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Abstract

Statistical Classification Based Modelling and Estimation of Analog

Circuits Failure Probability

Muhammad Shirjeel Shehzad

At nanoscales, variations in transistor parameters cause variations and unpredictabil-

ity in the circuit output, and may ultimately cause a violation of the desired specifi-

cations, leading to circuit failure. The parametric variations in transistors occur due

to limitations in the manufacturing process and are commonly known as process vari-

ations. Circuit simulation is a Computer-Aided Design (CAD) technique for verifying

the behavior of analog circuits but exhibits incompleteness under the effects of process

variations. Hence, statistical circuit simulation is showing increasing importance for

circuit design to address this incompleteness problem. However, existing statistical

circuit simulation approaches either fail to analyze the rare failure events accurately

and efficiently or are impractical to use. Moreover, none of the existing approaches

is able to successfully analyze analog circuits in the presence of multiple performance

specifications in timely and accurate manner. Therefore, we propose a new statis-

tical circuit simulation based methodology for modelling and estimation of failure

probability of analog circuits in the presence of multiple performance metrics. Our

methodology is based on an iterative way of estimating failure probability, employing

a statistical classifier to reduce the number of simulations while still maintaining high

estimation accuracy. Furthermore, a more practical classifier model is proposed for

analog circuit failure probability estimation.

Our methodology estimates an accurate failure probability even when the failures
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resulting from each performance metric occur simultaneously. The proposed method-

ology can deliver many orders of speedup compared to traditional Monte Carlo meth-

ods. Moreover, experimental results show that the methodology generates accurate

results for problems with multiple specifications, while other approaches fail totally.
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Chapter 1

Introduction

1.1 Motivation

The need to improve quality of life has been the driving force for innovation in the

semiconductor industry. As a result of these innovations a processing unit, which

used to be the size of a room, is now the size of a finger nail because of down to

nanometer scaling in transistor size. Smaller transistors mean a larger number of

transistors can be fabricated on a single wafer of silicon. Over the past five decades,

the number of transistors on a chip has increased exponentially in accordance with

Moore’s law [1]. This has resulted in the design of complex Very Large Scale Inte-

grated (VLSI) circuits. However, at such small sizes, even small variations due to

the random nature of the manufacturing process can cause large relative variations

in the behavior of a circuit. Based on the source of variation, such variations can

be broadly classified into two categories: (1) systematic variation, and (2) random

variation. Systematic variations represent the deterministic part of these variations;

e.g., proximity-based lithography effects, etc. [2]. Systematic variations are typically

pattern dependent and can potentially be completely explained by using more ac-

curate models of the process. Random variations make up the unexplained part of

the manufacturing variations, and show stochastic/random behavior, e.g., gate oxide

thickness (tox) variations, Random Crystal Orientation (RCO) and Random Dopant
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Fluctuation (RDF) [3].

Random variations in the manufacturing process are more commonly known as

process variations. Process variations cause unpredictability and variations in the cir-

cuit output, and may ultimately cause violation of the desired specifications, leading

to circuit failure. In fact, failures in critical circuits may lead to failures in the entire

chip. Moreover, in the complex VLSI designs, the designer must deal with hundreds

of process parameters for custom circuits and millions for chip-level designs. There-

fore, verifying the circuit behavior in the presence of process variations has become

an area of major concern.

A typical system-on-chip [4] consists of different analog, digital and mixed signal

circuitry. A mixed signal circuit combines analog and digital behavior on a single

integrated circuit [5]. In this thesis, we focus on verifying the behavior of analog

circuits and the analog part of mixed signal circuits under the influence of process

variations because of the complex and knowledge intensive nature of these circuits

[6].

Many of the Electronic Design Automation (EDA) tools for modeling and simu-

lating analog circuit behavior, are unable to accurately model and predict the large

impact of process-induced variations on the circuit behavior. Recently, formal meth-

ods [7] have been investigated for verifying analog circuits under the influence of

process variations but have found limited practical use because of the fact that the

state space of analog circuit models is infinite [8]. Behavioral models are also used for

verifying analog circuits in which the process variations are considered as initial con-

ditions. However, to make the problem manageable, different levels of approximation

are considered in the behavioral model [9].

When other attempts for verifying analog circuits started failing, statistical anal-

ysis approach was adopted [9]. Statistical analysis is the science of collecting and

exploring large amounts of data to discover hidden patterns. In statistical analysis of

circuits, samples are taken from distributions of process parameters. Each sample is a

set of values for the parameters of a circuit, which can occur due to process variations.
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These samples are then simulated using circuit simulators [10], giving samples of the

circuit’s output. The probability that the circuit does not meet performance spec-

ifications is estimated by analysing the trend in output samples. Statistical circuit

simulation is displaying a considerable and increasing importance for circuit design

under process variations [9]. One standard approach of a statistical circuit simulation

is the repeated drawing of random samples from distributions of process parameters

and simulating the samples (Monte Carlo method [11]). To obtain accurate results,

a large number of samples should be simulated. Circuit simulators employ numerical

evaluation of mathematical models of the circuits. Accurate analog circuit models

are usually very complex as they capture the effect of nonlinearities in semiconductor

devices, technology scaling, and Process, Voltage and Temperature (PVT) variations

[12].

A lot of efforts have been exerted to reduce the runtime of a single simulation

[13, 14, 15]. However, for the case of a very low failure probability like 10−6, millions

of samples should be simulated to capture one single failure. One may ask why not

simply ignore such a small failure. Consider the case of a 1-Megabit (Mb) memory

array which is an example of mixed signal designs. The memory array has 1 million

identical instances of a memory cell. Designed to be identical, but due to the stochas-

tic behavior of manufacturing process, they usually differ. If a memory cell failure

causes the overall memory chip failure and a yield rate of 99% is required, i.e., no more

than one memory chip per 100 should fail. This means that on average, not more

than one per million cells should fail. This translates to a required yield of 99.999999,

or a maximum failure rate of 0.01 Parts Per Million (ppm) for the single cell. In such

scenarios, even the very small failure probability of the circuit has to be estimated, to

determine its effects on a chip level design. Factors like Time-To-Market (TTM) and

Time-To-Profit (TTP) [16] and customer satisfaction require that the analog circuit

verification must be performed accurately and efficiently.

Over time, more advanced statistical approaches have been proposed for efficiently

estimating the probability of rare failure events. Existing approaches either fail to
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analyze the rare failure events accurately and efficiently or are practically infeasible.

Moreover, none of the existing approaches is able to successfully analyze circuits in

the presence of multiple specifications, accurately and efficiently.

The general motivation of this thesis is to present a statistical circuit simulation

based methodology for modelling and estimating failure probability of analog circuits

with multiple performance specifications. In our methodology, we propose several

enhancements to the existing approaches either by developing new statistical tools or

by employing existing advanced statistical tools. Our methodology is more accurate

and practical to use than any of the existing ones. We also provide a complete for-

mulation of the failure probability estimation in the presence of multiple performance

metrics.

1.2 Related Work

Process variation has made circuit reliability an area of growing concern in modern

times. Statistical based circuit simulation approaches have been adopted to estimate

the likelihood of a circuit not meeting its desired specifications. One golden standard

approach to estimate failure in probabilistic circuit performance is Monte Carlo (MC)

[11]. Apart from MC, other fast statistical approaches have been proposed in the past

decade. In this section, we provide an overview of these approaches and highlight their

strengths and weaknesses. In particular, we can categorize statistical approaches

related to analog circuit failure probability estimations into four main categories:

Monte Carlo and its variants, Moment matching, Importance sampling and Statistical

classification.

1.2.1 Monte Carlo and its Variants

Over the years, Monte Carlo (MC) has become a standard technique for statistical

simulation of circuits and for yield estimation during the design phase [17, 18, 9].

MC methods in their simplest form are referred to as naive, crude or traditional
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MC. Using naive MC, random samples are drawn repeatedly from the distributions

of process variation parameters and circuit performance is evaluated for the samples

using SPICE simulations [19]. The failure probability is then estimated using the

following formula:

Failure Probability =
Number of samples not meeting the desired specification

Total number of samples drawn
(1)

A large number of samples/simulations are required for accurate failure probability

estimation using naive MC hence it is highly time consuming. Moreover, millions

of samples need to be simulated to capture a single failure when failures are rare

events, making its runtime prohibitive. To relieve the problem, Latin Hypercube

Sampling (LHS) [20] and Quasi Monte Carlo (QMC) [21] have been proposed. LHS

aims to spread the sample points more evenly across all possible values by dividing

the distribution to sub-intervals. QMC generate quasi-random numbers rather than

purely-random samplings, which can save a large number of samples. However, the

performance of QMC can degrade for high dimensional problems [22], where each

process parameter is representing a dimension. QMC and LHS may save samples,

but the samples requirement for rare failure events is still comparatively large.

1.2.2 Moment Matching

Moment matching is a method of estimating population parameters (moments) using

samples of the population. In moment matching based approaches [23, 24] for analog

circuit verification, a small number of samples are simulated using SPICE. Simulation

results along with process parameters samples are used for evaluating moments of a

performance metric. Then the Probability Density Function (PDF) of the perfor-

mance metric is approximated to an analytical expression using a moment matrix.

This moment matrix is evaluated using conventional methods of moment matching.

For high dimensional problems, the condition number for the moment matrix becomes

too large, making it numerically unstable [25]. MAXNET [26] overcomes the issue of

dimensionality by only considering the behavior of the performance metric as its sole
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input. However, all moment matching approaches model overall PDF only without

surgically looking into tail region. Tail is of great importance as it contains infor-

mation special to rare events [27]. Therefore, moment matching based approaches

are only used to analyze overall circuit behavior rather than estimating rare failure

events.

1.2.3 Importance Sampling

Importance sampling [28] based approaches were developed to overcome the problem

of rare failure event estimation [29]. In importance sampling based approaches for

analog circuit failure probability estimation, the distributions of process variation

parameters are shifted to the failure region to help MC methods draw more samples

from rare failure events. These samples are simulated using SPICE, reweighted and

then are used to calculate the rare failure events probability. Minimum L2-norm [30]

is used for shifting distribution in approaches proposed by [31, 32, 33] while particles

filters are adopted in [34] to help MC methods draw samples from failure regions. All

of these approaches assume a single failure region in the parameter space. In reality,

there may exist multiple failure regions. Moreover, the reweighting process becomes

regenerate and unbounded with increased dimensions [35, 36].

The approach proposed in [37] overcomes limitations of the existing importance

sampling approaches by first clustering the parameters space into hyperspaces and

then drawing samples from these clusters. However, results obtained from every run

are different and multiple runs are required to obtain an accurate estimate. Another

approach is proposed in [38] to overcome the problem of multiple failure regions.

First the failure regions are explored and then, by performing importance sampling

on these regions, failure probability is estimated. However, this approach failed in high

dimensions since it depends on a surrogate model [39] instead of SPICE simulations,

for finding failure regions.
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1.2.4 Statistical Classification Based Methods

Statistical classification is a way of predicting the category/class of input data on the

basis of training data, containing observations whose category membership is known

[40]. The function that predicts the membership of input data is called a classifier.

For the case of analog circuit failure probability estimation, a classifier is employed to

categorize a sample of process parameters as likely-to-fail or unlikely-to-fail without

performing SPICE simulation. Likely-to-fail samples are those samples of process pa-

rameters, which are likely to cause circuit failure. While unlikely-to-fail samples are

unlikely to cause circuit failure. Unlikely-to-fail samples are discarded while other

samples are simulated using SPICE. The results of these simulation represent tail

regions of the distribution of the performance metric and are modeled using General-

ized Pareto Distribution (GPD). GPD is a type of probabilistic distribution used to

model the tail region of another distribution [41].

A classification based approach was first proposed by Statistical Blockade (SB)

[42], making use of a Linear Support Vector Machine (L-SVM) classifier. Recursive

Statistical Blockade (RSB) [27] further enhanced the SB method, by an iterative esti-

mation of failure regions using the L-SVM classifier. However, neither a single L-SVM

is sufficient to deal with non linear boundaries of failure regions nor it can effectively

deal with multiple failure regions [33]. In [43] a non-linear classification approach

called REscope was adopted to overcome the issues of SB. Parameter pruning based

on initial sample selection was also applied to only focus on critical process param-

eters while ignoring others. However, parameters pruned may be the real sensitive

parameters in failure regions. Furthermore, REscope requires quite a large number of

simulations for estimating the probability of extremely rare failure events. Therefore,

in [44], an approach called Smartera proposed the use of a non-linear classifier in an

iterative way based on the RSB method to estimate the probability of extremely rare

failure events.

Both REscope and Smartera employed a Gaussian Radial Basis Function (GRBF)

based Kernel Support Vector Machines (K-SVM) as the non-linear classifier. K-SVM
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requires choosing a value for the kernel scale parameter [45]. Choosing the correct

value of the kernel scale parameter requires many iterations of training and testing.

Even then, the validity of the value chosen for kernel scale parameter cannot be

completely verified until tested against a large data set. Hence, limiting the K-SVM

ability for analog circuit verification from a practical point of view. Moreover, none

of the statistical classification based approaches was able to verify the validity of

their methodology/framework in presence of multiple performances metrics. Also the

problem of overlapping of failure events resulting from different performance metrics

remains completely unaddressed.

1.3 Proposed Methodology

In the related work section, we briefly discussed statistical approaches for analog

circuit verification. As indicated, all of the approaches have some kind of limitations.

The main objective of this thesis is to develop a general methodology/framework

overcoming the limitations of these approaches. In particular, we propose to develop

a methodology characterized by the ability to:

• reduce time required for estimation rare failure event probability without com-

promising on accuracy.

• handle a large number of process variation parameters.

• provide complete failure region coverage in the process parameters space.

• deal with multiple performance metrics.

• deal with the overlapping of failure events resulting from each performance

metric.

• become widely applicable, i.e., can be adopted by designers in industries.
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Presampling

Statistical Classification

Tail Distribution Modelling

Failure Probability
Modelling & Estimation

Failure Probability

Process Parameters 
Distribution Failure Criteria

Figure 1.1: Methodology to Estimate Failure Probability of Analog Circuits.

Figure 1.1 shows a simplified block diagram of our methodology. Our methodology

falls into the category of statistical classification based methods. The methodol-

ogy consists of four processes: (1) presampling; (2) statistical classification; (3) tail

distribution modelling; and (4) failure probability modelling and estimation. The

inputs to our methodology are distributions of the process variation parameters and

circuit specifications defined in term of failure criteria for performance metrics. In

the first process, we use LHS and moment matching methods to model the overall

performance metric distributions. In the second process, samples that are likely to

cause circuit failure are determined using a statistical classifier. In the third process,

these likely-to-fail samples are simulated using SPICE and results are modelled as
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tail region of the overall distribution by Generalized Pareto Distribution (GPD) fit-

ting. The process of classification and GPD fitting is repeated iteratively to get a

better model of tail distribution while reducing sample counts. Finally in the last

process, the methodology estimates the rare failure probability of the circuit using

the overall distribution and GPD. The output of the methodology is the estimated

failure probability.

The proposed methodology estimates the circuit failure probability by analyzing

the circuit behavior at the transistor level design. A large analog design with many

transistors is not verified as a whole, but is decomposed into sub-blocks. Each sub-

block is then further decomposed down to the cell level. A cell is an analog circuit

having a certain basic function and the failure probability of the cell is estimated by

the proposed methodology.

We also illustrate the application of our proposed methodology on various analog

circuits to prove its effectiveness. The circuits used for this purpose, namely, are a ring

oscillator, an operational amplifier (opamp) and a Static Random Access Memory

(SRAM) cell. We use the opamp and SRAM cell circuits to verify the validity of

our methodology to estimate the failure probability of analog circuit in the presence

of multiple performance specifications. The ring oscillator circuit is used to verify

that our methodology is suitable for high dimensional problems. Our methodology

estimates the failure probabilities of all three circuits based on their specifications.

We provide an in-depth analysis of obtained results and justify the use of various

techniques proposed in our methodology. We also compare the obtained results with

other methods, namely, the naive MC method, REscope and Smartera.

1.4 Thesis Contributions

In this thesis, a comprehensive failure probability modeling and estimation method-

ology for the analog circuits is presented. The contributions of the thesis can be

summarized as follows:
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• We reduced the number of samples required for estimating the failure probability

of analog circuits.

• We developed a more practical statistical classifier for analog circuits dataset,

which proved to be more efficient and accurate than previously used classifiers

for analog circuit failure probability estimation.

• We derived the mathematical formulas to calculate the failure probability in the

presence of multiple performance specification and overlapping failure events

and developed an algorithm to estimate the probability of overlapping failure

events.

• We conducted experiments on three analog circuits to estimate their failure

probability in the presence of process variation and multiple performance spec-

ification and compared results with other recently published work.

1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we present a brief overview

of the concepts and techniques used in this thesis. Then, in Chapter 3, we explain

the proposed methodology with an overall flow and detailed description of the sta-

tistical classification process developed and mathematical formulation for multiple

performance specification. The chapter also describes the algorithm developed for

estimating the probability of overlapping failure events due to multiple performance

specifications. In Chapter 4, we use the proposed methodology to estimate the fail-

ure probability of three test circuits and compare the obtained results with other

approaches. Finally, Chapter 5 provides conclusions of this thesis and directions for

future research.

11



Chapter 2

Preliminaries

In this chapter, we start by giving some basic concepts in probability theory. We

briefly describe the notion of Support Vector Machines (SVM) for statistical classifi-

cation. Subsequently, we provide an overview of rare event modelling on which our

methodology is based. Finally, we present an overview of Latin Hypercube Sampling

(LHS), SPICE simulator and k-means clustering which are used in our methodology.

The intent of this chapter is to introduce the basic theories and concepts that we use

in the rest of this thesis.

2.1 Basic Concepts in Probability Theory

The basic definitions and concepts in probability are briefly reviewed in this section.

These concepts are essential for the understanding of statistical failure probability

estimation of analog circuits.

2.1.1 Random Variable and Random Process

A random or stochastic variable is a variable (like other mathematical variables) that

we cannot say for sure which value it will take on. However, the value that a random

variable can take on can be associated with a probability of the value. There are

two kinds of random variables: discrete random variables and continuous random

12



variables. Adiscreterandomvariablecantakeonvaluesfromafiniteorcountably

infinitesetofnumbers,e.g.,resultofacointoss. Acontinuousrandomvariablecan

takeonvaluesfromanintervalofrealnumbers,e.g.,anyvaluewithintheinterval

[0,1]canbeassumedbycontinuousrandomvariable. Normalor Gaussianrandom

variablesarethe mostcommonlyencounteredcontinuousrandomvariableinboth

manmadeandnaturalphenomena.Processvariationparametersarealsocontinuous

randomvariable.

Arandomorstochasticprocessisafunctionthatproducesarandomvariable

asanoutput.Itistheprobabilisticcounterpartofadeterministicprocessinwhich

outputvaluescanbeknownforsuregiventheinputandinitialconditions.

2.1.2 DistributionFunction

Aprobabilitydistributionisatableoranequationthatlinkseachvalueassumed

bytherandomvariableinanexperimentalsettingwithitsprobabilityofoccurrence.

Aprobabilitydistributioncanbespecifiedinanumberofdifferentways,ofwhich

mostcommonaretheProbabilityDistributionFunction(PDF)andtheCumulative

DistributionFunction(CDF). Thechoiceofthedistributionfunctionisbasedon

mathematicalconvenience.LetX bearandomvariablethatcantakeanyvaluexin

theinterval(−∞,∞)withprobabilityPb(x),thentheCDFisgivenby:

F(x)=Pb(X ≤x)=

x

−∞

f(t)dt (2)

CDFisapositiveand monotonicallyincreasingboundedfunctionandF(∞) =1.

ThePDFofX isgivenbythefollowingrelation:

f(x)=
dF(x)

dx
(3)

ThePDFofagaussianrandomvariableisgivenbythefollowingequation:

f(x)=
1

√
2σ2π

e−
(x µ)2

2σ2 (4)

whereµisthemeanandσisthestandarddeviationofthedistribution.

13



0 0.5 1 1.5 2 2.5 3 3.5 4

x
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x
)

σ=1, ǫ=1
σ=1, ǫ=5
σ=2, ǫ=1
σ=2, ǫ=5

Figure 2.1: Generalized Pareto Distribution for Different Values of σ & ε, µ = 0.

2.1.3 Generalized Pareto Distribution

The Generalized Pareto Distribution (GPD) is a family of continuous probability

distributions often used to model the tails of another distribution. Tail refers to the

part of distribution which is quite far away from the mean. GPD allows a continuous

range of possible shapes that includes both the exponential and Pareto distributions

as special cases. The CDF of GPD is given by the following equation:

F (x) =

1− (1− ε(x−µ)
σ

)
1
ε for ε 6= 0

1− exp(1− ε(x−µ)
σ

) for ε = 0

(5)

where µ is the starting point, σ is the scale parameter, and ε is the shape paramter.

Figure 2.1 shows the CDF of GPD for different values of σ and ε.

2.2 Support Vector Machines Classifier

A Support Vector Machine (SVM) is a classifier (Section 1.2.4) defined by a hyper-

plane separating different categories of data points in the given dataset. A hyperplane

14



is a subspace of one dimension less than its ambient space. We provide an introduc-

tory discussion of the basic ideas behind SVMs in this section. SVMs are among the

best supervised learning algorithms. By supervised, we mean that SVMs first have

to be trained for future predictions.

To explain how the SVM works, we consider a 2-dimensional dataset having two

classes/categories of points, as shown in Figure 2.2. The figure also shows multiple

lines, separating the two categories. These lines are actually hyperplanes which can

be used to categorize new data points. But which is the best among all hyperplanes?

Figure 2.2: Multiple Lines Separating two Classes of 2D Dataset.

A hyperplane is bad if it passes too close to the data points because it will be noise

sensitive. Thus the best solution is to find a hyperplane which is as far as possible

from data points while still providing a separation between different categories of the

data points. The two dotted hyperplanes shown in Figure 2.3 provide the maximum

separation between categories. The distance between these hyperplanes is called

Figure 2.3: Optimal Hyperplane Separating two Classes of 2D Dataset.
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margin. An optimal hyperplane is the hyperplane that lies halfway between the

margin. The operation of the SVM algorithm is to search for this optimal hyperplane,

that maximizes the margin of the training data.

2.2.1 Linear SVM

The dataset shown in Figures 2.2 and 2.3 can be separated using a linear hyperplane.

An SVM classifier that separates different categories of a dataset using linear hy-

perplane is called a Linear SVM (L-SVM) classifier. To understand how the linear

hyperplane is determined, suppose that we are given a training dataset of n points of

the form:

(~z1, y1), ..., (~zn, yn)

Here, yi represents the class of the point ~zi, with value either 1 or -1. Each ~zi is a

p-dimensional vector. In this example, a binary classification problem is considered

because the classification process adopted in the methodology proposed in this thesis

is also binary.

The formal notion to represent a hyperplane is given by the following relation [45]:

~w.~z − b = 0 (6)

where ~w represents the normal vector to a hyperplane. The parameter b
||w|| gives the

distance of the hyperplane from the origin in the direction of ~w.

If the training dataset is linearly separable (different classes can be separated

by a linear hyperplane), the two hyperplanes shown in Figure 2.3, which provide the

maximum separation between different categories of dataset are given by the following

equations [45]:

~w.~z − b = 1

and

~w.~z − b = −1

The distance between these two hypeplanes can be evaluated geometrically, which

equals to 2
||w|| . Then to maximize distance between the two classes, ||w|| has to
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be minimized. For mathematical convenience, we state the problem as minimizing

1
2
||w||2. Moreover, while minimizing, to prevent data points from falling into the

margin, we add a constraint to each data point ~zi either

~w.~zi − b ≥ 1, if yi = 1

or

~w.~zi − b ≤ −1, if yi = −1

Above mentioned constraint can be rewritten as:

yi(~w.~zi − b) ≥ 1 , for all 1 ≤ i ≤ n. (7)

Putting together the problem of minimizing 1
2
||w||2 and the constraint given in Equa-

tion 7, we have the following optimization problem:

Minimize
1

2
||w||2

subject to yi(~w.~zi − b) ≥ 1, for i = 1, ....n

(8)

This is a problem of Lagrangian optimization that can be solved using Lagrange

multipliers. It is given by [45]:

min L(w) =
1

2
||w||2 −

∑
i

αi

[
yi(~w.~zi + b)− 1

]
(9)

An important consequence of the geometric description is that the max-margin hy-

perplane is determined only by those data points which are nearest to it. These data

points are called support vectors. The value of αi in Equation 9 for the datapoint zi

is zero unless zi is a support vector.

The ~w and b that solve the problem given by Equation 9, determine our linear

classifier. Given the solution of Equation 9, the decision function of the classifier can

be written as:

G(z) = sign(~z.~w + b) (10)
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2.2.2 Kernel SVM

Evaluating the derivative of Equation 9 with respect to ~w and b and setting them

equal to zero, to determine extrema, we have:

~w =
∑
i

αiyi~zi (11)

∑
i

αiyi = 0 (12)

Substituting values from Equations 11 and 12 in Equation 9, we get:

min L(w) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj(~zi.~zj) (13)

and substituting values from Equations 11 and 12 in Equation 10, we get:

G(z) = sign(
∑
i

αiyi(~zi.~z) + b) (14)

From Equations 13 and 14, we determine that the optimization and solution for classi-

fication, both depends upon the dot product. If the dataset is not linearly separable in

the current feature space, then transforming the feature space into high dimensional

space, can make linear separation possible. If the transformed space is given by Φ(~z),

then according to Equations 13 and 14, only Φ(~zi).Φ(~zj) and Φ(~zi).Φ(~z) are required

for the training and prediction in the transformed space. Furthermore, if we have

a function k(~zi, ~zj) = Φ(~zi).Φ(~zj), the classification can be done in the transformed

feature space without actual transformation. This function is called the kernel func-

tion. The kernel function allows SVM to perform non-linear classification. An SVM

classifier based on the kernal function is called Kernel SVM (K-SVM). Following two

are the most common kernel functions [46]:

• Polynomial: k(~zi, ~zj) = (~zi.~zj + 1)d

• Gaussian Radial Basis Function: k(~zi, ~zj) = exp(−γ||~zi − ~zj||2), for γ > 0.
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2.3 Rare Event Modelling

In Section 1.3, it was stated that the overall distribution of performance metric and

its tail region is modelled to estimate rare failure events in our methodology. In this

section, we explain how a rare event is modelled and estimated in our methodology

Consider an analog circuit with a performance metric Y . Because of the variation in

manufacturing process, parameters of the test circuit are considered random variables

with joint probability distribution S. This in turns makes Y also a random variable

since its value depends on parameters values. If our specification requires that any

value of Y which is greater than the failure criteria tf causes circuit failure, then the

failure probability Pbf of the analog circuit is given by:

Pbf = Pb(Y > tf ) = 1− F (tf ) (15)

where F (t) is the CDF of Y . If tf represents some rare event in the distribution of

Y , then Pbf represents a rare failure probability. Suppose Y belongs to a Gaussian

distribution with PDF f(y) given by Equation 4. Suppose t is a threshold that

separates the tail from the body of the PDF f(y) and lies between the mean and tf

as shown in Figure 2.4(a), the probability of event Y > t is given by:

Pb(Y > t) = 1− F (t) (16)

Let z be an excess over t. Using the concepts of conditional probability [47], the

conditional CDF is given by:

F ′t(z) = Pb(Y − t ≤ z|Y > t) =
F (z + t)− F (t)

1− F (t)
(17)

and the overall CDF as:

F (z + t) = (1− F (t))(F ′t(z)) + F (t) (18)

Now if z represents tf − t as shown in Figure 2.4(b), then we have:

F (tf ) = (1− F (t))(F ′t(tf − t)) + F (t) (19)
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Figure 2.4: Rare Event Modelling using Tail Distribution.

substituting the value of F (tf ) given by Equation 19 in Equation 15 and rearranging,

we have:

Pbf = (1− F (t))(1− F ′
t (tf − t)) = Pb(t)Pb(Y > tf |Y > t) (20)

F ′
t (tf − t) represents the probability of exceedence and can be modelled by GPD [41]

with µ = t. If Ft(y) represents the CDF of GPD, we have [9]:

Pbf = Pb(t)Pb(Y > tf |Y > t) = (1− F (t))(1− Ft(tf )) (21)

Using Equation 21, we can efficiently estimate the failure probability. F (t) can be

accurately estimated using few hundred simulation, using the methods of moment

matching (Section 1.2.2). Once estimated, we can model Ft(y) only by simulating

samples in the region Y > t, blocking all other samples. But we do not know which

samples of the parameter space when simulated will generate values of the perfor-

mance metric Y greater than t. Hence one can employ a statistical classifier to block

all samples from being simulated that are unlikely to generate values of Y greater

than t. By doing so, an accurate estimation can be made with a small number of

simulations. In our methodology t is considered as a relaxed failure criteria while tf

is an actual failure criteria, i.e., the failure criteria given by the designer. Therefore,

the classifier is trained on the basis of a relaxed failure.
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While deriving above relation, we assume that the extreme values of interest lie

only in the upper tail of the distribution. This is without loss of generality because

any lower tail can be converted to the upper tail by replacing y = −y.

2.4 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) first introduced in 1979, is a sampling method

for generating a near-random sample from a multidimensional distribution. In the

context of analog circuit verification, LHS is employed for the purpose of variance

reduction in the distribution of process variation parameters.

In a 2-dimensional space, a square grid containing sample positions is a Latin

square if (and only if) there is only one sample in each row and each column. A

Latin hypercube is the generalisation of the concept of Latin square to an arbitrary

number of dimensions. When sampling from N variate distribution, LHS partitions

the distribution into M intervals of equal probability, and selects one sample from

each interval. This forces the number of divisions, M, to be equal for each variable.

Moreover, samples for each input are shuffled so that there exists no correlation

between the inputs.

2.5 SPICE

Simulation Program with Integrated Circuit Emphasis (SPICE) [19] is powerful gen-

eral purpose analog circuit simulator, which is used to predict the circuit behavior

and to verify circuit design. SPICE can simulate components ranging from the ba-

sic passive elements such as resistors, capacitors and inductors to more sophisticated

semiconductor devices such as MOSFETs. Using these intrinsic components as the

basic building blocks, very large and complex circuits can be simulated in SPICE.

SPICE can perform several types of circuit analysis. Some of the important ones are:

• DC analysis
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• Transient analysis

• AC analysis

• Noise analysis

• Sensitivity analysis

• Distortion analysis

• Fourier analysis

• Monte Carlo Analysis

Moreover, using SPICE, the analysis can also be performed for different temperatures.

SPICE employs complex transistors and other circuit elements models to predict

accurate behaviors.

2.6 k-means Clustering

Data clustering is a type of unsupervised learning, that divides a set of objects into

groups or cluster in a way that objects of the same group exhibit a certain measure

of similarity [45]. One of the most used and popular clustering algorithm is k-means

[48]. k-means classifies input objects into predefined number of clusters. Figure

2.5 shows the simplified flowchart of k-means clustering algorithm. The inputs to

the algorithm are n objects and a value k that represents the number of clusters.

Initially, the algorithm randomly chooses k cluster centroids. For all objects, the

distance from each of the centroids is evaluated. The input objects are then assigned

to the group associated with the nearest centroid. Based on the members of a group,

a new centroid is evaluated for each group. For all objects, the distance from each of

the new centroid is evaluated. Based on the minimum distance from new centroids,

the membership of the object to a group is then updated. This process is repeated

iteratively until no object is reassigned to a new group.
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Figure 2.5: Flowchart of the K-means Clustering Algorithm.

The k-means algorithm requires a low order of memory usage and has a runtime

of the order O(n3), where n is the number of objects. Moreover, k-means provides

non deterministic results (different results for different runs) and requires that the

number of clusters to be fixed a priori.

2.7 Summary

In this chapter, we discussed some basic concepts in probability theory, namely ran-

dom variables, distribution functions, Generalized Pareto Distribution (GPD) and

statistics. We then briefly discussed the notion of SVMs for statistical classification.

Then, we presented how a rare failure event in analog circuits can be modelled and

estimated. Finally, we presented an overview of Latin Hypercube Sampling (LHS),

SPICE simulator and the k-means clustering algorithm. The intent of this chapter

was to introduce the preliminaries concepts that we will be using in the remaining

chapters.
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Chapter 3

Classification and Estimation

Methodology

In Chapter 1, we provided a general overview of the proposed methodology for mod-

elling and estimation of analog circuit failure probability and its different processes.

This chapter presents a detailed description for each process of the methodology. The

methodology consists of four processes and every process is made of different stages.

Figure 3.1 shows the proposed methodology processes and their respective stages in

the proposed methodology. In this chapter, we explain in dedicated sections every

process and all its stages as shown in the figure. We start by describing the first

three processes of our methodology, i.e., presampling, statistical classification and tail

distribution modelling. Afterward, we describe the reasons for using an iterative pro-

cess of classification and tail modelling and its implementation. Finally, in the last

two sections of this chapter, we present the formulation of the failure probability and

discuss last process of the proposed methodology, i.e., failure probability modelling

and estimation.

To illustrate some of the details of our methodology, we make reference to certain

analog circuits, which we use as application case studies in this thesis. A detailed

description of the experiments and obtained results on these case studies will be

presented in Chapter 4 of this thesis.
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Figure 3.1: The Proposed Classification and Estimation Methodology.
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3.1 Presampling

The first process of our methodology is presampling. The purpose of presampling

is to sketch the approximate behavior of the analog circuit. The output from the

presampling stage is later used for classifier training. Presampling itself consists of

three phases:

Initial Sampling

At this point of the methodology, we are only interested in observing the circuit’s

approximate behavior that can be achieved using a few hundred samples of pro-

cess variation parameters [43]. If the distribution of n process variation parameters

p1, p2, ...pn is given by S = {P1, P2, ...Pn}. Then in order to model the PDF of the

performance metrics and later for the initial classifier training, a few hundred sam-

ples, S = {s0, s1, ...sm} are drawn from S. Where si = {p1,i, p2,i, ....pn,i} and m is the

total number of samples drawn. Each element of S represents the set of values of the

parameters for the circuit. This process of sampling is performed at the beginning of

the methodology and is known as Initial Sampling. Samples are drawn using LHS.

Circuit Simulation

Initial Sampling provided samples S as output. The second phase of presampling

deals with evaluating the value of performance metric Y of the circuit for the pro-

cess parameters samples S. This is achieved by performing a transistor level SPICE

simulation on every sample of the set S. SPICE simulations yield y0, y1, ...ym as the

values of Y corresponding to the samples s0, s1, ...sm, respectively.

Distribution Modelling

Due to process variation, Y also follows a probabilistic distribution. At this point, the

PDF f(y) of Y is approximated to an analytical form using the results obtained from
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Figure 3.2: PDF Approximated using LHS and MC.

circuit simulation phase. A conventional way of fitting the PDF to an approximate

analytical form is by applying moment matching methods (Section 1.2.2) on a small

set of naive MC samples. In our methodology, we use samples drawn using LHS to

approximate the PDF to an analytical form. Samples are more evenly spread across

all possible values by the use of LHS. This helps in better PDF fitting with a smaller

number of samples as compared to samples selected using the naive MC method.

Figure 3.2 shows the sketches of PDF modelled using samples drawn by LHS and

naive MC.

500 sample were drawn using LHS and naive MC to model the PDF of the output

frequency of a ring oscillator circuit, subject to process variations of 30 parameters.

Figure 3.1 clearly illustrates the advantage of using LHS for PDF fitting compared to

naive MC. LHS provides a better accuracy with a smaller number of samples hence

resulting in a speedup.

After f(y) is determined, a relaxed failure criteria t is determined considering the
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behavior of f(y) and accuracy of the moment matching method used for approximat-

ing it. The value of t is such that, F (t) can be accurately estimated and t lies in

between the nominal value ynom and the actual failure criteria tf , in the distribution

of Y , where F (y) is the CDF of Y . The process of determining the value of t will be

discussed later in this chapter.

3.2 Statistical Classification

In this process of our methodology, a classifier model is used to categorize a sample

so as likely-to-fail or unlikely-to-fail. Therefore, we can skip the unlikely-to-fail sam-

ples and focus only on likely-to-fail ones. Likely-to-fail samples belong to a single or

multiple regions in parameters space called Likely-to-Fail Regions (LFRs). Any sam-

ple drawn from LFR when simulated is more likely to cause circuit failure. Similarly,

unlikely-to-fail samples are members of a single joint Unlikely-to-Fail Region (ULFR),

which are unlikely to cause circuit failure. In this section, we first provide some back-

ground to classifiers used in other approaches and also discuss their limitations. Then,

we provide details of a new classifier model developed for our methodology.

3.2.1 Background

The authors of the Statistical Blockade (SB) [42] and Recursive Statistical Block-

ade (RSB) [27] approaches proposed to use linear SVM (L-SVM) classifier. While in

REscope [43] and Smartera [44] approaches, use of a Gaussian Radial Basis Function

(GRBF) based kernel SVM (K-SVM) classifier is proposed for non-linear classifica-

tion. As discussed in Section 2.2, SVMs either operate unequivocally in the input

feature space giving rise to L-SVM or by using kernel mapping of feature space to

higher dimensions, leading to K-SVM. L-SVM only uses dot product operation, there-

fore they are simple to train and use. However, they cannot be applied on non-linear

data. K-SVM on other the hand can tackle the dataset which is not linearly separa-

ble. However, K-SVM is not as efficient as L-SVM. Moreover, GRBF based K-SVM
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Figure 3.3: Effects of Kernel Scale γ on the GRBF based K-SVM classifier: (a)
Reference Data; (b) γ = 1; (c) γ = 10; (d) γ = 100.

requires the setting of a parameter called kernel scale γ. For a lower value of γ, K-

SVM is unable to capture the non-linear behavior of the boundary separating classes.

While setting a higher value of γ forces K-SVM training algorithm to try harder to

avoid misclassification which can consequently result in overfitting. Overfitting can

significantly reduce classification accuracy. Figure 3.3 shows the effect of γ on classi-

fication accuracy of the GRBF based K-SVM classifier when used to determine LFRs

of a ring oscillator circuit in the presence of two process parameters. The red region

in Figure 3.3(a) represents the realistic failure region while the red region in Figures

3.3(b)-(d) represents LFR determined by the K-SVM classifier.

Based on the above discussion, it is desirable to have a classifier model which has

the simplicity and efficiency of an L-SVM classifier and the high discriminative power
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of a non-linear classifier such as a K-SVM classifier. The authors of [49] proposed the

idea of using multiple L-SVM classifiers for non-linear classification. The authors of

[49] used a mixture model of L-SVM classifiers. The approach is based on partitioning

the input space (or feature space) into hyperspherical regions, in which the data is

linearly separable. Experiments performed on synthetic and real world applications

indicated a better training time of all L-SVM classifiers combined, with the accuracy

equal to that of non-linear classifiers. This idea of using multiple L-SVM classifiers

was further extended by the authors of [50, 51, 52]. All of these work employed a

complex model for partitioning the feature space to make their method general in

nature. These complex methods added computational cost.

In our methodology, we also propose the use of multiple L-SVM classifiers instead

of a single non-linear classifier. But since our applications of statistical classification

only focus on the failure probability estimation of analog circuits, assumptions can be

made about the dataset. With these assumptions, complex models for partitioning a

feature space are avoided and a rather simple method is adopted with significantly

less computational cost. Following assumptions are drawn:

• Classification problem is binary in nature i.e. either unlikely-to-fail or likely-to-

fail.

• A single ULFR exists in the feature space.

• Unlikely-to-fail samples may only be concentrated around edges of the feature

space.

These assumptions were drawn by observing the behavior of different analog circuits

in the presence of process variations. Based on these assumptions, we propose a

classification approach in which the dataset is divided into multiple clusters. Each

cluster contains both unlikely-to-fail and likely-to-fail samples which are almost lin-

early separable. Moreover, the unlikely-to-fail or likely-to-fail status of the training

sample is evaluated based on t, the relaxed failure criteria. In remaining parts of
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this section, we describe how the classifier model is developed and its working in the

overall methodology.

3.2.2 Algorithm Overview

Figure 3.4: L-SVM Classification Results in the Presence of Multiple Failure Regions:
(a) Reference Data; (b) Predicted Results.

A single L-SVM classifier can only linearly separate a dataset. When there ex-

ist multiple LFRs in the process parameter space, unlikely-to-fail and likely-to-fail

samples cannot be separated using a single linear hyperplane. Hence, when a single

L-SVM is used in this case, it fails completely. Figure 3.4 shows the classification

accuracy of a single L-SVM classifier when used to categorize samples of a ring os-

cillator circuit in the presence of two process parameters and multiple LFRs. The

red points in Figure 3.4(a) indicate samples of process parameters which generate a

circuit behavior not meeting the desired specification, while the blue points represent

samples generating the desired circuit behavior. It can also be seen from Figure 3.4(a)

that there exist two LFRs in the parameters space. However, the red points in Figure

3.4(b) represent samples categorized likely-to-fail by the L-SVM classifier, while the

blue points represent samples categorized as unlikely-to-fail. When the results pre-

sented in both Figures 3.4 (a) and (b) are compared, it can be seen that the L-SVM

classifier categorized most of the failing samples as unlikely-to-fail, indicating a very
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low classification accuracy.

To overcome this problem, in the first stage of our classification process, LFRs are

explored. In the next stage, considering one LFR at a time, a clustering scheme is

applied. In doing so, we avoid the problem of having multiple LFRs in a single cluster.

Once the clusters are evaluated, multiple L-SVM classifiers are trained. Finally, in

the last stage, samples are drawn and categorized as either to be unlikely-to-fail or

likely-to-fail.

3.2.3 Exploring LRFs

In the first step of our classification process, LFRs are explored based on the approach

proposed in [38]. LFRs represent rare events in the distribution of the performance

metric Y . To effectively explore all LFRs, a large number of samples have to be drawn

from the distribution of process parameters S and simulated. A surrogate model is

used to overcome this problem in [38], which maps a sample s from S to the value y

of the metric Y . The predicted y, obtained from the model, was then used for LFRs

exploration. This approach proved useful in low dimension but failed completely

in high dimensions. In our methodology, a relaxed failure criteria is chosen, hence

making LFRs less rare events. Therefore, LFRs can be explored effectively with only

a few hundred samples S, simulated during the presampling stage. LFRs are explored

in two stages. Figure 3.5 shows the complete procedure for exploring LFRs.

1) Basic Region Definition

A basic region represents the sub-region in the parameters space where LFRs will be

explored. In Figure 3.5(a) it is the region within the two hypershperes of radius of

||r1|| and ||r2|| with common center snom. Where snom is the nominal value of the

process parameters and || • || is L2-norm function [30]. r1 is given by:

r1 = sr1 − snom (22)
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Figure 3.5: Procedure to Explore LFRs: (a) Basic Region Definition; (b) Explore
First LFR; (c) Explore Second LFR; (d) Remove First.

where sr1 represents a sample causing circuit failure and it lies closest to snom in the

space defined by S. Once ||r1|| is evaluated, ||r2|| is determined, and is given by:

r2 = sr2 − snom (23)

where sr2 represents a sample causing circuit failure and it lies furthest away from

snom.

2) LFRs Exploration

The goal of this stage is to determine the number of LFRs, x, in the basic region. To

do so, only the samples residing in the basic region are selected for LFRs exploration.

As shown in Figure 3.5(b), a hypercube with center sr1 and radius R = ||r1|| − ||r2||

is defined. Samples of the basic region causing circuit failure and lying within this

hypercube are selected and the first LFR is determined. The selected samples are

then removed from the basic region (Figure 3.5(d)). A new sr1 is then determined
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Figure 3.6: Special Condition in LFR Exploration.

from the remaining samples of the basic regions. The new value of sr1 is then used to

define another hypercube which is shown in Figure 3.5(d). Samples that lie within the

hypercube shown in Figure 3.5(c) are then selected and the second LFR is determined.

This process goes on until there exist no such sample in the basic region that causes

circuit failure. After that, the k-means algorithm is applied to divide all samples

causing circuit failure into x groups. The output of the k-means algorithm includes x

group (LFR) means and labels indicating the membership of input samples to their

respective LFR.

Figure 3.6 shows a special condition which may arise during the LFR exploration.

The realistic failure region is larger so that the LFR does not completely contain it.

When this condition happens, the realistic failure region will be treated as several

failure regions, and the other part (the yellow line in Figure 3.6) will be explored

in the next iteration stage. As a result, the number of LFRs determined will be

more than the number of realistic failure regions in the parameter space. The k-

means algorithm is applied multiple times to overcome this problem. The k-means

algorithm will provide significantly different means for different runs when the value

of x is more than the number of realistic failure regions. If this situation arises, the
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Algorithm 3.1 Exploring LFRs.

Require: S, Z, snom
1:
[
sr1, ||r1||, sr2, ||r2||

]
= Basic Region Paramters(S, Z, snom)

2:
[
S′, Z ′

]
= Basic Region Sample(S, ||r1||, ||r2||, snom)

3: R = ||r1|| − ||r2||
4: repeat
5: x = x + 1
6:

[
S′, Z ′

]
= Explore LFR(S′, Z ′, R, sr1)

7: sr1 = Basic Region Paramters(S′, Z ′, snom)
8: until sr1 6= null
9: SFail = samples causing circuit failure

10: repeat
11: [S1,LFR, U1] = kmeans(SFail, x)
12: [S2,LFR, U2] = kmeans(SFail, x)
13: [S2,LFR, U3] = kmeans(SFail, x)
14: if S1,LFR

∼= S2,LFR
∼= S2,LFR then

15: Stop = 1
16: SLFR = S2,LFR; U = U1

17: else
18: x = x -1
19: end if
20: until Stop 6= 1
21: return x, SLFR, SFail, U

value of x is decreased by one and the k-means algorithm is applied multiple times

using the updated value of x. This process is repeated until the means, determined

by applying the k-means algorithm multiple times, are almost the same.

Implementation

A simplified implementation of the complete procedure to explore LFRs, is given in

Algorithm 3.1. The inputs to the algorithm are following:

• Samples of parameters space, S = {s1, s2, ..sm}

• Category labels, Z = {z1, z2, ...zm}. The value of zo can either be 1 or 0 for

the sample so. A 0 value indicates that so causes circuit failure while a 1 value

indicates that so does not cause circuit failure.
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• The nominal value of the process parameters, snom.

In Line 1, the algorithm outputs sr1, ||r1||, sr2 and ||r2|| using the function

Basic Region Paramter(). The inputs to the function Basic Region Paramter()

includes S, Z and snom. The function Basic Region Paramters() evaluates the dis-

tance of every sample in S from snom and determines the samples sr1 and sr2 accord-

ingly. The function then evaluates ||r1|| and ||r2||. In Line 2, the algorithm determines

the samples residing in the basic region using the function Basic Region Sample().

The input to the function Basic Region Sample() includes S, snom and the parame-

ters of the basic region determined in Line 1. The output of the function is a group

of samples S′ and their respective category labels Z ′. The distance of any sample,

in the group S′, from snom is between the interval
[
||r1||, ||r2||

]
. From Lines 3-8, the

number of LFRs x is determined. The function Explore LFR() in Line 6 removes

those samples from the basic region that causes circuit failure and lie in the region

defined by hypercube with the center snom and radius R. In Line 7, a new value

of sr1 is determined from the remaining samples of the basic region by using the

Basic Region Paramter() function. Each time a new value of sr1 is determined, the

value of x is incremented by one.

After that, the algorithm from Lines 10 to 20 iteratively determines the cor-

rect value of x by applying the k-means algorithm multiple times. Finally, the al-

gorithm converges when a correct value of x is determined and provides the out-

put in Line 21. The output of the algorithm includes x, LFR means SLFR =

{SLFR−1, SLFR−2, ...SLFR−x}, the samples SFail causing circuit failure and their la-

bels U , indicating the LFR to which they belong.

3.2.4 Clustering & Classifier Training

After the LFRs exploration stage, we move forward with the objective of clustering

our feature space. We perform the clustering considering one LFR at a time. If the

boundary between the LFR and ULFR is considered as a non-linear curve, dividing

this curve into small segments results into portions of curves which are approximately
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Figure 3.7: Piecewise Linearization of a Non-Linear Curve

linear. This principle is adopted in our clustering scheme. Figure 3.7 shows the

principle of piecewise linearization of a non-linear curve (failure boundary) used in

our classifier model. A hyperplane is determined whose direction is parallel to the

curve’s tangent shown in the figure. Multiple hyperplanes are then determined which

are normal to the previously determined hyperplane. These hyperplanes are directed

inwards the non-linear curve. If there are enough of these normal hyperplanes, a

segment of the non-linear curve, lying between any two normal hyperplanes, can be

considered approximately linear.

1) Cluster Centroid Evaluation

The first step, to cluster the input space defined by S, is to evaluate the centroid

for each cluster. Centroids are evaluated using Algorithm 3.2. The inputs to the

algorithm are following:

• Number of LFRs, x.
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Algorithm 3.2 Clusters Centroids Evaluation.

Require: x, S, snom, SLFR, U
1: [G0, G2, ...Gx] = Group(S, U)
2: for i=1 to x do
3: l = Calc Distance(sLFR−i, Gi)
4: α = (snom − sLFR−i)/2
5: A = {G0 ∪Gi}
6: k = number of samples in A
7: for j=1 to k do
8: d1 = ||snom − aj||
9: d2 = ||sLFR−i − aj||

10: d3 = ||α− aj||
11: wj = Find(min(D)) . where D = {d1, d2, d3}
12: end for
13: J = Find(W == 3) . where W = {w1, w2, ..wk}
14: B′ = Assign(A,J)
15: J = Find(||α−B′|| ≤ l)
16: B = Assign(B′,J)
17: Ci = kmeans(B, β)
18: C = C ∪ Ci
19: end for
20: return C

• Samples of the parameters space, S = {s1, s2, ....sm}.

• Sample snom, representing nominal values of the process parameters.

• LFRs Means, SLFR = {sLFR−1, sLFR−2, ...sLFR−x}

• LFRs label, U = {u1, u2, ...um}. u can take any integer value between 0 and x.

A 0 value of u indicates that a sample s belongs to ULFR. Any other value i of

u indicates that a sample s belongs to ith LFR with mean given by sLFR−i.

In Line 1, the algorithm output G1, G2, ..Gx that represents the group of samples

having a common label defined by U . Moreover, G0 represents the group of samples

belonging to ULFR while all other groups G2, ..Gx contain samples of respective LFR.

From Lines 2 to 19, the centroids C = {c1, c2, ...c(β∗x)} are determined. β represents

the number of clusters per LFR. The centroids are determined considering one LFR

at a time. In Line 3, using the function Calc Distance(), the algorithm outputs l
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which is the Euclidean distance [53] between the current LFR’s mean sLFR−i and

the furthermost sample in the LFR. In Line 4, a midpoint α of the line joining snom

and sLFR−i is determined. Then in Line 5, using the samples belonging to G0 and

Gi, a group A is formed. From Lines 7 to 14, the algorithm outputs a group B′

that contains samples of A which lie closest to the point α compared to the points

snom and sLFR−i. The function Find() determines the indices of those values of a

vector/matrix satisfying the condition defined in its parenthesis. The function C =

Assign(A,B) extracts those values of the vector A whose indices are given by the

values in vector B and stores them to the vector C. From Lines 15 to 17, the k-means

algorithm is applied to samples of B′ whose distance from α is no more than l. The

output of Line 17 includes the centroids Ci = {c1, c2, ..cβ} for the ith LFR. A superset

C of the centroids is then formed by combining centroids evaluated for each LFR. It

is then provided as an output by the algorithm in Line 20.

2) Cluster Assignment

After the centroids C for the clusters are determined, the samples are then assigned

to the cluster associated with the nearest centroid. Algorithm 3.3 implements a

simplified form of cluster assignment of the samples serving as the training data for

the classifier model. The algorithm’s input is the centroids C and training samples

S = {s1, s2, ....sm}. From Lines 1 to 8, the algorithm determines, for all training

samples, the distance from every centroid. The centroid having the minimum distance

to any given sample is identified. Then from Lines 9 to 12, samples having the

minimum distance to the centroid ci are grouped together to form a cluster Clusteri.

These clusters are provided as the output of the algorithm in Line 13.

The complete process of clustering for the case of two LFRs is shown in Figure 3.8.

Using Line 1 of Algorithm 3.2, the grouping of samples based on U is shown in Figure

3.8(a). The process of evaluating centroids for the first LFR using Lines 3 to 17 of

Algorithm 3.2 is shown in Figures 3.8(b)-(d). Algorithm 3.2 then evaluates centroids

for the second LFR and the centroids determined are shown in Figure 3.8(e). The
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Algorithm 3.3 Cluster Assignment.

Require: C, S
1: k = number of centroids in C
2: m = number of samples in S
3: for i = 1 to m do
4: for j= 1 to k do
5: dj = ||cj − si||
6: end for
7: ni = Find(min(D)) . where D = {d1, d2, ...dk}
8: end for
9: for i = 1 to k do

10: J = Find(N == i) . where N = {n1, n2, ....nm}
11: Clusteri = Assign(S, J)
12: end for
13: return Cluster1, Cluster2, ....Clusterk

dotted lines in Figure 3.8(f) represent boundaries of a cluster’s region. A cluster’s

region is a subregion in the parameters space. Any sample that lies in the cluster’s

region will be assigned by Algorithm 3.3 to the cluster whose centroid is enclosed by

the region. It can be seen that the failure boundary in any cluster’s region is almost

linear. Furthermore, the problem of getting multiple failure regions in a single cluster

region is also avoided.

3) Classifier Training

Up to this stage, we have successfully evaluated the clusters. Now in the last stage, a

single L-SVM classifier per cluster is trained. Cluster members given by Clusteri for

the ith cluster, serve as the training data for classifier. The choice of the classifier is not

only limited to L-SVM classifiers, rather any linear classifier can be used. However,

in our classification and estimation methodology, L-SVM classifiers are used because

of their robustness in high dimensional classification problems.
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Figure 3.8: Clustering of Training Data.
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3.2.5 Predicting Likely-to-Fail Samples

The last stage of the classification process is categorizing samples as unlikely-to-fail or

likely-to-fail without performing SPICE simulations. Random samples S′ are drawn

from the distribution of process variations parameters S, using LHS. S′ along with

earlier evaluated clusters centroids are given as input to Algorithm 3.3. The algorithm

outputs the clusters Cluster′1, Cluster
′
2, ....Cluster

′
k. After that, samples of Cluster′i

are categorized using the L-SVM classifier which was earlier trained using Clusteri.

3.3 Tail Distribution Modelling

After the process of statistical classification, the next process of our methodology is

to model the tail region of the performance metric’s distribution. In this section,

we discuss how the tail region or tail distribution of the performance metric Y is

modelled by fitting the samples to GPD.

The classification process outputs two sets of samples S′p and S′f , representing

unlikely-to-fail and likely-to-fail samples, respectively. Samples belonging to Sp are

ignored while a few hundred samples from S′f are chosen for SPICE simulation, yield-

ing values Yf = {yf1, yf2, ...yfn}. Samples that satisfy the condition yfk > t, are

selected for fitting the GPD. According to Equation 5, to determine the CDF Ft(y)

of GPD, three parameters, ε, µ and σ, are required. µ is the starting point of the

GPD and the relaxed failure criteria t is selected as µ. Therefore, only ε and σ have

to be estimated.

ε and σ can be estimated by one of the following three approaches:

• Moment Matching [41]

• Probability-weighted Moment (PWM) matching [54]

• Maximum likelihood estimation (MLE) [55]

Only the first two moments of a given sample data are used for approximating ε and

σ by the moment matching and PWM approaches. This may lead to a mismatch
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between the GPD and actual tail in higher order statistics [43]. In our methodology,

the MLE approach is used, which is based on an iterative method for estimating ε

and σ.

Maximum likelihood estimation(MLE)

The maximum likelihood estimation method estimates parameters for statistical mod-

els based on given sample data [56], such that the likelihood of selecting a training

sample from the model is maximized. MLE can be considered as a two step method

[57]:

• Determining a likelihood function relating the probability of given samples to

parameters for the statistical models.

• Estimating those parameters values that maximize the probability of given sam-

ples in the likelihood function determined in the first step.

Using the MLE method, the parameters ε and σ of GPD are estimated iteratively

using Newton’s method, towards a maximum log likelihood function [43, 55]:

logL(Yf ; ε;σ) = −g log(σ)− (1− ε)
g∑

k=1

zk (24)

where zk = −ε−1log(1− εypk
σ

)

3.4 Iterative Tail Distribution Modelling

Until this section, the working of our methodology was discussed in a sequential

way, without considering the iterative process. This section describes in details the

iterative process for classification and tail modeling.

To understand the concept and need of the iterative method; consider an approach

in which only a single relaxed failure criteria t is chosen. Choosing an optimal value

for t can be a difficult task for the case of extremely rare failure events [44]. The value

t is chosen such that the event Y > t is not so rare and Pb(Y > t) can be accurately
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Figure 3.9: Iterative Locating of Failure Region by changing Failure Criteria.

estimated by only using a few hundred simulations to model the distribution of per-

formance metric (Section 2.3). Let us consider an analog circuit having the failure

criteria tf , such that Pb(Y > tf ) = 0.0001%. For the approach using a single relaxed

failure criteria, a tail region having the probability of 1% to 10% can be chosen, if only

a few hundred samples were used for modelling of the overall distribution. To model

the tail, while accurately covering the event Y > tf , a significant number of samples

categorized as likely-to-fail, by the classifier have to be simulated. This is because of

the fact that the event Y > (tc − t), given Y > t, is itself a rare event as tf − t is

significantly large. This increases the simulation cost of the methodology. While on

the other hand if only a small number of samples are simulated for tail fitting, this

will result in the inaccurate modelling of extremely rare events and hence, generate

an inaccurate failure probability estimation.

To overcome this problem, our methodology uses an iterative process of choosing

a relaxed failure criteria, proposed by [27]. In this approach, the classification process

and GPD fitting are performed iteratively using a relaxed failure criteria ti, calculated

for the ith iteration. With every iteration LFRs are updated, so a new classification

process is applied to capture samples of updated LFRs. These samples are then

simulated to fit the GPD. For the first iteration, samples from the presampling stage

are used for classifier training. While for the other iterations samples simulated for
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GPD fitting in previous iterations are used. The process of iterative updating of

failure region based on the new failure criteria and respective GPD fitting is shown

in Figure 3.9. For the first iteration, a relaxed failure criteria t1 is chosen which lies

almost halfway between the actual failure criteria tf and mean in the distribution

of performance metric Y . By using samples residing in the region Y > t1, a GPD

is fitted with µ = t1. Then a new relaxed failure criteria t2 is chosen such that

t1 < t2 < tf . A new GPD is fitted with µ = t2 using samples that lie in the region

Y > t2. By doing this we get a more accurate model of the region Y > tf . A total

of n iterations are performed. For the nth iteration, we have a relaxed failure criteria

tn which lies very close to tf and a relaxed failure region almost equal to the realistic

failure region in the distribution of Y .

Calculating Relaxed Failure Criteria

The relaxed failure criteria for every iteration is calculated using percentile bounds

b = {b1, b2, ....bn} by the following relation:

ti =
(tf − ynom)bi

100
+ ynom (25)

The value of bi is chosen between 0% to 100%. When bi is 0%, ti is equal to the

nominal value ynom of Y while ti is equal to tf when bi is chosen to be 100%. Values

of b are chosen in increasing order, so with every iteration, ti approaches more closer

to tf . While choosing values for b, the accuracy of distribution modelling approach

has to be considered. For example if only 200 samples are being used to model

the performance metric and the model is accurate only up to 2σ deviation from the

nominal value, so the first percentile bound should be such that it generates a relaxed

failure criteria which is within 2σ deviation. Similarly, other percentile bounds are

chosen by considering the number of samples being used to fit GPD and accuracy

of the fitting algorithm. The number of iterations performed by the methodology is

equal to the number of percentile bounds. In our methodology, percentile bounds are

chosen after the presampling process. An approximate behavior of the analog circuit
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is available after the presampling process and analyzing it help us determine the total

number of iterations required and value of percentile bound for each iteration.

3.5 Failure Probability Estimation

Once the iterative process of GDP fitting is completed, the total failure probability

has to be evaluated. In Section 2.3, the process of rare event modelling using tail

modelling was described. If the performance metric Y follows a Gaussian distribution

with the failure criteria tf and t1 as the tail starting point, then the failure probability

Pbf is given by:

Pbf = Pb(Y > t1).P b(Y > tf |Y > t1) = (1− F (t1))(1− Ft1(tf )) (26)

Moreover, ynom < t1 < tf .

where Ft1(y) is the tail CDF, obtained by GPD fitting with µ = t1.

Suppose that:

Pbf1 = Pb(Y > tf |Y > t1) = (1− Ft1(tf )) (27)

Pbf1 represents the conditional probability of event Y > tf , given by Y > t1. The

conditional CDF is given by Ft1(tf ). Now if another relaxed failure criteria t2 is

chosen, such that t1 < t2 < tf , then using the same analogy while deriving Equation

26, we have:

Pbf1 = Pb1(Y > t2).P b1(Y > tf |Y > t2) = (1− Ft1(t1))(1− Ft2(tf )) (28)

Substituting value of Pbf1 from Equation 28 in Equation 27 and then the value of

Pb(Y > tf |Y > t1) from Equation 27 in Equation 26, we get:

Pbf = Pb(Y > t1)Pb1(Y > t2)Pb1(Y > tf |Y > t2)

= (1− F (tt1))(1− Ft1(t1))(1− Ft2(tf ))
(29)
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Generalizing the Equation 29 for the case of the number n of failure criteria, such

that ynom < t1 < t2 < .... < tn, the total failure probability becomes:

Pbf = Pb(Y > t1)
n−1∏
k=1

[
Pbk(Y > tk+1)

]
Pbn−1(Y > tf |Y > tn)

= (1− F (t1))
n−1∏
k=1

[
(1− Ftk(tk))

]
(1− Ftn(tf ))

(30)

3.6 Failure Probability Estimations for Multiple

Specifications

Until now only one performance metric was considered. Most analog circuits, however,

have multiple performance metrics, which have to be analyzed simultaneously. In this

section, our approach for evaluating the total and individual failure probability of the

analog circuits in the presence of multiple performance metrics is discussed. Every

performance metric has its own specification. If a single performance metric fails to

meet its specification, it is considered an overall circuit failure.

The SB [42] and RSB [27] approaches apply multiple classification processes to

identify different failures resulting from each performance metric. REscope [43] and

Smartera [44] use single classification processes for identifying multiple types of failure

all together. However, no details were provided for the evaluation of total failure

probability estimation in any of the above mentioned approaches.

In our methodology, multiple failure types are considered all together. The clas-

sification process adopted for the multiple performances is also binary, i.e., either

unlikely-to-fail or likely-to-fail. Unlikely-to-fail samples are those when simulated

are more likely to generate a circuit behavior that satisfies the desired specification

for each of the performance metric. While for likely-to-fail samples, one or more

performance metrics are likely to violate their respective specification. Once the clas-

sification process is performed, the likely-to-fail samples captured by classifier are

simulated. If Y1, Y2, ...Yq are the performance metrics, q GPDs are fitted, one for

every performance metric. If j = 1, 2, ...q, then, when all iterations are concluded,
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we evaluate the probability Pbj,f = Pb(Yj > tj,f ) using Equation 30, for all values of

j. Pbj,f represents the probability that a performance metric Yj will fail to meet its

desired specification, defined by the failure criteria tj,f .

In the remaining part of this section, we derive the total failure probability of

analog circuits in the presence of multiple performance metrics.

Failure Probability Formulation

Consider a case of single performance metric Y1, its failure is an event when y1 > t1,f .

This event is represented as the region embedded by the circle A1 in the Venn diagram

[58] representation shown in Figure 3.10(a). Hence the total failure probability of the

circuit will be equal to the probability of the event represented by the circle A1.

Now for the venn diagram representation of two the performance metrics Y1 and

Y2, we will have two circles A1 and A2 representing events y1 > t1,f and y2 > t2,f ,

respectively, as shown in Figure 3.10(b). The events represented by the circles A1

and A2 are mutually exclusive [47]. Based on the criteria that a circuit fails if any of

the performance metric fail, the total failure probability Pbf is given by [47]:

Pbf = Pb1,f ∪ Pb1,f = Pb(A1 ∪ A2) = Pb(A1) + Pb(A2) (31)

where Ag = Yg > tg,f with g = 1, 2.

Figure 3.10(c) shows the case when A1 and A2 may overlap, a situation which may

arise in certain analog circuits [38]. For the case of not mutually exclusive events [47]

as shown in Figure 3.10(c), the total failure probability is given by [47]:

Pbf = Pb(A1 ∪ A2) = Pb(A1) + Pb(A2)− Pb(A1 ∩ A2) (32)

A process parameter sample s belonging to the region represented by A1 ∩ A2 will

generate a circuit behavior in which both the performance metrics Y1 and Y2 will

simultaneously violate their respective specifications. Using the inclusion-exclusion

principle [59], the total failure probability for the case of q performance metrics is
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Figure 3.10: Venn Diagram Representation of Failure Event: (a) Single; (b) Double
Mutually Exclusive; (c) Double Not Mutually Exclusive.

given by [59]:

Pbf = Pb

( q⋃
i=1

Ai

)
=

q∑
i=1

Pb(Ai) −
∑
i<j

Pb(Ai ∩ Aj)

+
∑
i<j<k

Pb(Ai ∩ Aj ∩ Ak) − ...+ (−1)q−1Pb

( q⋂
i=1

Ai

) (33)

where Aj = Yj > tj,f , j = 1, 2, ...q.

Probability Estimation of Overlapping Failure Regions

According to Equation 33, to evaluate Pbf accurately, apart from determining the

probability of each metric failing to meet its specification, the overlapping probabil-

ity also has to be determined. As mentioned at the start of this section, the metric’s

failure probability can be evaluated using Equation 30. Now at this stage, only the

probability of overlapping region of different failure events need to be estimated. To

49



Figure 3.11: Probability of Overlapping Failure Events.

the best of our knowledge, this is the first work on classification based methods for

failure probability modelling and estimation that deals with the problem of overlap-

ping of failure events. All other work either assume that no overlapping occurs [27, 42]

or ignored [43, 44] the problem of overlapping failure events. So when applied to cases

with overlapping failure events, they fail to provide an accurate analysis.

To understand how the overlapping probability is calculated in our methodology,

we consider the case of two metrics Y1 and Y2 and estimate Pb(A1 ∩ A2). Figure

3.11 shows the distribution of Y1 in the region y1 > t1,f . The area shaded in grey

represents Pb(A1 ∩ A2).

To estimate the regions in grey, one needs to determine Ω in the region y1 > t1,f .

The process parameter sample so that generates y1,o ∈ Ω, also generates the value y2,o

of the performance metric Y2 such that y2,o > t2,f . By the end of the last iteration of

our methodology, we have enough samples S of the process parameter distribution,

generating y1 > t1,f , to effectively determine Ω. Hence no extra SPICE simulations

are required. After determining Ω, using Equation 30, Pb(A1 ∩A2) is determined. It
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Algorithm 3.4 Probability Estimation of Overlapping Failure Regions.

Require: q
1: for i = 2 to q do
2: Comb = NchooseK(1 : q, i)
3: k = number of rows of Comb
4: for j = 1 to k do
5: Com = ExtractRow(Comb, j)
6: Pbintersecting = EvalOverlap(Com)
7: Pbsummation = Pbsummation + Pbintersecting
8: end for
9: Pboverlap = Pboverlap + (−1)i−1Pbsummation

10: Pbsummation = 0
11: end for
12: return Pboverlap

is given as:

Pb(A1 ∩ A2) = Pb(Y1 > t1,1)
n−1∏
k=1

[
Pb1,k(Y1 > t1,k+1)

]
Pb1,n−1(Y1 = Ω|Y1 > t1,n) (34)

In Equation 34, only Pb1,n−1(Y1 = Ω|Y1 > t1,n) needs to be estimated, as other ele-

ments have already been estimated up to this point in the methodology. Pb1,n−1(Y1 =

Ω|Y1 > t1,n) can be estimated using the CDF F1,tn(y1) of GDP fitted for Y1 in the

last iteration. Here Y1 was taken as a reference metric to estimate Pb(A1∩A2). Sim-

ilarly, Pb(A1 ∩ A2) can also be estimated by taking Y2 as a reference metric. In our

methodology, the metric with lower index value is taken as reference metric.

To this point, we discussed how the probability of single intersecting event in

Equation 33 is estimated. The probability of all other intersecting events is estimated

in a similar manner. Algorithm 3.4 shows a simplified implementation for estimating

Pboverlap, where Pboverlap is given by:

Pboverlap = −
∑
i<j

Pb(Ai∩Aj) +
∑
i<j<k

Pb(Ai∩Aj∩Ak) −...+(−1)q−1Pb

( q⋂
i=1

Ai

)
(35)

The input to Algorithm 3.4 is the number of performance metrics q. The function

NchooseK() in Line 2 outputs the matrix Comb containing all possible combination of

q metrics taken i metrics at a time. The matrix Comb has i columns and q!
((q−i)!i!) rows.
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A row Com = {Com1, Com2, ..Comi} of Comb represents a possible intersecting

event, where Comj is the index of a metric. From Lines 4-8, the algorithm estimates

Pbsummation, which is the value of a single summation term in Equation 35. Taking

a single row of Comb at a time, the probability Pbintersecting of an intersecting event

given by the row, is estimated using the function EvalOverlap() in Line 6. This

function is itself an algorithm, whose working is based on estimating the probability

of Ω. Figure 3.12 shows the flowchart of EvalOverlap().

The input to EvalOverlap() is Com, for which Pbintersecting is to be estimated. For

simplicity, it is assumed that the function EvalOverlap() has access to all samples of

process parameters which were simulated and their corresponding simulation results.

Apart from that, EvalOverlap() also has access to the failure criteria, PDF and

GPDs fitted, for all performance metrics. EvalOverlap() considers the metric with

the index given by Com1 as a reference metric to estimate Pbintersecting. Values of

YCom1 are sorted in increasing order. Taking one value of YCom1 at a time, the function

EvalOverlap() checks whether the process parameter sample for the value is causing

the metrics in Com to violate their respective specifications. If yes, the probability

of the value is estimated using Equation 34 and the value of Pbintersecting is updated.

Moreover, if more than one values satisfy this condition in a line, it is supposed that

these values form a continuous range and probability of the range is estimated. When

all the values of YCom1 are checked, Pbintersecting is provided as output.

In Line 9, Pbsummation is added to, or subtracted from Pboverlap according to Equa-

tion 35. The process in Lines 1 to 9 is repeated for all summation terms in Equation

35. Finally, the algorithm provides Pboverlap as an output in Line 12. The failure

probability Pbf of the analog circuit is then estimated by substituting the value of

Pboverlap in Equation 33.
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Figure 3.12: Flowchart for the EvalOverlap() Function.
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3.7 Summary

This chapter presented a detailed description of the proposed methodology for mod-

elling and estimating analog circuits failure probability. First, we discussed the pre-

sampling process and described its different stages. Then we discussed the statistical

classification process and described a new classifier model developed for the method-

ology. We discussed the process of tail distribution modelling and briefly described

the method for tail fitting adopted in the proposed methodology. Then we presented

the reasons for using an iterative process of classification and tail modelling and

briefly described its implementation. We derived the precise mathematical formula

to model and estimate failure probability of analog circuits in the presence of multiple

performance metrics. We also discussed the situation when different failure events

might overlap and explained the algorithm developed to deal with this situation. In

the next chapter, we will illustrate the application of the proposed methodology on

various analog circuits to verify its effectiveness.
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Chapter 4

Applications

In this chapter, we consider three real world applications to show the effectiveness of

the methodology for modelling and estimating analog circuit failure probability pre-

sented in the last chapter; a 5-stage ring oscillator [60], a 3-stage opamp [61] and a 6T

SRAM cell [62]. HSPICE [63] is used for the transistor level SPICE simulations. We

use the commercial TSMC 65nm process [64] with BSIM4 transistor models for de-

signing the circuits. The local mismatch variables are considered as process variables

including variations in MOSFET’s channel width ω, channel length L and threshold

voltage Vth under 0V bias.

In our experiments, we use MATLAB’s toolbox of statistics and machine learning

[65] for sampling, distribution fitting, k-means clustering and SVM classifier training.

Nominal values of performance metrics are determined by simulating the circuit in

nominal condition. The naive Monte Carlo (MC) method is used as a golden reference

to evaluate the accuracy and efficiency of the proposed methodology. The purpose

of the proposed methodology and other advanced statistical methods is to estimate

an accurate failure probability with a smaller number of SPICE simulations than

the number of simulations required by the naive MC method. Therefore, in the

experiments, the efficiency of the methodology is defined in terms of the speedup

achieved when compared to the naive MC method. The speedup is given by the
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following equation:

Speedup =
Total simulations required by the naive MC method

Total simulations required by the proposed methodology
(36)

The accuracy is defined in terms of relative error of the failure probability Pbf esti-

mated by the methodology. The lower the relative error, the more accurate are the

results. The error is given by following equation:

Error(%) =
|(Pbf estimated)− (Pbf estimated by naive MC)|

Pbf estimated by naive MC
x 100% (37)

Apart from our methodology, we also implemented the approaches REScope [43]

and Smartera [44] in MATLAB. Moreover, we compare our classifier model with the

GRBF based K-SVM classifier. The value of kernel scale γ of the GRBF based K-

SVM classifier is determined automatically by the svmtrain routine of MATLAB’s

toolbox of statistics and machine learning [65].

The number of misclassifications for each trained classifier model is determined.

The misclassified samples represent samples of process parameters which cause circuit

failure but are categorized as unlikely-to-fail by the classifier and vice-versa. The

number of misclassification is used to determine the error in the classification process.

The classification error is given by the following relation:

Error(%) =
number of misclassification

total number of samples catogrized by classifier
x 100% (38)

4.1 5-Stage Ring Oscillator

The phenomena of oscillation is found everywhere in all physical systems, especially

in electronic devices. Oscillators are integral parts of all digital electronic systems

that require a time reference, i.e., a clock. A perfect oscillator provides an accurate

time reference. A variety of oscillators are available where the frequency band and the

outputs performance in a noisy environment are different from one class of oscillators

to the other. Recent designs of IC applications require oscillators with low cost and

low power dissipation overshoot. The design of ring oscillators [66] using delay stages

inside the IC have proved to be more useful compared to other oscillators.
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Figure 4.1: Schematics of a 5-Stage Ring Oscillator.

A ring oscillator consists of an odd number of inverters. The output of each

inverter acts as input for the next one and the last output is used as the input to the

first inverter. Since a single inverter evaluates the logical negation of its input, it can

be proved that the last output of the chain consisting of an odd number of inverters

is the logical negation of the first input. The final output arrives at a finite amount

of time after the first input and the feedback of the last output to the input causes

oscillation. The frequency depends on the number of stages and the time delay of the

inverters. The schematic of 5-stage ring oscillator [60] circuit is shown in Figure 4.1.

We use this 5-stage ring oscillator circuit to show the validity of our methodology

in high dimensional parameters space. In this experiment, the metric of interest is

oscillation frequency freq, measured using transient analysis. The desired specifica-

tion for freq is between [1.71− 2.05] GHz range. The nominal frequency freqnom is

1.88GHz. The process parameters consider the local variation in ω , L and Vth of each

transistor shown in Figure 4.1, which results in a total of 30 parameters. A truncated

Gaussian distribution with 3σ variation is considered for each process parameter [67].

The 5-stage ring oscillator circuit is first verified by the naive MC method, where

the failure probability Pbf converges after 600,000 simulations. Then we estimate
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Pbf using the proposed methodology. Initially, 1000 samples are drawn using LHS

from the parameters space and stimulated in HSPICE. Then these simulated samples

are used to model PDF of freq using moment matching. freq follows a gaussian

distribution with mean≈ freqnom and standard deviation σ = 55.12MHz. In this

circuit, there are two failure criteria, i.e., t+f and t−f in this circuit, representing two

extremes of the desired freq range. After analyzing the PDF of freq, the percentile

bounds 30% , 60% and 90% are selected. Our methodology performs three iterations

of classification and tail fitting. 700 samples predicted likely-to-fail by the classifier

are simulated using HSPICE for each iteration. Two GPDs are then fitted, one for

each t+f and t−f . After that, the methodology estimates the circuit’s failure probability.

Accuracy and Efficiency

The circuit failure probability Pbf is the sum of the failure probability due to t+f and

t−f . Both criteria are for the single performance metric so no overlapping of failure

events exist in this example. Hence this circuit provides one on one comparison

between our methodology, naive MC, REscope and Smartera. The results are shown

in Table 4.1. Our methodology is 194 times faster than the naive MC method with

the relative error of only 0.2%. Moreover, our methodology provides better accuracy

than REscope and Smartera thanks to the use of a better classifier model. In terms

of efficiency, our methodology is better than REscope and Smartera, because we use

a smarter sampling method.

Table 4.1: Failure Probability Results for the 5-Stage Ring Oscillator.

Method
Failure No. of

Speedup Error(%)
Probability Simulation

Naive MC 1.1917e-4 600K - -
REscope 1.209e-4 6K 100x 1.3
Smartera 1.201e-4 3.5K 172x 0.78

Proposed Methodology 1.1951e-4 3.1K 194x 0.2
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Classification Accuracy

The freq specification of the 5-stage ring oscillator gives rise to multiple failure regions

in the parameters space. To illustrate the capability of our proposed classifier model

to handle multiple failure regions, we consider a simplified process variations model,

where the source of process variations is ω of transistors M1 and M2 shown in Figure

4.1. Under this configuration, the failure regions can be clearly visualized on a 2-D

space.

Figure 4.2: Clusters Selected by our Classifier Model: (a) Reference Data; (b) Cluster
Centroid; (c) Clusters Members.

We use 1000 naive MC samples for training our classifier model. First, our classi-

fier determines the number of failure regions and then clusters the training samples.

Figure 4.2(a) shows the samples used for training our classifier model. The red points

in Figures 4.2(a)-(b) are those samples that cause circuit failure while the blue points
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Table 4.2: Classification Results for the Two Parameters Ring Oscillator.

Classifier
Samples No. of

Error(%)
Tested Misclassifications

GRBF K-SVM 80K 7937 9.9
Our Classifier Model 80K 7751 9.6

represent those samples that do not cause circuit failure. The large black dots in

Figure 4.2(b) represent the cluster centroids evaluated by our classifier model using

Algorithm 3.2. Points having the same colour in Figure 4.2(c) represent the samples

belonging to a single cluster.

We also train the GRBF based K-SVM classifier using the same training samples.

We then test the classifiers against 80,000 reference samples. The results of these

experiments are presented in Table 4.2. From the table it can be seen that even in

the presence of multiple failure regions, our classifier model generates more accurate

results than the K-SVM classifier. The classification results of both classifiers can

be visualized in Figure 4.3. The red points in Figure 4.3(a) represent those samples

that cause circuit failure and vice-versa for the blue points. Similarly, the red points

in Figures 4.3(b)-(c) represent those samples that are categorized likely-to-fail by the

classifiers and vice-versa for the blue points.

We also performed further experiments to verify the validity of our classifier model

in the high dimensional problem using samples of the 5-stage ring oscillator circuit

in the presence of 30 process parameters. We used 1000 naive MC samples to train

our classifier model, and used the same samples to train the GRBF based K-SVM

classifier. We then tested the classifiers using 9500 reference samples. Table 4.3

summarized the results of these experiments. When the results presented in Tables

4.2 and 4.3 are compared, it can been seen that the classification error increases with

increasing number of the process parameters. This increase in the error of the K-SVM

classifier is more rapid than our classifier. Moreover, from Table 4.3, it can be seen

that the number of misclassifications of our classifier model is quite less than that of

the K-SVM classifier for the case of the 30 parameters ring oscillator.
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Figure 4.3: Classification Results for the Two Parameters Ring Oscillator: (a) Refer-
ence Data; (b) GRBF based K-SVM classifier; (c) Our Classifier Model.

Table 4.3: Classification Results for the 30 Parameters Ring Oscillator.

Classifier
Samples No. of

Error(%)
Tested Misclassifications

GRBF K-SVM 9500 1907 20.07
Our Classifier Model 9500 1605 16.89
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4.2 3-Stage Opamp

Operation Amplifiers (opamp) form essential components of communication systems.

They are also utilized in regulators and power management circuits and are among

widely used electronics devices. The basic function of an opamp is to amplify the

differential voltage between its two inputs. One of the inputs is non-inverting (+)

with voltage V+ and the other is inverting (−) with voltage V−. Scaling in CMOS

technology has ceaselessly challenged the established models for opamp design. Scal-

ing in the feature size of CMOS creates faster transistors, however, the transistor’s

gain is reduced. In addition to these challenges, the process variations became more

pronounced leading to significant offsets in opamps due to the device mismatch. In

order to meet the gain specification of opamp in nano scale CMOS processes and low

supply voltage, three or higher stage opamp topologies have become important. A

schematic of a 3-stage opamp [61] is shown in Figure 4.4. Vp and Vm represent the

opamp’s non-inverting and inverting input, respectively. Vout represents the opamp’s

output. The resistors R1 and R2 and capacitors C1 and C2 are used for feedback com-

pensation of the opamp. The capacitor CL represents the load capacitance. Vbiasn is

the bias voltage for the first stage of the opamp.

In the sequel, we verify that our methodology is suitable for the case with multiple

performances specification and overlapping failure events. The performance of the

opamp is characterized by many properties, such as voltage gain (Av), gain bandwidth

(GBW ), etc. In our experiments, the 3-stage opamp was designed to satisfy a list of

specifications shown in Table 4.4. Av is estimated by taking the ratio of the output

voltage of opamp to the differential voltage at opamp’s non-inverting and inverting

inputs. While GBW is the frequency at which the small-signal gain equals one. Both

metrics are measured during AC analysis.

To visualize the effect of overlapping failure events, we use a simplified process

variations circuit model. The channel width variation in an input transistor changes

the current flowing through the transistor [68], which directly affects the opamp’s
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Figure 4.4: Schematics of a 3-Stage Opamp.

Table 4.4: Specifications for the 3-stage Opamp.

Performance metric Specification

Av(dB) ≥ 37
GBW (MHz) ≥ 70

operation. Therefore, we select the channel width ω of the transistors M1 and M2

shown in Figure 4.4 as the process variables. We assume that both process parameters

follow a truncated normal distribution having range [µ − 3σ, µ + 3σ] [67]. Here µ

represents the nominal value. The nominal values of Av and GBW are 47.7 dB and

75.7 MHz, respectively.

The circuit is first verified using the naive MC method, where the failure prob-

ability Pbf converges after 100,000 simulations. These simulations are then used as

reference data. Then, we estimate Pbf of the circuit using our methodology. We ini-

tially draw 800 samples using LHS for the presampling process and model the PDFs
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for both the Av and GBW using moment matching. The PDFs are then analyzed

and the percentile bounds are selected as 30%, 60% and 90%.

The methodology estimates Pbf in three iterations of statistical classification and

GPDs fitting. At the first iteration, the methodology determines the relaxed failure

criteria using the first percentile bound. Then, samples from the presampling process

are used for the classifier training. After that, samples are drawn using LHS and

categorized as likely-to-fail or unlikely-to-fail by the classifier. The iteration stops

when 700 samples are categorized as likely-to-fail by the classifier. These samples are

simulated using HSPICE. The simulation results are used to fit the first GPDs for

both Av and GBW .

After that, the methodology evaluates the new relaxed failure criteria from the

second percentile bound, the samples used for the GPDs fitting in the pervious iter-

ation along with the samples from the presampling process are used to train the new

classifier and the above mentioned process is repeated. Similarly, the methodology

repeats the same process for the third iteration. Then the methodology estimates the

failure probabilities PbAv,f and PbGBW,f for Av and GBW , respectively. After that,

the methodology estimates the probability of overlapping failure events and then it

estimates the circuit’s failure probability.

Accuracy and Efficiency

Av and GBW induce failure regions which overlap in parameters space as shown in

Figure 4.5. Traditionally, the failure probability of each performance metric is added

to evaluate the total failure probability [38]. Since REscope and Smartera do not

provide any insight on how their work deal with multiple performance metrics, the

circuit’s failure probability Pbf is evaluated by adding the failure probabilities PbAv,f

and PbGBW,f , for both approaches. In Figure 4.5 it can be seen that the Av’s and

GBW ’s failure regions are almost equal. By simply adding PbAv,f and PbGBW,f to

estimate Pbf , results in a value of Pbf that is almost the double to actual value. The

experimental results of Pbf , estimated for the for the 3-stage opamp circuit using the
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Figure 4.5: Overlapping Failure Events of the 3-stage Opamp.

Table 4.5: Failure Probability Results for the 3-Stage Opamp

Method
Failure No. of

Speedup Error(%)
Probability Simulation

Naive MC 2.11e-2 100K - -
REscope 4.20e-2 3.8K 26x 98
Smartera 4.17e-2 3.5K 28x 98

Proposed Methodology 2.10e-2 3.1K 32x 0.9

naive MC method, REscope, Smartera and our methodology is shown in Table 4.5.

It can be seen that our methodology is 32 times faster than the naive MC method

with only 0.9% relative error. REscope and Smartera fail to estimate accurate results

because both approaches are unable to deal with overlapping failure events.

Classification Accuracy

We perform experiments to verify the validity of our classifier model. We use 1000

naive MC samples to train our classifier model. The same samples are also used

to train the GRBF based K-SVM classifier. The trained classifiers are then tested

against 80,000 reference samples. These samples are categorized as unlikely-to-fail
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Table 4.6: Classification Results for the 3-Stage opamp.

Classifier
Samples No. of

Error(%)
Tested Misclassifications

GRBF K-SVM 80K 59 0.074
Our Classifier Model 80K 51 0.063

or likely-to-fail and the obtained results are presented in Table 4.6. In the table, it

can be seen that our classifier model is more accurate and has a lower relative error

compared to the K-SVM classifier. Our classifier model generates a smaller number

of misclassifications than that of the K-SVM classifier.

The classification results presented in Table 4.6 can be visualized by Figure 4.6.

The red points in Figure 4.6(a) represent those samples that cause circuit failure while

the blue points are the samples that do not cause circuit failure. The red points in

Figures 4.6(b)-(c) represent the samples categorized as likely-to-fail by the classifier

while the blue points are the samples that are categorized as unlikely-to-fail. The

points in Figures 4.6(a)-(c) that lie close to the axis, represent the rare event samples

in the parameters space. By comparing results shown in Figures 4.6 (a) and (b),

it can be observed that most of the rare event samples, causing circuit failure, are

categorized unlikely-to-fail by the K-SVM classifier. This situation may significantly

affect the value of the failure probability estimated by an approach based on the

K-SVM classifier.
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Figure 4.6: Classification Results of the 3-stage Opamp: (a) Reference Data; (b)
GRBF K-SVM; (c) Our Classifier Model.

4.3 6T SRAM Cell

Static Random Access Memory (SRAM) are very popular for their large storage

density and small access time. Due to the need for low power and low voltage memory

design for ultrabooks, smartphones and memory cards in recent years, SRAM has

become the topic of substantial research.

An SRAM cell can be constructed using a ranging number of transistors. One

such implementation is using six transistors (6T). Figure 4.7 gives schematic of a 6T

SRAM cell [62]. The four transistors M1, M2, M3 and M4 have two stable states, i.e.,

either a logic 0 or 1, and the two additional access transistors M5 and M6 serve to
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control the access to the cell during read and write operations. The Word Line (WL)

is used to determine whether the cell should be accessed (connected to bit line) or

not, and the bit lines (BL and BLB) are used to read/write the actual data from/to

the cell. The bit lines are relatively long and have large parasitic capacitances.

Figure 4.7: Schematic of a 6T SRAM Cell.

The increased density of SRAM in integrated devices demands the sizing to be

scaled down. Due to this scaling, a lower supply voltage is required for reliable

operation. This improves the power consumption but affects the performance of

the SRAM, i.e, Static Noise Margin (SNM) [69] is also reduced. SNM is defined as

the maximum value of DC noise voltage that can be tolerated by the SRAM cell

without changing the stored bit. SNM is measured by the length of the maximum

embedded square in the butterfly curves which consists of the Voltage Transfer Curves

(VTC) of the two inverters in the SRAM cell. When SNM is smaller than zero, the

butterfly curves collapse and data retention failure happens [69]. For a normal process

variation, SNM remains positive. But extreme process variations may cause SNM to

become negative, hence causing failure. It is important to evaluate extremely rare

failure event in single cell to achieve high yield in SRAM chips.

We use our methodology to estimate the failure probability of 6T SRAM cell

and compare the results with other methods. The performance metrics of interest
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are static noise margin for read, write and hold operations. Static noise margin for

read operation (RNM), is determined by setting WL to logic 1 and precharging BL

and BLB. VTC for both inverters are determined using DC analysis and RNM is

estimated. For the write operation, WL and BLB are set to logic 1 and BL is set to

logic 0 when logic 0 is to be written on the SRAM cell. Again VTC for both inverters

are determined using DC analysis and SNM for write operation (WNM) is estimated

using these VTCs. The same process repeated for estimating the hold SNM (HNM),

with WL, BL and BLB all set to logic 0. Usually, the required specification for any

noise margin has to be greater than zero. However, it can be set higher also, for a

higher reliability margin [62]. The desired specification for the circuit is given in Table

4.7. The process parameters consider is the local variation in Vth of all transistors

shown in Figure 4.7. A truncated Gaussian distribution with large variation of 6σ is

considered for each process parameter [70].

Table 4.7: Specifications for the 6T SRAM Cell.

Performance metric Specification

RNM > 0.15V
WNM > 0.24V
HNM > 0.26V

Initially, the failure probability Pbf of the circuit is estimated using the naive MC

method with 50,000 samples. After that, we use our methodology to estimate Pbf

as follows. First, using LHS, 1000 samples are drawn and used for presampling. The

PDF of each performance metric is modelled. After analysing the PDFs, percentile

bounds, 30%, 60% and 90% are selected. After that, the analysis is performed in three

iterations. The percentile bounds are used to evaluate the relaxed failure criteria for

each performance metric at each iteration. Every iteration stops when the classifier

selects 500 likely-to-fail samples. These samples are simulated using HSPICE to fit

the three GPDs; each for the RNM, WNM and HNM. When all iterations conclude,

the methodology determines individual probabilities for RNM, WNM and HNM not
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meeting their desired specifications. After that, the methodology estimates the prob-

ability of overlapping failure region using Algorithm 3.4. Finally, the methodology

estimates Pbf and provides it as output.

Accuracy and Efficiency

Table 4.8: Failure Probability Results for the 6T SRAM Cell.

Method
Failure No. of

Speedup Error(%)
Probability Simulation

Naive MC 5.122e-2 50K - -
REscope 5.25e-2 3K 16x 2.5
Smartera 5.24e-2 2.8K 18x 2.3

Proposed Methodology 5.133e-2 2.5K 20x 0.2

The experimental results for failure probability estimation for the 6T-SRAM cell

are shown in Table 4.8. Our methodology provides results 20 times faster when

compared to the naive MC method with only 0.2% relative error. Moreover, from

the results presented, it can be seen that our methodology outperforms REscope

and Smartera in terms of accuracy. When compared with the opamp circuit, the

6T-SRAM cell does produce an overlapping region, but this region is comparatively

small. The simple addition of failure probability adopted for REscope and Smartera

seem to produce reasonable results. However, the relative errors of these approaches

when compared to the relative error of our methodology are still large.

Classification Accuracy

We also performed experiments to verify the validity of our classifier model for the

SRAM circuit. 1000 naive MC samples are used to train our proposed classifier model

and the GRBF base K-SVM classifer. These classifiers are then tested against 9500

reference samples. The results for both classifer model are shown in Table 4.9. Our

classifier model has approximately 2.5% less relative error than that of the K-SVM

classifier. The lower classification error allows more realistic failing samples to be
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Table 4.9: Classification Results for the 6T SRAM Cell.

Classifier
Samples No. of

Error(%)
Tested Misclassifications

GRBF K-SVM 9500 1571 16.5
Our Classifier Model 9500 1348 14.19

captured by the classifier. As a result, a more accurate GPD fitting is achieved which

results in a better estimation of the failure probability compared to the approach

based on the K-SVM classifier.

4.4 Summary

In this chapter, we applied the proposed methodology for modelling and estimating

failure probability on three circuits; a 5-stage ring oscillator, a 3-stage opamp and

a 6T SRAM cell. The obtained results were also compared to other approaches,

namely, the naive MC method, REscope and Smartera. The 3-stage opamp and

6T SRAM cell were used to verify the validity of our methodology in the presence

of multiple performance metrics. The 5-stage ring oscillator was used to show that

the methodology is suitable for cases in which a large number of process parameters

are considered. The experimental results showed that the proposed methodology

delivers many orders of speedup compared to the naive MC method with a high

estimation accuracy. Furthermore, the proposed methodology was able to estimate

accurate failure probabilities in the presence of multiple performance metrics while

both REscope and Smartera failed completely. Moreover, in this chapter, we also

verified the validity of the new classifier model developed in this thesis. We compared

our classifier model with the Gaussian Radial Basis Function (GRBF) based Kernel

SVM (K-SVM) classifier, by testing both classifiers on the analog circuit’s process

parameters dataset. The experimental results showed that our classifier has a better

classification accuracy than the GRBF based K-SVM classifier.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

At nanoscale, variations in transistors parameters generate an unpredictable circuit

behavior and may ultimately cause the circuit to violate constraints and fail. Thus,

validating circuit reliability has become an area of great interest. Many statistical

circuit simulation approaches have been proposed to evaluate the probability that a

circuit does not meet the design specification. However, existing approaches lack the

ability to accurately and efficiently analyze failure probability in the presence multi-

ple performance metrics. Recognizing this, in this thesis, we proposed a methodology

which can model and estimate analog circuits failure probability in the presence mul-

tiple performance metrics. The proposed methodology leverages the concepts of iter-

ative statistical classification based approaches, to reduce the number of simulations

while maintaining high estimation accuracy.

The proposed methodology consists of four processes, i.e., presampling, statistical

classification, tail distribution modelling and failure probability modelling and esti-

mation. In the first process, an approximate probabilistic behavior of the circuit is

modelled by simulating a few hundred samples of process parameters. Then, in the

second process, a classifier is trained to predict those samples which are likely to cause

the circuit failure. A new classifier model has been developed for this process which
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is based on a divide-and-conquer strategy. The classifier model uses multiple linear

classifiers for the non-linear classification problem. Afterwards, in the third process,

samples predicted to cause the circuit failure are simulated and the obtained results

are used to model tail region of the circuit’s probabilistic behavior. This tail model

contains information specific to rare failure events. The second and third process

are repeated iteratively to obtain a better tail model. Finally, in the last process,

the circuit failure probability is modelled and estimated using the model of circuit’s

probabilistic behavior in tail regions. We derived the precise mathematical equa-

tion for failure probability modelling and estimation. Furthermore, the problem of

overlapping of failure events in the presence of multiple performances was accurately

addressed.

To show the usefulness of the proposed methodology for modelling and estimat-

ing failure probability, we applied it on three circuits; a 3-stage opamp, a 5-stage

ring oscillator and a 6T SRAM cell. The obtained results were compared to the

standard approach, i.e., the naive MC method. Moreover, we also compared the ob-

tained results to other recently published statistical classification based approaches,

i.e., REscope and Smartera. The experimental results showed that the proposed

methodology provides many orders of speedup against the naive MC method with a

high estimation accuracy. Furthermore, the proposed methodology was also able to

estimate accurate failure probability for the case of overlapping failure events caused

by multiple performance metrics, while REscope and Smartera failed completely. The

proposed methodology was also able to estimate more accurate results using a fewer

simulation runs compared to REscope and Smartera for the case of a single perfor-

mance metric. Moreover, we also verified the validity of the new classifier model

developed in the proposed methodology. We compared our classifier model with the

Gaussian Radial Basis Function (GRBF) based Kernel SVM (K-SVM) classifier by

testing both classifiers on the analog circuit dataset. The experimental results show

that our classifier has a better classification accuracy than the GRBF based K-SVM

classifier.
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5.2 Future Work

Some of the worth mentioning future research directions based on our experience and

lessons learned during the course of this thesis are outlined as follows:

1. Currently, the percentile bounds are chosen manually. An immediate extension

of this thesis is to automate the process of deciding the percentile bounds and the

number of iterations required for best results while maintaining high efficiency.

2. Another extension is to combine the importance sampling method and our

methodology in a way that the prediction accuracy is further increased with

a smaller number of training samples. By this, we expect that instead of a few

thousands, only few hundred samples will be simulated in total for the analog

circuit verification problem.

3. The classifier model developed for the proposed methodology can only be used

for the analog circuit dataset. Another extension of this thesis is to develop

a classifier model which is general in nature, i.e., the classifier can be used

for any classification problem. By this, we expect that the application of the

proposed methodology will extend to other fields of study, e.g., business studies,

economics, etc.

4. A longer term extension of this thesis is to develop a classification process in

which multiple classifiers are trained for different subsets of process parameters.

Then all classifiers interact to predict the status of a sample under the influence

of all process parameters. In this way the ‘curse of dimensionality ’ [71] for

analog circuit verification will be overcome.
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[57] Gunter Löeffler and Mr Peter N. Posch. Credit Risk Modeling using Excel and

VBA. Wiley, 2011.

[58] John Venn. Symbolic Logic. MacMillan, 1881.

[59] Richard A. Brualdi. Introductory Combinatorics. Pearson Education Interna-

tional, 2012.

[60] Behzad Razavi. Design of Analog CMOS Integrated Circuits. McGraw-Hill Ed-

ucation, 2000.

81



[61] Vishal Saxena and Russel J. Baker. Indirect compensation techniques for three-

stage fully-differential op-amps. In Proceedings of International Midwest Sympo-

sium on Circuits and Systems, pages 588–591. IEEE, 2010.

[62] Vasudha Gupta and Mohab Anis. Statistical design of the 6T SRAM bit cell.

IEEE Transactions on Circuits and Systems I, 57(1):93–104, 2010.

[63] Synopsys. HSPICE: Accurate Circuit Simulation. http://www.synopsys.com/

tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/

default, 2016.

[64] TSMC. http://www.tsmc.com/english/dedicatedFoundry/technology/

65nm.htm, 2010.

[65] MathWorks Inc. Matlab: Statistics and Machine Learning Toolbox (R2016b).

http://www.mathworks.com/help/stats/index.html, 2016.

[66] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. Digital inte-

grated circuits, volume 2. Prentice hall Englewood Cliffs, 2002.

[67] Chi-Wah Kok and Wing-Shan Tam. CMOS Voltage References: an Analytical

and Practical Perspective. Wiley, 2012.

[68] Kerry Bernstein, Keith M Carrig, Christopher M. Durham, Patrick R. Hansen,

David Hogenmiller, Edward J. Nowak, and Norman J. Rohrer. High Speed CMOS

Design Styles. Springer, 1998.

[69] Evert Seevinck, Frans J. List, and Jan Lohstroh. Static-noise margin analysis of

MOS SRAM cells. IEEE Journal of Solid-State Circuits, 22(5):748–754, 1987.

[70] Alberto Bosio, Luigi Dilillo, Patrick Girard, Serge Pravossoudovitch, and Arnaud

Virazel. Advanced Test Methods for SRAMs. Springer, 2014.

[71] Claude Sammut and Geoffrey I. Webb. Encyclopedia of Machine Learning.

Springer, 2011.

82

http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default
http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default
http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default
http://www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm
http://www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm
http://www.mathworks.com/help/stats/index.html

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Related Work
	Monte Carlo and its Variants
	Moment Matching
	Importance Sampling
	Statistical Classification Based Methods

	Proposed Methodology
	Thesis Contributions
	Thesis Organization

	Preliminaries
	Basic Concepts in Probability Theory
	Random Variable and Random Process
	Distribution Function
	Generalized Pareto Distribution

	Support Vector Machines Classifier
	Linear SVM
	Kernel SVM

	Rare Event Modelling
	Latin Hypercube Sampling
	SPICE
	k-means Clustering
	Summary

	Classification and Estimation Methodology
	Presampling
	Statistical Classification
	Background
	Algorithm Overview
	Exploring LRFs
	Clustering & Classifier Training
	Predicting Likely-to-Fail Samples

	Tail Distribution Modelling
	Iterative Tail Distribution Modelling
	Failure Probability Estimation
	Failure Probability Estimations for Multiple Specifications
	Summary

	Applications
	5-Stage Ring Oscillator
	3-Stage Opamp
	6T SRAM Cell
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography



