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ABSTRACT

Vibration Analysis of a Shaft-Disc System for On-line Crack Detection

Hamid Khorrami,

Concordia University, 2016

This dissertation research concerns detection of cracks in rotating shaft-disc

systems using the vibration-based methods. Turbines, pumps and jet engines are

some examples of the shaft-disc systems, where crack failures may cause catastrophic

e�ects. Detection of cracks at the early stages of growth is thus vital for prevention

of failures, and has been the subject of many studies. Various crack detection

methods such as ultrasonic, x-ray and vibration-based methods have been widely

developed. Among these, the vibration-based methods are better suited for on-line

crack detection. The reliability of such methods, however, relies upon the acquisition

of an adequate vibration signature and its correlation with the crack, particularly

for small size cracks. The reported studies have employed varying signal processing

and crack modeling methods, although the models generally lack of consideration of

e�ects of crack location and other possible faults.

An analytical model of a �exible shaft with two transverse fatigue cracks and

two discs mounted on rigid/ resilient supports is formulated, and the corresponding

boundary and continuity conditions are developed. A modi�ed harmonic balance

method is subsequently proposed for solutions of the governing equations of the

analytical model to investigate changes in the selected vibrational properties such

as shaft critical speeds, shaft center orbits and super-harmonic components of the

steady-state lateral response to an unbalance excitation. The e�ects of single crack

properties such as depth and location on the responses are investigated consider-

ing short/long and rigid/�exible bearing supports. The crack is considered as a

breathing crack, and is characterized by an exponential function, which facilitated

its integration in the modi�ed harmonic balance method. Furthermore, the e�ects
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of two cracks' characteristics such as depth, location and relative angular position

on selected vibrational properties are studied. Each crack is initially described by a

breathing function proposed by Mayes and Davies, which is subsequently modi�ed

as a softly-clipped cosine function to accurately describe saturation in breathing

phenomenon. The response characteristics of the cracked shaft are also compared

with those of the system with an intact shaft in order to identify potential measures

for detecting cracks. The validity of the proposed analytical model and the solution

strategy is illustrated through comparisons of the model results with those obtained

from a �nite element model and limited experiments.

The crack-induced changes in transient lateral responses of the shaft-disc sys-

tem are also considered for transverse crack detection. The shaft-disc system is

simply modeled as a Je�cott rotor to compute its start-up responses in the lat-

eral direction. The breathing behavior of the crack is characterized with respect

to stress intensity factor at di�erent points on the crack edge at each shaft angle.

A positive stress intensity factor corresponds to the open part of the crack, while

the closed part shows a negative stress intensity factor. The breathing crack excites

super-harmonic components of the transient as well as the steady-state lateral re-

sponses. Time-frequency representation of the transient lateral response obtained

from Hilbert-Huang transform based on an improved empirical mode decomposition

is used for crack detection. The results show that observed changes in the tran-

sient and steady-state lateral vibration responses could lead to e�ective detection of

relatively small size cracks.
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1.1 Introduction

Transverse crack detection due to cyclic bending loads and other faults in

di�erent components of a rotating machine have been widely investigated using

di�erent methods over the past many years. Non-vibrational methods have been

particularly emphasized for detection of cracks in rotating machines such as ultra-

sonic, x-ray and infrared radiation methods. Over the past few decades, a number of

vibration-based crack detection methods have been explored for on-line detection of

cracks. A vibration-based crack detection method involves identi�cation of changes

in the vibration properties of a system in relation to selected prede�ned crack prop-

erties. The reliability of such methods, however, strongly relies upon presence of

good correlations between a selected vibration measure (crack indicator) and the

crack parameters (depth and location).

The crack e�ect on the system is generally modeled as a local sti�ness reduction

at the crack location on the shaft. The sti�ness reduction due to a crack can be

obtained using the fracture mechanics theory or considering the reduction in second

moment of area of the cracked shaft cross-section. A crack can be modeled as an

open crack or a breathing crack. The crack is considered as an open crack, when the

dependence of the sti�ness reduction due to the crack on the shaft angle of rotation is

considered negligible. In this case, the crack e�ect is modeled as a rotational spring

with a constant sti�ness coe�cient at the crack location [1]. When the dependence

of sti�ness reduction due to crack on the shaft angle of rotation is not negligible, the

crack is modeled as a breathing crack, where the crack opens and closes during each

revolution of the shaft. A range of complex breathing functions have been proposed

to accurately describe breathing behavior of a crack [2�4]. The validity and relative

merits of the reported breathing functions and their e�ects on the performance of a

crack detection and identi�cation method, however, have not been reported.

The reported studies have proposed diverse vibration-based crack detection
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and identi�cation methods using widely di�erent signal analysis methods. These,

however, exhibit certain limitations, and analyses and implementation challenges.

The analyses for detection of a single crack have been mostly considered in a uniform

shaft-disc system (a Je�cott rotor) [e.g., 5�8], while the e�ects of multiple discs and

stepped shafts have not yet been attempted. Moreover, only little e�orts have

been made to investigate the e�ects of various confounders involving other form of

shaft-disc system faults such as bow shaft and other cracks. Some of the shaft-disc

system faults may cause changes in the crack indicator that are similar to those

induced by a crack [9]. In such cases, the reliability of the crack indicator and the

detection method would be of concern. Furthermore, the reported methods generally

do not detect small size cracks and do not provide direct information about the crack

location.

In this dissertation research, an analytical model of a shaft-disc system with

multiple discs and cracks is formulated to study its responses in the presence of

unbalance force. A modi�ed harmonic balance method is proposed to solve the

governing equations of lateral motion of the shaft-disc analytical model with one-

and two-cracks. Unlike the vast majority of the studies that are limited only to

the �rst harmonic component of the response, the proposed method also yields

super-harmonic components of the steady-state lateral response. A methodology to

incorporate localized sti�ness reductions due to breathing cracks is also presented.

The e�ects of crack parameters such as depth, location and relative angular position

are investigated in terms of critical speeds, shaft center orbits close to sub-critical

speeds and amplitudes of harmonic and super-harmonic components of the steady-

state lateral response. These response characteristics are discussed in view of their

potential for detecting the presence of one and two cracks in the rotating shaft. The

critical speeds are also compared with those obtained from the developed Finite

Element (FE) model of the shaft-disc system and from laboratory experiments to
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examine the validity of the model. An alternate breathing function is subsequently

proposed to more accurately model the breathing behavior of the fully-open and

closed crack. It is shown that the proposed breathing function signi�cantly improves

e�ciency of the applied method for detection of two cracks in a rotating shaft.

Furthermore, the time-frequency representation of the transient lateral response of

the shaft-disc system is considered for crack detection. The Hilbert-Huang transform

based on an improved empirical mode decomposition is used to obtain relatively

higher resolutions of the crack indicator to improve its e�ectiveness for detecting

small size cracks.

1.2 Literature review

Studies reporting di�erent methodologies for detecting crack defects in shaft-

disc systems on the basis of vibration analyses and measurement are critically re-

viewed to formulate the scope of the present dissertation research. The reported

studies, grouped under relevant topics, are discussed in the following sections.

1.2.1 Non-vibrational methods

Non-vibrational methods such as x-ray, infrared radiation and ultrasonic meth-

ods are widely used for detecting faults in machine components. Among these, the

ultrasonic methods are more commonly used. The ultrasonic methods involve propa-

gation of high frequency sound energy, generated using high voltage electrical pulses,

through the test components, and measurements of sound re�ections. A defect tends

to alter the properties of the re�ected sound waves [10, 11]. The x-ray and infrared

radiation methods involve speci�c imaging of the test component, where a crack

emerges in a distinct color [12, 13]. A number of limitations of these methods have

been documented in the literature such as greater sensitivity to high levels of noise
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[14], requirement of scanning of the entire components that may not be directly

accessible [15, 16], poor performance in detecting crack defects in earlier stages [17]

and relatively high costs [17]. Moreover, such methods are not suited for on-line

detection of cracks during machines operations. Alternatively, the vibration-based

damage detection techniques have shown superior potential to overcome the limita-

tions associated with conventional non-vibrational detection techniques.

1.2.2 Vibration-based methods

Signal- and model-based methods

A variety of vibration-based crack detection methods have been proposed dur-

ing the past few decades. Vibration-based crack detection and identi�cation methods

can be classi�ed into two categories, namely, the signal-based and the model-based

methods[18]. In the �rst category, only the changes in the selected vibrational prop-

erties of a system are considered to build a qualitative fault-symptom correlation

[e.g., 19�21]. Probabilistic classi�cations such as the fuzzy logic or the arti�cial

neural networks can be applied to de�ne the fault-symptom correlation [22]. The

signal-based methods do not depend on the properties of the system under consid-

eration and can be used for crack detection in widely di�erent types of systems [23].

Signal-based methods do not require a mathematical model of the system, while

these can provide vital information related to dynamic behaviors of the intact and

the cracked systems.

In the second category, a mathematical model of the system is necessary to

de�ne a quantitative fault-symptom relation. These generally involve: (i) modeling

the shaft-disc system; (ii) modeling the crack e�ect on the system; (iii) de�ning a

crack indicator; and (iv) identifying a correlation between the crack parameters and

changes in the values of selected crack indicators. The �ow graphs in Figure 1.1

illustrate signal- as well as model-based methods. In majority of these studies, the
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Figure 1.1: (a) Signal- and (b) model-based crack detection methods

identi�cation of a crack and its depth primarily relies on the analysis of crack-induced

changes in selected vibrational properties of the shaft-disc system with respect to

the reference values obtained for the intact (uncracked) system.

In model-based crack identi�cation methods [e.g., 24�26], the internal loads

due to the crack are mostly replaced by equivalent external �ctitious loads applied

to the intact system model. The crack parameters could be determined through

comparing the �ctitious loads obtained from the constructed system model and those

estimated from vibrational measurements [27]. Although the model-based methods

rely on static and dynamic characteristics of the system, these are considered to be

more reliable and more adaptable than the signal-based methods for detection of

other machine faults[28]. A few studies have proposed methods integrating both the

signal- and model-based approaches for more e�ective detections [29, 30].
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O�- and on-line methods

The reported crack detection methods may be further classi�ed in on- and

o�-line methods. The crack detection methods attempting to detect a crack in a

rotating shaft are referred to on-line methods, while those focusing on crack identi-

�cation in a non-rotating shaft are called o�-line methods. An on-line method can

be applied during steady-state rotational speeds and shutdown or startup stages,

whilst the o�-line method is speci�cally limited to the non-rotating shafts. Con-

trary to non-rotating structures, the equations of motion of rotating structures are

non-self-adjoint (NSA), containing non-symmetric system matrices which can lead

to non-symmetric frequency response function (FRF) matrix [31]. The NSA equa-

tions refer to equations of motion of a system which are physically symmetric but

mathematically asymmetric. Structures with NSA equations need two sets of eigen-

vectors and a set of eigenvalues to be completely de�ned. The necessity of using two

eigenvectors (left- and right-eigenvectors) arises from the fact that both sensor and

excitation devices should change their position on di�erent points of the structure

to fully de�ne the system [31]. Some simpli�cations can result in special relation

between left and right eigenvectors, such as an undamped gyroscopic system [31].

The on-line methods are far more advantageous than the o�-line methods in detect-

ing small size cracks [32]. Moreover, the on-line methods do not require stoppage of

the machine.

The on-line crack detection methods, however, known to be most sensitive to

unknown external forces, geometric variations and sensor noise. The o�-line methods

are thus recommended to verify the correctness of an on-line crack detection method

[33]. Moreover, natural frequencies and FRFs are a function of rotational speed in

rotating structures [31], which tend to induce errors in on-line methods. For instance,

Dong et al. [34] attempted to detect the crack parameters of a non-rotating shaft,

while many other studies have focused on developing the on-line crack detection

7



strategies [17, 25, 35�37].

1.2.3 Shaft-disc system modeling

The governing equations of lateral motion of shaft-disc systems have been

reported in many analytical [e.g., 4�6, 38�40] and numerical [e.g., 1, 15, 41�46]

models. These models have been mostly derived using the Euler-Bernoulli [e.g.,

38, 47] and Timoshenko beam theories [e.g., 4, 44, 48]. The Je�cott rotor model,

as a simpli�ed lumped analytical model, has been widely used in obtaining the

steady-state [e.g., 5, 6, 49] as well as transient [e.g., 7, 8, 50] lateral responses of the

shaft-disc systems. This model considers a single rigid disc on the mid-span of a

massless �exible shaft to obtain vibrational properties in the vertical and horizontal

directions. The vibrational properties of a rotating shaft-disc system, however, are

strongly a�ected by the crack location and the gyroscopic e�ects, especially at higher

spin speeds of the shaft, which are not considered in the simpli�ed Je�cott rotor

model.

Eshleman and Eubanks [38] developed an analytical model of an intact con-

tinuous shaft-disc system using Euler-Bernoulli theory to obtain critical speeds of

the system considering the e�ect of coupling in lateral motion as well the gyroscopic

e�ects of the shaft and the disc. The analytical results showed good agreements

with those obtained from the experiment. The governing equations of lateral mo-

tion of a continuous shaft have also been derived using the Timoshenko beam theory

[39, 40]. Such analytical models permit analysis of e�ects of crack location on the

shaft vibrational properties. Chasalevris and Papadopoulos [4] developed a cracked

continuous shaft-disc model to study the e�ects of crack depth on higher critical

speeds of the rotating system. The study reported that the higher critical speeds

are more sensitive to crack propagation and can be e�ectively used to detect small

size cracks.
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A number of numerical models of the rotating cracked shaft-disc systems have

also been reported, which are based on FE methods using Euler-Bernoulli and Tim-

oshenko beam theories [e.g., 15, 41�45]. Such models have been employed for the

crack location sensitivity analysis considering the gyroscopic e�ects of the shaft and

the disc. The study of crack e�ect in FE models generally requires relatively more

computational e�orts compared with the analytical models [1, 46]. Furthermore, the

FE model of the cracked system should be adjusted for each crack location on the

shaft. Lees and Friswell [46] reported that the e�ects of crack depth on the rotat-

ing system responses strongly depend on the length of the shaft element containing

the crack, and suggested that this parameter should be chosen within a reasonable

range.

The studies have also employed di�erent solution strategies, which satisfy the

continuity and boundary conditions to obtain steady-state and transient responses,

and changes in the selected vibrational properties. Some studies have employed a

solution function in the exponential form, which is only limited to the �rst har-

monic component [e.g., 4, 39, 40, 51], while others have used numerical integration

techniques to obtain super-harmonic components of the steady-state responses [e.g.,

3, 6, 52] and the transient responses [e.g., 50, 53, 54] of the analytical models. The

steady-state responses of FE models have also been obtained using di�erent methods

such as generalized harmonic balance and alternate frequency/time domain methods

[e.g., 44, 55].

1.2.4 Crack modeling

The reported studies have invariably shown that a crack induces changes in

the local sti�ness of the shaft and consequently the dynamic behavior of the shaft-

disc system [e.g. 2, 18, 44]. Furthermore, the crack geometry tends to vary during

a rotation cycle. The crack modeling thus involves two distinct challenges: (i)
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obtaining the sti�ness changes due to the crack, and (ii) de�ning a function to

describe a relation between crack-induced changes and angle of rotation of the shaft

during each revolution. The sti�ness reduction due to the crack may be accurately

estimated using the fracture mechanics concepts [2, 18] or considering the changes

in the area moment of inertia about the transverse coordinates of the cracked shaft

cross-section [37, 44].

A crack may undergo either tension or compression during each rotation cycle,

which yields considerable variation in the shaft sti�ness with the angle of rotation. A

tensile stress imposes the crack to remain open, while it is closed under compression.

In asynchronous whirling, the rotational speed of the shaft Ω di�ers from the whirling

speed ω, which causes the stress zones on the shaft cross-section to vary leading to

sequential crack opening and closing (breathing) during each revolution of the shaft.

Furthermore, in synchronous whirling, the stress zones on the shaft cross-section also

change when the shaft lateral vibration magnitude due to an external excitation is

negligible compared to static de�ection of the shaft. Otherwise, the crack remains

open or closed as the shaft rotates, as shown in Figure 1.2.

Ω

ω

Y

Z

Xcrack 1 crack 2

Ω

ω

Y

Z

X
crack 1 crack 2

(a) (b)

Figure 1.2: The synchronous whirling of a cracked shaft: (a) the static de�ection of
the shaft is negligible, the crack 1 remains closed while the crack 2 remains open;
and (b) the static de�ection of the shaft is not negligible, the crack 1 and crack 2
breath during each revolution of the shaft

A crack may be simply considered as an open crack when the variation in the

sti�ness due to the shaft angle of rotation are considered negligible [6, 56]. Alter-

natively, a number of studies consider the crack as a breathing crack to accurately
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describe its behavior as a function of the shaft rotation [57�59]. These have de-

scribed crack breathing via step and periodic functions to accurately describe the

changes in crack geometry and thus the sti�ness e�ect as a function of shaft angle

of rotation [1, 3, 55, 60]. The step function assumes that the crack opens and closes

abruptly during a revolution of the shaft, while the function proposed by Mayes and

Davies [60] consider periodic opening or closing of the crack with the shaft angle of

rotation. Figure 1.3 compares step and Mayes and Davies breathing functions in a

shaft �xed reference system.
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Figure 1.3: Step and Mayes and Davies breathing functions in a rotating coordinate
system

A few studies have employed linear fracture mechanics to evaluate local sti�-

ness of the shaft cross-section near the crack location corresponding to di�erent

shaft angles of rotation and proposed breathing crack models considering the e�ects

of crack depth and location [2�4]. These breathing functions are considered to be

e�ective in more accurate modeling of the crack behavior for a wide range of crack

depths. Jun et al. [3] used the sign of the total stress intensity factor (SIF) at each
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point on the crack edge to determine whether the crack is open or closed. In com-

pressive stress state, the sign of total SIF is negative and the crack is assumed to be

closed, while in tensile stress state the sign of total SIF is positive and consequently

the crack is considered to be open. Darpe et al. [2] introduced the concept of crack

closure line (CCL), an imaginary line perpendicular to the crack edge separating the

open and closed parts of the crack, to study breathing behavior of the crack. The

CCL position was obtained considering the sign of the total SIF at each point on

the crack edge, as proposed by Jun et al. [3].

Owing to complexities associated with evaluations of the stress intensity factor

for shaft angles corresponding to stress state transition between the vertical and

horizontal moments, Chasalevris and Papadopoulos [4] employed B-spline curves to

interpolate between the transient points. Al-Shudeifat and Butcher [43] used changes

in area moment of inertia about the transverse coordinates of the cracked shaft cross-

section area to obtain a breathing function which more accurately describes the real

breathing behavior of the crack. The method considered exact locations of centroid

and neutral axis of the cracked shaft cross-section at each shaft angle to estimate

corresponding area moments of inertia and the local sti�ness.

1.2.5 Crack indicator

The changes in di�erent vibrational properties due to a crack have been utilized

for detection of cracks in rotating shaft-disc systems. Reduction in critical speeds

of a rotating shaft-disc system has been widely used as a simple crack indicator in

many studies [e.g. 1, 43, 56]. The critical speed is the spin speed of the shaft, in

which the natural frequency of the shaft-disc system is excited and amplitudes of the

lateral response in vertical and horizontal directions are maximized. The changes

in the critical speed, however, may be caused by many other faults in the shaft-disc

system such as bent shaft, coupling misalignments and polar sti�ness asymmetries
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[9, 25], which may a�ect the reliability of such a crack detection method.

In the presence of a breathing crack, the super-harmonic components in lateral

response of an unbalanced rotating shaft-disc system are excited. Relatively low

magnitude resonant peaks emerge at rational fractions of the critical speeds. Such

sub-critical resonant peaks, however, may also arise due to some other faults in

the shaft-disc system such as polar sti�ness asymmetries, surface geometry errors

and non-linear e�ects in oil �lm bearings [25]. In some studies, the emergence of

these resonant peaks near sub-critical speeds has been considered to indicate the

existence of a crack [e.g., 3, 37, 55, 61, 62]. Furthermore, it has been reported that

crack detection methods based on the emergence of sub-critical resonant peaks are

more reliable than those based on shift in the critical speed [37].

Sinou and Lee [55] compared the steady-state lateral responses of a shaft-

disc system with and without a transverse breathing crack, which are presented in

Figure 1.4. The results show presence of sub-critical resonant peaks of relatively low

magnitudes in the steady-state vertical (points 1,2 and 4) and horizontal (point 6)

displacement responses of the cracked shaft, which are not evident in the responses

of the intact shaft. Furthermore, the results show slight reduction in �rst and second

critical speeds (points 3 and 5) due to the crack, as seen in the vertical displacement

response. However, changes in critical speeds of the system are not clearly observable

in the horizontal direction (points 7 and 8).

Alternate vibration-based crack indicators such as changes in transient re-

sponse, shaft center orbit evolution at sub-critical speeds, torsional-lateral vibration

coupling and equivalent �ctitious loads, have also been proposed for detection of a

crack in shaft-disc systems [e.g., 25, 29, 56]. As a shaft-disc system with a breathing

crack passes through rational fractions of its critical speeds, inner loops of the shaft

center orbit form due to excitations of the super-harmonic components of lateral

response. Gasch [62] has illustrated the evolution of shaft center orbits of a cracked
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Figure 1.4: Emergence of sub-critical resonant peaks in steady-state lateral dis-
placement of a shaft-disc system; dashed line and solid line represent the intact and
cracked systems, respectively [55]

rotating shaft passing through 1
3
and 1

2
of its �rst critical speed, as shown in Figure

1.5. The results show that the shaft center orbit is comprised of 2 and 3 inner loops

at 1
3
and 1

2
of the critical speed, respectively.

In model-based crack detection methods, the basic idea is that the crack e�ect

on the dynamic behavior of the shaft-disc system can be characterized by �ctitious

forces and moments exerted on the intact system. The amplitudes and positions of

these �ctitious loads on the shaft depend on the crack depth and location, respec-

tively. Sekhar [27] employed the �ctitious loads as reliable crack indicators using a

FE shaft-disc model, shown in Figure 1.6 (a). In the model, a breathing crack is

positioned in the 7th element, and the �ctitious loads are located on the end nodes
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Figure 1.5: Shaft center orbits evolution passing through rational fractions of the
critical speed; Ω and ω represent the shaft spin speed and whirling speed, respec-
tively [62]

of the corresponding cracked element. Moreover, as the crack depth increases the

severity of the �ctitious loads increases, as seen in Figures 1.6 (b) and 1.6 (c).

Darpe [63] reported that the presence of a transverse crack on a rotating shaft

leads to coupling between lateral and torsional vibrations, which may serve as a

measure of crack detection. The study showed the emergence of low amplitude os-

cillations in the horizontal and vertical vibration responses to transient torsional

excitations, as shown in Figure 1.7. Such small variations in lateral response, how-

ever, could not be clearly detected in the time response and frequency spectrum

particularly in the presence of small crack depths. Darpe [63] employed wavelet

transform to detect these changes. He also reported that the torsional-lateral vi-

bration coupling and equivalent �ctitious loads are generally a�ected only by crack

defects and have shown relatively lower sensitivity to other faults in the shaft-disc

system. The implementation of such crack indicators, however, would require an

external torsional excitation, and vibration measurements of the intact as well as
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(a)

(b) (c)

Figure 1.6: (a) FE shaft-disc model with a crack located on the 7th element; and
computed �ctitious loads ∆F , corresponding to the breathing crack with (b) 1.4
mm; and (c) 4mm depth (shaft diameter = 20 mm) [27]

the cracked shaft-disc system.

The changes in transient lateral responses of the shaft-disc system have also

been investigated in many studies for crack detection. Plaut et al. [47] considered

the e�ects of crack parameters, namely, depth and location, and shaft acceleration

and deceleration rate on the maximum transient response passing through the �rst

critical speed of the system, considered as a reliable crack indicator. Sawicki et

al. [64] suggested that the "saw-cut" pattern in the vibration phase response as the

rotor accelerates can be considered as a crack indicator. Darpe et al. [50] considered

shaft center orbit evolution and relatively stronger super-harmonic components in

the horizontal direction than in the vertical direction passing through sub-critical

resonances as reliable crack indicators. The study applied Fourier transform for

determining amplitudes of sub-critical resonant peaks in the transient response of

the shaft-disc-system.
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Angle of rotation (degrees) Frequency (Hz)

Figure 1.7: Lateral and axial steady-state responses of a cracked shaft-disc system
with transient torsional excitation [63]

The emergence of low amplitude sub-critical resonant peaks in rotor transient

response has been considered as a reliable crack indicator. The sub-critical reso-

nant peaks, however, are a�ected by several parameters such as start-up/ run-down

rotational acceleration/ deceleration rates and unbalance phase [50, 53]. Thus, the

sub-critical resonant peaks are usually hard to detect in time response especially in

the presence of small cracks. Alternate signal processing techniques are thus required

to analyze transient responses so as to obtain essential information related to sub-

critical resonant peaks. Table 1.1 summarizes di�erent crack indicators proposed in

the literature.

Crack indicators using signal processing transforms

Fourier transform is a suitable signal processing method for analyzing signals,

where the frequency contents do not change in time (stationary signals). The re-

sponse amplitudes corresponding to di�erent frequencies are obtained from [65]:
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Table 1.1: Comparison among di�erent crack indicators proposed in the literature

Crack indicator
Provide direct information

about the crack
depth location

Changes in critical speeds yes no
Evolution of the shaft center orbit yes no
Emergence of sub-critical resonant peaks yes no
Changes in transient lateral responses yes no
Coupling between lateral and torsional vibrations yes no
Changes in mode shapes yes yes
Fictitious loads yes yes

Û(ω) = a(ω) =

∫ +∞

−∞
u(t)e−inωtdt (1.1)

where u(t) is the time signal, often expressed by the Fourier series, as:

u(t) =
∞∑

n=−∞

cne
inωt (1.2)

Short-Time Fourier Transform (STFT) methods have also been applied for analyzing

non-stationary signals. The STFT is expressed as [66]:

STFT (ω, t) =
1

2π

∫ +∞

−∞
u(t)h(t− τ)e−iωτdτ (1.3)

where the window function h(t−τ) slides along the signal u(t) with steps equal to the

variable τ . The STFT divides a non-stationary signal into approximately stationary

segments using the window function. The Fourier transform thus yields frequency

contents of each segment. The size of the window function can e�ectively change

the time and frequency resolutions in the STFT time-frequency representation of

the signal. For instance, a short window provides higher time resolution with lower

frequency resolution, while a wide window gives lower time resolution with higher

frequency resolution. It should be noted that the size of the window function is �xed

once it has been selected, the STFT time-frequency representation may thus yield

either good frequency or good time resolution [66].
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However, in transient responses the frequency contents change in time (non-

stationary signals). The frequency contents are thus be extracted using alternate

advanced signal processing techniques such as Wigner�Ville distribution, wavelet

transform (WT) and Empirical Mode Decomposition (EMD) [67�69]. The time and

frequency resolution problem of STFT has also been resolved using the Wigner�Ville

distribution, proposed by Eugene Wigner [67], de�ned as:

WV (ω, t) =
1

2π

∫ +∞

−∞
u(t+

τ

2
)conj(u(t− τ

2
))e−iωτdτ (1.4)

The Wigner�Ville distribution does not use a window function as in the case of STFT

and provides relatively higher time and frequency resolutions correlating the signal

with its translated version in time and frequency [67]. However, this distribution

may produce cross-term interferences in analysis of multicomponent signals, which

may pose di�culties in the interpretations of the time-frequency representations

[70].

Wavelet transform considers �exible window functions namely, wavelet to pro-

vide multi-resolution time-frequency representation of a non-stationary signal. The

wavelet transform (WT) of the signal u(t) can be expressed as [68]:

WT (a1, a2) =

∫ +∞

−∞
u(t)Ψa1,a2(t)dt

Ψa1,a2(t) =
1
√
a1

Ψ(
t− a2

a1

)

(1.5)

where Ψ(t) is the mother wavelet, and a1 and a2 are scaling and translation pa-

rameters, respectively, which determine the shape of wavelets Ψa1,a2(t). A wavelet

of large scales (window with narrow frequency and wide time) extracts lower fre-

quency components with higher frequency resolution, while that with smaller scales

(window with narrow time and wide frequency) yields higher frequency components

with higher time resolution.

Figure 1.8 compares the window functions used in STFT and WT as func-

tions of time and frequency. It is observed that the selected window function (e.g.,
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Figure 1.8: Di�erence between Short-time Fourier transform and wavelet transform
window functions

Hamming or Gaussian) in STFT assumes a �xed shape, while the window function

(mother wavelet, e.g., Morlet, Haar and Symmlet) chosen in WT possesses variable

shapes. The wavelet transform is considered as an adaptive transform due to the

variable shape of the mother wavelet. The wavelet transform thus yield high time

and frequency resolutions, while the chosen mother wavelet can e�ectively alter the

time-frequency representation results, if it is not properly correlated with the signal

[71].

The performance of the Wigner�Ville distribution in crack identi�cation using

the transient response has been evaluated by Zou et al. [7]. The study concluded that

the Wigner�Ville distribution is highly sensitive to small shaft sti�ness changes due

to small cracks. Figure 1.9 compares the time-frequency representations of intact and

cracked rotor's transient responses obtained from the Wigner�Ville distribution. The

comparisons show that a crack introduces small oscillations to the regular ellipses

of the intact rotor's time-frequency representation [7].

The wavelet transform provides time-frequency representation of a signal us-

ing a scaled shifted mother wavelet. Di�erent types of wavelet transform have been

used to detect the sub-critical resonant peaks [72�75]. Sekhar [72] suggested that
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3 WINGER–VILLE TIME–FREQUENCY

FEATURES

3.1 Wigner–Ville distribution

The continuous Wigner–Ville distribution of the initial

signal x …t† can be written as [12–14]

W z…t, f † ˆ

…‡?

¡?

z t ‡
t

2

± ²

z* t ¡
t

2

± ²

e
¡j2ptf

dt …8†

where * denotes complex conjugation. The Wigner–Ville

distribution is a two-dimensional function that maps a

one-dimensional time function x …t† into a time and

frequency plane, so the Wigner–Ville distribution can be

used to represent the time–frequency features of the

cracked rotor and the uncracked rotor.

3.2 Time–frequency features

The numerical simulation solutions of the cracked rotor

and the uncracked rotor passage through a one-third

subcritical speed shown in F ig. 2 are processed by the

Wigner–Ville distribution. The Wigner–Ville time–fre-

quency features of the cracked rotor and the uncracked

rotor are shown in F ig. 3.

From Fig. 3, the Wigner–Ville time–frequency fea-

tures of the cracked rotor and the uncracked rotor are

different. Under the in�uence of the unbalance, the

Fig. 2 Time waveform of the uncracked rotor and the cracked rotor

Fig. 3 Wigner–Ville time–frequency features of the uncracked rotor and the cracked rotor
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3 WINGER–VILLE TIME–FREQUENCY

FEATURES

3.1 Wigner–Ville distribution

The continuous Wigner–Ville distribution of the initial

signal x …t† can be written as [12–14]

W z…t, f † ˆ

…‡?

¡?

z t ‡
t

2

± ²

z* t ¡
t

2

± ²

e
¡j2ptf

dt …8†

where * denotes complex conjugation. The Wigner–Ville

distribution is a two-dimensional function that maps a

one-dimensional time function x …t† into a time and

frequency plane, so the Wigner–Ville distribution can be

used to represent the time–frequency features of the

cracked rotor and the uncracked rotor.

3.2 Time–frequency features

The numerical simulation solutions of the cracked rotor

and the uncracked rotor passage through a one-third

subcritical speed shown in F ig. 2 are processed by the

Wigner–Ville distribution. The Wigner–Ville time–fre-

quency features of the cracked rotor and the uncracked

rotor are shown in F ig. 3.

From Fig. 3, the Wigner–Ville time–frequency fea-

tures of the cracked rotor and the uncracked rotor are

different. Under the in�uence of the unbalance, the

Fig. 2 Time waveform of the uncracked rotor and the cracked rotor

Fig. 3 Wigner–Ville time–frequency features of the uncracked rotor and the cracked rotor
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Figure 1.9: Transient lateral response of a rotor (a) intact and (b) cracked; and
their corresponding Wigner�Ville time-frequency representations (c) intact and (d)
cracked [7]

the continuous wavelet transform (CWT) could serve as a powerful tool for crack

detection in a Je�cott rotor coasting down through its critical speed. The coef-

�cients of the CWT have been shown to be sensitive to the crack depth and can

thus be applied as e�cient crack indicators. The transient responses of intact and

cracked rotors and their corresponding CWT coe�cients are illustrated in Figure

1.10 [72]. The results show that the crack-induced changes in CWT coe�cients are

clearly detectable compared with those in the time responses. Sekhar [73] further

established that the CWT is a powerful tool in crack detection particularly in high

start-up acceleration rates.
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(a) (b)

(c) (d)

Figure 1.10: Coasting down lateral response of a rotor (a) intact and (b) cracked;
and their corresponding CWT coe�cients (c) intact and (d) cracked [72]

The wavelet transform yields high resolution frequency analysis for the entire

time signal, although the time and frequency resolutions are highly a�ected by the

chosen mother wavelet [76]. Alternate methods such as empirical mode decomposi-

tion (EMD) have been applied to obtain high frequency resolution analysis without

using preselected kernels. The EMD decomposes signal into a set of orthogonal

components representing local characteristics of the time signal, which consequently

yields local high resolution frequency analysis. The Hilbert�Huang transform is a

EMD-based transformation for �nding the instantaneous frequency components of

signals [69]. Guo and Peng [77], and Ramesh et al. [48] have e�ectively applied

the Hilbert�Huang transform for crack detection using transient response. Guo
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and Peng [77] established the e�ectiveness of Hilbert�Huang transform for detecting

propagating transverse cracks, while Ramesh et al. [48] showed that Hilbert�Huang

transform outperforms the CWT. Chandra and Sekhar [78] employed the EMD for

detections of shaft misalignment, and crack and rotor stator rubbing faults in rotor

bearing systems. From comparisons of the results of the time-frequency represen-

tation obtained from EMD with those obtained from CWT, the study concluded

that the EMD method can lead to detection of relatively smaller cracks with lesser

computation time.

While time-frequency representations of the signals obtained from EMD meth-

ods exhibits relatively higher local resolution frequency analysis, a few studies have

established their limitations [79, 80]. A number of alternate approaches have been

proposed to address these limitations of EMD, which include end e�ects [e.g., 81�

83], extremum interpolation [e.g., 84, 85] and mode mixing [86]. These studies have

proposed extension methods, alternate interpolation approaches and noise-assisted

data analysis methods. A comprehensive review of improved EMD algorithms and

their applications in rotary machine fault diagnosis is presented in [76].

1.2.6 Shaft-disc system with two or more cracks

The e�ects of a single crack on vibrational properties of di�erent structural

systems have been widely reported, while the e�ects of two or more cracks have been

addressed in a relatively fewer studies. This is likely due to complexities associated

with identi�cations of crack properties in the presence of additional cracks. For

instance, it has been shown that di�erent combinations of properties of single or

multiple cracks such as depth and relative locations may yield similar e�ects on

vibrational properties of the system. Sekhar [15] conducted a review of methods

for identifying two or more cracks in components such as beams, rotors and pipes,

and concluded that e�ciency of identi�cation methods for single or multiple cracks
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mostly depends on the applied signal processing techniques. Owing to variations

in vibration responses with varying speeds, the time-variable frequency contents

of responses of cracked mechanical systems and their features are extracted using

advanced signal processing techniques such as wavelet transform and Hilbert-Huang

transform [e.g., 48, 73, 74, 77].

Some studies have presented changes in preselected vibrational properties due

to known multiple crack parameters [e.g., 6, 56], while others have presented in-

verse problem of determining multiple cracks parameters from known changes in

vibrational properties [e.g., 87, 88]. Sekhar [56] investigated e�ects of two open

cracks on the eigenfrequencies, mode-shapes and threshold speed of a rotor system

using FE method. Darpe et al. [6] studied the e�ect of two breathing cracks on

unbalance response of a simple Je�cott rotor. Both studies suggested that relative

angular position of the two cracks may exhibit signi�cant changes in the shaft cen-

ter orbit. Saridakis et al. [87] formulated an inverse problem for identifying cracks

properties (depth, location and relative angular position) from known changes in

vibrational properties of a �exible cantilever shaft with two breathing cracks. The

inverse problem was solved using arti�cial neural networks, genetic algorithm and

fuzzy logic methods. The study suggested that the method could provide real-time

identi�cation of crack parameters.

Ramesh and Sekhar [88] proposed an alternate crack indicator, referred to

as `amplitude deviation curve (ADC)' or `slope deviation curve (SDC)', based on

the concept of operational de�ection shape (ODS) and concluded that the method

outperforms that based on the continuous wavelet transform reported in [20] for

detecting two breathing cracks. The ODS operator considers the entire shaft de-

�ection at a speci�c shaft speed, which may change under di�erent external loads

acting on the shaft. Ramesh and Sekhar [88] observed small sudden changes in ODS

at the location of cracks on the shaft, and suggested that these changes may be
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Figure 1.11: Comparison of operational de�ection shapes (ODS) (a, b) and the slope
derivation curve (SDC) (c, d) of the intact shaft (a, c) and the shaft with two cracks
located on the 8th and 12th elements of the FE model (b, d) [88]

undetectable particularly in the presence of small crack depths. The study further

introduced the concept of ADS or SDC, which relates to amplitude deviations of

sequential points on the shaft, and showed that this new operator is more sensitive

to changes in shaft de�ection close to the crack location on the shaft, which may

lead to the detection of smaller cracks. Figure 1.11 shows that the crack imposes

sudden changes in the slopes of the resulting ODS and SDC. The results revealed

notable changes in the slopes of the SDC in the vicinity of the cracks, which are not

clearly evident in the ODS.

Sekhar [24] considered both forward and inverse problems to investigate the
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e�ects of two cracks on vibration responses of a shaft-rotor system. The method

employed �ctitious loads obtained from the FE model for identifying depths and

locations of the cracks.

1.3 Scope and objectives of dissertation research

Despite the numerous reported studies on vibration-based crack detection

methods, the e�orts are continuing for developing more reliable crack indicators

for real-time applications. From the literature review, it is evident that detection

of cracks in rotary machines on the basis of vibration responses is promising but

it poses many technical challenges. These include the characterization of responses

of shaft-disc systems with stepped shaft and multiple discs, e�ects of other rotor

faults, identi�cations of crack location, and identi�cation and assessments of reli-

able crack detection methods for small size cracks, which have not been adequately

addressed. Moreover, further e�orts are desirable in applications of advanced sig-

nal processing methods and e�ects of external loads on the crack detection such

as unbalance and external torsional torque in the shaft-disc system. In addition,

di�erent breathing functions have been introduced in order to more accurately de-

scribe the real breathing behavior of a crack on a rotating shaft; while the e�ect

of these functions in detecting small size cracks has not been reported. Moreover,

the breathing functions lack consideration of crack saturation e�ects. The main

objective of this dissertation research is formulated so as to investigate vibration

responses of a shaft-disc system with multiple discs and cracks via analytical and

numerical methods, and to study correlations between changes in di�erent vibration

characteristics and the crack parameters including depth and location. The speci�c

objectives are summarized below:

1. Develop analytical and numerical models of a shaft-disc system with single as
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well as multiple cracks and discs on the shaft, and formulate a crack breathing

function to account for saturation;

2. Modify the harmonic balance method to obtain harmonic as well as super-

harmonic components of steady-state lateral response of the analytical shaft-

disc model, and demonstrate validity of the analytical model together with the

proposed solution strategy;

3. Analyze the analytical and numerical models for vibration analysis in the

presence of single and two breathing cracks, and propose indicators for on-line

detection of small size cracks using alternate signal processing methods;

1.4 Organization of the thesis

The dissertation research is conducted in �ve chapters. In Chapter 1, reported

relevant studies are reviewed to attain adequate knowledge on di�erent methods and

their limitations and merits, and to formulate the scope of the dissertation research.

The reviewed studies are systematically grouped into modeling of shaft-disc systems,

crack modeling and crack indicators.

Chapter 2 presents the analytical and numerical models of the shaft-disc sys-

tem. The equations of motion of the Je�cott rotor model are initially described.

Subsequently, an analytical model is formulated to incorporate a �exible shaft with

two discs and cracks mounted together with di�erent bearing supports. The shaft is

modeled using the Timoshenko beam theory and the gyroscopic e�ects of the shaft

and the discs are taken into account. The boundary conditions related to di�erent

types of bearing supports and continuity conditions corresponding to the cracks and

disc are also formulated. Furthermore, a modi�ed harmonic balance method is pro-

posed to obtain the harmonic and super-harmonic components of the steady-state

lateral response of the analytical model. The FE model of the shaft-disc system with
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two cracks is also described. Di�erent crack models are summarized in this chapter

and an alternate crack breathing function is also introduced. Finally, the methods of

solution to obtain the transient and steady-state lateral responses of the shaft-disc

system are described. The Hilbert-Huang transform based on EMD and improved

EMD algorithms is also described, which is employed to obtain the time-frequency

representations of transient lateral response of the shaft-disc system.

The experimental measurements and FE model of the shaft-disc system are

employed to verify the validation of the modi�ed harmonic balance method for ob-

taining the steady-state lateral response of the analytical model in Chapter 3. More-

over, the accuracy of the alternate crack breathing function, described in Chapter

2, for modeling the breathing behavior of the crack is examined through transient

lateral response of the shaft-disc system passing through its �rst critical speed.

Chapter 4 presents the e�ect of cracks depths and locations on the selected

vibrational properties such as critical speeds, shaft center orbits and harmonic and

super-harmonic components of the steady-state and transient lateral responses the

shaft-disc system. The e�ects of an alternate breathing function on detection of two

cracks using frequency spectrum of the steady-state lateral response are investigated.

The computational demands for obtaining transient lateral responses of the cracked

shaft-disc system are also discussed. Furthermore, the results of employing the

Hilbert�Huang transform based on EMD and improved EMD algorithms, described

in Chapter 2, for �nding small size cracks are compared.

Finally Chapter 5 summarizes the major contributions and conclusions of the

dissertation research together with directions for future works.
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Chapter 2

Shaft-Disc System, Crack Modeling

and Methods of Solutions
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2.1 Introduction

Constructing a reliable shaft-disc system model with a crack is the important

initial step in a study on response analyses and crack detection methods. The

model permits analyses of e�ects of a crack on changes in the dynamic behavior

of the system, which are often considered as crack indicators. The model also

provides the reference vibrational responses of the shaft-disc system without the

crack. Applications of appropriate signal processing techniques form the subsequent

essential step for identifying consistent changes in responses due to a crack and to

establish correlations between the indicators and the crack parameters. This is a

particular concern for detecting small size cracks.

Di�erent analytical [e.g., 4�6, 38�40] and numerical [e.g., 41�43] shaft-disc

models have been employed in various crack detection methods. The Je�cott rotor

model, a simpli�ed analytical model with 2 degrees-of-freedom, has been widely used

to obtain steady-state as well as transient lateral responses of a cracked rotor [e.g.,

7, 8, 49, 50]. Although the Je�cott rotor model does not consider the mass of the

shaft and the gyroscopic e�ects, it provides reasonably good estimations of steady-

state and transient lateral responses up to speeds below the second critical speed of

the system. A more comprehensive model with higher degree-of-freedom, however,

is essential to investigate the e�ects of crack properties (depth and location) on the

�rst and higher critical speeds of the shaft-disc system. Such a model should also

incorporate the gyroscopic e�ects.

The crack e�ect in a rotating machine is modeled in terms of changes in the

local sti�ness of the shaft in the vicinity of the crack. This e�ect can be estimated

using fracture mechanics theory [2, 18] or by considering changes in the area moment

of inertia about transverse coordinates at the location of the crack [37, 44]. An open

crack induces constant sti�ness reduction in the rotor system. A crack, however,

tends to open or close during rotation, which is denoted as a breathing crack. In a
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breathing crack model, the crack is considered to open and close once per revolution

of the shaft under the in�uence of the shaft's weight, while the de�ection of the

shaft due to the crack is considered negligible in comparison with that caused by the

weight [62]. Di�erent breathing functions, have been proposed to describe breathing

behavior of the crack and to determine variations in the sti�ness [e.g., 1, 3, 43, 55,

60, 89].

In this chapter, the governing equations of the lateral motion are formulated

using the Je�cott rotor model and analytical models of the shaft-disc system consid-

ering Timoshenko beam theory. An unbalance mass is introduced to excite lateral

vibration of the system. The analytical model is developed considering two cracks

and discs on di�erent locations on the shaft mounted on rigid as well as �exible bear-

ings. A �nite element model of the shaft-disc system is also formulated. A modi�ed

harmonic balance method is proposed to evaluate the harmonic and super-harmonic

components of the steady-state lateral response of the system containing breath-

ing cracks, and consequently the preselected vibrational properties such as critical

speeds and shaft center orbits. Additional �exibilities to the shaft near the crack

are calculated using fracture mechanic concepts, and di�erent breathing functions

are described. Moreover, an alternate breathing function is proposed to model the

crack opening and closing saturation in computing steady-state lateral response of

the system using modi�ed harmonic balance method. It is shown that the proposed

alternate function reduced the computational demands of the model for transient

response analysis.

2.2 Je�cott rotor model

The Je�cott rotor model considers a massless �exible shaft with a single rigid

disc mounted on rigid-short bearing supports. The disc is located on the mid-span
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Figure 2.1: (a) A Je�cott rotor model in the stationary coordinate (x, y, z) and
rotating coordinate (ζ, ξ, η) frames

of the shaft, as shown in Figure 2.1. The equations describing the motion in the

lateral directions in the stationary (x, y, z) and rotating (ζ, ξ, η) coordinates have

been presented in [49, 64]. The equations of motion in the rotating coordinate,

which rotates with the same speed of the shaft spin speed Ω, are given as [64]:[
Md 0

0 Md

]{
ξ̈

η̈

}
+

[
C −2MdΩ

2MdΩ C

]{
ξ̇

η̇

}
+[

kξξ −MdΩ
2 kξη − ΩC −Mdαr

kηξ + ΩC +Mdαr kηη −MdΩ
2

]{
ξ

η

}

= Mdg

{
cos(θ)

−sin(θ)

}
+Mdεd

{
Ω2cos(β) + αrsin(β)

Ω2sin(β)− αrcos(β)

} (2.1)

where Md, C, εd, g and β are the disc mass, external damping coe�cient, un-

balance eccentricity of the disc, gravitational acceleration and the angle between

unbalance and ξ axis, respectively, as shown in Figure 2.2. In the above equation,

θ(t),Ω and αr denote shaft rotational angle, rotational speed and acceleration rate,

respectively. The sti�ness matrix Kr is de�ned in the rotating system, as:

Kr =

[
kξξ kξη

kηξ kηη

]
(2.2)
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Figure 2.2: Stationary (x, y, z) and rotating (ζ, ξ, η) coordinate systems [3]

2.3 Analytical model of a shaft with two discs and

cracks using Timoshenko beam theory

The governing equation of lateral motion of a continuous rotating shaft with

two discs (Figure 2.3) is obtained using the Timoshenko beam theory [40], consid-

ering the gyroscopic moments, rotary inertia and shear deformation, as:

EI
∂4u

∂x4
−
(
EIρ

kG
+ ρAr2

0

)
∂4u

∂x2∂t2
+ 2iρAr2

0Ω
∂2u

∂2x∂t
+

ρ2Ar2
0

kG

∂4u

∂t4
− 2i

ρ2Ar2
0Ω

kG

∂3u

∂t3
+ ρA

∂2u

∂t2
= 0

(2.3)

where u(x, t) = uy(x, t) + iuz(x, t) is lateral response of the system, in which uy

and uz represent vertical and horizontal components of the response, respectively.

The parameters E, I, k,G,A, r0, ρ and Ω are the modulus of elasticity, shaft area

moment of inertia about x-axis, shear factor, shear modulus, shaft cross-sectional

area, radius of gyration (
√
I/A), mass density of the shaft and spin speed of the

shaft, respectively.

To obtain the lateral response u(x, t), the assumed solution function must sat-

isfy boundary conditions of the rotating shaft in addition to compatibility relations
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at the cracks and discs locations. The �exible shaft with two discs is divided into

three segments located on left- and right-sides of each disc. The coupled governing

equations of lateral motion formulated for each segment are combined considering

the appropriate continuity conditions. The governing equations describing lateral

response of a �exible shaft with two transverse cracks can also be obtained in a

similar manner [4, 38]. The e�ect of disc is incorporated into the continuity condi-

tions in shear force and bending moments, while the crack e�ect is represented by a

small but abrupt change in the slope continuity condition of the shaft, as described

in section 2.3.2. The disc e�ects are related to its mass, and diametral and polar

mass moment of inertia, while the crack e�ect depends on its depth and breathing

behavior.

In the presence of two transverse cracks, as shown in Figure 2.3 (a), the gov-

erning equation of motion is formulated considering �ve separate segments (s =

0, 1, 2, 3, 4) of the shaft (0 6 x 6 L0;L0 6 x 6 L1;L1 6 x 6 L2;L2 6 x 6 L3;

and L3 6 x 6 L4). In the model, x = L0 and x = L3, de�ne locations of the two

cracks, while x = L1 and x = L2 describes the discs location on the shaft of length

L4. Satisfying the continuity conditions at the location of the discs and the cracks

simultaneously combined with Eq. (2.3) would yield lateral dynamic response of

the entire cracked shaft-disc system. It is to be noted that us(x, t) in Figure 2.3

represents the lateral displacement response of segment s of the �exible shaft, while

ω is the whirling speed of the shaft.

2.3.1 Crack modeling

The presence of a transverse crack on a shaft causes a sudden change in the

slope, which depends on crack depth and exhibits a reduction in the shaft local

sti�ness at the crack location. The crack-induced changes in local sti�ness can be

obtained using linear fracture mechanics theory [2, 3, 18, 50]. June et al. [3] have
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Figure 2.3: (a) A continuous shaft-disc system with two cracks; and (b) Shaft cross-
sections at the location of the crack 1 and crack 2

obtained the shaft �exibility due to a fully-open crack, as shown in Figure 2.4 (a).

The study considered the strain energy density function, J(α), in terms of stress

intensity factor KI , as [3]:

J(α) =
1

E

(
KI
)2

KI = KI
Qξ

+KI
Qη

(2.4)

where KI
Qξ

and KI
Qη

are the stress intensity factors corresponding to opening mode

of the crack due to forces Qξ and Qη acting on the cracked shaft cross-section,

respectively, and can be described as [3]:

KI
Qξ

=
QξL4α

′/8

I

√
παF (α/α′)

KI
Qη =

QηL4w/4

I

√
παF ′ (α/α′)

(2.5)
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Figure 2.4: Crack cross-section geometry, (a) fully-open crack, (b) partially open-
closed crack [3]

The functions F and F ′ in the above relations are given by [3]:

F (α/α′) =

√
2α′

πα
tan

(πα
2α′

)0.923 + 0.199 [1− sin (πα/2α′)]4

cos (πα/2α′)

F ′ (α/α′) =

√
2α′

πα
tan

(πα
2α′

)0.752 + 2.02 [1− sin (πα/2α′)]3

cos (πα/2α′)

(2.6)

where I = πD4/64 and α′ =
√
D2 − (2w)2. In these equations, L4 and D denote

the length and diameter of the shaft, respectively. Using Castgliano's theorem, the

additional de�ections ui (i = ξ, η) due to the crack are obtained from [3]:

ui =
∂U c

∂Qi

(2.7)

where U c represents the additional strain energy due to the crack, which can be

written in term of strain energy density function J(α), as [3]:

U c =

∫ ∫
J(α)dαdw (2.8)

The additional �exibilities are thus given by [3]:

cij =
∂2

∂Qi∂Qj

∫ √a(D−a)

−
√
a(D−a)

∫ a−D
2

+

√
D
4

2−w2

0

J(α)dαdw (2.9)

Thereby, adding the �exibilities of the intact shaft to the obtained crack-induced

�exibilities, described in Eq. (2.9), the compliance elements of the cracked shaft
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cross-area in ξ and η directions and the correspondence cross-coupled �exibilities

can be described as [3]:

cξξ =
L4

3

48EI
+

∫ ∫
128L4

2α′2

EπD8
αF (α/α′)2dαdw

cηξ = cξη =

∫ ∫
256L4

2α′w

EπD8
αF (α/α′)F ′(α/α′)dαdw

cηη =
L4

3

48EI
+

∫ ∫
512L4

2w2

EπD8
αF ′(α/α′)2dαdw

(2.10)

Finally, the elements of the sti�ness matrix Kr, described in Eq. (2.2), are obtained

as:

Kr = C−1
r =

[
cξξ cξη

cηξ cηη

]−1

(2.11)

where,

kξξ =
cηη

cξξcηη − c2
ξη

; kηη =
cξξ

cξξcηη − c2
ξη

; kξη = kηξ =
−cξη

cξξcηη − c2
ξη

(2.12)

In the above relation, the shaft compliance matrix Cr is de�ned in the rota-

tional coordinates. The crack compliance matrix, Cop, for a fully-open crack in the

y-z plane in the stationary coordinate system has also been derived using the strain

energy release rate and Castigliano's theorem, which is generally expressed as [18]:

Cop =

[
cyy cyz

czy czz

]
=

[
cos(θ(t)) −sin(θ(t))

sin(θ(t)) cos(θ(t))

][
cξξ − L4

3

48EI
cξη

cηξ cηη − L4
3

48EI

]
(2.13)

A crack can be modeled as an open crack or a breathing crack. The crack

may be modeled as an open crack when dependence of the local sti�ness change

on the shaft angle is considered negligible. However, it has been shown that the

sti�ness reduction is strongly related to shaft angle of rotation. The crack is thus

more accurately modeled as a breathing crack, where the crack opens and closes

during each revolution of the shaft.

The e�ect of shaft rotation on the crack behavior is modeled using a breathing

function multiplied by the fully-open crack compliance matrix, Cop, such that:

Cbr = f(t)Cop (2.14)
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where f(t) (0 6 f(t) 6 1) is the breathing function. A breathing function is

a periodic function with period 2π/Ω. During each shaft revolution, the crack

may close fully (Cbr = 0), and approach fully-open (Cbr = Cop) or partially open

(Cbr 6 Cop) conditions. A periodic breathing function, proposed by Mayes and

Davies [60], has been widely employed, and is given by:

f(t) =
1− cos(Ωt+ Φr)

2
(2.15)

where Φr(r = 1, 2) de�ne the angles between the crack edge normal line and vertical

axis, as shown in Figure 2.3 (b). In this study, the breathing function in Eq. (2.15)

is formulated in the exponential form, which can facilitate steady-state solution of

equations of motion of the shaft-disc system using the modi�ed harmonic balance

method, as described in section 2.5, such that:

f(t) =
1

2
− 1

4

(
ei(Ωt+Φr) + e−i(Ωt+Φr)

)
(2.16)

Proposal for an alternate breathing function

A crack in a shaft may exhibit saturation in opening and closing during ro-

tation. This saturation may alter the amplitude of peaks in frequency spectrum of

lateral response of the shaft-disc system, which is believed to serve as a better indica-

tor of presence of the second crack. An alternate explicit breathing function is thus

proposed to account for saturation of crack breathing behavior using a softly-clipped

cosine function, such that:

f(t) =
1

2
− 5

9
cos(Ωt+ Φr)−

1

18
cos(3 (Ωt+ Φr)− π) (2.17)

It is evident that the periodic function in Eq. (2.15) leads to fully-open or

closed crack at an instant when shaft angle approaches (θ = ±nπ
2
, n = 0, 1, 2, . . .).

The modi�ed explicit breathing function in Eq. (2.17), on the other hand yields

saturation in opening or closing over a range of shaft angle. In the saturation
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Figure 2.5: Comparison of the proposed breathing function with that reported by
Mayes and Davies [60]

intervals, the crack locates completely in either tensile or compressive stress zones

of the shaft and remains either fully-open or closed over certain period of angle

of rotation. Figure 2.5 compares the normalized crack opening obtained from the

proposed periodic breathing function and that from the Mayes and Davies function.

The comparison clearly illustrates that the proposed function can describe crack

opening and closing saturation.

The proposed breathing function also contains the term cos(3Ωt + Φr) which

leads to distribution of the energy dissipation originated from crack saturation

among more number of harmonic components of the lateral response using the

modi�ed harmonic balance method, described in section 2.5, and may contribute

to relatively lower amplitudes of harmonic and super-harmonic components. Mod-

eling the crack breathing behavior more accurately considering the saturation phe-

nomenon may thus yield relatively lower amplitude peaks in the lateral response

spectrum. Mayes and Davies breathing function [60], Eq. (2.15), does not account
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for saturation in crack breathing and subsequently the energy dissipation due to

crack saturation, which may lead to lateral response peaks with relatively higher

amplitudes.

Moreover, a few studies have reported that the compliance matrix for a breath-

ing crack varies periodically versus the shaft angle [2�4, 43, 50]. A number of re-

ported crack breathing models, however, do not provide an explicit function for

application in the modi�ed harmonic balance method, described in section 2.5. The

proposed explicit function can also be expressed in the exponential form to facilitate

its application to the modi�ed harmonic balance method, such that:

f(t) =
1

2
− 5

18

(
ei(Ωt+Φr) + e−i(Ωt+Φr)

)
− 1

36

(
ei((3Ωt+Φr)−π) + e−i((3Ωt+Φr)−π)

)
(2.18)

As described earlier, Jun et al. [3] provided the sti�ness of a fully-open cracked

shaft. Furthermore, to obtain the localized sti�ness of a shaft with a partially

open/closed crack based on the model of Jun et al. [3], Darpe et al. [50] have

proposed concept of crack closure line (CCL) as shown in Figure 2.4 (b). This

concept is based on the sign of the stress intensity factor at the crack edge. The

stress intensity factor for each point at the crack edge on the left side of the CCL

carries a positive sign, which indicates that the crack is in tension and thus open

mode. The crack is considered to be closed on the right side of the CCL due to a

negative stress intensity factor. While Eq. (2.9) is equally applicable, the lower and

upper limits in the double integral are updated based on the position of the CCL,

as [50]:

cij =
∂2

∂Qi∂Qj

∫ w0

−a
√

(D−a)

∫ a0

0

J(α)dαdw (2.19)

The breathing crack model proposed by Darpe et al. [50] can accurately de-

scribe the breathing behavior of the crack at each shaft angle. The model, how-

ever, poses substantial computational demands. In this study, an alternate explicit

breathing function, proposed in Eq.(2.17), is used to reduce the computational ef-

forts.
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Figure 2.6: Comparison of the proposed breathing function with that reported by
Darpe et al. [50] breathing model

Figure 2.6 compares the proposed breathing function, Eq. (2.17), with that

of Darpe et al. [50]. It is noted that the pattern of the Darpe et al. [50] breathing

model changes as the normalized crack depth (µ = a
R
, ratio of the crack depth a

to the shaft radius R) changes. The pattern of the proposed breathing function

is, however, independent to the normalized crack depth. The comparisons show

that the proposed function gives good approximation of Darpe et al. [50] breathing

model, particularly for small cracks.

2.3.2 Boundary and continuity conditions

The boundary conditions of shaft-disc systems with rigid-short bearing sup-

ports have been described in a number of studies. Assuming negligible resistance to

bending moments, the boundary conditions can be expressed as [4]:

∂2u0

∂x2
(0, t) =

∂2u4

∂x2
(L4, t) = 0 (2.20)
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where L4 is shaft length. Rigidity of supports also leads to following displacement

boundary conditions:

u0(0, t) = u4(L4, t) = 0 (2.21)

For the �exible-long bearing supports, the slopes of the shaft vanish in the

lateral direction in the vicinity of the supports, such that:

∂u0

∂x
(0, t) =

∂u4

∂x
(L4, t) = 0 (2.22)

Furthermore, for the �exible-long bearing supports, the shear force developed in the

shaft is related to the bearing sti�ness and the shaft de�ection, such that [4]:

V 0(0, t) = −EI ∂
3u0(0, t)

∂x3
+ ρAr2

0

(
∂3u0(0, t)

∂x∂t2
− 2iΩ

(
∂2u0(0, t)

∂x∂t

))
=

(S1 + iS4) u0(0, t) + (S2 + iS3) conj
(
u0(0, t)

)
V 4(L4, t) = −EI ∂

3u4(L4, t)

∂x3
+ ρAr2

0

(
∂3u4(L4, t)

∂x∂t2
− 2iΩ

(
∂2u4(L4, t)

∂x∂t

))
=

(S1 + iS4) u4(L4, t) + (S2 + iS3) conj
(
u4(L4, t)

)
(2.23)

where conj(us(x, t)) returns the complex conjugate of us(x, t), and S1 = 1
2

(kyy + kzz) ,

S2 = 1
2

(kyy − kzz) , S3 = 1
2

(kyz + kzy) and S4 = 1
2

(kyz − kzy) are de�ned using the

sti�ness properties of the �exible bearing, Kb, which may be expressed as:

Kb =

[
kyy kyz

kzy kzz

]
(2.24)

The shear force developed within the shaft segment V s(x, t), (s = 0, 1, 2, 3, 4), is

obtained for the Timoshenko shaft with gyroscopic e�ects, as [39]:

V s(x, t) = −EI ∂
3us(x, t)

∂x3
+ ρAr2

0

(
∂3us(x, t)

∂x∂t2
− 2iΩ

(
∂2us(x, t)

∂x∂t

))
(2.25)

The continuity conditions for the shaft near the crack location have also been

described by Chasalevris and Papadopoulos [4], when the disc and the crack are

located at the same position on the shaft. The continuity conditions for the shaft
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considering multiple cracks and di�erent locations of the discs and cracks may also

be formulated in a similar manner. Assuming negligible contributions of disc mass

and inertia to the slopes and displacements on the left- and right-sides of the disc, the

displacement and slope continuity equations at the discs locations can be expressed

as:

up(Lp, t) = up+1(Lp, t) (2.26)

∂up

∂x
(Lp, t) =

∂up+1

∂x
(Lp, t) (2.27)

where Lp (p = 1, 2) denotes the discs locations on the shaft, as shown in Figure

2.3 (a). The disc mass, however, yields abrupt change in shear force developed in

adjacent segments of the shaft on both sides of the disc, which is given by:

EI

(
∂3up(Lp, t)

∂x3
− ∂3up+1(Lp, t)

∂x3

)
+ ρAr2

0

(
∂3up(Lp, t)

∂x∂t2
− ∂3up(Lp, t)

∂x∂t2

)
+2iρAr2

0Ω

(
∂2up(Lp, t)

∂x∂t
− ∂2up+1(Lp, t)

∂x∂t

)
= MD,p

∂2up (Lp, t)

∂t2
+ (2− p)muruΩ

2ei(Ωt+β)

(2.28)

where MD,p (p = 1, 2), mu, ru and β represent the masses of the discs, unbalance

mass, eccentricity and angular position of the unbalance. β is de�ned as the angle

between the normal line of the �rst crack and the unbalance mass, as shown in Figure

2.3 (b). The above force continuity equation is formulated considering an unbalance

mass located on the disc 1. Furthermore, the disc mass moments of inertia a�ects

the shaft bending moment, such that:

EI

(
∂2up+1(Lp, t)

∂x2
− ∂2up(Lp, t)

∂x2

)
= ID,p

∂3up(Lp, t)

∂x∂t2
− iIP,pΩ

∂2up(Lp, t)

∂x∂t
(2.29)

where ID,p and IP,p (p = 1, 2) denote the disc diametral and polar mass moment of

inertias. The displacement continuity at the cracks location can be expressed as:

up(Lp, t) = up+1(Lp, t) (2.30)
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where Lp (p = 0, 3) describes location of crack on the shaft. The presence of a

crack between two consecutive shaft segments imposes a sudden change in slopes

of displacements of shaft segments in the lateral direction. The slope continuity

equation of the two adjacent segments at the crack location is thus expressed as:

∂up+1

∂x
(Lp, t)−

∂up

∂x
(Lp, t) =

EI

(
(βr − iνr) f r(t)∂

2up

∂x2
(Lp, t) + (εr − iδr) f r(t)conj

(
∂2up

∂x2
(Lp, t)

)) (2.31)

where the parameters βr, νr, εr and δr represent the e�ect of a breathing crack and

depend on the crack depth. The superscript r = 1, 2 denotes the number of the

crack, as shown in Figure 2.3. These parameters are de�ned using the compliance

matrix, described in Eq. (2.13), such that:

εr =

(
crzz − cryy

)
2

; βr =

(
crzz + cryy

)
2

; δr =

(
cryz + crzy

)
2

; νr =

(
cryz − crzy

)
2

(2.32)

The shear force and bending moment continuity between the adjacent shaft seg-

ments in the vicinity of the crack are independent of the crack properties, and are

formulated, as:

EI

(
∂3up(Lp, t)

∂x3
− ∂3up+1(Lp, t)

∂x3

)
+ ρAr2

0

(
∂3up+1(Lp, t)

∂x∂t2
− ∂3up(Lp, t)

∂x∂t2

)
+ 2iρAr2

0Ω

(
∂2up(Lp, t)

∂x∂t
− ∂2up+1(Lp, t)

∂x∂t

)
= 0

(2.33)

∂2up+1(Lp, t)

∂x2
=
∂2up(Lp, t)

∂x2
(2.34)

The boundary and continuity conditions, described in Eqs. (2.20) � (2.34), are

used in conjunction with the governing equation of motion of the analytical model

in Eq.(2.3) to obtain the steady-state lateral vibration response of the shaft-disc

system using the modi�ed harmonic balance method.

2.4 FE model of the cracked shaft-disc system

A FE model of a shaft with a single rigid disc is formulated, as reported in

[44, 55, 90], to evaluate its lateral dynamic response in the presence of a breathing
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crack so as to examine validity of the analytical model. In the model, the shaft is

discretized using two-node Timoshenko beam elements considering di�erent number

of elements in the shaft segments [44, 55]. The governing equations of motion of the

shaft supported on �exible foundations, as shown in Figure 2.7, can be described in

the �nite element form, as [55]:

(M e
T +M e

R) Ü e +GeU̇ e +KeU e = F e (2.35)

where U e is a 8×1 element nodal displacement vector comprising four degree-of-

freedom (vertical and horizontal displacements, and rotations about the vertical

and horizontal axes) for each node. M e
T ,M

e
R, K

e and Ge are the translational mass,

rotary mass, sti�ness and gyroscopic e�ect matrices for each element, respectively.

F e accounts for the unbalance and gravitational forces at each node. The equation

of motion for the rigid disk in Figure 2.7 is subsequently formulated, as:(
Md

T +Md
R

)
Üd +GdU̇d = F d (2.36)

where Ud is the disc center nodal displacement vector combining lateral displace-

ments and slopes about the y- and z-axes. Md
T ,M

d
R and Gd are the translational

mass, rotary mass and gyroscopic e�ect matrices of the rigid disk, respectively, and

vector F d represents the unbalance and gravitational forces on the disc. Combining

crack 1 crack 2

Disc 1 Disc 2

x

y

z

Figure 2.7: FE model of a cracked shaft-disc system

the equations of motion of the shaft elements and the rigid disk, the equation of

motion of the shaft-disc system with two breathing cracks can be described as:

MÜ + CU̇ +

(
K −

2∑
r=1

f r(t)Kr
C

)
U = F (2.37)
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whereM is the mass matrix integrating the shaft and disc mass matrices, C includes

the shaft and the rigid disc gyroscopic e�ect matrices, K describes the sti�ness of

the shaft and F represents the unbalance and gravitational forces imposed on the

shaft-disc system. Kr
C represents the sti�ness matrix of the shaft element containing

rth (r = 1, 2) crack and f r(t) is corresponding crack breathing function, described

in section 2.3.1. Furthermore, in order to model the e�ect of the short and long

bearing supports in Eq. (2.37), the in�uence of the bending moments and slopes

are neglected at the supports, respectively.

2.5 Modi�ed harmonic balance method

It has been reported that modeling the crack as a breathing crack leads to

excitations of the super-harmonic components of the lateral response of a shaft-disc

system [e.g., 6, 55]. The harmonic balance method can provide e�ective estimations

of these super-harmonic components [55]. The method assumes the solution as a

linear combination of basic harmonic functions corresponding to multiples of the

whirling speed, such that:

u (x, t) =
m∑
n=1

Φn(x)Gn(t) =
m∑
n=1

Φn(x) (Ancos (nωt) + Bnsin (nωt)) (2.38)

where m is number of harmonics considered in the response and n is the order of

the super-harmonics. Φn(x) and Gn(t) represent the space- and time-dependent nth

super-harmonic components of the lateral response, respectively.

The harmonic balance method has been widely used to obtain the super-

harmonic components of the lateral response of FE model of a shaft-disc system

[e.g., 44, 55]. The majority of the reported studies, using an analytical model of

shaft-disc system, assume the solution in the following form, which yields only the

�rst harmonic of the lateral response [e.g., 4, 38]:

u (x, t) = Φ(x)eiωt (2.39)
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In this study, an alternate modi�ed assumed solution is proposed in order to capture

higher order super-harmonic components of the lateral response of an analytical

shaft-disc system, such that:

u (x, t) =
m∑
n=1

Φn(x)
(
einωt + e−inωt

)
(2.40)

where einωt describes the forward whirling response, while e−inωt relates to the back-

ward whirling response. Unbalance force may excite backward whirling of an asym-

metric shaft or a symmetric shaft supported on anisotropic bearing supports [91, 92].

In this study, a symmetric shaft mounted on isotropic bearings is considered. The

assumed solution, thus, is limited only to forward whirling term assuming that the

unbalance force is synchronized to the frequency of the shaft speed, ω = Ω, such

that:

u (x, t) =
m∑
n=1

Φn(x)einωt (2.41)

The space dependent nth super-harmonic component of the lateral response,Φn(x),

is described by:

Φn(x) = Ane
αnx (2.42)

where the coe�cients An and exponents αn are obtained from simultaneous solutions

of the coupled governing equation of lateral motion described in Eq. (2.3), and the

assumed solution in Eq. (2.41). The substitution of assumed solution in Eq. (2.3)

yields the following characteristic equation in αjn:

EIα4
jn +

[(
EIρ

kG
+ ρAr2

0

)
n2ω2 − 2ρAr2

0Ωnω

]
α2
jn+

ρ2Ar2
0

kG
n4ω4 − 2ρ2Ar2

0Ω

kG
n3ω3 − ρAn2ω2 = 0

(2.43)

where αjn (j = 1, 2, 3, 4) are the roots of the above characteristic equation. The

assumed solution in Eq. (2.41) can thus be rewritten as:

u (x, t) =
m∑
n=1

(
4∑
j=1

Ajne
αjnxeinωt

)
(2.44)
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The coe�cient vector {Ajn} in the proposed solution is obtained considering the

continuity conditions between adjacent segments of the shaft and the boundary

conditions. The proposed solution, Eq. (2.44), is in the exponential form. The

crack breathing functions in the exponential form, described in Eq. (2.16) and

(2.18), can thus be easily employed in the crack slope continuity condition, Eq.

(2.31), for determining {Ajn}.

2.6 Methods of solutions

In this section, the methods of obtaining the steady-state and transient lat-

eral responses of analytical and FE models of the cracked shaft-disc system are

described, receptively. Moreover, the decomposition algorithms required to �nd the

time-frequency representation of the vertical transient response of the Je�cott rotor

model are also explained in the following.

2.6.1 Steady-state response

The analyses are performed considering di�erent types of bearing supports

for the shaft-disc system. These include short/ long and rigid/ �exible bearing

supports. Substituting the proposed solution in the modi�ed harmonic balance

method, described in Eq. (2.44), into the boundary and continuity conditions of the

shaft-disc system, yields a system of algebraic equations:

[∆] {A} = {B} (2.45)

where vector {A} represents the coe�cients of harmonic and super-harmonic com-

ponents in the proposed solution for each segment of the shaft. Vector {B} describes

the harmonic external forces acting on each segment of the shaft. In the above, [∆]

is the matrix of coe�cients, which depends on selected crack breathing function and
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bearing support type. The solution of the system of linear equations yields the coef-

�cients of harmonic and super-harmonic components, and subsequently the lateral

responses of the system. A detailed formulation of Eq. (2.45) is presented in the

Appendix.

For each shaft speed, the lateral responses of the shaft-disc system are also

evaluated from the FE model considering eigen solutions of Eq. (2.37) together with

the assumed solution in Eq. (2.38). The resultant eigenvalues are the coe�cients of

the harmonic and super-harmonic components of the lateral response, An and Bn,

as described in Eq. (2.38). The length of the cracked element in�uences the shaft

local sti�ness and consequently the lateral response of the FE model. The cracked

element length for each crack depth in the FE model is chosen so as to yield the

�rst critical speed identical to that obtained from the analytical model.

2.6.2 Transient response

Considering the sti�ness matrix described in Eq. (2.11), the governing equa-

tion of motion, Eq. (2.1), is integrated using fourth order Runge-Kutta method to

compute the transient start-up responses of the system with di�erent crack depths

and acceleration rates. The integration of Eq. (2.1) is carried out using su�ciently

small time step (∆t = 0.001) for accurate solutions. In each time step, the sti�ness

values and shaft speed are considered to be constant. The shaft speed Ω and angular

position θ are constantly updated using [64]:

Ω(t) = Ω0 + αrt, for Ω0 = 0

θ(t) = θ0 + Ω0t+
αrt

2

2
, for θ0 = 0

(2.46)

where αr denotes the acceleration rate of the shaft. The obtained lateral forces

at each shaft angle, described in Eq. (2.47), are also used to update the sti�ness

values for the next time step using the crack breathing behavior models described
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in section 2.3.1, such that: {
Qξ

Qη

}
=

[
kξξ kξη

kηξ kηη

]{
ξ

η

}
(2.47)

The initial displacement of the rotor in the vertical direction is assumed to be

equal to the static de�ection, while the initial horizontal displacement is set to 0.

The rotor starts from the static position with a given constant acceleration rate αr.

Figure 2.8 shows the �owchart of the above described solution method for transient

lateral response analysis of the shaft-disc system.

The super-harmonic components of lateral response of the shaft-disc system

passing through critical speeds are excited due to the presence of the breathing crack.

The emergence of these super-harmonic components is not clearly observable in the

time response particularly for the small cracks. However, using time-frequency anal-

ysis based on di�erent transforms may reveal the crack-induced changes in transient

response. A brief description on time-frequency analysis used in crack detection in

rotary systems is presented in the following section.

2.6.3 Time-frequency analysis

The Fourier transform is a well-known method to analyze stationary vibration

signals. The Fourier transform method, however, is not well-suited for determina-

tion of local changes in frequency contents of the cracked rotor transient responses,

which generally exhibit non-stationary behavior. The Short Time Fourier Trans-

form (STFT) has been developed to analyze non-stationary signals. In STFT-based

time-frequency representations, an identical window is used for analysis of the entire

signal, which leads to a constant resolution for all frequencies. However, generally

wide and narrow windows are required to obtain a good frequency resolution for low

and high frequency components of a signal, respectively.

Alternatively, the wavelet transform can produce a multi-scale frequency res-

olution to extract more e�ective time-frequency representation of non-stationary
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Figure 2.8: The transient lateral response solution �owchart
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signals. In wavelet transform, signal features, which are well correlated with the

shape of the selected wavelet mother function have a higher chance to be observed

in the time-frequency representation, while the features with lower correlations van-

ish. Therefore, the wavelet transform is a non-adaptive signal processing method.

An alternate self-adaptive method, namely, the empirical mode decomposition is

capable of determining the time-frequency representation based on the signal itself

rather than preselected kernels. This method has shown to overcome the STFT and

wavelet transform disadvantages.

2.6.4 Empirical Mode Decomposition (EMD)

Huang et al. [69] presented the empirical mode decomposition algorithm,

which is a post-processing method to decompose non-stationary signals into a set

of intrinsic mode functions (IMFs). The IMFs represent simple oscillatory signals,

which are suitable for computation of instantaneous frequencies, and satisfy the

following two conditions: (i) in the entire data set, the number of local extrema and

the zero�crossings must either be equal or di�er at most by one; and (ii) at any

time instant t, the mean values of the upper and lower envelopes of an IMF is zero.

Using EMD method, the original signal u(t) can be reconstructed as:

u(t) =
m∑
n=1

cn(t) + xm(t) (2.48)

where cn(t) is the IMF and m is the number of total extracted IMFs. xm(t) repre-

sents the residual signal. The IMFs are determined by a simple algorithm, namely,

sifting process as follows: (i) the local extrema of the signal hn,l−1 (h1,0 = u(t))

are identi�ed, where the subscripts n and l denote the number of IMF and number

of sifting iteration corresponding to the nth IMF, respectively; (ii) the upper U(t)

and lower L(t) envelops are constructed by interpolating on the local minima and

maxima, respectively, using a cubic spline interpolation algorithm; respectively. (iii)
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the instantaneous mean m(t) of the upper and lower envelops is computed from

m(t) =
U(t) + L(t)

2
; and (2.49)

(iv) the instantaneous mean is subtracted from the signal hn,l−1, as

hn,l(t) = hn,l−1(t)−m(t) (2.50)

The steps (i)�(iv) are repeated until the mean of hn,l(t) can be considered zero

according to the stop criterion of the sifting process. Once the stop criterion is

satis�ed, the resulting hn,l(t) is taken as the nth IMF, such that:

cn(t) = hn,l(t) (2.51)

The subsequent IMF function can be obtained considering the (n + 1)th residual

signal xn+1(t) = u(t)−
∑n

j=1 cj(t) as the new original signal, and the sifting process

is repeated. The sifting process terminates as the desired number of IMFs (m)

are obtained or the residual signal xn(t) is a monotonic signal (a signal with no

extrema). The sifting process to calculate the IMFs is illustrated in Figure 2.9. The

instantaneous frequency, IF , of each IMF is obtained from:

IFn(t) =
d(arctan(H[cn(t)]/cn(t)))

dt
(2.52)

whereH[.] denotes the Hilbert transform operation [93]. Huang et al. [69] introduced

the Hilbert-Huang transform (HHT), in which the combination of Hilbert transform

and EMD is employed to determine time-frequency representation or instantaneous

frequency of non-stationary signals. The accuracy of the decomposed IMFs may be

veri�ed by examining orthogonality among IMFs.

The sifting process uses cubic spline interpolation algorithm to estimate the

upper and lower envelopes of the signal. This algorithm is of second-order smooth-

ness (second-order derivable), which �ts the local extrema points with inadequate

�exibility. Qin and Zhong [94] reported that �tting the local extrema points using
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cubic spline interpolation algorithm leads to over- and undershoot problems. These

problems shift the instantaneous mean of the upper and lower envelopes m(t) in the

sifting process and may not satisfy the conditions required by EMD algorithm.
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Figure 2.10: Comparison of the upper envelopes in the sifting process based on cubic
spline and PCHIP for vertical transient response of a cracked Je�cott rotor at shaft
speeds close to half of its �rst critical speed

Shulin et al. [95] proposed a Piecewise Cubic Hermite Interpolating Poly-

namial (PCHIP) to replace the cubic spline interpolation algorithm in the sifting

process to eliminate the over- and undershoot problems. The PCHIP is of �rst-order

smoothness with higher �exibility compared with the cubic spline. It has been shown

that the results obtained by employing EMD algorithm based on PCHIP provide

more features information that the cubic spline in reciprocating pump valves fault

diagnosis.

In this dissertation research, in order to evaluate the e�ectiveness of the pro-

posed interpolation algorithm in [95], the cubic spline and the PCHIP algorithms

have been used to obtain upper envelope of the vertical transient response of a shaft-

disc system with material properties and dimensions summarized in Table 3.5. The
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shaft rotates at speeds near to half of the �rst critical speed of the system, in which

the second harmonic component of the vertical transient response has been excited.

Comparing the estimated upper envelopes using the both algorithms, illustrated in

Figure 2.10, show that the over- and undershoot problems have been eliminated by

using PCHIP.

2.7 Summary

Governing equations of lateral motion of analytical and FE shaft-disc system

models were formulated in this chapter. An alternate solution function, namely,

modi�ed harmonic balance method was proposed to evaluate the harmonic and

super-harmonic components of the lateral response of the analytical shaft-disc model.

The boundary and continuity conditions of a continuous shaft containing two cracks

and discs mounted with di�erent bearing supports were described. The analyti-

cal model using Timoshenko beam theory and corresponding crack and disc con-

tinuity conditions may be developed in order to add multiple cracks and discs on

the shaft. Localized sti�ness coe�cients of the cracked shaft were obtained using

fracture mechanics concepts and di�erent breathing crack models. An alternate ex-

plicit breathing function was also proposed to model the saturation phenomenon in

crack opening and closing as well as for reducing the computational costs associated

with determination of stress intensity factor at each point on the crack edge. The

methods of solutions to compute steady-state and transient lateral responses using

modi�ed harmonic balance and Runge-Kutta methods, respectively, were described.

Moreover, the Hilbert-Huang transform based on an improved empirical mode de-

composition was introduced to obtain the time-frequency representation of transient

response.
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Chapter 3

Veri�cation of the Modi�ed

Harmonic Balance Method and the

Alternate Breathing Function
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3.1 Introduction

The harmonic balance method has been widely used for estimation of the

lateral response of numerical models of the shaft-disc systems [e.g., 6, 55]. This

method, yields e�ective estimation of the harmonic as well as super-harmonic com-

ponents of the response in a highly e�cient manner. The approach, however, has

not been attempted to determine harmonic as well as super-harmonic components

of lateral responses of analytical shaft-disc models. The response estimation of ana-

lytical models have been mostly limited to the fundamental harmonic response [e.g.,

38, 40]. The modi�ed harmonic balance method introduced in chapter 2 is used to

compute the harmonic and super-harmonic components of the steady-state lateral

responses of the analytical shaft-disc model. This approach overcomes the limita-

tions of the FE model associated with high computational costs, and eliminates

optimization of the cracked element length.

In this chapter, the results obtained from both models are compared to exam-

ine validity of the modi�ed harmonic balance method in obtaining the critical speeds

of a shaft-disc system with di�erent cracks depths. Moreover, the critical speeds and

mode shapes of an intact shaft-disc system obtained from analytical and FE models

are compared. In order to verify the shaft-disc model and crack detection results,

performing experimental measurements are also required. Experimental measure-

ments give valuable information to improve the proposed crack detection method.

In this study, a laboratory experiment is designed to measure lateral vibrations of

the shaft near the disc location at di�erent speeds of the shaft.

Although the proposed breathing model by Darpe et al. [50] can accurately

describe the breathing behavior of the crack with di�erent depths, it poses high

computational cost model. The alternate breathing function in chapter 2, provides

an explicit function to reduce the computational costs. The validity of this function

in modeling the breathing behavior of the crack with di�erent depths in obtaining
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the transient responses of a rotor is also examined through comparisons with results

obtained from Darpe et al. [50] breathing model.

3.2 Veri�cation of the modi�ed harmonic balance

method

3.2.1 Experimental veri�cation

An experiment was designed to measure the critical speeds of the shaft-disc

system with and without a crack. The experiment was performed using a Machin-

ery Fault Simulator (Spectra-Quest, Inc.), shown in Figure 3.1. The experimental

set-up consists of a �exible shaft with two discs mounted on �exible-long bearing

supports. The experiments, however, were limited only to the �rst critical speed

since the maximum motor speed was limited to 3420 rpm. In this experiment, an

unbalance mass was attached to disc 1 to excite the lateral vibrations of the shaft.

The transverse crack on the rotating shaft breathes as the static de�ection of the

shaft is much greater than the dynamic de�ection response. Further, a relatively

heavy disc (disc 2) was mounted on the shaft away from the supports to achieve

greater static de�ection to simulate crack breathing behavior and to ensure that the

�rst critical speed of the system occurs within the maximum speed of the AC motor.

The material properties and dimensions of the shaft-disc system are summarized in

Table 3.1.

The experiments were initially performed to identify the bearing sti�ness along

the vertical and horizontal directions so as to match the �rst critical speed of the

intact shaft-disc system to that obtained from the analytical model. This provided

bearings sti�ness (kyy, kzz) of 9.24525 × 105 N/m, while the cross-sti�ness due to

supports were assumed to be kyz = kzy = 0. A pair of proximity probes was mounted
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oscilloscope speed controller coupling crack

Disc 1 Disc 2 proximity probesmotor
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Figure 3.1: (a) The sketch of the experimental set-up and (b) a pictorial view of the
Machinery Fault Simulator (Spectra-Quest, Inc.)

on the shaft for measurements of de�ection response of the shaft. The �rst critical

speeds of the shaft-disc system were identi�ed as the spin speeds corresponding to

the resonant peak in the lateral displacement amplitude response.

A fatigue crack was subsequently introduced on the shaft using cyclic bending

loads as per ASTM E399-09 [96]. For this purpose, a 3-point bending �xture was

installed on an MTS machine. Considering the actual geometry of a fatigue crack,

shown in Figure. 3.2, half of the crack depth could be visualized within the front

section, av, while the crack was fully-open under the static load, Py, exerted by

the 3-point bending �xture. The crack depth, a, was thus estimated twice the

visible depth of the crack on the shaft. Two shafts with normalized crack depth,
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Table 3.1: Material properties and dimensions of the experimental set-up

Description Value
Modulus of elasticity (Pa) 69× 109

Modulus of rigidity (Pa) 34× 109

Shaft diameter (m) 0.0159
Shaft length (m) 0.3619
Shaft density (kg/m3) 2700
Disc 1 density (kg/m3) 2022
Disc 1 diameter (m) 0.150
Disc 1 thickness (m) 0.015
Normalized Disc 1 location 0.0921
Disc 2 density (kg/m3) 7600
Disc 2 diameter (m) 0.127
Disc 2 thickness (m) 0.051
Normalized Disc 2 location 0.2894
Unbalance mass (kg) 0.006
Unbalance eccentricity (m) 0.069
Normalized crack location 0.3991

Table 3.2: Comparisons of the measured �rst critical speed of the system with those
obtained from the analytical model

Normalized
crack depth

Ωcr,1(Hz)
Proposed method Experiment Deviation (%)

0 59.52 59.52 0
0.30 59.25 59.40 0.13
0.50 59.13 59.06 0.05

ratio of crack depth to the shaft radius, of 0.3 and 0.5 were realized for subsequent

experiments with the cracked shafts.

Table 3.2 compares the measured �rst critical speeds of the system with intact

and cracked shafts with those obtained using the modi�ed harmonic balance method.

The model for the cracked shaft employed bearing sti�ness identi�ed during the

initial experiment involving the intact shaft. The peak deviations between the model

and measured results are only 0.05 % and 0.13 % for the crack depths of 0.3 and

0.5, respectively. The comparisons thus suggest that the modi�ed harmonic balance

method can yield accurate estimate of the critical speeds of the cracked shaft-disc

system.
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Figure 3.2: Shaft cross-section with a fatigue crack

3.2.2 Veri�cations using the FE Model

Intact shaft-disc system

In this section, the analytical and numerical models of an intact shaft-disc

system are employed to obtain critical speeds and mode shapes of a system applied

in [38] (see Table 3.3). The equations of lateral motion of the analytical model using

Timoshenko beam theory, described in Eq. (2.3), were solved to obtain steady-state

response. Numerical model of the shaft-disc system, formulated using the Finite

Element Method (FEM) in section 2.4, is also solved for the same system parameters

and bearing supports. The model also considered Timoshenko shaft elements, and

the gyroscopic e�ects.

Table 3.3: Material properties and dimensions of the intact shaft-disc system [38]

Description Value
Modulus of elasticity (Pa) 200× 109

Modulus of rigidity (Pa) 77.2× 109

Shaft diameter (m) 0.01905
Shaft length (m) 1.27
Shaft density (kg/m3) 7860
Disc density (kg/m3) 7860
Disc diameter (m) 0.3556
Disc thickness (m) 0.01099
Normalized disc location 0.5
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Figures 3.3 and 3.4 show the Campbell diagrams and mode shapes of the

system with material properties and dimensions given in Table 3.3, using the ana-

lytical and numerical models, respectively. The Campbell diagram illustrates nat-

ural frequencies of the rotating shaft-disc system at each shaft speed. The results

show that the natural frequencies and mode shapes obtained from the analytical

model are almost identical with those obtained from the FE model. Table 3.4 also

compares the natural frequencies, and forward and backward critical speeds Ωcr of

the analytical and numerical shaft-disc system models developed in this disserta-

tion research. Moreover, selected vibrational properties obtained from an analytical

shaft-disc model with the same material properties and dimensions using the Euler-

Bernoulli beam theory, reported in [38], are also summarized in this table. The

comparisons show that the results obtained from all shaft-disc system models are in

good agreements.

Figure 3.3: Campbell diagrams of the intact shaft-disc system using analytical and
FE models, B and F denotes backward and forward whirling speeds of the system,
respectively
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Figure 3.4: Mode shapes of the intact shaft-disc system, Ω = 0

3.2.3 Shaft-disc system with one breathing crack

The modi�ed harmonic balance method is used to determine critical speeds

of the analytical model of the shaft-disc system comprising one disc mounted at

mid-span of the shaft with a breathing crack and rigid-short bearing supports. Har-

monic and super-harmonic components of lateral vibration responses, and the critical

speeds of the shaft-disc system are obtained as described in section 2.6. The result-

ing critical speeds are compared with those obtained from the FE model considering

the material properties and dimensions summarized in Table 3.5.

Table 3.6 presents comparisons of the �rst and third critical speeds, Ωcr1 and

Ωcr3, of the shaft-disc system obtained from the analytical and the FE models con-

sidering di�erent normalized crack depth values. The second mode of the system,

however, was not excited since the unbalance mass located on the disc coincided with

the node corresponding to second de�ection mode. This mode could not be excited

and consequently the resonant peak corresponding to the second critical speed does
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Table 3.4: The natural frequencies and the critical speeds of the intact shaft-disc
system

Present study Natural frequencies (rpm) with Ω = 0
ω1 ω2 ω3 ω4 ω5

Analytical 527 3457 9017 10083 28670
FE 527.5 3456.5 9107.4 10082 �

Critical speeds (rpm)
Ωcr,1 Ωcr,2 Ωcr,3 Ωcr,4 Ωcr,5

Analytical Forward 527 7691 9113 28007 28739
Backward 527 2221 9102 9185 28377

FE Forward 527.5 7682.7 9113.6 28007 �
Backward 527.5 2225 9101.4 9186.5 �

Eshleman and Eubanks [38] Critical speeds (rpm)
Ωcr,1 Ωcr,2 Ωcr,3 Ωcr,4 Ωcr,5

Analytical Forward 524 7692 9110 � �
Backward � 2203 � �

not emerge in the lateral response. The comparisons suggest good agreements in the

�rst and third critical speeds obtained from the two methods. Both the methods

yield identical �rst critical speeds, as expected. The third critical speeds obtained

from the two methods are also quite close. The deviation in the third critical speed

obtained from the two models is in the order of 0.05 % for the intact shaft and

increases gradually with increasing crack depth. The peak deviation corresponds to

unity crack depth ratio is only 0.67 %. The results also show that the critical speeds

decrease with increasing crack depth. It is evident that the changes in the third

critical speed due to a crack depth are greater than those in the �rst critical speed.

3.2.4 Shaft-disc system with two breathing cracks

The modi�ed harmonic balance method is also used to determine critical

speeds of the analytical model of the shaft-disc system with two breathing cracks

mounted on rigid-short bearing supports. Table 3.5 summarizes the material prop-

erties and dimensions used in the simulations. The cracks breathing behavior is

initially modeled using the Mayes and Davies [60] function, while their locations
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Table 3.5: Material properties and dimensions of the shaft-disc system

Description Value
Modulus of elasticity (Pa) 69× 109

Modulus of rigidity (Pa) 34× 109

Shaft diameter (m) 0.01905
Shaft length (m) 1.27
Shaft density (kg/m3) 2700
Disc density (kg/m3) 2700
Disc diameter (m) 0.1524
Disc thickness (m) 0.0254
Normalized disc location 0.5
Unbalance mass (kg) 0.01
Unbalance eccentricity (m) 0.0508

are taken as γ1 = L0

L3
= 0.45 and γ2 = L2

L3
= 0.55 normalized with respect to the

shaft length. The resulting �rst and third critical speeds of the analytical model

are compared with those obtained from the FE model, in Table 3.7 considering dif-

ferent cracks depth values. The cracks depths are normalized with respect to the

shaft radius and denoted by µ1 and µ2 in the table. It should be noted that the

�rst critical speed obtained from the analytical model with a single crack is used to

calibrate crack elements lengths in the FE model, as described in section 2.6.

Since the crack element length also depends on the crack location on the shaft,

the identi�ed length could also be used for the second crack, provided they occur

on the same location or at mirrored locations of the shaft considering the plane

of symmetry of the shaft-disc system. For the purpose of the model veri�cation,

mirrored locations of the two cracks are considered, while perpendicular to the shaft

at the disc location is taken as the plane of symmetry.

The comparisons in Table 3.7 suggest very good agreements in the �rst and

third critical speeds obtained from the two methods for the ranges of crack depth

(µ1 : 0 to 1;µ2 : 0 to 0.6) considered. The average deviations in the �rst and third

critical speeds obtained from the two models are in the order of 0.016 % and 0.250

%, respectively, for the entire range of crack depths. It should be noted that the
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Table 3.6: Comparison of critical speeds of the shaft-disc system obtained from the
modi�ed harmonic balance method and the FE model

Normalized
Crack depth

Ωcr,1(rpm) Ωcr,3(rpm)
Proposed
method

FE
analysis

Proposed
method

FE
analysis

Deviation (%)

0 747 747 9525.4 9534.3 0.05
0.1 746.9 746.9 9524.1 9533.7 0.05
0.2 746.6 746.6 9518.5 9531.5 0.07
0.3 746 746 9507.6 9527.9 0.11
0.4 745.1 745.1 9490.9 9523.2 0.17
0.5 743.7 743.7 9467.5 9515.2 0.25
0.6 742 742 9436.5 9502.9 0.35
0.7 739.6 739.6 9396.1 9481.8 0.46
0.8 736.6 736.6 9343.6 9448.6 0.56
0.9 732.5 732.5 9275.3 9394 0.64
1 727.1 727.1 9185.4 9308.5 0.67

second de�ection mode of the system is not excited since the node coincides with the

position of the disc with unbalance. Consequently, the resonant peak corresponding

to the second critical speed does not emerge in the lateral response.

3.3 Veri�cation of the alternate breathing function

A shaft supported on rigid-short bearings at both ends with a single disc

mounted at the mid-span of the shaft and a breathing crack near the disc is consid-

ered for the analysis. The material properties and dimensions of the system model

are identical to those given in Table 3.5. It is to be noted that a damping ratio of

0.055 is added to the system in this section. The shaft-disc system is modeled as a

Je�cott rotor and start-up vertical responses for di�erent crack depths are obtained

from the governing equations of motion, Eq. (2.1), integrated using fourth order

Runge-Kutta method. The shaft starts from rest and reaches the speed of 16.66 Hz

(1000 rpm) with a constant acceleration of αr = 5 rad
s2
.

Comparing the vertical transient responses of the system with di�erent crack
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Table 3.7: Comparisons of �rst Ωcr,1 and third Ωcr,3 critical speeds of the shaft-disc
system obtained from the modi�ed harmonic balance method and the FE model,
(γ1 = 0.45 and γ2 = 0.55)

Normalized

crack depth

µ1

µ2 = 0 µ2 = 0.2 µ2 = 0.6
Proposed

method

FE

analysis

Proposed

method

FE

analysis

Proposed

method

FE

analysis

First critical speed, Ωcr,1 (rpm)

0 747 747 746.7 746.7 742.7 742.7

0.2 746.7 746.7 746.3 746.4 742.4 742.4

0.4 745.3 745.3 745 745 741.1 741.1

0.6 742.7 742.7 742.4 742.4 738.5 738.6

0.8 738.1 738.1 737.8 737.8 734 734.2

1 730 730 729.7 729.7 726.1 726.4

Third critical speed, Ωcr,3 (rpm)

0 9525.4 9532 9522.6 9530.6 9488.4 9515.6

0.2 9522.6 9530.6 9519.7 9529.5 9485.6 9515.3

0.4 9511 9525.5 9508.2 9524.9 9474.6 9512.5

0.6 9488.4 9515.6 9485.6 9515.3 9452.9 9503.9

0.8 9449.4 9490.4 9446.8 9490.2 9415.5 9479.5

1 9382.7 9466 9380.2 9464.3 9351.3 9428.3

depths passing through �rst critical speeds using the breathing models proposed by

Darpe et al. [50] and the alternate breathing function proposed in this study in Eq.

(2.17). The comparisons suggest that the two breathing functions yield comparable

responses as the crack depth decreases. The di�erences in the responses of the two

breathing functions are clearly evident for large crack depth. This may be attributed

to the fact that the proposed softly-clipped cosine function gives a better estimation

of the Darpe et al. [50] breathing model for small crack depths. The similarity

of the responses has been computed considering the normalized Euclidean distance

between two signals, as [97]:

distance (ut1(t), ut2(t)) =
1

1 + ||ut1(t)− ut2(t)||
(3.1)

where uti(t) (i = 1, 2) represents the transient lateral response and ||.|| returns the

norm of the vector. The signals are exactly similar, when the normalized Euclidean

distance equals unity, and the similarity between signals decreases as the normalized

Euclidean distance between them decreases.
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Table 3.8: Transient responses deviations and their computational costs with di�er-
ent normalized crack depths µ using Darpe et al. [50] breathing model and Proposed
breathing function

Normalized
crack depth

µ

Computational cost (s)
Transient responses

similarity
Proposed

breathing function
Darpe et al. [50]
breathing model

1 12.866 446.942 0.9296
0.5 12.319 408.907 0.9943
0.2 12.673 369.702 0.9995
0.1 12.364 341.060 0.9999

Table 3.8 summarizes the computational costs and similarities of the obtained

transient responses from both breathing models using the average deviation of re-

sponses. The computational costs are calculated when the developed program code

in MATLAB R2012b platform is run on a pc computer with a 2.8 GHz Intel(R) Core

(TM) i5 CPU and 8 GB RAM. The results show that the alternate breathing func-

tion reduces the computational cost by nearby 97% compared with Darpe et al. [50]

breathing model. It is observed that the computational costs can be substantially

reduced using the softly-clipped cosine function without scarifying the accuracy in

the presence of small size cracks.
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3.4 Summary

The validity of the modi�ed harmonic balance method to obtain the super-

harmonic components of the steady-state lateral response of the analytical model

and consequently the critical speeds was examined using the FE model and the

experiments. The critical speeds obtained from harmonic balance method and the

experiments were in good agreements. The analytical model is computationally more

e�cient compared with the FE model, since using the analytical model requires less

number of harmonic components in the proposed method to obtain an accurate

estimation of the lateral vibrations response. It is noted that the analytical results

of the �rst critical speeds were employed to calculate the proper cracked element

length. The transient lateral responses of the rotor with di�erent crack depths were

obtained considering the Darpe et al. [50] and alternate breathing functions. The

results showed that the alternate breathing function gives good estimate of the crack

breathing behavior in the presence of small crack depths, while signi�cantly reducing

the computational costs.
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Chapter 4

In�uence of Cracks' Parameters on

the Vibration Responses
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4.1 Introduction

Changes in vibrational properties of a shaft-disc system due to the crack have

been considered as potential crack indicators. The presence of a crack changes

the critical speeds of the system and excites the super-harmonic components of

the steady-state as well as transient lateral responses [e.g., 1, 3, 37, 43, 55, 56, 61,

62]. The super-harmonic components exhibit small amplitude sub-critical peaks at

fractional critical speeds of the system. The changes in the critical speeds depend

on the crack properties such as depth and location, and higher critical speeds are

more likely a�ected by crack depth. Considering changes in higher critical speeds

may thus lead to detection of smaller crack depths.

The presence of two cracks in a shaft can e�ectively change the vibration

properties of a shaft-disc system [e.g., 6, 56, 87, 88]. Analyzing the vibration behavior

of a shaft with two breathing cracks, however, is much more complex considering

cracks properties such as depth, location and relative angular position. Detection

of two cracks, however, may be conducted through investigation of changes in the

shaft center orbit and super-harmonic components amplitudes of the steady-state

lateral response.

Super-harmonic components of the lateral response of a shaft-disc system pass-

ing through its critical speed may also be excited due to the presence of a breath-

ing crack. The emergence of these super-harmonic components, however, is not

clearly detectable neither in the time response nor the frequency spectrum. The

transient lateral response of a rotor is a non-stationary signal, in which the fre-

quency contents change in time. Fourier transform is thus not suitable for analysis

of such responses. Using advanced signal processing techniques which are compati-

ble with non-stationary signals may reveal the presence of the breathing crack [e.g.,

48, 73, 74, 77].

In the present study, the e�ects of crack parameters, namely, the depth and
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location on the selected vibrational properties of a shaft-disc system are obtained.

The shaft-disc system is analytically modeled considering a �exible shaft with a

rigid disc and boundary conditions due to rigid as well as �exible bearing supports.

An unbalance mass is introduced to excite lateral vibration of the system. The

steady-state lateral response of the shaft-disc system in the presence of a breathing

crack is evaluated using the modi�ed harmonic balance method, described in section

2.5. The changes in the critical speeds and the emergence of sub-critical resonance

peaks in the lateral response are evaluated as functions of the crack parameters, and

subsequently analyzed as potential crack indicators.

Furthermore, the analytical model of the shaft-disc system is analyzed to ob-

tain its vibrational responses in the presence of two breathing cracks within the

�exible shaft. The modi�ed harmonic balance method is utilized to determine re-

sponses such as critical speeds, shaft center orbits and the steady-state unbalance

lateral response. The alternate softly-clipped cosine function is used to describe

breathing behavior of the crack and facilitate implementation of the modi�ed har-

monic balance method. The proposed function also resulted in peaks with more

accurate amplitudes in frequency spectrum of the lateral response. The e�ects of

crack relative angular positions on the critical speeds and the shaft center orbit are

investigated. The frequency spectra of lateral responses of the systems with single

and two cracks are compared to those of an intact rotor in order to highlight the

changes in responses caused by the cracks.

Finally, start-up responses of a shaft-disc system with di�erent crack depths

are considered. The shaft-disc system is analytically modeled as a Je�cott rotor

with a breathing crack to obtain the transient lateral response of the system as it

passes through critical speeds. The excitations of super-harmonic components of the

transient response and the emergence of sub-critical peaks are considered as crack

indicators. The equations of motion are integrated using fourth order Runge-Kutta
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method. The crack is modeled as a breathing crack using the model proposed by

Darpe et al. [50], and the proposed breathing function is also employed to reduce the

computational costs. The performances of the proposed crack detection methods for

detecting small cracks based on EMD and an improved EMD method are compared.

4.2 E�ect of a breathing crack on steady-state lat-

eral vibration responses

The validated analytical model of the shaft-disc system with a single disc

mounted on the mid-span is analyzed to study the e�ects of a breathing crack and

bearing supports on the lateral de�ection responses. The lateral de�ection responses

are obtained using the proposed modi�ed harmonic balance method together with

the material properties and dimensions of the shaft-disc system presented in Table

3.5. The analyses are performed for the breathing crack located at the mid-span of

the shaft, while the normalized depth of the crack is taken as unity. The e�ect of

the breathing crack is evaluated through comparisons of the lateral responses of the

shaft-disc system with and without a crack.

Figure 4.1 (a) compares the vertical de�ection amplitudes of the intact and

cracked systems mounted on rigid-short bearing supports with shaft spin speed

increasing from 100 rpm to 10000 rpm with an increment of 0.1 rpm. The results

show the emergence of relatively small magnitude sub-critical resonant peaks in the

presence of a breathing crack, which are not evident for the intact shaft. These

sub-critical resonant peaks are clearly evident at half of the �rst and third critical

speeds suggesting that the second super-harmonic component is well excited. The

third super-harmonic component is also excited with relatively small amplitude. The

sub-critical resonant peaks are very sharp, and thus increasing the shaft spin speed

with a �ner increment may result in emergence of sub-critical resonant peaks with
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relatively smaller amplitudes.

Figures 4.1 (b) and (c) further illustrate the comparisons of responses zoomed

in 100 to 1000 and 2800 to 4800 rpm ranges, respectively, in which the shaft spin

speed increases with an increment of 0.01 rpm. These clearly illustrate the emer-

gence of sub-critical resonance peaks associated with the �rst and third critical

speeds. It can be realized that the resonant peaks corresponding to half of the crit-

ical speeds emerge with a substantially higher amplitudes compared with the peaks

at other sub-critical speeds, namely 1
3
or 1

4
of the critical speeds. The emergence of

sub-critical resonant peaks may thus serve as reliable indicators for detecting the ex-

istence of a crack. The emergence of sub-critical resonant peaks in lateral de�ection

responses of the FE model and the simple Je�cott model of shaft-disc systems has

been reported as a valuable indicator of the existence of the crack [e.g., 3, 37, 61, 62].

The correlations among crack properties and amplitudes of the sub-critical resonant

peaks may also be considered for crack parameters identi�cation. For a speci�ed

crack depth, the changes in the third critical speed were observed to be considerably

greater than those in the �rst critical speed. The third critical speed is thus more

suitable for detection of cracks with small depth. The use of higher critical speeds,

for detection of a crack, however, would be limited to situations where the nominal

spin speed range of the shaft-disc system is su�ciently high.

The crack properties such as depth and location are known to a�ect the vi-

brational properties of the shaft-disc system. While the e�ect of crack depth on

the critical speeds of a shaft-disc system are evident in Table 3.6, solutions were

also obtained to study the e�ect of crack location on changes in the critical speeds.

Figure 4.2 shows the changes in the �rst and third critical speeds of the shaft-disc

system as a function of the crack location. The results are presented in terms of the

crack location normalized to the shaft length, (γ = L0

L4
), while the normalized crack

depth is taken as unity (µ = a
R

= 1). The results in Figure 4.2 (a) show increase in
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Figure 4.1: Vertical de�ection amplitude of the shaft-disc system (solid line: nor-
malized crack depth=1, dashed line: no crack)
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Figure 4.1 (Continued.): Vertical de�ection amplitude of the shaft-disc system

change in the �rst critical speed from the supports to the middle of the shaft. This

is attributed to the shaft deformation corresponding to the �rst mode. The changes

in the third critical speed of the shaft-disc system are also strongly related to the

crack location and follow the third mode de�ection pattern, as shown in Figure 4.2

(b). The results show that the third critical speed remains unchanged when the

crack coincides with the nodes corresponding to third mode shape. Furthermore,

the maximum reduction in the third critical speed also occurs when the crack is

located at the mid-span of the shaft near the disc. Furthermore, it should be noted

that the patterns of the change in the rational fractions (1
2
and 1

3
) of the �rst critical

speed are similar to the patterns of change in the third critical speed, respectively.

4.2.1 E�ect of bearing support type on crack detection

The changes in the critical speeds due to a crack are also dependent upon the

properties of the bearing supports. The proposed modi�ed harmonic balance method

is used to investigate the critical speeds of a shaft-disc systems with a single crack for
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Figure 4.2: Changes in the critical speeds of the shaft-disc system (a) �rst critical
speed; (b) third critical speed

four di�erent types of bearing supports, including: rigid-short, rigid-long, �exible-

short and �exible-long. The results are obtained for varying depths of crack located

at the mid-span of the shaft. The sti�ness of �exible-long and �exible-short bearings

in vertical and horizontal directions were assumed to be (kyy = kzz = 9.24525× 105

N/m, kyz = kzy = 0).

Table 4.1 summarizes the �rst and third critical speeds of the cracked shaft-

disc system for di�erent crack depths and bearing supports. The results show that,

as the crack depth increases, the changes in the �rst and third critical speeds of

the shaft-disc system mounted on long bearings are relatively greater than those

obtained from the shaft-disc system mounted on short bearings. Assuming that
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Table 4.1: Critical speeds of the shaft-disc system with a single crack mounted on
di�erent bearing supports

Normalized
Crack depth

Ωcr,1 (rpm) Ωcr,3 (rpm)
rigid-
short

rigid-
long

�exible-
short

�exible-
long

rigid-
short

rigid-
long

�exible-
short

�exible-
long

0 747 1545 743.9 1520.1 9525.4 13489.7 9173.7 12023.8
0.1 746.9 1544.9 743.9 1519.9 9524.1 13487.8 9172.5 12022.4
0.2 746.6 1544.3 743.6 1519.3 9518.5 13479.7 9167.4 12016.5
0.3 746 1543 743 1518.2 9507.6 13464.1 9157.6 12005
0.4 745.1 1541.1 742 1516.4 9490.9 13439.9 9142.4 11987.2
0.5 743.7 1538.5 740.7 1513.3 9467.5 13406.2 9121.2 11962.2
0.6 742 1535 739 1510.5 9436.5 13361.4 9093 11928.6
0.7 739.6 1530.4 736.6 1506.1 9396.1 13302.4 9056.2 11884.1
0.8 736.6 1524.4 733.6 1500.4 9343.6 13226.3 9008.3 11825.8
0.9 732.5 1516.5 729.6 1492.9 9275.3 13126.6 8945.9 11748.6
1 727.1 1506 724.3 1482.9 9185.4 12995.1 8863.6 11645.5

the minimum measurable change in the critical speed is 5 rpm, then the smallest

detectable normalized crack depths for the shaft-disc system with rigid-long and

�exible-long bearings are 0.5 and 0.2 using the changes in the �rst and third crit-

ical speeds, respectively. Considering the changes in the �rst critical speeds of the

shaft-disc system with rigid-short and �exible-short bearing supports, the smallest

detectable normalized crack depths are 0.6 and 0.7, respectively, while the results

show that using the changes in the third critical speeds yields the smallest detectable

normalized crack depth of 0.2 for the shaft-disc system with di�erent supports.

4.3 Vibration response characteristics of a shaft-

disc system with two breathing cracks

The vibration response characteristics of the shaft-disc system are evaluated

using the modi�ed harmonic balance method considering two cracks within the shaft.

The e�ects of crack parameters such as depth, location and relative angular position,

β = |Φ2 − Φ1|, are investigated in view of di�erent responses, namely the critical

speeds, shaft center orbit and lateral vibration of the shaft-disc system.
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Table 4.2 illustrates the e�ect of relative axial positions of the two cracks

(γ1 and γ2) with unity normalized depths (µ1 = µ2 = 1) on the �rst and third

critical speeds. The table also compares the critical speeds of the analytical model

incorporating the proposed softly-clipped cosine breathing function and cosine func-

tion of Mayes and Davies [60], described in section 2.3.1. The results are obtained

considering �xed location of the �rst crack (γ1 = L0/L4 = 0.5), while varying po-

sition of the second crack from the right bearing support (γ2 = L3/L4 = 1) to a

location close to mid-span of the shaft (γ2 = L3/L4 = 0.6). The relative position,

|γ2 − γ1| = 0.5 in Table 4.2 implies that the second crack is located on right bearing

and has no e�ect on the critical speeds.

The results show that both the breathing functions yield comparable critical

speeds of the system with cracks. Using the proposed breathing function, however,

leads to only slightly higher critical speeds compared to those obtained with Mayes

and Davies breathing function. The average deviations between �rst and third

critical speeds obtained from both breathing functions are about 0.009% and 0.016%,

respectively. This is likely due to saturation in closing and opening of the crack in the

proposed breathing function. The �rst critical speed of the system with two cracks

tends to be lower compared with that with one crack, as the spacing between the

two cracks, |γ2 − γ1|, decreases. This trend, however, is not consistently observed for

changes in the third critical speed. The third critical speed tends to be lower when

Table 4.2: First and third critical speeds of the shaft-disc system with two cracks
(µ1 = µ2 = 1 and γ1 = 0.5)

γ2 |γ2 − γ1|
Ωcr,1(rpm) Ωcr,3(rpm)

Breathing function Deviation
(%)

Breathing function Deviation
(%)cosine [60] clipped cosine cosine [60] clipped cosine

1 0.5 727.1 727.2 0.007 9185.4 9187.8 0.013
0.9 0.4 726.1 726.2 0.007 9102.4 9105.9 0.019
0.8 0.3 723.4 723.5 0.007 9043.2 9047.2 0.022
0.7 0.2 719.3 719.5 0.014 9131.4 9133.7 0.012
0.6 0.1 714.4 714.6 0.014 9171.5 9174.4 0.016
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Figure 4.3: Changes in critical speeds of the shaft-disc system with one crack (µ1 =
0.5; 0 6 γ1 6 1) and two cracks (µ1 = µ2 = 0.5; γ1 = 0.5; 0 6 γ2 6 1) versus crack
normalized location (a) �rst critical speed (Ωcr,1); (b) third critical speed (Ωcr,3)

second crack is located close to the extrema points of the corresponding mode at

normalized locations of 0.16, 0.5 and 0.83 on the shaft. The change in third critical

speed is greatest when the cracks relative position is close to 0.3 (γ2 = 0.8).

This is also evident from Figure 4.3, which shows the changes in critical speeds

with reference to those of the intact shaft (shaft without crack) as a function of

normalized crack locations. The results in the �gure are obtained using cosine

breathing function [60] with normalized crack depth (µ1 = µ2 = 0.5) and the 0

relative angular position β (β = |Φ2 − Φ1| = 0). The Figures 4.3 (a) and (b) also
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illustrate changes in �rst and third critical speeds of the system with one crack,

respectively, due to the changes in normalized crack location. Results show greatest

change in critical speeds when the single crack is located at the mid-span of the

shaft.
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Figure 4.4: E�ects of cracks depths on critical speeds of the shaft-disc system (γ1 =
0.4 and γ2 = 0.5); (a) �rst critical speed (Ωcr,1); (b) third critical speed (Ωcr,3)

Figure 4.4 shows the e�ect of the cracks depths on the �rst and third critical

speeds for crack normalized locations of (γ1 = 0.4 and γ2 = 0.5) and 0 relative

angular position β. The critical speeds tend to decrease with increasing depth of
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the �rst crack µ1, which is especially evident for the �rst critical speed. The results

further show notable reduction in shaft critical speeds with increasing depth of

second crack, irrespective of the �rst crack depth. The maximum changes in critical

speeds occur when normalized depths of both cracks are taken as unity.

Furthermore, higher changes are observed in the critical speeds of the system

with one small crack compared with one deep crack, as the second crack depth

increases. For example, as shown in Figure 4.4 (b), third critical speeds for the

system with two cracks in the presence of �rst crack normalized depth of 0.2 and 1

change from 9518.5 to 9491.3 rpm and from 9185.4 to 9171.5 rpm, respectively, as

the second crack normalized depth increases from 0 to unity. The total reductions

in the third critical speeds in these two cases are 27.2 and 13.9 rpm, respectively.

In other words, the e�ect of the �rst crack on critical speeds is less sensitive to the

presence of the second crack, as its depth increases.

Breathing crack excites the super-harmonic components of the lateral vibra-

tion, which lead to shaft center orbits with inner loops at fractional critical speeds.

Figures 4.5 and 4.6 show the e�ect of relative angular positions (β = |Φ2 − Φ1|)

of the breathing cracks, modeled with cosine function [60]. The crack normalized

depth are taken as (µ1 = µ2 = 1) at normalized locations of (γ1 = 0.4 and γ2 = 0.5).

As illustrated in these �gures, shaft center orbits consist of 2 and 3 inner loops at

shaft spin speeds close to 1
2
and 1

3
of the �rst critical speed corresponding to β,

respectively. Positions of crossing points of the inner loops, point O in Figure 4.5

and points O1 and O2 in Figure 4.6, show that shaft center orbits rotate clockwise,

as the relative angular position increases in the clockwise direction.

Furthermore, Figure 4.7 shows the e�ect of the relative angular position β

on the critical speeds of shaft with two cracks using the cosine breathing function.

As β changes from 0 to π, the �rst and third critical speeds decrease, which can

be attributed to the fact that the shaft sti�ness reduction due to the cracks is
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Figure 4.5: Shaft orbit centers of the two-crack shaft-disc system close to half of the
�rst critical speed (1

2
Ωcr,1) corresponding to β , (µ1 = µ2 = 1; γ1 = 0.4, γ2 = 0.5)

maximized. Unbalance force Fu, which depends on the shaft speed Ω (Fu = muruΩ
2),

also decreases. Unbalance force declines at a higher rate than the shaft sti�ness,

which leads to decrease in the lateral displacement response amplitudes. It is clearly

observed in Figures 4.5 and 4.6 that the lateral displacement amplitude decreases,

as the relative angular position β increases from 0 to π.

It is to be noted that modeling the cracks breathing behavior using the pro-

posed softly-clipped cosine function leads to similar shaft center orbits close to sub-

critical speeds of the system corresponding to β with smaller lateral displacement

amplitude. This is likely attributed to the fact that the crack is considered to be

saturated to either fully-open or fully-closed state in each shaft rotation.
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Figure 4.6: Shaft orbit center close to half of the third critical speed (1
3
Ωcr,1) of a

two-crack shaft-disc system corresponding to β, (µ1 = µ2 = 1; γ1 = 0.4, γ2 = 0.5)

Figures 4.8 and 4.9 compare frequency spectra of vertical responses of the single

crack with two-crack shaft-disc systems utilizing cosine [60] and the proposed softly-

clipped cosine breathing functions, respectively. It is noted that vertical responses

of the two-crack system are obtained at shaft spin speeds close to 1
3
of �rst critical

speed corresponding to β. As evident from the Figures 4.8 (a and b) and 4.9 (a and

b), the presence of the two aligned cracks can e�ectively increase the third super-

harmonic amplitude compared to that of the single crack system. The amplitudes

of the second and fourth super-harmonics are also increased but not to the extent

of the third super-harmonic component. This is likely due to the shaft spin speed

value, which is close to 1
3
of �rst critical speed, in which the third super-harmonic

85



Ωcr,1

Ωcr,3

Relative angular position, β (degrees)

F
ir

s
t

c
r
it

ic
a
l

s
p
e
e
d

(
r
p
m

)

T
h
ir

d
c
r
it

ic
a
l

s
p
e
e
d

(
r
p
m

)

Figure 4.7: Changes in �rst and third critical speeds (Ωcr,1 and Ωcr,3) of the two-
crack shaft due to changes in relative angular position (µ1 = µ2 = 1, γ1 = 0.5 and
γ2 = 0.4)

component of vertical response is highly excited and much more sensitive to changes

in shaft sti�ness in comparison with other super-harmonic components.

However, as the relative angular position β increases to β = π, the amplitudes

of the harmonic and super-harmonic components decrease. As illustrated in Figures

4.8 (e and f) and 4.9 (e and f), for β = 3π
4

and β = π the amplitudes of the second

and fourth super-harmonic components are considerably lower compared to those of

the �rst harmonic and third super-harmonic components amplitudes. These changes

in the frequency spectrum are also observed in Figure 4.9 (d) for β = π
2
, when the

cracks are modeled using the proposed softly-clipped cosine function. The frequency

spectrum of the vertical response of the two-crack system using the cosine breathing

function is shown in Figure 4.8 (d). The results suggest that the amplitudes of

the second and fourth super-harmonic components are nearly identical to the �rst

harmonic component amplitude.

Furthermore, as described in section 2.3.1, consideration of the breathing crack

saturation phenomenon in the proposed breathing function may lead to reductions
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Figure 4.8: Frequency spectra of the cracked system vertical responses at the shaft
speed close to 1

3
Ωcr,1 using the Mayes and Davies breathing function, (a) single crack

shaft, γ1 = 0.5, µ1 = 1; (b to f) two-crack shaft (γ1 = 0.5 and γ2 = 0.4, µ1 = µ2 = 1)
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Figure 4.9: Frequency spectra of the cracked system vertical responses at the shaft
speed close to 1

3
Ωcr,1 using the proposed breathing function, (a) single crack shaft,

γ1 = 0.5, µ1 = 1; (b to f) two-crack shaft (γ1 = 0.5 and γ2 = 0.4, µ1 = µ2 = 1)
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in amplitudes of harmonic and super-harmonic components compared to those ob-

tained from the cosine breathing function. Figure 4.10 compares the harmonic and

super-harmonic amplitudes of the vertical responses of the two-crack system versus

relative angular position β using cosine and softly-clipped cosine functions. In Figure

4.10 (a), the results show that the �rst harmonic component amplitudes are almost

una�ected by the relative angular position β. Moreover, the two breathing crack

models yield nearly identical responses. The maximum deviations in the �rst har-

monic components amplitudes are 6.87% and 6.91% for the cosine and softly-clipped

cosine breathing functions as β changes from 0 to π. These deviations are much less

than the average deviation (95%) in higher super-harmonic component amplitudes

obtained from both the breathing functions, as shown in Figures 4.10 (b,c and d).

It can also be concluded that the amplitude of the �rst harmonic component is in-

dependent of the crack parameters and may only depend on the unbalance force.

The results in Figures 4.10 (b,c and d) also con�rm the expected e�ect of saturation

phenomenon on the decreasing amplitudes of super-harmonic components.

The presence of second and fourth super-harmonic components with lower

amplitudes compared with the �rst harmonic and third super-harmonic components

in frequency spectrum can be considered as an indicator of presence of two cracks.

Based on this indicator, the two cracks are detectable if the relative angular position

is in the ranges of (3π
4
6 β 6 π) and (π

2
6 β 6 π) using the cosine and softly-clipped

cosine breathing functions, respectively.

4.4 Breathing crack detection using transient re-

sponse of a rotor

A shaft supported on rigid-short bearings with a single disc mounted at the

mid-span and a breathing crack near the disc is considered for the start-up transient
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Figure 4.10: Amplitudes of harmonic and super-harmonic components of obtained
vertical response of the two-crack shaft-disc system at a shaft speed close to 1

3
Ωcr,1

using the cosine breathing function [60] and softly-clipped cosine function, (γ1 = 0.5
and γ2 = 0.4, µ1 = µ2 = 1); (a) �rst harmonic components; (b) second super-
harmonic components; (c) third super-harmonic components; and(d) fourth super-
harmonic components

response analysis. The material properties and dimensions presented in Table 3.5

are used in the simulations. The shaft-disc system is modeled as a Je�cott rotor and

start-up responses in the vertical direction for di�erent crack depths are obtained

from the governing equations of motion, Eq. (2.1). The shaft starts from rest and

reaches speed of 16.66 Hz (1000 rpm) with a constant acceleration of αr = 5 rad
s2
.

Figure 4.11 shows the transient response of the intact system in vertical di-

rection and its frequency spectrum and time-frequency representations using HHT

based on EMD and improved EMD. These time-frequency representations are con-

sidered as the references for �nding changes in transient responses of the system due

to the crack. The transient response amplitude in Figure 4.11 (a) shows a peak at
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Figure 4.11: Transient response of the intact Je�cott rotor: (a) time response; (b)
Fourier spectrum; and time-frequency representations based on (c) EMD; and (d)
improved EMD

t = 114.4 s, corresponding to shaft speed Ω = 9.1 Hz. This shaft speed is considered

as the �rst critical speed Ωcr,1 of the intact system. The corresponding frequency

spectrum in Figure 4.11 (b), also shows the critical speed of the intact system as

Ωcr,1 = 9.07 Hz, while the corresponding peak amplitude is lower than that shown

in the time response. This may be attributed to the fact that Fourier transform is

suitable only for stationary signals rather than transient (non-stationary) signals.

Figures 4.11 (c) and (d) illustrate the instantaneous frequency of the vertical

transient response obtained from HHT based on EMD and improved EMD methods,

respectively. The results show that the instantaneous frequencies, computed based

on both the methods, change linearly from 0 to 16.66 Hz (1000 rpm) as expected
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Figure 4.12: Decomposition of the vertical transient response of the system with a
deep crack, (µ = 1), based on (a) improved EMD and; (b) EMD algorithms, the
shaft speed changes from 0 to 16.66 Hz (1000 rpm) with a constant acceleration rate
of ar = 0.5 rad

s2
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considering the linear relation for shaft speed, Eq. (2.46), in the transient response

solution, described in section 2.6. These instantaneous frequencies are computed us-

ing Eq. (2.52) and correspond to the �rst IMF based on EMD and improved EMD

methods. It is noted that the unbalance force can only excite the �rst harmonic

component of the transient response of the intact Je�cott rotor. It must be men-

tioned that the undesirable high frequencies in the time-frequency representations

near the beginning of time t = 0 s, are resulted from numerical errors associated

with the algorithms used.

The decompositions of the vertical transient response of the system with a

deep crack, (µ = 1), based on EMD and improved EMD algorithms, are shown in

Figure 4.12. The vertical transient response has been obtained using Darpe et al.

[50] breathing model. The results show that the two algorithms could successfully

decompose the transient signal into two IMFs. However, calculating the orthogonal-

ity between the obtained IMFs from each algorithm con�rms that those obtained

from the improved EMD show less dependency compared to those obtained from the

EMD. The orthogonality of the IMFs is examined using the dot product between

IMFs.

In both EMD and improved EMD algorithms, frequencies in each segment

of the non-stationary signal are extracted from higher to lower values. Thus, the

�rst IMF presents the highest frequencies in each signal segment, while other IMFs

consists of lower frequencies. For instance, the transient lateral response of the

shaft-disc system, shown in Figures 4.12 (a) and (b), the �rst IMF presents the �rst

harmonic, and second and third super-harmonic components in the vicinities of the

�rst critical speed, 1
2
and 1

3
of the �rst critical speed, respectively. These suggest

that the super-harmonic components are also excited in the vicinities of rational

fraction of the critical speeds. While the second IMF presents the second and third

super-harmonic components in the vicinities of the 1
2
and 1

3
of the �rst critical speed,
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respectively.

Furthermore, Figures 4.13 (a) and (b) show the time-frequency representa-

tions of the vertical transient response of the system with a deep crack (µ = 1).

The results clearly show that the presence of the deep crack excites the second,

third and forth super-harmonic components (2×, 3 × and 4 × Ω) of the transient

response in IMFs obtained from both the algorithms. The �rst IMFs consist of the

highest instantaneous frequencies as seen from the solid curves in these �gures. The

subsequent IMFs continuously present the relatively lower frequency contents of the

time signal, as evident from the �gures, and also reported in [76]. For instance,

the second IMFs obtained from the transient response represent the �rst harmonic

component (1× Ω), while the �rst IMFs represent the second super-harmonic com-

ponent (2 × Ω) at shaft speeds near 1
2
of the �rst critical speed around t = 50s, as

shown in Figures 4.13 (a) and (b). Figure 4.13 (c) shows the frequency spectrum

of the vertical transient response of the system with a deep crack (µ = 1). The

comparison between the frequency spectra of the system with a deep crack and the

intact system, shown in Figure 4.11 (b), con�rms that presence of the crack is not

detectable from the frequency spectrum of the transient response.

Deep cracks excite the super-harmonic components of the transient response,

which are detectable in time-frequency representations obtained from HHT based

on EMD and improved EMD methods. Smaller crack depths, however, cannot

e�ectively excite the super-harmonic components, and yield only low amplitude

sub-critical resonant peaks at 1
2
and 1

3
of the critical speed in the time-frequency

representation of the transient response. Detection of these small amplitude peaks

strongly depends on the applied method to obtain the time-frequency representation

of the transient response. The improved EMD algorithm used in this study could

enhance the performance of the crack detection based on changes in time-frequency

representation compared to the EMD algorithm.
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Figure 4.13: Time-frequency representations of the vertical transient response of the
system with a deep crack, (µ = 1), using HHT based on (a) improved EMD and; (b)
EMD algorithms (solid line represents the instantaneous frequency of the �rst IMF
and dotted line represents the instantaneous frequency of the second IMF); and (c)
Fourier spectrum

Figure 4.14 shows the time-frequency representations of the vertical transient

response of the Je�cott rotor with a small crack with normalized depth of µ = 0.2,

while the crack breathing behavior is modeled using Darpe et al. [50] breathing

model. The results show that the e�ect of sub-critical resonant peaks due to the

small crack on the instantaneous frequency of the �rst IMF are only observable in

the time-frequency representation based on improved EMD. The smallest detectable

normalized crack depths considering changes in time-frequency representation ob-

tained from HHT based on EMD and improved EMD algorithms are 0.25 and 0.2,
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respectively. The use of the proposed breathing function, described in Eq. (2.17),

also revealed the smallest detectable crack of µ = 0.2, as seen in Figure 4.15. The

�gure shows changes in the time-frequency representation of transient response of

the system near 1
2
and 1

3
of the �rst critical speed, which are obtained from the HHT

based on the improved EMD algorithm.
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Figure 4.14: Time-frequency representations of the vertical transient response of the
system with a small crack, (µ = 0.2), using HHT based on (a) improved EMD; and
(b) EMD algorithms
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Figure 4.15: Time-frequency representations of the vertical transient response of the
system with a small crack, (µ = 0.2), using HHT based on improved EMD, and the
crack is modeled using the proposed breathing function in this study
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4.5 Summary

In this chapter, a modi�ed harmonic balance method is employed to obtain

steady-state lateral responses of a continuous shaft-disc system with a single breath-

ing crack. The smallest detectable normalized crack depth using changes in the third

critical speeds is about 0.2 for the shaft-disc system regardless of the type of bearing

supports, while the smallest detectable normalized crack depths using the changes

in the �rst critical speeds is 0.5 for the shaft-disc system with long bearing supports.

The results show that the emergence of small sub-critical resonant peaks in harmonic

and super-harmonic components of the lateral response is an e�ective indicator of

the existence of the crack. The crack location on the shaft also showed an e�ective

impact on changes in the critical speeds. If the crack locates near the supports or a

node, the crack is considered to remain closed during entire cycle of rotation and the

corresponding critical speed thus remains unchanged. A crack located near points

of a mode shape with maximum de�ection can e�ectively reduce the corresponding

critical speed.

Furthermore, the results show that the second crack intensi�es the e�ect of

the �rst crack on the critical speeds of the system considering its depth and location

on the shaft. The results show that the small depth cracks are more sensitive to the

propagation of the second crack compared with relatively deep cracks. The results

further showed that modeling the cracks using the softly-clipped cosine breathing

function can provide e�ective detection of two cracks over the relative angular posi-

tion range of π
2
6 β 6 π, while the cosine breathing function could provide similar

detection over a relatively smaller range of angular position (3π
4
6 β 6 π). Both the

breathing functions are resulting in similar critical speeds and shaft center orbits of

the cracked rotor disc-bearing system.

The Hibert-Huang transform based on an improved empirical mode decompo-

sition is employed to obtain the time-frequency representation of start-up transient
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response of a shaft-disc system with transverse fatigue crack. The shaft-disc system

is modeled as a Je�cott rotor and the breathing behavior of the crack is modeled

using Darpe et al. [50] breathing model. The results show that smallest detectable

normalized crack depth using changes in time-frequency representation of vertical

transient response based on improved empirical mode decomposition is enhanced

by 5% compared with those based on empirical mode decomposition. Furthermore,

the proposed explicit breathing function could reduce the computational cost of

the applied breathing model without sacri�cing the accuracy of the crack breathing

model in the case of small crack depths. It is observed that the smallest detectable

normalized crack depth using both the breathing functions is 0.2.
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Chapter 5

Conclusions and Recommendations
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5.1 Major contributions and highlights of the dis-

sertation research

The general aim of this dissertation research is to develop an analytical model

and e�cient solution strategy to investigate the vibrational response of a rotating

shaft-disc system in the presence of multiple breathing cracks. A comprehensive

literature review on various vibration-based crack detection methods has been con-

ducted. The results revealed that crack indicators such as changes in the shaft-disc

system critical speeds, shaft center orbit evolution and the emergence of sub-critical

resonant peaks in super-harmonic components of steady-state and transient lateral

responses can be e�ectively utilized to detect small size cracks. While there are

many studies on shaft-disc system with single crack, a few studies have reported

the crack detection and vibration analysis of two-crack shaft-disc systems, and also

application of advanced signal processing methods in analysis of the transient lat-

eral response of a shaft-disc system. In this dissertation research, analytical model

together with an e�cient method of solution to obtain vibration characteristics of a

rotating shaft-disc system have been developed. A new crack breathing function and

advanced signal processing methods have also been proposed to e�ectively identify

the presence of single and two cracks and their characteristics through analysis of

the system vibration response. The major contributions of the dissertation research

are summarized as follows:

1. Formulating boundary and continuity conditions of an analytical rotating

shaft-disc model with two discs and two cracks on arbitrary locations on the

shaft mounted on di�erent bearing supports including rigid-short, �exible-

short, rigid-long and �exible-long;

2. Developing the modi�ed harmonic balance method to accurately solve the

governing equations of motion in order to investigate changes in the selected
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vibrational properties such as shaft critical speeds and super-harmonic com-

ponents in the steady-state response due to single and double cracks;

3. Design an experiment and formulate a FE model to validate the developed

analytical model and solution strategy;

4. Investigating the e�ects of cracks parameters such as depths, locations and rel-

ative angular positions on the critical speeds, shaft center orbit and amplitudes

of sub-critical resonant peaks;

5. Proposing a softly-clipped cosine function to accurately describe saturation in

breathing behavior of the fatigue crack and reducing the computational costs

of transient lateral response of a cracked shaft-disc model;

6. Proposing a Hilbert-Huang transform based on the improved empirical mode

decomposition to enhance the resolution of the time-frequency representation

of the transient lateral for detection of small size cracks;

5.2 Major conclusions

The major conclusions drawn from the dissertation research are itemized as

follows:

1. The modi�ed harmonic balance method is utilized to obtain the harmonic

and super-harmonic components of the steady-state lateral response. The

results from developed analytical model have been veri�ed with those obtained

from FE model and experiments. It is observed that the analytical model is

computationally more e�cient compared with the FE model, as the analytical

model requires less number of harmonic components in the proposed solution

to obtain an accurate estimation of the lateral vibrations.

2. The crack-induced changes in higher critical speeds are much greater than
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those in the �rst critical speed for a speci�ed crack depth. As the crack depth

increases the changes in critical speeds increase, however, the crack location

exhibits more pronounced e�ect on these changes. The e�ect of the crack

location on changes of a critical speed depends on the shaft de�ection at crack

location of the corresponding mode shape.

3. The smallest detectable normalized crack depth using changes in the third

critical speeds, considering a lower threshold of 5 rpm for measurable changes

in the critical speeds, is 0.2 for the shaft-disc system regardless of the type of

bearing supports, while the smallest detectable normalized crack depths using

the changes in the �rst critical speeds is 0.5 for the shaft-disc system with long

bearing supports.

4. Inner loops are emerged in the shaft center orbits at fractional critical speeds

due to the presence of the breathing crack, which e�ectively excites the super-

harmonic components of steady-state lateral response. In a two-crack shaft,

as the cracks relative angular position β increases clockwise, these shaft center

orbits are also rotate clockwise. Moreover, as the relative angular position

increases from 0 to π, the critical speed and the shaft center orbit average

radius decrease. This may be attributed to the fact that the shaft sti�ness

decreases with a lower rate than the unbalance force.

5. The results showed that the second crack intensi�es the e�ect of the �rst crack

on the critical speeds of the system considering its depth and location on the

shaft. Furthermore, the results show that the small depth cracks are more

sensitive to the propagation of the second crack compared with relatively deep

cracks as a result of crack saturation.

6. The amplitude of the �rst harmonic component of the steady-state lateral re-

sponse only changes with unbalance force and the crack breathing behavior

has no e�ect. In the contrary, amplitudes of the super-harmonic components

102



are considerably a�ected by the crack breathing behavior and thus its asso-

ciated breathing function. The di�erences between critical speeds and shaft

center orbits of the cracked rotor disc-bearing system obtained from the modi-

�ed harmonic balance method using cosine and softly-clipped cosine breathing

functions is found to be negligible.

7. The results showed that modeling the cracks using the alternate (softly-clipped

cosine) breathing function providing detection of two cracks for the range of

the relative angular position π
2
6 β 6 π in comparison with the obtained range

3π
4
6 β 6 π using the cosine breathing function.

8. The results showed that smallest detectable normalized crack depth using

changes in time-frequency representation of vertical transient response based

on improved empirical mode decomposition is 0.2, which has been enhanced

by 5% compared with those based on empirical mode decomposition.

9. It is observed that the proposed explicit breathing function could considerably

reduce the computational costs of the Darpe et al. [50] breathing model with-

out sacri�cing the accuracy of the crack detection method in the case of small

crack depths.

10. Changes in selected vibration characteristics obtained from steady-state and

transient lateral responses showed almost identical capabilities in detecting

small crack depths, however, consideration of each of these responses for crack

detection mostly depends on the shaft-disc system working conditions.

5.3 Recommendations for future works

The detection of the crack in the presence of other faults has not been ad-

dressed in this dissertation research. This study should thus be continued to in-

vestigate the e�ect of other faults on the e�ciency of the proposed crack detection
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method. Strategies should also be developed to realize if changes in the preselected

vibration properties is due to the crack or other faults. This study is also limited

to the lateral vibration of the shaft-disc system, while axial and torsional vibrations

may show an important role in crack detection and identi�cation. Furthermore, in

detection of small cracks using changes in alternate crack indicators, the application

of other signal processing techniques may be required. Some recommendations for

future studies are thus itemized as follows:

1. The analytical model can be extended to include other faults such as bow shaft

and misalignment. The e�ect of these faults on changes in critical speeds and

harmonic and super-harmonic components of steady-state lateral response in

the presence of the crack may be studied using the modi�ed harmonic balance

method.

2. Je�cott rotor model as a simpli�ed analytical model with 2 degrees-of-freedom

was employed to obtain the transient lateral response. The crack location ef-

fect on the e�ciency of the crack detection method cannot be investigated

using this model. The described analytical model in this study, may also be

used to �nd transient lateral response of the system. This model comprises

a continuous shaft, in which the crack can be located in any position on the

shaft. It should be noted that the FE model of the shaft-disc system may

also be used to eliminate the de�ciency of the Je�cott rotor, although it de-

mands excessive computational cost with low rate of convergence in computing

vibration responses.

3. The coupled torsional-lateral vibration is considered to be a crack indicator,

which is sensitive only to the crack e�ects rather than the other faults. This

crack indicator was not employed in this study, since an external torque is

required to excite crack-induced torsional-lateral coupling. The application of

an external torsional torque may not be practical in most rotating systems.
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However, the use of this crack indicator for detection of crack in the presence

of other faults may be considered in shaft-disc systems, in which the torsional

vibrations are already excited.

4. The resolution of the time-frequency representation of the transient vertical

response was enhanced using an improved empirical mode decomposition. The

application of other decomposition algorithms such as local mean decompo-

sition which are more e�ective in obtaining instantaneous frequencies may

lead to detection of smaller crack depths. Furthermore, the local mean de-

composition algorithm is sensitive to the presence of impacts in the signal.

The application of this algorithm may e�ectively reveal crack-induced changes

in the lateral response of a shaft-disc system in the presence of a transient

torsional excitation.

5. The stability analysis of a shaft-disc system with a breathing crack has been

reported in some studies, however, the e�ects of other faults on the character-

istics of the identi�ed instability regions have not been well investigated. The

study of the rotating shaft-disc system stability in the presence of multiple

faults would be an interesting topic for the future research.

6. In evaluation of the localized shaft sti�ness at the location of the crack, various

models have considered di�erent crack properties such as depth and location,

however, other crack geometries have been neglected. The width of the crack

may exhibit a signi�cant e�ect on estimating the cracked shaft sti�ness at each

shaft angle. It seems that a wide crack may stay open at each shaft angle,

thus, determination of a threshold value for describing the breathing behavior

of the crack is necessary.
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The vectors {A} and {B} and the matrix [∆] in the system of linear equa-

tions, described in Eq. (2.45), considering the shaft-disc system with rigid-short and

�exible-long bearing supports, are given in details as follow. The obtained system

of linear equations is repeated as:

[∆] {A} = {B}

where

{A}(4×m×(l+1))×1 =
(
{A′}1×(4×m×(l+1))[C](4×m×(l+1))×(4×m×(l+1))

)T
=({

0A1
1,

0 A2
1,

0 A3
1,

0 A4
1, . . . ,

sA1
n,
sA2

n,
sA3

n,
sA4

n, . . . ,
lA1

m,
lA2

m,
lA3

m,
lA4

m

}
[C]
)T

[C] =

diag
[
eiΩt, eiΩt, eiΩt, eiΩt, . . . , einΩt, einΩt, einΩt, einΩt, . . . , eimΩt, eimΩt, eimΩt, eimΩt

]
(A.1)

The vector {A} is considered as a multiplication of vector {A′} and matrix [C]. The

vector {A′} represents the coe�cients of proposed solution in modi�ed harmonic

method, Eq. (2.44), and matrix [C] is a diagonal matrix with elements in exponential

form einΩt. The parameter n (n = 1, 2, . . . ,m) represents the order of the super-

harmonic component. The elements of vector {A} are considered as sAjne
inΩt, in

which the superscripts s (s = 0, 1, 2, . . . , l) and j (j = 1, 2, 3, 4) denote the number

of the shaft segment and the jth root, αjn, of the characteristic equation, Eq. (2.43),

respectively. Considering that the unbalance mass is located on disc 1, shown in

Figure 2.3, vector {B} describes the external harmonic forces on shaft segments, is

given by:

{B}(4×m×(l+1))×1 =
{

0, 0, 0, 0,muruΩ
2eiΩt, 0, . . . , 0

}T
(A.2)

Matrix [∆] is the coe�cient matrix, which the value of its elements depend on

type of the bearing support, employed crack breathing function and location of the

cracks and the disc on the shaft. For the cracked rotor disc-bearing system, as shown

in Figure 2.3, with rigid-short bearing supports and considering the exponential form

of the Mayes and Davis breathing function, the matrix [∆] is expressed as:

[∆](4×m×(l+1))×(4×m×(l+1)) =



1∆ 0
s2∆0 0 . . . 0

0
s1∆1

2∆

0
. . . 0

sn∆0
...

... 0
s(n−1)∆1

n∆ 0
. . . 0

sm∆0

0 . . . 0 0
s(m−1)∆1

m∆


(A.3)
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where [
0
sn∆g

]
((l+1)×4)×((l+1)×4)

=
−1

2

[
0
sn∆0

g|0sn∆1
g|0sn∆2

g|0sn∆3
g|0sn∆4

g

]
,[

0
sn∆1

g

]
=
[

0
sn∆2

g

]
=
[

0
sn∆4

g

]
= [0] , g = 0, 1.

[
0
sn∆0

g

]
=


[0]3×4

g∆
c
11n1 g∆

c
12n1 g∆

c
13n1 g∆

c
14n1

[0]12×4


[

0
sn∆2

g

]
=


[0]11×4

g∆
c
31n2 g∆

c
32n2 g∆

c
33n2 g∆

c
34n2

[0]4×4



(A.4)

[n∆](4×(l+1))×(4×(l+1)) = [n∆0|n∆1|n∆2|n∆3|n∆4]

[n∆0] =



1 1 1 1

∆1
1n ∆1

2n ∆1
3n ∆1

4n

∆2
11n ∆2

12n ∆2
13n ∆2

14n

∆3
11n + ∆c

11n1 ∆3
12n + ∆c

12n1 ∆3
13n + ∆c

13n1 ∆3
14n + ∆c
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∆4
11n ∆4

12n ∆4
13n ∆4

14n

∆5
11n ∆5

12n ∆5
13n ∆5

14n

[0]14×4



[n∆1] =



0 0 0 0

0 0 0 0

−∆2
11n −∆2

12n −∆2
13n −∆2

14n

−∆3
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14n

−∆4
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14n
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24n
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24n
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21n + ∆d

21n ∆4
22n + ∆d
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24n

∆5
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23n + ∆i

23n ∆5
24n + ∆i

24n

[0]10×4


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[n∆2] =



[0]6×4

−∆2
11n −∆2

12n −∆2
13n −∆2

14n

−∆3
11n −∆3

12n −∆3
13n −∆3

14n

−∆4
11n −∆4

12n −∆4
13n −∆4

14n

−∆5
11n −∆5

12n −∆5
13n −∆5

14n

∆2
21n ∆2

22n ∆2
23n ∆2

24n

∆3
21n ∆3

22n ∆3
23n ∆3

24n

∆4
21n + ∆d

21n ∆4
22n + ∆d

22n ∆4
23n + ∆d

23n ∆4
24n + ∆d

24n

∆5
21n + ∆i

21n ∆5
22n + ∆i

22n ∆5
23n + ∆i

23n ∆5
24n + ∆i

24n

[0]6×4



[n∆3] =



[0]10×4

−∆2
21n −∆2

22n −∆2
23n −∆2

24n

−∆3
21n −∆3

22n −∆3
23n −∆3

24n

−∆4
21n −∆4

22n −∆4
23n −∆4

24n

−∆5
21n −∆5

22n −∆5
23n −∆5

24n

∆2
31n ∆2

32n ∆2
33n ∆2

34n

∆3
31n + ∆c

31n2 ∆3
32n + ∆c

32n2 ∆3
33n + ∆c

33n2 ∆3
34n + ∆c

33n2

∆4
31n ∆4

32n ∆4
33n ∆4

34n

∆5
31n ∆5

32n ∆5
33n ∆5

34n

[0]2×4



[n∆4] =



[0]14×4

−∆2
31n −∆2

32n −∆2
33n −∆2

34n

−∆3
31n −∆3

32n −∆3
33n −∆3

34n

−∆4
31n −∆4

32n −∆4
33n −∆4

34n

−∆5
31n −∆5

32n −∆5
33n −∆4

34n

∆2
41n ∆2

42n ∆2
43n ∆2

44n

∆6
41n ∆6

42n ∆6
43n ∆6

44n


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∆1
jn = EIλ2

jn

∆2
sjn = eLsλjn

∆3
sjn = λjn∆2

sjn

∆4
sjn = ∆2

sjn

(
EIλ3

jn +
(
n2 − 2n

)
ρAr2

0ω
2λjn

)
∆5
sjn = ∆1

jn∆2
sjn

∆6
sjn = λ2

jn∆2
sjn

∆d
sjn = mdn

2ω2∆2
sjn

∆i
sjn = ∆3

sjn

(
Ipnω

2 − Itn2ω2
)

g∆
c
sjnr =

1

2
(βr − iγr) ∆5

sjne
i(−1)gΦr +

1

2
(εr − iδr) conj

(
∆5
sjne

i(−1)gΦr
)
, r = 1, 2.

where r denotes the number of the crack. The matrices [0sn∆g] and [n∆] in Eq.

(2.45) have been determined considering that the cracks and the discs' locations

are arranged as shown in Figure 2.3, (L0 6 L1 6 L2 6 L3 6 L4). These matrices

have to be updated for other arrangements of the cracks and disc on the shaft.

For �exible-long bearing supports, in Eq. (2.45) the matrices [n∆1] and [n∆5] are

modi�ed as:

[n∆0] =



∆7
1n ∆7

2n ∆7
3n ∆7

4n

∆1
1n/α1n ∆1

2n/α2n ∆1
3n/α3n ∆1

4n/α4n

∆2
01n ∆2

02n ∆2
023n ∆2

04n

∆3
01n ∆3

02n ∆3
03n ∆3

04n

∆4
01n + ∆d

01n ∆4
02n + ∆d

02n ∆4
03n + ∆d

03n ∆4
04n + ∆d

04n

∆5
01n + ∆i

01n ∆5
02n + ∆i

02n ∆5
03n + ∆i

03n ∆5
04n + ∆i

04n

[0]14×4



[n∆4] =



[0]14×4

−∆2
21n −∆2

22n −∆2
23n −∆2

24n

−∆3
21n −∆3

22n −∆3
23n −∆3

24n

−∆4
21n −∆4

22n −∆4
23n −∆4

24n

−∆5
21n −∆5

22n −∆5
23n −∆4

24n

∆8
31n ∆8

32n ∆8
33n ∆8

34n

∆3
31n ∆3

32n ∆3
33n ∆3

34n


∆7
jn = −EIα3

jn + ρAr2
0ω

2αjn
(
2n− n2

)
− (S1 + iS4)− (S2 + iS3)

∆8
sjn = ∆2

sjn

(
−EIα3

jn + ρAr2
0ω

2αjn
(
2n− n2

)
− (S1 + iS4)

)
− conj

(
∆2
sjn

)
(S2 + iS3)

(A.5)
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Modeling the breathing cracks using the alternate breathing function described in

Eq. (2.18), the matrix [∆] is updated as:

[∆
] (

4
×
m
×

(l
+

1
))
×

(4
×
m
×

(l
+

1
))

=
                         

1
∆

( 10 9

) 0 s2∆
0

0
( e−iπ 9

) 0 s4
∆

0
0

..
.

0
( 10 9

) 0 s1∆
1

2
∆

( 10 9

) 0 s3∆
0

0
. .
.

0
( 10 9

) 0 s2∆
1

3
∆

( 10 9

) 0 s4∆
0

. .
.

. . .
( eiπ 9

) 0 s1
∆

1
0

( 10 9

) 0 s3∆
1

4
∆

. .
.

( e−iπ 9

) 0 sn
∆

0

0
. .
.

. .
.

. .
.

. .
.

0 ( 10 9

) 0 sn∆
0

. . .
( eiπ 9

) 0 s(
n
−

3
)∆

1
0

( 10 9

) 0 s(
n
−

1
)∆

1
n
∆

. .
.

. .
.

0
. .
.

. .
.

. .
.

( 10 9

) 0 sm∆
0

0
..
.

0
( 10 9

) 0 s(
m
−

1
)∆

1
m

∆

                         

(A.6)
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