Access license or published in an Open academic journal such as 

PLoS One. Many of my scripts have been developed to use monthly averaged data, so a  

potential  follow-up  of  this  work  would  be to  expand  these scripts  to  accept  daily  values 

summarized in spreadsheet or raster data. There are many technical avenues of expansion 

that I could consider.
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Chapter 5 - Conclusion

Throughout  this  thesis,  I  have  presented  research  within  the  overlapping  fields  of 

bioclimatology, spatial analysis and open science. Focusing on the very niche topic of wine 

studies, I hope I have provided a case example that adds to the growing body of literature on 

Quebec, an emerging and promising zone for viticulture. The prospects for growth in this 

industry under low greenhouse emission scenarios is great and with adequate planning and 

coordination,  viticultural  operators  have  the  potential  to  proliferate  and  establish  the 

Québecois Terroir. 

This research project shows the possibility of adopting newer, more accessible methods of 

performing  traditional  spatioclimatic  analyses.  By  focusing  on  the  history  of  Open 

Source/Data/Access, I hope here to inspire other researchers to exercise their agency in this  

digital  social  movement,  to consider integrating Open methods into their  practices and to 

introduce these approaches into their respective disciplines. Just as the academic community 

has  benefited  from  the  sharing  of  knowledge,  dismantling  the  barriers  of  access  and 

reclaiming the tools to build upon knowledge from proprietary controls can change not only 

the way research is performed but the model upon which societies can participate be better 

informed.

Much of the debate concerning climate change and the future of wine focuses on how the Old  

World will be able to maintain their traditional viticultural practices and how the New World 

can benefit  under  new climate regimes.  In  both  cases,  our  opportunity  to  gain from any 

potential benefits hinges on the global effort to prevent climate change from getting worse. 

Under the worst possible scenarios, socioeconomic challenges at the global scale brought on 

by a drastically changing climate have the potential to deepen the divide between developed 

and  developing  nations,  displacing  nations  and  forever  altering  the  lives  of  those  less 

fortunate as today's global problems are exacerbated by a runaway global climate. In order to  

achieve  the  best  possible  scenario,  sustainably  developing  and  decarbonizing  the  global 

economy  will  need  to  happen,  and  soon.  Only  in  a  world  where  all  peoples  lives  are 

considered worth the political  effort  of  preventing environmental disaster will  societies still 

plan for the future of a luxury commodity such as wine.
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Annex 1 – Additional Methodologies

     7.1.1    -     Climate Data Projections

Due in part to the standardized and consistent formatting decisions adopted by the Canadian 

geospatial  data  authorities  (Johnson  &  Singh,  2003),  spatial  data  for  most  Canadian 

shapefiles is typically available in the NAD83 Canadian Spatial Reference System (CSRS) 

projection (EPSG: 4617). For Canadian gridded data sets, such as the Land Use and Crop 

Type raster grids, areas are made available according to UTM zone and projected according 

to  the  respective  UTM  zone.45 In  order  to  have  continuous  surfaces  encompass  the 

agricultural region of Southern Quebec, I warped grid tiles to the NAD83 (CSRS) projection, 

merged, and clipped to the spatial extent of Quebec, removing Ontario and New Brunswick.

For most other environmental data sets coming from international agencies, data and grids 

were made available in the WGS84 or NAD83 projection. In these cases, I did not reproject  

grids unless there were combined with Canadian spatial data, in which case I warped them to  

the NAD83(CSRS) projection to maintain consistency. 

For some climate data, the standard projection did not adhere to a geographic coordinate 

system  and  needed  to  be  defined  and  projected  to  common  reference  system  before 

analysis. For the ClimateNA grids, the projection  custom Lambert Conformal Conic projection 

which  needed to  be  defined for  QGIS.  The projection  definition I  used to  set  the  proper 

coordinate system was as follows:

• ClimateNA Lambert Conformal Conic Projection

+proj=lcc 

+lat_1=49 

+lat_2=77 

+lat_0=0 

+lon_0=-95 

+x_0=0 

+y_0=0 

+datum=WGS84 

+units=m 

+no_defs

45 The agricultural areas of Quebec encompass UTM zones 17 thru 20 North.
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The Daymet raster tiles also used a specific Lambert Conformal Conic projection that needed 

to be defined as well before they could be processed.

• Daymet Lambert Conformal Conic Projection

+proj=lcc 
+lat_1=25 
+lat_2=60 

+lat_0=42.5 
+lon_0=-100 

+x_0=0 
+y_0=0 

+ellps=WGS84 
+towgs84=0,0,0,0,0,0,0 

+units=m 
+no_defs

Using these projections, I reprojected a shapefile of Quebec Provincial Boundaries and used 

the QGIS graphical modeller to batch process these grids before merging.46 

46 In order to prevent RAM overflow when processing hundreds or more climate grids, I needed to program a script (“Clear 
tmp folder”) to remove temporary files generated by SAGA that ran the Python “shutil” library on my '/tmp' folder after 
every model run iteration.
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Despite  the  superior  usability  of  NetCDF data  containers  for  performing multidimensional  

analyses (Wilhelmi, Sampson, & Boehnert, 2015), all climate grids used in the analyses were 

downloaded in the GeoTIFF format. This was in part to the fact that earlier versions of QGIS 

did  not  handle  NetCDF format  natively  during my data  acquisition  phase.  In  lieu of  this,  

monthly climate grids representing annual time periods were merged into multi-band rasters 

to achieve similar functionality.

For DEM-derived products such as Aspect, Slope, and Topographic Indexes, I employed a 

combination of GRASS-derived (“r.slope”,  “r.aspect”)  and GDAL-derived (“TPI Topographic 

Position Index”) analyses.47 In order to determine USDA soil categorizations based off of soil 

grid percentages of silt, sand, and clay compositions, these grids were processed together 

using the GRASS function “r.soils.texture”

47 When calculating slope,  warping DEMS to a projected coordinate reference system or setting a Z-value 

multiplier was not necessary as GRASS converts all Z units to degrees before calculating slope. 
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     7.1.2    -     Sources and Consideration for Non-Climate Data

To  build  a  multi-criteria  analysis  many  data  sets  are  needed  to  assemble  the  many 

components of a non-climatic suitability. These variables include soil components, drainage 

characteristics, relief (elevation, slope, aspect, and topographic indexes), roadways, railways, 

and water networks. In limiting my sources to Open Data, I had expected that there would be  

few options available for satisfying my data needs but this turned out not to be the case.

For hydrological and pedological data sets, I considered both the CanSIS Soil Landscapes of 

Canada data set and the ISRIC SoilGrids 250m data set (Canadian Soil Information Service, 

2013; Hengl et al., 2014). As the soil surveys available through CanSIS is organized by vector 

polygons that contain soil horizons that begin and end at different depths, I suggest using the  

ISRIC data. The grids available through ISRIC are composed of interpolated textures and soil 

types at globally consistent depths (0cm, 5cm, 15cm 30cm, 60cm, 1m, and 2m) and extend to 

have global coverage. In addition, these grids integrate the CanSIS and other soil surveys in  

their interpolations for soil characteristics throughout Canada and elsewhere. Based on the 

literature the main soil components consider for the analysis were percentages of silt, sand, 

and clay as well as percentages of organic carbon and soil pH.

Given that Canadian drainage surveys were only available through CanSIS surveys, I refer to 

these estimates for  applicable regions and exclude drainage from my analyses for areas 

residing outside of the CanSIS regions due to the limited coverage and inadequate spatial 

resolution (1 : 250,000).

For elevation data and for analyses of topographic features (slope, aspect, terrain ruggedness 

index), I considered the following Digital Elevation Models [DEMs] [Figure 7-2]:

• The GeoGratis Canadian DEM data set at 0.75 arc-second (~30m) resolution (Natural 

Resources Canada, 2013), 

• The NASA and Japan Ministry of Economy, Trade, and Industry-produced Advanced 

Spaceborne Thermal Emission and Reflection Radiometer [ASTER] Global DEM at 
30m resolution (NASA & METI, 2016), 

• The NASA Shuttle Radar Topography Mission [SRTM] DEM at 90m resolution (Farr et 

al., 2007), and 

161



• The EarthEnv DEM90 void-filled SRTM-ASTER hybrid raster at 90m resolution (N. 

Robinson, Regetz, & Guralnick, 2014). 

While  all  the DEMs I  consider  have continuous Canadian coverage,  I  would suggest the 

EarthEnv DEM90 for regional analyses. The main benefits of this data set over others is the 

claim of high error-removal by using the combination of SRTM and ASTER DEMs, as well as 

the slightly coarser resolution which allows for quicker processing times with typical consumer 

hardware specifications. 

Vector shapefiles for Canadian roads, highways, railways, and waterways are available via 

the  data  sets  produced  by  Natural  Resources  Canada,  specifically  the  National  Hydro 
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Network (Government of Canada & Natural Resources Canada, 2016a), the National Railway 

Network  (Government of Canada & Natural Resources Canada, 2016b),  and the National 

Road Network  (Government of Canada & Natural Resources Canada, 2016c). These were 

converted to raster files to allow for easier analysis with the AAFC data products.

Other  boundaries such as Economic Regions and the Quebec Provincial  Boundaries are 

accessible as part of the StatsCan Census Boundary files for 2011 (Statistics Canada, 2015) 

and the Municipal Regions of Quebec hosted on GeoBase (Government of Canada & Natural 

Resources Canada, 2010).

By applying a set of categorization schema to these data sets based on best practices and 

assumptions followed in other studies, it is possible to identify the most and least suitable 

locations for vineyards based on physical characteristics. Where regions fall far from meeting 

the topographical or other components (e.g. bare bedrock, very severe slopes, poorly drained 

soils,  roads,  etc.),  pixels  and  polygons  are  labelled  “unsuitable”.  Combining  this  scoring 

system alongside methods for  distinguishing the exact  areas where agricultural/viticultural 

operations have operated both historically and for present-day. It would be feasible to assess 

relative  suitability  of  soil,  hydrography,  and  topography,  limited  to  agriculturally  important 

areas throughout Quebec.
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Annex 2 – Source of Climate and Other Environmental Data Sets
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Table 7-1: Examples Climate Data Sets Considered with Measured Variables, Scopes, and  
Sources

Climate Data Sets
Name Type Resolution Years Available Data Source

Observed (Interpolated) Polygons (1:1,000,000)

Points (User-Specified)

Observed (points) Points (1:50,000) Environment Canada (EC)

ClimateNA

Daymet 1 Km 2006-2015, Monthly

10 Km 1971-2000, Monthly

10 Km

WorldClim Historical 1950 – 2000, Monthly Normals

Canada Plant 
Hardiness Zones

1930 – 1960, 1961 – 1990, 
Averages

Natural Resources Canada 
(NRCan)

Canadian Climate 
Future Estimates

Historical and 
Projected (RCP 2.6, 

4.5, and 8.5)

1901 – 2100, 30-year Monthly 
Normals 

Natural Resources Canada 
(NRCan)

Canadian Regional 
Climate Model

Historical and 
Projected (SRES A2)

Gridded Points (0.5 
Degree intervals)

1980 – 2099, 30-year Monthly 
and Annual

Environment Canada 
(Canadian Regional Climate 

Model v4.2.3)

Canadian Weather 
Stations

1960 – 1990, 1970 – 2000, 
1980 – 2010, Monthly Normals

Historical and 
Projected (RCP 4.5 

and 8.5)

~1 Km (0.5 Minutes 
intervals)

1961 – 1990, 1981 – 2010, 
2011 – 2040, 2041 – 2070, 

2071 – 2100, Monthly Normals 

University of  Calgary, 
Hadley (CRU-TS 3.22, 

CMIP5)

Observed (Interpolated 
Grid)

NASA (World Meteorological 
Organization; WMO)

Drought Watch 
Interactive Mapping  

Derived Climate

Observed (Interpolated 
Grid)

Agriculture and Agri-Food 
Canada (AAFC)

Quebec Agroclimatic 
Atlas

Observed (Interpolated 
Grid)

1974 – 2003, 1978 – 2008, 
Monthly and Seasonal

Agriculture and Agri-Food 
Canada (AAFC)

~1 Km (0.5 Minute 
intervals)

Global Historical Climatology 
Netw ork, FAO, WMO
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Table 7-2: Example Land, Soil and other Non-Climate Data Sets Considered with  
Data Types, Scales, and Sources

Soil and Topographic Data Sets

Name Type Resolution Data Source

1:50,000 Agricultural Extent Statistics Canada

Raster Grids 30 m

Raster Grids

Vector (Polygons) 1:50,000 Regional Extents Statistics Canada

Crop Type Maps Raster Grids 30 m

EarthEnv – DEM90 Raster Grids 90 m

Raster Grids 30 m

1:50,000

1:50,000 Major Transit, Roads

Vector (Polygons) 1:50,000

Vector (Polygons) Not Specified

World Soil Grids Raster Grids 250 m

Vector (Polygons) Not Specified Agricultural Extent

Variables of 
Interest

Agricultural 
Ecumene 

Boundary Files, 
2011

Vector (Points, 
Lines, Polygons)

ASTER Global 
DEM

Elevation, (Aspect, 
Slope, Terrain Position 

Index)

United States 
Geologic Survey 

(USGS)

Canadian Digital 
Elevation Model

0.75, 1.5, 3, and 
6 Second 
intervals

Elevation, (Aspect, 
Slope, Terrain Position 

Index)

Natural Resources 
Canada (NRCan)

Census Divisions 
and Economic 

Regions of Quebec

Zoned Agricultural, 
Forest, Urban, and other 

areas

Agriculture and 
Agri-Food Canada 

(AAFC)

Elevation, (Aspect, 
Slope, Terrain 
Ruggedness)

Robinson et al. 
2014

Land Use 1990, 
2000, 2010

Zoned Agricultural, 
Forest, Urban, and other 

areas

Agriculture and 
Agri-Food Canada 

(AAFC)

National 
Hydrological 

Network

Vector (Points, 
Lines, Polygons)

Major Water Bodies, 
Water Lines

Natural Resources 
Canada (NRCan)

National Road 
Network

Vector (Points, 
Lines, Polygons)

Natural Resources 
Canada (NRCan)

Soil Landscapes of 
Canada v3.2

Agricultural Extent, Soil 
Carbon, Clay Content, 

Sand Content, Silt 
Content, Soil pH

Canadian Soil 
Information Service 

(AAFC, NRCan)

Territoires des 
Stations Météo

Weather Station 
Proximity

Financiere Agricole 
Quebec [FAQ]

Soil Carbon, Clay 
Content, Sand Content, 
Silt Content, Soil Depth, 

Soil pH

ISRIC – World Soil 
Information

Zone Agricole du 
Quebec

Commission du 
Protection Agricole 

du Quebec 
[CPTAQ]
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Table 7-3: Viticulture Suitability Criteria accorded to Non-Climatic Variables and their  
Supporting Literature

Non-Climate Suitability Criteria

Criteria Derived from Data Source Support

Land Use

Soil ISRIC World Soil Grids (Nowlin & Bunch, 2016)

Low-Neutral pH Soil ISRIC World Soil Grids

Elevation

Elevation (Joneset al., 2004)

Soil ISRIC World Soil Grids

Elevation Many Studies

Soil ISRIC World Soil Grids

Well Drained Soils Soil Many Studies

Agricultural Land 
Use/Classification

AAFC Land Use Grids 
1990/2000/2010, AAFC Crop Type 

Inventory 2011-2015
(Hansen et al., 2013), 

Low Available Water 
Content

(Joneset al., 2004; Nowlin & 
Bunch, 2016; Wolf & Boyer, 

2003)

Relatively Elevated 
Land Parcels 

Topographic Position Index, 
derived from EathEnv-DEM90 
using [ r.topidx ] (GRASS) 

(Joneset al., 2004; Nowlin & 
Bunch, 2016)

Slight/Moderate 
Slopes

Slope, derived from EarthEnv-
DEM90 using [ r.slope ] (GRASS)

Soil Carbon between 
2% to 4%

(Barriault, Michaud, 
Bourgeois, Grenon, & 

Plouffe, 2013)

Southward-Facing 
Slopes (in Northern 

Hemisphere)

Aspect, derived from EarthEnv-
DEM90 using [ r.aspect ] 

(GRASS)

Unrestricted Soil 
Depth > 80 cm

(Barriault, Michaud, 
Bourgeois, Grenon, & 

Plouffe, 2013)

CANSIS Soil Landscapes of 
Canada v3.2
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Table 7-4: Climate-based Indices, their source literature and their specific criteria examined

Climate Categorization Indices and Criteria

Name Equation Developed by

Temperature, Latitude April 1 – October 31, Daily Varies (Gladstones. 1992)

Continentality Index Temperature N/A (Gladstones. 1992)

Cool Night Index Temperature T min September, Monthly Average 4

Dryness Index 4

Frost Free Period Temperature Annually Varies (Jones et al. 2004)

Temperature Σ [ ( [ T max + T min ] / 2 ) – 10 ] 6

Growing Season Temperature 6

Temperature, Latitude 6 (Huglin, 1978)

Hydrothermal Index Σ [ T mean * Precipitation ] 3

4

Spring Frost Index Temperature 3 (Wolf & Boyer, 2003)

Criteria 
Evaluated

Period (Northern 
Hemisphere)

# of 
categories

Biologically Effective 
Growing Degree Days

Σ min[max ( [ T max + T min ] / 
2 ) – 10, 0  ]  * k + TRadj, 9 ]; 

where k = multiplier for day length 
according to latitude and TRadj is 

an adjustment for temperature 
range 

MTWM – MTCM; where MTWM  
= Mean Temperature of the 

Coldest Month, MTCM = Mean 
Temperature of the Coldest Month

June and January, Monthly 
Averaged

(Tonietto & 
Carbonneau, 2004)

Precipitation, 
Potential 

Evapotranspiration, 
Soil moisture

Σ [ Wo + Precipitation – (Tv + 
E) ]; where Wo = Initial Soil 

Water Reserve, Tv = Transpiration, 
E = Evaporation

April 1 – October 31, 
Monthly Averaged

(Tonietto & 
Carbonneau, 2004)

n, where n = Total # of 
consecutive days days where 

Tmin > 0ºC 

Growing Degree Days 
(Winkler Index)

April 1 – October 31, 
Monthly Averaged

(Amerine & Winkler, 
1944; Winkler et al., 

1974)

Σ [ ( T max + T min ) / 2 ] / n; 
where n = number of days

April 1 – October 31, 
Monthly Averaged

(Hall & Jones, 2009; 
G. V. Jones et al., 

2005)

Huglin Heliothermal 
Index

Σ ( ( [ T mean – 10 ] + [ T max – 
10 ] ) / 2 ) * k; where k = 

multiplier for day length according 
to latitude

April 1 – September 30, 
Daily

Temperature, 
Precipitation

April 1 – October 31, 
Monthly Averaged

(Branas, Bernon, & 
Levadoux, 1946)

Latitude-Temperature 
Index

Monthly Temperature, 
Latitude

MTWM * [ 60 – Latitude ]; where 
MTWM = Mean Temperature of 

the Warmest Month 

June/July/August, Monthly 
Averaged

(Jackson & Cherry, 
1988)

[ ( T max + T min) / 2 ] - Tx min; 
where Tx min = Extreme 

Minimum Temperature

April, Extreme Minimum and 
Monthly Average
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Table 7-5: The Biologically Effective Growing Degree Days Index  (developed 
by Gladstones, 1992; adapted from Mills-Novoa et al., 2016)

Criteria (Degree Days) Classification Value/Score

< 800 N/A 0
800 thru 1020 Class 1 1
1021 thru 1080 Class 2 2
1081 thru 1140 Class 3 3
1141 thru 1200 Class 4 4
1201 thru 1260 Class 5 5
1261 thru 1320 Class 6 6
1321 thru 1380 Class 7 7
1381 thru 1440 Class 8 8
1441 thru 1500 Class 9 9

Biologically Effective Growing Degree Days (Gladstones 1992; Adapted from 
Mills-Novoa et al. 2016)

Table 7-6: The Latitude Temperature Index (adapted from Jackson & Cherry,  
1988)

Latitude Temp Index (Jackson & Cherry, 1988)

Criteria (Index) Classification Value/Score

< 99 N/A 0

100 – 195 Region A 1

196 thru 275 Region B 2

276 thru 370 Region C 3

371 thru 500 Region D 4
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Table 7-8: The Average Growing Season Temperature Index (adapted from Hall & 
Jones, 2009)

Growing Season Temperature (Hall & Jones, 2009)

Criteria (degrees Celsius) Classification Value/Score

< 10 Unsuitably Cold 0
10 thru 13 Very Cool 1
13 thru 15 Cool 2
15 thru 17 Intermediate 3
17 thru 19 Warm 4
19 thru 21 Hot 5
21 thru 24 Very Hot 6

Table 7-7: The Winkler Degree-Day Index (developed by Amerine & Winkler, 1944; adapted  
from Winkler et al., 1974)

Winkler Celsius Categories (Winkler et al. 1974)

Classification Value/Score

< 800 Unsuitable NULL
801 thru 1100 “Very Cold” 0
1101 thru 1390 Region I 1
1391 thru 1670 Region II 2
1671 thru 1940 Region III 3
1941 thru 2220 Region IV 4
2221 thru 3000 Region V 5

Criteria (Degree Days,  
Celsius)
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Table 7-9: Huglin Index (adapted from Fraga, Malheiro, Moutinho-Pereira,  
Cardoso, et al., 2014; developed by Huglin, 1978; adapted from Tonietto &  

Carbonneau, 2004)

Huglin Index (Tonietto and Carbonneau, 2004)

Criteria (Degree Days) Classification Value/Score

< 1000 Unsuitable NULL
1001 thru 1500 Very Cool (HI-3) 0
1501 thru 1800 Cool (HI-2) 1
1801 thru 2100 Temperate (HI-1) 2
2101 thru 2400 Temperate-Warm (HI+1) 3
2401 thru 3000 Warm (HI+2) 4
3001 thru 3600 Very Warm (HI+3) 5

> 3600 Unsuitable NULL

Huglin Index (Fraga et al. 2014)

Criteria (Degree Days) Classification Value/Score

< 900 Unsuitable 0
901 thru 1500 Cool 1
1501 thru 2100 Temperate 2
2101 thru 2700 Warm 3
2701 thru 3600 Very Warm 4
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Table 7-10: Cool Night Index (adapted from Fraga, Malheiro, Moutinho-Pereira,  
Cardoso, et al., 2014; adapted from Tonietto & Carbonneau, 2004)

Cool Night Index (Tonietto and Carbonneau, 2004) 

Criteria (degrees Celsius) Classification Value/Score

< ]12 Very Cool 0
12 thru ]14 Cool 1
14 thru ]18 Temperate 2

> 18 Warm 3

Cool Night Index (Fraga et al. 2014)

Criteria (degrees Celsius) Classification Value/Score

< ]12 Cool Nights 0
> 12 Warm Nights 1

Table 7-11: The Seasonal Soil Dryness Index (adapted from Fraga, Malheiro,  
Moutinho-Pereira, Cardoso, et al., 2014; developed by Riou et al., 1994;  

adapted from Tonietto & Carbonneau, 2004)

Dryness Index (Tonietto and Carbonneau, 2004)

Criteria (mm) Classification Value/Score

< -100 Very Dry 0
-100 thru 50 Dry 1
51 thru 150 Sub-Humid 2

> 150 Humid 3

Dryness Index (Fraga et al. 2014)

Criteria (mm) Classification Value/Score

< -100 Excessively Dry 0
-100 thru 50 Dry 1

> 50 Humid 2
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Table 7-12: Hydrothermal Index (adapted from Branas et al., 1946)

Branas, Bernon, and Levadoux Hydrothermal Index (Branas et al. 1946)

Criteria (Index Value) Classification Value/Penalty

< 2500 Least Risk 0
2500 thru 5100 Moderate Risk 1
5100 thru 10000 High Risk 2
10000 thru 12600 Highest Risk 3

> 12600 Unsuitable 4

Table 7-13: The Spring Frost Index, categories modified to reflect variations  
within the Quebec climate (adapted from Wolf & Boyer, 2003)

Spring Frost Index (Wolf & Boyer 2003)

Criteria Classification Value/Penalty

0 thru 17 Optimal 0
17 thru 18 Low Risk 1
18 thru 19 Lower Risk 2
19 thru 20 Moderate Risk 3
20 thru 22 High Risk 4

> 22 Highest Risk 5
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Table 7-15: Frost Free Period Categories (adapted from G. V. Jones et al.,  
2004; developed by Wolf & Boyer, 2003)

Frost Free Period

Criteria (Days) Classification Value/Score

0 thru 119 Not Suitable 0
120 thru 139 Very Short 1
140 thru 159 Short 2
160 thru 179 Medium 3
180 thru 199 Long 4
200 thru 240 Longest 5

Table 7-14: Extreme Minimum Temperature Categories (loosely based on 
Gustafsson & Mårtensson, 2005)

Extreme Min Temp

Criteria (degrees Celsius) Classification Value/Score

-50 thru -35 Too Cold 0
-35 thru -30 High Risk 1
-30 thru -25 Medium Risk 2
-25 thru -20 Small Risk 3
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Table 7-16: Aggregated Climate, Topography, and Soil Scoring Grid, allowing for rapid  
comparison of data sets across time and from different sources (Work in Progress)

Soil, Topography, and Climate Scoring Grid
Type Character # of Categories Max Points Weight (%) Total

Climate

Latitude Temperature Index 5 4 30.0%
50.0%

Growing Season Temperature 6 5 20.0%

Branas Hydrothermal Index 5 (-) 4 -15.0%
(-22.5%)

Spring Frost Index 6 (-) 5 -7.5%

Topography

Aspect 9 3 10.0%

30.0%
Elevation 3 2 10.0%

Slope 3 3 5.0%

Topographic Position 3 3 5.0%

Soil

Available Water Content 5 2 2.5%

20.0%

Drainage 8 4 7.5%

Soil Carbon 5 2 5.0%

Soil pH 5 2 2.5%

Soil Texture 5 2 2.5%
100.00%
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Table 7-17: Slope Suitability Categories in Horizontal degrees (adapted from G. 
V. Jones et al., 2004)

Slope Suitability

Classification Value/(Score)

< 1 Flat 0 (0)
1 thru ]4.5 Slight Slope 1 (1)

4.5 thru ]13.5 Sloped 2 (2)
13.5 thru ]18 Steep Sloped 3 (1)

18 thru 30 Severe Slope 4 (-1)
> 30 Unsuitable NULL

Criteria (Degrees from 
Horizon)

Table 7-18: Aspect and Cardinal Direction Categories (adapted from G. V.  
Jones et al., 2004) 

Aspect Suitability

Classification Value/(Score)

0 Flat 0 (-1)
1 thru 22.5 North 1 (0)

22.5 thru 67.5 North-East 2 (0)
67.5 thru 112.5 East 3 (1)
112.5 thru 157.5 South-East 4 (2)
157.5 thru 202.5 South 5 (3)
202.5 thru 247.5 South-West 6 (2)
247.5 thru 292.5 West 7 (1)
292.5 thru 337.5 North-West 8 (0)
337.5 thru 360 North 9 (0)

Criteria (Degrees Clockwise 
from North)
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Table 7-20: Topographic Position Index values, categories modified to  
accommodate for best practices in vineyard site suitability (developed by 

Wilson, O’Connell, Brown, Guinan, & Grehan, 2007)

Topographic Position Index

Criteria (Index) Classification Value/(Score)

-120 thru -2 = -1 Valley 0 (-1)
-2 thru -0.5 = 0 Lower Slope 1 (0)
-0.5 thru 0.5 = 2 Middle 2 (2)
0.5 thru 1.5 = 3 Upper Slope 3 (3)

1.5 thru 5 = 1 Ridge 4 (1)
5 thru 10 = 0 Mount 5 (0)

10 thru 200 = -1 Unsuitable 6 (-1)

Table 7-19: Elevation Above Sea Level Suitability (developed by G. V. Jones et  
al., 2004; adapted from Nowlin & Bunch, 2016)

Elevation Suitability

Criteria (m) Classification Value/(Score)

< 0 Below Sea Level 0 (-1)
0 thru ]53 Very Low 1 (0)

53 thru ]114 Low 2 (1)
114 thru ]176 Slightly Low 3 (2)
176 thru ]249 Optimal 4 (3)
249 thru ]301 Slightly High 5 (2)
301 thru ]366 High 6 (1)
366 thru 732 Very High 7 (0)

> 732 Unsuitable 8 (-1)



177

Table 7-21: Soil Drainage Categories (adapted from Kurtural et al., 2007;  
developed by MacDonald & Valentine, 1992)

Drainage Suitability

Criteria (Drainage Code) Classification Value/(Score)

- Not Classified 0 (0)
VP Very Poorly Drained 1 (0)
P Poorly Drained 2 (0)
I Incompletely Drained 3 (1)

MW Moderately Well Drained 4 (2)
W Well Drained 5 (3)
R Rapidly Drained 6 (4)

VR Very Rapidly Drained 7 (5)

Table 7-22: Available Water Content based on Soil Texture (developed by G. V.  
Jones et al., 2004; adapted from Nowlin, 2013)

Available Water Content

Criteria (%) Classification Value/Score

0 thru 10 Very Low (Optimal) 2
10 thru 15 Low 1
15 thru 40 High 0



178

Table 7-23: USDA Soil Texture Categories based on Clay, Sand, and Silt constituencies  
(AWC adapted from Natural Resources Conservation Service, 1997 table 2-1; classes  

adapted from USDA Soil Survey Division, 1993 p63-65)

USDA Soil Categories (Soil Survey Service, 1993; p63-65)

Texture Code Classification Value/Score

1 Heavy Clay 0 15**
2 Silty Clay N/A 16
3 Clay N/A 15
4 Silty Clay Loam N/A 20
5 Clay Loam 1 20**
6 Silt -1 17
7 Silty Loam N/A 20
8 Sandy Clay N/A 16
9 Loam 2 17
10 Sandy Clay Loam N/A 15
11 Sandy Loam N/A 12
12 Loamy Sand 1 8
13 Sand N/A 6

Available Water 
Content (%)
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Table 7-25: Soil Organic Carbon Content Categories (developed by G. V. Jones 
et al., 2004; adapted from Kurtural et al., 2007)

Soil Organic Carbon

Classification Value/(Score)

0 thru 10 Deficient 0 (0)
10 thru 20 Low 1 (1)
20 thru 40 Optimal 2 (2)
40 thru 50 High 3 (1)
50 thru 100 Unsuitable 4 (0)

Criteria (Parts Per 
Thousand)

Table 7-24: Soil pH Suitability Categories (adapted from G. V. Jones et al.,  
2004)

Soil pH

Criteria (pH * 10) Classification Value/Score

0 thru 40 Acidic 0 (0)
40 thru 55 Slightly Acidic 1 (1)
55 thru 65 Optimal 2 (2)
65 thru 75 Slightly Alkaline 3 (1)
75 thru 100 Alkaline 4 (0)
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Figure 7-3: Canadian Wine Statistics from 1995 to 2012 (last year of  
availability) (adapted from OIV, 2016)
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Figure 7-4: Quebec Agricultural Area Polygons adapted from (Agriculture 
and Agri-Food Canada & Government of Canada, 2013; Commission de 

Protection du Territoire Agricole du Québec, 2016; MacDonald & Valentine, 
1992; Statistics Canada, 2015)

(Blue = Data sets used in analysis, Red = Other data sets shown for  
comparison) 
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Figure 7-7: Soil Compositions of Quebec Wineries at Depth of 1 Metre
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Figure 7-8: Soil Composition Range for Quebec Wineries 
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Figure 7-9: Vineyards Organized by Suitability According to Topographical Scores
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Figure 7-10: Vineyards Organized by Suitability According to Soil and Hydrological  
Suitability Scores
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Annex 6 – Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the 

terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International 

Public License ("Public License"). To the extent this Public License may be interpreted as a 

contract, You are granted the Licensed Rights in consideration of Your acceptance of these 

terms and conditions, and the Licensor grants You such rights in consideration of benefits the 

Licensor  receives  from  making  the  Licensed  Material  available  under  these  terms  and 

conditions.

Section 1 – Definitions.

a. Adapted  Material means  material  subject  to  Copyright  and  Similar  Rights  that  is 

derived from or based upon the Licensed Material and in which the Licensed Material is 

translated, altered, arranged, transformed, or otherwise modified in a manner requiring 

permission under the Copyright and Similar Rights held by the Licensor. For purposes of 

this Public  License, where the Licensed Material  is  a musical  work, performance, or 

sound recording, Adapted Material is always produced where the Licensed Material is 

synched in timed relation with a moving image. 

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in 

Your contributions to Adapted Material in accordance with the terms and conditions of  

this Public License. 

c. Copyright and Similar Rights means copyright and/or similar rights closely related to 

copyright including, without limitation, performance, broadcast, sound recording, and 

Sui  Generis  Database  Rights,  without  regard  to  how  the  rights  are  labeled  or 

categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-

(2) are not Copyright and Similar Rights. 

d. Effective Technological Measures means those measures that, in the absence of proper 

authority, may not be circumvented under laws fulfilling obligations under Article 11 of 

the  WIPO  Copyright  Treaty  adopted  on  December  20,  1996,  and/or  similar 

international agreements. 
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e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or 

limitation to  Copyright  and Similar  Rights  that  applies  to  Your use of  the Licensed 

Material. 

f. Licensed Material means the artistic or literary work, database, or other material to 

which the Licensor applied this Public License. 

g. Licensed Rights means the rights granted to You subject to the terms and conditions of 

this Public License, which are limited to all Copyright and Similar Rights that apply to 

Your use of the Licensed Material and that the Licensor has authority to license. 

h. Licensor means  the  individual(s)  or  entity(ies)  granting  rights  under  this  Public 

License. 

i. NonCommercial means  not  primarily  intended for  or  directed  towards  commercial 

advantage or monetary compensation. For purposes of this Public License, the exchange 

of the Licensed Material for other material subject to Copyright and Similar Rights by 

digital file-sharing or similar means is NonCommercial provided there is no payment of 

monetary compensation in connection with the exchange. 

j. Share means to provide material to the public by any means or process that requires 

permission  under  the  Licensed  Rights,  such  as  reproduction,  public  display,  public 

performance, distribution, dissemination, communication, or importation, and to make 

material  available  to  the public  including  in  ways  that  members  of  the public  may 

access the material from a place and at a time individually chosen by them. 

k. Sui  Generis  Database  Rights means  rights  other  than  copyright  resulting  from 

Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on 

the  legal  protection  of  databases,  as  amended  and/or  succeeded,  as  well  as  other 

essentially equivalent rights anywhere in the world. 

l. You means the individual or entity exercising the Licensed Rights under this Public 

License. Your has a corresponding meaning. 

Section 2 – Scope.

a. License grant. 
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1. Subject to the terms and conditions of this Public License, the Licensor hereby 

grants  You  a  worldwide,  royalty-free,  non-sublicensable,  non-exclusive, 

irrevocable license to exercise the Licensed Rights in the Licensed Material to: 

A. reproduce  and  Share  the  Licensed  Material,  in  whole  or  in  part,  for 

NonCommercial purposes only; and 

B. produce,  reproduce,  and  Share  Adapted  Material  for  NonCommercial 

purposes only. 

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and 

Limitations apply to Your use, this Public License does not apply, and You do not 

need to comply with its terms and conditions. 

3. Term. The term of this Public License is specified in Section 6(a). 

4. Media and formats; technical modifications allowed. The Licensor authorizes You 

to exercise the Licensed Rights in all media and formats whether now known or 

hereafter created, and to make technical modifications necessary to do so. The 

Licensor waives and/or agrees not to assert any right or authority to forbid You 

from making technical modifications necessary to exercise the Licensed Rights, 

including technical modifications necessary to circumvent Effective Technological 

Measures.  For  purposes  of  this  Public  License,  simply  making  modifications 

authorized by this Section 2(a)(4) never produces Adapted Material. 

5. Downstream recipients. 

A. Offer  from  the  Licensor  –  Licensed  Material.  Every  recipient  of  the 

Licensed  Material  automatically  receives  an  offer  from the  Licensor  to 

exercise the Licensed Rights under the terms and conditions of this Public 

License. 

B. No downstream restrictions. You may not offer or impose any additional 

or different terms or conditions on, or apply any Effective Technological 

Measures  to,  the Licensed Material  if  doing so restricts  exercise  of  the 

Licensed Rights by any recipient of the Licensed Material. 

6. No endorsement. Nothing in this Public License constitutes or may be construed 

as permission to assert or imply that You are, or that Your use of the Licensed 
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Material is, connected with, or sponsored, endorsed, or granted official status by, 

the Licensor or others designated to receive attribution as provided in Section 

3(a)(1)(A)(i). 

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public 

License,  nor  are  publicity,  privacy,  and/or  other  similar  personality  rights; 

however, to the extent possible, the Licensor waives and/or agrees not to assert 

any such rights held by the Licensor to the limited extent necessary to allow You 

to exercise the Licensed Rights, but not otherwise. 

2. Patent and trademark rights are not licensed under this Public License. 

3. To the extent possible, the Licensor waives any right to collect royalties from You 

for the exercise of the Licensed Rights, whether directly or through a collecting 

society  under  any  voluntary  or  waivable  statutory  or  compulsory  licensing 

scheme. In all other cases the Licensor expressly reserves any right to collect such 

royalties,  including  when  the  Licensed  Material  is  used  other  than  for 

NonCommercial purposes. 

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if  it  is  supplied by the Licensor  with the Licensed 

Material: 

i. identification of  the creator(s)  of  the  Licensed Material  and any 

others designated to receive attribution, in any reasonable manner 

requested by the Licensor (including by pseudonym if designated); 

ii. a copyright notice; 

iii. a notice that refers to this Public License; 

iv. a notice that refers to the disclaimer of warranties; 
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v. a URI or hyperlink to the Licensed Material to the extent reasonably 

practicable; 

B. indicate if You modified the Licensed Material and retain an indication of 

any previous modifications; and 

C. indicate the Licensed Material is licensed under this Public License, and 

include the text of, or the URI or hyperlink to, this Public License. 

2. You may satisfy  the  conditions  in  Section  3(a)(1) in  any reasonable  manner 

based on the medium,  means,  and context  in  which You Share the Licensed 

Material. For example, it may be reasonable to satisfy the conditions by providing 

a URI or hyperlink to a resource that includes the required information. 

3. If requested by the Licensor, You must remove any of the information required by 

Section 3(a)(1)(A) to the extent reasonably practicable. 

4. If  You Share Adapted Material  You produce,  the Adapter's  License You apply 

must not prevent recipients of the Adapted Material from complying with this 

Public License. 

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the 

Licensed Material:

a. for  the  avoidance  of  doubt,  Section  2(a)(1) grants  You the  right  to  extract,  reuse, 

reproduce, and Share all or a substantial portion of the contents of the database for  

NonCommercial purposes only; 

b. if You include all  or a substantial portion of the database contents in a database in 

which You have Sui Generis Database Rights, then the database in which You have Sui  

Generis Database Rights (but not its individual contents) is Adapted Material; and 

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial 

portion of the contents of the database. 

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations 

under  this  Public  License  where  the  Licensed  Rights  include  other  Copyright  and  Similar 

Rights. 
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Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the 

Licensor  offers  the  Licensed  Material  as-is  and  as-available,  and  makes  no 

representations  or  warranties  of  any  kind  concerning  the  Licensed  Material, 

whether express,  implied, statutory,  or other.  This includes, without limitation, 

warranties  of  title,  merchantability,  fitness  for  a  particular  purpose,  non-

infringement,  absence  of  latent  or  other  defects,  accuracy,  or  the  presence  or 

absence of errors, whether or not known or discoverable. Where disclaimers of 

warranties are not allowed in full or in part, this disclaimer may not apply to You. 

b. To the extent possible, in no event will the Licensor be liable to You on any legal 

theory  (including,  without  limitation,  negligence)  or  otherwise  for  any  direct, 

special,  indirect, incidental, consequential, punitive, exemplary, or other losses, 

costs,  expenses,  or  damages  arising  out  of  this  Public  License  or  use  of  the 

Licensed Material, even if the Licensor has been advised of the possibility of such 

losses, costs, expenses, or damages. Where a limitation of liability is not allowed 

in full or in part, this limitation may not apply to You. 

c. The  disclaimer  of  warranties  and  limitation  of  liability  provided  above  shall  be 

interpreted  in  a  manner  that,  to  the  extent  possible,  most  closely  approximates  an 

absolute disclaimer and waiver of all liability. 

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed 

here. However, if You fail to comply with this Public License, then Your rights under 

this Public License terminate automatically. 

b. Where Your right to use the Licensed Material has terminated under Section  6(a), it 

reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 

days of Your discovery of the violation; or 

2. upon express reinstatement by the Licensor. 
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For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may 

have to seek remedies for Your violations of this Public License. 

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under 

separate terms or conditions or stop distributing the Licensed Material  at  any time; 

however, doing so will not terminate this Public License. 

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 

Section 7 – Other Terms and Conditions.

a. The Licensor  shall  not  be bound by any additional  or  different  terms or  conditions 

communicated by You unless expressly agreed. 

b. Any arrangements, understandings, or agreements regarding the Licensed Material not 

stated herein are separate from and independent of the terms and conditions of this  

Public License. 

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, 

reduce, limit, restrict, or impose conditions on any use of the Licensed Material that 

could lawfully be made without permission under this Public License. 

b. To the extent possible, if any provision of this Public License is deemed unenforceable, 

it  shall  be  automatically  reformed  to  the  minimum  extent  necessary  to  make  it 

enforceable. If the provision cannot be reformed, it shall be severed from this Public 

License without affecting the enforceability of the remaining terms and conditions. 

c. No term or condition of this Public License will be waived and no failure to comply  

consented to unless expressly agreed to by the Licensor. 

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or 

waiver of, any privileges and immunities that apply to the Licensor or You, including 

from the legal processes of any jurisdiction or authority. 

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons 

may elect to apply one of its public licenses to material it publishes and in those instances will 

be considered the “Licensor.” The text of the Creative Commons public licenses is dedicated to 

the public domain under the CC0 Public Domain Dedication. Except for the limited purpose of 
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indicating that material is shared under a Creative Commons public license or as otherwise 

permitted  by  the  Creative  Commons  policies  published  at  creativecommons.org/policies, 

Creative Commons does not authorize the use of the trademark “Creative Commons” or any 

other trademark or logo of Creative Commons without its  prior written consent including, 

without limitation, in connection with any unauthorized modifications to any of  its  public 

licenses or any other arrangements, understandings, or agreements concerning use of licensed 

material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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