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ABSTRACT

Cooperative Control Reconfiguration in Networked Multi-Agent Systems

Zahra Gallehdari, PhD

Concordia University, 2016

Development of a network of autonomous cooperating vehicles has attracted signif-

icant attention during the past few years due to its broad range of applications in areas

such as autonomous underwater vehicles for exploring deep sea oceans, satellite forma-

tions for space missions, and mobile robots in industrial sites where human involvement

is impossible or restricted, to name a few. Motivated by the stringent specifications

and requirements for depth, speed, position or attitude of the team and the possibility

of having unexpected actuators and sensors faults in missions for these vehicles have

led to the proposed research in this thesis on cooperative fault-tolerant control design of

autonomous networked vehicles.

First, a multi-agent system under a fixed and undirected network topology and subject

to actuator faults is studied. A reconfigurable control law is proposed and the so-called

distributed Hamilton-Jacobi-Bellman equations for the faulty agents are derived. Then,

the reconfigured controller gains are designed by solving these equations subject to the

faulty agent dynamics as well as the network structural constraints to ensure that the

agents can reach a consensus even in presence of a fault while simultaneously the team

performance index is minimized.

Next, a multi-agent network subject to simultaneous as well as subsequent actuator

faults and under directed fixed topology and subject to bounded energy disturbances is
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considered. An H∞ performance fault recovery control strategy is proposed that guaran-

tees: the state consensus errors remain bounded, the output of the faulty system behaves

exactly the same as that of the healthy system, and the specified H∞ performance bound

is guaranteed to be minimized. Towards this end, the reconfigured control law gains

are selected first by employing a geometric control approach where a set of controllers

guarantees that the output of the faulty agent imitates that of the healthy agent and the

consensus achievement objectives are satisfied. Then, the remaining degrees of freedom

in the selection of the control law gains are used to minimize the bound on a specified

H∞ performance index.

Then, control reconfiguration problem in a team subject to directed switching topol-

ogy networks as well as actuator faults and their severity estimation uncertainties is con-

sidered. The consensus achievement of the faulty network is transformed into two stabil-

ity problems, in which one can be solved offline while the other should be solved online

and by utilizing information that each agent has received from the fault detection and

identification module. Using quadratic and convex hull Lyapunov functions the control

gains are designed and selected such that the team consensus achievement is guaranteed

while the upper bound of the team cost performance index is minimized.

Finally, a team of non-identical agents subject to actuator faults is considered. A

distributed output feedback control strategy is proposed which guarantees that agents

outputs’ follow the outputs of the exo-system and the agents states remains stable even

when agents are subject to different actuator faults.
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Chapter 1

Introduction

1.1 Motivation

Coordinated behaviour in animals such as flocking of birds, shoaling and schooling fish

(see Figure 1.1) brings the motivation to employ a group of vehicles like spacecraft,

mobile robots, or underwater vehicles instead of a single vehicle with the aim at improv-

ing the system performance, reliability, and ultimately reducing the cost of the overall

mission.

The use of a group of vehicles becomes more attractive if these agents are designed

to be autonomous or unmanned, which makes them appropriate for maneuvers where

human involvement is dangerous, or impossible as in deploying mobile robots for plan-
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etary surface exploration, cooperative navigation, mapping and exploration, underwater

sensing and monitoring applications, rescue operations, etc. (see Figure 1.2).

In safety critical missions, the agents should have the capability to cope with un-

expected external influences such as environmental changes or internal events such as

actuator and sensor faults. If these unexpected events are not managed successfully, they

can lead to the team instability or cause sever overall team performance degradations.

For example, the crash of the NASA’s DART spacecraft in 2006 was due to a fault in its

position sensors [1] or the crash of the Boeing freighter in 1992 could have been avoided

if its control laws were reconfigured to manage it land safely [2]. Motivated by these,

the fault recovery and control reconfiguration problems for safety critical systems have

been extensively studied in the literature.

Though agents cooperation and interactions enhance the team performance, control

design problem in networked systems is more challenging. Limited communication

channels, topology variations and connectivity preservation, collision avoidance, envi-

ronmental uncertainties can be listed as some important issues that are associated with

the problem of cooperative control development. These issues should be added to the

challenges of the control design problem of a single agent system such as actuator/ sensor

faults, actuator saturations, performance criteria, model uncertainties, etc. The problem

of fault recovery and control reconfiguration in multi-agent systems is more challenging

as compared to that of a single agent due to limited available communication channels

and has been studied only in recent years. In the following section, the existing litera-
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grade its performance or cause the system instability. In critical systems such as aircraft

or nuclear power plants, system instability may lead to catastrophic events and cannot

be tolerated. Motivated by this, considerable research has been devoted to Fault Tolerant

Control Systems (FTCS) which guarantee that the system remains stable and keeps its

performance in an acceptable level even in presence of sudden faults.

Comprehensive reviews on fault tolerant control approaches have been provided in

[6, 7]. Fault tolerant control (FTC) approaches can be categorized from different points

of view and for each method several practical applications have been provided.

Broadly speaking, FTC approaches can be classified into two main types: passive

approaches and active approaches. Each one has its own advantages and disadvantages.

Jiang and Yu [8] compared these two categories and presented applications, advantages

and disadvantages of each of them. In passive methods, a set of possible faults is de-

termined and then a fixed structure controller is designed to accommodate all of the

faults [9–11]. In [9], Liao et al. investigated actuator faults and control surface im-

pairment in aircraft. They designed a reliable robust tracking controller by using the

LMI approach. In another study, Khosrowjerdi et al. [10] used the mixed H2/H∞ ap-

proach to address simultaneous fault detection and control (SFDC) problem. They used

the H2 norm to determine the fault detection objective and the H∞ norm to evaluate the

control objectives. In [11] actuator faults in nonlinear affine systems is studied and a

Lyapunov-based feedback controller is presented. In all of the above works controllers

are independent of the fault detection and isolation (FDI) module and do not require any
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information from it. However, if a fault, not belonging to the predefined fault set occurs,

these controllers cannot guarantee the system stability and the system performance may

deteriorate.

In contrast to passive methods, in active approaches the FDI module information is

employed to reconfigure the controllers. The controllers can be selected from the set of

controller, designed offline, or can be designed online by using the FDI information.

Adaptive approaches are among the most common approaches for accommodating

changes in the system dynamics [12–18]. In [12, 13], adaptive fault tolerant controller

is proposed to accommodate partial loss and total failure of actuator faults in uncertain

linear systems in presence of exogenous disturbances. In [14], an adaptive fuzzy con-

trol is developed to compensate for the loss of effectiveness and lock in place faults in

the system with unmodeled dynamics and unknown control directions. In [15], attitude

tracking of flexible spacecraft with unknown inertia parameters, external disturbances,

and actuator faults is studied. Symmetric diagonal-upper (SDU) factorization is em-

ployed to handle uncertainties of the spacecraft inertia matrix and the adaptive control

laws are used to ensure system stability. In [16], an adaptive backstepping controller

is designed to guarantee the performance bound in an uncertain nonlinear system with

faulty actuators. In [17, 18] adaptive sliding mode control is employed to accommodate

actuator faults in nonlinear systems. In [17], a sliding mode surface is constructed and

then an adaptive sliding mode controller is designed to derive state trajectories onto the

sliding mode surface and estimate the severity of actuator faults in the Markov jump non-
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linear systems while in [18], a third-order sliding mode surface was employed with an

adaptation law to control the attitude of a spacecraft subject to different actuator faults.

Juan et al. [19] investigated the optimal solution for the fault tolerant controller prob-

lem in systems with delayed measurements and states. They used the solution of the

Riccati equation and Sylvester equation to ensure the system performance in presence of

unmeasurable actuator and/or sensor faults in the system. Stability andH∞ performances

of linear systems in presence of actuator faults are considered in [20]. The authors sug-

gested an indirect adaptive reliable controller to guarantee the required control objec-

tives. In [21] composite/combined state-feedback model reference adaptive controller

for linear MIMO system is proposed . The authors investigated the method efficiency

for longitudinal dynamics of an aerial vehicle. In [22], Zhang et al. considered the FTC

problem in linear systems with uncertainties. Neural networks are employed to model

the effects of actuator faults on the system and then an adaptive control law is developed

to compensate for the fault effects on the system.

Model predictive control (MPC) is another well-known approach for compensating

the systems dynamic changes [23, 24]. In [23], two Lyapunov-based model predictive

controllers are presented to stabilize the nonlinear distributed process in presence of

actuator faults whereas in [24], the stability problem in a tank unit is formulated as a

constrained optimization problem. A recurrent neural network is used to predict the

model and the control law is obtained by solving an optimization problem.

In [25], a machine learning approach is proposed for FTC in nonlinear processes. The

6



faulty plant behaviour is modeled with online SVM (support vector machines) and then

this model is used for model-based predictive control. Fuzzy logics are used in [26,27] to

compensate for actuator faults. Tong et al. [26], consider a class of nonlinear large-scale

systems with unmeasured states and actuator faults. They employ a fuzzy logic system to

estimate the unmeasured states and then the backstepping technique and nonlinear FTC

theory is employed to ensure boundedness of the error signals. In [27], dynamic surface

control is used to to diagnose the actuator fault, then by using fuzzy logics the gains of

the adoptive control law is designed to compensate for bias and LOE actuator faults.

In [28, 29], sliding mode control is used to solve the FTC problem. In [28], the

integral-type sliding mode control (ISMC) approach is employed to a class of second-

order nonlinear uncertain systems, while in [29] a common sliding surface is built based

on a weighted sum of the different input matrices and an adaptive sliding mode controller

is designed to accommodate the degradations in the actuators.

In [30], sufficient conditions for existence of optimal performance in faulty systems

are defined in terms of nonlinear fault-dependent quadratic matrix inequality. Then, these

equations are reduced to Riccati equations, which are used to derive the fault tolerant

controller. Boskovic et al. considered decentralized control reconfiguration problem for

high order actuators in [31] and proposed a decentralized FTC approach for a class of

nonlinear systems considering first, second and third order dynamics for actuators.

Fault accommodation in networked systems is studied in [32–34]. Zhao et al. [32]

considered the actuator fault problem for networked system with access constraints and
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developed a static scheduling approach to allocate resources in the network and designed

the schedule-dependent Lyapunov function to address the actuator fault and access con-

straints simultaneously. In [33], random transfer delays in networks are modeled with

Markov chains, then observer-based fault diagnosis and control scheme is developed to

estimate the fault severity and to maintain stability of the faulty network. In [34], each

subsystem is assumed to be low triangular, and finite-time Lyapunov stability theorem is

used to design a robust state feedback control that guarantees global finite-time stability

of the system.

In [35], FTC problem in polytopic uncertain systems with actuator faults was studied.

The authors presented sufficient conditions for robust stability and system performance

based on the concept of affine quadratic stability. In [36], FTC problem in continuous-

time piecewise affine (PWA) systems was investigated and sufficient conditions for exis-

tence of virtual actuators and virtual sensors, which guarantee closed-loop stability and

reference tracking in presence of actuator and sensor faults were presented with a set

of LMIs. In another study fault tolerant control in discrete-time stochastic systems was

considered [37]. Simandl et al. [37] developed the optimal solution for active fault detec-

tion and active fault tolerant control in discrete-time stochastic systems. They employed

an award/punishment strategy based on the correct/wrong behaviour of the system to

address the fault problem.

In [38–42], FTC problem for particular applications are considered. In [38], Yang

et al. considered the FTC problem in an electric vehicle. They combined the linear-
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quadratic control approach with the control Lyapunov function technique and proposed

an optimal fault tolerant controller, which guarantees both path tracking and system per-

formance in an electric vehicle with input constraints, actuator faults, and external re-

sistance. In [39], a robust adaptive controller was developed to address actuator fault,

component fault, input constraint and disturbance problems in spacecraft attitude simul-

taneously. Two parameters were adapted and the robustness to actuator full failure was

also investigated. Ciubotaru et al. [40] studied the FTC problem for Boeing 747 air-

craft. They applied different methods to this aircraft and compared the effectiveness

of model matching approaches (Exact, Pseudo-Inverse Method/PIM, Modified Pseudo-

Inverse Method/MPIM) in the short-period mode. In [42, 43], actuator fault accommo-

dation in spacecraft was studied. In [42], first model reference adaptive control approach

is employed to design a three-axis virtual control and then using min-max optimization

the control signal by redistributing the control among the remaining actuators, whereas

in [43], fuzzy logic along with adaptive control approach is employed to overcome ac-

tuator faults. In [41], adaptive neural network based fault tolerant control is proposed to

compensate for external disturbances as well as actuator faults. For that purpose, radial

basis neural network is employed and a nonlinear observer is designed to estimate the

uncertainties and then an adaptive control law is designed to ensure system stability.

1.2.2 Cooperative Control in Multi-agent Systems

Cooperative control of multi-agent systems has attracted a lot of attentions in the past

few years. Generally speaking, the cooperation in a networked multi-agent system is
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performed through three levels, namely, high level, mid-level and low level. The high-

level includes the task assignments, timing and scheduling. The mid-level, deals with

the formation keeping, consensus achievement and rendezvous, flocking or swarming,

containment, synchronization and output regulation. Finally, the low-level refers to the

communication management, data acquisition and agents energy management. The aim

of this thesis is to design a cooperative control law for the networks of autonomous agents

subject to actuator faults, which is the mid-level of team cooperation.

Cooperative control strategies can be classified into two main categories centralized

and distributed (decentralized) depending on the amount of information that agents send

or receive. In centralized approaches each agent has access and shares its information

with all the other agents. Developing and design of these approaches are quite similar to

the design problem of a single agent system but they require large amount of communi-

cation, therefore they are only applicable when the number of agents is limited. On the

other hand, in the distributed strategy it is assumed that each agent has only access to

data of its neighboring team members. Due to the cost and complexity of agents com-

munication, unless there are very few agents, distributed approaches are more preferred.

However, the entire team performance depends on the agents communication and their

cooperations. Therefore, there is always a compromise between the amount of informa-

tion that agents share and the network performance.

In this research work, the objective is to ensure that the entire team reaches a consen-

sus (or reach a common goal), therefore, our main focus is to review the recent literature
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on consensus based algorithms and applications of consensus control such as formation

control [44–49], flocking [50, 51], rendezvous [52, 53] are briefly reviewd.

Formation Control: In formation control, the main objective is to develop a con-

trol strategy which ensures that the agents in the network achieve a predefined geometry

and possibly follow a desired trajectory that is provided by a supervisor. As the pos-

ture is unchanged during the mission, entire team acts like a rigid body. Generally,

formation architectures can be classified into five different architectures: (i) Multi-Input

Multi-Output (MIMO) approach [44], (ii) leader-follower approach [45, 46], (iii) virtual

structure approach (or virtual leader), in which the entire formation is considered as a

virtual structure [47], (iv) cyclic approach [48], and (v) behavioral approach [49].

In the MIMO architecture, the entire network is considered as a single multi-input

multi output system and the formation control problem can be solved by using the design

approaches for single agent systems. On the other hand, in leader-follower architecture,

one or several of the agents are considered as the leader(s) which define or have access

to the reference trajectory and the other agents are called followers and receive the infor-

mation by sharing information among themselves. The main advantage of this structure

is that the design is not complicated and the desirable trajectory can be guaranteed by

defining the leader trajectory.

In the virtual structure formation, to ensure that the team follow the desired trajectory,

first a virtual structure is defined. Then, the relation between the states of the virtual

dynamics and the real agents are obtained and finally the control laws for each agent are
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developed. This structure is very useful for fixed trajectory, however if the trajectory is

time varying then defining the dynamics of the virtual structure and the states’ relations

becomes complicated.

In the cyclic architecture, the agents are connected to each other in a cyclic form

and each agents control depends on the other agents control. This makes a loop and

the stability analysis for the system becomes challenging. Finally, in the behavioral

approach a command is developed for various objectives e.g. obstacle avoidance, or

formation. Then each agent control law is obtained as a wighted average of the developed

commands. Using the average command makes the design simple but it also can lead to

uncommon or sometimes strange behaviour for the system.

Flocking and Rendezvous: Flocking [54] is a form of collective behavior of large

number of interacting agents with a common group objective, while in rendezvous [52,

53] the aim is to reach a certain objective in a specific time. This cooperative behaviour

have applications in parallel and simultaneous transportation of vehicles, delivery of

payloads, performing military missions like surveillance, and reconnaissance .

Since flocking is mainly for a large number of agents, having a collision free and

obstacle avoidance maneuver is an important aspect of the design. In [54], a flocking

protocol is defined for a team of agents with point mass dynamics. The authors propose

a graph theoretic framework for flocking in presence of obstacles. The proposed protocol

is based on analyzing the Reynolds rules and enforce agents to converge to a weighted

average position. The same problem is then considered in [55,56] for fixed topology and
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dynamic networks of agents and flocking protocols for collision free alignment in the

heading of the agents are proposed.

Consensus: The main objective of consensus algorithm is to ensure that a group

of agents reach an agreement upon specific quantities, therefore it can be considered as

cooperative decision making algorithm. Cooperative decision making problem in a team

dates back to the work of Marschak [57] in 1955 which was then followed in [58] in

1962 and [59, 60] in 1972. However, these problems received the attention by people

in control theory almost three decades later [45, 61–64] for a team of first/second order

simple agents.

In [61], the performance of a team of first order agents is considered. By using graph

theory, matrix theory and Lyapunov stability analysis the performance of the team as well

as convergence achievement in the team is investigated. The authors considered both

fixed and switching topology network and obtained the relation between the maximum

tolerable delay and eigenvalues of the network graph Laplacian matrix.

In [45], coordination problem in a team of single integrator agents under undirected

network topology is considered. The notion of average heading is introduced and head-

ing alignment in both leaderless and leader-follower network are studied. In [62], the

results of [45] are extended to dynamic directed topology networks. It is also shown that

agents can reach a consensus if the union of the network topology graph has a spanning

tree.
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In [63], consensus problem is extended to a team of linear second order agents. Con-

vergence analysis for second order consensus is provided and then necessary and/or suf-

ficient conditions for achieving consensus in the network is obtained. In [64], the results

of [63] are extended to a team of spacecraft in deep space. A PD-like control law is

proposed to ensure attitude alignment with either zero or non-zero final angular velocity

in the team.

The works of [45, 61–64] are then extended to a team of linear agents with general

dynamics, nonlinear dynamics and different control framework including optimal con-

trol, adaptive and intelligant approaches, H∞, and sliding mode are employed to solve

the consensus achievement problem.

Decentralized optimal control is among the most attractive approaches in cooperative

control design [65–75]. In most of the proposed solutions the objective is to minimize

the entire team performance index. This objective is achieved by either defining a unique

performance index for the team or defining an individual index for each agent. Due to

the dynamics of the agents the solution of this problem would be different from that of

cooperative decision making in which agents do not have dynamics and each one can be

considered as a state of the entire system.

In [65–68], the optimal consensus control problem is formulated as an optimization

problem subject to a set of LMIs. In [65, 66], the optimal gains are obtained by de-

veloping a Riccati equation for the entire team dynamics. Then, in order to impose the

network structure, the Riccati equations are transformed into a set of LMIs and consensus
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achievement is guaranteed as the feasibility of the set of LMIs. In [67], an observer-type

consensus protocol based on relative output measurement is proposed. Consensus prob-

lem in the team is formulated as the stability of a set of low order matrices and then the

conditions for stability of these matrices or consensus agreement are presented as LMIs.

In [68], the dynamics of the entire network is decomposed into consensus space and or-

thogonal subspaces. Then, using an H2 design strategy and LMI formulation stability

and consensus achievement are guaranteed.

In [69, 70], inverse optimal control theory and partial stability are employed to de-

velop distributed global optimal control laws. In [69], a sufficient condition on the net-

work graph topology for existence of distributed linear protocols that solve a global opti-

mal LQR control problem is provided. Then, a class of graphs that satisfy this condition

is introduced and it is shown that the optimal solution can be global only if the perfor-

mance index includes the network topology. In [70], necessary and sufficient conditions

are given for solving the cooperative optimal control problems for leaderless and leader

following multi-agent systems. The proposed control locate all closed-loop eigenvalues

of the multi-agent system in the desired region as well as ensures consensus agreement

and optimizes the global team performance.

In [71–73], the optimal control problem is formulated as a game and a Nash equi-

librium is obtained. In [71, 72], the optimality of the presented control scheme is shown

based on a quadratic-invariance argument while in [73], using matrix theory, the condi-

tions are provided as a feasibility of a set of LMIs.
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In [74, 75], LQR-based framework is developed to optimize the team performance.

In [74], at each node, the models of node’s neighbors are used to predict the behavior of

neighbors and a distributed control law is proposed to obtain the optimal solution. The

proposed control law is synthesized using a simple local LQR design and it is shown that

the distributed control law is stabilizing and parameters of the local LQR cost function

do not affect stability. In [75], two global cost functions, namely, interaction-free and

interaction-related cost functions are proposed. By using interaction free cost and LQR-

based approach the optimal Laplacian matrix which corresponds to the complete graph is

obtained. Then, the interaction-related cost function is used to obtain an optimal scaling

associated with the pre-specified symmetric Laplacian matrix.

Adaptive control is another approach for developing consensus based algorithms

[76–93]. The main advantage of these approaches is that they can compensate for the

small changes in model parameters, however the control gains need to be updated con-

tinuously and that increases the complexity. Adaptive approaches can be classified into

Lyapunov-based and parameter-estimation based approaches. In [76–79] neural adaptive

approaches are employed to solve cooperative control problem in multi-agent systems.

In [76], neural network approximation is employed and a robust adaptive approach is

developed to address the leaderless consensus achievement in a network of uncertain

nonlinear first order multi-agent systems. In [77], the authors consider a team of La-

grangian vehicles with directed communication graph topology. The agents dynamics

and the dynamics of reference system are assumed to be unknown. The control law con-

sists of two parts: a proportional derivative (PD) control and an adaptive tuning law. The
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unknown dynamics are estimated locally using neural network and the Lyapunov tech-

nique is used to design the control gains. In [78], a neural adaptive control scheme is

presented to address tracking problems in a heterogenous networked nonlinear systems

with unknown dynamics and disturbances. The proposed control is developed based on

Lyapunov technique and is applicable to first-order as well as high-order nonlinear sys-

tems. In [79], a leaderless network of high-order nonlinear systems is considered. First,

a filtered output is developed and agents high-order model is transformed into first-order

systems, then the system nonlinearities are approximated using neural networks. Based

on the estimated dynamics, an adaptive control law is proposed to ensure that agents

achieve consensus.

In [80], a Lyapunov-based adaptive approach is proposed to guarantee that a team of

first-order non-identical nonlinear agents can follow the unknown leader. The results of

[80], are then extended to a team of high-order agents under fixed and strongly connected

topology network in [81]. In [82], an adaptive pinning-control approach is presented to

ensure state synchronization in a team of nonlinear delayed systems.

In [83–85], adaptive consensus control strategies are developed using parameteriza-

tion. In [83] a linearly parameterized multi-agent system with unknown identical control

directions under undirected network topology is studied. Under the assumption that all

agents have the same direction, the author propose a new Nussbaum type function to esti-

mate the unknown control direction and then employ this function to design the adaptive

control law for the first-order and second-order multi-agent systems. In [84], a leader-
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follower team of high-order integrators with nonlinear uncertainties is considered. The

nonlinear dynamics of the agents and the leader control are parameterized by using basis

functions and then a distributed adaptive control law is developed to stabilize the track-

ing error and adaptation parameters. In [85], a linear team with non-identical unknown

uncertainties is studied. The unknown dynamics is parameterized and each agent identi-

fies its disturbance as well as the leader input. Then, a fully distributed adaptive control

is developed that ensures tracking in the network. Furthermore, the results are extended

to the case that agents are also subject to parameter uncertainties.

In [86], a decentralized adaptive control scheme is proposed to guarantee finite time

consensus in a leader-follower network where the leader’s control input signal is un-

known and nonlinear. In [87], an adaptive consensus coordination problem for het-

erogenous unknown nonlinear multi-agent systems in networks with jointly connected

topologies is studied. The author introduce persistent excitation (PE) condition for re-

gressor matrix and a decentralized algorithm is developed for each agent to estimate the

unknown parameters. Then, sufficient conditions for consensus achievement and pa-

rameter error convergence are obtained. In [88], an adaptive nonlinear control law is

proposed to ensure consensus in a directed topology leader-follower network when the

leader is unforced. The proposed law only uses relative information and do not require

any global information about the network.

In [89, 90], model reference adaptive control is employed to solve the consensus

problem in the leader-follower network. In [89], a network of single input single output
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agents is considered. The proposed approach employs output measurements and treat

the estimation errors of tuning parameters as disturbances and by employing the theory

of H∞ control, stability of the tracking errors are guaranteed. In [90], a network of

agents with partly unknown parameters and subject to bounded external disturbances

is considered. First by employing model reference adaptive control approach, a base

control law for disturbance free environment is proposed. Then, a compensator is added

to the base control to compensate for disturbances.

In [91–93], L1 adaptive control which is based on model reference adaptive control is

employed to improve the transient performance of multi-agent systems. In [91,92], a two

agent network with uncertainties is considered. A local desired trajectory and extended

dynamics is defined for each agent. Using adaptive L1 control approach each agent

reaches its local objectives and it is shown that agents reach a consensus if each one fol-

lows its own local trajectory. In [93], the L1 adaptive control is employed for leaderless

and leader-follower nonlinear uncertain multi-agent system. The control law is designed

in two steps: first a control is developed for ideal agents without any uncertainties and

then an adaptive control law to manage the effects of uncertainties is developed.

The real network of multi-agent systems is always subject to different external distur-

bances and uncertainties. These disturbances may affect the total team performance and

behavior. Motivated by the above the team behavior and the control design problem in a

team subject to disturbances has been studied in the past few years. In [94–101], linear

multi-agent systems and [102, 103], nonlinear team of agents subject to disturbances are
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studied.

In [94,95], theH∞ control design in a leaderless team of agents with switching topol-

ogy is studied. In [94], an output feedback control for undirected networks is developed

whereas in [95], state feedback control for directed network is studied. In [96, 97], a

team of high-order integrators subject to L2 disturbances is considered. An L2 − L∞

consensus control is proposed which its gains are obtained as solution to a set of LMIs.

In [96], the H2/H∞ consensus control is transformed to the problem of stabilizing a

set of N linear systems which are developed based on the network topology and agents

dynamics. In [97], rather than L2 disturbance, the L1 disturbances is also considered.

In [98, 104], the team performance in presence of disturbances is studied. In [98],

transient performance in a team subject to disturbances is studied and sufficient condi-

tions for existence of H∞/H2 control are obtained. In [104], tracking control in linear

multi-agent systems in presence of environmental disturbances is formulated as a multi-

player zero-sum differential graphical game. Then, a reinforcement learning algorithm

is developed to select the optimal gains that guarantee synchronization while the perfor-

mance remains in an acceptable level. In [100, 101], modal decomposition approach is

used to design a distributed controller for a team of identical agents. A distributed con-

trol law is proposed and the gains of the control law are obtained using LMIs along with

H2 and H∞ criteria.

In [99], output feedback problem in a team of non-introspective team with directed

topology is studied. Using matrix theory and H∞ control theory the conditions to reduce
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the effects of external disturbances to a small arbitrary level are developed. In [105], ho-

mogeneous parameter-dependent (HPD) Lyapunov functions and sum of squares (SOS)

technique are employed to develop a consensus control for a team where the agents are

subject to polytopic uncertainties, external disturbances and time-varying/uncertain net-

work topology.

In [102, 103], consensus control in a team of nonlinear agents with parameter uncer-

tainties is studied. In [102], an undirected network subject to time-varying communica-

tion delays is considered and using H∞ control theory sufficient conditions for existence

of state feedback control that guarantees desirable disturbance attenuation bound are de-

rived, whereas in [103], a team under directed network topology is studied and an output

feedback control is proposed to reject the environmental disturbances.

In most of the above work the network conditions are assumed to be ideal, i.e. fixed

topology. In real world as agents are moving their neighbour set may change. Generally,

two main class of switching network topologies are considered in the literature: (1) the

case that networks switch among a finite set of networks that each of them is either

connected or has a directed spanning tree, and (2) the case that at each time the network

is allowed to be disconnected but the union of graphs on the time interval is connected

or has a directed spanning tree which is called jointly connected.

Consensus problem in switching topology networks of single-order agents has been

studied in [45, 62, 106, 107]. In [45], Jadbabaie et al. considered a leaderless as well as

leader-follower team under undirected topology and discussed the convergence and con-
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sensus properties in continuous-time (CT) as well as discrete-time (DT) agents. It was

shown that the network reaches a consensus if the union of topology graphs is connected

during the time interval. In [106], common Lyapunov function criterion is employed to

investigate convergence analysis of average consensus in a leaderless network of CT/DT

agents under directed, strongly connected and balanced network. In [107], a set-valued

Lyapunov scheme is used to derive necessary and/or sufficient conditions for consensus

achievement in networks of DT agents with unidirectional time-dependent communica-

tion links. In [62], Ren et al. relaxed the previous assumptions on the network topology

and showed that the team can reach an agreement if the union of the collection of topol-

ogy graphs during some time intervals has a spanning tree.

In [108–112], second-order consensus problem in switching topology networks is

studied. In [108], a leaderless network with jointly connected interconnection and in

[109], both leaderless and leader-follower network are studied. Network topologies are

assumed to switche between a finite set of topologies with a directed spanning tree and

sufficient conditions for consensus achievement are obtained by using Lyapunov func-

tions. In [110–112], consensus achievement in switching topology networks and in

presence of communication delays is considered and sufficient conditions for average

consensus are obtained as a set of LMI. In [110, 111], an undirected jointly-connected

network whereas in [112], a weakly connected and a balanced network is considered.

In [113–117], a team of general LTI systems with switching topology is studied.

In [113], consensus problem in team of high order integrator agents with undirected
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switching topology is studied. In [114,115], sufficient conditions for consensus in a team

of leaderless and leader-follower LTI marginally stable agents with jointly connected

network topology are studied. In [114], continuous-time dynamic agents and in [115],

discrete-time dynamic agents are assumed. In [116], a team of leader-follower agents

with unforced leader under a network that switches between a set of networks having

directed spanning tree is considered. Using Lyapunov functions and M matrix theory

sufficient conditions for consensus achievement are obtained.

In [118–121], a team of nonlinear agents with switching topology is considered.

In [118], a distributed control law is proposed to guarantee tracking in a team of Euler-

Lagrange agents where the network topology switches between a set of undirected con-

nected networks and in [119], the results of [118] are extended to the case that agents are

subject to environmental disturbances and parameter uncertainty. H∞ optimal control

law is proposed to address state synchronization and trajectory tracking. In [120], the

problem in a team of nonlinear agents in networks with switching topology and bounded

delay is studied and the sufficient conditions for consensus are obtained using multiple

Lyapunov functions. In [121], a team of Lipschitz-Type agents are considered and a

distributed control law is proposed to solve the consensus tracking in the network.

Any multi-agent system consists of a group of physical systems. Even if all the agents

were developed in a same manufacture, the values of their parameters may change during

time depending on the work conditions. Therefore, when a team of agents are employed

to perform a single task it is very possible that agents have different parameters. Further-
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more, in some application cooperation among different vehicles may be necessary such

as cooperation among underwater vehicles and a ship. Motivated by that, in recent years

the leader follower and leaderless consensus in a team of identical agents is extended to

output regulation and output synchronization in a team of non identical (heterogenous)

agents [122–137].

In [122–126], internal model principals are employed to solve output regulation prob-

lem. In [122], under the assumption that the network topology graph is cycle free dis-

tributed state feedback as well as dynamic output feedback control protocols were pro-

posed to ensure that outputs of LTI dynamics agents with additive uncertainties track out-

puts of the external system whereas in [123, 124], the cycle free assumption is relaxed.

However, in [123] it is assumed that state measurements are available and in [124], it

is assumed that the upper bound of uncertainties norm is known priori. In [125, 126],

the problem for a team of agents with time-varying uncertainties are considered and ro-

bust dynamic output feedback control laws are provided to regulate outputs of uncertain

agents. In [126], a team of single input single output agents is considered and then

in [125] the problem is generalized to a team of general LTI systems.

In [127, 128] output synchronization problem in time varying network topology is

considered. In [127], a team of LTI agents is considered and sufficient conditions for

output synchronization are derived and then based on the provided conditions, a dis-

tributed control law is proposed that only employs relative measurements. In [128], a

team of linear parameter-varying (LPV) agents is considered and the proposed control
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law employs agents individual measurements to ensure outputs are synchronized.

In [129,130], a high gain approach is proposed to solve output regulation problem in

a heterogenous team with switching topology. A local objective and a group objective are

defined for each agent. Then, an observer based control law is proposed to stabilize the

tracking error for each agent which is determined based on local and global objectives.

In [131, 132], a necessary and sufficient condition for synchronizing outputs of a team

of LTI agents is provided and it is shown that a control can be designed to synchronize

the outputs if and only if their dynamics intersect. Then, a state feedback control law

is proposed that asymptotically stabilizes the tracking error between outputs of general

LTI systems and external system. In [138] the results of [131, 132] are extended to the

synchronization problem and a reference system is virtually constructed.

In [133–137], matrix theory and graph theory are used to address output regulation

problem in non-introspective agents and without exchanging control states. In [133,

134], an observer based decentralized control is proposed for right-invertible agents with

fixed topology. In [135], the previous work is extended to a network of right invertible

agents with time varying topology. In [136, 137], the results of [135] are extended to

the network that agents are also subject to environmental disturbances and a low-and-

high gain approach is used to address the output regulation in heterogenous system with

time-varying topology.
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1.2.3 Fault Recovery in Multi-Agent Systems

The problem of fault recovery and control reconfiguration in multi-agent systems is more

challenging as compared to that of a single agent as discussed in Section 1.2.1 and has

been studied only in recent years. Cooperative fault recovery problem differs from coop-

erative control problem in multi-agent systems (discussed in Section 1.2.2), in the sense

that cooperative control approaches (except in adaptive approaches) are mainly designed

offline and in these approaches control gains are fixed or pre-specified. However, in

cooperative fault recovery the control gains are developed and designed online and by

using the local information of agent dynamics as well as the information provided by

the Fault Detection, Isolation and Identification (FDI) modules. That is, agents update

their control laws by using local information and once a fault occurs, to ensure that the

entire team objectives are satisfied. The recent literature in this area are discussed in the

following.

In [139,140], control reconfiguration in leader-follower network under fixed topology

is studied. In [139] an adaptive mechanism is proposed to adjust the agent control gains

once an actuator fault occur in a team of multi-agent system under undirected topology,

parameter uncertainties and external disturbances. In [140], adaptive control approach

is employed to tackle output tracking in high-order nonlinear multi-agent systems sub-

ject to LOE and additive time-varying faults. In [141–148], the control reconfiguration

problem in networks with fixed graph topology is considered. In [141,142], a high-level

supervisor is proposed to address the formation flight problem in networks subject to loss
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of effectiveness faults (LOE). In [143–146] adaptive control strategies are employed to

ensure that agents reach a consensus even when agents are subject to actuator faults that

do not cause rank deficiency in the input channel matrix. In [149], two re-coordination

strategies for formation keeping motion in a team of wheeled mobile robots subject to

actuator faults is presented. In the first approach, the faulty agent is removed from the

motion and then using Hungarian algorithm the task is assigned among the remaining

agents whereas in the second one, the formation is preserved with performance degrada-

tion.

In [143–145], leaderless multi-agent systems are considered. In [145], a second-order

nonlinear leaderless team is studied and actuator faults are considered as uncertainties.

The norm bounding approach is used to transform the uncertainties into a virtual scaler.

Then, using this scaler and Lyapunov functions the stability of the tracking error is guar-

anteed. In [143], neural networks are employed to estimate the actuator fault severities

as well as dynamics uncertainties. Then, by using graph theory and Lyapunov function

an adaptive law is proposed to ensure that the team of nonlinear second-order agents

reach a consensus even when agents are subject to actuator faults. In [144] a team of

agents with general LTI dynamics is considered and online adaptive laws are developed

to compensate the uncertainties and faults.

In [95, 150, 151], control reconfiguration problem in switched topology networks

is studied. In [150], a reconfigurable control strategy is proposed to guarantee state

synchronization in a team of Euler-Lagrange systems whereas in [95,151] a team of LTI
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systems subject to the LOE actuator faults is studied and a two level, i.e. the agent-level

and the team-level reconfiguration strategies are presented.

In [118, 119, 152, 153] control reconfiguration in Euler-Lagrange networked systems

is studied. In [152], an adaptive law is proposed to accommodate the changes in the

system parameter due to faults in actuator faults and the reconfiguration is performed

without the need for FDI module. On the other hand, in [118, 119, 153] the information

provided by FDI module are employed to reconfigure the control laws and ensure that

the team can cooperate even in presence of actuator faults.

1.3 General Problem Statement and Thesis Outline

The main objective of this thesis is to design control reconfiguration strategies for a team

of autonomous vehicles. A team of linear multi-agent systems subject to three types of

actuator faults, namely loss of effectiveness, outage and stuck is considered. The main

concern in the development of the proposed reconfiguration strategies are as follows:

1) The proposed strategy should guarantee that agents can reach a consensus even

when they are subject to different actuator faults.

2) Each agent can only communicate with few other agents (its nearest neighbors)

and is unaware of the the total network behaviour therefore, the reconfiguration

strategy should only employ the local information and without any external inter-

vention.
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3) The faults can cause rank deficiency in the system control channel matrix, therefore

the structure of the system can change.

4) The team performance index should remain in an acceptable level.

In Chapters 3 to 6 of this thesis, the above concerns and problems are addressed. In the

following a summary of these chapters are given:

• In Chapter 3, a distributed reconfigurable control law for a team of multi-agent

systems is provided. On-line distributed control reconfiguration strategies are de-

veloped that employ only nearest neighbors information to guarantee the team

consensus while minimizing a local cost performance index. Towards this end,

the distributed Hamilton-Jacobi-Bellman equations for the faulty agent are derived

and then reconfigured controllers are designed by solving these equations subject

to the faulty agent dynamics and network structure constraints to ensure fault ac-

commodation of the entire team. In the next three chapter, the above problem is

extended to non-ideal conditions.

• In Chapter 4, we extend the problem of Chapter 3 to a network with directed com-

munication topology and subject to disturbances. Furthermore, the outputs of the

faulty agent are guaranteed to follow those of the healthy system. A distributed

control reconfiguration strategy is proposed such that in presence of actuator faults

the state consensus errors remain bounded and output of the faulty system behaves

exactly the same as that of the healthy system. Furthermore, the specified H∞
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performance bound is guaranteed to be minimized in presence of bounded energy

disturbances. The gains of the reconfigured control laws are selected first by em-

ploying a geometric control approach where a set of controllers guarantees that

the output of the faulty agent imitates that of the healthy agent and the consensus

achievement objectives are satisfied. Next, the remaining degrees of freedom in the

selection of the control law gains are used to minimize the bound on a specified

H∞ performance index.

• In Chapter 5, the results of Chapter 3 are extended to a network with directed

switching topology communication. The proposed control strategy ensures that

the agents reach a consensus and an upper bound for the team performance index

is guaranteed when the agents are subject to actuator faults and there are uncer-

tainties and unreliabilities in the fault severity estimation. By using quadratic and

convex hull (composite) Lyapunov functions, two strategies are provided to design

and select the gains of the proposed distributed control laws such that the team

objectives are guaranteed.

• In Chapter 6, the results of Chapter 3 are extended to a team of non-identical agents

subject to limited measurement. A distributed output feedback control strategy is

proposed which guarantees that agents output follow the outputs of the exo-system

and the agents states remain stable even when agents are subject to actuator faults.

Towards that end, the output regulation problem is transformed into two stability

problems and Lyapunov functions and Gershgorin theorem are employed to obtain

conditions to solve these two problems.
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1.4 Thesis Contributions

In this thesis, control reconfiguration problem in multi-agent systems is tackled. The

main contributions of this research are as follows:

(1) In this work we consider three types of actuator faults, namely loss of effectiveness,

outage and stuck. The outage and stuck faults can cause rank deficiency which

change the model structure unlike the work [139, 140, 143–146], where actuator

faults is considered as parameter uncertainties which do not change the structure.

(2) The proposed control laws are fully distributed, that is the reconfigured control

gains are designed by only employing the local information unlike [141, 142],

which a high level supervisor is assumed to intervene and redesign the control

gains once agents become faulty.

(3) A cost based reconfiguration strategy based on Hamilton Jacobi equations is pre-

sented to ensure consensus in a team with a fixed topology network and minimizing

the local cost performance index. In the current literature only consensus problem

is studied and the cost performance index is not considered into account.

(3) The notation of auxiliary agents are introduced and then employed to address H∞

performance output following in the team subject to simultaneous actuator faults.

TheH∞ performance consensus problem has been studied in the current literature,

however output following in the team of agents subject to actuator faults has not

been addressed.

31



(4) A distributed cost guaranteed reconfiguration strategy for switching topology net-

works is proposed to minimize the upper bound of the team performance index

while the team consensus is ensured.

(5) A reconfigurable control law is proposed to ensure output regulation in a team of

non-identical agents by using outputs measurements unlike the current literature

which mostly consider control reconfiguration in a team of identical agents.
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Chapter 2

Background

2.1 Graph Theory

The communication network among N agents can be denoted by a graph. A directed

graph G = (V,E) consists of a nonempty finite set of vertices V = {v1, v2, ..., vN} and

a finite set of arcs E ⊂ V × V . The i-th vertex represents the i-th agent and the directed

edge from i to j is denoted as the ordered pair (i, j) ∈ E, which implies that agent j

receives information from agent i. In this case the vertex i is called the parent vertex and

the vertex j is called the child vertex [154].

A graph is called bidirectional if for a pair of nodes and edge (vi, vj), there exists an

edge (vj, vi), otherwise it is called directed graph or digraph. A directed path from agent
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i to agent j is a sequence of arcs in E, (vi, v1), (v1v2), . . . , (vk, vj). A path is a cycle if

vi = vj . A directed tree is a digraph, where every vertex has exactly one tail except for

one special vertex without any tail. In the other words, a connected subgraph of G which

contains no cycle is a tree. A directed graph G has a directed spanning tree if there exists

a node r (a root) such that all other nodes can be linked to r via a directed path. If there

exists a path between any pair of distinct vertices the digraph is called to be strongly

connected, whereas for undirected graph, it is called to be connected.

Neighbours of each agent i in the network are denoted by Ni = {j|(j, i) ∈ E}. We

also define the receiver neighbour set, N r
i , which represents the set of agents that receive

data from agent i by N r
i = {j|i ∈ Nj}. The adjacency matrix of the graph G is given

also by G = [gij] ∈ RN×N where gij = 1 if j ∈ Ni, otherwise gij = 0. For undirected

graph, we have gij = gji. The Laplacian matrix for the graph G is defined as L = D−G,

where D = diag{dini } and dini =
∑N

j=1 gij .

2.2 Consensus Achievement in Multi-agent Systems

The main objective of the consensus problem is to ensure that all the agents reach a com-

mon agreed value that is collectively decided by the agents interactions in the leaderless

(LL) network topology or specified by the leader in the leader-follower (LF) network

architecture. Below, we provide the mathematical representation of the agents corre-

sponding to these two architectures.
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Leaderless (LL) Network: Let the network consist of N agents where each agent is

governed by the following dynamical model

ẋi(t) = Axi(t) + Bui(t), i = 1, . . . , N, (2.1)

where xi(t) ∈ Rn and ui(t) ∈ Rm denote the i-th agent state and control input, respec-

tively. The i-th agent consensus error signal is now defined according to

ei(t) =
∑

j∈Ni

(xi(t)− xj(t)) = (li ⊗ In)x
LL(t), (2.2)

where xLL
T

(t) = [xT
1(t), . . . , x

T
N(t)]

T.

Leader-Follower (LF) Network: In the leader-follower network architecture the team

consists of N followers where each agent dynamics is governed by equation (2.1) and

the leader whose dynamics is given by

ẋ0(t) = Ax0(t) + Bu0(t), (2.3)

where x0(t) ∈ Rn and u0(t) ∈ Rm represent the leader state and control input, respec-

tively. In the LF architecture some of the followers that are designated as pinned agents

are communicating with the leader and receive data from it directly. Since the leader

does not receive any feedback from the followers, the leader control law can be selected

as u0(t) = K0x0(t) + r(t), where K0 is the state feedback gain and r(t) represents the

desired trajectory of the leader. The consensus error signal for each follower is now

defined as

ei(t) = gi0(xi(t)− x0(t)) +
∑

j∈Ni

(xi(t)− xj(t))

= (li ⊗ In)x
LF (t), i = 1, . . . , N (2.4)

where xLF (t) = [xT
0(t), x

T
1(t), . . . , x

T
N(t)]

T and gi0 = 1 if the agent i is a pinned agent

and is zero otherwise.
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For the ease of notation we will use the notation x(t) to address either xLF (t) or

xLL(t). We are now in a position to formally introduce the objective of the consensus

achievement problem.

Definition 2.1. The team of N agents will reach a consensus if ei(t) → 0 as t → ∞

for i = 1, . . . , N , implying that for the leaderless network architecture xi(t) → xj(t)

as t → ∞ for i, j = 1, . . . , N and for the leader-follower network architecture xi(t) →

xj(t) → x0(t) as t→ ∞ for i, j = 1, . . . , N .

2.3 Hamilton Jacobi Bellman (HJB) and LQR Problem

Hamilton Jacobi Bellman (HJB) is a useful tool to find an optimal control input specially

for nonlinear systems. Consider the system dynamics as

ẋ(t) = f(t, x, u), x(0) = x0

and the corresponding cost function to be minimized as

J(t, x) =

∫ ∞

0

h(t, x, u)dt,

where x(t) ∈ Rn, u(t) ∈ Rm, f : [0,∞)×Rn ×Rm → Rn, h : [0,∞)×Rn ×Rm → R

and J : [0,∞)× Rn → R. The following optimization problem

min J(t, x) s.t. ẋ(t) = f(t, x, u), x(0) = x0,

has a solution if the following HJB equations have a solution [155, 156]

H(t, x, u) = h(t, x, u) + J∗
x(t, x)

Tf(t, x, u), (2.5)

u∗(t) = argmin
u

H(t, x, u), (2.6)

H∗(t, x, u) + J̇∗(t, x) = 0, (2.7)
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where J∗(t, x) is the optimal value of J(t, x), J∗
x(t, x) =

∂J∗(t,x)
∂x

, J̇∗(t, x) = d J∗(t,x)
d t

and

H∗(t, x, u) is the optimum value of H : [0,∞) × Rn × Rm → R. If f = f(x, u) and

h = h(x, u), i.e. they are time-invariant, then J∗ = J∗(x) and J̇∗ = 0 and (2.7) reduces

to H∗(x, u) = 0.

If the plant is linear time-invariant

ẋ(t) = Ax(t) + Bu(t),

and the performance index is considered to be quadratic

J(x) =

∫ ∞

0

(xT(t)Qx(t) + uT(t)Ru(t))dt

the corresponding HJB equations will reduce to

H(x, u) = xT(t)Qx(t) + uT(t)Ru(t) + J∗
x

T(x)(Ax(t) + Bu(t)), (2.8)

u∗i (t) = argmin
u

H(x, u) = −R−1BTJ∗
x(t, x), (2.9)

H∗(x, u) = 0, (2.10)

where R ∈ Rm×m and Q ∈ Rn×n are positive definite matrices. By substituting u(t)

from (2.9) into (2.10), one can find the optimal control signal as u(t) = −R−1BTPx(t),

where P is the solution of the following Algebraic Riccati Equation (ARE)

PA+ ATP − PBR-1BTP +Q = 0. (2.11)

The above problem is called LQR problem and can be formulated as an optimization

problem subject to a set of Linear Matrix Inequalities (LMI)s. This formulation is very

useful if the optimal controller with special structure is as of interest.

37



Lemma 2.1. [157] The optimization problem:

max trace(P ) (2.12)

s.t.






ATP + PA+Q PB

BTP R




 ≥ 0,

P > 0

has a solution if and only if the ARE equation (2.11) has a solution and for R > 0 and

Q ≥ 0, the unique optimal solution to this problem is the maximal solution of the ARE

(2.11).

2.4 Actuator Fault Types

Consider the following linear time-invariant system,

ẋ(t) = Ax(t) + Bu(t), (2.13)

y(t) = Cx(t), (2.14)

where x(t) ∈ Rn and u(t) ∈ Rm are system state and input signals, A,B and C are

system dynamic matrices. If the input of the system (2.13) becomes faulty then the fault

is called actuator fault. Actuator faults are generally classified into three types: [158]

(1) Loss of Effectiveness (LOE): The loss of effectiveness fault is characterized by

lowering the actuator gain with respect to its nominal value. Therefore, the dy-

namics of the i-th faulty agent can be modelled as

ẋfi (t) = Axfi (t) + Bfufi (t), (2.15)
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where Bf = BΓi, u
f
i (t) = ui(t), Γi = diag{Γl

i}, for l = 1, . . . ,m, Γl
i represents

the effectiveness of the l-th channel of the i-th agent, 0 < Γl
i < 1 if the l-th actuator

is faulty, and Γl
i = 1 if it is healthy.

Let us denote the fault severity estimate and the l-th faulty actuator estimation

error by Γ̂l
i and ξli, respectively, i.e. Γl

i = Γ̂l
i + ξli. Moreover, consider the binary

parameter f l
i as the fault indicator for the l-th actuator of the i-th agent in which

f l
i = 1 if the actuator is faulty and f l

i = 0 if the actuator is healthy. Therefore, we

have

Bf = BΓ̂i +Bfiξi, (2.16)

where Γ̂i = diag{Γ̂l
i}, ξi = diag{ξli}, and fi = diag{f l

i}.

(2) Outage (Float): The float fault occurs when the actuator output "floats" with zero

value and does not contribute to the control authority. The dynamics of the i-th

agent with an outage fault in its k-th actuator can be represented as

ẋi(t) = Axi(t) + Bfkui(t), i = 1, . . . , N, (2.17)

where Bfk =

[

b1, b2, . . . , bk−1, 0, bk+1, . . . , bm
]

and bk is the k-th column of the

matrix B.

(3) Stuck (HOF/LIP): In stuck fault the actuator "freezes" at a certain value and does

not respond to subsequent commands. This fault is also called HOF (Hard Over

Fault) or LIP (Lock in Place Fault). The dynamics of the i-th agent under this fault

type can be modelled as

ẋi(t) = Axi(t) + Bufi (t), i = 1, . . . , N, (2.18)

where ufi (t) =

[

u1i (t), . . . , u
k−1
i (t), uki , u

k+1
i (t), . . . , umi (t)

]T

, and uki = uki (tf )
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denotes the value of the stuck command.

2.5 Geometric Control Approach

The geometric control approach deals with subspaces and properties of systems are ex-

pressed in terms of linear spaces [159,160]. Consider the system (2.13). Let X be a vec-

tor space and A : X → X a linear map. A subspace J ⊆ X is said to be A− invariant

if

AX ⊆ J .

Given the linear map A : X → X and a subspace B ⊆ X a subspace V ⊆ X is

(A,B)− controlled invariant if the following holds

AV ⊆ V + B.

For any (A,B) − controlled invariant subspace V there exists a matrix F (called a

friend of V) such that (A+BF )V ⊆ V .

The two useful subspaces in geometric control theory are maximum (A,B)−controlled invariant

and (A, C)−conditioned invariant containing B. The maximum (A,B)−controlled invariant

subspace contained in Im{C} is obtained by the recursive algorithm

V1 = C

Vi = C
⋂

A−1(Vi−1 + B), i = 2, 3, . . .

The minimum (A, C) − conditioned invariant containing B can be obtained through
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the recursive algorithm:

S1 = B

Si = B
⋂

A−1(Si−1 + C), i = 2, 3, . . .

2.6 Switching Systems

Let σ(t) : [0,∞) → {1, . . . , q} denote the switching signal and suppose that it represents

the network graph switches. The switching sequence 0 < t1 < · · · < tlk < tlk+1 < . . .

with lk = 1, 2, . . . is assumed to be continuous from right, that is for tlk ≤ t < tlk+1,

G(t) = Gσ = Gk, Gk ∈ {G1 . . . , Gq}, where Gk = [gkij] and gkij represents the arc

between the i-th and the j-th agents in this interval. In this case, the Laplacian matrix

will be denoted by L(t) = Lσ, where for tlk ≤ t < tlk+1, Lσ = Lk, Lk ∈ {L1, . . . , Lq}.

The Laplacian matrix is partitioned into Lσ =






Lσ
11 Lσ

12

Lσ
21 Lσ

22




 and Lk =






Lk
11 Lk

12

Lk
21 Lk

22




,

where Lk
11 = 0, Lk

12 = 0, Lk
21 is an N × 1 vector and represents the leader’s links to the

followers, and Lk
22 is an N ×N matrix that specifies the followers’ connections.

2.7 Output Regulation

The dynamics of the i-th agent in the network is considered as

ẋi(t) = Aixi(t) + Biui(t), i = 1, . . . , N, (2.19)

yi(t) = Cixi(t), (2.20)
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where xi ∈ Rni , ui ∈ Rpi and yi ∈ Rm denote the i-th agent state, control and outputs.

The exo-system dynamics is given by

ω̇(t) = Sω(t), (2.21)

v(t) = Rω(t), (2.22)

where ω ∈ Rr and v ∈ Rm. This exo-system can also be considered as a (virtual) leader

for the team. It is assumed that only a set of agents has access to the exo-system and its

measurements. The i-th agent regulation error is defined as

ei(t) = gi0(yi(t)− v(t)) +
∑

j∈Ni

(yi(t)− yj(t)) (2.23)

= (li ⊗ Im)Cx(t)− gi0Rω(t),

where gi0 = 1 if the i-th agent has access to the exo-system, otherwise gi0 = 0, li is

the i-th row of L, C = blkdiag{Ci} and x(t) = col{xi(t)}. Agents outputs are called

regulated if for i = 1, . . . , N , ei(t) → 0 as t→ ∞ for i = 1, . . . , N .

2.8 Notations

For a vector x = [x1, . . . , xn]
T

we define L1, L2 (Euclidean norm ) and L∞ norm as

‖x‖1 =
∑n

i=1 |xi|, ‖x‖2 =
√

x21 + · · ·+ x2n, ‖x‖∞ = max(|x1|, . . . , |xn|). The signal

x(t) is also represented as x(t) = col{xi(t)}. The function sgn{x(t)} is defined as

sgn{x(t)} =

[

sgn{x1(t)}, . . . , sgn{xn(t)}

]T

,

sgn{xi(t)} =







0 xi(t) = 0

xi(t)
|xi(t)|

xi(t) 6= 0

. (2.24)
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For the vector x the notation diag{x} denotes a diagonal matrix that has diagonal entries

xi’s. The notations In, 1n and 0n×m denote an identity matrix of dimension n×n, a unity

n×1 vector with all its entries as one, and a zero matrix of dimension n×m, respectively.

For a matrixX ∈ Rn×n, the notationX > 0 (X ≤ 0) orX < 0 (X ≤ 0) implies thatX is

a positive definite (positive semi-definite) or a negative definite (negative semi-definite)

matrix. Moreover, ‖X‖ denotes the Euclidean norm of X . For a matrix A ∈ Rm×n, its

2-norm is defined by

‖A‖2 =

{

sup
‖Ax‖2
‖x‖2

: x ∈ Rn, x 6= 0

}

.

The term X−L (X−R) denotes the generalized left (right) inverse of the matrix X . The

terms λi(X), λmin(X) and λmax(X) denote the i-th eigenvalue, the smallest, and the

largest eigenvalues of the matrix X , respectively. For the matrix X , σi(X), σmin(X),

σmax(X), denote the i-th singular value, the minimum singular value, and the largest

singular value of X . The notations Im{X} and Ker{X} denote the image and the kernel

of X . Furthermore, for the matrix X , Sym(X) = X + XT and for the matrix X > 0,

E(X) denotes the ellipsoid E(X) = {x ∈ Rn : xT(t)Xx(t) ≤ 1}. For matrices Xi,

i = 1, . . . ,m the notation diag{Xi} represent the block diagonal matrix that its diagonal

entries are Xis and the rest of entries are zero. The solution to Ric(A,B,R,Q), for

Q > 0, denotes the positive definite solution P > 0 to the following Riccati equation

ATP + PA− PBTR−1BP +Q = 0. (2.25)

Fact 2.1. For vectors x1, . . . , xN ∈ Rn, we always have

2
N∑

i=1,i 6=j

N∑

j=1

xT
i xj ≤

N∑

i=1

xT
i xi, and (

N∑

i=1

xi)
T(

N∑

i=1

xi) ≤ 2(
N∑

i=1

xT
i xi).
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Fact 2.2. For any two matrices X and Y and a positive scaler α we have

XTY + Y TX ≤ αXTX + α−1Y TY.

−(XTY + Y TX) ≤ αXTX + α−1Y TY.

Theorem 2.1. [161] Consider the system

ẋ(t) = Ax(t) + f(x(t), t), (2.26)

where A is Hurwitz stable and x(t) ∈ Rn is the state vector. The system (2.26) is stable

if

‖f(x(t), t)‖2
‖x(t)‖2

<
1

σmax(P )
,

for all x(t) ∈ Rn and t > 0, where P is the solution to

PA+ ATP + 2I = 0.
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Chapter 3

Cost Based Control Reconfiguration for

Consensus Achievement

This chapter tackles the development of distributed control reconfiguration and fault ac-

commodation strategies for consensus achievement in multi-agent systems in the pres-

ence of faulty agents whose actuators are unable to produce their nominal control efforts.

A faulty agent can adversely affect and prevent the team from reaching an agreement and

lead to the mission catastrophic performance degradations. To ensure that the faulty team

pursues its consensus objectives, in this chapter on-line distributed control reconfigura-

tion strategies are developed that employ only nearest neighbors information to guarantee

the team consensus while minimizing a local cost performance index. First, distributed

Hamilton-Jacobi-Bellman equations for the faulty agent are derived. Then, reconfigured
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controllers are designed by solving these equations subject to the faulty agent dynamics

and network structure constraints to ensure fault accommodation of the entire team. The

proposed reconfigurable controllers are applied to a network of autonomous underwa-

ter vehicles subject to actuator faults to demonstrate and illustrate the effectiveness and

capabilities of our proposed fault recovery control strategies.

The remainder of this chapter is organized as follows. In Section 3.1, problem formu-

lation is provided. In Section 3.2 the distributed control reconfiguration methodologies

corresponding to various actuator faults are developed. In Section 3.3, the capabilities

and effectiveness of our proposed controllers for accommodating actuator faults in a net-

work of autonomous underwater vehicles (AUVs) subject to both the leader-follower as

well as the leaderless network architecture are validated through extensive simulations

and finally, Section 3.4 concludes the chapter. A summary of the following is presented

in [147, 162].

3.1 Problem Formulation

Consider a healthy leaderless team of N agents given by (2.1) or a healthy leader-

follower team consisting of a leader given by (2.3) and N agents given by (2.1). The

healthy team consensus error is obtained by concatenating the agents consensus errors

so that the dynamics of the team consensus errors for the leader-follower and the leader-

less network architectures can be expressed as follows

ė(t) = Ae(t) + Bu(t) + L21 ⊗ Bu0(t), (LF network), (3.1)
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ė(t) = Ae(t) + Bu(t), (LL network), (3.2)

where A = IN ⊗A, u(t) = [uT
1(t), u

T
2(t), .., u

T
N(t)]

T, e(t) = [eT
1(t), e

T
2(t), .., e

T
N(t)]

T, B =






L22 ⊗ B LF network

L⊗ B LL network

, L is the network graph Laplacian matrix, and L22 is obtained

by partitioning the Laplacian matrix of the leader-follower network as L =






L11 L12

L21 L22




,

with L11 =
∑N

i=1 g0i, L12 =

[

−g01, . . . ,−g0N

]

, L21 =

[

−g10, . . . ,−gN0

]T

, and L22 =













d1 −g12 ... −g1N

−g21 d2 ... −g2N

... ... ...
...

−gN1 −gN2 ... dN














.

Associated with the team, the cost function of the healthy team is defined as

J(t0) =
N∑

i=1

Ji(t0) =
1

2

∫ ∞

t0

(eT(t)Qe(t) + uT(t)Ru(t))dt, (3.3)

where J(t0) ≡ J(e(t0), u(.), t0), Ji(t0) ≡ Ji(ei(t0), ui(.), t0) = 1
2

∫∞

t0
(ei

T(t)Qei(t) +

uT
i (t)Rui(t))dt, Q = IN ⊗ Q, R = IN ⊗ R, Q and R are positive definite matrices.

Therefore the design objective is as follows:

Healthy team objective: The overall goal is to design the control law u(t) in a dis-

tributed manner so that one can ensure the agents reach a consensus and the team cost

J(t0) is minimized. The following assumption is now made explicit.

Assumption 3.1. The pair (A,B) is controllable and the pair (A,Q1/2) is observable.

We now assume that at time t = tf a fault occurs in the i-th agent which is now sub-
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ject to either a LOE, an outage or a stuck fault. According to (2.15)-(2.18) the dynamics

of this agent can be equivalently written as

ẋi(t) = Axi(t) + Bf
i u

r
i (t) + Bs

i u
s
i , (3.4)

where uri (t) = u(t) = [u1i (t), . . . , u
m
i (t)]

T, Bf
i = BΓi and Bs

i = 0 if the agent is subject

to a LOE fault. Moreover, uri (t) = [u1i (t), . . . , u
k−1
i (t), uk+1

i (t), umi (t)]
T, Bf

i = Bfk =

[b1 . . . , bk−1, bk+1, bm] and Bs
i = 0 if the agent is subject to an outage fault. Finally,

uri (t) = [u1i (t), . . . , u
k−1
i (t), uk+1

i (t), umi (t)]
T, Bf

i = Bfk = [b1 . . . , bk−1, bk+1, bm] and

Bs
i = bk if the agent is subject to a stuck fault where bk is the k-th column of the matrix

B. Associated with the faulty agent the local or agent-based cost performance index for

the i-th agent is defined according to

Ji(tf ) = Ji(tf ) +
∑

j∈Ni

Jj(tf ), (3.5)

where Ji(tf ) ≡ Ji(ei(tf ), ej(tf ), ui(.), uj(.), j ∈ Ni, tf ) and

Ji(tf ) ≡ Ji(ei(tf ), ui(.), tf ) =
1

2

∫ ∞

tf

(ei
T(t)Qei(t) + ur

T

i (t)Ruri (t))dt, (3.6)

denotes the individual cost of the i-th faulty agent, ei(t) represents the consensus er-

ror of the i-th agent and Q and R are positive definite matrices. The design objective

corresponding to the faulty agent/team is now defined as follows.

Faulty team/agent objective: Design uri (t) such that the team reaches a consensus

and the performance index Ji(tf ) is minimized by using local information.

Assumption 3.2. The network communication topology is fixed and the communication

links are bi-directional.

Assumption 3.3. The bounds on the estimated fault severities that are provided by the

FDI module are known a priori, i.e. −ξkiM ≤ ξki ≤ ξkiM , where ξkiM ’s for k = 1, . . . ,m
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are known non-negative constants.

3.2 Proposed Methodology

In this section, the proposed distributed control reconfiguration strategies for two general

case scenarios that are described below is presented:

• Scenario I: the mission starts at t = t0, where all agents are healthy. Then, at

t = tf the first fault occurs and the i-th agent becomes faulty. Multiple concurrent

faults are also subsequently allowed in the i-th agent. In this case, all the neigh-

bors of the i-th faulty agent are assumed to be healthy. The requirements of the

control law to be designed are (a) on-line selection of the control gains, (b) only

employing the information that the i-th agent FDI module has generated, and (c)

employing the faulty agent and its immediate neighbors topological information

that are denoted by li and lj for j ∈ Ni, respectively, where li denotes the i-th

row of the network graph Laplacian matrix. In this scenario, agents share their

information set including their measurements locally. Once the fault is detected,

isolated, and the control is reconfigured, the fault detection, isolation, identifica-

tion and reconfiguration (FDIR) information are also shared.

• Scenario II: a subsequent fault now occurs but in the j-th agent. In this case, at

least one of the neighbors of the faulty agent e.g. the i-th agent is faulty with

already reconfigured control and the rest of the neighbors are healthy. This control
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strategy is designed on-line and the reconfiguration strategy employs the FDIR

information of the faulty neighbors in addition to the information that are required

in the Scenario I above. In this case, the information set that the neighboring

agents share among themselves includes their measurements as well as their FDIR

information.

Note that the reconfiguration strategies employ two kinds of information sets, namely:

1) information that are provided for each agent off-line and before the mission is initi-

ated, such as the agent’s dynamic matrices, and the topological location of an agent and

its neighbors, and 2) information that are shared on-line and among the neighboring

agents during the mission, such as measurements and the FDIR information.

In the following, first we consider the healthy team and the healthy team control law

is presented. Then, the control reconfiguration strategies for a team of N agents having

a faulty agent that is subject to various actuator faults, as in Scenario I, are developed.

Subsequently, the extension of these results to the team with subsequent and concurrent

faults, as in Scenario II, is presented.

Consider a healthy team defined in Section 3.1. Let us select the control protocol for

the i-th healthy agent in LL and LF network as follows

ui(t) = K
∑

j∈Ni

(xi(t)− xj(t)) = Kei(t), (3.7)

ui(t) = K(gi0(xi(t)− x0(t)) +
∑

j∈Ni

(xi(t)− xj(t)) + ki0u0(t) (3.8)

= Kei(t) + ki0u0(t), (3.9)
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where ki0’s are solutions to L22K0 + L21 = 0, where K0 = col{ki0}. This is justified by

the observation that from equations (3.1) and (3.9), we have

ė(t) = (A+ L22 ⊗ BK)e(t) + ((L22K0 + L21)⊗ B)u0(t).

If ki0’s are obtained such that L22K0+L21 = 0, the second term in the above expression

will vanish. Therefore, one only needs to design the gain matrix K. For the sake of

notational simplicity, the same notation for the gains in both networks are employed.

Consequently, and without loss of generality, the team dynamics can be expressed as

ė(t) = Ae(t) + Bu(t). (3.10)

Therefore, the problem of designing a cost-based control strategy for guaranteeing con-

sensus achievement in the healthy team is equivalent to the design of a control law that

stabilizes the system (3.10) asymptotically and minimizes the team performance index

(3.3).

In the next theorem the control design problem for the healthy team is presented.

Theorem 3.1. Consider a leaderless network of N agents whose dynamics are given

by equation (2.1) and a leader-follower network of N followers whose dynamics are

given by equation (2.1) and the leader whose dynamics is given by equation (2.3). More-

over, let Assumptions 3.2 and 3.1 hold. The control law ui(t) ≡ uhi (t) = Khei(t) =

−R−1BTP hei(t) solves the consensus problem:

(a) in the healthy leaderless network architecture, where P h is the solution to the follow-

51



ing optimization problem

max trace P h (3.11)

s.t.






PÃ+ ÃTP + Q̃ PB̃

B̃TP R




 ≥ 0,P = Λ−1

1 ⊗ P h, P h > 0, (3.12)

(b) in the healthy leader-follower network architecture, where P h is the solution to the

following optimization problem

max trace P h (3.13)

s.t.






PA+ATP +Q PB

BTP R




 ≥ 0,P = L−1

22 ⊗ P h, P h > 0, (3.14)

where A and B are defined as in equations (3.1) and (3.2), Q and R are defined as in

equation (3.3), B̃ = Λ1 ⊗ B, Λ1 = diag{λj}, λj’s for j = 2, . . . , N denote the non-zero

eigenvalues of the network graph Laplacian matrix, Ã = IN−1⊗A, and Q̃ = IN−1⊗Q.

Furthermore, under the above control protocol the minimum of the team performance

index (3.3) is bounded by eT(t0)Pe(t0).

Before presenting the proof of the theorem the following lemma is provided which

will be used explicitly in the proof of Theorem 3.1.

Lemma 3.1. Provided that the network of multi-agent systems has a spanning tree and

the pair (A,B) is controllable, then the pair (A,B) is controllable in the leader-follower

network architecture and has n uncontrollable modes in the leaderless network architec-

ture.

Proof. Let C and C denote the controllability matrices for the pair (A,B) and (A,B),
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respectively. Therefore,

C =

[

B AB . . . An(N+1)−1B

]

=

[

Lα ⊗ B Lα ⊗ AB . . . Lα ⊗ An(N+1)−1B

]

= (I ⊗ C1)(Cα ⊗ Lα)(I ⊗ C2),

where Cα =

[

B AB . . . An(N+1)−1B

]

, Lα = L for the leaderless (LL) network

architecture and Lα = L22 for the leader-follower (LF) network architecture, and C1

and C2 denote the permutation matrices. Since C1 and C2 are full rank matrices and

Ai =
∑n−1

j=0 γjA
j for i ≥ n, we have

rank{C} = rank{Lα}rank{C}. (3.15)

If the network graph has a spanning tree, its Laplacian matrix has a simple zero eigen-

value [163], so that rank{L} = N − 1, and from Lemma 3.1 in [147], the matrix L22

is positive definite, which implies that rank{L22} = N . Now, if the pair (A,B) is

controllable, then rank{C} = n, therefore, in the LL network architecture, we have

rank{C} = n(N − 1), and the pair (A,B) has n uncontrollable modes. In the LF net-

work architecture we have rank{C} = nN and the pair (A,B) is controllable. This

completes the proof of the lemma.

Proof. From Lemma 3.1, the pair (A,B) in the LL network has n uncontrollable modes.

Therefore, to asymptotically stabilize the team consensus errors in this architecture, first

the uncontrollable modes are separated from the controllable modes by using a similarity

transformation and then a control law is designed to stabilize the controllable modes. Let
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the transformation T =M ⊗ In be applied to the system (3.2), so that one gets

˙̃e(t) = AT ẽ(t) + BTu(t), (3.16)

where AT = TAT−1 =






Ã 0

0 A




, BT = TB =






B̃1

0




, L = MTΛM , M =






M1

M2




,

ẽ(t) = Te(t) =






ẽ1(t)

ẽ2(t)




, Ã = IN−1⊗A, B̃1 = Λ1M1⊗B, Λ1 is a matrix whose diagonal

elements are non-zero eigenvalues of the Laplacian matrix,M1 ∈ RN−1×N ,M2 ∈ R1×N ,

ẽ2(t) ∈ Rn, and the pair (Ã, B̃1) is controllable. The structures of the matrices AT and

BT reveal that the system (3.16) can be decomposed into two independent subsystems as

follows:

S1 : ˙̃e1(t) = Ãẽ1(t) + B̃1u(t), S2 : ˙̃e2(t) = Aẽ2(t), (3.17)

and the team consensus error signal e(t) can also be written as

e(t) = (MT
1 ⊗ In)ẽ1(t) + (MT

2 ⊗ In)ẽ2(t). (3.18)

The second term in the right-hand side of equation (3.18) can be expressed as

(MT
2 ⊗ In)ẽ2(t) = (MT

2 ⊗ exp(At))(M2L⊗ In)x(t0), (3.19)

where x(t0) =

[

xT
1(t0), x

T
2(t0), . . . , x

T
N(t0)

]T

. Given that M2L = 0, we have (MT
2 ⊗

In)ẽ2(t) = 0, which implies that e(t) converges to zero (or the team reaches a consensus)

if ẽ1(t) is asymptotically stable. Since the pair (Ã, B̃1) is controllable, there exists a

control law u(t) that stabilizes the system S1. Therefore, the control design problem for

the LL network is reduced to that of stabilizing S1. However, this control should also

minimize the team performance index. For this purpose, in the following the effects of

ẽ1(t), ẽ2(t) and u(t) on the team performance index are investigated.
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From the control law (3.7) we have u(t) = Ke(t), where K = IN ⊗K, which can be

expressed as

u(t) = (IN ⊗K)(MT
1 ⊗ In)ẽ1(t) +MT

2 ⊗ In)ẽ2(t))

= (MT
1 ⊗K)ẽ1(t) + (MT

2 ⊗K)ẽ2(t). (3.20)

Let u1(t) = (MT
1 ⊗K)ẽ1(t) and u2(t) = (MT

2 ⊗K)ẽ2(t). Considering that M1 and M2

are orthogonal matrices, u1
T
(t)u2(t) = u2

T
(t)u1(t) = 0 and the team performance index

can be expressed as

J(t0) = J1(t0) + J2(t0)

=
1

2

∫ ∞

t0

(ẽT
1(t)Q̃ẽ1(t) + u1

T
(t)Ru1(t))dt+

1

2

∫ ∞

t0

(ẽT
2(t)Qẽ2(t) + u2

T
(t)Ru2(t))dt, (3.21)

where J(t0) ≡ J(ẽ1(t0), u
1(.), ẽ2(t0), u

2(.), t0), J1(t0) ≡ J1(ẽ1(t0), u
1(.), t0) and J2(t0) ≡

J2(ẽ2(t0), u
2(.), t0). Therefore, from equations (3.17) and (3.21) the team consensus er-

ror dynamics and the performance index for the LL network architecture can be decom-

posed into two subsystems, namely S1 and S2 with the performance indices J1(t0) and

J2(t0), respectively, that are governed by

S1 : ˙̃e1(t) = Ãẽ1(t) + B̃1u1(t),

J1(t0) =
1

2

∫ ∞

t0

(ẽT
1(t)Q̃ẽ1(t) + u1

T
(t)Ru1(t))dt (3.22)

=
1

2

∫ ∞

t0

ẽT
1(t)IN−1 ⊗ (Q+KTRK)ẽ1(t)dt,

S2 : ˙̃e2(t) = Aẽ2(t),

J2(t0) =
1

2

∫ ∞

t0

(ẽT
2(t)Qẽ2(t) + u2

T
(t)Ru2(t))dt (3.23)

=
1

2

∫ ∞

t0

ẽT
2(t)(Q+KTRK)ẽ2(t)dt.

The dynamics above for S1 and S2 reveal that the control gain K has no effect on ẽ2(t),
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implying that J(t0) is minimized if J1(t0) is minimized. Now since

B̃1u
1(t) = (Λ1M1 ⊗ B)(MT

1 ⊗K)ẽ1(t)

= (Λ1 ⊗ B)(IN−1 ⊗K)ẽ1(t),

the system S1 is equivalent to

S : ˙̃e1(t) = Ãẽ1(t) + B̃ũ(t). (3.24)

This implies that stability of the system S1 follows from the stability of the system S,

where B̃ = Λ1 ⊗ B, ũ(t) = K̃ẽ1(t), and K̃ = IN−1 ⊗K. Therefore, if the control gain

K is obtained such that the control law ũ(t) stabilizes S and minimizes J1(t0), then the

control law u(t) stabilizes the system (3.2) and minimizes the team performance index

J(t0).

Considering the above discussion, the optimal control design problem for the LL

network can be transformed into that of a structured LQR problem. Note that the LF

control design problem has similar specifications, therefore it can be transformed into a

structured LQR problem. It is known that the control law u(t) = Ke(t) asymptotically

stabilizes the system given by equation (3.10) and minimizes the team performance index

(3.3) if the Riccati equation

ATP + PA− PBR−1BTP +Q = 0 (3.25)

has a positive definite solution for P . Moreover, the control law ũ(t) = K̃ẽ1(t) asymp-

totically stabilizes the system given by equation (3.24) and minimizes the performance

index J1(t0) if the Riccati equation

ÃTP + PÃ − PB̃R−1B̃TP + Q̃ = 0 (3.26)

has a positive definite solution, where K̃ = −R−1BTP , Q̃ = IN−1 ⊗Q, Ã = IN−1 ⊗ A
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and B̃ = Λ1⊗B. Equations (3.25) and (3.26) have positive definite solutions if the pairs

(A,B) and (Ã, B̃) are controllable and the pairs (A,Q
1

2 ) and (Ã, Q̃
1

2 ) are observable.

It is straightforward to conclude that the pairs (A,Q
1

2 ) and (Ã, Q̃
1

2 ) are observable if

and only if the pair (A,Q
1

2 ) is observable. If the network has a spanning tree, then Λ1

is a positive definite matrix so that the controllability of (A,B) implies that (Ã, B̃) is

also controllable. On the other hand, from Lemma 3.1, if (A,B) is controllable and

the network has a spanning tree then the pair (A,B) is also controllable. If the above

conditions hold, the control law u(t) = Ke(t) asymptotically stabilizes the system given

by equation (3.10) and minimizes the performance index J and the control law ũ(t) =

K̃ẽ1(t) asymptotically stabilizes the system given by equation (3.24) and minimizes the

performance index J1(t0). These imply that the control law u(t) stabilizes the system

(3.2) and minimizes the team performance index J(t0).

The only remaining condition that is needed is to ensure that K and K̃ are block

diagonal matrices. Towards this end, an intermediate step needs to be performed as

described below. From [157], it follows that Riccati equations (3.25) and (3.26) have

solutions if and only if the following maximization problems have solutions, namely

max P s.t. ATP + PA− PBR−1BTP +Q ≥ 0, (3.27)

max P s.t. ÃTP + PÃ − PB̃R−1B̃TP + Q̃ ≥ 0. (3.28)

Consequently, the solution to the equation (3.27) is enforced to be P = L−1
22 ⊗ P h and

the solution to the equation (3.28) is enforced to be P = Λ−1
1 ⊗ P , so that K = −IN ⊗

R−1BTP h, which has the required and desired structure. Note that both constraints in the

above optimization problems can be written as LMI’s by using the Schur complement.
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Therefore, the above formulation transforms the problem of solving the Riccati equations

(3.25) and (3.26) to that of solving convex optimization problems subject to the LMI

constraints. Since the structure of the constraints are also convex, by incorporating them

into the above optimization problems, they still remain convex. It should be noted that

from the results in [164] the matrix P can be approximated as a Kronecker product of two

matrices, so that such structures for P can also be considered. Finally, it can be shown

readily from [157] that the minimum value of the performance index (3.3) is bounded by

eT(t0)Pe(t0).

Remark 3.1. In the above theorem, the optimization problems (3.11) and (3.13) re-

quire the network Laplacian information. However, it should be noted that since these

problems are solved off-line before a mission commences, the agents only require local

measurements and control is implemented in a distributed manner.

Before our control recovery strategies are presented we need to state our main as-

sumption regarding the nature of the faults below.

Assumption 3.4. The following properties are assumed to hold:

(a) Each agent is equipped with a fault detection, isolation and identification (FDI) mod-

ule, which detects the presence of a fault, isolates the fault (that is the fault location),

determines the type of a fault and estimates the fault magnitude/severity in cases of LOE

and stuck faults.

(b) Faults are permanent and there exists a sufficient time between the occurrence of any

two subsequent faults in neighboring agents to allow for the agents to reconfigure their

control laws.

58



(c) Following the injection of a fault, the agent remains controllable, implying that the

outage and the stuck faults cannot occur simultaneously in ALL the actuators of an agent,

while simultaneous LOE faults are permitted.

Regarding the above assumption, we would like to point out the following: Firstly,

Assumptions 3.4(a) and 3.4(c) stating that the agents are equipped with FDI module

and remain controllable after the fault occurrence, respectively, are quite common in the

literature and necessary for performing an on-line fault accommodation and design of

active control reconfiguration strategies. Secondly, the required time between subsequent

faults in neighboring agents is sufficiently small but larger than the time that is required to

compute the reconfigured controller gains. Furthermore, the probability that two agents

are injected with faults at exactly the same time is quite low in practice. However, in

case that neighboring agents become simultaneously faulty, one can still reconfigure the

agents by first allowing agents having high severity faults to be reconfigured, followed

by lower severity faults to be reconfigured next, so that the simultaneous fault situation

would not impose any adverse restrictions on our proposed methodology in real life

applications. Finally, the problem of development of an FDI module that detects, isolates

and estimates the actuator faults in multi-agent systems has already been investigated in

the literature as in e.g. [165–170].
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3.2.1 Control Reconfiguration Subject to the Loss of Effectiveness

Fault

Assume that the i-th agent becomes faulty and its actuators effectiveness are subse-

quently reduced. The dynamics of the consensus error for this agent can be expressed

as

ėi(t) = Aei(t) + diBΓiui(t)−
∑

j∈Ni

Buj(t), (3.29)

and the error dynamics of the nearest neighbors agents can be expressed as

ėl(t) = Ael(t) + dlBul(t)− BΓiui(t)−
∑

j∈Nl,j 6=i

Buj(t), l ∈ Ni (3.30)

and finally for the remaining agents that are not in the nearest neighborhood set of the

faulty agent their error dynamics can be expressed as

ėk(t) = Aek(t) + dkBuk(t)−
∑

j∈Nk

Buj(t), k ∈ N−
i . (3.31)

Equations (3.29)-(3.31) indicate that any actuator fault affects the dynamics of the

consensus error of the faulty agent as well as its nearest neighbors. Therefore, it follows

that the faulty team can preserve its consensus if the control law of the faulty agent is

reconfigured such that the consensus error of the faulty agent and its nearest neighbors

remain asymptotically stable.

The reconfigured control law for the faulty agent should also minimize the cost of

reaching consensus for the entire faulty team. Equation (3.29) states that the consensus

error of the faulty agent depends on the information that is received from the immediate

neighbors of the faulty agent. Due to this characteristics and coupling, the standard op-
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timal control formulation cannot be solved in a straightforward manner by conventional

methods and instead one needs to use Hamilton Jacobi Bellman (HJB) equations to deal

with this situation as described below.

Let J∗
i (t) ≡ J∗

i (ei(t), ej(t), j ∈ Ni, t) denote the optimal value of the i-th agent

cost function Ji(t), i.e. J∗
i (t) = minui(t) Ji(t). Then, the Hamiltonian equation for the

system (3.29) and the performance index (3.5) can be expressed as

Hi(t) = (Jei
i

∗(t))T(Aei(t) + diBΓiui(t)−
∑

j∈Ni

Buj(t))

+
1

2

(
eT
i (t)Qei(t) + uT

i (t)Rui(t)

+
∑

j∈Ni

eT
j (t)Qej(t) + uT

j (t)Ruj(t)
)
, (3.32)

where

Jei
i

∗(t) ≡ Jei
i

∗(ei(t), ej(t), j ∈ Ni, t) =
∂J∗

i (t)

∂ei(t)
and Hi(t) ≡ Hi(ei(t), ej(t), ui(t), uj(t), j ∈

Ni). Therefore, the optimal control law for the i-th agent can be obtained as

u∗i (t) = argmin
ui(t)

Hi(t) = −diR
−1ΓiB

TJei
i

∗(t). (3.33)

By substituting uj(t) ≡ uhj (t), j ∈ Ni from the results of Theorem 3.1 for the healthy

agent j, and also the value of u∗i (t) from equation (3.33) into equation (3.32), the optimal

Hamiltonian is now obtained as

H∗
i (t) =

1

2
eT
i (t)Qei(t)−

1

2
d2i (J

ei
i

∗(t))TFiJ
ei
i

∗(t)

+(Jei
i

∗(t))TAei(t) +
∑

j∈Ni

(Jei
i

∗(t))TFP hej(t)

+
∑

j∈Ni

(1

2
eT
j (t)(Q+ P hFP h)ej(t)

)
, (3.34)

where Fi = BΓiR
−1ΓiB

T and F = BR−1BT. Given that we are dealing with time-

invariant multi-agent systems with the performance index as defined in equation (3.3),
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H∗
i (t) satisfies H∗

i (t) = 0, t > 0 which implies that

∑

j∈Ni

(1

2
eT
j (t)(Q+ P hFP h)ej(t) + (Jei

i
∗(t))TFP hej(t)

)

+
1

2
eT
i (t)Qei(t)−

1

2
d2i (J

ei
i

∗(t))TFiJ
ei
i

∗(t) + (Jei
i

∗(t))TAei(t)

= 0. (3.35)

The above represents a partial differential equation in terms of J∗
i (t) which is not stright-

forward to solve for a given set of general parameters. However, since Ji(t) in equation

(3.5) is quadratic with respect to ei(t), a possible solution can be suggested and expressed

as

J∗
i (t) =

1

2
(eT

i (t)Piei(t) +
∑

j∈Ni

eT
j (t)P

hej(t)). (3.36)

By substituting ei(t) and ej(t) from equation (2.2) and given the fact that Jei
i

∗(t) =

Piei(t), equation (3.35) becomes xTΨix(t) = 0 where

Ψi =
∑

j∈Ni

(
Ljj ⊗ (Q+ P hFP h) + Lij ⊗ PiFP

h + Lji ⊗

P hFPi

)
+ Lii ⊗

(
ATPi + PiA− d2iPiFiPi +Q

)
, (3.37)

where Lij = lTi lj . Note that x(t) = 0 is a trivial solution to xTΨix(t) = 0, although this

equality also holds if there exists a unique positive definite matrix Pi such that Ψi = 0,

which can be expressed as

∑

j∈Ni

(Qj + PhF̄jjP
h + PiF̄ijP

h + PhF̄jiPi)

+ AT
i Pi + PiAi − d2iPiFiiPi +Qi = 0, (3.38)

where Ai = Lii ⊗ A, Ph = IN ⊗ P h , Pi = IN ⊗ Pi, Qi = Lii ⊗ Q, F̄ij = Lij ⊗ F ,

Fii = Lii ⊗ Fi, Fi and F are defined as in equation (3.34). The following lemma now

summarizes the above derivations and result.

Lemma 3.2. Consider a team of N multi-agent systems where the control law for the
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healthy agents is designed according to Theorem 3.1. Suppose that the i-th agent is

subject to LOE faults. Given an exact knowledge of the fault severity Γi, the control law

u∗i (t) = −diR
−1ΓiB

TPiei(t),

minimizes the performance index (3.5), where Pi is the solution to the equation (3.38).

Proof. Follows directly from the derivations preceding the lemma.

The matrix Ph in equation (3.38) has already been designed according to Theorem

3.1, and therefore the matrix Pi is the only unknown matrix in equation (3.38). Further-

more, equation (3.38) is a Riccati equation in terms of Pi, which is a convex function and

its unique solution can be readily obtained. However, from practical considerations the

assumption of perfect information generated by the FDI module may not be realistic. In

other words, the FDI module information may contain uncertainties and inaccuracies as

stated in Assumption 3.3. Therefore, we are concerned with a situation that is in contrast

to the exact knowledge assumption that is made in Lemma 3.2.

To remedy the unavailability of an accurate information on Γi, the reconfigured con-

troller is now proposed as

uri (t) = Kr
i ei(t),

where Kr
i = −diR

−1Γ̂iB
TPi and Γ̂i denotes the estimate of Γi that is assumed to be

generated by the FDI module and Pi is obtained as the solution to the following equation

AT
i Pi + PiAi − d2iPiF̃iiPi +Qi +

∑

j∈Ni

(Qj + PhF̄jjP
h

+PiF̄ijP
h + PhF̄jiPi) = 0, (3.39)
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where F̃ii = Lii ⊗ F̃i, F̃i = B(Γ̂i − 2fiξiM)R-1Γ̂iB
T, F̄ij is defined as in equation

(3.38), ξiM and fi are defined as in equation (2.16). Note that solvability of equation

(3.39) depends on the matrix Ph and the agent’s fault severity as well as the agents

dynamics, the network structure and the value of the design matrices Q and R. In fact if

we denote Ai = Ai+
∑

j∈Ni
F̄ijP

h, Bi = F̃1/2
ii and Qi = Qi+

∑

j∈Ni
(Qj +PhF̄jjP

h),

then equation (3.39) has a unique positive definite solution for Pi if and only if the pair

(Ai,Bi) is controllable and the pair (Ai,Q
1

2

i ) is observable. Therefore, the following

assumption is now required.

Assumption 3.5. The pair (Ai,Bi) is controllable and the pair (Ai,Q
1

2

i ) is observable.

We are now in a position to state our main result of this subsection.

Theorem 3.2. Consider a team of N multi-agent systems where the control law for the

healthy agent is designed according to Theorem 3.1. Suppose that at t = tf the i-th agent

is subjected to LOE faults. Provided that the reconfigured control law for this agent is

set to

uri (t) = Kr
i ei(t), (3.40)

guarantees that the team reaches a consensus and the value of the local cost performance

index (3.5) is given by J∗
i (tf ) = eT

i (tf )Piei(tf ) + Jiξ(tf ); where Kr
i = −diR

−1Γ̂iB
TPi,

and Pi is the solution to

max trace Pi (3.41)

s.t.






Φ1
i diPiF̃

1

2

ii

diF̃
1

2

iiPi I




 ≥ 0,






Φ2
i PiĒ

1

2

ii

Ē
1

2

iiPi −di ∗ I




 ≤ 0,

Pi > 0,
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where Pi = IN ⊗ Pi, Φ
1
i = AT

iPi + PiAi +Qi + Pi

∑

j∈Ni
F̄ijP

h +
∑

j∈Ni
PhF̄jiPi +

∑

j∈Ni
(Qj+PhF̄jjP

h), l ∈ Ni, Φ
2
i = di(PiẼilP

h+PhẼT
ilPi)+Ph(diĒil−F̄il−F̄T

il)P
h

for l ∈ Ni, F̃ii = Lii ⊗ F̃i, F̃i = B(Γ̂i − 2fiξiM)R-1Γ̂iB
T, Ai and Qi are defined as in

equation (3.38), F̄ij = Lij⊗F , F = BR−1BT, Ẽil = Lil⊗Ẽi, Ẽi = BΓ̂iR
−1Γ̂iB

T, Ēil =

Lll⊗Ēi, Ēi = BfiξiMR
−1Γ̂iB

T, Jiξ(tf ) = −2d2i
∫∞

tf
eT
i (t)PiBfi(ξiM+ξi)R

−1Γ̂iB
TPiei(t)dt,

Γ̂i denotes the estimated value of the fault severities, fi and ξiM are defined in equation

(2.16), Ph = IN ⊗ P h, and P h is obtained from Theorem 3.1.

Proof. The objective of the reconfigured control design is to asymptotically stabilize

the faulty agent consensus error dynamics while ensuring that the nearest neighboring

agents’ errors also remain asymptotically stable. Consider Vi(t) = eT
i (t)Piei(t) as a

Lyapunov function candidate for the faulty system (3.29). The time derivative of Vi(t)

along the trajectories of the system (3.29) becomes

V̇i(t) = (Aei(t) + diBΓiui(t)−
∑

j∈Ni

Buj(t))
T

Piei(t)

+eT
i (t)Pi(Aei(t) + diBΓiui(t)−

∑

j∈Ni

Buj(t)).

By substituting ui(t) ≡ uri (t), ei(t) and uj(t), j ∈ Ni from equations (3.40), (2.2) and

Theorem 3.1, respectively, into the above equation yields

V̇i(t) = xT(t)(Lii ⊗ (ATPi + PiA− 2d2iPiEiPi)

+
∑

j∈Ni

(Lij ⊗ PiFP
h + Lji ⊗ P hFPi))x(t)

= xT(t)(AT
i Pi + PiAi − 2d2iPi(Lii ⊗ Ei)Pi

+
∑

j∈Ni

(PiF̄ijP
h + PhF̄jiPi))x(t), (3.42)

whereEi = BΓ̂iR
−1ΓiB

T, F̄ij = Lij⊗F and F = BR−1BT. If the matrix Pi represents
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the positive definite solution to equation (3.39) then V̇i(t) can be written as

V̇i(t) = −xT(t)
(
d2iPi(Lii ⊗ (2Ei − F̃i))Pi +Qi

+
∑

j∈Ni

(Qj + PhF̄jjP
h
)
x(t).

This can equivalently be expressed as

V̇i(t) = −eT
i (t)(Q+ d2iPiBΓ̂iR

−1(Γ̂i + 2fi(ξiM + ξi)B
TPi)

ei(t)−
∑

j∈Ni

eT
j (t)(Q+ P hFP h)ej(t) < 0, (3.43)

which implies that ei(t) is asymptotically stable.

Next, to investigate the stability properties of the consensus error signals correspond-

ing to the nearest neighbors of the faulty agent, consider Vl(t) = eT
l (t)P

hel(t) for l ∈ Ni.

Note that Vl(t) denotes a Lyapunov function candidate for the system (3.30), where P h

is obtained from Theorem 3.1. The time derivative of Vl(t) along the trajectories of the

system (3.30) becomes

V̇l(t) = (Ael(t) + dlBul(t)−
∑

j∈Nl,j 6=i

Buj(t))
T

P hel(t)

+eT
l (t)P

h(Ael(t) + dlBul(t)−
∑

j∈Nl,j 6=i

Buj(t))

−(uT
i (t)ΓiB

TP hel(t) + eT
l (t)P

hBΓiui(t)).

We need to ensure that V̇l(t) remains negative definite subsequent to the invocation of the

reconfiguration control law (3.40). Let us denote V̇l(t) corresponding to the reconfigured

system and the healthy system by V̇ r
l (t) and V̇ h

l (t), respectively. Since V̇ h
l (t) < 0, it

is sufficient to ensure that V̇ r
l (t) ≤ V̇ h

l (t), which is achieved if the following inequality
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holds:

uri
T(t)ΓiB

TP hel(t) + eT
l (t)P

hBΓiu
r
i (t) ≥

uhi
T(t)BTP hel(t) + eT

l (t)P
hBuhi (t), l ∈ Ni, (3.44)

where the control laws uhi (t) and uri (t) are specified according to Theorem 3.1 and equa-

tion (3.40), respectively. By substituting uhi (t), u
r
i (t), ei(t) and el(t) into the inequality

(3.44), it follows that this inequality holds if

di(PiEilP
h + PhET

ilPi)− (PhF̄ilP
h + PhF̄T

ilP
h) ≤ 0, l ∈ Ni (3.45)

where Eil = Lil ⊗ Ei. The inequality (3.45) cannot be verified due to the unavailability

of Γi in Ei. Let us denote the left-hand side of (3.45) by T and decompose Ei into

Ei = Ẽi +BΓ̂iR
−1ξiB

T, where Ẽi = BΓ̂iR
−1Γ̂iB

T. Therefore, T can be written as

T = di(PiẼilP
h + PhẼT

ilPi + PiÊilP
h + PhÊT

ilPi)

−(PhF̄ilP
h + PhF̄T

ilP
h) (3.46)

where Êil = Lil ⊗ Êi, Ẽil = Lil ⊗ Ẽi and Êi = BΓ̂iR
−1fiξiB

T. Let

PiÊilP
h = Lil ⊗ PiBξiR

−1Γ̂iB
TP h.

Given that ξi = diag{|ξki |sgn{xki }}, by using the fact that XTY + Y TX ≤ XTX +

Y TY for XT = lTi ⊗ PiBdiag{|ξki |
1

2 sgn{xki }}R
− 1

2 Γ̂
1

2

i and Y = ll ⊗ diag{|ξki |
1

2 sgn{xki }}

R− 1

2 Γ̂
1

2

i B
TP h, the expression (3.46) is reduced to

T ≤ di(PiẼilP
h + PhẼT

ilPi + Pi(Lii ⊗ PiB|ξi|R
−1Γ̂iB

T)

Pi + Ph(Lll ⊗ PiB|ξi|R
−1Γ̂iB

T)Ph)− Ph(F̄il + F̄T
il)P

h

≤ di(PiẼilP
h + PhẼT

ilPi + PiĒiiPi + PhĒilP
h)

−Ph(F̄il + F̄T
il)P

h

where |ξi| = diag{|ξki |}, Ēil = Lll ⊗ Ēi and Ēi = BfiξiMR
−1Γ̂iB

T. This implies that if
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Pi is found such that

di(PiẼilP
h + PhẼT

ilPi + PiĒiiPi)

+Ph(diĒil − F̄il − F̄T
il)P

h ≤ 0, (3.47)

then the inequality (3.45), and consequently the inequality (3.44) will also be satisfied.

The above observations on the properties of ei(t) and el(t), l ∈ Ni indicate that the

proposed reconfigurable controller guarantees the asymptotic stability of the consensus

errors if the matrix Pi satisfies the equation (3.39) as well as the inequality (3.47). Given

that equation (3.39) is a Riccati equation in terms of Pi, it has a solution if and only if

the following maximization problem is feasible [157]:

max trace Pi (3.48)

s.t. AT
iPi + PiAi − d2iPiF̃iiPi +Qi +

∑

j∈Ni

(Qj

+PhF̄jjP
h + PiF̄ijP

h + PhF̄jiPi) ≥ 0, (3.49)

which implies that the problem of solving the Riccati equation (3.39) can be formulated

as a maximization problem subject to the constraint (3.49). Using the Schur complement,

the constraint (3.49) and the inequality (3.47) can be written according to the following

LMIs, namely





Φ1
i diPiF̃

1

2

ii

diF̃
1

2

iiPi I




 ≥ 0 and






Φ2
i PiĒ

1

2

ii

Ē
1

2

iiPi −di ∗ I




 ≤ 0,

where Φ1
i and Φ2

i are defined as in the problem (3.41). The above inequalities can be

imposed as extra constraints on the maximization problem (3.48).

Now, given that ui(t) = −diR
−1Γ̂iB

TPiei(t) and uj(t) = −R−1BTP hej(t), by
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integrating both sides of (3.43) from tf to ∞ one obtains
∫ ∞

tf

V̇i(t)dt = −

∫ ∞

tf

(
eT
i (t)Qei(t) + uT

i (t)Rui(t) +
∑

j∈Ni

(eT
j (t)Qjej(t) + uT

j (t)Ruj(t))
)
dt

−2d2i

∫ ∞

tf

eT
i (t)PiBΓ̂iR

−1fi(ξiM + ξi)B
TPidt. (3.50)

Therefore,

J∗
i (tf ) = Ji(tf ) +

∑

j∈Ni

Jj(tf ) = eT
i (tf )Piei(tf ) + Jiξ(tf ),

where Jiξ(tf ) = −2d2i
∫∞

tf
eT
i (t)PiBΓ̂iR

−1fi(ξiM + ξi)B
TPidt. Since ei(t) is asymptoti-

cally stable, Jiξ(tf ) will be bounded and this completes the proof.

3.2.2 Control Recovery Subject to the Stuck and the Outage Faults

Provided that the k-th actuator of the i-th agent freezes at a particular constant value of

uki corresponding to the stuck fault, the dynamics of the i-th faulty agent is then governed

by

ėi(t) = Aei(t) + diBu
f
i (t)−

∑

j∈Ni

Buj(t), (3.51)

and the dynamics of the nearest neighbor agents of the faulty agent is

ėl(t) = Ael(t) + dlBul(t)− Bufi (t)−
∑

j∈Nl,j 6=i

Buj(t), l ∈ Ni, (3.52)

where ufi (t) =

[

u1i (t), . . . , u
k−1
i (t), uki , u

k+1
i (t), . . . , umi (t)

]T

. The dynamics of the re-

maining healthy agents that are not communicating with the i-th faulty agent are gov-

erned by equation (3.31). Consider the system (3.4). In order to design a reconfigured

control law uri (t) that accommodates the effects of these two faults three scenarios are

considered, namely:
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Scenario (i) uki = 0,

Scenario (ii) uki 6= 0, however the FDI module provides the exact value of uki and

bk ⊂ Im{Bfk}. This scenario is now designated as the Condition (a) in the remainder,

and

Scenario (iii) uki 6= 0 however either the FDI module estimation information is inac-

curate, i.e. uki = ûki + ξki with |ξki | ≤ ξkiM or bk 6⊂ Im{Bfk}.

Below the specific control laws for each scenario is developed and presented.

Scenario (i): This case refers to the outage fault and the structure of the reconfigured

control law is now considered as uri (t) = Kr
i ei(t). By following along the same steps

as those provided for the LOE fault in Theorem 3.2, a similar optimization problem can

be obtained. The solution to this problem can be used to compute the control gains Kr
i .

The optimization problem and design of the control gains are provided in Theorem 3.3.

Scenario (ii): For this case, the reconfigured control law is selected as uri (t) =

Kr
i ei(t) + uri where Kr

i is designed as in the Scenario (i) above. If bk ⊂ Im{Bfk}

and the exact value of uki is available then there exists uri such that
m∑

j=1,j 6=k

bjujri = −bkuki . (3.53)

That is the effects of the stuck fault can be fully compensated for, where ujri is the j-th

element of uri and bj is the j-th column of the matrix B. However, in order to have a

finite performance index, a modified cost performance index is now defined for the i-th
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faulty agent as

JM
i (tf ) = J

M
i (tf ) +

∑

j∈Ni

Jj(tf ), (3.54)

where JM
i (tf ) ≡ JM

i (ei(tf ), ũi(.), ej(tf ), uj(.), j ∈ Ni, tf ), J
M
i (tf ) ≡

J
M
i (ei(tf ), ũi(.), tf ) =

∫∞

tf
(eT

i (t)Qei(t) + ũT
i (t)R̄ũi(t))dt, with Jj defined as in equation

(3.6), ũi(t) = uri (t) − usi , u
s
i = limt→∞ uri (t), and R̄ is obtained by removing the k-th

column and row of the matrix R. In both the above two cases, as shown in Theorem 3.3

subsequently, one can guarantee that the consensus error converges to zero asymptoti-

cally.

Scenario (iii): If Condition (a) does not hold and there does not exist a vector uri

such that equation (3.53) holds, the error due to the stuck fault cannot be fully accom-

modated for. Therefore, one has to accept a degraded performance objective and design

the reconfigured control law that guarantees only boundedness of the consensus error. In

this scenario, the control law is selected as uri (t) = Kr
i ei(t) + uri , where Kr

i is designed

as in Scenario (i) and uri is selected as the solution to:

min
ur
i

m∑

j=1,j 6=k

|bjujri + bkûki |, (3.55)

where ûki is the estimated value of the stuck fault generated by the FDI module. This con-

trol law stabilizes the consensus error of the faulty agent and the consensus error bound

will be esi = limt→∞ ei(t) = AclΠ
k
i , where Πk

i =
∑m

j=1,j 6=k b
jujri + bkuki and Acl denotes

the dynamics of the faulty agent consensus error and is the i-th block of the block-matrix

A−1
cl .(l

T
i ⊗ In) where Acl = −(A + (L22 ⊗ In)B

fK), Bf = diag{B, . . . , Bfk, . . . , B},

K = diag{K, . . . ,Kr
i , . . . , K}.
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The next theorem summarizes the above results formally.

Theorem 3.3. Consider a team of N multi-agent systems where the control law for the

healthy agent is governed according to Theorem 3.1.

(A) Suppose at t = tf the k-th actuator of the i-th agent is subject to the outage fault.

The distributed reconfigured control law uri (t) = Kr
i ei(t) guarantees the team consensus

and the local cost performance index (3.5) is given by J∗
i (tf ) = eT

i (tf )Piei(tf ) if the

following optimization problem has a positive definite solution to Pi, namely

max trace Pi (3.56)

s.t.






Φi PiF
1

2

ii

F
1

2

iiPi I




 ≥ 0

di(PiFilP
h + PhFT

ilPi) ≤ PhF̄ilP
h + PhF̄T

ilP
h, l ∈ Ni,

Pi = IN ⊗ Pi > 0,

where J∗
i (tf ) ≡ J∗

i (ei(tf ), tf ), K
r
i = −diR̄

−1BfkT
Pi, Φi = AT

iPi + PiAi + Qi +

Pi

∑

j∈Ni
F̄ijP

h+
∑

j∈Ni
PhF̄jiPi+

∑

j∈Ni
Qj +PhF̄jjP

h, Ph is obtained from Theo-

rem 3.1, F̄ij , Ai and Qi are defined as in equation (3.38), Fil = Lil⊗Fi, Fii = Lii⊗Fi,

and Fi = d2iB
fkR̄−1BfkT

.

(B) Suppose at t = tf the k-th actuator of the i-th agent freezes at the specified value uki

and let the reconfigured control law be selected as uri (t) = Kr
i ei(t) + uri . It can then be

shown that:

(B-1) The control uri (t) guarantees that the team reaches a consensus and the local cost

performance index (3.54) is given by JM∗
i (tf ) = eT

i (tf )Pie(tf ), if Condition (a) holds;

where JM∗
i (tf ) ≡ JM∗

i (ei(tf ), tf ), K
r
i = −diR̄

−1BfkT
Pi, Pi is the solution to the maxi-

mization problem (3.56), and uri is a solution to equation (3.53).
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(B-2) The control uri (t) guarantees that consensus error of the faulty agent remains

bounded and the local cost performance index (3.54) is given by JM∗
i (tf ) = eT

i (tf )Piei(tf )+

Jid(tf ); where JM∗
i (tf ) ≡ JM∗

i (ei(tf ), tf ), K
r
i = −diR̄

−1BfkT
Pi, Pi is the solution

to the maximization problem (3.56), uri and Πk
i are defined as in the problem (3.55),

Jid(tf ) ≡ Jid(e(tf ), tf ) = 2Πk
iPiēi − esi

T(tf )Pie
s
i and ēi =

∫∞

tf
ei(t)dt.

Proof. Consider Vi(t) = eT
i (t)Piei(t) as a Lyapunov function candidate for the system

(3.51) and let us replaceBΓiui(t) byBf
i u

r
i (t)+B

s
i u

s
i . By following along the same lines

as provided in the proof of Theorem 3.2, the above results can be shown and concluded.

These details are not included due to space limitations.

3.2.3 Control Recovery Subject to Subsequent Concurrent Faults

In the previous two subsections, it was assumed that the faulty agent is subject to only

one type of fault and only associated with the LOE fault type one can have multiple faults

in different actuator channels and all the neighbors of the faulty agent are healthy. In this

subsection, our previous results are extended to the cases where the faulty agents are

subject to concurrent multiple fault types and when subsequent faults do occur in faulty

agents. Towards this end, and without loss of generality, let us assume that the i-th agent

with m actuators becomes faulty, such that the first m1i actuators are subject to the LOE

fault, the actuators m1i + 1 to m2i are subject to the outage fault, the actuators m2i + 1

to m3i are subject to the stuck fault, and finally the actuators m3i + 1 to m are healthy.
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In this case, the consensus error dynamics of the i-th agent becomes

ėi(t) = Aei(t) + diB
f
i u

f
i (t)−

∑

j∈Ni

Buj(t), (3.57)

whereBf
i = BiΓi,Bi =

[

Bi1 Bi3 Bi4

]

,Bi1 =

[

b1 . . . bm1i

]

,Bi2 =

[

bm1i+1 . . . bm2i

]

,

Bi3 =

[

bm2i+1 . . . bm3i

]

,Bi4 =

[

bm3+1 . . . bm
]

, ufi (t) =

[

uloei (t)T usi (tf )
T uhi (t)

T

]T

,

uloei (t) =

[

u1i (t) . . . um1i

i (t)

]T

, usi (tf ) =

[

um2i+1
i (tf ) . . . um3i

i (tf )

]T

,

uhi (t) =

[

um3i+1
i (t) . . . umi (t)

]T

and Γi = diag{Γ1
i , . . . ,Γ

m1i

i , 1, . . . , 1
︸ ︷︷ ︸

m−m2i

}. Comparing

equation (3.57) with equations (3.29) and (3.51), and considering the results that are

stated in Theorems 3.2 and 3.3, justifies that the reconfigured control law can be selected

as

uri (t) = Kr
i ei(t) + uri ,

where Kr
i = −diR

−1Γ̂iB̄
fT

i Pi, Pi is the solution to the maximization problem (3.41) for

F̃i = Bf
i (Γ̂i−2fiξiM)R-1Γ̂iB

f
i , B̄fT

i =

[

Bi1 0n×(m3i−m1i+1) Bi4

]

,Bf
i =

[

Bi1 Bi4

]

,

and the remaining variables are the same as those defined in Theorem 3.2. Furthermore,

uri can be obtained as the solution to

min
ur
i

m1i∑

k=1

|bkΓ̂k
i u

kr
i +

m∑

k=m3i+1

bkukri +

m3i∑

k=m2i+1

bkûki |.

Let us now consider that one of the i-th faulty agent neighbors, say agent l, becomes also faulty.

The dynamics of the l-th faulty agent can be expressed as

ėl(t) = Ael(t) + dlB
f
l u

f
l (t)− Bf

i u
r
i (t)−

∑

j∈Nl,l 6=i

Buj(t)− Πi, (3.58)

whereBf
l , ufl (t) are as defined in (3.57) for l = i and Πi =

∑m1i

k=1 b
kΓk

l u
kr
i +
∑m

k=m3i+1 b
kukri +

∑m
k=m3i+1 b

kukri +
∑m3i

k=m2i+1 b
kuki .
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Consider the dynamics of the consensus errors that are governed by equations (3.57)

and (3.58) and the results that are obtained in Theorems 3.2 and 3.3. It can be shown

that the reconfigured control law for the l-th agent can be designed in the same manner

as that of the i-th agent by utilizing the matrices Pi and Fi for the i-th faulty neighbor

of the l-th agent alternatively as opposed to P h and F̄ that are given in Theorems 3.2

and 3.3. Note that if the stuck faults are as specified in Scenario (iii) then Πi 6= 0 and

the reconfigured control law can only guarantee the boundedness of the consensus error.

These details are omitted due to space limitations.

3.3 Simulation Results

In this section, our proposed control recovery approaches are applied and evaluated to

a leader-follower as well as a leaderless network of Autonomous Underwater Vehicles

(AUVs). Towards this end, two AUVs networks are considered and the team behavior

and its performance under several scenarios are investigated. Specifically, we consider

cases when (a) the agents are healthy, (b) when the agents are subject to the LOE, the

outage and the stuck actuator faults, and (c) when there are delays in generating the FDI

information. The team consists of Sentry Autonomous Underwater Vehicles (AUVs).

Sentry, made by the Woods Hole Oceanographic Institution [171], is a fully autonomous

underwater vehicle which is capable of surveying to the depth of 6000 m. The linearized

model of the sentry is of six degrees of freedom, but it is commonly decomposed into four

non-interacting subsystems, namely: the speed subsystem (u), the steering subsystem

(v, r, ψ), the diving subsystem (ω, q, z, θ) and the roll subsystem (φ).
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3.3.1 Leader-follower (LF) Network of AUVs

In the first part of simulations, our mission is to have all the agents maneuver at a given

depth. Therefore, we only consider the diving subsystem. The diving subsystem of the

i-th agent is governed according to equation (2.1) with

A =














−0.51 0.56 0 0.001

0.22 0.35 0 −0.01

1 0 0 1

0 1 0 0














, B =














0.143 0.118

−0.126 0.156

0 0

0 0














, xi(t) =

[

ωi(t), qi(t), zi(t), θi(t)

]T

, ui(t) =

[

δbi (t), δ
s
i (t)

]T

, where ωi(t), qi(t), zi(t),

θi(t), δ
b
i (t) and δsi (t) denote the heave speed, pitch rate, depth, pitch, bone and stern

plane deflections, respectively.

First, let us consider the network communication graph as shown in Figure 3.1. It

is assumed that the agent 0 designates the team leader and its desired depth trajectory

represents a trapezoid as shown in Figures 3.2-3.4, and where agents 1 to 6 designate the

followers.

Figure 3.1: The topology of the leader-follower (LF) network of AUVs.
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The initial state of the vehicles is considered as x00 =

[

3, 0, 500, 2

]T

, x10 =

[

2, 0, 450,−1

]T

,

x20 =

[

1, 0, 480,−3

]T

, x30 =

[

3, 0, 550, 1

]T

, x40 =

[

4, 0, 600, 4

]T

, x50 =

[

2, 0, 510,−1

]T

,

and x60 =

[

2.5, 0, 500,−5

]T

. Suppose the mission starts at t = 0 s and is terminated at

the time t = 1000 s, and its objective is to have all the six followers follow the leader

depth trajectory. The following Scenarios A-E are considered for conducting our simu-

lation case studies where the summary of the agents and the team performance indices

are provided in Table 3.1.

Scenario A: In this case the performance and behavior of the healthy team is in-

vestigated. Therefore, the agents control laws are designed and specified according to

Theorem 3.1. The results are shown in Figure 3.2.

In Scenarios B, C and D below the behavior and performance of the team subject

to the LOE fault, the outage fault and the stuck fault are studied, respectively. Towards

this end, during 0 ≤ t < 200 s the agents and their control laws are considered to be

the same as those governed by the Scenario A. At time t = 200 s the faults are injected

and after a delay of ∆ s the control reconfiguration for the faulty agent is initiated. The

details corresponding to each scenario are provided below:

Scenario B: The LOE fault is injected to the agent 5 where the effectiveness of

the first and the second actuators are reduced to 50% and 30% of their nominal values

respectively, and the fault severity estimation uncertainty is considered to be 10% and

∆’s are selected as ∆ = 250 s, 400 s, 500 s corresponding to consecutively larger delays
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in invoking the recovery strategy.

Scenario C: The outage fault is injected to the second actuator of the agent 1 and

∆’s are selected as ∆ = 20 s, 40 s, and 60 s.

Scenario D: The stuck fault is injected to the second actuator of the agent 3. The

stuck fault is considered as u23 = 1 and ∆’s are selected as ∆ = 10 s, 25 s, and 35 s.

Scenario E: In this scenario the effects of the concurrent outage and LOE faults are

considered. For this purpose, at t1 = 200 s the outage fault is injected to the second

actuator of the agent 4 and at t2 = 500 s, a 50% loss of effectiveness is injected to

the second actuator of the agent 3. The initiations of the recovery strategy delay for

the first and the second faults are considered as ∆1 = 50 s, 100 s, and 150 s and

∆2 = 100 s, 200 s, and 300 s, respectively.

Scenario F: In this scenario simultaneous faults are considered. For this purpose at

t = 200 s an outage fault is injected to the second actuator of the agent 1 and a 50%

loss of effectiveness is injected to the second actuator of the agent 4. The agent 1 is

reconfigured immediately and the agent 4 is reconfigured after one second of delay.

The agents and the team performance indices for the above scenarios are given in

Table 3.1, but due to space limitations, only the depth trajectories for certain scenarios

are shown in Figures 3.2, 3.3 and 3.4.
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Finally, in order to evaluate and compare the performance capabilities of our pro-

posed approach, we also consider a control reconfiguration design strategy as imple-

mented by a High-Level Supervisor (HLS), along the lines that are proposed in [142].

Specifically, the scenarios A-E are repeated by using this control strategy that is based on

an LQR control reconfiguration approach. The supervisor receives the FDI information

from all the agents and redesigns the agents control laws according to an LQR approach

and by considering the network structure.

Figure 3.2: The depth trajectories of the agents corresponding to the Scenarios A and B.

The following is a summary of our general observations and conclusions that are

derived based on the above results:

• In presence of the LOE fault the team remains stable. However, the fault deterio-

rates the team performance and by reconfiguring the faulty agent control law the

team performance is shown to be improved.

• In presence of the outage fault in one agent the entire team becomes unstable. Fig-
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Figure 3.3: The depth trajectories of the agents corresponding to the Scenario C.

Figure 3.4: The depth trajectories of the agents corresponding to the Scenario D.
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Scenarios and Delays in

Recovery Invocation

J1 J2 J3 J4 J5 J6 J J/JA J/JA with

LQR based by

using HLS [142]

A 4.29e+06 4.81e+05 2.41e+06 1.93e+06 7.75e+04 2.38e+05 9.42e+06 1 1

B; ∆ = 250 4.31e+06 5.08e+05 2.44e+06 1.94e+06 2.60e+05 2.38e+05 9.69e+06 1.028 1.022

B; ∆ = 400 4.31e+06 5.15e+05 2.44e+06 1.95e+06 2.65e+05 2.41e+05 9.72e+06 1.030 1.027

B; ∆ = 500 4.32e+06 5.19e+05 2.44e+06 1.95e+06 2.73e+05 2.41e+05 9.74e+06 1.034 1.032

C; ∆ = 20 1.94e+07 5.13e+05 2.43e+06 1.94e+06 8.94e+04 2.36e+05 2.47e+07 2.62 2.48

C; ∆ = 40 2.60e+07 5.19e+05 2.43e+06 1.95e+06 9.76e+04 2.40e+05 3.12e+07 3.31 2.94

C; ∆ = 60 6.58e+07 5.54e+05 2.45e+06 2.01e+06 1.60e+05 2.69e+05 7.12e+07 7.55 4.87

D; ∆ = 10 4.23e+06 5.09e+05 3.10e+06 4.53e+06 1.15e+05 2.55e+05 1.29e+07 1.36 1.182

D; ∆ = 25 4.43e+06 5.11e+05 3.15e+06 5.05e+06 1.19e+05 2.57e+05 1.35e+07 1.43 1.23

D; ∆ = 35 4.59e+06 4.54e+05 4.70e+06 2.47e+07 2.19e+05 2.95e+05 3.51e+07 3.72 2.97

E; ∆1 = 50,∆2 = 100 4.33e+06 4.93e+05 2.45e+06 3.82e+08 8.81e+04 2.38e+05 3.90e+08 40.5 36.23

E; ∆1 = 100,∆2 = 200 4.59e+06 5.73e+05 2.49e+06 4.34e+08 2.08e+05 2.97e+05 4.42e+08 45.89 40.85

E; ∆1 = 150,∆2 = 300 1.28e+07 3.02e+06 3.62e+06 2.14e+09 3.91e+06 2.17e+06 2.17e+09 225.5 158.14

F; ∆1 = 0,∆2 = 1 1.45e+07 6.04e+05 2.50e+06 1.11e+07 1.66e+05 4.67e+05 3.04e+07 3.23 3.02

Table 3.1: The performance indices corresponding to the leader-follower (LF) network (note ∆ denotes the delay in invoking

the control recovery strategy, J denotes the team performance index (with possibly faulty agents) and JA denotes the healthy

team performance index).
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ure 3.3 confirms that the proposed reconfiguration control law strategy can accom-

modate this fault successfully. Furthermore, Figure 3.3 shows that in this scenario

the team performance is quite sensitive to the FDI and control recovery delay and

the mission will fail completely if the fault is not recovered before 60 s. There-

fore, ∆ = 60 s can be considered as the largest tolerable FDI delay. Note that no

simulations were conducted with larger delays.

• The team behavior that is subject to the stuck fault is similar to that of the outage

fault. This implies that this fault can also make the team unstable. The reconfig-

ured control law ensures that the team that is subject to the stuck fault in one agent,

such as the agent 3, has a stable consensus error. Since in this case Condition (a)

does not hold as stated in Theorem 3.3-B2, it follows from Figure 3.4 that the

consensus errors remain only bounded and do not converge to zero.

• The index J/JA represents the ratio of the team performance index (J) correspond-

ing to each scenario with respect to the healthy team performance index (JA). This

index illustrates how different fault scenarios and the FDI and control recovery

delays affect the team performance. For example, the delay of 10 s in Scenario C

increases the team performance by 153%, whereas the same delay for the Scenario

D increases the performance by only 36%.

• Comparing the results of the team that employs our distributed control reconfigura-

tion strategy with the team that employs the LQR-based control recovery designed

by the HLS [142], it can be concluded (as shown in the last two columns of Ta-

ble 3.1) that when the team is subject to LOE fault or stuck/outage with small
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FDI delays both approaches result in a similar cost performance values, whereas

when the team is subject to outage or stuck fault and large FDI delays the LQR-

based scheme performance is better. In fact, the team that employs the LQR-based

scheme has a faster response and deviations of the agents state from the leader

state are compensated in a shorter time period and the overall team performance

was improved. Regarding this observation we should point out that: first, the

design procedure in LQR-based approach is centralized and requires the team in-

formation while our approach is distributed and uses only the local information.

Second, these scenarios (stuck and outage) correspond to unstable systems where

the deviations are large, so that the fault can be detected quickly or the FDI and

control recovery delays can be kept small.

3.3.2 Leaderless (LL) Network of AUVs

In the second set of simulation studies, let us assume that the agent 0 is removed from

the network. This implies that one now has a leaderless (LL) network consisting of

six AUVs and the resulting communication graph is the same as that of the followers

communication graph shown in Figure 3.1. The agents initial conditions are selected

to be the same as that of the initial conditions of the agents 1 to 6 in the LF network

and similar fault scenarios are now considered, except that in this case study the fault

injection time is considered to be at t = 10 s and various FDI and control recovery

delays are considered. Figures 3.5 and 3.6 depict the simulated leaderless team which

show that the team remains stable in presence of various actuator fault scenarios (this is
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achieved by reconfiguring the control laws where the final consensus state becomes close

to that of the healthy team state). The ratio of the team performance index corresponding

to each scenario with respect to the healthy team performance index are also given in the

last column of Table 3.2. These ratios show how the reconfigured control improves the

performance of the faulty team.

Figure 3.5: The depth trajectories of the agents corresponding to the Scenarios A and B.

Figure 3.6: The depth trajectories of the agents corresponding to the Scenarios C and D.
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Scenarios and Delays

in Recovery Invocation

J1 J2 J3 J4 J5 J6 J J/JA

A 7.14e+05 2.78e+06 9.87e+06 2.71e+06 1.35e+06 2.41e+06 1.98e+07 1

B; ∆ = 10 7.88e+05 3.00e+06 1.06e+07 3.14e+06 1.93e+06 2.52e+06 2.19e+07 1.106

B; ∆ = 30 7.80e+05 3.02e+06 1.06e+07 3.14e+06 1.96e+06 2.54e+06 2.21e+07 1.115

B; ∆ = 60 8.32e+05 3.03e+06 1.07e+07 3.19e+06 2.10e+06 2.54e+06 2.24e+07 1.131

C; ∆ = 10 7.41e+05 2.99e+06 1.06e+07 3.09e+06 1.58e+06 2.27e+06 2.13e+07 1.075

C; ∆ = 30 8.24e+05 3.00e+06 1.06e+07 3.26e+06 1.73e+06 2.52e+06 2.19e+07 1.106

C; ∆ = 60 8.27e+05 3.00e+06 1.06e+07 3.26e+05 1.73e+06 2.53e+04 2.23e+07 1.126

D; ∆ = 10 7.38e+05 3.00e+06 1.07e+07 3.16e+06 1.60e+06 2.40e+06 2.16e+07 1.091

D; ∆ = 30 1.45e+06 3.65e+07 1.17e+07 4.08e+06 2.40e+06 3.11e+06 2.64e+07 1.333

D; ∆ = 60 1.97e+06 4.15e+06 1.23e+07 4.64e+06 2.89e+06 3.59e+06 2.95e+07 1.490

Table 3.2: The performance indices corresponding to the leaderless (LL) network (note ∆ denotes the delay in invoking the

control recovery strategy, J denotes the team performance index (with possibly faulty agents) and JA denotes the healthy team

performance index).
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3.3.3 Comparative Evaluation with an Alternative Method

In order to compare our results with an alternative methodology in the literature, the de-

centralized control approach proposed in [142] is applied to the LL network of AUVs in

which the 4-th agent is subject to the LOE fault as stated in Scenario B. The consensus

errors corresponding to this approach as well as our approach are shown in Figure 3.7.

It can be seen that in both approaches the errors converge to zero, however the conver-

gence of the errors in the decentralized approach of [142] is less oscillatory than our

approach. However, in the reconfigured control law in [142] all agents FDI information

and measurements should be sent to a high-level supervisor which designs the recon-

figured control whereas in our approach only the nearest neighbor agents share their

FDI information and measurements and local information are taking into account in the

reconfigured control design.
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Figure 3.7: The depth trajectories errors corresponding to the agents 1 to 5 by

comparing our proposed scheme with that of the decentralized scheme.
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3.4 CONCLUSIONS

In this chapter, consensus achievement in multi-agent systems in presence of actuator

faults is investigated and distributed reconfigurable/recovery control strategies are devel-

oped to accommodate for the concurrent and simultaneous actuator faults in the team.

Recovery control strategies are developed by solving local Hamilton-Jacobi-Belman

equations to asymptotically stabilize the team consensus errors and to minimize the

agent-based cost performance indices. The proposed control recovery approaches are

designed for networks having leaderless (LL) and leader-follower (LF) topological ar-

chitectures and are applied to a team of autonomous underwater vehicles (AUVs). The

team behavior and the agent-level as well as the team-level performance indices sub-

ject to various fault scenarios are studied. Simulation results confirm the effectiveness

of our proposed reconfiguration/recovery strategies in accommodating actuator faults in

multi-agent systems.
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Chapter 4

H∞ based Fault accommodation

In this chapter, an H∞ performance fault recovery control problem for a team of multi-

agent systems that is subject to actuator faults is studied. The main objective here is to

design a distributed control reconfiguration strategy for a team with faulty agents such

that: (a) the state consensus errors remain bounded, and the output of the faulty system

behaves exactly the same as that of the healthy system in disturbance free environment

and (b) the specified H∞ performance bound is guaranteed to be minimized in presence

of bounded energy disturbances. The gains of the reconfigured control laws are selected

first by employing a geometric approach where a set of controllers guarantees that the

output of the faulty agent imitates that of the healthy agent and the consensus achieve-

ment objectives are satisfied. Next, the remaining degrees of freedom in selection of the

control law gains are used to minimize the bound on a specified H∞ performance index.
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The effects of uncertainties and imperfections in the FDI module decision in correctly

estimating the fault severity as well as delays in invoking the reconfigured control laws

are investigated and a bound on the maximum tolerable estimation uncertainties are ob-

tained. The proposed distributed and cooperative control recovery approach is applied

to a team of five autonomous underwater vehicles to demonstrate its capabilities and ef-

fectiveness in accomplishing the overall team requirements subject to various actuator

faults, delays in invoking the recovery control, fault estimation and isolation imperfec-

tions and unreliabilities under various control recovery scenarios.

The remainder of this chapter is organized as follows. In Section 4.1, the problem

formulation are provided. Section 4.2 presents the distributed H∞ performance control

reconfiguration methodology developed corresponding to actuator faults is presented. In

Section 4.3, proposed control reconfiguration methodology is applied to a network of

autonomous underwater vehicles (AUVs) subject to actuator faults and ocean current

disturbances are validated through extensive simulations. Finally, Section 4.4 concludes

the chapter. A summary of the following is presented in [148, 172, 173].

4.1 Problem Formulation

In this work, our main goal and objective is to design a state feedback reconfigurable or

recovery control strategy in a directed network of multi-agent systems that seeks consen-

sus in presence of three types of actuator faults and environmental disturbances. Suppose

the i-th agent becomes faulty and its first mo actuators are subject to the outage fault,
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mo +1 to ms actuators are subject to the stuck fault, while the remaining m−ms actua-

tors are either subject to the LOE fault or are healthy. Using equations (2.15)-(2.18) the

model of i-th faulty agent that is subject to three types of actuator faults can be expressed

as

ẋfi (t) = Axfi (t) + Bf
i u

f
i (t) + Bωωi(t), x

f
i (tf ) = xi(tf ), t ≥ tf , (4.1)

yfi (t) = Cxfi (t),

where Bf
i =

[

Bo
i Bs

i Br
i

]

, Bo
i =

[

b1, . . . , bmo

]

, Bs
i =

[

bmo+1, . . . , bms

]

, Br
i =

[

bms+1, . . . , bm
]

Γi, Γi = diag{Γk
i }, k = ms + 1, . . . ,m, Γk

i denotes the k-th actua-

tor effectiveness and fault severity factor, ufi (t) =

[

01×mo
(usi )

T (uri (t))
T

]T

, usi =
[

umo+1
i (tf ), . . . , u

ms

i (tf )

]T

, uri (t) =

[

ums+1
i (t), . . . , umi (t)

]T

.

Considering the structure of the control law ufi (t) and the matrix Bf
i , it follows that

only the actuators ms + 1 to m are available to be reconfigured. Therefore, to proceed

with our proposed control recovery strategy the model (4.1) is rewritten as follows

ẋfi (t) = Axfi (t) + Br
i u

r
i (t) + Bs

i u
s
i +Bωωi(t), x

f
i (tf ) = xi(tf ), t ≥ tf , (4.2)

yfi (t) = Cxfi (t).

The main objective of the control reconfiguration or control recovery is to design and

select uri (t) such that the state consensus errors remain bounded and yfi (t) = yhi (t), for

t ≥ tf , when ωi(t) ≡ 0, i = 0, . . . , N , and the environmental disturbances are attenuated

for ωi(t) 6= 0, where yhi (t) = yi(t), i = 1, . . . , N , and yi(t) is defined as in equation (2.1).

To develop our proposed reconfiguration control laws, a virtual auxiliary system
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associated with each agent is introduced as follows

ẋai (t) = Axai (t) + Buai (t), x
a
i (t0) = xai0, i = 1, . . . , N, (4.3)

yai (t) = Cxai (t),

where xai (t) ∈ Rn, uai (t) ∈ Rm and yai (t) ∈ Rq denote the state of the auxiliary system

corresponding to the i-th agent, its control and output signals, respectively. Furthermore,

the disagreement error for each auxiliary system is also defined as

eai (t) =
∑

j∈Ni

(xai (t)− xaj (t)) + gi0(x
a
i (t)− x0(t)). (4.4)

The auxiliary system that is defined in (4.3) is “virtual" and is not subject to actuator

faults or disturbances, and hence it can be used as the reference model for designing the

reconfigured control laws of the actual system (2.1) once it is subjected to actuator faults.

The H∞ performance index corresponding to the i-th healthy agent (2.1) and the i-th

faulty agent (4.2) is now defined according to

Ji =

∫ ∞

t0

(
(xi(t)− x0(t))

T(xi(t)− x0(t))− γ2(ωT
i (t)ωi(t) + ωT

0 (t)ω0(t))
)
dt,

(4.5)

Jf
i =

∫ ∞

tf

(ξf
T

i (t)ξfi (t)− γ2fω
T
i (t)ωi(t))dt, (4.6)

where ξfi (t) = xfi (t)−xai (t), and γ and γf represent the disturbance attenuation bounds.

Based on the above definitions, the team performance index is now defined by J =

∑N
i=1 Ji. Under the control laws ui(t), i = 1, . . . , N , the H∞ performance index bound

for the healthy team is attenuated if J =
∑N

i=1 Ji ≤ 0, ∀ ωi ∈ L2. Furthermore, the

H∞ performance index for the i-th faulty agent is attenuated if Jf
i ≤ 0, ∀ ωi ∈ L2,

i = 0, . . . , N . It should be noted that the performance indices (4.5) and (4.6) are not and

cannot be calculated directly as the disturbance is unknown and the aim of the proposed
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approach is to minimize the performance indices without directly calculating them.

We are now in a position to formally state the problem that we consider in this work.

Definition 4.1. (a) The state consensusH∞ performance control problem for the healthy

team is solved if in absence of disturbances, the agents follow the leader states and con-

sensus errors converge to zero asymptotically, and in presence of disturbances, the pre-

scribed H∞ performance bound for the healthy team is attenuated, i.e. J =
∑N

i=1 Ji ≤

0.

(b) The H∞ performance control reconfiguration problem with stability is solved if in

absence of disturbances the state consensus errors remain bounded while the output of

the faulty agent behaves the same as those of the healthy system outputs, and in presence

of disturbances the disturbance attenuation bound is minimized and Jf
i ≤ 0.

We also assume the following assumptions hold in this chapter.

Assumption 4.1. (a) The network graph is directed and has a spanning tree, and (b) The

leader control input is bounded and the upper bound is known.

Assumption 4.2. (a) The agents are stabilizable and remain stabilizable even after the

fault occurrence.

(b) Each agent is equipped with a local FDI module which detects with possible delays

and correctly isolates the fault in the agent and also estimates the severity of the fault

with possible errors in the case of the LOE or stuck faults.

Regarding the above assumptions the following clarifications are in order. First, the
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Assumptions 4.1-(a) and 4.2-(a) are quite common for consensus achievement and fault

recovery control design problems, respectively. Second, it is quite necessary that in most

practical applications one considers a leader whose states are ensured to be bounded.

Moreover, in practical scenarios the actuators are quite well understood and described

and their maximum deliverable control effort and bound they can tolerate are readily

available and known. Therefore Assumptions 4.1-(b) is also not restrictive. Further-

more, in Subsection 4.2.2 we analyze the system behavior for situations where either

Assumption 4.2-(c) does not hold or the estimated fault severities by the FDI module are

not accurate. We obtain the maximum uncertainty bound that our proposed approaches

can tolerate. However, as stated in Assumption 4.2-(b), we require the correct actuator

location as well as the type of the fault for guaranteeing that our proposed reconfigured

control laws will yield the desired design specifications and requirements.

As far as Assumption 2-(c) is concerned, it should be noted that this assumption is

indeed quite realistic for the following observations and justifications. The transient time

that any cooperative or consensus-based controller takes to settle down and the overall

team objectives are satisfied is among one of the design consideration and specification

for the controller selection. In most practical consensus achievement scenarios dealing

with a healthy team, the transient time associated with the agent response is ensured to

be settled down in a very small fraction of the entire mission time, and in most cases

the healthy transient time takes a few seconds to minutes to die out. Therefore, it is

quite realistic and indeed practical that during this very short and initial operation of the

system, the agents are assumed to be fault free. In other words, we will not initiate the
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mission with agents that are faulty from the outset. It is highly unlikely that during the

very first few moments after the initiation of the mission a fault occurs in the agents.

Based on the above explanations and observations Assumption 2-(c) is meaningful and

quite realistic.

4.2 Proposed Methodology

In this section, our proposed reconfigurable control law is introduced and developed.

Since each agent only shares its information with its nearest neighbors, the reconfig-

uration control strategy also employs the same information as well as the agent’s FDI

module information.

Consider the dynamics of the i-th faulty agent as given by (4.2). As defined above

ξfi (t) = xfi (t) − xai (t), with xfi (t) denoting the i-th faulty agent state and xai (t) defined

in (4.3). Let zi(t) = Cξfi (t) denote the deviation of the output of the faulty agent from

its associated auxiliary agent output. Then, the dynamics associated with ξfi (t) can be

obtained as

ξ̇fi (t) = Aξfi (t) + Br
i u

r
i (t) + Bs

i u
s
i − Buai (t) + Bωωi(t), t ≥ tf ,

zi(t) = Cξfi (t). (4.7)

Moreover, the faulty agent consensus error is defined as

efi (t) =
∑

j∈Ni

(xfi (t)− xj(t)) + gi0(x
f
i (t)− x0(t)). (4.8)

Lemma 4.1. The faulty agent consensus error (4.8) is stable if eai (t) and ξi(t) = xi(t)−

xai (t) are asymptotically stable and ξfi (t) is stabilized.
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Proof. From the auxiliary error dynamics (4.7), one can express the state consensus error

dynamics for the i-th faulty agent, i.e. efi (t) according to

efi (t) =
∑

j∈Ni

(xfi (t)− xj(t)) + gi0(x
f
i (t)− x0(t))

= eai (t) + (di + gi0)ξ
f
i (t)−

∑

j∈Ni

ξj(t).

Therefore if the control law uri (t) can be reconfigured such that ξfi (t) is stabilized then it

follows that efi (t) will be stable. This completes the proof of the lemma.

The above lemma shows that stability of the faulty agent’s consensus error can be

guaranteed by reconfiguring the control law uri (t) such that ξfi (t) is stable. This implies

that one can transform the control reconfiguration problem to a stabilization problem,

hence in the next two subsections we consider the problem of stabilizing ξfi (t). However,

as seen from (4.7), the dynamics of ξfi depends on the control of the healthy agents.

Therefore, before presenting our proposed control reconfiguration strategy, the control

law for the healthy team (where it is assumed without loss of any generality that all the

agents are healthy) is presented below.

In this work, the following general control law structure is utilized,

ui(t) = K1iξi(t) +K2ie
a
i (t) + ci0sgn(Keai (t)), (4.9)

which is the generalization of the one developed in [174] and is given by

ui(t) = c1Kei(t) + c2sgn(Kei(t)), (4.10)

where ξi(t) = xi(t)− xai (t), and eai (t) is given by (4.4) and

ei(t) = gi0(xi(t)− x0(t)) +
∑

j∈Ni

(xi(t)− xj(t)), (4.11)

where gi0 = 1 if the agent i is a pinned agent or is directly communicating with the leader
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and is zero otherwise. The followings comments summarize the main characteristics of

the control law (4.9):

(1) In the control law (4.9) an agent employs and communicates only the auxiliary

states xai (t) that are unaffected by both disturbances and faults. In contrast in standard

consensus control schemes such as (4.10) the actual states xi(t) are employed and com-

municated from the nearest neighbor agents. Hence, the utilization of (4.9) avoids the

propagation of the adverse effects of the disturbances and faults through out the team of

multi-agent systems. This along with the degrees of freedom in designing the control

recovery laws allow us to manage the i-th faulty agent by only reconfiguring the control

law of the faulty agent, and moreover it also provides us with the capability to recover

simultaneous faults in multiple agents.

(2) The gain K1i is designed such that the states of the i-th agent follow the states of

its associated auxiliary agent, while the gain K2i is designed such that the states of the

auxiliary agents reach a consensus and follow the leader state.

(3) Each agent receives only the auxiliary agents states in its nearest neighbor set

as opposed to their actual states that is conventionally required in standard multi-agent

consensus approaches.

(4) The control law (4.9) is shown subsequently to solve the consensus problem in

a directed network topology that is subject to environmental disturbances, whereas the

control law (4.10) solves the consensus problem in disturbance free environment and
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where the network topology is assumed to be undirected. The procedure for selecting

and designing the gains of the control law (4.9) is provided in Theorem 4.1. Moreover,

the structure of the proposed control law of this agent are provided in Figures 4.1 and

4.2.

Theorem 4.1. The control law ui(t) = uit(t) + uic(t) solves the H∞ performance state

consensus problem in a team of N follower agents whose dynamics are given by (2.1)

and the leader dynamics that is given by (2.3), if uit(t) and uic(t) are selected as follows:

uit(t) = K1iξi(t)

uic(t) = uai (t) = K2ie
a
i (t) +Ki0(t),

where eai (t) is defined as in (4.4), K1i = c1K, K2i = c2iK, Ki0(t) = ci0sgn(Keai (t)),

sgn{.} is defined as in (2.24), K = −BTP , c1 = c3
2

, and finally the positive definite

matrix P is the solution to

ATP + PA− c3PBB
TP + 2γ−2c−1

4 PBωB
T
ωP + d∗0I < 0,

and c2i and c3 are solutions to

C2L
T
22 + L22C2 > c3I, c3 > 0, C2 = diag{c2i} > 0,

where d∗0 denotes the number of pinned agents, γ2 is the desired disturbance attenuation

bound, c−1
4 = max{1, N−1λ−1

min(L
T
22L22)}, and ci0’s are the solutions to the inequalities

d∗0u0M − dici0 +
∑

j∈Ni

cj0 < 0, ci0 > 0, i, j = 1, . . . , N,

where u0M denotes the upper bound of the leader control signal, i.e., ‖u0(t)‖∞ ≤ u0M

for all t ≥ t0.

Proof. The team reaches a consensus if xi(t) → xj(t) → x0(t). This goal is also

achieved if agents’ controls are designed such that xi(t) → xai (t) (ξi(t) → 0) and
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xai (t) → x0(t) (eai (t) → 0) for i = 1, . . . , N . This implies that the consensus achieve-

ment problem can be re-stated as the problem of asymptotically stabilizing ξi(t) and

eai (t) simultaneously.

In the following, first we discuss the stability criterion and disturbances attenuation

for eai (t) and ξi(t) in Parts A and B, respectively and then in Part C, we derive the con-

ditions that satisfy the requirements for both Parts A and B that in fact solve the H∞

performance state consensus.

Part A: From (4.3) and (4.4), the dynamics of ea(t) = col{eai (t)} can be obtained as

ėa(t) = Aea(t) + Bua(t) + B0u0(t) + Bωω0(t), (4.12)

where ua(t) = col{uai (t)}, A = IN ⊗A, B = L22 ⊗B, B0 = L21 ⊗B, Bω = L21 ⊗Bω.

Let us select uai (t) as uai (t) = K2ie
a
i (t)+ci0sgn(Keai (t)), then the system (4.12) becomes

ėa(t) = (A+ L22C2 ⊗ BK)ea(t) + (L22C0 ⊗ B)sgn((I ⊗K)ea(t)) + B0u0(t)

+Bωω0(t), (4.13)

where C2 = diag{c2i} and C0 = diag{ci0}. Since the sgn function is discontinuous,

in order to conduct the stability analysis of the system (4.13), it is replaced with its

differential inclusion (for more details refer to [175, 176]) representation as follows

ėa(t) ∈a.e. K[(A+ L22C2 ⊗ BK)ea(t) + (L22C0 ⊗ B)sgn((I ⊗K)ea(t))

+B0u0(t) + Bωω0(t)], (4.14)

where the operator K[.] is defined as in [175, 176] to investigate its Filipov solutions.

Now, we require to define the Lyapunov function candidate V (ea(t)) to study the stability

properties of the error dynamics system. For this purpose, let us select V (ea(t)) =
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ea
T

(t)Pea(t), as a Lyapunov function candidate for the system (4.14), where P = IN⊗P .

Also, let K = −BTP , so that the set-valued derivative of V (ea(t)) along the trajectories

of the system (4.14) is given by

˙̄V (ea(t)) = K[ea
T

(t)
(
IN ⊗ (ATP + PA)− (C2L

T
22 + L22C2)⊗ PBBTP

)
ea(t)

+2ea
T

(t)(I ⊗ PB)(L21 ⊗ I)u0(t)− 2ea
T

(t)(I ⊗ PB)(L22C0 ⊗ I)

sgn((I ⊗ BTP )ea(t)) + 2ωT
0 (t)B

T
ωPe

a(t)].

(4.15)

Let T1(t) = ea
T

(t)(I⊗PB)(L21⊗I)u0(t), T2(t) = ea
T

(t)(I⊗PB)(L22C0⊗I)sgn((I⊗

BTP )ea(t)), ēi(t) = BTPeai (t) and ē(t) = col{ēi(t)}. Since T1(t) is a scaler, T1(t) ≤

‖T1(t)‖1, and one has

T1(t) ≤ ‖T1(t)‖1 ≤ ‖(LT
21 ⊗ I)(I ⊗ BTP )ea(t)‖1‖u0(t)‖∞. (4.16)

Then

T1(t) ≤ ‖(LT
21 ⊗ I)‖∞‖(I ⊗ BTP )ea(t)‖1‖u0(t)‖∞

≤ d∗0‖(I ⊗ BTP )ea(t)‖1u0M = d∗0u0M

N∑

i=1

m∑

k=1

|ēki (t)|, (4.17)

where ēki (t) is the k-th element of ēi(t) =

[

ē1i (t), . . . , ē
m
i (t)

]T

and we use the fact that

‖L21‖∞ = 1. On the other hand, T2(t) can be written as

T2(t) = ēT(t)(L22C0 ⊗ I)sgn(ē(t)) =
N∑

i=1

T2i(t), (4.18)

where

T2i(t) = ēT
i (t)(dici0sgn{ēi(t)} −

∑

j∈Ni

cj0sgn{ēj(t)})

=
m∑

k=1

ēki (t)
(
dici0sgn{ēki (t)} −

∑

j∈Ni

cj0sgn{ēkj (t)}
)
.

Let T k
2i(t) = ēki (t)

(
dici0sgn{ēki (t)} −

∑

j∈Ni
cj0sgn{ēkj (t)}

)
, then three cases can be
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considered depending on the value of ēki (t) as follows:

i) ēki (t) = 0, then T k
2i(t) = 0.

ii) ēki (t) > 0, then sgn{ēki (t)} = 1. Since cj0 > 0 and sgn{ēkj (t)} ∈ {−1, 0, 1}, it follows

that

dici0 −
∑

j∈Ni

cj0 ≤ dici0sgn{ēki (t)} −
∑

j∈Ni

cj0sgn{ēkj (t)} ≤ dici0 +
∑

j∈Ni

cj0,

and if ci0, i = 1, . . . , N are designed such that dici0 −
∑

j∈Ni
cj0 > 0, then

|ēki (t)|(dici0 −
∑

j∈Ni

cj0) ≤ T k
2i(t) ≤ |ēki (t)|(dici0 +

∑

j∈Ni

cj0). (4.19)

iii) ēki (t) < 0, then sgn{ēki (t)} = −1 and eki (t) = −|eki (t)|. Therefore,

−dici0 −
∑

j∈Ni

cj0 ≤ dici0sgn{ēki (t)} −
∑

j∈Ni

cj0sgn{ēkj (t)} ≤ −dici0 +
∑

j∈Ni

cj0.

Again if ci0, i = 1, . . . , N are designed such that, dici0 −
∑

j∈Ni
cj0 > 0, then

|ēki (t)|(dici0 −
∑

j∈Ni

cj0) ≤ T k
2i(t) ≤ |ēki (t)|(dici0 +

∑

j∈Ni

cj0). (4.20)

Let T3(t) = T1(t)− T2(t). From the inequalities (4.17)-(4.20) it follows that

T3(t) ≤ d∗0u0M

N∑

i=1

m∑

k=1

|ēki (t)| −
N∑

i=1

m∑

k=1

|ēki (t)|(dici0 −
∑

j∈Ni

cj0)

=
N∑

i=1

m∑

k=1

|ēki (t)|
(
d∗0u0M − dici0 +

∑

j∈Ni

cj0
)
. (4.21)

Suppose that c2is and c3 are obtained such that

C2L
T
22 + L22C2 > c3I, c3 > 0, C2 = diag{c2i} > 0. (4.22)

Now by using the Fact 2.2 for the last term in the right-hand side of (4.15) with X =

(L21 ⊗ Im)ω0(t), Y = (IN ⊗ BT
ωP )e

a(t) and α = γ2

2
c4, and also the inequalities (4.21)
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and (4.22), the expression (4.15) can be replaced with the following inequality

˙̄V (ea(t)) ≤ K[ea
T

(t)
(
IN ⊗ (ATP + PA− c3PBB

TP )
)
ea(t)

+2
N∑

i=1

m∑

k=1

|ēki |
(
d∗0u0M − dici0 +

∑

j∈Ni

cj0
)
+
γ2

2
c4ω

T
0 (t)(L

T
21L21 ⊗ Im)ω0(t)

+2γ−2c−1
4 ea

T

(t)(I ⊗ PBωB
T
ωP )e

a(t)].

Since now the right hand side of the above inequality is continuous, the operator K[.] can

be removed. Let d∗0 = LT
21L21 and add d∗0e

aT

(t)ea(t) to both sides of the above inequality

then it follows that

˙̄V (ea(t))−
γ2

2
d∗0c4ω

T
0 (t)ω0(t) + d∗0e

aT

(t)ea(t) ≤ g(ea(t)), (4.23)

where

g(ea(t)) = ea
T

(t)
(
IN ⊗ (ATP + PA− c3PBB

TP + d∗0I + 2γ−2c−1
4 PBωB

T
ωP )

)
ea(t)

+2
N∑

i=1

m∑

k=1

|ēki (t)|
(
d∗0u0M − dici0 +

∑

j∈Ni

cj0
)
.

From [175], we require g(ea(t)) to be negative definite, which will be achieved if P is

obtained such that

ATP + PA− c3PBB
TP + 2γ−2c−1

4 PBωB
T
ωP + d∗0I < 0, (4.24)

and ci0 are selected such that

d∗0u0M − dici0 +
∑

j∈Ni

cj0 < 0, i = 1, . . . , N. (4.25)

Therefore, if ci0, i = 1, . . . , N and P are selected as the solutions to (4.25) and (4.24),

the function g(.) will be negative definite and for ω0(t) ≡ 0, it follows that ˙̄V (ea(t)) < 0,

or equivalently the consensus errors are asymptotically stable.

Now, if the initial conditions are set to zero and the disturbance is the only input to
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the agents, then by integrating the left-hand side of (4.23) one gets
∫ ∞

t0

(ea
T

(t)ea(t)−
γ2

2
c4ω

T
0 (t)ω0(t))dt < 0. (4.26)

Given that ea(t) = (L22 ⊗ In)ξ
a(t), ξa(t) = xa(t)− 1N ⊗ x0(t) and xa(t) = col{xai (t)},

it follows that

λmξ
aT

(t)ξa(t) ≤ ea
T

(t)ea(t) ≤ λMξ
aT

(t)ξa(t), (4.27)

where λm = λmin(L
T
22L22) and λM = λmax(L

T
22L22). Hence, from the inequalities (4.26)

and (4.27) it follows that
∫ ∞

t0

λmξ
aT

(t)ξa(t)dt−

∫ ∞

t0

γ2

2
c4ω

T
0 (t)ω0(t)dt < 0,

and by selecting c4 = Nλm one gets
∫∞

t0
ξa

T

(t)ξa(t)dt
∫∞

t0
ωT
0 (t)ω0(t)dt

<
N

2
γ2. (4.28)

Part B: Under our proposed control law the dynamics of the i-th auxiliary agent tracking

error, ξi(t), can be expressed as

ξ̇i(t) = (A+ c1BK)ξi(t) + Bωωi(t). (4.29)

Consider Vi(ξi(t)) = ξT
i (t)Pξi(t) as a Lyapunov function candidate for the system (4.29)

and select K = −BTP . It then follows that

V̇i(ξi(t)) = ξT
i (t)(A

TP + PA− 2c1PBB
TP )ξi(t) + 2ξT

i (t)PBωωi(t),

and by following along the same steps as in Part A, the above equality can be written as

V̇i(ξi(t))−
γ2

2
ωT
i (t)ωi(t) + ξT

i (t)ξi(t) ≤ ξT
i (t)(A

TP + PA− 2c1PBB
TP

+2γ−2PBωB
T
ωP + I)ξi(t).

Now if P > 0 is obtained such that

ATP + PA− 2c1PBB
TP + 2γ−2PBωB

T
ωP + I < 0, (4.30)

then V̇i(ξi(t))−
γ2

2
ωT
i (t)ωi(t) + ξT

i (t)ξi(t) < 0. This implies that for ωi(t) ≡ 0, we have
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V̇i(ξi(t)) < 0, and for ωi(t) 6= 0, one gets
∫∞

t0
ξT
i (t)ξi(t)dt

∫∞

t0
ωT
i (t)ωi(t)dt

≤
γ2

2
. (4.31)

Part C: In order to obtain the positive definite matrix P that satisfies the inequalities

(4.24) and (4.30) and also guarantees the disturbance bound attenuation, let us set c1 and

c4 as c1 = c3
2

and c−1
4 = max{1, N−1λ−1

m }, respectively. Given that d∗0 ≥ 1, it can be

observed that if P satisfies

ATP + PA− c3PBB
TP + 2γ−2c−1

4 PBωB
T
ωP + d∗0I < 0, (4.32)

then inequalities (4.24) and (4.30) will both hold, where c3 is the solution to (4.22). On

the other hand

1

2

N∑

i=1

∫ ∞

t0

(xi(t)− x0(t))
T(xi(t)− x0(t))dt

=
1

2

N∑

i=1

∫ ∞

t0

(ξi(t) + ξai (t))
T(ξi(t)− ξai (t))dt =

1

2

N∑

i=1

∫ ∞

t0

(ξT
i (t)ξi(t) + ξai

T(t)ξai (t) + 2ξT
i (t)ξ

a
i (t))dt ≤

1

2

N∑

i=1

∫ ∞

t0

(ξT
i (t)ξi(t) + ξai

T(t)ξai (t) + ξT
i (t)ξi(t) + ξai (t)ξ

a
i

T(t))dt =

N∑

i=1

∫ ∞

t0

(ξT
i (t)ξi(t) + ξai

T(t)ξai (t))dt

Now from equations (4.28) one has
∫ ∞

t0

ξaT(t)ξa(t)dt =
N∑

i=1

∫ ∞

t0

ξaT
i (t)ξ

a
i (t)dt ≤

N

2
γ2
∫ ∞

t0

ωT
0 (t)ω0(t)dt

=
γ2

2

N∑

i=1

∫ ∞

t0

ωT
0 (t)ω0(t)dt,

and by using (4.31)
N∑

i=1

∫ ∞

t0

ξT
i (t)ξi(t)dt ≤

γ2

2

N∑

i=1

∫ ∞

t0

ωT
i (t)ωi(t)dt,
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Agent k, k ∈ Ni Agent i Agent j, j ∈ Ni

Leader

uk(t) yk(t)

ωk(t)

ui(t) yi(t)

ωi(t)

uj(t)yj(t)

ωj(t)

Aux. sys. k Aux. sys. i Aux. sys. j

yak(t) uak(t) yai (t)uai (t) yaj (t) u
a
j (t)

Figure 4.1: The schematic of the i-th pinned agent and its nearest neighbor agents j and

k, which are not pinned.

then it follows that

1

2

N∑

i=1

∫ ∞

t0

(xi(t)− x0(t))
T(xi(t)− x0(t))dt ≤

γ2

2

N∑

i=1

∫ ∞

t0

(ωT
i (t)ωi(t) + ωT

0 (t)ω0(t))dt.

Therefore, the team H∞ performance upper bound can be expressed as
∑N

i=1

∫∞

t0
(xi(t)− x0(t))

T(xi(t)− x0(t))dt
∑N

i=1

∫∞

t0
(ωT

i (t)ωi(t) + ωT
0 (t)ω0(t))dt

≤ γ2.

The above inequality implies that J ≤ 0, or equivalently the healthy team H∞ perfor-

mance criterion holds. This along with the properties of the stability of eai (t) and ξi(t), as

stated in Parts A and B, imply that our proposed control law solves the H∞ performance

state consensus problem for the healthy team.

4.2.1 H∞ Performance Control Reconfiguration

Consider the representation of an agent subject to presence of faults be specified as in

Subsection 4.1, and given by the equation (4.2) or equivalently by the transformed model
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xai (t) di
∑

j∈Ni
xaj (t)

gi0(x
a
i (t)− x0(t))

+

−

+

eai (t)
K2ie

a
i (t) +Ki0(t)

uai (t)
+

+

∑
ui(t)

∑

K1i

xi(t)

+

−

ξi(t)

Figure 4.2: The i-th agent cooperative control structure and its associated auxiliary

system control laws, where ξi(t) = xi(t)− xai (t) and eai (t) is defined in (4.4).

(4.7). Our proposed reconfigured control law for the i-th faulty agent is now given by

uri (t) = Kr
1iξ

f
i (t) +Kr

2iu
a
i (t) + uCi , (4.33)

where Kr
1i, K

r
2i are control gains and uCi is the control command to be designed later.

Therefore the dynamics of the closed-loop faulty agent (4.7) becomes

ξ̇fi (t) = (A+Br
iK

r
1i)ξ

f
i (t) + (Br

iK
r
2i − B)uai (t) + Bs

i u
s
i +Br

i u
C
i

+Bωωi(t), (4.34)

zi(t) = Cξfi (t).

As per Definition 4.1, the H∞ control reconfiguration objectives can now be stated

as that of selecting the gains Kr
1i and Kr

2i and the control command uri such that (a)

ξfi (t) is stable, (b) zi(t) ≡ 0 (that is, yfi (t) = yai (t)) for ωi(t) ≡ 0, t ≥ tf , and (c)
∫∞

tf
ξf

T

i (t)ξfi (t)dt
∫∞

tf
ωT
i (t)ωi(t)dt

≤ γ2f for ωi(t) 6= 0. In order to pursue the reconfiguration strategy we

required the following assumption, we later discuss how deviation of this assumption

affect the results.

Assumption 4.3. Under the fault scenario, there still enough actuator redundancy to
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compensate for the fault, i.e.

Bs
i u

s
i ⊂ Im{Br

i }, (4.35)

then there exists a control signal uCi such that

Bs
i u

s
i +Br

i u
C
i = 0. (4.36)

Subject to the above condition, equation (4.34) now becomes

ξ̇fi (t) = (A+Br
iK

r
1i)ξ

f
i (t) + (Br

iK
r
2i − B)uai (t) + Bωωi(t), (4.37)

zi(t) = Cξfi (t).

Let us temporarily assume that ωi(t) ≡ 0, then

zi(t) = Ce(A+Br
i K

r
1i)(t−tf )ξfi (tf ) +

∫ t

tf

Ce(A+Br
i K

r
1i)(t−s)(Br

iK
r
2i − B)uai (s)ds.

(4.38)

From (4.38), to ensure that the outputs of the faulty agent do not deviate after fault,

both terms should be zero or negligible. The first term will be negligible if the agents

reach a consensus before fault occurrence i.e. ξfi (tf ) ' 0 or if Kr
1i is designed such

that e(A+Br
i K

r
1i)(t−tf ) damps very fast. This can be achieved easily if λmax{A + Br

iK
r
1i}

is small enough. On the other hand, according to Theorem 4.1, uai (t) = uic(t) =

K2ie
a
i (t) + Ki0(t). Given that the control gains are designed such that eai (t) is asymp-

totically stable and Ki0(t) is bounded, uai (t) also remains bounded. Considering that

uai (t) does not depend on the dynamics of ξfi (t), it can be treated as a disturbance to

the system (4.37). Consequently, the problems of (i) enforcing zi(t) ≡ 0 (for t ≥ tf ,

ωj(t) ≡ 0, j = 0, . . . , N and any uai (t)), and (ii) stabilizing ξfi (t), is similar to that of the

disturbance decoupling problem with stability (DDPS), as studied in [177].
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The geometric approach that is based on the theory of subspaces [160] is the most

popular method for solving the DDPS problem. Towards this end, we first introduce

the required subspaces as follows: Br
i = Im{Br

i }, C = Ker{C}, V∗ and V∗
g denote the

maximal (A,Br
i ) controlled invariant subspace that is contained in C, and the maximal

internally stable (A,Br
i ) controlled invariant subspace that is contained in C, respec-

tively.

Following the procedure in [160], if Kr
2i and Kr

1i are selected such that

Im{Br
iK

r
2i − B} ⊂ V∗, (A+Br

iK
r
1i)V

∗ ⊂ V∗ (4.39)

then the second term in (4.38) will also vanish. On the other hand, if Kr
2i and Kr

1i are

selected such that

Im{Br
iK

r
2i − B} ⊂ V∗

g , (A+Br
iK

r
1i)V

∗
g ⊂ V∗

g , (4.40)

then the second term in (4.38) will also vanish and ξfi (t) will be stable due to the stability

of the subspace V∗
g . Unfortunately, there is no systematic approach to explicitly obtain

V∗
g , implying that V∗

g cannot be computed and employed directly for obtaining Kr
2i that

satisfies the condition (4.40). Therefore, we are required to transform the condition

(4.40) into a verifiable one. Once such a controller is obtained, one can then ensure that

zi(t) ≡ 0 and ξfi (t) will remain stable.

Given that V∗ is (A,Br
i ) controlled invariant, there exists a matrix Kr

1i, a friend of

V∗, [160] such that AcV
∗ ⊂ V∗, where Ac = A+Br

iK
r
1i. Now, by invoking the Theorem

3.2.1 of [160], for a matrix Ac and its associated V∗, there always exists a nonsingular
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transformation T such that

Āc = T−1AcT =






Ā1
c Ā2

c

0 Ā3
c




 , (4.41)

where T =

[

T1 T2

]

, Im{T1} = V∗ and T2 is any matrix that renders T nonsingular. By

substituting Ac = A+Br
iK

r
1i into (4.41), it follows that

Āc = Ā+ B̄r
i K̄

r
1i, (4.42)

where Ā = T−1AT =






Ā11 Ā12

Ā21 Ā22




, B̄r

i = T−1Br
i =






B̄r
i1

B̄r
i2




 and K̄r

1i = Kr
1iT . Now, if

K̄r
1i is partitioned as K̄r

1i =

[

K̄r1
1i K̄r2

1i

]

, from (4.41) and (4.42) it can be concluded that

there exists K̄r1
1i such that

Ā21 + B̄r
i2K̄

r1
1i = 0.

Furthermore, under the transformation T, the system (4.37) can be re-written as

˙̄ξfi (t) = Ācξ̄
f
i (t) + Ēiu

a
i (t) + B̄ωωi(t), (4.43)

zi(t) = C̄ξ̄fi (t),

where ξ̄fi (t) = T−1ξfi (t), Āc =






Ā1
c Ā2

c

0 Ā3
c




, Ā1

c = Ā11 + B̄r
i1K̄

r1
1i , Ā2

c = Ā12 + B̄r
i1K̄

r2
1i ,

Ā3
c = Ā22 + B̄r

i2K̄
r2
1i , Ēi = B̄r

iK
r
2i − B̄ =






B̄r
i1K

r
2i − B̄1

B̄r
i2K

r
2i − B̄2




, B̄ = T−1B =






B̄1

B̄2




,

C̄ = CT =

[

0 C̄2

]

, B̄ω = T−1Bω. We are now in a position to state the main result of

this subsection.

Theorem 4.2. Consider a team that consists of a leader that is governed by (2.3) and

N follower agents that are governed by (2.1), and their control laws are designed and

specified according to Theorem 4.1. Suppose at time t = tf the i-th agent becomes faulty

108



and its dynamics is now governed by (4.2) where Assumption 4.2 also hold. The control

law (4.33) solves the H∞ performance control reconfiguration problem with stability

where the H∞ upper bound is given by γ2f = α−1λ−1
min{(TT

T)−1} if uCi is obtained as a

solution to (4.36), Kr
1i =

[

Y1X
−1
1 Y2X

−1
2

]

T−1, and Kr
2i is the solution to

B̄r
i2K

r
2i − B̄2 = 0, (4.44)

where T is defined in (4.41), Xi and Yi’s, i = 1, 2 are solutions to

max α s.t.






Θ X

X −I




 < 0, X = diag{X1, X2} > 0, Ā21X1 + B̄r

i2Y1 = 0, (4.45)

where Θ =






Θ1 Θ2

ΘT
2 Θ3




, Θ1 = X1Ā

T
11 + Y T

1 B̄
rT

i1 + Ā11X1 + B̄r
i1Y1 + αB̄1

ωB̄
1T

ω , Θ2 =

Ā12X2 + B̄r
i1Y2 + αB̄1

ωB̄
2T

ω , Θ3 = X2Ā
T
22 + Y T

2 B̄
rT

i2 + Ā22X2 + B̄2Y2 + αB̄2
ωB̄

2T

ω , Ā11,

Ā21, Ā12, B̄i1 and B̄i2 are defined as in (4.42) and B̄ω and B̄2 are defined as in (4.43).

Proof. Consider the system (4.43). Given that the two inputs ωi(t) and uai (t) are bounded

and independent from each other, one can investigate their effects separately. Therefore,

the proof is provided in three parts, namely: in Part A we assume that ωi(t) ≡ 0 and the

set of all control gains that guarantee zi(t) = 0 and stabilize ξfi (t) are obtained. Next, in

Part B we assume that the disturbance is the only input to the agent and obtain the gains

that minimize the H∞ performance index and guarantee stability as well. Finally, in Part

C, the control gains that satisfy both Parts A and B are obtained.
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Part A: Let ωi(t) ≡ 0 so that we have

˙̄ξfi (t) = Ācξ̄
f
i (t) + Ēiu

a
i (t),

zi(t) = C̄ξ̄fi (t).

Since Āc is an upper-triangular matrix, the matrix eĀct is also upper-triangular and can

be written as eĀct =






eĀ
1
ct F2(t)

0 eĀ
3
ct




, where F2(t) =

∫ t

t0
eĀ

1
c(t−s)Ā2

ce
Ā3

csds. Under As-

sumption 4.2-(c), ξfi (tf ) = 0 and zi(t) can be written as

zi(t) =

∫ t

tf

C̄2e
Ā3

c(t−s)(B̄r
i2K

r
2i − B̄2)u

a
i (s)ds. (4.46)

If Kr
2i is obtained such that

B̄r
i2K

r
2i − B̄2 = 0,

then zi(t) ≡ 0, which implies that the above condition is equivalent to (4.39). Moreover,

if K̄r1
1i and K̄r2

1i are selected such that Ā11+ B̄
r
i1K̄

r1
1i and Ā22+ B̄

r
i2K̄

r2
1i are Hurwitz, then

Āc will also be Hurwitz. Given that uai (t) is bounded and Āc is Hurwitz, then ξ̄i(t) will

also be bounded. Therefore, condition (4.40) is equivalent to obtaining the matrices K̄r1
1i ,

K̄r2
1i and Kr

2i such that

Ā21 + B̄r
i2K̄

r1
1i = 0, (4.47)

Ā11 + B̄r
i1K̄

r1
1i is Hurwitz, (4.48)

Ā22 + B̄r
i2K̄

r2
1i is Hurwitz, (4.49)

B̄r
i2K

r
2i − B̄2 = 0. (4.50)

Part B: Let the agents be only affected by the disturbances, then we obtain

˙̄ξfi (t) = Ācξ̄
f
i (t) + B̄ωωi(t), (4.51)

zi(t) = C̄ξ̄fi (t).
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Consider a Lyapunov function candidate V f
i (ξ̄

f
i (t)) = ξ̄f

T

i (t)P ξ̄fi (t), where P = diag{P1, P2} >

0. The time derivative of V f
i (t) along the trajectories of the system (4.51) is given by

V̇ f
i (t) = ξ̄f

T

i (t)(ĀT
cP + PĀc)ξ̄

f
i (t) + 2ξ̄f

T

i (t)PB̄ωωi(t).

By applying Fact 2.2 to the second term in the right hand side of the above equation with

XT = ξ̄f
T

i (t)PB̄ω, Y = ωi(t) and α = γ−2, and adding ξ̄T
i (t)ξ̄i(t) to both sides one gets

V̇ f
i (t)− γ2ωT

i (t)ωi(t) + ξ̄f
T

i (t)ξ̄fi (t) ≤ ξ̄f
T

i (t)Λξ̄fi (t), (4.52)

where

Λ =






Ā1T

c P1 + P1Ā
1
c P1Ā

2
c

Ā2T

c P1 Ā3T

c P2 + P2Ā
3
c




+ γ−2






P1B̄
1
ωB̄

1T

ω P1 P1B̄
1
ωB̄

2T

ω P2

P2B̄
2
ωB̄

1T

ω P1 P2B̄
2
ωB̄

2T

ω P2




+ I,

and B̄1
ω and B̄2

ω are such that B̄ω =






B̄1
ω

B̄2
ω




. If the matrices P1 and P2 are obtained such

that

Λ =






Ā1T

c P1 + P1Ā
1
c P1Ā

2
c

Ā2T

c P1 Ā3T

c P2 + P2Ā
3
c




+ γ−2






P1B̄
1
ωB̄

1T

ω P1 P1B̄
1
ωB̄

2T

ω P2

P2B̄
2
ωB̄

1T

ω P1 P2B̄
2
ωB̄

2T

ω P2




+ I < 0,

(4.53)

then the right hand side of (4.52) will be negative definite and we have

V̇ f
i (t)− γ2ωT

i (t)ωi(t) + ξ̄f
T

i (t)ξ̄fi (t) < 0.

Consequently, by integrating both sides of the above inequality, one gets
∫∞

tf
ξ̄f

T

i (t)ξ̄fi (t)dt
∫∞

tf
ωT
i (t)ωi(t)dt

< γ2.

Now, given that ξ̄f
T

i (t) = T−1ξfi (t), theH∞ performance bound for ξfi (t) can be obtained

as
∫∞

t0
ξT
i (t)ξi(t)dt

∫∞

t0
ωT
i (t)ωi(t)dt

≤ γ2λ−1
min(T

-TT−1) = γ2f .

Part C: From Parts A and B, it follows that K̄r1
1i should satisfy (4.47) and (4.48), K̄r2

1i

should satisfy (4.49) and Kr
2i should satisfy (4.50), while the inequality (4.53) should
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also hold. Note that if there exist matrices P1 and P2 such that (4.53) holds then Āc will

be Hurwitz. This implies that if the inequality (4.53) holds then (4.48) and (4.49) will

hold. Therefore, the problem is reduced to solving the equality (4.50) forKr
2i and solving

(4.47) and (4.53) simultaneously for K̄r1
1i and K̄r2

1i . Equation (4.50) is linear with respect

to Kr
2i and can be solved easily, whereas considering the structure of Āi

c for i = 1, 2, 3,

the inequality (4.53) is nonlinear with respect to P1, P2 and γ. However, by multiply-

ing both sides by P−1 and using the known change of variables X = diag{X1, X2},

X1 = P−1
1 , X2 = P−1

2 , Y1 = K̄r1
i1 P

−1
1 , Y2 = K̄r2

i1 P
−1
2 , α = γ−2 and using the Schur

complement, the inequality (4.53) can be transformed into the following LMI condition:





Θ X

X −I




 < 0, (4.54)

where Θ =






Θ1 Θ2

ΘT
2 Θ3




, Θ1 = X1Ā

T
11 + Y T

1 B̄
rT

i1 + Ā11X1 + B̄r
i1Y1 + αB̄1

ωB̄
1T

ω , Θ2 =

Ā12X2+B̄
r
i1Y2+αB̄

1
ωB̄

2T

ω Θ3 = X2Ā
T
22+Y

T
2 B̄

rT

i2 +Ā22X2+B̄2Y2+αB̄
2
ωB̄

2T

ω . Therefore,

the control gains K̄r1
1i and K̄r2

1i satisfy the requirements of Parts A and B if the solutions

to the inequality (4.54) also satisfy (4.47). These requirements can be achieved provided

that the gains are obtained as solutions to the following optimization problem, namely

max α s.t.






Θ X

X −I




 < 0, X > 0, Ā21X1 + B̄r

i2Y1 = 0.

Subject to the above conditions the upper bound for the H∞ performance index and the

reconfigured control gain Kr
1i are now specified according to γ2 = α−1λ−1

min{(TT
T)−1}

and Kr
1i =

[

Y1X
−1
1 Y2X

−1
2

]

T−1, and this completes the proof of the theorem.

The following algorithm summarizes the required steps that one needs to follow for
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designing the reconfigured control law gains.

Algorithm for Design of the Fault Reconfiguration Controller Gains:

1) Obtain the maximal (A,Br
i ) controlled invariant subspace, V∗, either by using the

iterative algorithm that is proposed in [160] or by using the Geometric Approach

Toolbox [178] (available online). Set T1 such that V∗ = Im{T1} and select T2 such

that T =

[

T1 T2

]

is a nonsingular matrix.

2) Obtain Ā11, Ā21, Ā12, B̄i1 and B̄i2 as in (4.42) and B̄ω and B̄2 as in (4.43).

3) Solve the optimization problem (4.45) for X1, X2, Y1 and Y2.

4) Set Kr
1i as Kr

1i =

[

Y1X
−1
1 Y2X

−1
2

]

T−1.

5) Solve equation (4.44) for Kr
2i.

6) Solve equation (4.36) for uri .

7) Set uri (t) = Kr
1iξ

f
i (t) +Kr

2iu
a
i (t) + uri .

8) Set ufi (t) =

[

01×mo
(usi )

T (uri (t))
T

]T

.

In view of the Theorem 4.2 and the above Algorithm the following results can be obtained

immediately.

Corollary 4.1 (Presence of only the LOE fault). Suppose the actuators are either healthy

or subject to the LOE fault. In this case, Br
i in (4.42) is given by Br

i = BΓi, where
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Γi = diag{Γk
i }, k = 1, . . . ,m. Furthermore, the faulty control law ufi (t), and the

reconfigured control law, uri (t), for the i-th faulty agent are designed according to

ufi (t) = uri (t)

uri (t) = Kr
1iξ

f
i (t) +Kr

2iu
a
i (t),

where the control gains Kr
1i and Kr

2i are designed according to the Steps 4 and 5 of the

above algorithm.

Corollary 4.2 (Presence of only the outage fault). Suppose the actuators 1 to mo are

subject to the outage fault and the remaining actuators are healthy. In this case, Br
i in

(4.42) is given by Br
i =

[

bmo+1 . . . bm
]

. Furthermore, the faulty control law ufi (t),

and the reconfigured control law, uri (t), for the i-th faulty agent are designed according

to

ufi (t) =

[

01×mo
(uri (t))

T

]T

,

uri (t) = Kr
1iξ

f
i (t) +Kr

2iu
a
i (t),

where the control gains Kr
1i and Kr

2i are designed according to the Steps 4 and 5 of the

above algorithm.

Corollary 4.3 (Presence of only the stuck fault). Suppose the actuators 1 to ms are

subject to the stuck and the remaining actuators are healthy. In this case, Br
i in (4.42)

is given by Br
i =

[

bms+1 . . . bm
]

. Furthermore, the faulty control law ufi (t), and the

reconfigured control law, uri (t), for the i-th faulty agent are designed according to

ufi (t) =

[

(usi )
T (uri (t))

T

]T

,

uri (t) = Kr
1iξ

f
i (t) +Kr

2iu
a
i (t) + uri ,

where the control gains Kr
1i and Kr

2i are designed according to the Steps 4 and 5 and the
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control command uri is obtained according to the Step 6 of the above algorithm.

Similar results corresponding to the combination of any two of the considered three

types of faults can also be developed. These straightforward results that follow from

Theorem 4.2 and the Corollaries 4.1-4.3 are not included here for brevity.

4.2.2 The Existence of Solutions and Analysis

In previous subsection, a cooperative control strategy to ensure consensus achievement

and control reconfiguration subject to actuator faults and environmental disturbances was

proposed and conditions under which the objectives are guaranteed were provided. In

the following, we discuss the properties of solutions if certain required conditions are not

satisfied. We consider five cases that are designated as I to V below.

Case I: If the Assumption 4.2-(c) does not hold, i.e., the fault occurs during the

transient period, then ξfi (tf ) 6= 0, and the first term in (4.38) will be non-zero. However,

sinceKr
1i is designed such thatA+Br

iK
r
1i is Hurwitz this term will vanish asymptotically.

Note that the delay in receiving the information from the FDI module and activating

the control reconfiguration will also result in ξfi (tf ) 6= 0, and causes a similar effect.

Case II: If B̄2 6⊂ Im{B̄r
i2}, then (4.44) does not have a solution. In this case, we may

obtain Kr
2i as a solution to

min
Kr

2i

trace{Br
i2K

r
2i − B̄2}.

Corresponding to this choice of Kr
2i, the second term of (4.38) will remain non-zero and
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we have zi(t) 6= 0 but bounded. However, if K̄r
1i is designed according to Part B in the

proof of Theorem 4.2, one can still guarantee boundedness of the state consensus errors.

Case III: Suppose the estimated value of the stuck fault command, that is usi , is not

accurate, namely usi = ûsi + εi, where ûsi and εi denote the estimated stuck command and

its error. Equation (4.36) can then be expressed as (Bs
i û

s
i + Br

i u
C
i ) + Bs

i εi = 0. Since εi

is unknown, therefore to obtain uCi we instead use the following optimization problem,

namely

min
uC
i

trace{Bs
i û

s
i +Br

i u
C
i }.

Let ηi = (Bs
i û

s
i +B

r
i u

C
i )+B

s
i εi. Consider the control law (4.33) as designed in Theorem

4.2. It follows that for ωi(t) ≡ 0, equation (4.37) becomes ξ̇fi (t) = Acξ
f
i (t) + (Br

iK
r
2i −

B)uai (t) + ηi, where Ac = A+Br
iK

r
1i. Under Assumption 4.2, and for Kr

2i as a solution

to (4.44), it follows that zi(t) = CA−1
c (eAc(t−tf ) − I)ηi. Given that Ac is Hurwitz, the

above equation implies that after a transient period the error between the output of the

faulty agent and its associated auxiliary system, or equivalently the output tracking error

reaches a constant steady state value, i.e. limt→∞ zi(t) = −CA−1
c ηi. Consequently,

under this scenario one can still observe that the state consensus errors remain bounded.

Case IV: Let the estimated actuator loss of effectiveness factor or severity be subject

to uncertainties, i.e. Γk
i = Γ̂k

i + εki , where Γ̂k
i is the estimate of the fault severity that is

provided by the FDI module, and εki is an unknown estimation error uncertainty. Consider

equation (4.42). Since Γi 6= Γ̂i we have B̄r
i = B̂r

i + B̄rε
i , where ˆ̄Br

i = T−1Bfr
i Γ̂i,

B̄rε
i = T−1Bfr

i Υi, Υi = diag{εki }, k = ms + 1, . . . ,m and Bfr
i =

[

bms+1 . . . , Bm

]

.
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In order to analyze the impact of these uncertainties on our previous results, we need to

investigate both the matching condition, namely equation (4.44), and the stability of the

tracking error ξfi (t).

Since Υi is unknown, one cannot determine the gain Kr
2i such that (4.44) holds. This

implies that unlike zi(t) (given in Part A of the proof), one cannot ensure zi(t) ≡ 0.

On the other hand, Āc in (4.43) should be replaced by Ãc = Āc + Āε
c = Ā + ˆ̄Br

i K̄
r
1i +

B̄rε
i K̄

r
1i. Following along the same steps as those utilized in Subsection 4.2.1 for now

Āc = Ā + ˆ̄Br
i K̄

r
1i, one can obtain the control gain K̄r

1i that makes Āc Hurwitz. Hence,

for ωi(t) ≡ 0, equation (4.43) can be written as ˙̄ξfi (t) =
(
Āc + Āε

c

)
ξfi (t) + Ēiu

a
i (t). In

order to analyze the robustness we can use the results of Theorem 2.1, however we need

to rewrite the above equation as below

˙̄ξfi (t) = Ācξ
f
i (t) + Ēiu

a
i (t) + f(ξfi (t)),

where f(ξfi (t)) , Āε
cξ

f
i (t). Given that Āε

c =
∑m

l=ms+1 ε
l
ib

lkl, we get

‖Āε
c‖2 ≤

m∑

l=ms+1

|εli|‖b
lkl‖2,

where bl and kl denote the l − ms-th column of Bfr
i and the l − ms-th row of K̄r

1i,

respectively. Now, by using Theorem 2.1, if there exist ε̄limax > 0, l = 1, . . . ,m − ms

such that
m∑

l=ms+1

ε̄limax‖b
lkl‖2 ≤

1

σmin(P )
, (4.55)

and |εli| ≤ ε̄limax, then the matrix Ãc remains Hurwitz, where P is a positive definite matrix

solution to PĀc + ĀT
cP = −2I. This along with the boundedness of uai (t) implies that

ξ̄fi (t) will also remain bounded.
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Case V: Suppose that the fault is recovered after a delay of ∆ s, i.e. tr = tf +

∆, where tf and tr denote the time that the fault occurs and the time that the control

reconfiguration is invoked. During the time tf ≤ t ≤ tr, the tracking dynamics of the

i-th agent, i.e., ξfi (t), becomes

ξ̇fi (t) = (A+ c1B
f
i K)ξfi (t) + (Bf

i − B)uai (t), tf ≤ t < tr.

Therefore, one gets xfi (t) = exp((A+ c1B
f
i K)(t− tf ))(xi(tf )−xai (tf ))+

∫ t

tf
exp((A+

c1B
f
i K)(t− s))uai (s)ds+x

a
i (t). If the fault causes A+ c1B

f
i K to become non-Hurwitz,

then xfi (t) will grow exponentially. Now, let xMi denote the maximum allowable upper

bound on the agent’s state (this can be specified for example based on the maximum

speed of the moving agent or the maximum depth for surveying under the water), then

invoking the reconfigured control law cannot be delayed beyond ∆s, where the maximum

delay in invoking the reconfigured controller is denoted by ∆ and can be obtained by

solving the following equation xMi = xai (tf + ∆) + exp((A + c1B
f
i K)∆)(xi(tf ) −

xai (tf )) +
∫ tf+∆

tf
exp((A + c1B

f
i K)(tf + ∆ − s))uai (s)ds. This implies that if the fault

is not recovered before t = tf + ∆ s, the faulty agent may no longer be recoverable to

satisfy the overall mission requirements and specifications at all times.

4.3 Simulation Results

In this section, our proposed control recovery approach is applied to a network of Au-

tonomous Underwater Vehicles (AUVs). The team behavior is studied under several

scenarios, namely when the agents are healthy and also when the agents are subject to

simultaneous LOE, outage and stuck actuator faults, uncertainties in the FDI module in-
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formation and delays in invoking the control reconfiguration. The team is considered to

consist of five Sentry Autonomous Underwater Vehicles (AUVs). Sentry, made by the

Woods Hole Oceanographic Institution [171], is a fully autonomous underwater vehicle

that is capable of surveying to the depth of 6000 m and is efficient for forward motions.

The nonlinear six degrees of freedom equations of motion in the body-fixed frame in

the horizontal plane is given by [179]:

Mν̇ + C(ν)ν + D(ν, φf )ν + g(η) = b(φ, h),

η̇ = J(η)ν,

where M, C, D and J denote the inertia matrix, the moment/forces matrix, the damping

matrix and the transformational matrix, respectively. The terms g(η) and b(φf , h) denote

the hydrostatic restoring forces and the truster input, respectively, and are given by

b(φf , h) =





















(hfp + hfs) cosφff + (hap + has) cosφaf

0

(hfp + hfs) sinφff + (hap + has) sinφaf

bt(hfp − hfs) sinφff + bt(hap − has) sinφaf

−aff (hfp + hfs) sinφff − aaf (hap + has) sinφaf

bt(hfp − hfs) cosφff + bt(hap − has) cosφaf





















,

g(η) =

[

0 0 0 zBG cos θ sinφW zBG sin θW 0

]T

, where φf = [φff φaf ]
T and

h = [hfp hfs hap has]
T denote the foil angles and the truster inputs, respectively. The

term η = [ηT
1 η

T
2 ]

T, where η1 = [x y z]T denotes the inertial position and η2 = [φ θ ψ]T

denotes the inertial orientation. Also, ν = [νT
1 ν

T
2 ]

T, with ν1 = [ū v w]T denotes the

body-fixed linear velocity and ν2 = [p q r]T denotes the angular velocity. Finally, zBG
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and W denote the vertical distance between the center of the buoyancy and the center of

the mass and the vehicle weight, respectively.

For the Sentry vehicle, the horizontal position is controlled indirectly through the

heading subsystem, i.e. v, r, ψ, and surge speed subsystem, i.e. ū. Therefore, for control

purposes the states x and y are ignored. Moreover, under the assumptions that (a) the

truster and foil angles do not affect each other, (b) the pitch and the pitch rate, i.e. θ and

q are sufficiently small, and (c) the foil angles are sufficiently small, then the states p, φ

are also ignored for control design and are considered passive [171]. Therefore, for the

control design in the near horizontal maneuver under the operating point νo1 = [uo 0wo]T,

νo2 = 03×1 and ηo = 06×1, the linear model of the Sentry AUV is reduced to the following
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subsystems:













˙̄u(t)

v̇(t)

ṙ(t)

ψ̇(t)














=














a11u
o 0 0 0

0 a22u
o a26u

o 0

0 a62u
o a66u

o 0

0 0 1 0



























ū(t)

v(t)

r(t)

ψ(t)














+














m11 m11 m11 m11

m26bh −m26bh m26bh −m26bh

m66bh −m66bh m66bh −m66bh

0 0 0 0



























hfp(t)

hfs(t)

hap(t)

has(t)














,














ẇ(t)

q̇(t)

ż(t)

θ̇(t)














=














a33u
o a35u

o 0 −mm35zGBW

a53uo a55u
o 0 −m55zGBW

1 0 0 uo

0 1 0 0



























w(t)

q(t)

z(t)

θ(t)














+














α11
h α12

h

α21
h α22

h

0 0

0 0



















φff (t)

φaf (t)




 ,

where α11
h = βh

1+βh
h31 + (uo)2f31, α

12
h = 1

1+βh
h32 + (uo)2f32, α21

h = βh

1+βh
h51 + (uo)2f51,

and α22
h = 1

1+βh
h52 + (uo)2f52. The detail relationships between the above parameters

and the system parameters are provided in [171].

For underwater vehicles, the ocean current is considered as a disturbance to the sys-

tem, i.e. ω(t) = Vc(t), where Vc(t) denotes the ocean current. In [180], the ocean current
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is selected as u0(t) = K0x0(t)+F0r(t), and the desired leader speed r(t) = ūdesired(t) is

defined according to Figure 4.4. The objective of the team cooperative control is to en-

sure that all the agents follow the leader output (surge speed) trajectory, while their yaw

angle, sway and yaw rate remain bounded. The acceptable errors between the desired

trajectory and the actual trajectories are considered to be less than 10% in the steady

state. The following scenarios are now considered:

Scenario 1: Faulty team without control reconfiguration: In this scenario, it is assumed
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Figure 4.4: The desired leader surge speed trajectory.

that no control reconfiguration is invoked after the occurrence of the faults. The specifics

for the mission considered are as follows where the followers state trajectories are de-

picted in Figure 4.5.

A) All the agents are healthy and the agent control law is designed according to Theorem

4.1 and using YALMIP toolbox for MATLAB.

B) At time t = tf = 25 s, the agents 1 and 2 become faulty. Agent 1 loses its second

actuator i.e. hf1fs(t) ≡ 0, t ≥ 25. Agent 2 loses 30% of its first actuator and its second

actuator gets stuck at us2 = 1, i.e. hf2fp(t) = 0.7h2fp(t) and hf2fs(t) ≡ 1 for t ≥ 25 s.

123



Figure 4.5 clearly shows that if a reconfiguration control strategy is not invoked, the

agents become unstable and their states grow exponentially unbounded. Therefore, it is

necessary to reconfigure the agent’s control law after the occurrence of this fault.
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Figure 4.5: The followers trajectories corresponding to the Scenario 1.

Scenario 2: Control reconfiguration subject to delays in invoking the reconfigured

control law: Unlike the previous scenario, in this scenario control reconfiguration laws

are invoked to the faulty agents. However, it is assumed that there are delays in the time

that the FDI module communicates this information to the faulty agents and the agents

reconfigured controls are invoked. The specifics for the execution of the mission are as

follows where the followers state trajectories are depicted in Figure 4.6.

A) All the agents are healthy and the agent control law is similar to the Scenario 1.

B) At time t = tf = 25 s, the agents 1 and 2 become faulty. The fault scenario that is

considered is the same as that of Step B) in Scenario 1.

C) The control laws for both faulty agents are reconfigured according to Theorem 4.2 at
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t = tr = 30 s.

Figure 4.6, depicts that by invoking the reconfigured control laws one can now sta-

bilize all the agents. The delay in invoking the control reconfiguration causes a transient

period in which the agent states diverge and will not follow the leader (refer to discussion

in Subsection 4.2.2, Case V). However, after the transients have died out, the agent reach

a consensus with the leader state.
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Figure 4.6: The followers trajectories corresponding to the Scenario 2.

Scenario 3: Control reconfiguration subject to fault estimation uncertainties: In this

scenario, we consider a similar fault scenario as in the previous scenarios. However,

it is assumed that the estimated fault severities are subject to unreliabilities, errors and

uncertainties. Using the inequality (4.55) the upper bound on uncertainties is obtained as

ε̄12max = 0.146, implying that the reconfigured control law stabilizes the errors provided

that it is designed based on 0.554 ≤ Γ̂1
2 ≤ 0.846. To investigate how accurate this range

is, various levels of uncertainties and mismatches are considered and it is observed that
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the control gains that are designed for Γ̂1
2 < 0.86 stabilize the errors whereas for Γ̂1

2 ≥

0.87 the state consensus errors become unstable. This indicates that the bound provided

by the inequality (4.55) provides an acceptable approximation to the maximum allowable

fault severities estimation errors and uncertainties. The agents state simulation responses

correspond to Γ̂1
2 = 0.6 and ûsi = 0.9, and are depicted in Figure 4.7. Figure 4.7 shows
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Figure 4.7: The followers trajectories corresponding to the Scenario 3.

that by invoking the reconfigured control law, the agent states will no longer diverge and

the recovery control strategy stabilizes the agent states. In fact, in this scenario the agents

do follow the changes in the leader speed trajectory, although the error between the

faulty agent speed trajectory and the leader speed trajectory will not vanish but converges

asymptotically to a small constant value.
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4.4 Conclusions

In this work, a cooperative and distributed reconfigurable control law strategy is devel-

oped and designed to control and reconfigure faulty agents from three types of actuator

faults, namely loss of effectiveness, outage, and stuck faults that guarantee boundedness

of the state consensus errors for a network of multi-agent systems. It is shown that the

proposed control strategy can ensure an H∞ performance bound attenuation for the team

agents when they are subjected to environmental disturbances and actuator faults. Our

proposed reconfigured control law ensures that the output of the faulty agent matches

that of the healthy agent in absence of disturbances. Moreover, the control law also

guarantees that the state consensus errors remain bounded. Furthermore, in presence

of environmental disturbances the H∞ disturbance attenuation bound is ensured to be

minimized. The effectiveness of our proposed cooperative control and reconfigurable

approaches are evaluated by applying them to a network of autonomous underwater ve-

hicles. Extensive simulation case studies are also considered to demonstrate the capa-

bilities and advantages of our proposed strategies subject to FDI module uncertainties,

erroneous decisions, and imperfections.
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Chapter 5

Control Reconfiguration in Switched

Topology networks

In this chapter, distributed control reconfiguration strategies for directed switching topol-

ogy networked multi-agent systems are developed and investigated. The proposed con-

trol strategies are invoked when the agents are subject to actuator faults and while the

available fault detection and isolation (FDI) modules provide inaccurate and unreliable

information on the estimation of faults severities. Our proposed strategies will ensure

that the agents reach a consensus while an upper bound on the team performance index

is obtained and minimized. Three types of actuator faults are considered, namely: the

loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and

convex hull (composite) Lyapunov functions, two cooperative and distributed recovery
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strategies are designed and provided to select the gains of the proposed control laws such

that the team objectives are guaranteed. Our proposed reconfigurable control laws are

applied to a team of autonomous underwater vehicles (AUVs) under directed switching

topologies and subject to simultaneous actuator faults. Simulation results demonstrate

the effectiveness of our proposed distributed reconfiguration control laws in compen-

sating for the effects of sudden actuator faults and subject to fault diagnosis module

uncertainties and unreliabilities.

5.1 Problem Formulation

Consider a multi-agent network having a leader that is governed by (2.3) and N follower

agents whose dynamics are given by (2.1). Without loss of any generality, assume that

the agents 1 to Nf become faulty at the time t = tf , where for the i-th faulty agent the

first moi actuators are subject to the outage fault, the actuators moi +1 to msi are subject

to the stuck fault, and the remaining m − msi actuators are either subject to the LOE

fault or are healthy. Using equations (2.15)-(2.18), the model of i-th faulty agent can be

expressed as

ẋfi (t) = Axfi (t) + Bf
i u

f
i (t), i = 1, . . . , Nf , (5.1)

where Bf
i = [Bo

i B
s
i B

r
i ], B

o
i = [b1, . . . , bmoi ], Bs

i = [bmo+1, . . . , bms ], Br
i = B̄r

i Γi =

B̂r
i + Biξ, B̄

r
i =

[

bmsi+1, . . . , bm
]

, Γi =diag{Γk
i }, k = msi + 1, . . . ,m, Γk

i denotes

the k-th actuator effectiveness and the fault severity factor, B̂r
i = B̄r

i Γ̂i, Biξ = B̄r
i fiξi,

Γ̂i = diag{Γ̂k
i }, fi = diag{fk

i }, ξi = diag{ξki }, Γk
i , Γ̂k

i , ξki and fk
i are defined as in (2.16),
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ufi (t) =

[

01×moi
(usi )

T (uri (t))
T

]T

, usi = ûsi + uξi , u
s
i =

[

umoi+1
i (tf ), . . . , u

msi

i (tf )

]T

,

ûsi =

[

ûmoi+1
i , . . . , ûmsi

i

]T

, uξi =

[

umoi+1ξ
i , . . . , umsiξ

i

]T

, and uri (t) =

[

umsi+1
i (t), . . . , umi (t)

]T

.

Considering the structure of the matrix Bf
i and the control law ufi (t), it follows that

for the i-th faulty agent only the actuators bmsi
+1 to bm are available for actuation. There-

fore, to proceed with our proposed reconfiguration control strategy that will manage all

the three types of actuator faults the faulty system (5.1) is rewritten as follows

ẋfi (t) = Axfi (t) + Br
i u

r
i (t) + Bs

i u
s
i , i = 1, . . . , Nf . (5.2)

Let us now define associated with the i-th agent the following performance index

Ji =
1

2

∫ T

tf

eT
i (t)Qei(t)dt, (5.3)

where ei(t) is defined as in (2.4), T is a finite time, and Q is a positive definite matrix

with appropriate dimension.

Control Reconfiguration Objective: Design the control laws uhi (t) and uri (t) such

that:

(i) the agents reach a consensus, i.e. ei(t) → 0 as t→ ∞, and (ii) the team performance

Jf upper bound is minimized, where

Jf =
N∑

i=1

Ji =
1

2

∫ T

tf

eT(t)Qe(t)dt,

e(t) = col{ei(t)} and Q = IN ⊗Q (⊗ denotes the Kronecker product).

In the remainder of this work the following assumptions are considered to hold.

Assumption 5.1. (a) The switching signal has finite number of discontinuities at each

bounded time and there is a small number number τ such that tlk+1 − tlk ≥ τ > 0 and
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the network topology switches changes among a finite set of communication graphs that

have directed spanning trees.

(b) The leader control input is designed such that its states and control signals remain

bounded.

Assumption 5.2. (a) The agents are stabilizable and remain stabilizable even after the

fault occurrence.

(b) Each agent is equipped with a local FDI module that correctly detects and isolates

the faulty actuator but it can only estimate the severity of the LOE and stuck faults with

uncertainties, unreliabilities, and inaccuracies.

5.2 Proposed Methodology

Consider a multi-agent team that consists of N healthy followers that are governed by

(2.1) and a leader that is given by (2.3). The overall dynamics of the team consensus

error can be expressed as

ė(t) = Ae(t) + Bσu(t) + Bσ
0u0(t), (5.4)

where e(t) = col{ei(t)}, ei(t) is defined as in (2.4), u(t) = col{uhi (t)}, A = IN ⊗ A,

Bσ = Lσ
22 ⊗ B and Bσ

0 = Lσ
21 ⊗ B.

Our goal is to design u(t) in (5.4) that is distributed in its implementation, implying

that it uses only local information and measurements. Moreover, it is reconfigurable (the

control gains can be redesigned) by using local network information, i.e. the agent dy-

namics as well as the FDI module information once a fault has occurred and detected.
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Since each agent only communicates with its nearest neighbors, once the network topol-

ogy switches each agent notices its new neighboring set, and is unaware of the entire

network graph topology at that instant. Therefore, we either require a high-level super-

visor (a team-level supervisory control law) that monitors the entire network and can

decide on the appropriate control laws associated with each network topology or that we

should employ a fixed fault-tolerant (reconfigurable) control law that renders the team

stability corresponding to all the possible topologies.

In this work, we aim at designing a fully distributed and an active fault-tolerant con-

trol law that guarantees consensus subject to any possible topology and that can be re-

configured based on the availability of only local information. Towards this end, we

introduce a local virtual system that is associated with the i-th agent as follows:

˙̄xi(t) = Ax̄i(t) + Bugi (t). (5.5)

The dynamics of this virtual system does not change during the mission whether the real

agents are faulty or healthy.

If ugi (t) is designed such that x̄i(t) → x̄j(t) → x0(t) and ui(t) is designed such

that x∗i (t) → x̄i(t), where ∗ = {h, f}, then we can ensure that x∗i (t) → x0(t). The

main motivation for employing x̄i(t) to guarantee team consensus (x∗i (t) → x0(t)) is

that x̄i(t) is not subject to a fault, therefore it can be used to guarantee consensus even

when the agents are faulty. For this purpose, let us also define ηhi (t) = xhi (t) − x̄i(t),

ηfi (t) =

[

(ηf1i(t))
T (ηf2i(t))

T

]T

, ηf1i(t) = xfi (t)− x̄i(t), η
f
2i(t) = Fi

∫ t

tf
ηf1i(τ)dτ , ēi(t) =

∑

j∈Ni(t)
(x̄i(t)− x̄j(t)) + g0i(t)(x̄i(t)− x0(t)), ēiI(t) = Fi

∫ t

tf
ēi(τ)dτ , and where Fi is
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a design matrix to be specified subsequently.

Consequently, each agent behavior is determined according to the following systems

η̇hi (t) = Aηhi (t) + B(uhi (t)− ugi (t)), i = Nf + 1, . . . , N, (5.6)

η̇fi (t) = Aa
i η

f
i (t) + Baf

i ufi (t)− Baugi (t) = Aa
i η

f
i (t) + Bar

i u
r
i (t) + Bas

i u
s
i − Baugi (t),

i = 1, . . . , Nf , (5.7)

˙̄ei(t) = Aēi(t) + di(t)Bu
g
i (t)−

∑

j∈Ni(t)

Bugj (t)− gi0(t)Bu0(t), i = 1, . . . , N, (5.8)

˙̄eai (t) = Aa
i ē

a
i (t) + di(t)B

augi (t)−
∑

j∈Ni(t)

Baugj (t)− gi0(t)B
au0(t), i = 1, . . . , N,

(5.9)

where ēai (t) = [ēT
i (t) ē

T
iI(t)]

T, Aa
i =






A 0

Fi 0




, Ba∗

i =






B∗
i

0




, ∗ = {r, f, s}, and

Ba =






B

0




.

Let ugi (t) be selected as

ugi (t) = K2iē
a
i (t) = K21iēi(t) +K22iēiI(t), (5.10)

whereK2i = [K21i K22i] and the control gainsK21i andK22i should be selected such that

ēi(t) is asymptotically stable. Before presenting the procedure for designing the control

gains, first the distributed control laws for both the healthy and the faulty agents as well

as the sufficient conditions for consensus achievement of the faulty team are presented in

Lemma 5.1. In fact, the following lemma transforms the consensus achievement problem

for the healthy and faulty teams into equivalent stability problems.

Lemma 5.1. Let the control gains K21i and K22i be designed such that ēi(t) is asymp-
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totically stable. Then, it follows that

(a) The healthy control law

uhi (t) = ulhi (t) + ugi (t) = Kh
1iη

h
i (t) + ugi (t), (5.11)

ensures that ηhi (t) is asymptotically stable and xhi (t) → x0(t) as t → ∞ if Kh
1i is

designed such that A+BKh
1i is Hurwitz, where ugi (t) is defined according to (5.10).

(b) The reconfigured control law

uri (t) = ulfi (t) +Giu
g
i (t) = Kf

1iη
f
i (t) +Giu

g
i (t), (5.12)

guarantees that ηf1i(t) is asymptotically stable, ηf2i(t) is bounded and xfi (t) → x0(t) as

t → ∞ if Kf
1i is designed such that Aa

i + Bar
i K

f
1i is Hurwitz, where Aa

i =






A 0

Fi 0




,

Bar
i =






Br
i

0




, Fi is selected such that it is full rank, and Gi ∈ R(m−msi)×m is a gain

matrix to be specified.

The results of the following lemma is employed to prove the results of Lemmas 5.1-

5.6.

Lemma 5.2. Consider the system

ẋ(t) = Acx(t) + f(t), x(t0) = x0, (5.13)

where Ac =






A11 A12

F 0




 is Hurwitz, f(t) = [fT

1 , 0]
T is bounded and has a finite limit as

t→ ∞, i.e. ‖f(t)‖ ≤ fM and limt→∞ f(t) = F0, F0 ∈ Rn x(t) = [xT
1(t), x

T
2(t)]

T, and F

is a full rank matrix. Then, it follows that x(t) is bounded, ‖x(t)‖ ≤ exp{α}max{‖x0‖,
fM
β
},
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where α = log{σmax{S}
σmin{S}

}, β = −maxi real{λi{A}}, S is such that Ac = SJAS
−1 and

JA is the Jordan decomposition ofAc. Moreover, x1(t) → 0 as t→ ∞ and x2(t) remains

bounded for all time.

Proof. The solution of the system (5.13) is obtained as

x(t) = exp(Ac(t− t0))x0 +

∫ t

t0

exp(Ac(t− τ))f(τ)dτ.

Let us express the Jordan canonical decomposition of Ac as A = SJAS
−1. Hence,

given that exp(Act) = Sexp(JAt)S
−1, 1 we have ‖exp(At)‖ ≤ exp(α − βt), where

α = log{σmax{S}
σmin{S}

} and β = −maxi real{λi{Ac}}. Therefore,

‖x(t)‖ ≤ exp(α− β(t− t0))‖x0‖+

∫ t

t0

exp(α− β(t− τ))‖f(τ)‖dτ,

≤ exp(α− β(t− t0))‖x0‖+
fM
β

(exp(α)− exp(α− β(t− t0)) = Φ(t).

It follows that Φ(t0) = exp{α}‖x0‖ and limt→∞ Φ(t) = exp{α}fM
β

, Moreover,

based on the definition of Φ(t) it can be seen that Φ(t) is monotonically decreasing

if fM − β‖x0‖ < 0, and is monotonically increasing if fM − β‖x0‖ > 0. Therefore,

‖x(t)‖ ≤ exp{α}max{‖x0‖,
fM
β
}, that is x(t) is bounded. Now if x(t) = [xT

1(t), x
T
2(t)]

T,

it follows that x1(t) and x2(t) = F
∫ t

t0
x1(τ)dτ remain bounded, so that

∫ t

t0
x1(τ)dτ is

bounded. Since f(t) is bounded, ẋ1(t) is also bounded. Therefore, by using the Bar-

balat’s lemma since
∫ t

t0
x1(τ)dτ and ẋ1(t) are bounded, it follows that x1(t) → 0, or it is

asymptotically stable.

1Note that ‖exp(Act)‖ ≤ ‖S‖‖exp(JAt)‖‖S
−1‖, ‖S‖ = σmax{S}, ‖S−1‖ = σmax{S

−1}. Now,

given that σi{Ac}σn{B} ≤ σi{AcB}, (i is correct) i = 1, . . . , n for Ac = S−1, B = S, i = 1 we have

σ1{S
−1} = σmax{S

−1} ≤ 1

σn{S} = σ−1

min
{S}. Therefore, α = log

σmax{S}
σmin{S} .
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Proof. If ēi(t) is asymptotically stable then one obtains x̄i(t) → x0(t) as t→ ∞.

(a) Under the control law (5.11), the dynamics of ηhi (t) is given by

η̇hi (t) = (A+BKh
1i)η

h
i (t). (5.14)

The matrix A+BKh
1i is Hurwitz, and hence, ηhi (t) is asymptotically stable, and xhi (t) →

x̄i(t) as t→ ∞. Since x̄i(t) → x0(t), it follows that xhi (t) → x0(t), as t→ ∞.

(b) Under the control law (5.12), the dynamics of ηfi (t) can be expressed as

η̇fi (t) = (Aa
i +Bar

i K
f
1i)η

f
i (t) + Bas

i u
s
i + (Bar

i Gi − Ba)ugi (t),

where Bar
i = [(Br

i )
T 0]T and Bas

i =

[

(Bs
i )

T 0

]T

. If ēi(t) is asymptotically stable, then

ēiI(t) is bounded and from (5.10), it follows that ugi (t) is also bounded. Since Bas
i u

s
i

is also bounded, if Aa
i + Bar

i K
f
1i is Hurwitz, then by using Lemma 5.2, with f(t) =

Bas
i u

s
i +(Bar

i Gi−B
a)ugi (t), η

f
1i(t) is asymptotically stable and ηf2i(t) is stable, implying

that xfi (t) → x̄i(t) as t → ∞. This along with x̄i(t) → x0(t) leads to xfi (t) → x0(t) as

t→ ∞.

Considering the control laws (5.11) and (5.12), one can observe that the term ugi (t)

is common in both the healthy agent and the faulty agent control laws. Therefore, the

objectives of the faulty team may be guaranteed by reconfiguring ulhi (t) and designing

the control law ulfi (t) and the gain Gi appropriately. The above result is not constructive

in the sense that it does not provide a procedure for selecting the control gains.

In the following, our design strategy will be provided and discussed in detail. How-

ever in order to select the gains in an optimal control framework, it is also required to ex-
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press the team cost performance index in terms of ē(t) = col{ēi(t)}, ēa(t) = col{ēai (t)},

ēai (t) =

[

ēT
i (t) ēT

iI(t)

]T

and ηf (t).

Based on the given definitions of ηfi (t) and ηhi (t) one has xfi (t) = [I 0]ηfi (t) + x̄i(t)

and xhi (t) = ηhi (t) + x̄i(t), then we can define x(t) as follows:

x(t) = [(xf1(t))
T, . . . , (xfNf

(t))T, (xhNf+1(t))
T, . . . , (xhN(t))

T]

= [[I 0]ηf
T

1 (t), . . . , [I 0]ηf
T

Nf
(t), ηh

T

Nf+1(t), . . . , η
hT

N (t)]T + x̄(t) = Sηf (t) + x̄(t),

where x̄(t) = col{x̄i(t)}, S = diag{INf
⊗

[

In 0n×n

]

, I(N−Nf )⊗In}, ηf (t) = col{η∗i (t)},

∗ = f for i = 1, . . . , Nf and ∗ = h for i = Nf +1, . . . , N . Therefore, e(t) can be written

as

e(t) = (Lσ
22 ⊗ In)x(t) + (Lσ

21 ⊗ In)x0(t)

= (Lσ
22 ⊗ In)(Sη

f (t) + x̄(t)) + (Lσ
21 ⊗ In)x0(t)

= (Lσ
22 ⊗ In)Sη

f (t) +
(
(Lσ

22 ⊗ In)x̄(t) + (Lσ
21 ⊗ In)x0(t)

)

= (Lσ
22 ⊗ In)Sη

f (t) + ē(t).

Based on the above representation for e(t), the team cost can be expressed as

Jf =
1

2

∫ T

tf

(ē(t) + (Lσ
22 ⊗ In)Sη

f (t))TQ

(ē(t) + (Lσ
22 ⊗ In)Sη

f (t))dt. (5.15)

Now using Fact 2.1 we have

1

2
(ē(t) + (Lσ

22 ⊗ In)Sη
f (t))TQ(ē(t) + (Lσ

22 ⊗ In)Sη
f (t)) ≤

ēT(t)Qē(t) + ηf (t)TST(Lσ
22 ⊗ In)

TQ(Lσ
22 ⊗ In)Sη

f (t) =

ēT(t)Qē(t) + ηf (t)TST((Lσ
22)

TLσ
22 ⊗Q)Sηf (t),
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and therefore,

Jf ≤

∫ T

tf

ēT(t)Qē(t) + ηf (t)TST((Lσ
22)

TLσ
22 ⊗Q)Sηf (t)dt. (5.16)

The cost Jf is a function of ē(t) and ηf (t). Under the control law (5.10), the dynamics

of ēa(t) can be written as

˙̄ea(t) = (IN ⊗ Aa
i )e

a + (Lσ
22 ⊗ Ba)ug(t) + B̄aσ

0 u0(t)

= Āσ
2 ē

a(t) + B̄aσ
0 u0(t), (5.17)

where Āσ
2 = Aa + B̄aσK2, Aa = IN ⊗ Aa

i , B̄aσ = Lσ
22 ⊗ Ba, K2 = diag{K2i}, and

B̄aσ
0 = Lσ

21⊗Ba. However, under the fault scenario that is defined in Section 5.1 and the

reconfigured control law (5.12) the dynamics of ηf (t) can be expressed as follows

η̇f (t) = Af
1η

f (t) + (BarG− Ba)ug(t) + Bsus, (5.18)

where Af
1 = diag{A∗

1i}, ∗ = f for i = 1, . . . , Nf and ∗ = h for i = Nf + 1, . . . , N ,

Af
1i = Aa

i +Bar
i K

f
1i and Ah

1i = A+BKh
1i, B

s = col{(diag{Bas
i }), 0

n(N−Nf )×
∑Nf

i=1
msi

},

Bar = diag{diag{Bar
i }, IN−Nf

⊗B}, Ba = diag{diag{Ba}, IN−Nf
⊗B}, B∗

i =






B∗
i

0




,

∗ = s, ar, a, G = diag{diag{Gi}, Im(N−Nf )}, ug(t) = col{ugi (t)}, ugi (t) is defined as in

(5.10), ηf (t) = ηfi (t) and us = col{usi}.

If one employs the approach that is proposed in [181, 182], the problem of minimiz-

ing Jf subject to (5.17) and (5.18) can be relaxed to a time-varying optimization prob-

lem which can be solved by only using computationally intensive numerical algorithms.

Therefore, instead of minimizing the cost function Jf , we proceed to minimize its upper

bound. As stated in Subsection 2.6 for tlk ≤ t < tlk+1, Lσ
22 = Lk

22 ∈ {L1
22 . . . , L

g
22}. On

138



the other hand, we have (Lk
22)

TLk
22 ≤ λmax{(L

k
22)

TLk
22}IN , k = 1, . . . , q. 2 Therefore,

(Lσ
22)

TLσ
22 ⊗Q ≤ (λMIN)⊗Q,

ST
(
(Lσ

22)
TLσ

22 ⊗Q
)
S ≤ ST(λMI ⊗Q)S

= λM






INf
⊗ ĪTĪ 0

0 I(N−Nf )




⊗Q

≤ λMQf , (5.19)

where Ī =

[

I 0n×n

]

, λM = max{λmax{(L
k
22)

TLk
22}}, k = 1, . . . , q and Qf = diag{INf

⊗





Q 0

0 0




 , IN−Nf

⊗Q}.

Consequently, by using the above inequalities the upper bound of Jf can be obtained

as follows

Jf ≤ J1 + J2f , (5.20)

with

J1 =

∫ T

tf

ēT(t)Qē(t)dt, and J2f = λ̄

∫ T

tf

(ηf (t))TQfηf (t)dt, (5.21)

where λ̄ = max{1, λM}. Note that in the performance index (5.20), the term J2f only

depends on ηf (t) whereas J1 depends on ē(t).

Therefore, the problem of minimizing the upper bound of Jf such that the agents

reach a consensus can be reduced to stating the following two problems

min
K2

sup J1 = min
K2

sup

∫ T

tf

ēT(t)Qē(t)dt (5.22)

s.t. ˙̄ea(t) = Āσ
2 ē

a(t) + B̄aσ
0 u0(t), (5.23)

2Note that Lk = (Lk
22
)TLk

22
, k = 1, . . . , q are positive semi-definite matrices. Let λ1, . . . , λN denote

all the eigenvalues of Lk. Then eigenvalues of λmaxI−Lk are λmax−λ1, . . . , λmax−λN . Consequently,

mini(λmax − λi) = λmax − λmin ≥ 0, hence λmaxI − Lk ≥ 0.
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and

min
Kf

1

sup J2f = λ̄min
Kf

1

sup

∫ T

tf

(ηf (t))TQfηf (t)dt (5.24)

s.t. η̇f (t) = Af
1η

f (t) + (BarG− Ba)ug(t) + Bsus,

where Āσ
2 = Aa + B̄aσK2, A

f
1 = diag{A∗

1i},A
∗
1i = Aa

i +Ba∗
i K

∗
1i, K

f
1 = diag{Kf

11, . . . ,

Kf
1Nf

, Kh
1(Nf+1), . . . , K

h
1N},K2 = diag{[K21iK22i]}, ē(t) = col{ēi(t)}, ēa(t) = col{[ēT

i ē
T
iI ]

T},

where for i = 1, . . . , Nf , we have Ba∗
i = Bar

i and K∗
1i = Kf

1i, whereas Ba∗
i = Ba

i and

K∗
1i = Kh

1i for i = Nf + 1, . . . , N , ηf (t), Bar, G, B, Bs, us are defined as in (5.18) and

u0(t) is defined as in (2.3).

Note that based on its defined index J1 is a function of ē(t) and not ēa(t). However, to

ensure the system stability we require the stability of all the states, therefore the dynam-

ical model (5.23) is included in the problem (5.22) to be solved subject to the dynamics

of ēa(t) and not ē(t). In the following, first our proposed design for solving (5.22) is

given, and then we will discuss the solution of (5.24).

Due to our original condition that the network topology switches at times t = tlk ,

lk = 1, 2, . . . , the right-hand side of system (5.23) is not a continuous function of time.

In fact, since σ : [tf ,∞) → {1, . . . , q}, the system (5.23) is equivalent to the following

linear differential inclusion (LDI) system [183]

˙̄ea(t) ∈a.e. Ā2ē
a(t) + B̄a

0u0(t), (5.25)

where Ā2 ∈ {Ā1
2 . . . , Ā

q
2}, B̄a

0 ∈ {B̄a1
0 , . . . , B̄

aq
0 }, Āk

2 = Aa + B̄akK2, A
a = IN ⊗ Aa

i ,

K2 = diag{K2i}, B̄ak = Lk
22 ⊗ Ba, B̄ak

0 = Lk
21 ⊗ Ba, Lk

22 and Lk
21 are defined as in

Subsection 2.6 and k = 1, . . . , q, and “a.e." stands for almost everywhere.
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The above notation implies that the derivative of ēa(t) satisfies (5.25) almost every-

where, which is due to the discontinuity of the right-hand side of (5.25) at times tlk ,

lk = 1, 2, . . . , where the network topology switches. In order to solve the problem (5.22)

we also introduce the “relaxed" version of (5.25) below

˙̄ea(t) ∈a.e co(Āk
2 ē

a(t) + B̄ak
0 u0(t)), k = 1, . . . , q, (5.26)

where “co" stands for the convex hull. Then by employing the governing dynamics (5.26)

one can use the generalized derivative to perform stability analysis and also to obtain the

upper bound of J1. However, we should note that (i) the set of trajectories of the system

(5.23) is dense into the set of trajectories of the relaxed system (5.26) [184], (ii) the right-

hand side of (5.26) is one-sided Lipschitz, therefore it has a unique solution [185], and

(iii) the system (5.23) is stable if and only if the system (5.26) is stable [186]. Therefore,

the relaxation above is not restrictive, and consequently the following problem follows

min
K2

sup J1 = min
K2

sup

∫ T

tf

ēT(t)Qē(t)dt (5.27)

s.t. ˙̄ea(t) ∈a.e co(Āk
2 ē

a(t) + B̄ak
0 u0(t)), Ā

k
2 = Aa + B̄akK2,

In [187], the convex hull Lyapunov functions are proposed for analyzing saturated

systems and linear differential inclusion (LDI) systems and it is shown that they can

improve the analyzed performance when compared to the use of quadratic Lyapunov

functions. In order to solve the problem (5.27), we develop and compare two strate-

gies, namely one by using quadratic Lyapunov functions that are common for linear

systems and the second by utilizing convex hull Lyapunov functions. The results ob-

tained are subsequently provided in Lemma 5.3 and Lemma 5.4, respectively. Although,

the derivation and analysis provided in Lemma 5.4 are more involved, nevertheless our

141



simulation results illustrate and show that despite a higher complexity one can achieve

an improved performance index as compared to the results obtained in Lemma 5.3.

Lemma 5.3. Consider the problem specified by (5.27). If K2 is selected as K2 =

diag{[K21i K22i]}, with K21i = −ciB
TP a

1 , and K22i = −ciB
TP a

2 , i = 1, . . . , N , then

it follows that ēi(t) is asymptotically stable and ēa(t) is bounded. Moreover, the perfor-

mance index J1 is upper bounded by

J
ub−quad
1 = Vq(ē

a(tf )) + ∆quad,

where P a
1 and P a

2 are associated with the symmetric block matrix P a =






P a
1 P a

2

P a
2 P a

3




,

where P a is the solution to Ric(Aa
i , B

a, 1
2c̄
I,Qa), Qa = diag{Q, ε2Q2}, ε2 > 0 is an

arbitrary small number, Q2 is a positive definite matrix with appropriate dimension and

c̄ and ci are solutions to

Lk
22C + C(Lk

22)
T ≥ 2c̄IN > 0, C = diag{ci} > 0, k = 1, . . . , q, (5.28)

and ∆quad = 2
∑N

i=1

∫ T

tf
gi0(t)(ē

a
i (t))

TP aBau0(t)dt, and

∆quad ≤ (T − tf )λmin{Q
a}Gqē

a
max,

so that the upper bound of ēa(t) is given by ēamax = max{Gq, (
λmax{Pa}
λmin{Pa}

)
1

2‖ēa(tf )‖},

where Gq = 2λmax{Pa}bmu0M

λmin{Qa}
, bm = maxk ‖B

ak
0 ‖, u0M is specified such that ‖u0(t)‖ ≤

u0M and Vq(ē
a(t)) = (ēa(t))T(IN ⊗ P a)ēa(t).

Proof. Let Vq(ē
a(t)) = (ēa(t))T(IN ⊗P a)ēa(t) be a Lyapunov function candidate for the

system (5.26). Therefore, from [176] it follows that its derivative along the trajectories

of this system is given by

dVq(t)

dt
∈a.e. ˙̄Vq(t),
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where ˙̄Vq(t) is the set value derivative of Vq(t) and

˙̄Vq(t) = {∇Vq(ē
a(t)).v, v ∈ co(Āk

2 ē
a(t) + B̄ak

0 u0(t))}. (5.29)

Therefore,

dVq(t)

dt
∈a.e. ˙̄Vq(t) = ∇V T

q (ē
a(t))(Āk

2 ē
a(t) + Bak

0 u0(t))

= 2(ēa(t))T(IN ⊗ P a)(Āk
2 ē

a(t) + Bak
0 u0(t))

= (ēa(t))TΛkēa(t) + 2(ēa(t))T(IN ⊗ P a)Bak
0 u0(t), (5.30)

where Λk = Sym
(
(IN ⊗ P a)Āk

2

)
, k = 1, . . . , q. The term Λk can be expressed as

Λk = (Āk
2)

T(IN ⊗ P a) + (IN ⊗ P a)Āk
2

= (Aa + BakK2)
T(IN ⊗ P a) + (IN ⊗ P a)(Aa + BakK2)

= (IN ⊗ Aa
i + (Lk

22 ⊗ Ba)K2)
T(IN ⊗ P a) + (IN ⊗ P a)(IN ⊗ Aa

i

+(Lk
22 ⊗ Ba)K2)

= IN ⊗ (AaT

P a + P aAa
i ) +KT

2 (L
k
22 ⊗ Ba)T(IN ⊗ P a)

+(IN ⊗ P a)(Lk
22 ⊗ Ba)K2.

Let us select K2i as K2i =

[

K21i K22i

]

= −ciB
aT

P a = −ci[B
T 0]






P a
1 P a

2

P a
2 P a

3




 =

−ciB
T[P a

1 P
a
2 ] then

Λk = IN ⊗ (AaT

P a + P aAa
i )− (C ⊗ BaT

P a)T(Lk
22 ⊗ Ba)T(IN ⊗ P a)−

(IN ⊗ P a)(Lk
22 ⊗ Ba)(C ⊗ BaT

P a)

= IN ⊗ (AaT

P a + P aAa
i )− (CLkT

22 ⊗ P aBaBaT

P a)− (Lk
22C ⊗ P aBaBaT

P a)

= IN ⊗ (AaT

P a + P aAa
i )− (Lk

22C + CLkT

22)⊗ P aBaBaT

P a,

where C = diag{ci}. If C satisfies the inequality (5.28), then

Λk ≤ IN ⊗ (AaT

P a + P aAa
i − 2c̄P aBa(Ba)TP a).
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Now, if P a > 0 is the solution to Ric(Aa
i , B

a, 1
2c̄
I,Qa), Qa = diag{Q, ε2Q2}, ε2 > 0,

or equivalently the following minimization problem

min Trace{P a}s.t. (Aa
i )

TP a + P aAa
i − 2c̄P aBa(Ba)TP a +Qa ≤ 0,

then

Λk ≤ −(IN ⊗Qa) < 0. (5.31)

From (5.30) and (5.31) one obtains

˙̄Vq(ē
a(t)) ≤ −(ēa(t))T(IN ⊗Qa)ēa(t) + 2(ēa(t))T(IN ⊗ P a)Bak

0 u0(t)

(5.32)

Let bm = maxk ‖B
ak
0 ‖ and u0M be such that ‖u0(t)‖ ≤ u0M , then the inequality (5.32)

is reduced to

˙̄Vq(ē
a(t)) ≤ −λmin{Q

a}‖ēa(t)‖2 + 2‖ēa(t)‖λmax{P
a}bmu0M

= −‖ēa(t)‖(λmin{Q
a}‖ēa(t)‖ − 2λmax{P

a}bmu0M)

Also letW (ēa(t)) ≡ −‖ēa(t)‖(λmin{Q
a}‖ēa(t)‖−2λmax{P

a}bmu0M), then for ‖ēa(t)‖ >

Gq =
2λmax{Pa}bmu0M

λmin{Qa}
, we have

˙̄Vq(ē
a(t)) ≤ W (ēa(t)) < 0,

that is for ‖ēa(t)‖ > Gq and for all switching topologies, we obtain W (ēa(t)) < 0.

Therefore, ēa(t) converges to ‖ēa(t)‖ ≤ Gq and remains in

R = {ēa(t)|‖ēa(t)‖ ≤ Gq}. (5.33)

This implies that ēa(t) remains bounded, so that ē(t) and ēI(t) are also bounded. To

show that ē(t) → 0 as t → ∞, let g(t) ,
∫ t

tf
ē(s)ds = F−giēI(t) and ġ(t) , ē(t).

Since u0(t) is bounded from (5.26), the term g̈(t) , ˙̄e(t) is also bounded. Therefore,

by invoking Lemma 1 in [188], since g(t) and g̈(t) are bounded it can be concluded that
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ġ(t) = ē(t) → 0 as t→ ∞ or ē(t) is asymptotically stable.

In order to obtain the upper bound of the performance index, we first obtain the upper

bound of ‖ēa(t)‖ as follows. Below two possible cases are considered:

(i) ‖ēa(tf )‖ > Gq: In this case V̇q(tf ) < 0, moreover, for t ≥ tf and ‖ēa(t)‖ > Gq

we have V̇q(t) < 0, which implies that Vq(t) ≤ Vq(tf ). Note that Vq(t) is continuous

and V̇q(t) may be discontinuous at the switching instants but since W (ēa(t)) is continu-

ous and negative definite, Vq(t) is decreasing. Since Vq(tf ) ≤ λmax{P
a}‖ēa(tf )‖

2 and

λmin{P
a
i }‖ē

a(t)‖2 ≤ Vq(t), one obtains ‖ēa(t)‖ ≤ (λmax{Pa}
λmin{Pa}

)
1

2‖ēa(tf )‖. Once ēa(t)

reaches the boundary of R it remains inside it there after. In fact since outside of R,

V̇q(t) < 0, the trajectories of ēa(t) cannot leave the boundary of R, and therefore it re-

mains inside it. Therefore, for t ≥ tf , ‖ēa(t)‖ ≤ (λmax{Pa}
λmin{Pa}

)
1

2‖ēa(tf )‖.

(ii) ‖ēa(tf )‖ ≤ Gq: The solution remains inside R (using the analysis that was stated

above it cannot leave the boundary of R). Therefore, from (i) and (ii) for t ≥ tf , we

obtain ‖ēa(t)‖ ≤ max{Gq, (
λmax{Pa}
λmin{Pa}

)
1

2‖ēa(tf )‖} = ēamax.

Now, let the right-hand side of the inequality (5.32) be expressed as follows

V̇q(ē
a(t)) ≤ −(ē(t))T(IN ⊗Q)ē(t)− ε2(ēI(t))

T(IN ⊗Q2)ēI(t) +

2(ēa(t))T(IN ⊗ P a)Bak
0 u0(t)

≤ −(ē(t))T(IN ⊗Q)ē(t) + 2(ēa(t))T(IN ⊗ P a)Bak
0 u0(t).
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Then, by integrating both sides of the above inequality from tf to T it follows that

Vq(ē
a(T ))− Vq(ē

a(tf )) ≤ −

∫ T

tf

ēT(t)(IN ⊗Q)ē(t)dt

+2

∫ T

tf

(ēa(t))T(IN ⊗ P a)Bak
0 u0(t)dt

Therefore,

J1 ≤ Vq(ē
a(tf ))− Vq(ē

a(T )) + ∆quad ≤ Vq(ē
a(tf )) + ∆quad = J

ub−quad
1 ,

where

∆quad = 2

∫ T

tf

(ēa(t))T(IN ⊗ P a)Bak
0 u0(t)dt

= 2

∫ T

tf

(ēa(t))T(IN ⊗ P a)(L21(t)⊗ Ba)au0(t)dt.

Now since ‖ēa(t)‖ ≤ ēamax and Gq =
2λmax{Pa}bmu0M

λmin{Qa}
, we have

∆quad ≤ (T − tf )λmin{Q
a}Gqē

a
max,

and this completes the proof of Lemma 5.3.

The main advantage of developing Lemma 5.3 is that the control gains are obtained

as solutions to convex optimization problems, therefore they can be readily solved. In

order to improve the achievable team performance bound, the convex hull (composite)

Lyapunov functions are employed next to design and select the control gains. However,

we first require to introduce certain preliminaries that are stated below.

Let P ls, l = 1, . . . ,M denote positive definite matrices and define

ΘM =

{

θ = [θ1, . . . , θM ] ∈ RM :
M∑

l=1

θl = 1, θl ≥ 0

}

. (5.34)
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Associated with P ls and θls, the following convex hull function [189] can be defined

Vc(ē
a(t)) = min

θ∈ΘM

{

(ēa(t))T
(

M∑

l=1

θlP l
)−1

ēa(t)

}

, (5.35)

whereM > 1 is an arbitrary integer. The first level set of Vc(ē
a(t)) can now be expressed

as

LVc
:=

{
M∑

l=1

θlēal(t) : ēal(t) ∈ E((P l)−1), θl ∈ ΘM

}

,

which is in fact the convex hull of the level sets of E((P l)−1), l = 1, . . . ,M (refer to the

notation Subsection 2.8).

Let us denote the extreme points [187], of LVc
by ∂LVc

and the set of extreme points

of LVc
by E. Note that a point on the boundary is an extreme point if it cannot be

expressed as a combination of other points, otherwise it is called an ordinary point. Con-

sequently, E can be expressed as

E =
M⋃

l=1

El =
M⋃

l=1

{

∂LVc

⋂

∂E((P l)−1)
}

. (5.36)

We are now in a position to state our next result.

Lemma 5.4. Consider the problem specified by (5.27). If for γ > 0 there exist a block

diagonal matrix K2, positive definite matrices P l and non-negative numbers λkjl, l =

1, . . . ,M , k = 1, . . . , q such that

Sym{AaP l + BakK2P
l}+ 2γP lQ̄P l ≤

M∑

j=1

λkjl(P
j − P l), (5.37)

then it follows that ēi(t) is asymptotically stable while ēa(t) is bounded and the perfor-

mance index J1 is upper bounded by

Jub−con
1 = γ−1

(
Vc(ē

a(tf )) + ∆con
)
, (5.38)
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where

∆con = 2

∫ T

tf

(ēa(t))T(P (θ∗))−1(L21(t)⊗ Ba)u0(t)dt ≤ (T − tf )γλmin{Q̄}Gcē
a
max,

P (θ∗) =
∑M

l=1 θ
l∗P l, θ∗ = arg minθ∈ΘM (ēa(t))T

(∑M
l=1 θ

lP l
)−1

ēa(t), Vc(ē
a(t)) is

defined as in (5.35), Gc = 2u0M bmp̃
γλmin{Q̄}

, ēamax = max{Gc, (
(minl p

l)−1

(maxl p̄l)−1 )
1

2‖ēa(tf )‖}, bm =

maxk ‖B
ak
0 ‖, p̃ = (minl p

l)−1, pl = λmin{P
l}, p̄l = λmax{P

l}, u0M is the upper bound

of u0(t), i.e. ‖u0(t)‖ ≤ u0M , Q̄ = IN ⊗ (diag{Q, ε2Q2}), ε2 > 0 and α > 0 are small

numbers, Q2 is a positive definite matrix with appropriate dimension and ΘM is defined

as in (5.34).

Before stating the proof of Lemma 5.4, we require the following lemma from [187].

Lemma 5.5. [187] For a given ēa(t) ∈ R2nN , suppose θ∗ ∈ Θ is the optimal θ, i.e. it is

a solution to

θ∗ = arg min
θ∈ΘM

(ēa(t))T
(

M∑

l=1

θlP l
)−1

ēa(t).

Without loss of generality assume that θl∗ > 0, l = 1, . . . ,M0 and θl∗ = 0, l = M0 +

1, . . . ,M . Denote

P (θ∗) =

M0∑

l=1

θl∗P l, ēal(t) = P lP (θ∗)−1ēa(t),

then Vc(ē
a(t)) = Vc(ē

al(t)) = (ēal(t))T(P l)−1ēal(t). Moreover, ∇Vc(ē
a(t)) = ∇Vc(ē

al(t)) =

2(P l)−1ēal(t), ēa(t) =
∑M0

l=1 θ
lēal(t), ēal(t) ∈ E((P l)−1), l = 1, . . . ,M0, ēal(t) =

col{ēali (t)} and ēali (t) =

[

ēli(t) ēliI(t)

]

.

Proof of Lemma 5.4. Consider

Vc(ē
a(t)) = min

θ∈ΘM






(ēa(t))T

(
M∑

j=1

θjP j

)−1

ēa(t)






,

148



as a value function (Lyapunov function candidate) for the system (5.26). Recall that each

ēa(t) ∈ ∂LVc
is either an extreme point or an ordinary point. If ēa(t) is an extreme point,

i.e. ēal(t) ∈ El, then ēa(t) cannot be written as a convex combination of other points

and ēa(t) ∈ E((P l)−1), for some l. On the other hand, if ēa(t) is an ordinary point, then

it can be written as a convex combination of extreme points as follows

ēa(t) =

M0∑

l=1

θlēal(t), ēal(t) ∈ E((P l)−1),

where M0 ≥ 1 is an arbitrary integer. Therefore, in the following first we investigate the

extreme points, ēa(t) ∈ El, and then the results are extended to the ordinary points.

Let ēa(t) ∈ El, then

dVc(ē
a(t))

dt
∈a.e. ˙̄Vc(ē

a(t)) = ∇V T
c

(
ēa(t))

(
Āk

2 ē
al(t) + Bak

0 u0(t)
)

= ∇V T
c (ē

a(t))
(
(Aa + BakK2)ē

al(t) + Bak
0 u0(t)

)
,

(5.39)

where ˙̄Vc(ē
a(t)) is the set value derivative as defined in (5.29), k = 1, . . . , q and l =

1, . . . ,M . Recall from Lemma 5.5 that ∇Vc(ē
a(t)) = ∇Vc(ē

al(t)) therefore

˙̄Vc(ē
a(t)) = 2(ēal(t))T(P l)−1

(
Aa + BakK2)ē

al(t) + Bak
0 u0(t)

)

= (ēal(t))TSym
(
(P l)−1Aa + (P l)−1BakK2

)
ēal(t)

+2(ēal(t))T(P l)−1Bak
0 u0(t).

Let Λk = Sym
(
(P l)−1Aa + (P l)−1BakK2

)
and suppose for γ > 0, λkjl ≥ 0, P l > 0

and K2 exist such that

Λk + 2γQ̄ ≤
M∑

j=1

λkjl(P
l)−1(P j − P l)(P l)−1, (5.40)

where Q̄ = IN ⊗ (diag{Q, ε2Q2}), ε2 > 0 and Q2 > 0. According to [187], for each
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ēal(t) ∈ El, we have

(ēal(t))T(P l)−1(P j − P l)(P l)−1ēal(t) ≤ 0, j = 1, . . . ,M. (5.41)

Therefore, from (5.40) and (5.41) it follows that

˙̄Vc(ē
a(t)) ≤ −2(ēal(t))T(γQ̄+

M∑

j=1

λkjl(P
l)−1(P j − P l)(P l)−1)ēal(t)

+2(ēal(t))T(P l)−1Bak
0 u0(t)

≤ −(ēal(t))T(γQ̄+
M∑

j=1

λkjl(P
l)−1(P j − P l)(P l)−1)ēal(t)

+2(ēal(t))T(P l)−1Bak
0 u0(t)

≤ −γ(ēal(t))TQ̄ēal(t) + 2(ēal(t))T(P l)−1Bak
0 u0(t)

≤ −γλmin{Q̄}‖ēal(t)‖2 + 2‖ēal(t)‖u0Mp
−1

l
bm = Wc(ē

a(t)), (5.42)

where bm = maxk ‖B
ak
0 ‖, p

l
= λmin{P

l} and u0M is such that ‖u0(t)‖ ≤ u0M . The

above inequality implies that for ‖ēal(t)‖ >
2u0Mp−1

l
bm

γλmin{Q̄}
and all network topologies,

Wc(ē
al(t)) ≥ maxk

˙̄Vc(t) negative definite, so that ēal(t) converges to

R1 = {ēa(t)|‖ēal(t)‖ ≤
2u0Mp

−1
l
bm

γλmin{Q̄}
}

and remains inside it. Let p̃ = maxl(p
l)−1, then the largest region that includes all ēal(t)

is

R = {ēa(t)|‖ēa(t)‖ ≤ Gc =
2u0Mbmp̃

γλmin{Q̄}

that is ‖ēal(t)‖ ≤ Gc. This implies that ēl(t) = [(ēl(t))T (ēlI(t))
T]T remains bounded,

hence ēl(t) and ēlI(t) also remain bounded. We now need to show that ēl(t) is asymp-

totically stable. Since u0(t) is bounded, then from the dynamic equation (5.26) for

ēa(t) ≡ ēal(t), it follows that ˙̄eal(t) is bound. Let g(t) ,
∫ t

tf
ēl(s)ds = F−giēlI(t),

ġ(t) , ēl(t) and g̈(t) , ˙̄el(t). Since g(t) and g̈(t) are bounded, according to Lemma 1

in [188] ġ(t) , ēl(t) → 0 as t→ ∞ or ēl(t) is asymptotically stable.

150



Now, suppose ēa(t) ∈ ∂LVc
, therefore it can be written as ēa(t) =

∑M0

l=1 θ
lēal(t). By

using Lemma 5.5 and the previous condition for ēa(t), ˙̄Vc(ē
a(t)) can be written as

dVc(ē
a(t))

dt
∈a.e. ˙̄Vc = 2(ēal(t))T(P l)−1(Aa + BakK2)

M0∑

l=1

θlēal(t)

+2(ēal(t))T(P l)−1Bak
0 u0(t)

=

M0∑

l=1

θl2(ēal(t))T(P l)−1(Aa + BakK2)ē
al(t)

+2(ēal(t))T(P l)−1Bak
0 u0(t)

=

M0∑

l=1

θl(ēal(t))TΛkēal(t) + 2(ēal(t))T(P l)−1Bak
0 u0(t).(5.43)

If P l and K2 satisfy (5.40), we have the following inequality

˙̄Vc ≤ −2γ

M0∑

l=1

θl(ēal(t))TQ̄ēal(t) + 2(ēal(t))T(P l)−1Bak
0 u0(t). (5.44)

Inequality (5.44) is in terms of ēal(t), however to obtain V̇c(ē
a(t)) we used the gradi-

ent of Vc at ēa(t), therefore we require to express the right-hand side of (5.44) in terms
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of ēa(t). Given that 0 < θl ≤ 1,
∑M0

l=1 θ
l = 1 and ēal(t) = P lP (θ∗)−1ēa(t) one gets

M0∑

l=1

θl ˙̄Vc(ē
a(t)) ≤ −2γ

M0∑

l=1

θl
M0∑

l=1

θl(ēal(t))TQ̄ēal(t)

+2

M0∑

l=1

θl(ēa(t))T(P (θ∗))−1Bak
0 u0(t)

= −2γ

M0∑

l=1

(
(θ1)2(ēa1(t))TQ̄ēa1(t) + · · ·+ (θM0)2(ēaM0(t))T

Q̄ēaM0(t)
)
+ 2(ēa(t))T(P (θ∗))−1Bak

0 u0(t)

= −2M0γ
(
(θ1ēa1(t))TQ̄(θ1ēa1(t)) + · · ·+ (θM0 ēaM0(t))T

Q̄(θM0 ēaM0(t))
)
+ 2(ēa(t))T(P (θ∗))−1Bak

0 u0(t)

≤ −2γ
(
(θ1ēa1(t))TQ̄(θ1ēa1(t)) + · · ·+ (θM0 ēaM0(t))T

Q̄(θM0 ēaM0(t))
)
+ 2(ēa(t))T(P (θ∗))−1Bak

0 u0(t)

≤ −γ(
M0∑

l=1

θlēal(t))TQ̄
M0∑

l=1

θlēal(t)

+2(ēa(t))T(P (θ∗))−1Bak
0 u0(t),

where in the last inequality we invoked Fact 2.1. Therefore,

˙̄Vc(t) ≤ −γ
(
ēa(t))TQ̄ēa(t)

)
+ 2(ēa(t))T(P (θ∗))−1Bak

0 u0(t). (5.45)

Similar to the inequality (5.42), it can be seen that for ‖ēa(t)‖ > 2bm‖u0(t)‖‖P (θ∗)−1‖
γλmin{Q̄}

and

all network topologies, max ˙̄Vc(t) is negative. Now, based on the definition of P (θ∗) one

has

P (θ∗) =

M0∑

l=1

θl∗P l ≥
M0∑

l=1

θl∗(pl)I ≥
M0∑

l=1

θl∗(min
l
pl)I = (min

l
pl)I

and

P (θ∗) =

M0∑

l=1

θl∗P l ≤
M0∑

l=1

θl∗(p̄l)I ≤
M0∑

l=1

θl∗(max
l
p̄l)I = (max

l
p̄l)I,

where pl = λmin{P
l} and p̄l = λmax{P

l}. Therefore, (maxl p̄
l)−1I ≤ P (θ∗)−1 ≤
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(minl p
l)−1I = p̃I . That is, ēa(t) converges to

R = {ēa(t)|‖ēa(t)‖ ≤ Gc},

and remains inside R. This implies that ēa(t), ē(t) and ēI(t) remain bounded. More-

over, based on (5.26), it follows that ˙̄ea(t) is bounded. Hence, since g(t) , ēI(t) =

F−gi
∫ t

tf
ē(s)ds, and g̈(t) , ˙̄eI(t) are bounded according to Lemma 1 in [188], it follows

that ġ(t) , ē(t) → 0 as t→ ∞, that is ē(t) is asymptotically stable.

To obtain the upper bound of J1, similar to the proof of Lemma 5.3, first we obtain

the upper bound of ‖ēa(t)‖. Two cases are possible:

(i) ‖ēa(tf )‖ > Gc: For t ≥ tf and ‖ēa(t)‖ > Gc, we have V̇c(t) < 0 therefore Vc(t) ≤

Vc(tf ). Using the upper and lower bounds of P (θ∗) and the definition of Vc(ē
a(t)), one

obtains the following inequality

(max
l
p̄l)−1‖ēa(t)‖2 ≤ Vc(ē

a(t)) ≤ ‖ēa(t)‖2(min
l
pl)−1.

Therefore, it follows that

(max
l
p̄l)−1‖ēa(t)‖2 ≤ Vc(ē

a(t)) ≤ Vc(ē
a(tf )) ≤ ‖ēa(tf )‖

2(min
l
pl)−1,

which implies that ‖ēai (t)‖ ≤ (
(minl p

l)−1

(maxl p̄l)−1 )
1

2‖ēa(tf )‖. Once a trajectory reaches the

boundary of R = {ēa(t)|‖ēa(t)‖ ≤ Gc}, it remains inside R. In other words, since

outside of R, Vc(t) is decreasing, when a trajectory reaches the boundary this region it

cannot leave it and remains on it or enters inside it. That is, we will have ‖ēa(t)‖ ≤

(
(minl p

l)−1

(maxl p̄l)−1 )
1

2‖ēa(tf )‖.

(ii) ‖ea(tf )‖ ≤ Gc: The solution remains inside R.

Therefore, from (i) and (ii) for t ≥ tf , it follows that

‖ēa(t)‖ ≤ max{Gc, (
(minl p

l)−1

(maxl p̄l)−1
)
1

2‖ēa(tf )‖} = ēamax
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.

Now given that

−(ēa(t))TQ̄ēa(t) = −(ē(t))TQē(t)− ε2(ēI(t))
T(IN ⊗Q2)ēI(t) ≤ −(ē(t))TQē(t)

the inequality (5.45) can be reduced to

˙̄Vc(t) ≤ −γ
(
ēT(t)Qē(t)

)
+ 2(ēa(t))T(P (θ∗))−1Bak

0 u0(t).

Therefore, by integrating both sides of the above inequality from tf to T it follows that

Vc(ē
a(T ))− Vc(ē

a(tf )) ≤ −αJ1 +∆con

where ∆con = 2
∫ T

tf
(ēa(t))T(P (θ∗))−1(L21(t)⊗ Ba)u0(t)dt. Therefore,

J1 ≤ γ−1(Vc(ē
a(tf ))− Vc(ē

a(T )) + ∆con) ≤ γ−1(Vc(ē
a(tf )) + ∆con) = Jub−con

1 .(5.46)

Furthermore, since ‖ēa(t)‖ ≤ ēamax and Gc =
2u0M bmp̃
γλmin{Q̄}

, it follows that

∆con ≤ (T − tf )γλmin{Q̄}Gcē
a
max.

Finally, by multiplying the inequality (5.40) from both sides by P l one gets

Sym{AaP l + BakK2P
l}+ 2γP lQ̄P l ≤

M∑

j=1

λkjl(P
j − P l) < 0,

which is the BMI condition that is stated in the lemma.

The inequality (5.37) is a bilinear matrix inequality (BMI) for M > 1 and for M = 1

it can be transformed into a convex LMI condition. Solving the BMI in a general form

is still an open research problem, but numerous approaches have been proposed in the

literature to tackle this problem. These approaches can be classified into two main cat-

egories, namely (i) global approaches, and (ii) local approaches. Branch-and-bound ap-

proaches [190–192] and sum-of-squares approach [193] are examples of global methods.
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They provide a global solution, but are computationally intensive and not polynomial in

time. Therefore, they are mostly applicable and effective for low dimensional problems

with few variables. Given the possible large dimensionality of our problem (the inequal-

ity (5.37)) these approaches are deemed not to be appropriate here.

On the other hand, local approaches are computationally less demanding and are

effective for practical applications, but do not guarantee that they yield a global solu-

tion. These approaches are mainly based on linearization or the idea of decomposing

the variables into two sets. The linearization based approaches like path following ap-

proach [194], or the decomposition-based approaches e.g. D−K iteration [195], V −K

iteration [196] and coordinate descent [197,198] are well-known local approaches. Since

decomposition approaches do not perform well when the number of variables is medium

or large, in this work we employ the path following approach and simulation results show

that the approach is suited well for addressing our problem. The following algorithm,

which is based on the path following provides the required steps to design and select the

gain K2.

Algorithm 5.1. • Initialization:

– Select an integer M ≥ 2, small positive numbers δ1, δ2, δ1 � δ2, γ > 0 and

tmax as the maximum number of iterations.

– Set t = 1, λl1jk = 0, P l1 = P 0, l = 1, . . . ,M and change the variables as

Y = K2P
l = K2P

0 and solve the following convex optimization problem:

Sym{AaP 0 + BakK1
2Y }+ 2γP 0Q̄P 0 ≤ 0

– Set K1
2 = Y (P 0)−1 and P l1 = P 0
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• At the t-th iteration: for t ≤ tmax,

1) Solve the following LMI for dP l, dK2 and dλljk

Sym{Aa(P lt + dP l) + Bak(Kt
2(P

lt + dP l)

+ dK2P
lt)}+ 2γ

(
(P lt + dP l)Q̄P lt + P ltQ̄dP l

)
≤

M∑

j=1

(
(λktjl + dλkjl)(P

jt − P lt) + λktjl (dP
j − dP l)

)
,

P lt + dP l > 0, λktjl + dλkjl ≥ 0, ‖dP l‖ ≤ δ1‖P
lt‖,

‖dK2‖ ≤ δ1‖K
t
2‖, dK2 = diag{dK2i}

2) If ‖dP l‖ ≤ δ2 and ‖dK2‖ ≤ δ2 exit the algorithm, otherwise go to the next

step.

3) Set P l(t+1) = P lt + dP l, Kt+1
2 = Kt

2 + dK2 and λ
k(t+1)
jl = λktjl + dλkjl,

t = t+ 1 and go to step 1) as long as t ≤ tmax.

Now, let us return to the problem (5.24). The problem (5.24) is an optimization

one subject to a time-invariant dynamical system. The main objective and goal is to

design the gainKf
1 such that ηf1i(t) and ηhi (t) are asymptotically stable and ηfi2(t) remains

bounded while the upper bound of J2f is minimized. This problem is quite similar to

standard optimal control design problems, however to design the control gains associated

with the faulty agents, one requires to consider the fact that the exact fault severities are

not available.

To remedy the above concern, the gains will be designed to achieve robustness with

respect to the FDI module uncertainties and unreliabilities. Note that if K2 is designed
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according to Lemma 5.3 or Lemma 5.4, then ē(t) is asymptotically stable and ug(t) will

be bounded. Given that the dynamics of ē(t) does not depend on the dynamics of ηf (t)

and us is constant, ug(t) and us can be considered as disturbances for this system. In

the next lemma a design strategy for selecting the control gains that solve this problem

is provided.

Lemma 5.6. The control gains matricesKh
1i = −BTP h andKf

1i = −(B̂r
i )

TP r
i guarantee

that ηhi (t) and ηf1i(t) are asymptotically stable and ηf2i(t) remains bounded while the cost

index J2f is upper bounded (ub) by

Jub2f =

Nf∑

i=1

V f
i (tf ) + ∆f +

N∑

i=Nf+1

(ηhi (tf ))
TP hηhi (tf ),

where V f
i (t) = (ηfi (t))

TP r
i η

f
i (t), P

h is the solution to Ric(A,B, 1
2
I, λ̄Q), P r

i is the

solution to Ric(Aa
i , B̄

ar
i , R

f , λ̄Qf ), B̄ar
i = [(B̄r

i )
T 0m−msi×n]

T, Qf = diag{Q, ε1Q2},

Rf = 1
2
Γ̂i

−1
(Γ̂i − fiξiM)−1, λ̄ = max{1, λM}, ε1 > 0 is an arbitrary small num-

ber, Q2 is positive definite matrix with appropriate dimension, Gi is the solution to

minGi
B̂ar

i Gi − Ba for i = 1, . . . , Nf , B̂ar
i = [(B̂r

i )
T, 0(m−msi×n)]

T, ∆f =
∑Nf

i=1(∆
f
1i +

∆f
2i), with ∆f

1i = −2
∫ T

tf
(ηfi (t))

TP r
i B̄

ar
i fiΓ̂i(ξi + ξiM)(B̄ar

i )TP r
i η

f
i (t)dt, and ∆f

2i =

2
∫ T

tf
(ηfi (t))

TP r
i

(
Bas

i u
s
i + (Bar

i Gi − Ba)ugi (t)
)
dt,

−4(T − tf )(η
f
iM)2λmax{P

r
i }

2‖B̄ar
i ‖2‖Γ̂i‖‖ξiM‖ ≤ ∆f

1i ≤ 0,

∆f
2i ≤ 2(T − tf )η

f
iMλmax{P

r
i }
(

‖B̄as
i ‖(‖ûsi‖+ ‖uξi‖) +

(
‖B̄a

i ‖(‖Γ̂i‖+ ‖fiξiM‖)‖Gi‖+

‖Ba‖
)
‖K2i‖ē

a
max

)

, ηfiM = exp{α}max{‖ηfi (tf )‖,
‖ûs

i ‖+‖uM
i ‖

β
}, α = log

σmax{S}
σmin{S}

, β =

−max real{λj{A
a
i + Bar

i K
f
1i}}, the matrix S is such that S(Aa

i + Bar
i K

f
1i)S

−1 = JAcl
,

JAcl
is the Jordan transformation of Aa

i + Bar
i K

f
1i, û

s
i is the estimated stuck command,

and uMi is the upper bound of command estimation errors.
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Proof. Our main objective is to select Kh
1i and Kf

1i such that ηhi (t) and ηf1i(t) are asymp-

totically stabilized, which ensures that ηf2i(t) is bounded to obtain the upper bound of

J2f . We require to select Kf
1i online and by using only local information. Recall that

Qf = diag{Inf
⊗






Q 0

0 0




 , IN−Nf

⊗Q}, that is Qf is a block diagonal matrix. Therefore,

one can partition J2f as J2f = J21 + J22, where J21 =
∑Nf

i=1 J21i, J22 =
∑N

i=Nf+1 J22i,

J21i =
∫ T

tf
λ̄(ηf1i(t))

TQηf1i(t)dt and J22i =
∫ T

tf
λ̄(ηhi (t))

TQηhi (t)dt. Given that Af
1 is also

a block diagonal matrix, the problem (5.24) can be equivalently solved by tackling a set

of N problems associated with each agent, that is N problems that can be solved locally.

Specifically, for the faulty agents

min
Kf

1i

sup J21i = min
Kf

1i

sup

∫ T

tf

λ̄(ηf1i(t))
TQηf1i(t)dt, i = 1, . . . , Nf , (5.47)

s.t. η̇fi (t) = (Aa
i +Bar

i K
f
1i)η

f
i (t) + (Bar

i Gi − Ba
i )u

g
i (t)

+Bas
i u

s
i , (5.48)

and for the healthy system we will have

min
Kh

1i

sup J22i = min
Kh

1i

sup

∫ T

tf

λ̄(ηhi (t))
TQηhi (t)dt, i = Nf + 1, . . . , N, (5.49)

s.t. η̇hi (t) = (A+BKh
1i)η

h
i (t). (5.50)

For i = Nf + 1, . . . , N , in the problem (5.49)-(5.50), let Kh
1i = −BTP h, where P h

is the unique solution to Ric(A,B, λ̄Q, 1
2
I). In this case

Λ , (A+BKh
1i)

TP h + P h(A+BKh
1i) = −Q < 0,

which implies thatA+BKh
1i is Hurwitz and ηhi (t) is asymptotically stable. Furthermore,

J22i = −

∫ T

tf

(ηhi (t))
T
(
(A+BKh

1i)
TP h + P h(A+BKh

1i)
)
ηhi (t)dt = −

∫ T

tf

d$h
i (t)

dt
dt

= $h
i (tf )−$h

i (T ),
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where $h
i (t) =

(
ηhi (t)

)T
P hηhi (t). Therefore, J22i ≤ $f

i (tf ) =
(
ηhi (tf )

)T
P hηhi (tf ) =

Jub
22i, and it follows that

Jub
22 =

N∑

i=Nf+1

Jub
22i =

N∑

i=Nf+1

(
ηhi (tf )

)T
P hηhi (tf ).

It should be noted that solving the Riccati equation Ric(A,B, λ̄Q, 1
2
I) is equivalent to

solving the following minimization problem [157]

min
(
ηhi (tf )

)T
P hηhi (tf ) s.t. A

TP h
i + P h

i A− 2PBBTP + λ̄Q ≤ 0, (5.51)

which is the solution to Ric(A,B, λ̄Q, 1
2
I) minimizing Jub

12i.

Subsequently, for i = 1, . . . , Nf , we require to design Kf
1i such that ηf1i(t) becomes

asymptotically stable and obtain the upper bound of (or the guaranteed cost for) J11i. Let

Gi be the solution to

min
Gi

B̂ar
i Gi − Ba,

where B̂ar
i = [(B̂r

i )
T, 0(m−msi×n)]

T. Then, the design objectives are guaranteed by fol-

lowing through two steps: (i) the conditions that makeAa
i +B

ar
i K

f
1i Hurwitz are obtained

and then by using Lemma 5.2 it can be concluded that ηf1i(t) is asymptotically stable and

(ii) by using the results of part (i) the upper bound (ub) of J11i is obtained.

Step i: Consider the system (5.48). The matrixAa
i +B

ar
i K

f
1i is Hurwitz if there exists

P r
i such that

Λ = (Aa
i +Bar

i K
f
1i)

TP r
i + P r

i (A
a
i +Bar

i K
f
1i) < 0.

Towards this end, let us select Kf
1i as Kf

1i = −(B̂ar
i )TP r

i , where P r
i is the solution to the

Ric(Aa
i , B̄

ar
i , λ̄Q

f , 1
2
Γ̂−1
i (Γ̂i − fiξiM)−1), Qf = diag{Q, ε1Q2}, ε1 is an arbitrary small
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positive number, and Q2 is a positive definite matrix with an appropriate dimension.

Then, one obtains

Λ = Sym
(
(Aa

i − Bar
i (B̂ar

i )TP r
i )

TP r
i

)

= Sym(P r
i A

a
i )− 2P r

i B̂
ar
i (Bar

i )TP r
i

= Sym(P r
i A

a
i )− 2P r

i B̂
ar
i (Γ̂i + fiξi)(B̄

ar
i )TP r

i

= Sym(P r
i A

a
i )− 2P r

i B̄
ar
i Γ̂(Γ̂i + fiξi)(B̄

ar
i )TP r

i

= −
(
λ̄Qf + P r

i B̄
ar
i Γ̂i

(
2(Γ̂i + fiξi)− 2(Γ̂i − fiξiM)

)
(B̄ar

i )TP r
i

)

= −
(
λ̄Qf + 2P r

i B̄
ar
i Γ̂ifi(ξi + ξiM)(B̄ar

i )TP r
i

)
< 0.

The above inequality implies that under the proposed control law, Aa
i + Bar

i K
f
1i is Hur-

witz. Let

f(t) ≡ (Bar
i Gi − Ba

i )u
g
i (t) + Bas

i u
s
i = (Bar

i Gi − Ba
i )(K2iē

a
i (t)) + Bas

i u
s
i .

Given that usi and ēai (t) are bounded (based on the results of Lemmas 5.3 and 5.4) and

by using Lemma 5.2, with Ac ≡ Aa
i + Bar

i K
f
1i =






A 0

F 0




 +






Ba
i

0




K

f
1i, it follows that

the system (5.48) is stable or ηf1i(t) is asymptotically stable and ηf2i(t) is bounded.

Step ii: To obtain the upper bound of J21i, let us express it as follows

J21i =

∫ T

tf

λ̄(ηf1i(t))
TQηf1i(t)dt

≤

∫ T

tf

λ̄
(
(ηf1i(t))

TQηf1i(t) + ε1(η
f
2i(t))

TQ2η
f
2i(t)

)
dt

=

∫ T

tf

λ̄(ηfi (t))
TQfηfi (t)dt
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Given that Kf
1i = −(B̂ar

i )TP r
i and

−λ̄Qf = P r
i A

a
i + (Aa

i )
TP r

i − 2P r
i B̄

ar
i Γ̂i(Γ̂i − fiξiM)(B̄ar

i )TP r
i

= P r
i A

a
i + (Aa

i )
TP r

i − 2P r
i B̄

ar
i Γ̂i(Γ̂i + fiξi)(B̄

ar
i )TP r

i

+2P r
i B̄

ar
i Γ̂ifi(ξi + ξiM)(B̄ar

i )TP r
i

one obtains

J21i = −

∫ T

tf

(ηfi (t))
T
(
(Aa

i +Bar
i K

f
1i)

TP r
i + P r

i (A
a
i +Bar

i K
f
1i)

−2P r
i B̄

ar
i Γ̂ifi(ξi + ξiM)(B̄ar

i )TP r
i

)
ηfi (t)dt.

Let $f
i (t) , (ηfi (t))

TP r
i η

f
i (t) then

J21i ≤ −

∫ T

tf

d$f
i (t)

dt
dt+

∫ T

tf

2(ηfi (t))
TP r

i (B
as
i u

s
i + (Bar

i Gi − Ba)ugi (t))dt

−

∫ T

tf

(ηfi (t))
T(2P r

i B̄
ar
i Γ̂ifi(ξi + ξiM)(B̄ar

i )TP r
i

)
ηfi (t)dt

= $f
i (tf )−$f

i (T ) +

∫ T

tf

2(ηfi (t))
TP r

i (B
as
i u

s
i + (Bar

i Gi − Ba)K2iē
a(t))dt

−

∫ T

tf

(ηfi (t))
T(2P r

i B̄
ar
i Γ̂ifi(ξi + ξiM)(B̄ar

i )TP r
i

)
ηfi (t)dt

Therefore,

J21i ≤ $f
i (tf )−$f

i (T ) + ∆f
1i +∆f

2i, (5.52)

where

∆f
1i = −2

∫ T

tf

ηf
T

i (t)P r
i B̄

ar
i fiΓ̂i(ξi + ξiM)(B̄ar

i )TP r
i η

f
i (t)dt

∆f
2i = 2

∫ T

tf

ηf
T

i (t)P r
i

(
Bas

i u
s
i + (Bar

i Gi − Ba)K2iē
a(t)
)
dt.

To obtain the range of values of ∆f
1i and ∆f

2i in (5.52), let us express the Jordan

canonical decomposition of Acli , Aa
i + Bar

i K
f
1i as Acli = SJAcl

S−1. Then, since
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‖usi‖ ≤ ‖ûsi‖+ ‖uξi‖ ≤ ‖ûsi‖+ ‖uMi ‖ from Lemma 5.2, we have

‖ηfi (t)‖ ≤ ηfiM = exp{α}max{‖ηfi (tf )‖,
‖ûsi‖+ ‖uMi ‖

β
},

where α = log
σmax{S}
σmin{S}

and β = −max real{λj{Acli}}. Considering that ξi ≤ ξiM ,

P r
i ≤ λmax{P

r
i }I we have

ηf
T

i (t)P r
i B̄

ar
i fiΓ̂i(ξi + ξiM)(B̄ar

i )TP r
i η

f
i (t) ≤ 2(ηfiM)2λmax{P

r
i }

2‖B̄ar
i ‖2‖Γ̂i‖‖ξiM‖.

Therefore, one obtains

−4(T − tf )(η
f
iM)2λmax{P

r
i }

2‖B̄ar
i ‖2‖Γ̂i‖‖ξiM‖ ≤ ∆f

1i ≤ 0.

On the other hand, since ‖(Bar
i Gi − Ba)K2iē

a(t)‖ ≤
(
‖B̄a

i ‖(‖Γ̂i‖ + ‖fiξiM‖)‖Gi‖ +

‖Ba‖
)
‖K2i‖ē

a
max we have ∆f

2i ≤ 2(T−tf )η
f
iMλmax{P

r
i }
(

‖B̄as
i ‖(‖ûsi‖+‖uξi‖)+

(
‖B̄a

i ‖(‖Γ̂i‖+

‖fiξiM‖)‖Gi‖+ ‖Ba‖
)
‖K2i‖ē

a
max

)

.

Now, given that ηf1i(t) is asymptotically stable, and ηfi (t) is bounded, $f
i (T ) ≥ 0 is

bounded and by using (5.52) it follows that

J21i ≤ $f
i (tf )−$f

i (T ) + ∆f
1i +∆f

2i ≤ $f
i (tf ) + ∆f

1i +∆f
2i.

Therefore, J21 =
∑Nf

i=1 J21i is upper bounded by

Jub
21 =

Nf∑

i=1

$f
i (tf ) +

Nf∑

i=1

(∆f
1i +∆f

2i), (5.53)

Finally, the upper bound of J2f is obtained as follows

Jub2f = Jub
21 + Jub

22 =

Nf∑

i=1

$f
i (tf ) + ∆f

+
N∑

i=Nf+1

(ηhi (tf ))
TP hηhi (tf ),

where ∆f =
∑Nf

i=1(∆
f
1i +∆f

2i), and this completes the proof of Lemma 5.6.

Remark 5.1. It should be noted that in absence of an LOE fault or if one can ensure that

the information provided by the FDI module are exact, then ∆f
1i = 0.
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Now we are in the position to state our main results.

Theorem 5.1. The control laws (5.11) and (5.12) solve the control recovery problem in a

faulty multi-agent system described in Subsection 5.1, ifK2i is designed as in Lemma 5.3

and Kh
1i and Kf

1i are designed according to Lemma 5.6. Moreover, under these control

laws the team cost performance index is upper bounded by

Jub−quad
f = J

ub−quad
1 + Jub2f , (5.54)

where J
ub−quad
1 is specified in Lemma 5.3 and Jub2f is specified in Lemma 5.6.

Proof. Follows from the results derived in Lemmas 5.3 and 5.6.

Theorem 5.2. The control laws (5.11) and (5.12) solve the fault recovery problem in a

faulty multi-agent system as described in Subsection 5.1 and the team performance index

cost is upper bounded by

Jub−con
f = J

up−con
1 + Jub2f , (5.55)

if K2i = [K21i K22i] is the solution to the Algorithm 5.1, where Jub−con
1 is given as in

(5.38), Jub2f , Kf
1i and Kh

1i are defined as in Lemma 5.6 .

Proof. Follows from the results derived in Lemmas 5.4, 5.6 and the previous discussions.

Based on the results obtained in Theorems 5.1 and 5.2, the following corollary for a

team of healthy agents is concluded immediately.
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Corollary 5.1. Suppose all the agents are healthy and the cooperative task starts at

t = t0. The control law

ui(t) = Kh
1iη

h
i +K21iēi(t) +K22iēiI(t),

solves the consensus problem in a healthy team with a directed switching topology net-

work consisting of a leader given by (2.3) and N followers given by (2.1) if Kh
1i is de-

signed according to Lemma 5.6 andK21i andK22i are designed according to Lemma 5.3

or Algorithm 5.1. Moreover, under this control law the team cost performance index is

upper bounded by

Jquad
h =

N∑

i=1

(ηhi (t0))
TP hηhi (t0) + J

ub−quad
1 ,

J con
h =

N∑

i=1

(ηhi (t0))
TP hηhi (t0) + Jub−con

1 ,

where all the gains and parameters are defined as in Theorems 5.1 and 5.2.

5.3 Simulation Results and Case Studies

In this section, our proposed methodologies are applied to and illustrated for a team

of multi-agents that is composed of seven Sentry Autonomous Underwater Vehicles

(AUVs) [171]. Sentry, made by the Woods Hole Oceanographic Institution, is a fully

autonomous underwater vehicle and is capable of surveying to the depth of 6000 m.

The linearized model of the Sentry is of six degrees of freedom, but it is commonly

decomposed into four non-interacting subsystems, namely (i) the speed subsystem, (ii)

the steering subsystem, (iii) the diving subsystem, and (iv) the roll subsystem. In con-
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ducting simulation scenarios, our interest is to enforce all the agents follow the leader’s

depth trajectory, therefore we only consider the diving subsystem.

Assume that the near horizontal speed is 1.5 m/s so that by using the parameters

of the Sentry AUV presented in [171], the diving subsystem for the i-th agent can be

governed according to (2.1) with

A =














−0.61 0.68 0 0.001

0.27 −0.43 0 −0.01

1.00 0 0 1.00

0 1.00 0 0














, B =














0.205 0.17

−0.18 0.22

0 0

0 0














,

where xi(t) =

[

ωi(t), qi(t), zi(t), θi(t)

]T

, ui(t) =

[

δbi (t), δ
s
i (t)

]T

, with ωi(t), qi(t), zi(t),

θi(t), δ
b
i (t) and δsi (t) denoting the heave speed, pitch rate, depth, pitch, bone and the stern

plane deflections, respectively. Furthermore, it is assumed that the agents are subject

to additive disturbances. The disturbance input channel matrix is considered as Bω =

[0.0402, 0.0311, 0, 0]T and the disturbance signal is considered as a random walk [180].

Let agent 0 designate the leader and the agents 1 to 6 designate the follower agents.

The communication network switches among three topologies that are denoted by G1,

G2 and G3 and are given in Figure 5.1. The topologies are assumed to switch according

to G1 → G3 → G2 → G3 → G1 every 100 sec. Suppose the mission starts at t = 0 sec.

and is terminated at the time t = T = 1000 sec. The following scenarios are considered

for conducting our simulation case studies.

Scenario A - Healthy Team: In this scenario, all the agents are considered to be
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Figure 5.2: The agents depth trajectories corresponding to Scenario A.

In Scenarios B, C and D below the behavior and performance of the team subject to

the LOE fault, the outage fault, and the stuck fault are studied, respectively. Towards

this end, during 0 ≤ t < 400 sec. the agents and their control laws are considered

to be the same as those governed by the Scenario A. At time t = 400 sec. the faults

are injected and after a delay of ∆ sec. the control reconfigurations for the faulty agent

according to Theorems 5.1 and 5.2 are initiated. The delay times ∆’s are selected as ∆ =

10 sec., 40 sec., and 80sec. corresponding to consecutive delays in formally invoking the

recovery strategy. The details corresponding to each scenario are provided below:

Scenario B: The LOE fault is injected in the agent 2 where the loss of effectiveness

of the first and second actuators are 70% and 50% of their nominal values, respectively,

and moreover the outage fault is injected in the second actuator of the agent 4. It is

assumed that the upper bound of the fault severity estimation uncertainty is taken as

10%.
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Scenario C: The stuck fault is injected in the second actuator of the agent 6 where

the stuck command is considered as u23 = 1. Moreover, the the outage fault is injected in

the first actuator of the agent 3.

Scenario D: The LOE fault is injected in the agent 3 where the loss of effectiveness

of the first and second actuators are reduced to 40% and 30% of their nominal values,

respectively. Moreover, the outage fault is injected in the second actuator of the agent

4 and a stuck fault is injected in the second actuator of the agent 6 where the stuck

command is considered as u23 = 1.

The team performance indices for the above scenarios are given in Table 5.1, but

due to space limitations, only the depth trajectories for certain scenarios are depicted in

Figures 5.3, 5.4 and 5.5.

Scenarios and Delays in

Recovery Invocation

J con Jquad Jquad−Jcon

Jcon ∗ 100

A 1.4319e+08 5.8625e+08 309.42

B; ∆ = 10 2.85290e+08 8.5069e+08 66.7445

B; ∆ = 40 4.6336e+08 1.2193e+09 61.997

B; ∆ = 80 2.8363e+09 5.3597e+09 47.081

C; ∆ = 10 1.0823e+09 2.5618e+09 57.7549

C; ∆ = 40 8.9964e+10 1.737e+11 48.226

C; ∆ = 80 4.6880e+11 8.5470e+11 45.149

D; ∆ = 10 9.6067e+08 1.8192e+09 47.193

D; ∆ = 40 3.8690e+10 7.2626e+10 47.727

D; ∆ = 80 1.6346e+11 3.0603e+11 46.589

Table 5.1: The indices corresponding to the network performance index under the

scenarios A-D, where ∆ denotes the delay in formally invoking the control recovery

strategy.

Figures 5.3, 5.4 and 5.5 demonstrate that when the agents become faulty, the team
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Figure 5.3: The agents depth and pitch angle trajectories corresponding to the Scenario

B-∆ = 40 s.
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Figure 5.4: The agents depth and pitch angle trajectories corresponding to the Scenario

C-∆ = 10 s.
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Figure 5.5: The agents depth and pitch angle trajectories corresponding to the Scenario

D-∆ = 80 s.

cannot reach a consensus with the control gains that are designed based on the healthy

agents and the team becomes unstable. However, once the reconfigured control gains

are initiated and invoked the team again becomes stable and can then reach a consensus.

Moreover, Table 5.1 indicates that by employing convex hull function for selecting the

control gains instead of the quadratic function the overall team performance can be sig-

nificantly improved. Note that when the delay in invoking the reconfigured control gains

increases the followers’ states deviation from the leader’s states grows and the team per-

formance index increases as well. In other words, delays in invoking the reconfigured

control will deteriorate the overall team performance.
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5.4 Conclusions

In this work, the fault recovery control problem of networked multi-agent systems under

directed switching topology is investigated. Reconfigurable control laws are proposed

that accommodates the loss of effectiveness, the outage and the stuck actuator faults

as well as uncertainties, unreliabilities, and inaccuracies in the FDI module estimations

information. Two strategies have been proposed to design and select the gains of the

proposed control laws which employ only local available information to ensure that the

team simultaneously reaches a consensus in presence of actuator faults and minimize the

upper bound of the team performance index. The proposed methodology is applied to a

team of Sentry autonomous underwater vehicles and the team behavior and performance

under various fault scenarios are investigated and compared. Simulation results demon-

strate and illustrate the effectiveness of our proposed reconfigurable control approaches

in recovering different actuator faults in the network.
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Chapter 6

Distributed Cooperative Output

Regulation Control Reconfiguration

Design

In this chapter, cooperative dynamic output control regulation problem in a heteroge-

neous network of multi-agent systems subject to actuator faults is investigated. A dis-

tributed dynamic output feedback control strategy is proposed which guarantees that the

agents output follow the outputs of an exo-system while the agents states remain bounded

even when the agents are subject to various types of actuator faults. It should be noted

that only a very limited set of agents have access to the exo-system and its measurements.

Three types of faults are considered, namely, the loss of effectiveness (LOE), the outage
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and the stuck faults. The reconfigured control law is designed online and only employs

local measurements as well as information that are provided by the fault detection, isola-

tion and identification (FDII) module locally to redesign the gains of the proposed control

laws. Furthermore, an upper bound on the team performance index under our proposed

control laws is obtained. Our proposed approach is applied and implemented to a team

of autonomous underwater vehicles (AUVs) where its effectiveness and capabilities are

validated through simulation case studies.

6.1 Problem Formulation

Consider a network of N agents that is governed by the dynamics (2.19) as well as the

exo-system dynamics (2.21). Without loss of any generality, it is assumed that all the

agents are faulty at t = tf , where for the i-th faulty agent its first moi actuators are

subject to the outage fault, the actuators moi + 1 to msi are subject to a stuck fault, and

the remainingmi−msi actuators are either subject to the LOE fault or are healthy. Using

equations (2.15)-(2.18), the model of the i-th faulty agent can be expressed as

ẋi(t) = Aixi(t) + Bf
i u

f
i (t), (6.1)

yi(t) = Cixi(t),

where Bf
i = [Bo

i B
s
i B

r
i ], B

o
i = [b1, . . . , bmoi ], Bs

i = [bmoi+1, . . . , bmsi ], Br
i = B̄r

i Γi,

B̄r
i =

[

bmsi+1, . . . , bm
]

, Γi = diag{Γl
i}, Γl

i is the severity of the l-th actuator of the

i-th agent, ufi (t) =

[

01×moi
(usi )

T (ui(t))
T

]T

, usi =

[

umoi+1
i , . . . , umsi

i

]T

, and ui(t) =
[

umsi+1
i (t), . . . , umi

i (t)

]T

.
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Considering the structure of the control law ufi (t) and the matrix Bf
i , it follows that

only the actuators msi + 1 to mi are available for use in the control reconfiguration.

Therefore, to proceed with our proposed control recovery strategy the model (6.1) is

now rewritten as follows

ẋi(t) = Aixi(t) + Br
i ui(t) + Bs

i u
s
i , (6.2)

yi(t) = Cixi(t).

Output Control Reconfiguration Objective: The main objective of the reconfig-

urable control law is to develop and design ui(t) for the faulty multi-agent network that

is governed by (6.2) such that the output regulation errors ei(t) for i = 1, . . . , N remain

stable.

In this work, the following assumptions are assumed to hold.

Assumption 6.1. The matrix S is anti-Hurwitz and the pair (S,R) is observable.

Assumption 6.2. The triple (Ai, B
r
i , Ci) is controllable and observable.

Assumption 6.3. The matrix






Ai − λkI Br
i

Ci 0




 is full rank for λk ∈ σ(S).

Assumption 6.4. The network communication topology has a directed spanning tree.

The following lemma will be used to derive our results in the subsequent sections.

Lemma 6.1. [199] For the matrices A, B, C, E and F with appropriate dimensions,

the matrix equation

XS = AX +BU + E and 0 = CX + F
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have a solution (X,U) for anyE and F , if and only if for all λk ∈ σ(S),






A− λkI B

C 0






is full rank.

Lemma 6.2. [200] LetM be a matrix with negative diagonal elements and non-negative

off-diagonal elements. If x(t, tf , x0) ∈ Rn and y(t, tf , y0) ∈ Rn are solutions to

ẋ(t) �Mx(t), x(tf ) = x0

ẏ(t) =My(t), y(tf ) = y0,

and x0 = y0, then x(t, tf , x0) � y(t, tf , y0) for all t ∈ [tf ,∞), where � implies that

ẋi(t) ≤
∑n

j=1M(i, j)xj(t), i = 1, . . . , n.

6.2 Proposed Methodology

In this section, our proposed dynamic output control reconfiguration scheme is devel-

oped. Given that each agent only communicates with its nearest neighboring agents and

only limited number of agents have access to the measurements of the exo-system, the

control strategy should be distributed. In order to solve the problem first the necessary

conditions for stabilizing output errors are obtained and the team cost performance index

is obtained in terms of the agents states and control states. Second, by introducing some

auxiliary variables the conditions are transformed and decomposed into two sets and the

team cost performance is also expressed as the summation of two costs which are asso-

ciated with the new variables. Finally, it is shown that by solving the yielded problems

one can guarantee that the agents outputs follow the outputs of the exo-system while the

175



upper bound of the team cost performance index is obtained.

Consider a team of multi-agent systems that consists of N agents as specified in

Section 6.1 and the exo-system that is governed by (2.21). Let us select the i-th agent

dynamic output control strategy as

ẋci(t) = Acixci(t) +
∑

j∈Ni

Acijxcj(t) + Bciei(t), (6.3)

ui(t) = Ccixci(t) + uri , (6.4)

where Aci, Acij , Bci and Cci denote the controller gains and uri denotes the control com-

mand to be selected, xci(t) ∈ Rρi , denotes the control state and ei(t) is defined as in

(2.23).

Let us now select the control command uri as the solution to

Bs
i u

s
i +Br

i u
r
i = 0. (6.5)

Remark 6.1. Equation (6.5) has a solution if there exists sufficient control effort in the

faulty agent such that

Bs
i u

s
i ⊂ Im{Br

i }. (6.6)

The closed-loop dynamics of the agents and dynamic control laws can now be ob-

tained as

ẋa(t) = Axa(t) + Bω(t), (6.7)

e(t) = C̄xa(t) + Ēω(t), (6.8)
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where A =






A BCc

BcC̃ Ac




, B =






0

BcĒ




, C̄ =

[

C̃ 0

]

, Ē = −










g10

...

gN0










⊗ R, C̃ =

LC, L = (L + Lβ) ⊗ Im, Lβ = diag{gi0}, A = blkdiag{Ai}, B = blkdiag{Br
i },

C = blkdiag{Ci}, Ac =










Ac1 . . . Ac1N

... . . .
...

AcN1 . . . AcN










, Acij = 0 if j /∈ Ni, Bc = blkdiag{Bci},

Cc = blkdiag{Cci}, xa(t) = col{x(t), xc(t)}, x(t) = col{xi(t)}, xc(t) = col{xci(t)},

e(t) = col{ei(t)}, and i = 1, . . . , N . We are now in a position to state our first result.

Lemma 6.3. Consider a faulty network that consists of N agents given by (6.2) and

the exo-system dynamics given by (2.21). Suppose that Assumptions (6.1)-(6.4) hold.

The dynamic output control strategy (6.3)-(6.4) guarantees that the output regulation

errors given by (2.23) are asymptotically stable if the controller gains Aci, Acij , Bci and

Cci are designed such that the matrix A is Hurwitz and there exist Π = col{Πi} and

Θ = col{Θi} such that the following equations have a solution





Π

Θ




S −A






Π

Θ




+ B = 0 and Ē − C̄






Π

Θ




 = 0.

Proof. Let us first define the auxiliary states x̃(t) = xa(t) +






Π

Θ




ω(t), so that from
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equations (6.7) and (6.8), we have

˙̃x(t) = Ax̃(t) + (






Π

Θ




S −A






Π

Θ




+ B)ω(t), (6.9)

e(t) = C̄x̃(t) + (Ē − C̄






Π

Θ




)ω(t). (6.10)

If the matrices Aci, Bci and Cci are designed such that A is Hurwitz, then under Assump-

tion 6.1 for any B there exist Π and Θ that solve the following Sylvester equation





Π

Θ




S −A






Π

Θ




+ B = 0, (6.11)

so that we will have

˙̃x(t) = Ax̃(t). (6.12)

Given that A is now Hurwitz, the first term in (6.10) goes to zero asymptotically and

for steady state response of e(t) one gets

e(t) → (Ē − C̄






Π

Θ




)ω(t) as t→ ∞.

Therefore, if the condition stated in the lemma holds and

Ē − C̄






Π

Θ




 = 0, (6.13)

then the output regulation errors are asymptotically stable and ei(t) → 0 as t → ∞, and

this completes the proof of the lemma.

Let us now assume that the gains are selected as specified in Lemma 6.3 and the ma-

trix A is Hurwitz. According to the proof of Lemma 6.3, when A is Hurwitz, limt→∞ x̃(t) =
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0 so that the steady state response of xa(t) can be expressed as

xa(t) =






x(t)

xc(t)




→ −






Π

Θ




ω(t) as t→ ∞

that is x(t) → −Πω(t) and xc(t) → −Θω(t) as t → ∞. Therefore, the steady state

values of output and control signals can be obtained as yssi (t) = CiΠiω(t) and ussi (t) =

−CciΘiω(t) + uri .

Now associated with the i-th faulty agent we define quadratic cost performance index

as follows

Jf
i =

∫ ∞

tf

(
(yi(t)− yssi (t))TQi(yi(t)− yssi (t)) + ũT

i (t)Riũi(t)
)
dt, (6.14)

where ũi(t) = ui(t)−u
ss
i (t), u

ss
i (t) and yssi (t) denote the steady state values of ui(t) and

yi(t) i.e. ussi (t) = CciΘiω(t) + uri , y
ss
i (t) = CiΠiω(t), Qi and Ri are positive definite

matrices with appropriate dimensions. The above cost function represents the cost of the

i-th agent transient time in regulating its output. In the following the upper bound of

the team cost which is defined as J =
∑N

i=1 J
f
i under the proposed control law will be

obtained.

Let uss(t) = col{ussi (t)}, therefore from the definition of ussi (t) one has uss(t) =

Ccxc(t) + ur = −CcΘω(t) + ur and it follows that

ũ(t) = u(t)− uss(t) = Ccxc(t) + ur − uss(t) =

[

0 Cc

]

xa(t) + CcΘω(t)

=

[

0 Cc

]

xa(t) +

[

0 Cc

]






Π

Θ




ω(t) =

[

0 Cc

]

(xa(t) +






Π

Θ




ω(t))

=

[

0 Cc

]

x̃(t), (6.15)

where ũ(t) = col{ũi(t)}.
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The overall team performance index following the occurrence of a fault can now be

expressed as

J =
N∑

i=1

∫ ∞

tf

(
(yi(t)− yssi (t))TQi(yi(t)− yssi (t))

+(ui(t)− ussi (t))
TRi(ui(t)− ussi (t))

)
dt,

=

∫ ∞

tf

(y(t)− yss(t))TQ(y(t)− yss(t)) + (u(t)− uss(t))TR(u(t)− uss(t))
)
dt

=

∫ ∞

tf

(y(t)− yss(t))TQ(y(t)− yss(t)) + ũT(t)Rũ(t)
)
dt,

where y(t) = col{yi(t)}, yss(t) = col{yssi (t)}, R = diag{Ri}, and Q = diag{Qi}.

Given that limt→∞ x(t)+Πω(t) = 0, and based on the definition of yssi (t), we now have

y(t)− yss(t) =

[

C 0

]

(xa(t) +






Π

Θ




ω(t)) =

[

C 0

]

x̃(t).

Consequently, by considering (6.15), the overall team performance cost can be obtained

as

J =

∫ ∞

tf

x̃T(t)(

[

C 0

]T

Q

[

C 0

]

)x̃(t) + x̃T(t)(

[

0 Cc

]T

R

[

0 Cc

]

)x̃(t)

=

∫ ∞

tf

x̃T(t)






CTQC 0

0 CT
cRCc




 x̃(t)dt.

Therefore, the design problem can now be stated as that of selecting the matrices Aci,

Acij , Bci, and Cci such that the outputs regulation errors are stabilized or equivalently the
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following conditions are satisfied simultaneously

A is Hurwitz, (6.16)





Π

Θ




S −A






Π

Θ




+ B = 0, (6.17)

Ē = C̄






Π

Θ




 , (6.18)

and also determining the upper bound of the overall team performance index which is

denoted by Jub, J ≤ Jub.

In order to select the controller gains that satisfy the above requirements simulta-

neously we need certain preliminary developments as follows: first in Lemma 6.4 the

conditions under which equations (6.17) and (6.18) simultaneously can have solutions

are investigated. Then, some transformations are introduces and employed to transform

the stability problem into the problem of designing the gains to ensure that the matrices

are Hurwitz.

Lemma 6.4. Under Assumption 6.3, equation (6.17) and (6.18) have a solution for Π

and Θ simultaneously if Ac includes the eigenvalues of the matrix S as given by (2.21).

Proof. Equations (6.17) and (6.18) can be expressed as follows

ΠS − AΠ− BCcΘ = 0, (6.19)

ΘS − BcC̃Π− AcΘ+ BcĒ = 0, (6.20)

Ē = C̄






Π

Θ




 . (6.21)
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By substituting (6.21) into (6.20) for Ē it follows that

ΘS −Bc(C̃Π− Ē)−AcΘ = ΘS −Bc(C̃Π−

[

C̃ 0

]






Π

Θ




)−AcΘ = ΘS −AcΘ = 0,

which along with equation (6.19) can be written as





Π

Θ




S −






A BCc

0 Ac











Π

Θ




 = 0. (6.22)

Equation (6.22) is a homogeneous Sylvester equation and has a non-zero solution only

if the matrix






A BCc

0 Ac




 includes the eigenvalues of S. Given that the eigenvalues of A

depend on the agents’ dynamics which cannot be changed, equation (6.22) can have a

solution only if the matrix Ac is designed such that it includes the eigenvalues of S, and

this completes the proof of the lemma.

Remark 6.2. As shown subsequently, the values of Π and Θ do not affect the control

gains and only determine the upper bound of the overall team cost index that is denoted

by J .

We are now in a position to introduce a procedure for selecting the controller gains.

Let us partition xci(t) as xci(t) = [x1
T

ci (t) x
2T

ci (t)]
T, where x1ci(t) ∈ Rρi−r and x2ci(t) ∈ Rr,

r is the dimension of ω(t). Then, the dynamics (6.3) can be expressed as





ẋ1ci(t)

ẋ2ci(t)




 =






A11
ci A12

ci

A21
ci A22

ci











x1ci(t)

x2ci(t)




+

∑

j∈Ni






A11
cij A12

cij

A21
cij A22

cij











x1cj(t)

x2cj(t)




+






B1
ci

B2
ci




 ei(t).

Let select A21
ci and A21

cij as A21
ci = 0, A21

cij = 0 and define

Xa(t) = T1x
a(t) = [xT(t) x1c

T
(t) x2c

T
(t)]T,

where x1c(t) = col{x1ci(t)}, x2c(t) = col{x2ci(t)} and T1 is the nonsingular transformation
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to rearrange xa(t) to Xa(t), then the dynamics of Xa(t) is

Ẋa(t) = ÃXa(t) +










0

B1
c Ē

B2
c Ē










ω(t),

where Ã =










A BC1
c BC2

c

Bc1C̃

B2
c C̃

¯Ac










, Āc =






A11
c A12

c

0 A22
c




 , Bc =






B1
c

B2
c




, A22

c =

blkdiag{A22
ci }, B1

c = blkdiag{B1
ci} and B2

c = blkdiag{B2
ci}. Suppose that the pairs

(A22
ci , B

2
ci), i = 1, . . . , N are selected such that they are controllable and Aci includes the

eigenvalues of S, C1
c and C2

c are selected such that their dimensions are compatible with

the dimensions of x1c(t) and x2c(t), respectively. Now, let X̃(t) = Xa(t) +










Π

Θ1

Θ2










ω(t),

then it can be shown that

˙̃X(t) = ÃX̃(t) (6.23)

Consequently, by applying the linear transformation T2 =










I 0 0

−I I 0

0 0 I










to the system

˙̃X(t) = ÃX̃(t), the transformed system becomes

˙̃xT (t) = AT x̃T (t),
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where x̃T (t) =

[

x̃T
1T (t), x̃

T
2T (t), x̃

T
3T (t)

]T

= T2X̃(t) and

AT =










A+BC1
c BC1

c BC2
c

A11
c − (A+BC1

c − B1
c C̃) A11

c − BC1
c A12

c − BC2
c

B2
c C̃ 0 A22

c










. (6.24)

Let us now selectA11
c = A+BC1

c−B
1
c C̃,A12

c = BC2
c , and let x̄(t) = [x̃T

1T (t), x̃
T
3T (t), x̃

T
2T (t)]

T.

It now follows that

˙̄x(t) = Āx̄(t) =






Ā1 Ā2

0 Ā3




 x̄(t), (6.25)

where Ā1 =






A+BC1
c BC2

c

B2
c C̃ A22

c




, Ā2 =






BC1
c

0




, and Ā3 = A− B1

c C̃.

The design strategy for each of the above matrices will be discussed below. However,

we first require to express the team performance index in terms of the new state x̄(t).

Towards this end, we have

u(t)− uss(t) =

[

0 Cc

]

x̃(t) =

[

0 C1
c C2

c

]










I 0 0

I I 0

0 0 I










x̃T (t)

=

[

C1
c C2

c C1
c

]

x̄(t),

y(t)− yss(t) =

[

C 0

]

x̃(t) =

[

C 0 0

]










I 0 0

I I 0

0 0 I










x̃T (t) =

[

C 0 0

]

x̃T (t)

=

[

C 0 0

]

x̄(t),
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where x̄(t) is as given in (6.25). Therefore,

J =

∫ ∞

tf

(
(y(t)− yss(t))TQ(y(t)− yss(t)) + (u(t)− uss(t))TR(u(t)− uss(t))

)
dt

=

∫ ∞

tf

[

x̃T
1T (t) x̃T

3T (t) x̃T
2T (t)

]

Q̄










x̃1T (t)

x̃3T (t)

x̃2T (t)










dt

=

∫ ∞

tf

(
[

x̃T
1T (t) x̃T

3T (t)

]

Q̄1






x̃1T (t)

x̃3T (t)




+ 2

[

x̃T
1T (t) x̃T

3T (t)

]

Q̄2x̃2T (t)

+x̃T
2T (t)Q̄3x̃2T (t)

)
dt,

where Q̄ =






Q̄1 Q̄2

Q̄T
2 Q̄3




 =






CTQC + CT
cRCc CT

cRC
1
c

(C1
c )

TRCc (C1
c )

TRC1
c




. Now, by using Fact 2.2

with α = 1 one gets

J ≤

∫ ∞

tf

(
[

x̃T
1T (t) x̃T

3T (t)

]

Q̄1






x̃1T (t)

x̃3T (t)




+

[

x̃T
1T (t) x̃T

3T (t)

]

CT
cRCc






x̃1T

x̃3T (t)






+x̃T
2T (t)(C

1
c )

TRC1
c x̃2T (t) + x̃T

2T (t)Q̄3x̃2T (t)
)
dt

=

∫ ∞

tf

(
[

x̃T
1T (t) x̃T

3T (t)

]

(CTQC + 2CT
cRCc)






x̃1T (t)

x̃3T (t)






+2x̃T
2T (t)(C

1
c )

TRC1
c x̃2T (t)

)
dt.

Given that the spectrum of Ā and ĀT are the same and Ā is a block triangular matrix,

if Ā1 and Ā3 are Hurwitz, then Ā as well as ĀT and A are Hurwitz. Now, considering the

above representation for ĀT , the overall team cost J , can be expressed and partitioned
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as follows:

J = J1 + J2

=

∫ ∞

tf

[

x̃T
1T (t) x̃T

3T (t)

]

(Q2 + 2CT
cRCc)






x̃T
1T (t)

x̃T
3T (t)




 dt

+2

∫ ∞

tf

x̃T
2T (t)(C

1
c )

TRC1
c x̃2T (t)dt,

s.t.










˙̃x1T (t)

˙̃x3T (t)

˙̃x2T (t)










=






Ā1 Ā2

0 Ā3















x̃1T (t)

x̃3T (t)

x̃2T (t)










where J1 denotes the first cost term and J2 denotes the second cost term and where

Q2 = diag{Q2i} and Q2i = CT
i QiCi.

The above representation has interesting features that can be stated as follows:

1) J1 is a function of only the states x̃1T (t) and x̃3T (t) while J2 is a function of only

x̃2T (t),

2) If Ā1 and Ā3 are Hurwitz, the entire multi-agent team will also be stable, and

3) Q2 and (C1
c )

TRC1
c are block diagonal matrices.

Motivated by the above, one now reformulate our problem as obtaining Jub
1 and Jub

2

such that J1 ≤ Jub
1 and J2 ≤ Jub

2 and also designing the control gains such that Ā1 and

Ā3 become Hurwitz. Specifically, we are only interested in distributed reconfigurable

control design strategies that will render the matrices Ā1 and Ā3 Hurwitz. In other

words, the agents should design their controller gains by using only local information
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when an actuator fault has occured and is detected by the FDI module while leading to

changes in their dynamics.

In fact, if for t < tf , the matrices Ā1 and Ā3 are Hurwitz and a fault occurs at

t = tf , then for t ≥ tf , Ā1 may become anti-Hurwitz, so that the control gains should

be reconfigured online by incorporating the information that are provided by the FDI

module to ensure that matrices Ā1 and Ā3 remain Hurwitz.

Theorems 6.1 and 6.2 below discuss the conditions under which Ā1 and Ā3 remain

Hurwitz following the detection, isolation and identification of the actuator faults.

Theorem 6.1. By invoking the controller gains Cci =

[

C1
ci C2

ci

]

= −R−1
i (Ba

i )
TPi,

i = 1, . . . , N , the matrix Ā1 is Hurwitz if if A22
ci , B22

ci are selected such that (A22
ci , B

22
ci ) is

controllable and A22
ci includes the eigenvalues of S and for qi > 0 and β > 1 there exist

Pi > 0, i = 1, . . . , N as solutions to

max Trace{Pi} s.t.






AT
iaPi + PiAia + (Q2i + qiI) PiB

a
i

(Ba
i )

TPi Ri




 ≥ 0, βI ≤ Pi ≤ αiI,

(6.26)

where Aa
i =






Ai 0

diB
2
ciCi A22

ci




, Ba

i =






Br
i

0




, αi ≤ β (λmin{Q2i}+qi)γi∑

j∈Ni
g‖B2a

ci C
a
j ‖

2 and

γi � d−1
i ‖Ba

i R
−1
i (Ba

i )
T‖.

Proof. The control gain Ccis should be designed such that Ā1 is Hurwitz. This is guar-

anteed in two steps: first the gains are designed such that the following system

˙̃y(t) = A1ỹ(t) (6.27)
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is asymptotically stable, where ỹ(t) = col{ỹi(t)},

A1 =














Aa
1 +Ba

1Cc1 −g12B
2a
c1C

a
2 . . . −g1NB

2a
c1C

a
N

−g21B
2a
c2C

a
1 Aa

2 +Ba
2Cc2 . . . −g2NB

2a
c2C

a
N

...
. . .

...

−gN1B
2a
cNC

a
1 −gN2B

2a
cNC

a
2 . . . Aa

N +Ba
NCcN














,

(6.28)

Aa
i =






Ai 0

diB
2
ciCi A22

ci




, Ba

i =






Br
i

0




, B2a

ci =






0

B2
ci




 and Ca

i =

[

Ci 0

]

. Second,

since the spectrum of the matrix A1 is the same as that of the spectrum of Ā1, if one

has negative eigenvalues the other will be the same. On the other words, if (6.27) is

asymptotically stable then A1 and so that Ā1 are Hurwitz.

Let vi(ỹi(t)) = ỹT
i (t)Piỹi(t), Pi > 0, then

v̇i(ỹi(t)) = ỹT
i (t)

(
(Aa

i +Ba
i Cci)

TPi + Pi(A
a
i +Ba

i Cci)
)
ỹi(t)

−
∑

j∈Ni

(
ỹT
j (t)(B

2a
ci C

a
j )

TPiỹi(t) + ỹT
i (t)Pi(B

2a
ci C

a
j )ỹj(t)

)
.

By applying Fact 2.2 to the last two terms of the right-hand side of the above equality

yields

v̇i(ỹi(t)) ≤ ỹT
i (t)

(
(Aa

i +Ba
i Cci)

TPi + Pi(A
a
i +Ba

i Cci)
)
ỹi(t)

+
∑

j∈Ni

(
γ−1
i ỹT

j (t)(B
2a
ci C

a
j )

T(B2a
ci C

a
j )ỹj(t) + γiỹ

T
i (t)PiPiỹi(t)

)
.

Let Cci = −R−1
i (Ba

i )
TPi, where Pi is the solution to

maxTrac{Pi} s.t.(A
a
i )

TPi + PiA
a
i − PiB

a
i R

−1
i (Ba

i )
TPi +Q2i + qiI ≤ 0, (6.29)
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1 then it follows that

v̇i(ỹi(t)) ≤ −ỹT
i (t)

(
Pi(B

a
i R

−1
i (Ba

i )
T − diγi)Pi +Q2i + qiI

)
ỹi(t)

+γ−1
i

∑

j∈Ni

‖B2a
ci C

a
j ‖

2
2ỹ

T
j (t)ỹj(t).

If γi is selected such that diγi � ‖Ba
i R

−1
i (Ba

i )
T‖22, and Pi the solution to (6.29) also

satisfies βI ≤ Pi ≤ αiI , with αi, β > 0 then one has

v̇i(ỹi(t)) ≤ −ỹT
i (t)

(
PiB

a
i R

−1
i (Ba

i )
TPi +Qi + qiI

)
ỹi(t) + γ−1

i

∑

j∈Ni

‖B2a
ci C

a
j ‖

2
2ỹ

T
j (t)ỹj(t).

Consequently, it follows that

βỹT
i (t)ỹi(t) ≤ vi(ỹi(t)) = ỹT

i (t)Piỹi(t) ≤ αiỹ
T
i (t)ỹi(t),

hence

vi(ỹi(t))

αi

≤ ỹT
i (t)ỹi(t) ≤

vi(ỹi(t))

β
.

Subsequently,

v̇i(ỹi(t)) ≤ −
λmin{Q2i}+ qi

αi

vi(ỹi(t)) +
γ−1
i

β

∑

j∈Ni

‖B2a
ci C

a
j ‖

2
2vj(ỹj(t)),

and one will have

v̇(ỹ(t)) �Mv(ỹ(t)),

where v(ỹ(t)) = col{vi(ỹi(t))} and

M =










−λmin{Q21}+q1
α1

. . . g1N
γ−1

1

β
‖B2a

c1C
a
N‖

2
2

...
. . .

...

gN1
γ−1

N

β
‖B2a

cNC
a
1‖

2
2 . . . −λmin{Q2N}+qN

αN










.

Using Lemma 6.2, for v0 = v(tf ) = z(tf ) = z0, it follows that v(t, tf , v0) � z(t, tf , z0),

1Given that (B2a
ci C

a
j )

T(B2a
ci C

a
j ) is positive semi-definite matrix

(B2a
ci C

a
j )

T(B2a
ci C

a
j ) ≤ λmax{(B

2a
ci C

a
j )

T(B2a
ci C

a
j )}I = ‖B2a

ci C
a
j )‖

2

2
I.
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where z(t) is the solution to

ż(t) =Mz(t).

On the other hand, from the Gerschgorin circle theorem if

λmin{Q2i}+ qi
αi

>
γ−1
i

β

∑

j∈Ni

‖B2a
ci C

a
j ‖

2
2 > 0,

then all the eigenvalues of M will be on the open left-half plane and z(t) will be asymp-

totically stable. Given that ‖ỹ(t)‖2 ≤ vi(x̃1,3(t))

β
and vi(t, tf , v0) ≤ zi(t, tf , z0), it follows

that ỹ(t) is asymptotically stable. Therefore, the system (6.27) is asymptotically stable

which implies that A1 and so that Ā1 are Hurwitz and this completes the proof of the

theorem.

Theorem 6.2. Let B1
ci = µiX

−1
2i C

T
i , i = 1, . . . , N , where positive definite matrix X2i is

the solution to

AT
iX2i +X2iAi − (CT

i Ci + η2iI) + η1iX2iX2i ≤ 0, (6.30)

with η1i > 1, η2i ≥ 2‖(C1
ci)

TRiC
1
ci‖, and µi, i = 1, . . . , N are obtained such that

LTµ+ µL− I > 0, µ = diag{µi}, (6.31)

then the matrix Ā3 is Hurwitz.

Proof. Let B1
ci = µiX

−1
2i C

T
i . We now have

X−1
2 ĀT

3 + Ā3X
−1
2 = X−1

2 AT + AX−1
2 −X−1

2 CT
(
(LTµ+ µL)⊗ Im

)
CX−1

2 , (6.32)

where X−1
2 = col{X−1

2i }. For X2i selected as as the solution to (6.30), one has

X−1
2 ĀT

3 + Ā3X
−1
2 ≤ X−1

2 (CTC + η2)X
−1
2 − η1 −X−1

2 CT
(
(LTµ+ µL)⊗ Im

)
CX−1

2 ,

where η2 = diag{η2iI} and η1 = diag{η1iI}. If µ = diag{µi}, and µi is the solution to
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(6.31) then

X−1
2 ĀT

3 + Ā3X
−1
2 < −X−1

2 η2X
−1
2 − η1 < 0, (6.33)

which implies that Ā3 is Hurwtiz, and this completes the proof of the Theorem.

We are now in the position to state our main result.

Theorem 6.3. With the application of the dynamic output feedback control laws (6.3)

and (6.4) to the faulty multi-agent network, the agents outputs are regulated and the

team performance index is upper bounded by

Jub = (






x(tf ) + Πω(tf )

Θω(tf )




)

T










P1
1 − P3 −P3 P2

1

−P3 2P3 0

P2
1 0 P3

1















x(tf ) + Πω(tf )

Θω(tf )






where uri is the solution to (6.5) and the control gains are selected as

Aci =






Ai +Br
iC

1
ci − diB

1
ciCi Br

iC
2
ci

0 A22
ci




, Acij =






B1
ciCj 0

0 0




, Bci =






B1
ci

B22
ci




, A22

ci , B22
ci ,

A22
ci andCci =

[

C1
ci C2

ci

]

are designed as in Theorem 6.1,B1
ci is designed as in Theorem

6.2, Π and Θ are the simultaneous solutions to (6.17) and (6.18), and P1 =






P1
1 P2

1

P2
1 P3

1






is the solution to

ĀT
1P1 + P1Ā1 = −(Q2 + 2CT

cRCc) (6.34)

with P3 = diag{X2i}, where X2i is the solution to (6.30).

Proof. The cost performance index J1 is bounded if x̃1iT (t) and x̃3iT (t) are asymptoti-

cally stable. If Cci is designed as in Theorem 6.1, the matrix Ā1 is Hurwitz, which im-

plies that x̃1iT (t) and x̃3iT (t) are asymptotically stable. Therefore, there exists a P1 > 0
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such that

ĀT
1P1 + P1Ā1 = −(Q2 + 2CT

cRCc).

Hence, we have

J1 =

∫ ∞

tf

[

x̃T
1T (t) x̃T

3T (t)

]

(Q2 + 2CT
cRCc)






x̃T
1T (t)

x̃T
3T (t)




 dt

= −

∫ ∞

tf

[

x̃T
1T (t) x̃T

3T (t)

]

(ĀT
1P1 + P1Ā1)






x̃T
1T (t)

x̃T
3T (t)




 dt

= −

∫ ∞

tf

dΨ1(t)

dt
dt = Ψ1(tf )−Ψ1(∞) = Ψ1(tf ), (6.35)

where Ψ1(t) =

[

x̃T
1T (t) x̃T

3T (t)

]

P1






x̃T
1T (t)

x̃T
3T (t)




.

On the other hand, J2 is bounded if x̃2iT (t) is asymptotically stable, which is guar-

anteed if Ā3 is Hurwitz or B1
cis are designed as in Lemma 6.2. Recall that η2i ≥

‖(C1
ci)

TRC1
ci‖, therefore by multiplying both sides of the inequality (6.33) by P3 = X2,

one gets

ĀT
3P3 + P3Ā3 < −η2 − P3η1P3 ≤ −(C1

c )
TRC1

c . (6.36)

Hence,

J2 = 2

∫ ∞

tf

x̃T
2T (t)((C

1
c )

TRC1
c )x̃2T (t)dt

≤ −2

∫ ∞

tf

x̃T
2T (t)

(
ĀT

3P3 + P3Ā3

)
x̃2T (t)dt

= −2

∫ ∞

tf

dΨ3(t)

dt
dt = Ψ3(tf )−Ψ3(∞) = Ψ3(tf ), (6.37)

where Ψ3(t) = 2x̃T
2T (t)P3x̃2T (t). Now, from the derivations in (6.35) and (6.37) we
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obtain

J = J1 + J2 ≤ x̄T(tf )






P1 0

0 2P3




 x̄(tf )

=

[

x̃T
1T (tf ) x̃T

3T (tf ) x̃T
2T (tf )

]






P1 0

0 2P3















x̃1T (tf )

x̃3T (tf )

x̃2T (tf )










=

[

x̃T
1T (tf ) x̃T

2T (tf ) x̃T
3T (tf )

]










P1
1 0 P2

1

0 2P3 0

P2
1 0 P3

1



















x̃1T (tf )

x̃2T (tf )

x̃3T (tf )










= x̃T
T (tf )










P1
1 0 P2

1

0 2P3 0

P2
1 0 P3

1










x̃T (tf ),

where P1 =






P1
1 P2

1

P2
1 P3

1




. From the definition of x̃T (t), we have x̃T (tf ) =










I 0 0

−I I 0

0 0 I






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
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X̃(tf )
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
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

x(tf )

Xc(tf )




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

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

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Π
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Θ2










ω(tf ), where Π, Θ1 and Θ2 are obtained by solv-

ing (6.17) and (6.18), simultaneously. Since Xc(t) represents the controller states, let

Xc(tf ) = 0, so that Jub can be obtained as

Jub = (






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


x(tf ) + Πω(tf )
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x(tf ) + Πω(tf )

Θ1ω(tf )

Θ2ω(tf )










, (6.38)

and this completes the proof of the theorem.
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6.3 Simulation Case Studies and Results

In this section, our proposed control recovery approach is applied to a network of het-

erogenous Autonomous Underwater Vehicles (AUV)s. The team is considered to consist

of six Sentry Autonomous Underwater Vehicles (AUV)s. Sentry, made by the Woods

Hole Oceanographic Institution [171], is a fully autonomous underwater vehicle that is

capable of surveying to the depth of 6000 m and is efficient for forward motions.

To conduct our simulation studies we consider the diving subsystem of the linearized

model of Sentry. To obtain a linearized model of this subsystem, the forward (surge)

speed uo is set to uo = 1 and the numerical values for the triple (Ai, Bi, Ci) for the i-th

agent, where the team contains two sets of homogenous agents (so that the team is con-

sidered overall as heterogenous) are governed by
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Ai =






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
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

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, for i = 1, 3, 5

Ai =
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
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
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, for i = 2, 4, 6

Ci =

[

0 0 1 0

]

, i = 1, . . . , 6,

where xi(t) =

[

ωi(t), qi(t), zi(t), θi(t)

]T

, ui(t) =

[

δbi (t), δ
s
i (t)

]T

, ωi(t), qi(t), zi(t),

θi(t), δ
b
i (t) and δsi (t) denote the heave speed, pitch rate, depth, pitch, bone and the stern

plane deflections, respectively.

The exo-system dynamic matrices and the network topology Laplacian matrix are

given by

S =






0 1

0 0


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 , R =

[

1 0

]

, L =
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
















.
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It is assumed that only the first agent is connected to the exo-system directly, and the

following scenarios are considered to evaluate the performance of our proposed recon-

figurable control laws.

Scenario A- healthy team: In this scenario, all the agents are considered to be healthy

and their dynamics are governed as stated above. By selecting the control gains as spec-

ified in Theorem 6.3 for Br
i = Bi, the agents output depth trajectories along with the

exo-system output are depicted in Figure 6.1.

In Scenarios B, C and D below, (faulty team) the behavior and performance of the

team subject to three types of actuator faults, namely the LOE fault, the outage fault, and

the stuck fault are considered. Towards this end, during 0 ≤ t < 50 sec the agents and

their control laws are considered to be the same as those governed by the Scenario A. At

time t = 50 sec the faults are injected and after a delay of ∆ sec the control gains are

reconfigured by invoking Theorem 6.3.The details corresponding to each scenario are

provided below:

Scenario B: At t = 50 sec the agent 2 becomes faulty and its second actuator is lost

while the actuators of the agent 5 are subject to a LOE fault and the effectiveness of its

first and second actuators are 60% and 70% of their nominal values, respectively. The

delays in invoking the reconfigured control are considered to be ∆ = 3, 7, 10 sec.

Scenario C: The stuck fault is injected in the second actuator of the agent 4 where the

stuck command is considered as u23 = 5 while the same fault is also injected to the agent
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5. The delays in invoking the reconfigured control are considered to be ∆ = 6, 12, 17

sec.

Scenario D: In this scenario, the agents 1, 4 and 6 are assumed to be faulty. An

outage fault is injected to the first actuator of the agent 1 and the second actuator of the

agent 6, the agent 4 is subject a LOE fault whereas its actuator effectiveness is reduced by

50%. The delays in invoking the reconfigured control are considered to be ∆ = 2, 12, 20

sec.

The team performance indices for the above scenarios are provided in Table 6.1,

however due to space limitations, only the depth trajectories for certain scenarios are

depicted in Figures 6.1-6.3.
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Figure 6.1: The agents depth trajectories corresponding to the Scenario A.

Figure 6.1 illustrates that when all the agents are healthy they can track the output

trajectory of the exo-system with the least steady state errors. Figures 6.2 and 6.3 demon-

strate that once the agents become faulty the team becomes unstable as confirmed by

presence of large tracking error. Therefore, the agents no longer can follow the desired
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Figure 6.2: The agents depth trajectories corresponding to the Scenario B with ∆ = 10
sec.
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Figure 6.3: The agents depth trajectories corresponding to the Scenario C with ∆ = 12
sec.
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Scenarios and Delays in

Recovery Invocation

J

A 1.6449e+11

B; ∆ = 3 6.922e+11

B; ∆ = 7 2.678e+12

B; ∆ = 10 2.205e+13

C; ∆ = 6 14.702e+11

C; ∆ = 12 3.88e+13

C; ∆ = 17 7.838e+15

D; ∆ = 2 5.13e+14

D; ∆ = 12 5.22e+14

D; ∆ = 20 8.904e+15

Table 6.1: The indices corresponding to the network performance index under the

Scenarios A-D, where ∆ denotes the delay in invoking the reconfigured control gains.

trajectory of the exo-system. However when the reconfigured control laws are invoked

the team becomes stable and subsequently the agents can manage to track the outputs of

the exo-system with still quite acceptable steady state errors.

6.4 Conclusions

In this work, the distributed output control reconfigurable regulation problem in a net-

work of heterogenous multi-agent systems subject to actuator faults is studied. Three

types of actuator faults are considered and a distributed reconfigurable control strategy

is proposed to ensure that the outputs of the agents follow the outputs of an exo-system.

The proposed approach uses only local information consisting of output measurements

as well as the fault detection and isolation information from the agents in the nearest

neighbours. Furthermore, the upper bound of the team cost performance index under

the proposed control law is obtained. Towards this end, the regulation problem is trans-
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formed into two stability problems which are solved in a distributed fashion. The pro-

posed distributed control recovery approach is applied to a team of unmanned underwater

vehicles and simulation results indicate the capabilities and effectiveness of the proposed

approach in accommodating three different types of actuator faults simultaneously and

subject to delays in invoking the control reconfiguration strategies.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis the cooperative control reconfiguration problem in a team of autonomous

multi-agents was considered. A team of linear time-invariant systems that is seeking

consensus/output regulation while agents may be subject to three types of actuator faults

was considered. The objectives were to develop fully distributed control reconfiguration

strategies using only local available information to ensure that the team can cooperate

among themselves and the specified team performance indices remain in an acceptable

level. Towards this end, the control reconfiguration problem is transformed into stability

problem and optimal control framework is employed to ensure the required team objec-

tives.
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In Chapter 3, cost-performance based control reconfiguration in a multi-agent sys-

tems under fixed, undirected network topology is considered. Distributed Hamilton-

Jacobi-Bellman equations for the faulty agents are derived and reconfigured controllers

are designed by solving these equations subject to the faulty agent dynamics and net-

work structure constraints to ensure the fault the accommodation of the entire team. The

proposed control scheme accommodates actuator faults in a single agent as well as con-

current actuator faults in the team and minimizes the faulty agent local cost performance

index.

In Chapter 4, an H∞ performance fault recovery control problem for a team of multi-

agent systems under directed, fixed topology and subject to environmental disturbances

is studied. The objectives were to design a distributed control reconfiguration strategy

such that in presence of actuator fault the output of the faulty system behaves exactly the

same as that of the healthy system, while the state consensus error remain bounded as

well as minimizing the specified H∞ performance bound in presence of bounded energy

disturbances. The gains of the reconfigured control laws are selected first by employing

a geometric control approach where a set of controllers guarantees that the output of the

faulty agent imitates that of the healthy agent and the consensus achievement objectives

are satisfied. Next, the remaining degrees of freedom in the selection of the control

law gains are used to minimize the bound on a specified H∞ performance index. The

proposed control reconfiguration methodology accommodates single, concurrent as well

as simultaneous actuators faults in the team.
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In Chapter 5, control reconfiguration problem in multi-agent systems subject to di-

rected switching topology networks and severity estimation uncertainties and unreliabil-

ities are considered. It is assumed that each agent can observe the change in its neighbor

agents and is unaware of the entire network changes. Control reconfiguration problem

is transformed into two stability problems, in which one can be solved offline while the

other should be solved online and based on the information each agent receives from fault

detection and isolation module. Using quadratic and convex hull Lyapunov functions the

control gains are developed such that the team consensus achievement is guaranteed

while the upper bound of the team cost performance index is minimized. The proposed

approach accommodates single, concurrent as well as simultaneous actuators faults in

the team.

In chapter 6, output regulation problem in a network of non-identical vehicles is

considered. Three types of actuator faults are considered and a distributed strategy is

proposed to ensure output of the agents follow the outputs of an exo-system whereas

the agents states remain bounded. The proposed approach uses local information in-

cluding output measurements as well as the fault detection and isolation information of

the agents in the agents neighbourhood. Furthermore, the upper bound of the team cost

performance index under the proposed control law is obtained. First, distributed output

regulation problem is transformed into two stability problems. Then using Lyapunov sta-

bility theorems and Gershgorin circle theorem theorems, these problems are solved. The

proposed approach accommodates single, concurrent as well as simultaneous actuators

faults in the team.
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In conclusion, in this thesis a framework for developing distributed reconfiguration

control strategies in multi-agent systems subject to three types of actuator faults are pro-

posed. The proposed methodologies are applied to a team of unmanned underwater

vehicles and the effectiveness of the proposed approaches in compensating for actuator

faults are validated through simulating many fault scenarios.

7.2 Suggestions for Future Work

Some of the future extensions of the present research are as follows:

• Developing a reconfiguration strategy for the team that is subject to delays in shar-

ing information.

• Extending the proposed framework for deterministic switching topologies to the

stochastic switching topologies network.

• Developing an optimal, computationally effective approach to improve the overall

team performance and investigate the optimality gap of using the proposed sub-

optimal solutions.

• Extending the proposed methodology for heterogenous agents for the team with

switching topology and in presence of environmental disturbances and uncertain-

ties in FDI estimations.

• Extending the proposed framework for accommodating outage fault in a team of
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linear time-invariant systems to a team of nonlinear agents .

• Combining the proposed result for H∞ and cost-based control reconfiguration to

ensure that both performances remain in an acceptable level.

• Investigating the transient behaviour and state constraints in development of the

reconfigured control laws, as agents are subject to physical limitations in values

that their states can tolerate. Also, considering the limitations of the control efforts

that can be applied to each agent.

• Providing a priority decision making rule for reconfiguring faults in agents that

depends on the effect of the actuator in the system stability and performance. This

is due to the fact that different actuators may have different effects on the system

stability and performance and reconfiguring any fault without explicitly taking into

account this aspect can be inefficient to the entire team performance.

• Extending of the proposed strategies for the multi-agent systems that are subject

to simultaneous actuator and sensor faults.
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