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Abstract

Cluster Analysis of Multivariate Data Using Scaled Dirichlet Finite
Mixture Model

Eromonsele Samuel Oboh

We have designed and implemented a finite mixture model, using the scaled Dirichlet

distribution for the cluster analysis of multivariate proportional data. In this thesis, the task

of cluster analysis first involves model selection which helps to discover the number of

natural groupings underlying a dataset. This activity is then followed by that of estimat-

ing the model parameters for those natural groupings using the expectation maximization

framework.

This work, aims to address the flexibility challenge of the Dirichlet distribution by

introduction of a distribution with an extra model parameter. This is important because sci-

entists and researchers are constantly searching for the best models that can fully describe

the intrinsic characteristics of the observed data and flexible models are increasingly used

to achieve such purposes.

In addition, we have applied our estimation and model selection algorithm to both syn-

thetic and real datasets. Most importantly, we considered two areas of application in soft-

ware modules defect prediction and in customer segmentation. Today, there is a growing

challenge of detecting defected modules early in complex software development projects.

Therefore, making these sort of machine learning algorithms crucial in driving key quality

improvements that impacts bottom-line and customer satisfaction.
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Chapter 1

Introduction

1.1 Background

Over the past couple of decades, the world has experienced vast growth and advance-

ment in information technology systems including the internet. These technologies have

made data generation easy (resulting in large amount of data stored in our digital universe)

as well as the growing challenge of how to harness these data. Recently, a number of top

technology influencers described data as the new crude oil [1]. This simply means that just

as refining crude oil produces a number of petroleum products, we can also derive potential

benefits from harnessing data. Moreover, the value from several data analysis applications

today results in companies earning great financial returns. These applications are seen in

various industries such as finance, retail, manufacturing, transportation, health services,

etc.

Data clustering is one of the major techniques used in data analysis. Clustering is based

on the concept of locating and separating data samples within a data set into different

clusters. The data samples within a particular cluster are closely related and are widely

different from data samples in a different cluster. This concept makes data clustering very

useful in decision making, exploratory pattern analysis, and machine learning applications
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involving image segmentation, information retrieval, anomaly detection, object and char-

acter recognition [2]. There exist several approaches in data clustering and the model based

approach is one that is beginning to get more attention from researchers because it provides

a principled statistical way to solve data clustering problems [3].

The finite mixture model is increasingly becoming popular in data clustering. This

technique is used to model distributions that represent a variety of random phenomena as

well as to cluster large data sets [4]. Finite mixture is flexible and widely applicable in

modeling different forms of data.

Different probabilistic methods have been implemented by researchers to model dif-

ferent kinds of data sets and this leads us to our research work which aims to propose a

flexible probability distribution that can better find patterns within data sets without under

or over-fitting.

1.2 Objectives

The major objective of this thesis is to further expand current research on finite mixture

modelling by focusing on the scaled Dirichlet distribution. This involves developing a

learning framework that is based on the principle of maximum likelihood estimation to

infer the optimal parameters of our proposed mixture model. However, we intend to apply

our proposed learning framework to address four important issues of cluster analysis:

• The challenge of choosing a flexible mixture density for model based cluster analysis.

• Estimation of the mixture model parameters.

• Model selection which estimates the number of clusters that exist within a data set.

• Evaluation and validation of the cluster analysis method.
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For the purpose of this thesis, we explore the use of finite mixture model in cluster

analysis. We consider an extension of the Dirichlet distribution called the scaled Dirichlet

distribution to better model multivariate data vectors. As mentioned above, our proposed

learning framework will employ the use of maximum likelihood estimation. Furthermore,

for model selection we will implement a minimum message length (MML) criterion to

estimate the optimal number of clusters inherent within our data set. We intend to validate

our clustering approach on different problems. This will further elaborate the usefulness

of our proposed approach in several real life applications. In particular, we will apply our

data clustering algorithm to solve quality related problems and show how finite mixture

modeling can be used to bring improvement in engineering systems.

1.3 Contributions

Our major contribution in this thesis is the application of a generalization of the Dirich-

let distribution in finite mixture modeling. This distribution is called the scaled Dirichlet

distribution. The scaled Dirichlet distribution introduces a new parameter called the scale

parameter in addition to the shape parameter contained in the Dirichlet distribution. This

allows for more flexibility in the modeling of engineering and natural phenomena as earlier

mentioned. In our thesis, we decompose the density function of the scaled Dirichlet dis-

tribution to show this generalization as we will see in the Appendix B. We then develop a

finite mixture modeling algorithm to cluster data sets as well as a model selection algorithm

that tells us the optimal number of clusters that best describes a given dataset.

In addition, we will see in the experiments that our learning algorithm is tested with

both synthetic and real datasets. For the purpose of our thesis, we will apply our algorithm

to detect fault prone software modules and in customer segmentation.
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1.4 Thesis Overview

In our thesis, we propose the scaled Dirichlet distribution as it contains an extra scale

parameter to model multivariate proportional datasets. In chapter 2, we carry out a litera-

ture review on finite mixture modeling which is the foundation on which our thesis is built

on. In addition, we consider the model based clustering framework, parameter estimation

techniques as well as issues regarding model selection, cluster validation and generaliza-

tion of the Dirichlet distribution. In chapter 3, we begin by proposing our scaled Dirichlet

distribution and then provide a detailed explanation of estimating its model parameters.

We also consider in depth, the algorithm for parameter estimation and model selection.

Chapter 4 is dedicated to our experimental work. Here we present the results of our exper-

iments in a clear and organized form. We also discuss the application of defect prediction

within software modules and present some challenges experienced in the process. Finally

in chapter 5, we conclude our work, highlight some challenges and suggest future work.
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Chapter 2

Background

2.1 Model Based Framework for Clustering

Data clustering is one of the most common methods for unsupervised learning. The

quality of a clustering activity usually depends on the criterion that defines the similarity

between data samples. This similarity criterion can be thought of as a distance measure

which can be represented as either a probabilistic model or a distance metric in an Eu-

clidean space. We consider a model based framework for data clustering because of its sta-

tistical foundation. It stems from the assumption that our data population can be explained

using a statistical model and each data cluster will contain data samples with unique model

parameters different from data samples in other clusters. This is the concept of mixture

modeling [5] and today it is increasingly used to solve cluster analysis problems. There are

several applications of model based clustering techniques in text document classification,

object identification, software quality prediction, image classification, protein sequencing

[6, 7, 8, 9, 10], etc.

In model based clustering approach, we try to fit, infer and optimize what probability

distribution our data sample is generated from. This process of fitting is currently a growing

topic of research and researchers are exploring different probability distributions that can
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analyze complex forms of datasets. Researchers usually base their choice of model density

used in clustering algorithms on flexibility, robustness, ease of use of the model as well as

the application and the data structure of the dataset to be clustered.

2.1.1 Dirichlet Model

The Dirichlet distribution has a long history dating as far back as the 18th century. It is

well known in statistics, Bayesian analysis, modeling of multivariate data, non-parametric

inference, stochastic processes, reliability theory and other areas [11]. The Dirichlet dis-

tribution is the multivariate generalization of the Beta distribution. In addition, it is con-

strained on a simplex and has the ability to detect patterns within this constrained space

[12].

Before the popularity of the Dirichlet distribution, the Gaussian distribution was used

in most multivariate data clustering algorithms. The Gaussian distribution is symmetric

which makes it difficult to detect asymmetric patterns in data as well as data generated

from non-Gaussian sources [13]. The Dirichlet however, is very flexible and can assume

several shapes depending on its parameter value [6]. It is known to have one parameter that

describes the shape of the distribution. This has led to research work focused on introducing

more parameters to the Dirichlet distribution that could enhance the flexibility of the model

[14]. For example, if we keep the shape parameter of a Dirichlet distribution constant,

we do not have another parameter that can affect the shape of the Dirichlet distribution.

In addition, [15] cites the need to generalize the Dirichlet distribution because of its poor

parameterization that limits its ability to better model variance and covariance.

It is also important to note that a single model is incapable of finding the entire patterns

in data sets. This challenge led to a more robust technique that allows the use of more than

one model to better fit and cluster data sets.
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2.1.2 Finite Mixture Models (FMM)

From the previous section, we mentioned a robust technique for better modeling results.

This technique is seen as a mixture model that can represent multi-component distributions

underlying a dataset. By finite, we mean that the total number of components is indeed

countable. In a clustering problem, these mixtures or component distributions will repre-

sent the entire pattern and number of clusters identified within the dataset. Finite mixture

model (FMM) is useful in various application in computer vision, pattern recognition, sig-

nal processing, etc. In statistical pattern recognition, FMM is mostly used in an unsuper-

vised learning approach called clustering [16]. For example, scenarios such as a company

trying to define its unique customer segments or an engineer trying to summarize a collec-

tion of text documents into distinct topic categories explain some applications where we

require clustering.

The parameters of the probability distribution that can fit the patterns associated with

data samples are what we aim to infer using a finite mixture model. Once this fit is com-

pleted using the mixture model, the data samples are assigned to a cluster where they have

the highest estimated posterior probability of belonging to.

2.2 Maximum Likelihood Estimation

To tackle the task of FMM parameter estimation, we consider the popular maximum

likelihood method. For example, lets assume that our data are independent and identi-

cally distributed (IID). The maximum likelihood estimation method (MLE) helps us to find

the optimal value of the mixture model parameters. It does this by selecting the optimal

parameter value that maximizes the product of the likelihood function of each data sample.

In the case of estimating the parameters of a Dirichlet distribution, [17, 18] are early
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works that propose the MLE method. Moreover, the work of [19] explains in simple de-

tail, an efficient iterative scheme for estimating parameters in a Dirichlet model. Though

the MLE is effective in parameter estimation, it does not fully incorporate the Bayesian

framework as may be seen in the maximum a posteriori estimation (MAP). The MAP esti-

mation simply adds additional information called prior to the likelihood and then finds the

parameter that maximizes the posterior probability.

In computing the MLE of a finite mixture model, we usually resort to the use of the

Expectation Maximization (EM) framework. This is because the EM algorithm helps us to

systematically compute the optimal model parameters while maximizing the complete data

likelihood. However, the EM framework helps us to overcome the challenge of maximizing

an intractable likelihood function amongst other benefits.

In addition to the MLE method for parameter estimation, in [6, 20] we observe also

the use of method of moments (MOM) in the task of parameter estimation. The moments

method relies on the moments equations of the model distribution that we intend to compute

its parameters.

2.2.1 Expectation Maximization Algorithm

The early work by [21] presented another benefit of incorporating the EM framework in

maximum likelihood estimation. Here, we see how EM is used to iteratively compute the

maximum likelihood estimate of incomplete data. By incomplete data, we mean that the

assignment variable that indicates the component that a particular data sample is generated

from is unknown.

In [6, 8, 20] the authors explain the use of EM in solving the MLE problem when the

cluster assignment is unknown. The EM algorithm is first initialized with some random

model parameters in order to work. And then it iteratively uses two steps. The expectation

step in which the posterior probability is computed and the maximization step where the

8



likelihood function is maximized until convergence.

2.2.2 Initialization and Convergence Criterion

From the above section, the choice of initialization and convergence criterion is very

important. The work by [6] uses K-means and method of moments to initialize the model

parameters in order to reduce the possibility of EM algorithm converging at local max-

ima. As seen in [21], convergence occurs at a stationary point on the likelihood function.

During EM iterations, convergence results when the complete log likelihood function does

not change significantly over a number of EM iterations. The authors in [22] review and

show comparison with the works of [18, 23] regarding how they implement initialization.

In addition, also considering their drawbacks as well as emphasizing the importance for

efficient re-parameterization technique. This re-parameterization usually occurs when the

parameters exceed a very large number or become negative, making convergence of the

EM iteration difficult.

2.2.3 Newton-Raphson Method

The works of [6, 20] present the implementation of the Dirichlet and inverted Dirich-

let distribution respectively in positive data clustering. However, in the cases above, we

identified the inability of calculating a closed-form solution for the maximum likelihood

estimate of their model parameters. This challenge led to the use of an iterative optimiza-

tion technique called the Newton-Raphson method to find the MLE for the parameter of

the Dirichlet distribution.

This iterative Newton-Raphson method is known to converge very fast as compared

with other optimization techniques (e.g. gradient descent, fixed point iteration, etc.) [24].

Its major drawback lies in inverting the second derivative of the likelihood function, which

is call the Hessian matrix. Inverting this matrix becomes a very difficult process when we
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have high-dimensional data. However, in [25] an approximation technique is introduced

for inverting complex matrices like the Hessian matrix in [6, 20]. Approximations are very

useful during EM iterations as they allow easy computation of inverting Hessian matrices.

Numerical methods like the Newton-Raphson, if not initialized properly, can also result

in estimates that are outside the parameter range. In the case of the Dirichlet distribution,

the parameters must be non-negative. The early work of [26] uses the methods of moment

for initializing the Beta distribution. This method is also displayed in [6, 20] to initialize

the Newton-Raphson method in the case of the Dirichlet and inverted Dirichlet mixtures.

In addition to good initialization using the methods of moments, [6] introduced an

interesting method for re-parameterizing the Dirichlet parameters. In the course of our

research, this re-parameterization technique would be useful when we experience negative

parameter values during the EM iterations.

2.3 Model Selection

One fundamental problem in mixture modeling is model selection. Model selection

describes the determination of the number of components. In our case, the number of

clusters that best explains the data to be clustered. It is also important to note that the EM

algorithm can not be implemented if we do not specify the number of clusters or mixture

components in the model. This makes the activity of model selection very important.

There are several model selection techniques used by researchers today. Some ap-

proaches used are cross validation [27], hypothesis testing and resampling to find number

of clusters. Deterministic methods of model selection can be divided into two main classes

[23]. The first is based on the Bayesian approach e.g. Laplace empirical criterion (LEC)

and Bayesian Information Criterion (BIC). The second class is based on information the-

ory concepts. Examples include minimum message length (MML) [23, 28, 29], Akaikes

information criterion (AIC) and minimum description length (MDL) [30].
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The focus of our work is on the minimum message length. The MML is special be-

cause it has both the Bayesian and information theoretic interpretation in its principle. The

Bayesian interpretation is that it infers the optimal cluster number by maximizing the prod-

uct between the parameter likelihood and its prior probability [28]. The Information theo-

retic interpretation is that the model with minimum message length is that which describes

the data with minimal error [28].

2.4 Cluster Validation

This presents yet another problem in cluster analysis. It is important for a researcher to

be able to confirm or make claim with high level of confidence that his clustering algorithm

has yielded the right cluster labels of the data samples. We highlight a few approaches to

the issue of cluster validation as seen in the literature [31].

The first approach considers carrying out significance test for example the multivari-

ate analysis of variance (MANOVA). The authors in [31], state that though this technique

may be used in literature, it is not considered as a useful validation technique. The sec-

ond approach involves estimating the degree to which the clusters can be replicated. By

this we mean that we have a good clustering when we get similar cluster solution across

different samples of our dataset [31]. The authors in [6, 20, 23] validate their clustering

algorithm with a labeled dataset using a confusion matrix to calculate the following clus-

tering performance criteria such as: overall accuracy, average accuracy, precision, recall,

etc.

Another interesting approach to cluster validation makes use of some information the-

oretic interpretation called mutual information [32, 33, 34].
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2.5 Generalization of the Dirichlet Model

First, we take a look at the concept of over fitting. In [35] over-fitting is defined as

a situation that occurs when a learning algorithm is more accurate in fitting known data

and less accurate in predicting new data. The question now is that can we generalize the

Dirichlet model (find a model that can better model unseen data and give useful probability

models) without over-fitting? This challenge is the basis for several research efforts [36,

37, 38, 39].

Another issue we consider that has a relationship with the challenge mentioned above is

how we measure a situation of over-fitting in the context of data clustering. For example, if

we use a clustering algorithm on a labeled dataset and we get a hundred percent accuracy of

classification, can one conclude that the clustering model suffers from over-fitting? More-

over, it is important to note that in building a model that generalizes another model we have

to be cautious of the number of extra parameters that we introduce to avoid over-fitting.

The works in [38, 39, 40, 41] provide useful background concerning the generalization

of the Dirichlet distribution. However, in our case we present a generalization that intro-

duces an extra parameter to the shape parameter of the Dirichlet called the scale parameter.

This distribution is known as the scaled Dirichlet distribution. [41] Argues that this dis-

tribution is flexible and can be used to model different real-life situations and phenomena.

This simply means that the Dirichlet distribution is a special case of the scaled distribu-

tion. We show the mathematical proof of this in appendix B. The works of [7, 21], provide

implementations of mixture modeling using various generalizations of the Dirichlet distri-

bution.
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Chapter 3

Proposed Model

3.1 Scaled Dirichlet Distribution

The scaled Dirichlet distribution as described in the previous chapter is a generalization

of the Dirichlet distribution. The Dirichlet distribution is widely known to model pro-

portional data. However, as stated by [38] when the Gamma random variables are scaled

equally, the scaled Dirichlet distribution can be reduced to a Dirichlet distribution. This

means that the scaled Dirichlet is formed once this equal scaling constraint is relaxed or

removed. For example, let us assume that our proportional data represents the outcomes of

a random event. The scaled Dirichlet distribution helps us to model or find the probability

that a particular event will occur based on the proportion of its outcome.

As part of our research, we will show that the scaled Dirichlet distribution can be used

as well to model proportional multivariate data that is constrained on a simplex. This means

that for our data vector �Xn = (xn1, ..., ..., xnD),
∑D

d=1 xnd = G, where G is a constant. In

our case this constant is equal to 1.

Assuming that �Xn follows a scaled Dirichlet distribution with parameters �α and �β, then

13



the density function of the scaled Dirichlet distribution is:

p( �Xn|θ) = Γ(α+)∏D
d=1 Γ(αd)

∏D
d=1 β

αd
d xαd−1

nd

(
∑D

d=1 βdxnd)α+

(1)

Where Γ denotes the Gamma function, α+ =
∑D

d=1 αd and θ = (�α, �β) is our model

parameter. �α = (α1, ..., αD) is the shape parameter and �β = (β1, ..., βD) is the scale

parameter of the scaled Dirichlet distribution.

If we assume that a set X = { �X1, �X2, ..., �XN} composed of data vectors is independent

and identically distributed (I.I.D), the resulting likelihood is

p(X|θ) =
N∏

n=1

(
Γ(α+)∏D
d=1 Γ(αd)

∏D
d=1 β

αd
d xαd−1

nd

(
∑D

d=1 βdxnd)α+

) (2)

3.1.1 Shape Parameter

The shape parameter simply describes the form or shape of the scaled Dirichlet distri-

bution. The flexibility of this parameter is very important in finding patterns and shapes

inherent in a dataset. In fig 3.1 we see, in a 2D density plot, that when we have a shape pa-

rameter less than 1, it results in a convex density plot while higher shape parameter values

result in concave plots of varying shapes.
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Figure 3.1: Artificial histogram plots when D = 2 describing the properties of the shape
parameter.

3.1.2 Scale Parameter

The scale parameter simply controls how the density plot is spread out. In addition, we

also notice that the shape of the density is invariant, irrespective of the value of a constant

or uniform scale parameter. The mathematical proof of this, is seen in Appendix A.
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Figure 3.2: Artificial histogram plots when D = 2 describing the properties of the scale
parameter.

From figure 3.2, we observe how the varying scale parameter values in the red and blue

colored plot affect the spread of the distribution with constant scale parameter.

3.2 Scaled Dirichlet Mixture Model

Formally, to introduce the finite mixtures with the scaled Dirichlet distribution, we

assume that X = { �X1, �X2, ..., �XN} our dataset is made up of N vectors and each sample

vector �Xn = (xn1, ..., ..., xnD) is D-dimensional. The general idea in mixture modeling is

that we assume that our data population is generated from a mixture of sub populations.

These sub-populations are usually called clusters. In the case of K-means, these clusters

are defined by their cluster centroids. However, in the case of model based clustering we
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assume our clusters to be defined by the model parameters. So, in the scaled Dirichlet

mixture model we intend to discover a mixture of K-components that define our dataset.

This mixture model is expressed as:

p( �Xn|Θ) =
K∑
j=1

pjp( �Xn| �αj, �βj) (3)

where the pj are the mixing weights defined by
∑K

j=1 pj = 1, pj > 0. Then the likelihood

will be equal to

p(X|Θ) =
N∏

n=1

K∑
j=1

pjp( �Xn| �αj, �βj) (4)

We denote the set of parameters by Θ = {�P = (p1, ..., ...pk); �θ = ((�α1, ..., ...�αK), (�β1, ..., ...�βK))}

3.3 Finite Scaled Dirichlet Mixture Model Estimation

A very significant problem in finite mixture modeling is the estimation of its parameter

as identified above. Here, we want to estimate the model parameters of the scaled Dirich-

let distribution (SDD). We will make use of the maximum likelihood estimation (MLE)

approach because it has become widely popular and acceptable in solving this problem.

The expectation maximization (EM) algorithm is used to compute the maximum like-

lihood estimates given that we have unobserved latent variables. For the ease of estimating

the model parameters, we maximize the log of the likelihood function:

log (p(X|Θ)) = L(Θ,X ) =
N∑

n=1

log (
K∑
j=1

pj p( �Xn| �αj, �βj)) (5)

The parameter estimation by maximizing the log-likelihood function is achieved using EM

algorithm. Let Z = (�z1, ..., ..., �zN) denote the hidden assignment or latent variables that

are unobserved, where �zn is the assignment vector with respect to each jth component for
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a data sample and znj is the assignment of a data sample to the jth cluster. In addition, znj

is equal to one if the data sample belongs to cluster j and zero if otherwise.

With the data combined with the latent variables, we can find the ΘMLE . We shall also

call (X,Z) our complete data and its log likelihood is as follows:

log (p(X , Z|Θ)) = L(Θ,X , Z) =
N∑

n=1

K∑
j=1

znj (log pj + log p( �Xn| �αj, �βj)) (6)

where

log p( �Xn| �αj, �βj) =
N∑

n=1

((log Γ(α+)−
D∑

d=1

log Γ(αd)) +
D∑

d=1

[αd log βd + (αd − 1) log xnd]

(7)

− α+ log (
D∑

d=1

βdxnd))

=
N∑

n=1

((log Γ(α+)−
D∑

d=1

log Γ(αd))+
D∑

d=1

αd log βd+
D∑

d=1

(αd−1) log xnd−α+ log(
D∑

d=1

βdxnd))

(8)

In the E-step of the EM algorithm, the goal is to compute the probability of an object

belonging to a cluster j. This, more or less, can be seen as a simple computation of the

posterior probability of each data vector assigned to a particular cluster j. The probability

of vector �Xn belonging to cluster j is given by:

ẑnj =
pjp( �Xn| �αj, �βj)∑K
j=1 pjp(

�Xn| �αj, �βj)
(9)

In the M-step, we update the model parameters which result in maximizing or increas-

ing the expectation of the complete log likelihood given by:
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log p(X , Z|Θ) =
N∑

n=1

K∑
j=1

ẑnj(log pj + log p( �Xn| �αj, �βj)) (10)

We compute the ΘMLE by optimizing the complete log-likelihood.

The maximization of log p(X , Z|Θ) under the constraint
∑K

j=1 pj = 1 gives:

pj =
1

N

N∑
n=1

p(j| �Xn, �αj, �βj) =
1

N

N∑
n=1

ẑnj (11)

To compute the optimal parameters for ( �αj, �βj) via the MLE framework, we simply

take the derivative of the log-likelihood and find the θMLE when the derivative is equal to

zero.

log p(X , Z|Θ) =
N∑

n=1

ẑnj

K∑
j=1

(log(pj) + log(p( �Xn|θj)) (12)

Calculating the derivative with respect to αjd, d = 1, ..., D, we obtain:

∂

∂αjd

log p(X , Z|Θ) = G(α) =
N∑

n=1

ẑnj
∂

∂αj

log(p( �Xn|�αj))

=
N∑

n=1

ẑnj(Ψ(α+)−Ψ(αd) + log βd + log xnd − log(
D∑

d=1

βdxnd)) (13)

Calculating the derivative with respect to βjd, d = 1, ..., D, we obtain:

∂

∂βjd

log p(X , Z|Θ) = G(β) =
N∑

n=1

ẑnj
∂

∂βj

log(p( �Xn|�βj))

=
N∑

n=1

ẑnj(
αd

βd

α+xnd∑D
d=1 βdxnd

) (14)

where ψ(αd) =
Γ′(αd)
Γ(αd)

is called the digamma function.
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3.3.1 Newton-Raphson method

Considering Eqns.13 and 14, to find the MLE for our model parameters, we can see

that a closed form solution does not exist. Therefore, we employ an iterative multivariate

optimization technique called Newton-Raphson method to find our model parameters. This

Newton-Raphson method will help us to find the roots of the log-likelihood function. In

other words, we are simply using this optimization technique to carry out the maximization

step of the EM algorithm. The Newton-Raphson method can be expressed as follows:

θnewj = θoldj −H−1G ≈ [αnew
j = αold

j −H−1G; βnew
j = βold

j −H−1G] (15)

Where H is called the Hessian matrix and G is the gradient. Our Hessian matrix is a

2D by 2D matrix as shown below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2L
∂α2

j1
· · · ∂2L

∂αj1αjD

∂2L
∂αj1βjD+1

· · · ∂2L
∂αj1βj2D

:
. . . : :

. . . :

∂2L
∂αjDαj1

· · · ∂2L
∂α2

jD

∂2L
∂αjD+1βjD+1

· · · ∂2L
∂αjD+1βj2D

∂2L
∂βjD+1αj1

· · · ∂2L
∂βjD+1αjD

∂2L
∂β2

jD+1
· · · ∂2L

∂βjD+1βj2D

:
. . . : :

. . . :

∂2L
∂βj2Dαj1

· · · ∂2L
∂βjD+1αjD

∂2L
∂βj2DβjD+1

· · · ∂2L
∂β2

j2D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

To calculate this Hessian matrix, we must compute the second and mixed derivatives

of our log-likelihood function. Calculating the second and mixed derivative with respect to

αjd, d = 1, ..., D, we obtain:

∂2

∂α2
jd

log p(X , Z|Θ) =
N∑

n=1

ẑnj ψ
′
(α+)− ψ

′
(αd) (17)

∂2

∂αjd1αjd2

log p(X , Z|Θ) =
N∑

n=1

ẑnj ψ
′
(α+), d1 �= d2, d1, d2 = 1, ..., D (18)
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H(αjd,αjd) =
N∑

n=1

ẑnj ×

⎛
⎜⎜⎜⎜⎝

ψ
′
(α+)− ψ

′
(α1) · · · ψ

′
(α+)

:
. . . :

ψ
′
(α+) · · · ψ

′
(α+)− ψ

′
(αD)

⎞
⎟⎟⎟⎟⎠

(19)

Calculating the second and mixed derivative with respect to αjd and βjd, d = 1, ..., D

we obtain:

∂2

∂αjdβjd

log p(X , Z|Θ) =
N∑

n=1

ẑnj
1

βd

− xnd∑D
d=1 βdxnd

(20)

∂2

∂αjd1βjd2

log p(X , Z|Θ) =
N∑

n=1

ẑnj − xnd∑D
d=1 βdxnd

, d1 �= d2 d1, d2 = 1, ..., D (21)

H(αjd,βjd) =
N∑

n=1

ẑnj ×

⎛
⎜⎜⎜⎜⎝

1
β1

− xnd1∑D
d=1 βdxnd

· · · − xnD∑D
d=1 βdxnd

:
. . . :

− xnd1∑D
d=1 βdxnd

· · · 1
βD

− xnD∑D
d=1 βdxnd

⎞
⎟⎟⎟⎟⎠

(22)

Calculating the second and mixed derivative with respect to βjd and αjd, d = 1, ..., D,

we obtain:

∂2

∂βjdαjd

log p(X , Z|Θ) =
N∑

n=1

ẑnj
1

βd

− xnd∑D
d=1 βdxnd

(23)

∂2

∂βjd1αjd2

log p(X , Z|Θ) =
N∑

n=1

ẑnj − xnd∑D
d=1 βdxnd

, d1 �= d2 d1, d2 = 1, ..., D (24)
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H(βjd,αjd) =
N∑

n=1

ẑnj ×

⎛
⎜⎜⎜⎜⎝

1
β1

− xnd1∑D
d=1 βdxnd

· · · − xnd1∑D
d=1 βdxnd

:
. . . :

− xnD∑D
d=1 βdxnd

· · · 1
βD

− xnD∑D
d=1 βdxnd

⎞
⎟⎟⎟⎟⎠

(25)

Calculating the second and mixed derivative with respect to βjd, d = 1, ..., D, we ob-

tain:

∂2

∂β2
jd

log p(X , Z|Θ) =
N∑

n=1

ẑnj
α+x

2
nd

(
∑D

d=1 βdxnd)2
− αd

β2
d

(26)

∂2

∂βjd1βjd2

log p(X , Z|Θ) =
N∑

n=1

ẑnj
α+xnd1xnd2

(
∑D

d=1 βdxnd)2
(27)

H(βjd,βjd) =
N∑

n=1

ẑnj ×

⎛
⎜⎜⎜⎜⎝

α+x2
n1

(
∑D

d=1 βdxnd)2
− α1

β2
1

· · · α+xn1xnD

(
∑D

d=1 βdxnd)2

:
. . . :

α+xnDxn1

(
∑D

d=1 βdxnd)2
· · · α+x2

nD

(
∑D

d=1 βdxnd)2
− αD

β2
D

⎞
⎟⎟⎟⎟⎠

(28)

Where ψ
′ is the trigamma function.

The complete block Hessian matrix Hj has to be transformed to its inverse before it can

be used in the Newton-Raphson maximization step θnewj = θoldj − H−1G. The complete

Hessian block matrix is given by:

Hj =

⎡
⎢⎣
H(αjd,αjd) H(αjd,βjd)

H(βjd,αjd) H(βjd,βjd)

⎤
⎥⎦

The inverse of a complete Hessian matrix is difficult to compute. In our case, the

Hessian block matrix needs to be positive or semi positive definite before its inverse can

be computed. In order to relax this constraint, we make use of its diagonal approximation.

This approximation, allows the inverse to be trivially computed.
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3.3.2 Initialization and Estimation Algorithm

From [6] we know that the maximum likelihood function of a mixture model is not

globally concave. This notion as well as the requirement of initial parameter guesses for

the EM algorithm makes the process of initialization very important. For our algorithm

to perform optimally, we must initialize properly in order to avoid converging to a local

maximum. However, avoiding this local maximum cannot be guaranteed using the EM

algorithm. To initialize the pj parameter, we use the K-means algorithm. And to initialize

the model parameters of the scaled Dirichlet mixture ( �αj, �βj) we make use of the method of

moments. The method of moments simply estimates the model parameters based on their

moment equations. In the case of the scaled Dirichlet distribution, a closed form solution

for its moment equations does not exist in the literature [38]. However, for the purpose of

our work, we will initialize using the moment equation of the Dirichlet distribution.

To initialize the �βj parameter, we assign it a value of 1. Then, it is our desire that during

the iterations, the �βj parameter would be updated and then take its natural value in relation

to the observed data.

Initialization Algorithm

(1) Apply K-means algorithm to the data X to obtain the pre-defined K clusters and its

elements.

(2) Calculate the pj parameter as.

pj =
Number of elements in cluster j

N

(3) Apply the method of moment [20] for each cluster j to obtain the shape parameter

vector �αj .

(4) Initialize the scale parameter vector �βj with a vector of ones (initialize with equal

scaling).
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Parameter Estimation Algorithm

(1) Input: the complete data X and number of clusters K

(2) Apply the Initialization Algorithm

(3) Repeat until convergence criterion is met:

(a) E Step: Compute the posterior probability of an object assigned to a cluster ẑnj

using Eqn.9

(b) M Step:

i. Update pj using Eq.11

ii. Update βj and αj using Eqn.15

(4) If convergence test is passed, terminate and return final parameter estimates and clus-

ter probabilities.

3.4 MML Approach for Model Selection

In the previous section, we noted that we pre-defined the number of clusters before

executing the EM algorithm. The role of model selection is to help us infer the number

of optimal clusters. First, we assume that our data is fundamentally modeled by a mixture

of distributions. The minimum message length (MML) is the approach we implement to

solve the problem of model selection.

In reference to information theory, the optimal number of clusters is that which requires

minimum information to transmit the data from sender to receiver efficiently [28]. The

MML is based on this concept and for a mixture of distributions it is expressed below as:

MessLength = −log(
h(Θ) p(X|θ)√|F (Θ)| ) +Np(−1

2
log(12) +

1

2
)
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= −log h(Θ)− log p(X|Θ) +
1

2
log(|F (Θ)|) + Np

2
(1− log(12)) (29)

Where h(Θ) is the prior probability distribution, X is the data, Θ is the vector of param-

eters, Np is the number of free parameters to be estimated and is equal to K(2D + 1) − 1

[38], p(X , Z|θ) is the complete data log likelihood, |F (Θ)| is the determinant of the fisher

information matrix which is derived from taking the second derivative of the negative log-

likelihood.

Subsequently, we will first develop the Fisher information for a mixture of scaled

Dirichlet distributions and then propose a prior distribution about our knowledge of its

parameters.

3.4.1 Fisher Information for a Mixture of Scaled Dirichlet Distribu-

tions

The Fisher matrix is sometimes called the curvature matrix. This matrix explains the

curvature of the likelihood function around its maximum and is the expected value of the

negative of the Hessian matrix, which is simply the expected value of the negative of the

second derivative of the log-likelihood function [23]. In the case of a mixture model, the

authors in [16] proposed that the Fisher information matrix can be computed after the data

vectors have been assigned to their respective clusters.

The determinant of the complete-data Fisher information matrix is given as the product

of the determinant of the Fisher information of θ = ( �αj, �βj) and the determinant of the

Fisher information of mixing parameters pj [23]. This is shown below as follows;

|F (�Θ)| = |F (�P )|
K∏
j=1

|F ( �αj, �βj)| (30)
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|F (�θ)| =
K∏
j=1

|F ( �αj, �βj)|

The Fisher information of the cluster mixing weights is F (�P ) = F (p1, p2, ..., pK). Its

determinant is calculated in [23] as:

|F (p1, p2, ..., pK)| = NK−1
∏K

j=1 pj
(31)

where p1 + p2 + ... + pK = 1 , for all j : p ≥ 0 and where N is the total number of

data observations, and pj is the mixing weight of each cluster.

|F ( �αj, �βj)| is the Fisher information of the scaled Dirichlet distribution with parameter

( �αj, �βj). To find its determinant considering the method proposed by [16], we assume that

the jth cluster of the mixture will contain Xj = ( �Xl, ..., �Xl+nj−1) data samples, where

l ≤ N and nj is the number of observations in cluster j, with parameter �αj, �βj .

We determine F ( �αj, �βj) by taking the negative of the second derivative of its log-

likelihood function:

− log p(X| �αj, �βj) = −log(

l+nj−1∏
n=l

p( �X|θK)) = −(

l+nj−1∑
n=l

log p( �X|θK)) (32)

First order derivative is also called the Fisher score function. Calculating this derivative

with respect to αjd we obtain:

− ∂log p(X| �αj, �βj)

∂αjd

= nj(Ψ(α+)−Ψ(αd) + logβd)−
N∑

n=1

(log xnd + log(
D∑

d=1

log βdxnd))

(33)

Calculating the first order derivative with respect to βjd we obtain:

− ∂log p(X| �αj, �βj)

∂βjd

= nj(
αd

βd

) +
N∑

n=1

(
α+xnd∑D
d=1 βdxnd

) (34)
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Calculating the second and mixed derivative with respect to αjd, d = 1, ..., D, we obtain:

− ∂2log p(X| �αj, �βj)

∂α2
jd

= −nj(ψ
′
(α+)− ψ

′
(αd)) (35)

− ∂2log p(X| �αj, �βj)

∂αjd1αjd2

= −nj ψ
′
(α+), d1 �= d2, d1, d2 = 1, ..., D (36)

Calculating the second and mixed derivative with respect to αjd and βjd, d = 1, ..., D,

we obtain:

− ∂2log p(X| �αj, �βj)

∂αjdβjd

= −nj(
1

βd

) +
N∑

n=1

(
xnd∑D

d=1 βdxnd

) (37)

− ∂2log p(X| �αj, �βj)

∂αjd1βjd2

=
N∑

n=1

(
xnd∑D

d=1 βdxnd

), d1 �= d2 d1, d2 = 1, ..., D (38)

Calculating the second and mixed derivative with respect to βjd and αjd, d = 1, ..., D,

we obtain:

− ∂2log p(X| �αj, �βj)

∂βjdαjd

= −nj(
1

βd

) +
N∑

n=1

(
xnd∑D

d=1 βdxnd

) (39)

− ∂2log p(X| �αj, �βj)

∂βjd1αjd2

=
N∑

n=1

(
xnd∑D

d=1 βdxnd

), d1 �= d2 d1, d2 = 1, ..., D (40)

Calculating the second and mixed derivative with respect to βjd, d = 1, ..., D, we ob-

tain:
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− ∂2log p(X| �αj, �βj)

∂β2
jd

= −
N∑

n=1

α+x
2
nd

(
∑D

d=1 βdxnd)2
+ nj(

αd

β2
d

) (41)

− ∂2log p(X| �αj, �βj)

∂βjd1βjd2

= −
N∑

n=1

α+xnd1xnd2

(
∑D

d=1 βdxnd)2
(42)

F ( �αj, �βj) and can be represented in the following form:

⎡
⎢⎣
F(αjd,αjd) F(αjd,βjd)

F(βjd,αjd) F(βjd,βjd)

⎤
⎥⎦ (43)

Where each of the sub blocks F(αjd,αjd), F(αjd,βjd), F(βjd,αjd), F(βjd,βjd) is a (D × D)

symmetric matrix.

We compute the determinant |F (�αjd, �βjd)| of this block matrix, using the solution pro-

vided in [42].

3.4.2 Prior Distribution

The capability of the MML criterion is dependent on the choice of prior distribution

h(Θ) for the parameters of the scaled Dirichlet mixture model. We will have to assign dis-

tributions that better describe our prior knowledge of the vectors of mixing parameter and

the parameter vectors of the scaled Dirichlet finite mixture model. Since these parameters

are independent of each other, we represent h(Θ) as follows;

h(Θ) = h(�P )h(α)h(β) (44)
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Mixing Weight Prior h(�P )

Since we know that the mixing parameter �P is defined on the simplex P1, P2, ..., PK :
∑K

j=1 Pj = 1. We assume the probability density of h(�P ) prior follows a Dirichlet distri-

bution. This is because of its suitability in modeling proportional vectors and this prior is

represented as follows;

h(P1, P2, ..., PK) =
Γ(
∑K

j=1 ηj)∏K
j=1 Γ(ηj)

K∏
j=1

p
ηj−1
j (45)

�η = (η1, ..., ηK) represents the parameter vector for the Dirichlet distribution. And we

choose a uniform prior for this parameter �η, (η1 = 1, ..., ηK = 1).

This allows us to simplify Eq.45 and we obtain:

h(P1, P2, ..., PK) = Γ(K) = (K − 1)! (46)

Shape Parameter Prior h(α)

For h(α),we consider the �αj : j = 1, ..., K are independent and we obtain;

h(α) =
K∏
j=1

h(αj) (47)

In calculating �α, we assume that we don’t have prior knowledge or information about

the parameter (αjd), d = 1, ..., D and because of this we want this prior to have minimal

effect on the posterior [43]. So to achieve this, we assign the prior with a uniform distribu-

tion using the principle of ignorance. An assume that h(αjd) is uniform over the range of

[0, e6
‖α̂j‖
α̂jd

]. This high value is inferred experimentally as seen in [20], so that [αjd < e6
‖α̂j‖
α̂jd

].

Where �αj is the estimated parameter vector.

h(αjd) = e6
α̂jd

‖α̂j‖ (48)
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h(αj) =
D∏

d=1

e6
α̂jd

‖α̂j‖

=
e−6D

‖α̂j‖D
D∏

d=1

α̂jd (49)

We input Eq.48 and Eq.49 into Eq.47 and we get:

h(α) =
K∏
j=1

(
e−6D

‖α̂j‖D
D∏

d=1

α̂jd) (50)

= e−6KD

K∏
j=1

∏D
d=1 α̂jd

‖α̂j‖D (51)

Take the logarithm of Eq.51

log h(α) = −6KD −D

K∑
j=1

log(‖α̂‖) +
K∑
j=1

D∑
d=1

log(α̂jd) (52)

Scale Parameter Prior h(β)

For the h(β), we consider the scale parameter �βj : j = 1, ..., K to be independent so

we obtain;

h(β) =
K∏
j=1

h(βj) (53)

Since we also don’t have prior knowledge about the scale parameter (βjd), d = 1, ..., D

and we assign a uniform prior for each βjd. For each βjd we assign a uniform distribution

and with the use of the principle of ignorance, we assume that βjd falls within the range

[0, e6
‖β̂j‖
β̂jd

]. This range is assumed to be a sufficiently high value to accommodate the scale

parameter, where the estimated parameter vector is �βj and the norm of the scale parameter

vector is ‖β̂j‖.
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h(βjd) = e6
β̂jd

‖β̂j‖
(54)

h(βj) =
D∏

d=1

e6
β̂jd

‖β̂j‖

=
e−6D

‖β̂j‖D
D∏

d=1

β̂jd (55)

We input Eq.54 and Eq.55 into Eq.53 and we get:

h(β) =
K∏
j=1

(
e−6D

‖β̂j‖D
D∏

d=1

β̂jd) (56)

= e−6KD

K∏
j=1

∏D
d=1 β̂jd

‖β̂j‖D
(57)

Take the logarithm of Eq.57

log h(β) = −6KD −D

K∑
j=1

log(‖β̂‖) +
K∑
j=1

D∑
d=1

log(β̂jd) (58)

Take the logarithm of Eq.46

log h(�P ) =
K−1∑
j=1

log(j) (59)

We input Eqs .52, 56 and 58 into Eq.44 and take its logarithm and we obtain:

log h(Θ) =
K−1∑
j=1

log(j)− 6KD −D
K∑
j=1

log(‖α̂j‖) +
K∑
j=1

D∑
d=1

log(‖α̂jd‖)

−6KD −D
K∑
j=1

log(‖β̂j‖) +
K∑
j=1

D∑
d=1

log(‖β̂jd‖)
(60)

31



3.4.3 Complete Learning Algorithm

For each candidate value of K:

(1) Run initialization algorithm

(2) Run estimation algorithm of the scaled Dirichlet mixture model as discussed in Sec-

tion 3.3.2

(3) Calculate the associated criterion of MML(K) using Eq.29

(4) Select the optimal model K∗ such that K∗ = argminK MML(K)
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Chapter 4

Experimental Results

4.1 Overview

In this chapter, we simply aim to test the performance of the scaled Dirichlet finite

mixture model in comparison with Dirichlet and Gaussian finite mixture models. This

performance is measured in its ability to estimate model parameters and the number of

clusters within datasets.

4.2 Synthetic Data

The goal of using synthetic data is to help us objectively evaluate the performance of

our learning algorithm with known model parameters and mixture components. To achieve

this goal, we will test our algorithm through various synthetic datasets that have different

parameter vectors and number of mixture components known a priori. In addition, we will

create histogram and 3D plots to describe the shape and surface of the datasets used.

It is also important to note that the synthetic data was generated with constant Beta

parameters.
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4.2.1 Results

One-Dimensional Data

The scaled Dirichlet distribution models D-dimensional vectors (data) and these vectors

are represented on a (D-1) dimensional simplex. This is why in this case, our data is called

one-dimensional but originally has two dimensions. The two- dimensional equivalent of

Dirichlet distribution is called the Beta distribution. And in our case the two dimensional

equivalent of the scaled Dirichlet distribution is called the scaled Beta distribution with its

pdf given as follows:

p( �X|θ) = Γ(α1 + α2)

Γ(α1)× Γ(α2)

βα1
1 xα1−1

nd1
βα2
2 (1− xnd2)

α2−1

(β1xnd1 + β2(1− xnd2))
α1+α2

(61)

Given the challenge of generating data with varying scale parameters, we made use

of synthetic data generated from a Dirichlet mixture and used our algorithm to learn its

shape parameters. This was done by setting the scale parameter to a constant value (β =

1). Afterwards, we implemented the model selection algorithm to predict the number of

mixture components. Figure 4.1 shows the artificial histogram plots. The first histogram

in figure 4.1a displays three well separated mixture components while the second plot in

figure 4.1b displays the three components overlapping. From the histogram plot in figure

4.1, the dotted line represents the plot of the estimated model while the solid line represents

the real model. The values of the real and estimated model parameters are given in table 4.1.

According to figure 4.2, we are able to estimate the exact number of clusters. Therefore,

we conclude that our algorithm works well with one dimensional synthetic data.
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(a)

(b)

Figure 4.1: Artificial histogram plots for one-dimensional data.
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Table 4.1: Real and estimated parameters for the generated one-dimension dataset 1 with 3
clusters.

Data set 1

j d nj pj αjd p̂j α̂jd β̂jd

1
1

1000 0.33
2

0.33
2.03 1

2 10 10.63 1

2
1

1000 0.33
20

0.33
18.70 1

2 20 18.50 1

3
1

1000 0.34
10

0.34
10.40 1

2 2 2.07 1

Figure 4.2: Message length plot for the 3-components generated dataset. The X axis repre-
sents the number of clusters and the Y axis represents the value of the message length.

Multi-Dimensional Data

In this case, we use D = 3-dimensional data. In the first four experiments, we generate

synthetic data from two, three, four and five component mixtures respectively. Then, we

use our algorithm to carry out parameter estimation and model selection. We display the
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3-D plots of the well separated mixtures in figure 4.3. The values of the real and estimated

parameters are documented in table 4.2. Results from our model selection algorithm sug-

gest that it works well with synthetic data and predicts the number of clusters accurately.

(a) (b)

(c) (d)

Figure 4.3: 3-D surface plot for generated dataset 2 (4.3a), dataset 3 (4.3b), dataset 4 (4.3c)
and dataset 5 (4.3d) with 2, 3, 4 and 5 components, respectively.
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Table 4.2: Real and estimated parameters for generated dataset 2, dataset 3, dataset 4,
dataset 5 with 2, 3, 4 and 5 components, respectively.

j d nj pj αjd p̂j α̂jd β̂jd

Data set 2

1
1

1000 0.5
65

0.5
64 1

2 15 14.52 1
3 30 29.52 1

2
1

1000 0.5
15

0.5
15.91 1

2 65 67.64 1
3 30 30.96 1

Data set 3

1
1

450 0.33
2

0.33
1.87 1

2 20 19.07 1
3 2 1.93 1

2
1

450 0.33
23

0.33
24.18 1

2 25 26.20 1
3 24 24.90 1

3
1

450 0.34
20

0.34
18.77 1

2 2 1.87 1
3 2 1.92 1

Data set 4

1
1

500 0.17
10

0.17
9.55 1

2 2 1.87 1
3 40 37.87 1

2
1

1000 0.33
30

0.33
28.95 1

2 30 29.07 1
3 32 30.76 1

3
1

1000 0.33
15

0.33
14.49 1

2 19 18.35 1
3 6 5.71 1

4
1

500 0.17
30

0.17
29.10 1

2 10 9.46 1
3 55 52.57 1

Data set 5

1
1

500 0.167
10

0.168
10.61 1

2 2 2.09 1
3 40 41.39 1

2
1

750 0.25
30

0.255
30.94 1

2 30 31.36 1
3 32 33.11 1

3
1

750 0.25
15

0.245
16.32 1

2 19 20.75 1
3 6 6.31 1

4
1

500 0.167
30

0.167
31.83 1

2 10 10.69 1
3 55 57.89 1

5
1

500 0.166
2

0.165
1.94 1

2 40 39.56 1
3 10 9.93 138



(a) (b)

(c) (d)

Figure 4.4: Message length plot for generated dataset 2 (4.4a), dataset 3 (4.4b), dataset
4 (4.4c) and dataset 5 (4.4d) with 2, 3, 4 and 5 components, respectively. The X axis
represents the number of clusters and the Y axis represents the value of the message length.

4.3 Real Dataset

4.3.1 Iris Dataset

We consider the popular multivariate flower dataset that was first introduced by R. A.

Fisher 1 called the Iris dataset. This is a simple benchmark dataset to test clustering algo-

rithms. The 150 Iris flower samples are described with four attributes (Sepal Length, Sepal

1Iris flower dataset”https://en.wikipedia.org/wiki/Iris flower data set”
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Width, Petal Length and Petal Width). The petal is the colored leaf of the flower, while the

sepal is a greenish structure that protects the petal structure. This dataset is composed of 3

different variants, classes or species of the Iris flower (Iris Setosa, Iris Versicolour, and Iris

Virginica) [44].

In our experiments, we use our learning algorithm to cluster these samples. But, first

we test our model selection algorithm on the dataset to confirm if it is able to determine the

exact number of Iris flower species underlying the dataset. According to Figure 4.5, it is

clear that our algorithm was able to find the optimal number of clusters.

Results

Figure 4.5: Message length plot for the Iris flower dataset. The X axis represents the
number of clusters and the Y axis represents the value of the message length.
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Table 4.3: Confusion matrix using SDMM, DMM and GMM on the Iris dataset.

Setosa Veriscolour Virginica

Setosa 50 0 0
SDMM Veriscolour 0 40 10

Virginica 0 1 49

Setosa 50 0 0
DMM Veriscolour 0 34 16

Virginica 0 0 50

Setosa 50 0 0
GMM Veriscolour 0 35 15

Virginica 0 12 38

From Table 4.3, we can see that the Setosa flower was accurately classified with no mis-

classification error in the three tested approaches. While the Versicolour had 10 instances

misclassified as Virginica and finally Virginica had 1 instance misclassified as Versicolour,

using the SDMM.

We assume that this misclassification between the Versicolour and Virginica is because

they have overlapping attribute properties making it difficult to define the cluster parameters

that would effectively separate the two clusters. In summary, the overall accuracy of the

clustering using scaled Dirichlet mixture model is 93% as compared with 89% and 83% of

Dirichlet and Gaussian mixture models, respectively. It is also important to note that we

select the matching from our clustering algorithm that gives us the least misclassification

rate and because it is rare to have exact classification accuracy at every trial, we repeat the

experiment 9 times and take the average result.

4.3.2 Haberman Dataset

We consider another multivariate real dataset. This dataset contains cases from a study

that was conducted within the years of 1958 and 1970 at the University of Chicagos billing
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hospital [45]. The study was focused on the survival of patients after they had undergone

surgery for breast cancer.

The dataset contains 306 instances and 4 attributes which includes the class attributes.

The 3 attributes describing the 306 instances are: age of the patient at time of operation,

patient’s year of operation, number of auxiliary nodes detected. Out of the 306 instance,

we have 225 instances that belong to class 1 and the other 81 instances belong to class 2.

Class 1 represents a situation where the patient survived 5 years or longer after the surgery

and Class 2 a situation where the patient died within 5 years of the surgery. According to

figure 4.6, we are able to determine the exact number of clusters using our model selection

algorithm.

Results

Figure 4.6: Message length plot for the Haberman dataset. The X axis represents the
number of clusters and the Y axis represents the value of the message length.
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Table 4.4: Confusion matrix using SDMM on Haberman dataset.

Survived > 5yrs Died within 5yrs

Survived > 5yrs 205 20
Died within 5yrs 56 25

Table 4.5: Test results for the SDMM, DMM and GMM classification of the Haberman
dataset.

Datasets Learning
Algorithm

Results

Overall
Accuracy

Average
Accuracy

Precision

Haberman
SDMM 0.752 0.609 0.556
DMM 0.415 0.357 0.140
GMM 0.667 0.667 0.418

From the results in table 4.5, we notice that the scaled Dirichlet mixture model performs

better with a higher accuracy than the Dirichlet and Gaussian mixture models. We consider

the average accuracy metric because of class imbalance in the dataset. As we notice, our

algorithm has a high accuracy in predicting the large class as compared to the small class

labels. In other words, this metric helps to even the weight of the accuracy of both classes

in situations were overall accuracy is misleading.

4.4 Software Modules Defect Prediction

The challenge of detecting a fault or a defect in a software program is one that has re-

ceived a lot of research focus. It is also important to point out that it is almost impossible to

create a perfect software program without errors. This is because most software develop-

ment projects involve more than one software developer working on the same project and

human error is unavoidable in this scenario.

When a software program is faulty, the most likely event is that the fault is located
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in some but not all of the software modules. For example, after the Define and Measure

phase of a six sigma quality project, the next challenge is to analyze the problem and locate

the root cause. This Analysis phase in some cases is synonymous to the process of our

algorithm predicting fault prone modules of a software program.

An effective fault prone module prediction algorithm is of high value for businesses

focused on developing complex software programs. This is because if the root cause (fault

prone modules) is detected early, the software program is improved and optimized which

translates to customer satisfaction and considerable higher profits for the company.

The author in, [46] explains the importance of historical datasets in the process of de-

tecting fault prone software modules. This means that the unavailability of these datasets

makes the process even more difficult. In addition, it is also very important to select the ap-

propriate metrics that explain the attributes of these software modules. As this, in the long

run, would help us classify fault prone software modules from non-fault prone software

modules effectively.

In the next section, we provide a brief overview of the most popular software modules

complexity metrics in the literature. And for the purpose of our thesis, we consider a

statistical approach to tackle this problem. We use the datasets from the PROMISE data

repository 2 and we test our algorithm and analyze its performance on some datasets.

4.4.1 Complexity Metrics of Software Modules

According to [47], metrics for measuring software complexity include the code size,

McCabes cyclomatic complexity [48] and the Halsteads complexity. The Halsteads and

McCabes complexity measures are based on the characteristics of the software modules

as explained in [48]. These metrics are useful because they can be computed early during

the design and implementation of the software program. A module can be defined as the

2The PROMISE Repository of Software Engineering Databases.”http://promise.site.uottawa.ca/SERepository”
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smallest independent unit of a software that performs a certain function [20].

The McCabes metric includes the following:

(1) Essential complexity

(2) Cyclomatic complexity

(3) Design complexity

(4) Number of lines of code

While the Halsteads complexity metric consists of three groups namely:

(1) Base measures

(2) Derived measures

(3) Line of code (LOC) measures

We perform our experiments on three datasets (JM1, PC1, Datatrieve) from the PROMISE

data repository. The JM1 and PC1 contain software modules characterized by 21 attributes

from the McCabe and Halstead complexity metrics. Furthermore, we also consider the

Datatrieve dataset to be very interesting. This is because it helps us to understand how

the characteristics of software modules and its transition across several versions affect the

quality of a software code.

In addition, the authors in [49] support the notion that reliability of a software system

is directly related to the complexity of a module. In the above, we discover a new dataset

that was collected during the development and maintenance of a medical Imaging system

(MIS). This MIS data contains 11 software complexity metrics for each module. This

dataset is also interesting because it introduces a new feature that measures the number of

changes to a module. Authors in [49] explain that after a period of testing, a module’s level

of being fault prone is based on the number of changes required to remove its fault when

45



discovered. From the dataset we see that between (0 − 1) number of changes describes a

non-fault prone module. While from (2 − 98) number of changes describes some level of

fault prone within a software module.

4.4.2 Datasets Information

Here we create a table to highlight the basic properties of the datasets used in our

experiment. It is important to note that these data were collected from NASA software

projects and are currently used as benchmark datasets in this area of research.

Table 4.6: Software modules defect prediction datasets.

JM1 PC1 Datatrieve MIS
Language C C BLISS Pascal, PL/M, FORTRAN

LOC 315k 40k 400K
Modules 10885 1109 130 390
Defects 2106 77 11 276

4.4.3 Performance Criteria

We make use of the confusion matrix to validate the performance of our learning al-

gorithm. This method of measuring performance is suitable because we are dealing with

labeled datasets.

Table 4.7: A Typical Confusion Matrix.

Predicted Outcome
No Yes

Actual Value
No TN FP
Yes FN TP

We define the terms as follows:

• True negative (TN): This is the case where we predict that a software module has no

defect and it actually has no defect.
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• True positive (TP): This is the case where we predict that a software module has a

defect and it actually has a defect.

• False positive (FP): Here we predict presence of defect whereas there is no defect.

• False negative (FN): Here we predict no defect whereas there is defect.

Some metrics usually computed are as follows:

• Accuracy: This computes how often our predictive model is accurate.

Accuracy =
TP + TN

(TN + TP + FN + FP )

• Recall /True Positive Rate: This is also called the true positive rate. So, in a situation

where it is actually a yes, it computes how often it predicts yes. This is also called

detection rate.

Recall =
TP

(FN + TP )

• False Alarm Rate / False positive rate: In a situation when it is actually no, how often

does it predict yes

False positive rate =
FP

(TN + FP )

• Specificity: In a situation when it is actually no, how often does it predict no

Specificity =
TN

(TN + FP )

• Precision: Computes how frequently it is correct when it predicts a yes

Precision =
TP

(FP + TP )
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4.4.4 Results

Table 4.8: Confusion matrix for software defect prediction using SDMM on JM1 dataset.

No Defect Defect

No Defect 7737 1042
Defect 1779 327

Table 4.9: Confusion matrix for software defect prediction using SDMM on PC1 dataset.

No Defect Defect

No Defect 921 111
Defect 68 9

Table 4.10: Confusion matrix for software defect prediction using SDMM on Datatrieve
dataset.

No Defect Defect

No Defect 113 6
Defect 9 2

Table 4.11: Confusion matrix for software defect prediction using SDMM on MIS dataset.

Non Fault Prone Fault Prone

Non Fault Prone 47 67
Fault Prone 56 220
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Table 4.12: Test results for the SDMM, DMM and GMM classification of the MIS, JM1,
PC1 and Datatrieve Software defect prediction datasets.

Datasets Learning
Algorithm

Results

Defects Overall
Accuracy

Average
Accuracy

Precision Recall False
Alarm
Rate

MIS
SDMM

0.707
0.685 0.605 0.767 0.797 0.587

DMM 0.725 0.690 0.826 0.775 0.395
GMM 0.580 0.687 0.952 0.428 0.053

JM1
SDMM

0.193
0.741 0.518 0.239 0.156 0.119

DMM 0.707 0.500 0.194 0.164 0.163
GMM 0.749 0.608 0.359 0.377 0.161

PC1
SDMM

0.069
0.84 0.505 0.076 0.117 0.107

DMM 0.794 0.492 0.063 0.142 0.158
GMM 0.752 0.632 0.138 0.493 0.229

Datatrieve
SDMM

0.084
0.885 0.566 0.25 0.182 0.050

DMM 0.746 0.490 0.077 0.182 0.020
GMM 0.892 0.529 0.200 0.091 0.033

4.4.5 Assessing Quality of Prediction

It is important to understand the results of this software defect prediction exercise. We

see that our results are represented using a confusion matrix. Depending on the application,

the results of this confusion matrix can be difficult to interpret.

From the confusion matrices of our results in tables 4.8 - 4.11, we encounter two differ-

ent types of errors. They are type I and type II errors. Type I error occurs when our learning

model predicts a defect in a module when there is actually no defect in that modules. While

type II error occurs when our learning model predicts absence of defect in a module when

there is actually a defect in that module.

With this understanding, we can say that both types of errors are costly in a software

defect correction procedure. Type I error will result in a waste of developers time and effort

in testing for errors when there is not. However, type II error is more critical and expensive

since the defect goes undetected and if the software product is released to customers, it will

49



result in high quality cost, downtime etc.

From the analysis of our model performance in table 4.8 - 4.11, we notice some cases

of higher type II error as compared with type I error and vice versa. However, using the

accuracy metric, our approach performs fairly better than the other two models.

4.4.6 Challenges Encountered

The most significant challenge experienced using our learning algorithm was to cluster

datasets with class imbalance. This means that the datasets used had more non-defective

software modules as compared with software modules with defect. Due to this imbalance,

it is obvious that our algorithm could not effectively estimate the parameters that model the

cluster of defective modules.

Another challenge is in the application of these prediction techniques in a new software

development project. This is because our approach clearly depends on historical data to

help developers during software testing. This simply means, that our approach is most suit-

able for predicting fault prone software modules in new subsequent versions of a software

program.

4.5 Cluster Analysis Application in Retail

In this application, we explore the use of our clustering algorithm to find meaningful

customer segments within a data population. This sort of application is widely seen in

marketing where companies are faced with making decisions regarding budget, amount/

type of goods to supply, personnel, etc. needed to serve a particular customer segment.

We analyze a very popular dataset from the UCI machine learning repository known as

the Wholesale Customer dataset. This dataset contains the annual spending in monetary

units on diverse product categories of 440 customers. These customers are grouped into
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two segments based on their spending patterns. The first segment Horeca (Hotel/ Restau-

rant/ Cafe) Channel and second segment Retail Channel contain 298 and 142 customers,

respectively [50].

Useful inference can be gotten from effectively clustering this dataset based on the

shopping behavior or pattern of the customers. This inference would help companies plan

and make better decisions that are tailored towards a particular customer segment. And in

the long run would translate to increased market share and bottom line for such businesses.

In addition, it would help improve customer service and satisfaction, improve customer

retention as well as allow for effective selection of products for a particular customer seg-

ment.

However, our objective is to test and validate the modeling performance of our learning

algorithm. And also to find the useful pattern underlying the dataset while maximizing

accuracy. But, first it is important to discover the number of clusters using our model

selection algorithm. These clusters are the two customer segments described above. Then

based on this number of clusters, we will perform classification using our scaled Dirichlet

mixture model learning algorithm. According to figure 4.7, we are able to determine the

exact number of clusters.
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4.5.1 Results

Figure 4.7: Message length plot for the Haberman dataset. The X axis represents the
number of clusters and the Y axis represents the value of the message length.

Table 4.13: Confusion matrix using SDMM, DMM and GMM on the Wholesale Customer
dataset.

Horeca Retail

Horeca 266 32
SDMM Retail 48 94

Horeca 227 71
DMM Retail 29 113

Horeca 252 46
GMM Retail 50 92
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Table 4.14: Test results for SDMM, DMM and GMM of the Wholesale Customer dataset.

Datasets Learning
Algorithm

Results

Overall
Accuracy

Average
Accuracy

Precision

Customer
SDMM 0.818 0.777 0.746
DMM 0.773 0.779 0.614
GMM 0.782 0.747 0.667

4.5.2 Discussion

From the above results, we can see that our model selection algorithm, using the min-

imum message length, correctly inferred the K number of clusters as two. From [50],

we note that the dataset contains two clusters that are based on channel of distribution as

earlier mentioned. In other words, the model selection is very important in discovering

similar groupings based on analyzing the multidimensional attribute information of cus-

tomers. The groupings discovered explored attributes such as annual spending on fresh

products, milk, grocery, detergent and paper products, etc. In addition, from the results of

the confusion matrix in table 4.14, we see that our algorithm clearly performs better than

Dirichlet and Gaussian mixture models. In summary, the method of validating our results

is suitable for research purposes. However, in a production environment the business man-

ager would have to drill into customers in the clusters to find meaningful insights that can

help in making business decisions.
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Chapter 5

Conclusion

In this section, we consider how well we achieved our objectives as outlined in chapter

1. And then give an overview of our work, challenges encountered as well as discuss future

works.

To begin with, it is important to note that the task of unsupervised learning, known

as clustering is well researched. However, our work was focused in the area of model

based clustering. In particular, we proposed the scaled Dirichlet mixture model to further

extend the work of modelling multivariate proportional data. The choice of the scaled

Dirichlet distribution was motivated by its extra parameters making it more flexible and

suitable for data modelling as compared with the Dirichlet distribution. Then we explored

the approach of maximum likelihood estimation using the EM algorithm framework to

determine the parameters of our mixture model. Given that in real world applications,

the task of parameter estimation is not possible without an idea of the number of clusters

inherent in our dataset, this led us to implement a model selection technique called the

minimum message length to determine the number of clusters.

In addition, we tested and evaluated the modeling strengths of the scaled Dirichlet mix-

ture model on synthetic data by comparing the estimated model parameters with that of the

original mixture model parameters, and then went further to carry tests with real datasets.
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However, for research purposes we made use of datasets with class information to allow us

validate our model using a confusion matrix.

Furthermore, we considered a very popular application in software engineering about

predicting defects in software modules. Our clustering algorithm was made to discover two

groupings based on some software complexity metrics. This application is very critical in

large software projects because it is very costly to carry out tests for all software mod-

ules. In addition, we considered another application in retail where we first used our pro-

posed model selection algorithm to determine the number of distribution channels within

the customer dataset. Afterwards, we used that information to find groupings of customers

particular to a distribution channel based on their spending pattern attributes.

It is important to note that these kinds of applications are very popular and our algorithm

works well without knowledge of class information. In other words, we can say that our

algorithm produces quality clustering results largely due to its model flexibility.

We experienced a number of challenges from design to experimental stage of this work.

One of which is the limitation of our algorithm to handle very high dimensional and sparse

datasets. This is because of the difficultly in computing the inverse of the high-dimensional

Hessian matrix when estimating model parameters. Tackling this challenge would require

more work with Bayesian methods for parameter estimation.

Another challenge is encountered in the use of K-means to initialize our algorithm. It

is important to note also that because the EM algorithm is sensitive to its initial values,

convergence to the global maxima becomes very difficult. However, further research can

be done to explore better methods of initialization.

From the aspect of applying our algorithm to real world problems, we noticed issues

surrounding unavailability of datasets especially for clustering algorithms in relevant do-

mains. When considering the scenario of defect prediction as we have explored, we experi-

ence issues with class imbalance, software metrics features, etc. The class imbalance issue
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makes it difficult for the algorithm to find the optimal parameters that define the defect

grouping we are interested in. From our software defect prediction experiments, we can

see that the small fraction of defects limits our detection ability. In the case of improving

the detection performance of our algorithm, we noticed the need for feature engineering.

This is because mining of irrelevant features deteriorates the performance of our model.

In a production or real environment, the metrics or attributes to be considered in a

software defect prediction exercise are extremely important. This is because defects occur

at different phases in a software development cycle which makes early detection a priority

for most businesses. It would be necessary to develop metrics suitable for early detection

of defected software modules.

Future works will explore other methods of initializing our algorithm. In addition,

we will explore more efficient optimization techniques for estimating parameter vectors.

Examples include complete Bayesian and variational approaches and another promising

future work could be related to online learning.
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Appendix A

Proof showing the invariant property of the scale parameter to any constant value

The density function of the scaled Dirichlet distribution is :

p( �Xd|θ) = Γ(α+)∏D
d=1 Γ(αd)

∏D
d=1 β

αd
d xαd−1

n

(
∑D

d=1 βdxn)α+

(62)

We remove the constant values that do not affect the β parameter

∏D
d=1 β

αd
d

(
∑D

d=1 βdxn)α+

(63)

We add η which is assumed to be any constant value

∏D
d=1 ηβ

αd
d

(
∑D

d=1 ηβdxn)α+

(64)

We simplify out η as follows

η
∑D

d=1 αd
∏D

d=1 ηβ
αd
d

ηα+(
∑D

d=1 ηβdxn)α+

(65)

η
∑D

d=1 αd simplifies to ηα+

ηα+
∏D

d=1 ηβ
αd
d

ηα+(
∑D

d=1 ηβdxn)α+

(66)
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This eventually allows us to eliminate the constant value ηα+ which then results to

∏D
d=1 ηβ

αd
d

(
∑D

d=1 ηβdxn)α+

(67)
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Appendix B

Simple decomposition showing that the Dirichlet density is a special case of the scaled

Dirichlet density

The scaled Dirichlet distribution as follows:

Γ(α+)∏D
d=1 Γ(αd)

∏D
d=1 β

αd
d xαd−1

n

(
∑D

d=1 βdxn)α+

(68)

Below we show the simple decomposition of the Dirichlet from the scaled Dirichlet;

Γ(α+)
∏D

d=1 x
αd−1
n∏D

d=1 Γ(αd)
−→ DirichletPortion (69)

∏D
d=1 β

αd
d

(
∑D

d=1 βdxn)α+

−→ ScaledPortion (70)

This means that in the case of a Dirichlet density, the scaled portion is equal to 1

∏D
d=1 β

αd
d

(
∑D

d=1 βdxn)α+

= 1 (71)
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Appendix C

Attribute Information for JM1, PC1 Dataset

(1) loc : McCabe’s line count of code

(2) v(g) : McCabe ”cyclomatic complexity”

(3) ev(g) : McCabe ”essential complexity”

(4) iv(g) : McCabe ”design complexity”

(5) n : Halstead total operators + operands

(6) v : Halstead ”volume”

(7) l : Halstead ”program length”

(8) d : Halstead ”difficulty”

(9) i : Halstead ”intelligence”

(10) e : Halstead ”effort”

(11) b : Halstead

(12) t : Halstead’s time estimator

(13) lOCode : Halstead’s line count
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(14) lOComment : Halstead’s count of lines of comments

(15) lOBlank : Halstead’s count of blank lines

(16) lOCodeAndComment

(17) uniq Op : unique operators

(18) uniq Opnd : unique operands

(19) total Op : total operators

(20) total Opnd : total operands

(21) branchCount : of the flow graph
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Appendix D

Attribute Information for DATATRIEVE Dataset

(1) LOC6 0: number of lines of code of module m in version 6.0.

(2) LOC6 1: number of lines of code of module m in version 6.1.

(3) AddedLOC: number of lines of code that were added to module m in version 6.1,

i.e., they were not present in module m in version 6.0.

(4) DeletedLOC: number of lines of code that were deleted from module m in version

6.0, i.e., they were no longer present in module m in version 6.1.

(5) DifferentBlocks: number of different blocks module m in between versions 6.0 and

6.1.

(6) ModificationRate: rate of modification of module m, i.e., (AddedLOC + Deleted-

LOC) / (LOC6.0 + AddedLOC).

(7) ModuleKnowledge: subjective variable that expresses the project team’s knowledge

on module m (low or high).

(8) ReusedLOC: number of lines of code of module m in version 6.0 reused in module

m in version 6.1.
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(9) Faulty6 1: its value is 0 for all those modules in which no faults were found; its value

is 1 for all other modules.
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Appendix E

Attribute Information for MIS Dataset

(1) LOC: number of lines of code of module including comments

(2) CL: number of lines of code of module, excluding comments

(3) TChar: number of characters.

(4) TComm: number of lines of comments

(5) MChar: number of comment characters

(6) DChar: number of code characters.

(7) N = N 1 + N 2 where N 1 and N 2 is the total number of operators and operands

respectively

(8) N̂ = η1logη 1 + η 2logη 2 is an estimates program length, where is number of

unique operators and operands respectively.

(9) NF = (log2η1)! + (log2η2)! is Jensens estimator of program length.

(10) V(G), McCabes cyclomatic number, is one more than the number of decision nodes

in the control flow graph

(11) BW is Beladys bandwidth metric
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(12) Number of changes
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