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Abstract

Computational Approaches to Improving the

Reconstruction of Metabolic Pathways

Faizah Aplop, Ph.D.

Concordia University, 2016

Metabolic pathway reconstruction is the essence of systems biology where in silico modeling

and prediction of the cell’s function is based on the interaction of the cell’s components

represented as a network of reactions. The reconstructed model and the associated database

of information about the organism’s genes and their functional roles facilitate a variety of

analysis and simulation techniques that can enrich our understanding. However, there are

unresolved issues for genome-scale metabolic network reconstruction, such as our incomplete

knowledge of the cell’s networks for metabolism, transport, and regulation; the completeness,

accuracy, and specificity of the annotation of genomes; and our ability to fully utilise the

available information from -omics (genomics, proteomics, metabolomics, etc) for the recon-

struction of the networks. These issues result in incomplete metabolic models, which limit

our ability to perform analysis of and to make predictions about the cell that are based on

the network model.

This dissertation discusses the state-of-the-art of metabolic pathway reconstruction and high-

lights the outstanding issues. In particular, we consider a number of case studies using

genomes of fungi relevant to industrial applications, such as biofuels, to demonstrate the

performance of existing techniuqes and illustrate the issues. Our case studies focus on the

cell’s central metabolism, and the utilisation and transport of sugars as a carbon source,

since these are essential concerns for industrial applications.

A significant deficiency in the existing state-of-the-art for the reconstruction of metabolic

pathways is the ability to associate genes and proteins to the transport reactions that move

specific compounds across the membranes of the cell. The dissertation reviews the state-of-

the-art of prediction methods for transmembrane transport proteins by developing a scheme

to describe and compare existing methods, and applying the existing techniques to the
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fungal genome of A. niger CBS 513.88. This reveals the split between those methods that

use the Transporter Classification (TC) as their target for prediction, and those that use

the type of chemical substrates being transported as their target. Despite this difficulty in

comparing approaches, it is clear that the state-of-the-art cannot predict specific substrates

being transported, and hence cannot associate genes and proteins to the transport reactions.

The dissertation presents TransATH, which stands for Transporters via ATH (Annotation

Transfer by Homology), a system which automates Saier’s protocol and includes the compu-

tation of subcellular localization and improves the computation of transmembrane segments.

The choice of thresholds for the parameters of TransATH is investigated to determine opti-

mal peformance as defined by a gold standard set of transporters and non-transporters from

S. cerevisiae. The dissertation demonstrates TransATH on the fungal genome of A. niger

CBS 513.88 and evaluates the correctness of TransATH using the curated information in

AspGD (the Aspergillus Database). A website for TransATH is available for use.
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Chapter 1

Introduction

This thesis deals with computational aspects of the automatic reconstruction of the metabolic

pathways of an organism, given an annotated genome of the organism, a body of knowledge

and data captured in public web resources, and optionally a collection of other data from

modern biotechnological instruments. It is motivated by the critical role of genome-scale

network reconstructions (GENREs) of metabolism in systems biology, and the significant

impact of systems biology on biology today, especially in industrial applications. It addresses

challenges in automating manual steps of the process, and in improving existing algorithms

for the steps.

Systems biology has become central to biology after the success of high throughput technology

in genome sequencing. It encompasses a holistic approach to the study of biology and the

objective is to simultaneously monitor all biological processes operating as an integrated

system [Roe12]. According to [Pal08], the complex and dynamic behaviour of living systems

drive researchers to innovate from an reductionist approach to an integrative approach in

examining how biological components interact to generate whole cell functions.

Biological systems consist of atoms, such as carbon, oxygen, hydrogen, nitrogen, sulphur,

and phosphorus, that are the main elements in the building blocks of cell structure and cell

function: nucleic acids (DNA and RNA), proteins, carbohydrates and lipids [Wal06]. The

genome of the organism encodes the genes for these building blocks.

Systems biology plays an important role in the life science industry specifically in synthetic

biology. One of its major applications is within the field of metabolic engineering, where

genetic modifications of cell factories are done [COHA+10]. The goal is to produce strains of
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the original organism that can contribute in the manufacturing of bioproducts for industrial

use. To achieve such a goal, the functions of genes and gene products, and the relationships

between an organism’s genome and its phenotypes need to be understood, at least in part.

Computer simulation is utilized to perform integrative analysis on genetic characteristics

(genotype) in order to predict the physiological properties (phenotype) by reconstructing

biochemical reaction networks. An enormous challenge is to integrate the different levels of

information pertaining to genes, RNAs, proteins, and pathways that make up a cell or an

organism. To study them, qualitative and quantitative measurements of the behaviour of

groups of interacting components are taken using genomics, transcriptomics, proteomics and

metabolomics, followed by systematic application of bioinformatics tools and technologies.

Computational models are used to describe and predict the dynamic behaviour of cellular

systems. However, the use of the data obtained from studies with different -omics techniques

is not simple; for example, there are situations where genes encode for several different

proteins (isozymes) that can complicate data integration [Roe12].

Metabolic pathway reconstruction is a starting point of systems biology where basic bio-

chemical pathways for a specific organism are modelled. One of its main purposes is to

understand the function of each gene and the proteins to reveal their roles in that organism

[Ray06]. This functional assignment between gene/protein and metabolism can be consid-

ered as the first step of the biochemical data integration process [Roe12]. The metabolic

model is in the form of a network of interactions of the cell’s components. The network is the

basis for in silico prediction of the cell’s mechanisms and behaviour. This metabolic network

model becomes the focal point of systems biology and allows the integration of various data

types in a form suitable for mathematical analysis [BN05]. The metabolic network can be

reconstructed through Gene-Protein-Reaction (GPR) associations and the properties of the

reactions enable mathematical constraint-based approaches such as Flux Balance Analysis

(FBA) [Pal08]. The key is to transform the metabolic modeling information to mathematical

representations such as a stoichiometry matrix in order to facilitate and perform computa-

tions [FPG10]. The reconstructed model and the associated database of information about

the organism’s genes and their functional roles will facilitate a variety of analysis and simu-

lation techniques to help understand the cell system and answer specific biological questions

[CBS05].

The integration of -omics data and genome-scale metabolic models through the utilization

of computational tools has moved biology from a phenomenological to a predictive science
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[COHA+10]. Efforts by researchers in computer science, mathematics, statistics, and biol-

ogy who are working together in developing the necessary tools to acquire, store, analyze,

model, and distribute this information have given rise to the systems biology paradigm of

“components to networks to in silico models to phenotype” [Pal08].

Figure 1: Relating Hypotheses from -Omics to the Central Dogma

In the development of functional genomics technologies, the analysis of genome, transcrip-

tome, proteome and metabolome are critical because understanding interconnections be-

tween DNA, gene, RNA, and protein towards function is one of the great biological mysteries.

The term genome refers to a complete genetic sequence (DNA) of an organism. It contains

the entire heredity information of an organism encoded in DNA or RNA. For multicellu-

lar organisms, the genome consists of genes and non-coding regions of the organism. The

transcriptome is the complete set of RNA transcripts produced from the genome at any one

time. It includes coding sequences (CDS) that can be translated into proteins for those genes
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(potentially) active at the point of time. The proteome is the full complement of proteins

expressed by the genome at a given time. The metabolome consists of all metabolites — that

is, small chemical compounds — produced by an organism at a given time. The metabolites

are inputs (substrates) and outputs (products) of reactions catalyzed by enzymes. These

reactions form the metabolic pathways. Figure 1 shows how each stage of the central dogma

relates to -omics data from the new high-throughput technologies of genome sequencing

(next-generation DNA sequencing (NGS)), transcript profiling (RNA-Seq, next-generation

sequencing of transcripts) and protein identification and quantification (mass spectrometry

(MS)).

1.1 Genome-Scale Network Reconstruction

An organism carries out a range of processes, such as

• reproduction;

• cell growth;

• cell differentiation;

• metabolism;

• response to stimuli; and

• death.

An overview of cell processes can be seen in the Biological Process (BP) aspect of the

abbreviated Gene Ontology [The00], the so-called GO Slim.

Thiele and Palsson [TP10] present a comprehensive protocol to develop a GENRE (see Sec-

tion 2.4) that involves considerable manual curation, iteration, and quality control. In gen-

eral, the level of curation required limits the application of the protocol to model organisms,

or at least those organisms with a well-funded, large research community. Recent advances

in biotechnology has improved speed and accuracy, and lowered the cost of sequencing in

particular. This has democratized the access to a genome sequence. We aim to democratize

the access to a GENRE for those genomes.
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Figure 2: Example of a GENRE

A portion of a GENRE for Aspergillus niger CBS 513.88 strain illustrating transport
across membrane and metabolic reactions [ANN08]. The highlighted inset shows the
mitochondrion where the TCA cycle takes place, its membrane, and three transporters
in the membrane.

As an introduction to the concept of a GENRE and the scale and scope of a GENRE,

Figure 2 shows a portion of the GENRE for Aspergillus niger CBS 513.88 strain developed

by Andersen [ANN08]. The highlighted inset shows the mitochondrion where the TCA cycle

takes place, its membrane, and three transporters in the membrane.

1.1.1 Some Historical Context

In 1995, the genome of the bacteria Haemophilus influenzae was the first full genome to be

sequenced [Pal08]. A GENRE was developed 4 years later. It was the first GENRE available

and was developed manually. In 1996, the genome of the yeast Saccharomyces cerevisiae was

the first eukaryotic genome to be completely sequenced. Yeast is one of the best characterized

organisms [PL04]. A GENRE of S. cerevisiae was developed in 2003 [FFF+03, DHP04]. The
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initial reconstruction used the KEGG metabolic pathway database as the reference, and

annotated the genes in terms of Enzyme Commission (EC) numbers.

The state of the art in this field obviously is heavily dependent on the history of biology and

genomics. What most people regard as the Human Genome Project was actually a larger

project to sequence a range of organisms, the so called model organisms. The list of model

organisms has grown slightly, and is about to grow dramatically with the democratization

of genomics. The model organisms were selected due to a number of criteria; mainly how

they could throw light on the human genome in terms of cell mechanisms, development, and

disease. By default, model organisms had a large scientific community; they had for a long

time been organisms of interest to scientists; scientists knew how to perform experiments

with them, and how to manipulate their genome. They were generally easy and fast to grow

in the lab.

The prokaryotes, bacteria and archea, are simpler organisms with simpler genomes than eu-

karyotes. In particular, E. coli is the basis of recombinant DNA technology. Many prokaryote

genomes were sequenced early in the history of genomics, so much of the knowledge and tools

for GENREs and its steps are specific to prokaryotes.

GENRE protocols require extensive manual curation of the genome and the model. The

commonest approach is to use reconstruction by analogy, that is, the reference template

method, that requires a body of knowledge of existing reactions and pathways, and genes

that perform those reactions. Hence, most GENREs are developed for model organisms,

such as E. coli, or for prokaryotes.

Figure 4 shows the history of the E. coli GENRE from 1990 to 2007. E. coli has approx-

imately 4300 genes, so the latest GENRE is modeling less than 50% of the genes. Note

that the y-axis, not only shows the increase in the number of reactions, genes, and metabo-

lites included in the versions of the GENRE, but also shows the knowledge of different cell

mechanisms incorporated in the model, as our knowledge, through experimentation, grew:

• biosynthesis of amino acids and nucleotides;

• biosynthesis of cell wall constituents;

• biosynthesis of cofactors;

• fatty acid metabolism;
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• alternate carbon utilization;

• quinone; and

• cell wall metabolism.

Figure 3: The Ongoing Reconstruction of the E. coli Metabolic Network

“History of the E. coli metabolic reconstruction. Shown are six milestone efforts contributing to the re-
construction of the E. coli metabolic network. For each of the six reconstructions, the number of included
reactions (blue diamonds), genes (green triangles) and metabolites (purple squares) are displayed. Also
listed are noteworthy properties that each successive reconstruction provided over previous efforts. For
example, Varma & Palsson included amino acid and nucleotide biosynthesis pathways in addition to the
content that Majewski & Domach characterized. The start of the genomic era (1997) marked a signifi-
cant increase in included reconstruction components for each successive iteration. The reaction, gene and
metabolite values for pre-genomic era reconstructions were estimated from the content outlined in each
publication and in some cases, encoding genes for reactions were unclear.” [FP08]

Figure 4 shows how the coverage (c) of GENREs has expanded to include fungi, plants, and

human, though still strongly biased to bacteria (a), and it still does not encompass all the

potential reactions as identified in the Enzyme Commission (EC) (b).

1.1.2 Resources

Historically, any work on metabolic pathways would refer back to KEGG [OYH+08] at

the Bioinformatics Center, Institute for Chemical Research, Kyoto University and Human
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Figure 4: GENREs and their Coverage

“(a) By year, the cumulative number of GENREs published (vertical bars) and unique reactions in-
cluded in all GENREs (red dots and line). (b) The proportion of Enzyme Commission (EC) numbers
included in published GENREs. (c) Contribution to the coverage of metabolic space of each GENRE
publication, as determined by the number of unique reactions added by each GENRE at the time of
publication. The GENREs are ordered by publication date from H. influenza (iJE296) published in
1999, to Synechocystis (iSyn731), published in 2012.” [MNP14]

Genome Center, Institute of Medical Science, University of Tokyo. KEGG digitized the path-

ways diagram of the pharmaceutical company Boehringer Ingelheim, and created databases

for the pathways and the related enzymes, ligands, and genes. The KEGG information is

not curated, so it is not as useful as more recent resources.

MetaCyc [CAD+10] is a curated database from SRI of pathways, reactions, and metabolites,

that grew from the modeling and curation efforts of E. coli, namely EcoCyc [KCVSZ+11]

originally, and now also TransportDB [RKP04] and RegulonDB [SPGGC+13]. It has strong

tool support in Pathway Tools [KPK+09] for GENRE.

Today most GENREs can be found at BiGG [SPCP10], “a Biochemically, Genetically and

Genomically structured genome scale metabolic network reconstruction knowledgebase” at

Bernhard Palsson’s Systems Biology Lab at UC San Diego. Models are encoded in the sys-

tems biology markup language (SBML) [HFS+03]. They develop the COBRA toolkit [SQF+11]
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for analysis of GENREs.

Specific to modeling pathways, rather than to systems biology as a whole, is the BioPAX

community [DCP+10] for Biological Pathways Exchange in XML. BioPAX is represented in

RDF/XML and is defined in OWL.

For annotation of enzymes specifically, there is the Enzyme Commission (EC) classification

scheme, which is supported by the BRENDA database [SCP+13] of EC definitions, reac-

tions, metabolites, and enzymes. For annotation of transporters, there is the Transporter

Classification (TC) scheme, which is supported by the TC database (TCDB) [STB05]. For

annotation in general, one uses the Gene Ontology (GO) [The00]. GO covers enzymes and

transporters amongst its collection of terms for annotation. The GOA database [HSMM+15]

links gene ontology annotations to the entries in SwissProt and UniProt.

For curated protein sequences and information about the proteins, one consults the SwissProt

database [BA00], which is the set of reviewed entries in UniProt [C+14], a resource with both

reviewed and unreviewed protein sequences. SwissProt collaborates closely with curators for

model organisms, and others, such as the AspGD database [CAI+14] for Aspergillus species.

The major software tools for GENREs are reviewed in [HR14] and discussed in Section 2.4.

1.1.3 Issues and Challenges

In modeling the cell, as a step to modeling an organism such as human, there are a number

of aspects to consider, namely

• the structure of the cell, such as cell wall, membranes, and organelles;

• the metabolism that transforms metabolites and provides energy to the cell;

• the transport of material into and out of the cell, into and out of the organelles, and

about the cell;

• the regulation of the cell processes; and

• the sensing of the environment, and the signaling of that information within the cell

and between cells.
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Clearly our knowledge is always in a state of flux, and we know more about some aspects

above than others. Furthermore, we do not always know how to put that knowledge into

practice, often awaiting the development of knowledge representations, reference collections,

and algorithms. From electron microscopy we have strong knowledge of the structure of

the cell. From our understanding of chemistry and the classification work of the Enzyme

Commission, we have a good understanding of metabolism. Our understanding of transport,

regulation, and signaling is less well developed.

Many GENREs, however, still do not model cell components fully even though we understand

the structure of the cell. For metabolism, the problem arises because there are many EC

numbers for which no gene is known, and hence assigning GPR associations by analogy is

impossible. Furthermore, reactions may be catalyzed by protein complexes formed from

several individual protein molecules. Most GENREs do not model protein complexes, and

most functional annotations do not identify protein complexes. Chapter 4 illustrates our

limited knowledge of transport.

Curation of the scientific literature in order to create Gold Standard reference sets is time

and labour intensive. While one can still obtain funding for the creation of new reference

sets it is increasing difficult to obtain funding to maintain existing reference sets.

A result of these two factors, our state of knowledge and the cost of curation, means that

many Gold Standard reference sets are small in total size, or have many classes of entity for

which the number of examples is small. This hampers machine learning as an approach to

develop classifiers. Supervised machine learning requires sufficent data to create a training

set and a test set. The training set should exhibit enough signal to separate the classes from

each other, with some redundancy to allow cross-validation. The test set should contain at

least one member of each class, but also be large enough to derive meaningful statistical

results.

Validation, or evaluation, is a major problem. The quality control steps in GENRE protocols

use flux balance analysis to check the self-consistency of the model; this is internal validation

of the approach. True validation, external validation against a ground truth, is established

in the wet lab by comparing observed measured behaviour — the phenotype — with in

silico predictions of behaviour based on the nodel. Wet lab work requires collaborators with

facilities, expertise, and resources. The experiments take time and effort.
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1.2 Contributions

This thesis investigates the reconstruction of metabolic pathways. The goal is to remove

obstacles to full automation of the process. To this end, the first contribution of the thesis is

to identify those obstacles and identify the issues preventing automation. This is carried out

in Chapter 3 through a review of the state of the art and case studies with fungal genomes.

The issues identified are as follows.

• The reference template approaches are dependent on the body of existing knowledge,

and the effort to manually curate the scientific literature to extract that knowledge

and encode it in public databases.

• The evaluation of methods is difficult when applied to new genomes. Internal validation

of the model can be measured in terms of numbers of pathways, reactions, and GPR

associations to indicate coverage, and by the number of holes to indicate completeness.

Further internal validation requires constructing a systems biology model so one can

apply flux balance analysis for atoms, charges, energy, etc. External validation requires

the scientist to make predictions from the model and then to validate those predictions

in the wet lab; this is not expertise usually available to the developer of algorithms.

• The validation of methods for de novo discovery of pathways is difficult, even for

model organisms. Internal validation shows that the pathways are sound in terms of

the chemical transformation of compounds, but external validation of the existence of

the pathway in the organism requires extensive wet lab work.

• Even with gap filling, there are typically many holes in the resulting reconstruction.

Most approaches to gap-filling do not make use of gene expression data, which today

can be readily available even for non-model organisms through RNA-Seq.

• The widely available and widely used tools are biased towards prokaryotes. In partic-

ular, they do not model cell compartments such as mitochondrion, Golgi, peroxisome,

endoplasmic reticulum (ER), vacuole, or lysosome in their reconstructions.

• Transport reactions are often an afterthought in the modeling of the cell, despite the

fact that the reconstruction needs to view the cell as a closed system importing and

exporting compounds to its surroundings in order to perform internal validation.
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While recognizing the importance of the goal of full automation of the process, there are

several of the obstacles above that we could not plausibly attempt to solve. We could not

see ourselves resolving the issues of providing a complete reference model of the cell through

automation of the discovery of biological knowledge or the extraction of knowledge from the

scientific literature. Neither could we resolve the difficulty of evaluation, as at some time, it

becomes necessary to perform external validation in the wet lab.

We considered the issue of improving gap filling, especially the incorporation of gene ex-

pression data, through the development of new algorithms. However, there has been quite

extensive work in the area, mostly with model organisms where the availability of expression

data is high. Furthermore, we had no insight into how we might make a breakthrough nor

how we could demonstrate through evaluation that we had made an improvement.

In Chapter 4 we investigate the issue of including transport reactions, transporter proteins,

and the GPR associations for transport in the reconstruction of metabolic pathways. To

clarify the state of the art in that area, we develop a scheme to describe and compare the

different approaches. This is necessary so that we can see that the existing work of predicting

transport proteins actually is diverse and incomparable. We use a case study to get a deeper

understanding of the existing work, and to compare them in a practical setting using a fungal

genome of interest. This study reveals several issues:

• the disjointedness of the field with little connection between those that use the Trans-

porter Classification (TC) as their target for prediction, and those that use the chemical

substrates being transported as their target for prediction;

• the limited coverage of the predictors, due to the small size of available Gold Standard

datasets for transport; and

• the inability of the techniques to predict the specific substrate, or specific collection

of substrates, that is transported across the membrane by the transport protein, even

though they could identify the type of substrate in some cases.

In Section 4.4 we automate a protocol for determining the transporters in a genome that is

used in the lab of Milton Saier, who develops the Transporter Classification and maintains

the TCDB. In Section 4.6 we explore how to predict specific substrates of transporters.

This is a very difficult problem, so we do not find a solution. Based on our experience, in

Section 4.7 we propose a framework for the overall problem of predicting transporters, which

includes the problem of determining specific substrates.
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1.3 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 contains the background material that is important to the understanding of this

dissertation. Key are the Gene-Protein-Reaction (GPR) associations that are the units of

the metabolic pathway reconstructions. They relate the central dogma of biology that genes

through the processes of transcription and translation produce proteins, and these proteins in

turn carry out the functional roles of the cell, including the enzymatic reactions of metabolism

and the transport reactions across membranes. Section 2.1 introduces the concepts of ge-

nomics and the central dogma of molecular biology; Section 2.2 introduces metabolism,

metabolic pathways, enzymes and reactions, illustrated by central carbon metabolism; Sec-

tion 2.3 introduces transport of molecules and ions across cell membranes by transmembrane

transport proteins; Section 2.4 provides an overview of techniques for genome-scale network

reconstruction; and Section 2.5 briefly introduces the important aspects of machine learning

and bioinformatics for this thesis.

Chapter 3 focuses on one aspect in the automation of systems biology, namely the recon-

struction of the metabolic pathways. This step begins with an annotated genome of an

organism, and perhaps with other data such as RNA-Seq expression data, and produces a

model of the metabolism of the organism’s cell. Section 3.1 reviews the state of the art for

this step in the overall process; Section 3.2 looks at those fungal genomes that are well cu-

rated in order to see the completeness (or non-completeness) of their functional annotations;

Section 3.3 presents our case studies in reconstructing metabolic pathway models for fungi;

and Section 3.4 presents the lessons learned about the strengths and weaknesses of metabolic

pathway reconstruction.

Chapter 4 investigates how to include transport reactions, transporter proteins, and the GPR

associations for transport in the reconstruction of metabolic pathways. For prokaryotes, it is

sufficient to model the transport across the cell membrane. However, eukaryotes have inter-

nal organelles, therefore the reconstruction requires modeling of the cell internal components

and the intracellular transport across their membranes. The transport reaction should rep-

resent the transport of one or more specific substrates across a specific membrane. The

GPR association should identify the transmembrane protein that performs the movement of

those substrates across that membrane. Section 4.2 presents the scheme for describing and

comparing existing methods, and presents the state of the art; Section 4.3 presents the case
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study of the existing methods when applied to a fungal genome; Section 4.4 presents the au-

tomation of Saier’s protocol and demonstrates how the implementation works on the fungal

genome of the case study; Section 4.6 explores approaches to predicting specific substrates

given a transport protein; Section 4.7 proposes a framework for the transport prediction

problem; and Section 4.8 presents the lessons learned.

Chapter 5 concludes the thesis. It recaps the thesis work, and presents a summary of chal-

lenges addressed, the progress made, and the current state of the art. Section 5.1 presents the

contributions of our work; Section 5.2 discusses the limitations of our work; and Section 5.3

offers some directions for future work.

The appendices contain details that support the thesis argument but are not vital to the

understanding of the main body of the work.
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Chapter 2

Background

This chapter contains the background material that is important to the understanding of

this dissertation.

Key are the Gene-Protein-Reaction (GPR) associations that are the units of the metabolic

pathway reconstructions. They relate the central dogma of biology that genes through the

processes of transcription and translation produce proteins, and these proteins in turn carry

out the functional roles of the cell, including the enzymatic reactions of metabolism and the

transport reactions across membranes.

Our knowledge of genes and the roles of their proteins are captured in public web resources,

such as SwissProt. The data about roles is represented as terms in ontologies or classification

schemes. For metabolic reactions, the important classifications are the Enzyme Commission

(EC) numbers, and the Gene Ontology (GO). Protein domain classification provided by the

Pfam and InterPro resources is an important means of automatic annotation, so maps be-

tween the various schemes and GO have been created and are widely used. For transport

reactions, the important classifications are the Transporter Classification (TC) scheme, and

the Gene Ontology; however, the classification of transport is more recent, more in develop-

ment, and less harmonized than metabolism. Again, protein domains play important roles

in annotation, but maps between TC and the other schemes have not been developed yet.

Important techniques for this work from bioinformatics and machine learning are introduced.

Many good references are available for this material, so we are brief. The key techniques

are sequence similarity, the BLAST tool, and its results for e-values, percent identity, and

15



sequence coverage; amino acid composition and its variations that provide features for ma-

chine learning; profile Hidden Markov Models (HMM) representing sequence families, and

the related use of multiple sequence alignment (MSA) and phylogenetic trees.

Draft reconstructions are based on analogy with knowledge available about the organism

of interest, and related organisms. Public web resources act as reference templates for

forming Gene-Protein-Reaction (GPR) associations. The Gold Standard resources are based

on experimental results in the scientific literature that are manually curated. These include

SwissProt, for proteins and their properties; MetaCyc, for pathways and reactions; TCDB,

for transport proteins; and model organism databases, especially those of E. coli (bacteria),

S. cerevisiae (fungus), and A. thaliana (plant). The KEGG pathway database was the first

pathway resource and is still widely used even though its pathway templates are not all based

on manual curation of experimental results.

The chapter organization is as follows: Section 2.1 introduces the concepts of genomics and

the central dogma of molecular biology; Section 2.2 introduces metabolism, metabolic path-

ways, enzymes and reactions, illustrated by central carbon metabolism; Section 2.3 intro-

duces transport of molecules and ions across cell membranes by transmembrane transport

proteins; Section 2.4 provides an overview of techniques for genome-scale network recon-

struction; and Section 2.5 briefly introduces the important aspects of machine learning and

bioinformatics for this thesis.

2.1 Basic Concepts from Biology

The cell is the unit of life and knowing the cell components and how they work is the fun-

damental quest of biological science. Cell biology is the scientific discipline that studies

the cell including its life cycle, physiological properties, structure, components, their be-

haviour, and how the cell interacts with environment. Today this is done at a molecular

level. Understanding the molecular mechanisms and processes in living cells has been crit-

ical in understanding the basis for many cell process, and how they go wrong in diseases.

The genome is the “program” that determines how a cell develops, its structure, and its

functions. Figure 5 shows the components of a eukaryotic cell. Each cellular compartment

plays specific roles in the cell processes.
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Figure 5: Components of the Eukaryotic Cell
[http://www.shmoop.com/biology-cells/
all-eukaryotic-cells.html]

2.1.1 Nucleic Acids

Nucleic acids are long biological molecules formed from smaller molecules called nucleotides.

They carry the genetic information of an organism. There are two types of nucleic acids:

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The genetic information in DNA

is coded with four bases : adenine (A), guanine (G), cytosine (C), and thymine (T). The

sequence of bases are arranged in two strands that form a spiral called a double helix. Each

type of base on one strand is paired up with a specific type of base on the other strand

to form a unit called base pair. A is paired with T and C with G. DNA is found in the

nucleus of eukaryotic cells and in the cytoplasm of prokaryotic cells. RNAs are usually single

stranded and are assembled as a sequence of A, G, C, and uracil (U) bases. RNA molecules

are synthesized on DNA templates and are used in protein synthesis in the cytoplasm.

2.1.2 Central Dogma of Molecular Biology

The genetic information on DNA sequence — or genes — of a biological system is used to

synthesize messenger RNA (mRNA) molecules through a process called transcription. The

information present in mRNA molecules is subsequently used to synthesize proteins through

a process called translation. This flow of genetic information through transcription and

translation is referred to as the central dogma of molecular biology and was first stated in

1958 by Francis Crick.
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There is a difference in the transcription process of eukaryotic and prokaryotic cells. In eu-

karyotic cells transcription occurs in the nucleus and mRNA molecules are then transported

to the cytoplasm to be translated. Transcription in prokaryotic cells occurs in the cytoplasm.

Another major difference is that a eukaryotic gene has interleaved coding and non-coding

segments, called exons and introns, respectively. Transcription in eukaryotic cells produces

pre-mRNA strands that are subsequently converted into mRNA by removing introns and

splicing exons.

The translation process synthesizes proteins from the mRNA molecules produced during

transcription. Translation happens in the cytoplasm where an rRNA molecule called a

ribosome attaches itself to mRNA and moves along it to produce a specific amino acid

sequence based on codon to amino acid mapping. A codon is a triplet of bases coding for a

specific amino acid. There are 20 standard amino acids. The mapping of codons to amino

acids was determined experimentally and is called the genetic code [CBBWT61]. There are

64 possible codons, therefore an amino acid can be coded by more than one codon.

2.1.3 Proteins

The primary structure of a protein is the sequence of its amino acid molecules. Each amino

acid is represented by a letter from the English alphabet. A protein sequence is represented as

a string of letters from a set of English alphabet of size 20. See the one-letter code in Table 1.

An important aspect of proteins is their function. The function of a protein is the role that

the protein plays in a cell; it can be inferred from the three-dimensional structure of the

protein, which in turn can be obtained from its primary structure [ARC+54, Anf73, WP99].

A corollary to the central dogma is that proteins that share sequence similarity are expected

to have similar functions. Therefore, it is important to quantify sequence similarity to

determine whether proteins perform similar function or not.

Two protein sequences are said to be homologous if they share a common evolutionary origin.

Homology is a qualitative inference, i.e., there is no degree of homology, proteins are either

homologous or not. Sequence similarity, however, is a quantitative inference measured by

sequence alignment algorithms. Homologous proteins are derived from two evolutionary

events, gene duplication and gene speciation. Gene duplication occurs when regions of DNA

containing genes are duplicated giving rise to duplicates in an organism [Ohn70]. Duplicates

are free to evolve new functions.
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Amino Acid 3-letter 1-letter Properties

code code Hydrophobic Functional Structural

Alanine Ala A Non-polar Ambivalent

Isoleucine Ile I Non-polar Internal

Leucine Leu L Non-polar Internal

Methionine Met M Hydrophobic Non-polar Internal

Phenylalanine Phe F Non-polar Internal

Proline Pro P Non-polar Ambivalent

Tryptophan Trp W Non-polar Ambivalent

Valine Val V Non-polar Internal

Arginine Arg R Polar; Basic External

Asparagine Asn N Polar; Uncharged External

Aspartate Asp D Polar; Acidic External

Cysteine Cys C Polar; Uncharged Ambivalent

Glutamate Glu E Polar; Acidic External

Glutamine Gln Q Hydrophilic Polar; Uncharged External

Glycine Gly G Polar; Uncharged Ambivalent

Histidine His H Polar; Basic External

Lysine Lys K Polar; Basic External

Serine Ser S Polar; Uncharged Ambivalent

Threonine Thr T Polar; Uncharged Ambivalent

Tyrosine Tyr Y Polar; Uncharged Ambivalent

Table 1: Amino Acids

The amino acids are grouped by their hydrophobic properties together with their func-
tional and structural alphabets.

2.1.4 Domains

A protein domain is a substring of a protein sequence that can fold into a three-dimensional

structure independent from the rest of the protein sequence. As such, it can have a function of

its own. A protein sequence can have more than one domain, and if each performs different

function, the result is a multi-functional protein sequence. For this reason, considering

protein domains on their own is important in protein functional annotation. Protein domain

databases exist that organize protein sequences into protein families based on their domains.

Examples of commonly used domain databases are Pfam [PCE+12] and Conserved Domain

Database (CDD) [MBZC+13].
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2.1.5 Classification Schemes for Enzymes

2.1.5.1 EC Numbers

Enzymes are proteins that act as catalysts for biochemical reactions that occur in the cells

of living organisms. A reaction is a chemical transformation in which chemical bonds are

formed, broken or both. As stated in [Bai00], there are approximately 4000 known biochem-

ical reactions being catalyzed by enzymes, which are classified into six classes (see Table 2)

by the types of chemical reactions they catalyze. Many of these reactions are reversible.

Enzymes Group Name Catalyzed Reaction
EC 1 Oxidoreductases Oxidation-reduction reactions
EC 2 Transferases Transfer of functional groups
EC 3 Hydrolases Hydrolysis reactions
EC 4 Lyases Addition to double bonds or single bonds
EC 5 Isomerases Isomerization reactions
EC 6 Ligases Formation of bonds with ATP cleavage

Table 2: Enzymes classification

The Nomenclature Committee of the International Union of Biochemistry and Molecular

Biology (NC-IUBMB) is an organization responsible for the standardized numerical scheme,

the Enzyme Commission number (EC number), to specify enzyme-catalyzed reactions [IUB].

This scheme has six major EC number classification groups (EC 1 to EC 6).

2.1.5.2 Gene Ontology

The Gene Ontology (GO) [The00] defines terms to describe the roles of the gene products

of an organism. The terms are organized hierarchically as a directed acyclic graph, and

categorized in three aspects: Biological Process (BP), Molecular Function (MF) and Cellular

Component (CC). Molecular Function includes function at a molecular level and describes the

essential activities of a gene or gene product. Biological Process includes the processes that

occur in living system that are mediated by gene products. Cellular Component describes

the site of the activities.

The modeling of enzymes in the Gene Ontology MF mirrors closely the organization of EC.

There is a standard mapping EC2GO translating between EC numbers and GO terms.
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2.2 Metabolic Pathways

Metabolism is the essential part of cell maintenance to allow organisms to grow, reproduce,

maintain structures and respond to environments. It takes place within each cell of a living

organism where food is converted into energy through a series of chemical reactions that

are catalyzed by enzymes. The energy then can be used for other important processes such

as synthesizing organic materials, facilitating messages between cells, and the replication of

DNA.

The products of metabolism are small molecules known as metabolites. They can be the final

end products or intermediates (substrates) to other enzymatic reactions. These chemical

reactions are organized into metabolic pathways where several enzymes and cofactors are

responsible for transforming one molecule into another molecule. The pathways form a

metabolic network. The speed and efficiency of the transformation of molecules relies on the

enzymes. Enzymes are the proteins that act as the catalysts for biochemical reactions that

occur in the cell. The set of enzymes determine which metabolic pathways occur in a cell.

A reaction can be defined as a chemical transformation in which chemical bonds are formed,

broken or both [KR93]. All this information on cell metabolism can be organized through

the reconstruction of a metabolic model and development of a specific organism database.

The relationships of biochemical compounds that form a metabolic networkM can be defined

as

M = ⟨C,ℜ, E, P ⟩

where C is the set of compounds c, ℜ is the set of reactions r, E is the set of enzymes e, and

P is the set of pathways p. A pathway p is a set of connected reactions r, and a reaction r

is a tuple ⟨I, O, e⟩, where I ⊆ C, O ⊆ C, and e ⊆ E. I is the set of input compounds, O is

the set of output compounds and e represents the enzyme catalyst(s).

Conventionally, to perform in silico computations and analysis, the transformation and re-

lationship of biochemical compounds in a metabolic network are represented using graph

theory [PSM+11, SYC09, DGHW03, HCL+07, CJ10, AS06, HWGW02].

Most cellular processes such as metabolism, gene expression, transferring molecules across

cell membranes and cell communication require energy. In other words, energy allows cells

to work, grow, move, maintain their structure, and perform specific functions. Eukaryotes,

other than plants, obtain energy from foods, which contain nutrients such as sugar, fatty
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acids and amino acids. The cells turn these nutrients into chemical bond energy through a

series of chemical reactions known as cellular respiration.

Cellular respiration is the catabolic metabolism responsible for breaking down large molecules

to produce energy in the form of adenosine triphosphate (ATP) [SHHB09]. ATP is the

molecule that supplies energy to the whole cellular system, which includes powering metabolism,

constructing new cell structures, synthesizing macromolecules (DNA, RNA, and proteins),

and for enzymes to catalyze chemical reactions. Aerobic respiration and anaerobic respi-

ration are the two types of cellular respiration. The former requires oxygen as one of its

reactants to generate ATP and the later does not require oxygen.

Carbohydrates or sugars are the main nutrients that provide energy to the cell system via

both aerobic and anaerobic respiration. A good source of energy are the simple sugars known

as monosaccharides, such as glucose, fructose and lactose. These monosaccharides are the

building blocks of dissacharides (e.g. sucrose). The other types of sugars are oligossaccha-

rides (e.g. oligofructose) and polysaccharides (e.g. starch). For eukaryotes, the cellular

respiration occurs in both the cytosol and the mitochondria. Respiration involves central

carbon metabolism and the transport of molecules across cell membranes [SHHB09].

2.2.1 Central Carbon Metabolism

One example of the interaction of genes, proteins and metabolites in a cellular system is its

central carbon metabolism (CCM). This pathway is crucial for examining biochemical yields

in pathway engineering as the primary metabolites involved can determine the nutritional and

growth status [RB09]. The essential pathways of central carbon metabolism are: Glycolysis

(Figure 6); the Pentose Phosphate Pathway (PPP) (Figure 7); and the Tricarboxylic Acid

(TCA) cycle (Figure 8).

2.2.1.1 Glycolysis

Glucose is the simplest sugar that fuels cellular respiration. It is the precursor metabolite

for glycolysis in cell central carbon metabolism. Glycolysis, which occurs in the cytosol

is the enzymatic breakdown of one glucose molecule to form two pyruvic acid molecules

[SHHB09]. In other words, it degrades 6-carbon compounds (glucose) to form 3-carbon

compounds (pyruvate) as end products. Then, pyruvic acid becomes the precursor molecule
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for the TCA cycle. Two essential functions of glycolysis are [SRIa]: 1) to oxidize hexoses to

generate ATP, reductants and pyruvate, and 2) being a pathway that can perform catabolic

metabolism. Figure 6 shows the model of glycolytic system inferred in YeastCyc. There are

23 compounds altogether, with 14 enzymes, 21 genes, and 9 chemical reactions involved in

YeastCyc glycolysis metabolism. Known variations of the glycolysis pathway are shown in

Table 3.

2.2.1.2 Pentose Phosphate Pathway

The pentose phosphate pathway (PPP) is a linear pathway that has two distinct phases:

the oxidative (irreversible reactions) and non-oxidative synthesis (reversible reactions). This

pathway occurs in the cytosol and starts from glucose 6-phosphate (G6P) in glycolysis [Pal11].

The PPP is responsible for producing precursor substrates, known as pentose phosphates, for

pentose sugars (ribose and deoxyribose) required for nucleic acids and Nicotinamide Adenine

Dinucleotide Phosphate (NADPH), a reducing agent in redox reactions. The PPP also pro-

vides a precursor for aromatic amino acids [RP]. MetaCyc shows that the evidence code for

both phases is EV-EXP, which means they were inferred from wet-lab experiments. Figure 7

shows chemical compounds involved in PPP as inferred in YeastCyc.

2.2.1.3 Tricarboxylic Acid Cycle

The tricarboxylic acid cycle (TCA cycle), once called the Krebs cycle, is a cyclic pathway

that occurs in mitochondria of a cell. The mitochondrion is known as the cell’s power house.

The TCA cycle is the heart of aerobic metabolism and it produces most of the ATP for

cellular activities. In MetaCyc, there are 6 models for TCA cycles as shown in Table 4.

Figure 8 is the model inferred by YeastCyc.

2.2.1.4 Sugar Transport in Central Carbon Metabolism

Transmembrane transport proteins are proteins in cell membranes responsible for moving

molecules and ions across the membrane [SHHB09]. They play important roles in cellular

metabolism and signaling. The transport of small molecules occurs from mitochondria into

the cytosol or vice versa, and across the cell membrane. In central carbon metabolism

of a eukaryotic cell, both glycolysis and PPP occur in the cytosol while the TCA cycle

23



Instances No. of
Reac-
tions

Evidence

Glycolysis I (from glucose-6P) 11 EV-EXP-TAS: EcoSal “Escherichia coli and Salmonella: Cellular
and Molecular Biology.” Online edition.

Glycolysis II (from glucose-6P) 10 EV:EXP:TAS: EcoSal “Escherichia coli and Salmonella: Cellular
and Molecular Biology.” Online edition.

Glycolysis III (from glucose)
10 EV-EXP-TAS: Dang CV (2012). “Links between metabolism

and cancer.” Genes Dev 26(9);877-90. PMID: 22549953

EV-EXP-IDA: (1) Hansen T, Schonheit P (2003). “ATP-
dependent glucokinase from the hyperthermophilic bacterium
Thermotoga maritima represents an extremely thermophilic ROK
glucokinase with high substrate specificity.” FEMS Microbiol
Lett 226(2);405-11. PMID: 14553940; (2) Schroder C, Selig M,
Schonheit P “Glucose fermentation to acetate, CO2 and H2 in
the anaerobic hyperthermophilic eubacterium Thermotoga mar-
itima: involvement of the Embden-Meyerhof pathway.” Archives
of Microbiology 161:460-470 (1994); (3) Selig M, Xavier KB, San-
tos H, Schonheit P (1997). “Comparative analysis of Embden-
Meyerhof and Entner-Doudoroff glycolytic pathways in hyperther-
mophilic archaea and the bacterium Thermotoga.” Arch Microbiol
1997;167(4);217-32. PMID: 9075622.

Glycolysis IV(Plant cytosol)
10 EV-EXP-TAS: (1) William C. Plaxton “The organization and

regulation of plant glycolysis.” Annu. Rev. Plant Physiol. Plant
Mol. Biol. 1996. 47:185-214; (2) Fernie AR, Carrari F, Sweet-
love LJ (2004). “Respiratory metabolism: glycolysis, the TCA cy-
cle and mitochondrial electron transport.” Curr Opin Plant Biol
7(3);254-61. PMID: 15134745; (3) Dey, PM, Harborne, JB “Plant
Biochemistry.” Academic Press 1997

EV-EXP: Giege P, Heazlewood JL, Roessner-Tunali U, Millar
AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003). “Enzymes of
glycolysis are functionally associated with the mitochondrion in
Arabidopsis cells.” Plant Cell 15(9);2140-51. PMID: 12953116.

Glycolysis V (Pyrococcus) 9 EV-EXP-TAS: (1) Sakuraba H, Ohshima T (2002). “Novel en-
ergy metabolism in anaerobic hyperthermophilic archaea: a mod-
ified Embden-Meyerhof pathway.” J Biosci Bioeng 93(5);441-8.
PMID: 16233230; (2) Verhees CH, Kengen SW, Tuininga JE, Schut
GJ, Adams MW, De Vos WM, Van Der Oost J (2003). “The
unique features of glycolytic pathways in Archaea.” Biochem J
375(Pt 2);231-46. PMID: 12921536,

EV-EXP-IDA: Kengen SW, de Bok FA, van Loo ND, Dijkema
C, Stams AJ, de Vos WM (1994). “Evidence for the operation of
a novel Embden-Meyerhof pathway that involves ADP-dependent
kinases during sugar fermentation by Pyrococcus furiosus.” J Biol
Chem 269(26);17537-41. PMID: 8021261.

Glycolysis V (Metazoan) 10 EV-EXP-TAS: Dang CV (2012). “Links between metabolism
and cancer.” Genes Dev 26(9);877-90. PMID: 22549953.

Table 3: Variations of Glycolysis Pathway in MetaCyc

Known variations from the literature curated in MetaCyc as of March, 2014 [SRIb].
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Instances No. of Reactions Evidence

TCA cycle I
(Prokaryotic)

11 EV:EXP: Baldwin JE, Krebs H (1981). “The evolution of
metabolic cycles.” Nature 291(5814);381-2. PMID: 7242661

TCA Cycle II
(Plant & Fungi)

9 EV-EXP-IDA:(1) Krebs HA, Johnson WA (1937). “Acetopyruvic
acid (αγ-diketovaleric acid) as an intermediate metabolite in animal
tissues.” Biochem J 31(5);772-9. PMID: 16746397; (2) Krebs HA,
Salvin E, Johnson WA (1938). “The formation of citric and α-
ketoglutaric acids in the mammalian body.” Biochem J 32(1);113-7.
PMID: 16746585; (3) Krebs HA, Eggleston LV (1945). “Metabolism
of acetoacetate in animal tissues. 1.” Biochem J 39(5);408-19.
PMID: 16747930.

TCA Cycle III
(Helicobacter)

9 EV-EXP-IDA: Hughes NJ, Clayton CL, Chalk PA, Kelly DJ
(1998). “Helicobacter pylori porCDAB and oorDABC genes encode
distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidore-
ductases which mediate electron transport to NADP.” J Bacteriol
1998;180(5);1119-28. PMID: 9495749.

TCA Cycle IV
(2-oxoglutarate
decarboxylase)

11 EV-EXP-IDA: Tian J, Bryk R, Itoh M, Suematsu M, Nathan C
(2005). “Variant tricarboxylic acid cycle in Mycobacterium tuber-
culosis: identification of alpha-ketoglutarate decarboxylase.” Proc
Natl Acad Sci U S A 102(30);10670-5. PMID: 16027371.

TCA Cycle V (2-
oxoglutarate:
ferredoxin
oxidoreductase)

12 EV-EXP-IDA: Tian J, Bryk R, Itoh M, Suematsu M, Nathan C
(2005). “Variant tricarboxylic acid cycle in Mycobacterium tuber-
culosis: identification of alpha-ketoglutarate decarboxylase.” Proc
Natl Acad Sci U S A 102(30);10670-5. PMID: 16027371.

TCA Cycle VI
(Obligate au-
totrophs)

11 EV-EXP: Smith AJ, London J, Stanier RY (1967). “Biochemical
basis of obligate autotrophy in blue-green algae and thiobacilli.” J
Bacteriol 94(4);972-83. PMID: 4963789.

TCA Cycle
VII (Acetate-
producers)

9 EV-EXP-IDA: Mullins EA, Francois JA, Kappock TJ (2008).
“A specialized citric acid cycle requiring succinyl-coenzyme A
(CoA):acetate CoA-transferase (AarC) confers acetic acid re-
sistance on the acidophile Acetobacter aceti.” J Bacteriol
190(14);4933-40. PMID: 18502856.

TCA Cycle VII
(Metazoan)

10 EV-EXP-IDA: (1) Krebs HA, Salvin E, Johnson WA (1938).
“The formation of citric and α-ketoglutaric acids in the mammalian
body.” Biochem J 32(1);113-7. PMID: 16746585; (2) Krebs HA,
Eggleston LV (1945). “Metabolism of acetoacetate in animal tis-
sues. 1.” Biochem J 39(5);408-19. PMID: 16747930.

Table 4: Variations of TCA Cycle Pathway in MetaCyc

Known variations from the literature curated in MetaCyc as of March, 2014 [SRIb].

occurs in mitochondria. Therefore, compounds such as pyruvate, ATP and ADP need to be

transported across the mitochondrial membrane for energy metabolism.

In yeast, the uptake of sugar compounds requires transporters as these compounds do not

freely permeate biological membranes [Lag93]. The most widely studied carbon sources

in yeast are glucose, fructose, galactose and mannose (hexoses), and maltose and sucrose

(dissacharides) [RLL06].
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Figure 6: Computationally Inferred Glycolysis I Pathway of S. cerevisiae in YeastCyc

Compounds are represented in red, enzymes in orange, genes in purple, and pathways in
green. Numbers separated by dots and in blue color are EC numbers designating the chemical
reactions. From YeastCyc [SUb].
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Figure 7: Computationally Inferred PPP Pathway of S. cerevisiae in YeastCyc

Compounds are represented in red, enzymes in orange, genes in purple, and pathways in
green. Numbers separated by dots and in blue color are EC numbers designating the chemical
reactions. From YeastCyc [SUb].
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Figure 8: Computationally Inferred TCA Cycle II of S. cerevisiae in YeastCyc

Compounds are represented in red, enzymes in orange, genes in purple, and pathways in
green. Numbers separated by dots and in blue color are EC numbers designating the chemical
reactions. From YeastCyc [SUb].

2.3 Transport

A eukaryotic cell is surrounded by a plasma membrane and contains cell organelles, that are

themselves defined by membranes and perform their own specific functions [Kuy08]. The

membrane is a phospholipid bilayer as shown in Figure 9. There are two major classes of

membrane proteins defined by their position relative to the membrane: the peripheral mem-

brane proteins and the integral membrane proteins (IMP). The IMP are further classified into

two groups: the integral polytopic proteins, which span the entire membrane, and the inte-

gral monotopic proteins, which do not. The polytopic proteins are also called transmembrane

proteins.
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Figure 9: Typical Membrane Proteins in a Biological Membrane

From [LBZ+00].

Structurally, the eukaryote transmembrane proteins have α-helices that span the mem-

brane [WW99]. In gram negative bacteria, there are transmembrane strand proteins that

span the membrane with β-strands [Sch03]. These are called transmembrane segments

(TMS). Figure 10 shows α-helices spanning a membrane.

Functionally, membrane proteins are classified as

• transporters, which transport ions or molecules across the membrane;

• ion channels, which provide a hydrophilic pathway across the membrane for ions; and

• receptors, which are proteins in the membrane that attach to molecules such as hor-

mones and neurotransmitters and trigger cell changes.

Transporters move molecules and ions across the membrane [SHHB09]. Transporters con-

stitute up to 30% of all cellular proteins [SSM10], and they play important roles in cellular

metabolism [RP05]. Transporters have a high degree of substrate specificity and bind to one

or a few substrate molecules [LBZ+00]. The different forms of molecule transport are [Kuy08]:

(I) Diffusion of small hydrophilic or hydrophobic particles driven by a concentration gradi-

ent;

(II) Diffusion of hydrophilic or charged particles driven by a voltage gradient;
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(III) Osmosis, diffusion of solute driven by a concentration gradient of a non-permeable

compound;

(IV) Facilitated diffusion; and

(V) Active transport against a concentration gradient.

Figure 10: Transmembrane Segments: Helices cross a Membrane

[http://bio1151b.nicerweb.net/Locked/media/ch07/]

The transport of sugar across membranes is an example of active transport, which requires

energy. Figure 11 illustrates the mechanism of active transport of glucose. It shows the

transmembrane transport protein forming a V in order to accept the glucose molecule from

the outside of the cell, and then inverting the V in order to release the glucose molecule into

the cytosol. GLUT1 is the glucose transporter in mammals. Figure 12 shows a representation

of part of the 3D structure of GAL2, the yeast galactose transporter, with a glucose molecule

in situ. The figure highlights the few important sites where amino acids in the middle of

certain TMS — TM5, TM8, and TM10 — of the transporter interact with the glucose

molecule.
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Figure 11: Mechanism of Transport for an Active Transport

Active transport of glucose by the GLUT1 transporter in mammals. It shows
the transmembrane transport protein forming a V in order to accept the glucose
molecule from the outside of the cell, and then inverting the V in order to release
the glucose molecule into the cytosol. c⃝Pearson Education, Inc.

2.3.1 Classification Schemes

Transporters are classified according to different criteria, such as mechanism, substrate, and

family. While functional annotation in general targets the Gene Ontology as the description

or annotation, predictors for transport proteins target either the Transporter Classifica-

tion scheme, or the substrate category. It would be useful if these three approaches were

cross-referenced with each other, and with the protein domains [CVP+15], so that the cor-

respondence between classifications were clear.. Here we briefly overview the three schemes.

2.3.1.1 Transporter Classification System

The International Union of Biochemistry and Molecular Biology (IUBMB) introduced the

Transporter Classification System (TC) [BS04] in June 2001 for classifying membrane trans-

port proteins. The TC system is analogous to EC numbers for classifying enzymes. A TC

identifier such as TC 2.A.1.1.35 has five components representing

1. the transporter class (TC-class), eg 2;
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Figure 12: Important Residues for Glucose Transport

“Homology model of the Gal2 structure. The model is based on the outward-facing partly
occluded structure of E. coli XylE with bound glucose (PDB ID code 4GBZ). (A) Side
view of Gal2; for reasons of clarity, only TMs 5, 8, and 10 are shown. The two amino
acid residues T219 and N376 (green) are located at the center of their respective helix,
with their side chains protruding toward the C6 of glucose (cyan). (B) Top view of Gal2
from the extracellular side, with a cross-sectional plane for better view; glucose (cyan) is
found in between subdomains N (orange) and C (dark gray). The 3D images were created
with PyMOL.” [FBS+14]

2. the transporter subclass (TC-Subclass), eg 2.A;

3. the transporter family (TC-Family), eg 2.A.1, which in some cases is a superfamily;

4. the transporter subfamily, eg 2.A.1.1; and

5. the specific transporter (TC-ID), eg 2.A.1.1.35.

A superfamily is a large divergent family, in which the distant clades are considered families

within the larger superfamily. The categorization and classification of transporters is de-

scribed in Table 5. The grouping of transport proteins is determined by sequence homology

and phylogenetic analysis into the various classes and families and stored in the TC Database

(TCDB) [SYN+08]. As of May 28, 2014, the TCDB contained more than 10,000 published

references with 11,574 unique protein sequences, classified into more than 800 transporter

families and 53 transporter superfamilies [SJRTV14].
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Name of TC Class TC Subclass Description of TC Subclass

Channels/pores

1.A α-type channels
1.B β-Barrel porins
1.C Pore-forming toxins (proteins and peptides)
1.D Non-ribosomally synthesized channels
1.E Holins
1.F Vesicle fusion pores
1.G Viral Fusion Pores
1.H Paracellular channels
1.I Membrane-bounded channels

Electrochemical potential-driven
transporters

2.A Porters (uniporters, symporters, antiporters)
2.B Nonribosomally synthesized porters
2.C Ion-gradient-driven energizers

Primary active transporters
3.A P-P-bond-hydrolysis-driven transporters
3.B Decarboxylation-driven transporters
3.C Methyltransfer-driven transporters
3.D Oxidoreduction-driven transporters
3.E Light absorption-driven transporters

Group translocator 4.A Phosphotransfer-driven group translocator
4.B Nicotinamide ribonucleoside uptake transporters
4.C Acyl CoA ligase-coupled transporters

Transport electron carriers
5.A Transmembrane 2-electron transfer carriers
5.B Transmembrane 1-electron transfer carriers

Accessory factors involved in
transport

8.A Auxiliary transport proteins
8.B Ribosomally synthesized protein/peptide toxins

that target channels and carriers
8.C Non-ribosomally synthesized toxins that target

channels and carriers

Incompletely characterized
transport systems

9.A Recognized transporters of known biochemical
mechanism

9.B Putative transport proteins
9.C Functionally characterized transporters lacking

identified sequences

Table 5: Transporter Classification System in TCDB

As of September 2014.
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2.3.1.2 Substrates

The molecule transported by a transporter is essential information in the annotation or

description of the transport protein. Chemical molecules have a systematic name as deter-

mined by IUPAC (International Union of Pure and Applied Chemistry). The company

Daylight Chemical Information Systems has a linear textual notation SMILES (Simpli-

fied Molecular Input Line Entry System) for representing chemicals and reactions (http:

//www.daylight.com/dayhtml/doc/theory/theory.smiles.html). SMILES aids compu-

tation as it support a canonical form which determines equality or identity of different

chemicals, though it is not truly canonical. SMILES is widely used in cheminformatics.

In bioinformatics, specific substrates are documented using the Chemical Entities of Biologi-

cal Interest (ChEBI) ontology [HdMD+13], but the organization of ChEBI has not influenced

the substrate grouping in the prediction of transport. There prediction occurs at the level of

substrate category or class — amino acid, anion, cation, electron, protein/mRNA (oligopep-

tide), sugar, and other — but the notation is not standardized.

Milton Saier, who leads the Transporter Classification effort, uses the following groupings in

his work [PVL+14]. A high-level grouping is shown [PVL+14, Figure 2(A)]:

1. Inorganic compounds;

2. Carbon sources;

3. Amino acids and their derivatives;

4. Drugs, dyes, sterols, and toxics;

5. Bases and derivatives; and

6. Macromolecules.

This is broken down into Substrate Groups [PVL+14, Figure 2(B)]:

▶ Nonselective ions;

▶ Cations;

▶ Anions;

▶ Electrons;
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▶ H2O;

▶ Sugar and polyols;

▶ Monocarboxylates;

▶ Di- and tri-carboxylates;

▶ Organoions;

▶ Aromatic compounds;

▶ Amino acids and conjugates;

▶ Amines, amides, polyamines, and organocations;

▶ Peptides;

▶ Siderophores, siderophores-Fe complexes;

▶ Substrate cofactors;

▶ Multiple drugs;

▶ Specific drugs;

▶ Other hydrophobic substrates;

▶ Nucleobases;

▶ Nucleosides;

▶ Polysaccharides;

▶ Proteins;

▶ Lipids;

▶ Nucleic acids; and

▶ Unknown.

Milton Saier [PVL+14, Table 1] additionally includes Substrate Groups for Cofactor and

Dicarbonate, and includes a column for the Specific Substrate; though the entry is often

identical to the Substrate Group.

2.3.1.3 Gene Ontology

The Gene Ontology (GO) [The00] defines terms to describe gene products of an organism.

The terms are organized hierarchically as direct acyclic graph, and categorized in three as-

pects: Biological Process (BP), Molecular Function (MF) and Cellular Component (CC).
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Figure 13: GO Molecular Function Hierarchy for Transport

The transporter activity is the general term representing the molecular
function of transporters. Note that the children for primary and secondary
active transporters activities, and gated channel activities were excluded.

The guidelines for transporters (http://geneontology.org/page/transport-and-transporters)

relates terms across the three aspects and considers localization, substrate, transport mecha-

nism, affinity to the substrate, constitutive versus inducible activity, and the D- and L-forms

of substrates (see Figure 13).

The hierarchical nature of GO allows a term to capture the level of precision of the substrate,

eg, in Biological Process, see Figure 14.

GO:0006810 transport

GO:0008643 carbohydrate transport

GO:0015749 monosaccharide transport

GO:0008645 hexose transport

GO:0015762 rhamnose transport

Figure 14: GO Transport Subtree for Biological Process

A selection of terms in the GO BP subtree rooted at the
term for transport.
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2.4 Genome-Scale Network Reconstruction

A genome-scale network reconstruction (GENRE) for an organism models the working of

the genes, proteins, and metabolites within the organism. This ideally covers metabolism,

transport, regulation, and signaling. Ideally a GENRE should be quantitative, and not

just qualitative. Aa typical GENRE models metabolism quite well, and can assign Gene-

Protein-Reaction (GPR) associations of genes to reactions, based on Enzyme Commission

(EC) classification. The GENRE may include transport reactions in the model, but not be

able to assign GPR associations of genes to transport reactions.

Figure 15: Thiele and Palsson 2010 Protocol for GENRE

An overview of a detailed protocol [TP10] for the constructtion of a GENRE.

A major reference is the detailed protocol of Thiele and Palsson [TP10] summarized in

Figure 15. The techniques for reconstructing the draft metabolic network can be catego-

rized [KTY+13] as:

• reference methods, that build a model by analogy to existing pathways; and
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• de novo methods, that discover novel pathways. These can be categorized as

– compound-filling methods, where the input and output compounds of the network

are known, and the method uses both compounds and reactions to reconstruct

the network; and

– reaction-filling methods, where all the compounds involved in the network are

known, and the method uses reactions to reconstruct the network.

The existing reviews [FST05, PRU10, FS11, OP10, RGM+12, SCM14, HR14] can be sum-

marized in Table 16 [HR14] for the major software tools. Note that none of them fully

automate the process, and that steps 20 and 22 for transport are poorly handled by existing

tools.

2.5 Machine Learning in Bioinformatics

This section highlights key aspects of bioinformatics and machine learning relevant to this

thesis: the classification of machine learning problems into binary, multi-class, and multi-

label; BLAST for sequence similarity; amino acid composition; and Hidden Markov Models.

2.5.1 Binary, Multi-Class and Multi-Label Classifiers

In supervised learning, the examples are described by a set of features and known to be

assigned to specific classes, C1, C2, ..., Ck. The aim is to build a classifier that can look at a

new example and determine its classification. The simplest case is a binary classifier for a

class C, which is simply required to determine whether the new example is a member of C,

or is not a member of C. A multi-class classifier is required to determine to which class Ci

the new example belongs. There is an implicit assumption that the classes are disjoint. For

multi-label classifiers, this assumption is dropped, and the classifier is required to determine

whether or not the new example belongs to each class Ci; that is, what subset of classes

does the new example belong to. This is important in Chapter 4, where different tools adopt

differing requirements for their classifiers.
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Figure 16: Review of Software for GENRE

Comparison of the systems SuBliMinal [SSM+11], Model SEED [ADD+12],
RAVEN [ALS+13], and Pathway Tools [KPK+09] from the paper [HR14] according to
the steps in the protocol of Thiele and Palsson [TP10]. The colour green indicates auto-
matic execution of the step; yellow indicates that the software provides assistance; and
red indicates that the software provides no support. The asterisks “***” indicate the
need to manually inspect the results of the software.
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2.5.2 Basic Local Alignment Search Tool

Sequence alignment algorithms are typically used to align a query sequence against all se-

quences in a sequence database to find similar sequences or matches. Sequence databases

can contain millions of sequences making optimal alignments computationally expensive. As

such, fast alignment algorithms were developed. A popular one is Basic Local Alignment

Search Tool (BLAST) [AGM+90, AMS+97]. BLAST uses a heuristic algorithm to compute

local alignments. The idea is that similar proteins must have short matches.

blast generates all possible short words or substrings of the query sequence. The default

length of a word for protein sequences is 3 and for nucleic acid sequences is 11. The algo-

rithm scans a sequence database for sequences that match the words with some threshold.

Such matches are called seeds. The original BLAST then extends the seeds to the right

and left using ungapped alignments [AGM+90]. In following releases, BLAST uses gapped

alignments [AMS+97]. The algorithm terminates when the score of the extended alignment

falls below some threshold. BLAST reports the extended alignments or hits that have a

score at or above the threshold with their statistical significance. Such hits are called High

Scoring Pairs (HSPs).

BLAST uses a substitution matrix to compute the scores of each HSP. Statistical analysis

of BLAST alignment scores have been performed in the literature [ABGW94, AG96, PJ01].

The statistical significance of a BLAST score S is given by the expected number, e-value, of

alignments with a score equivalent to or better than S that one would expect with a random

sequence. The lower the e-value, the more significant the score and the alignment are.

For a pair of query and subject sequences, BLAST reports all HSPs and their associated

measurements. The measurements of interest for the purpose of this document are query

coverage, subject coverage, percent identity, e-value, and score. Query coverage is the ratio

of the length of the HSP in the query sequence to the full length of the query sequence.

Subject coverage is the ratio of the length of the hit in the subject sequence to the full

length of the subject sequence. For protein sequences percent identity is the percentage of

identical amino acids at the same positions in the alignment with respect to the alignment

length. Score is the bit score, which is the raw score calculated from the substitution matrix

normalized to parameters including the database size [AMS+97].

40



2.5.3 Amino Acid Composition

The composition of a protein in terms of its amino acids and their physicochemical prop-

erties can be crucial in determining the protein structure and function. For example, the

helical TMS of a transporter consist of hydrophobic amino acids to be compatible with the

hydrophobic bilipid membrane. Table 6 shows properties of the amino acids.

Amino Acids A C D E F G H I K L M N P Q R S T V W Y

Hydrophobic - + + + - + + - + - - + - + + + + - - +
Structural a a x x i a x i x i i x a x x a a i a a
Chemical al s ac ac ar al b al b al s am i am b h h al ar ar
Functional n p ac ac n p b n b n n p n p b p p n n p
Charge n n ac ac n n b n b n n n n n b n n n n n

Volume t s s m x t m l l l l s s m l t s m x x

Table 6: Amino Acid Alphabets

From [BB01, p.117], Hydrophobic: hydrophobic (-), hydrophilic (+); Structural: ambivalent (a),
external (x), internal (i); Chemical: acidic (ac), aliphatic (al), amide (am), aromatic (ar), basic
(b), hydroxyl (h), imino (i), sulphur (s); Functional: acidic (ac), basic (b), hydrophobic nonpolar
(n), polar uncharged (p); Charge: acidic (ac), basic (b), neutral (n). From [PLS+04], Volume:
tiny (t), small (s), medium (m), large (l), very large (x).

There are variations [SCH10] of amino acid composition of a protein that are used as features

for machine learning.

AAC: The frequency of each amino acid in the protein is the standard amino acid compo-

sition (AAC) of a protein, which is a vector of length 20.

PAAC: The frequency of dipeptides of a protein is recorded by the pair amino acid com-

position PAAC [PK03] which is a vector of length 400.

PseAAC: The pseudo amino acid composition PseAAC [Cho00] of a protein is an extended

version of AAC that has λ additional entries which incorporate correlation within a

neighbourhood of amino acid physicochemical properties, such as mass, hydrophobicity,

or isoelectric point (pI). PseAAC is parameterised by the choice of properties, the choice

of λ, and a set of weights.

PsePAAC: A combination of PAAC with the λ last entries of PseAAC is termed PsePAAC.

PsePAAC consists of 400 + λ entries, where the first 400 correspond to PAAC, the

frequencies of all amino acid pairs, and the other λ to the neighbourhood correlations

of PseAAC.
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MSA-AAC: There is a profile-based version called MSA-AAC [PHH07]. The MSA-AAC

uses a multiple sequence alignment (MSA) of the protein. For example, the MSA may

be built by ClustalW from a maximum of 1000 homologous sequences found using

BLAST against the nr non-redundant database. Often sequences with an identity

below 25% are removed. The MSA-AAC vector of length 20 records the frequency of

each amino acid in all sequences of the MSA.

2.5.4 Hidden Markov Models for Protein Sequences

Hidden Markov models (HMMs) were first described in the late 1960’s and subsequently

employed in speech processing. In the area of speech processing, an HMM models sounds

forming a word or phoneme and generates an output distribution with a high probability for

the sounds of the word or phoneme it models. A satisfactory model is that which assigns

high probability to the sounds of the word it models and low probability to the sounds

of any other word. It was not until the late 1980’s that HMMs were employed in several

applications in computational biology including modeling homologous nucleotide or protein

sequences [KBM+94].

Given the multiple sequence alignment of protein sequences of a protein family, the functional

sites of the proteins are projected on the multiple sequence alignment as sites with conserved

amino acids. Other sites with no particular features are less conserved. Therefore, each site

has a distinct probability distribution over the 20 amino acids that measures the likelihood

of each amino acid occurring at that site of the protein family, as well as the probability of no

amino acid occurring. A multiple sequence alignment can then be modeled by a probabilistic

model that captures the consensus nature of a multiple sequence alignment [KBM+94].

One widely used HMM tool is the HMMER package [Edd98]. It has a number of HMM

related programs including hmmbuild to train HMMs and hmmscan to scan protein sequences

against trained HMMs. We use hmmbuild to train HMMs and subsequently use hmmscan to

scan protein sequences against trained HMMs.

2.6 Genomics Resources

Biochemical reference databases contain information related to genome, transcriptome, pro-

teome, and metabolome of organisms. In metabolic pathway reconstruction, this information
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acts as a source of genome, gene annotations, and functional annotations, as well as provid-

ing reference templates of pathways and reactions. Some of the most widely used databases

are shown in Table 7.

Name Web Address Type

ENZYME http://www.expasy.ch/enzyme Enzyme
BRENDA http://www.brenda.uni-koeln.de Enzyme
GO http://www.geneontology.org Protein classification & annotation
UniProtKB http://www.uniprot.org Protein sequence & annotation
GenBank http://www.ncbi.nlm.nih.gov Genome sequence
InterPro https://www.ebi.ac.uk/interpro Protein families, domain & functional sites
PFAM http://pfam.sanger.ac.uk Protein Family, domain, & functional sites
PROSITE http://prosite.expasy.org/prosite.html Protein Family, domain, & functional sites
SMART http://smart.embl-heidelberg.de Protein domain & annotation
Broad Institute∗ http://www.broad.mit.edu/annotation/fgi Fungal genomes information
MetaCyc http://MetaCyc.org Genome & Pathway
KEGG (Pathway) http://www.genome.jp/kegg Genome & Pathway
Joint genome Institute (JGI)∗ http://genome.jgi.doe.gov/ Genomes
PathGuide http://www.pathguide.org Pathway
PUMA2 http://compbio.mcs.anl.gov/puma2 Genome & pathway
Reactome http://www.reactome.org Pathway (human)
GOLD∗ http://genomesonline.org/ Genome & Metagenomes sequencing projects
TCDB http://www.tcdb.org Transporter classification
MIPS http://www.helmholtz-muenchen.de/en/ibis Genome & protein sequences
AspGD∗ http://www.aspgd.org/ Aspergillus biological information
SGD∗ http://www.http://www.yeastgenome.org S. cerevisiae comprehensive information
PubMED http://www.ncbi.nlm.nih.gov/pubmed Scientific literature (MEDLINE references)

Table 7: Reference Databases

Genome, enzyme, protein sequence, protein classification, pathway and transporter clas-
sification databases are the reference databases that contain biological information crucial
for metabolic pathway reconstruction. Those databases marked with ”*” provide addi-
tional and more specific biochemical information for implicated fungal genomes.

Historically, any work on metabolic pathways would refer back to KEGG [OYH+08] at

Kyoto University. KEGG digitized the pathway charts of Boehringer Ingelheim, and created

databases for the pathways and the related enzymes, ligands, and genes. See Table 8. The

KEGG information is not curated, so it is not as useful as more recent resources.

The KEGG PATHWAY database contains a collection of manually drawn pathway maps to

represent molecular interactions, reactions, and pathways. The KEGG pathway maps have

been used as the template for developing metabolic models by several software tools, for

instance, the RAVEN toolbox of BioMet.

MetaCyc [CAD+10] is a curated database from SRI of pathways, reactions, and metabolites,

that grew from the modeling and curation efforts of E. coli, namely EcoCyc [KCVSZ+11]

originally, and now also TransportDB [RKP04] and RegulonDB [SPGGC+13]. MetaCyc has

strong tool support in Pathway Tools [KPK+09] for GENRE.
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KEGG Database

Category Entry point Description Instances

Info. Systems

Metabolism

Genetic Information Processing

Environmental Information Processing

KEGG PATHWAY Pathway maps Cellular Processes

Organismal Systems

Human Diseases

Drug Development

Pathways & Ontologies

KEGG BRITE BRITE Functional hierarchies Genes & Proteins

Organisms & Cells

Compounds & Reactions

Pathway module

KEGG MODULE modules Structural Complex

Functional Set

Signature Module

KEGG MAPPER Analysis Tools Mapping tool for PATHWAY, BRITE,
MODULES & TAXONOMY

KEGG ATLAS Analysis Tools Navigation tool to explore KEGG
global maps

Genomic Info

Prokaryotes (2750):

Bacteria (2585)

Archaea (165)

KEGG GENOME Collection of genomes Eukaryotes (228):

Animals (81)

Plants (35)

Fungi (71)

Protists (41)

GENES: Complete genomes

DGENES: Draft genomes

KEGG GENE Collection of gene catalogs EGENES: EST datasets

MGENES: Metagenomes

VGENES: Viruses

Metabolism

Genetic Information Processing

Environmental Information Processing

KEGG Orthology Ortholog groups Cellular Processes

Organismal Systems

Human Diseases

Drug Development

Chemical Info

Databases in LIGAND:

Contains information on chemical COMPOUND

substances and reactions GLYCAN

KEGG LIGAND REACTION

RPAIR

RCLASS

ENZYME

Table 8: KEGG Database

Information systems, genomic and chemical information contained in KEGG [KL] used to
reconstruct metabolic networks. Note that this table does not represent all the biological
information and analysis tools provided by KEGG.
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MetaCyc is the reference template used to reconstruct a metabolic pathway model and the

associated database, called a Pathway/Genome Database (PGDB) using Pathway Tools.

BioCyc is the collection of PGDBs, which numbers over 2000 genomes.

Today most GENREs can be found at BiGG [SPCP10], “a Biochemically, Genetically and

Genomically structured genome scale metabolic network reconstruction knowledgebase” at

Bernhard Palsson’s Systems Biology Lab at UC San Diego. Models are encoded in the sys-

tems biology markup language (SBML) [HFS+03]. They develop the COBRA toolkit [SQF+11]

for analysis of GENREs.

Specific to modeling pathways, rather than to systems biology as a whole, is the BioPAX

community [DCP+10] for Biological Pathways Exchange in XML. BioPAX is represented in

RDF/XML and is defined in OWL.

For annotation of enzymes specifically, there is the Enzyme Commission (EC) classification

scheme, which is supported by the BRENDA database [SCP+13] of EC definitions, reac-

tions, metabolites, and enzymes. For annotation of transporters, there is the Transporter

Classification (TC) scheme, which is supported by the TC database (TCDB) [STB05]. For

annotation in general, one uses the Gene Ontology (GO) [The00]. GO covers enzymes and

transporters amongst its collection of terms for annotation. The GOA database [HSMM+15]

links gene ontology annotations to the entries in SwissProt and UniProt.

ENZYME and BRENDA are two widely used enzyme databases for genome annotation.

ENZYME is maintained by the Swiss Institute of Bioinformatics. BRENDA is developed

and maintained by Department of Bioinformatics and Biochemistry, Technische Universität

Braunschweig, Germany. Both support the Enzyme Commission (EC) number official clas-

sification of enzymes based on the recommendations of the Nomenclature Committee of the

International Union of Biochemistry and Molecular Biology (IUBMB). BRENDA incorpo-

rates over 1,000,000 enzymes, of which more than 65,000 are manually curated.

For curated protein sequences and information about the proteins, one consults the SwissProt

database [BA00], which is the set of reviewed entries in UniProt [C+14], a resource with both

reviewed and unreviewed protein sequences. SwissProt collaborates closely with curators for

model organisms, and others, such as the AspGD database [CAI+14] for Aspergillus species.

UniprotKB is a protein knowledgebase comprised of two different sections: (1) SwissProt for

manually annotated and reviewed proteins; and (2) TrEMBL for protein sequences that are

automatically annotated but not reviewed.
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The Transporter Classification database (TCDB) [Gro] contains information on characterized

transporters based on the Transporter Classification (TC) system of IUBMB. It is a curated

database of more than 10,000 proteins and more than 10,000 literature references for more

than 800 transporter families.

The Saccharomyces Genome Database (SGD) [SUa] is a manually curated database about

the yeast model organism Saccharomyces cerevisiae. The Aspergillus Genome Database

(AspGD) [MGD+] is a database of filamentous fungi of the genus Aspergillus. It also acts as

a multispecies comparative genomics browser tool.
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Chapter 3

Metabolic Pathway Reconstruction

This chapter focuses on one aspect in the automation of systems biology, namely the re-

construction of the metabolic pathways. This step begins with an annotated genome of an

organism, and perhaps with other data such as RNA-Seq expression data, and produces a

model of the metabolism of the organism’s cell. The model includes metabolic reactions or-

ganised into pathways that transform metabolites, and may include information on transport

and regulation.

Automation of the reconstruction of metabolic pathways is necessary if we wish to study

non-model organisms. Any manual aspect in the process of constructing models and quality

control of models is time-consuming. Experience indicates that manual reconstruction takes

upwards of six months to two years [TP10, p. 2]. Our experience in this chapter shows that

Pathway Tools takes less than one hour on a workstation to construct a metabolic pathway

model of a fungal genome.

While there are many toolkits that automate some steps of the process of reconstruction,

there are only two software systems that one would consider as automating the full recon-

struction process; they are SEED [ADD+12] and Pathway Tools [KPK+09]. Both provide

semi-automation and not full automation. Both work best on genomes of prokaryotes, and

Pathway Tools is the only one that can claim to work with eukaryotes. We work with fungi,

which are eukaryotes, so this chapter uses Pathway Tools in case studies in order to better

understand the strengths and weaknesses of the state of the art.

The chapter organization is as follows: Section 3.1 reviews the state of the art for this step

in the overall process; Section 3.2 looks at those fungal genomes that are well-curated in
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order to see the completeness (or non-completeness) of their functional annotations; Sec-

tion 3.3 presents our case studies in reconstructing metabolic pathway models for fungi; and

Section 3.4 presents the lessons learned about the strengths and weaknesses of metabolic

pathway reconstruction.

3.1 The State of the Art

This section reviews the state of the art for the reconstruction of metabolic networks, which

is the starting point for systems biology. This section complements existing reviews [FST05,

PRU10, FS11, OP10, RGM+12, SCM14, HR14]. A common approach is to construct a

draft network model based on a reference of known pathways and reactions, as typified by

Pathway Tools [KPK+09], which uses the MetaCyc knowledgebase of pathways curated from

the literature to provide a template of metabolic, transport, and regulatory pathways against

which to match the roles of proteins in a genome. The primary input to the process is an

annotated genome. The steps in reconstruction are:

1. Establish the Gene-Protein-Reaction (GPR) associations, based on the functional an-

notation of the genes. The reaction types may include one or more of metabolism,

transport, and regulation.

Techniques may use the annotation of each gene in terms of a text description, GO

terms, and EC numbers [KLC11]; homology and orthology [NEF+06]; or HMMs for

protein families, eg FigFAMs [ADD+12].

2. Determine the pathways present in the organism, based on the reactions present in the

GPR associations [KLC11, DPK10].

3. Perform hole filling, also called gap filling, by considering each reaction in the pathways

present in the organism that are not associated with a Gene-Protein [OP10].

The pathways present may have holes; that is, there are orphan reactions in the path-

way that are not assigned to a gene. The hole-filling algorithm [GK04, GK07] uses a

Bayesian approach to rank the genes in the genome with each hole, and the software al-

lows curators to accept or reject a match. There are alternative hole-filling approaches

that use orthology (AutoGraph [NEF+06]) and expression data (GLOBUS [PFH+12]).
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In systems biology, these steps are followed by quantitative modeling and quality control

that balances flux, charge, energy, etc.

There are also de novo approaches to predicting previously undiscovered pathways. They

may use comparative genomics [FK11], expression profiles [SUS07], or gene clusters in

prokaryotes [ADD+12]. These may use a knowledge of chemistry and the reactions in the

organism to predict a set of pathways that connect the given reactions and suggest other

required reactions. Alternatively, our knowledge of chemistry and data on the metabolites

present in the organism can be used to predict the reactions and pathways that match the

set of given metabolites. These approaches are called compound-filling and reaction-filling

in [KTY+13] as compared to the reference-based approach above.

3.1.1 Pathway Tools

The Pathway Tools software is an integrated system that employs the metabolic pathway

ontology to develop a specific organism pathway database. This software tool was developed

by Peter Karp and his co-workers at Stanford Research Institute (SRI) and its development

has been continuously ongoing since 1990s following the successful construction of the E.coli

pathway database (EcoCyc) [KPK+09]. The EcoCyc database is the first model-organism

database (MOD) developed within SRI. The MOD created by Pathway Tools is called a

Pathway/Genome Database (PGDB). EcoCyc is the only PGDB based on information de-

rived from the biomedical literature [KPR02], prior to the construction of YeastCyc for S.

cerevisiae.

Pathway Tools [KPK+09] uses the MetaCyc knowledgebase of pathways that have been

curated from the literature to provide a template of metabolic, transport, and regulatory

reactions and pathways. Using an existing functional annotation, the tools first match genes

to reactions, then determine whether each pathway is present or not in the organism [KLC11,

DPK10]. The pathways present may have holes; that is, there are orphan reactions in the

pathway that are not assigned to a gene. The hole-filling algorithm [GK04, GK07] uses

a Bayesian approach to rank the unassigned genes in the genome with each hole, and the

software allows curators to accept or reject a match.

MetaCyc [SRIb] is the reference database for all the PGDBs constructed using Pathway

Tools. It is a freely available comprehensive knowledgebase that contains biological infor-

mation on metabolic pathways and enzymes from all domains of life, which are extracted
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from the scientific literature [CAD+10]. PGDBs constructed using Pathway Tools integrate

information of the genome of an organism such as genome sequence, biochemical data such

as metabolites, substrates, pathways, metabolic network, and the genetic network of an

organism [KPR02].

Pathway Tools uses the Metabolic Pathway Ontology (MPO) to encode high fidelity biologi-

cal information. The output is a Pathway/Genome Database (PGDB) [KPK+09]. There are

three ontologies within Pathway Tools: the evidence ontology, the cell component ontology,

and the protein feature ontology [Kar]. They capture genomic datatypes by a rich set of

classes, attributes and relationships for biological data modeling [KPR02]. According to

[GK06], the performance of Pathway Tools depends on these ontologies.

The main component of the Pathway Tools software is known as PathoLogic, which infers

probable metabolic pathways based on genome annotation, infers transport reactions using

the Transport Inference Parser (TIP), and assists users to perform refinement on the created

PGDB, such as filling pathway holes. Pathway Tools also provides a user-friendly navigation

interface that allows user to perform large-scale data analysis, querying, and visualization;

curation tools to edit or update existing information; and MetaFlux for flux-balance analysis.

Pathway Tools can be installed locally and used from the desktop or a web browser.

Tier Databases Description

1

EcoCyc
MetaCyc
HumanCyc
AraCyc
YeastCyc
LeishCyc

- EcoCyc and MetaCyc were created through intensive manual efforts based on experiment
information elucidated from scientific literatures.

- The rest of the PGDBs in this tier were created using Pathway Tools Software

- All these PGDBs received literature-based curation by scientist continuously
(at least once a year).

2

36 databases;
16 eukaryotes
20 prokaryotes.

- PGDBs were generated computationally using PathoLogic.

- Undergone moderate amounts of manual reviews (e.g. removing false-positive
pathway predictions), updates, and polishing steps (e.g. defining protein complexes).

- Undergone short period of literature based curation. Most PGDBs undergo
1–4 months of curation

- Only 1 database for fungi but it is unavailable (Penicillium chrysogenum Wisconsin 54-1255)

3

2950 databases - PGDBs were created using PathoLogic but without any manual review nor subsequent
literature-based curation.

- Do not even run pathway hole filler for predicting missing enzymes

Table 9: Tiers in BioCyc

Tiers in BioCyc as of March 2014 [SRIa]

Nowadays, many researchers use Pathway Tools software to reconstruct metabolic networks.

As reported by [KLC11], the SRI BioCyc database collection [SRIa] contains PGDBs for

more than 1000 genomes. Table 9 shows the different categories, or tiers, of PGDBs in
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BioCyc. The popularity is believed due to the state-of-the-art algorithm of PathoLogic that

can automatically infer metabolic pathways and quickly create a new PGDB. Pathway Tools

also provides manual, semi-automated and automated database refinement tools for curation

purposes. In FungiCyc [BI], there are more than 20 genome-scale metabolic networks of fungi

constructed using Pathway Tools, including YeastCyc for S. cerevisiae and AspCyc for the

Aspergillus genomes.

3.1.2 SEED

The metabolic network models in Model SEED [TFfIoG] were constructed computation-

ally using a custom pipeline of automated and manual steps. The aim was to reconstruct

metabolic network with consistent, high quality and rapid genome annotations from a newly

sequenced genome based on the subsystems approach [ABB+08, ADD+12]. The term sub-

system is the general concept of a pathway. A subsystem is represented as a graph consisting

of proteins such as enzymes and transporters, and compounds as nodes, while edges link the

nodes. However, compounds like cofactors are omitted in these linkages. The variants of

the subsystem are produced as a subgraph. The variant detection is performed using integer

programming and visualized using Graphviz [YOOG05]. The majority of the model SEED

are for bacteria; one good example is the gram-positive bacteria Bacillus subtilis [HZCS09].

SEED cannot produce models for eukaryotes.

To quote from [HZCS09], “The Model SEED integrates existing methods and introduces

techniques to automate nearly every step of this process, taking approximately 48 hours to

reconstruct a metabolic model from an assembled genome sequence. We apply this resource

to generate 130 genome-scale metabolic models representing a taxonomically diverse set of

bacteria. Twenty-two of the models were validated against available gene essentiality and

biological data, with the average model accuracy determined to be 66% before optimization

and 87% after optimization.”

3.1.2.1 What Is There (WIT)

A precursor to SEED was What Is There (WIT) [OLP+00]. WIT performed compara-

tive genome analysis and reconstruction of metabolic pathways based on the Enzyme and

Metabolic Pathways (EMP/MPW) family of databases. WIT processed genomes of prokary-

otes, performing gene finding, gene annotation, finding gene clusters on chromosomes, and
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clustering orthologs as bidirectional best hits across related genomes. The metabolic model

could be viewed in both textual and graphical form. Model refinement by curators was sup-

ported, allowing evaluation of the model against biochemical data and phenotypes known

from the literature.

3.1.3 Pathway Analyst

Pathway Analyst [PPS+05, PSLG06] is a freely accessible web server that can be used to

predict metabolic pathways from the protein sequences of an organism. Pathway Analyst

uses each of Support Vector Machines (SVM), BLAST and Hidden Markov Models (HMM)

predict matches between sequences in the set of model organism pathways and the sequences

in the target organism to predict metabolic pathways.

3.1.4 AUTOGRAPH

The key steps of AUTOGRAPH (Automatic Transfer by Orthology of Gene Reaction As-

sociations for Pathway Heuristics) [NEF+06] apply comparative genomics using orthology

as determined by InParanoid [ÖSF+10] rather than sequence similarity. Models from com-

parative organisms act as reference templates that supply the reactions and the pathways.

These models also have GPR associations. The protein sequences are used by InParanoid to

find matches between the target organism and the comparative organisms. Once a match

is found, the reaction can be assigned to the target Gene-Protein. AUTOGRAPH is com-

pared to PathoLogic from Pathway Tools on a bacterial genome, L. lactis in [NEF+06].

AUTOGRAPH assigned reactions to 186 more genes than PathoLogic, of which 43% were

transport reactions. The AUTOGRAPH method should be considered a protocol as it is not

implemented as software, but rather executed by hand.

3.1.5 Pantograph

Pantograph is the first system for metabolic pathway reconstruction that was designed from

the bottom-up for fungal genomes. It includes cellular components, including the peroxisome,

and specifically modeled transport across the membrane of the peroxisome. Pantograph was

designed and implemented in the PhD thesis [Loi12] of Nicolas Loira at Bordeaux, and
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applied to reconstruct the metabolic pathways of the yeast Yarrowia lipolytica which accu-

mulates lipids in the peroxisome component of the cell. The Pantograph method [LZS15]

relies on a database of profile HMMs for fungal protein families and their annotations that

is maintained at Génolevures in Bordeaux. The protein families are designed to be orthol-

ogous proteins. It also relies on a reference template, which Pantograph calls the scaffold

model, which also models the cell compartments. The Pantograph algorithm first assigns

GPR associations, and then must decide what to include in the draft model based on these

associations. Like PathoLogic, this includes selecting which pathways are present in the or-

ganism. Unlike PathoLogic, Pantograph also selects which compartments should be included

in the model for the organism.

The scaffold model, which is the reference template for Pantograph, was manually curated

to include 421 transport reactions. The associated transport protein families of orthologs

were manually identified in the Génolevures collection.

The Pantograph software, written in Python, is available for download at http://pathtastic.

gforge.inria.fr/. The distribution includes the scaffold model in SBML (Systems Biology

Markup Language). The scaffold is intended to cover yeasts, while our lab work deals with

another kind of fungi, the filamentous fungi.

3.1.6 Other Tools

Two systems that take a genome sequence as input, and combine the steps of identifi-

cation of genes (that is, coding sequences in prokaryotes), functional annotation of genes

using EC numbers, and reconstruction of metabolic pathways are IdentiCS [SZ04] and

metaSHARK [PSMW05]. IdentiCS (Identification of Coding Sequences from Unfinished

Genome Sequences) uses BLAST to search the genome for matches to genes and proteins

in the public databases KEGG and SwissProt that have EC number annotations. Having

identified the coding sequences for proteins that are enzymes, it constructs the pathways

from the templates in KEGG. The metaSHARK (metabolic SearcH And Reconstruction

Kit) system uses HMM profiles to search the genome to identify such coding sequences and

proteins. It also uses the KEGG templates to reconstruct the metabolic pathways. The

HMM profiles are based on the PRIAM [CRCFK03] profiles and sequences. Once a coding

region is identified, the Wise2 [BCD04] gene predictor is applied to identify the gene.

KOBAS (KEGG Orthology Based Annotation System) [WMC+06, XMH+11] annotates
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genes and proteins against the KEGG databases. It identifies the pathway and reaction

associated with the sequence. However, KOBAS does not reconstruct metabolic pathways.

KAAS (KEGG Automatic Annotation Server) [MIO+07, OYH+08] is similar annotation tool

that is designed to process genomes and reconstruct metabolic pathways..

ComPath [CK08] is an interactive tool that integrates various databases and computational

analysis tools in the interactive spreadsheet to reconstruct pathway and annotation of an

organism. Information from sequence, structure and domain databases, and KEGG, are

integrated with computational tools into an interactive spreadsheet. Its main aim is to

identify GPR assocations, and perform pathway analysis.

Rahnuma [MPH09] is a hypergraph tool used to perform metabolic pathways predictions

and analysis. It is written in JAVA and uses a MySQL database to store data from KEGG.

Rahnuma has three main modules: network analysis module that builds a metabolic net-

work over a phylogeny of related organisms; pathway analysis module to perform pathway

predictions; and comparative analysis module that allows the user to compare two metabolic

networks. However, there is no available information on the metabolic pathway predictions

of an organism using this tool.

3.2 Well-Curated Fungal Genomes

Our research (https://www.fungalgenomics.ca) searches fungal genomes for secreted enzymes

that have potential industrial applications such as biofuel, textiles, pulp bleaching, paper de-

inking, food processing, and feed processing for livestock. So functional annotation focuses

on fungal genomes. There are 8 well studied fungal genomes where significant effort on

manual curation has been done (see Table 10 and Table 11). Table 12 shows the number of

annotations with GO terms for the three aspects — biological process (BP), molecular func-

tion (MF), and cellular component (CC) — for both automatic and manual annotations.

Table 13 shows the number of proteins with manually annotated GO terms across differ-

ent combinations of the three aspects: biological process (BP), molecular function (MF),

and cellular component (CC). Together the tables show the level of incompleteness of our

knowledge of the role of proteins. This incompleteness is the status in general, as seen in

Section 1.1, and not particular to only fungal genomes.
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Genome
Size
(Mbp)

Source
Genetic
Elements

No.

S. cerevisiae S288C 12 http://www.yeastgenome.org/ Chromosomes 16

S. pombe ASM294 13 http://www.pombase.org/ Chromosomes 3

C. albicans SC5314 29 http://www.candidagenome.org/ Contigs 22

A. fumigatus Af293 29 http://www.aspergillusgenome.org/ Chromosomes 8

A. nidulans FGSCA4 30 http://www.aspergillusgenome.org/ Chromosomes 8

A. niger CBS513.88 34 http://www.aspergillusgenome.org/ Contigs 19

A. oryzae RIB40 38 http://www.aspergillusgenome.org/ Chromosomes 8
Contigs 3

N. crassa OR74A 40 https://www.broadinstitute.org/ Supercontig 7
Chromosomes 1

Table 10: Sources of Well-Curated Fungal Genomes

The summary of 8 well-curated fungal genomes. Column 1 contains the name of the
strain, followed by the size column that indicates the size for each strain in megabase
pair (Mbp), the source websites, the type of Genetic Elements, and the last column
(No.) displays the number of genetic elements.

Organism ORFs ORFs ORFs
Total Verified GO

S. cerivisiae S288C 6607 5061 5910
S. pombe ASM294 5123 NA 5456
N. crassa OR74A 9730 NA NA
C. albicans SC5314 6214 1504 6045
A. nidulans FGSCA4 10678 1113 10750
A. niger CBS513 88 14056 214 14386
A. fumigatus Af293 9783 449 10070
A. oryzae RIB40 11902 157 12173

Total 74093

Table 11: Well-Curated Fungal Genomes

The table indicates the number of proteins (actually open reading frames (ORFs)) based on the
gene models of the genome. The total number of ORFs is given, as well as those ORFs verified
by the existence of some other experimental data such as transcripts or proteins. Finally, the
number of ORFs for which there is at least one Gene Ontology (GO) term, regardless of
whether the term is electronically annotated or manually assigned. Note that for N. crassa
where the genome comes from the Broad Institute, the downloaded files contain only those
ORFs that have at least one manual annotation. So in N. crassa all proteins are verified and
have at least one manually annotated GO term. (As of August 2013)
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Organism ORFs GO GO GO GO
Total BP MF CC Total

S. cerivisiae S288C 6607 31192 25980 34597 91769
S. pombe ASM294 5123 13323 9383 14636 37342
N. crassa OR74A 9730 3261 1222 1996 6479
C. albicans SC5314 6214 7291 6870 6085 20246
A. nidulans FGSCA4 10678 6160 5973 4886 17019
A. niger CBS513.88 14056 6543 6445 4980 17968
A. fumigatus Af293 9783 5569 5460 4607 15636
A. oryzae RIB40 11902 6561 6412 4913 17886

Table 12: GO Annotation of Well-Curated Fungal Genomes

The table indicates the number of GO annotations of proteins (actually open reading frames
(ORFs)) based on the gene models of the genome. The columns list the number of annotations
in the three aspects biological process (BP), molecular function (MF), and cellular component
(CC), and the total number of GO annotations. Note that a protein may have more than
one GO annotation in an aspect. Note that for N. crassa where the genome comes from the
Broad Institute, the downloaded files contain only those ORFs that have at least one manual
annotation.

Organism ORFs ORFs ORFs ORFs ORFs ORFs ORFs ORFs ORFs
BP MF CC BPMF BPCC MFCC None ≥ 1 BPMFCC

S. cerivisiae S288C 4771 3996 5193 3857 4581 3814 480 5430 3722
S. pombe ASM294 4423 3558 5094 3420 4338 3481 264 5192 3356
N. crassa OR74A 1530 891 1082 812 870 754 0 1786 719
C. albicans SC5314 1475 983 984 863 674 535 4173 1872 502
A. nidulans FGSCA4 1338 954 554 920 321 212 9156 1594 201
A. niger CBS513.88 494 399 197 371 90 85 13761 625 81
A. fumigatus Af293 537 362 170 304 59 33 9376 694 21
A. oryzae RIB40 380 346 52 320 24 22 11743 430 18

Total 17633 8620

Table 13: Number of Proteins with Manual GO Annotations by Aspect

The table presents the number of proteins with manually assigned Gene Ontology (GO) terms
for different combinations of the three aspects: biological process (BP), molecular function
(MF), and cellular component (CC).

56



3.3 Case Studies

The case study investigated the application of Pathway Tools, a widely used tool for the

reconstruction of metabolic pathways, to a range of fungal genomes. Five of them are from

the list of well-curated fungal genomes in Section 3.2, while the other is a genome of interest,

Phanerochaete chrysosporium RP78. One aim was to see how variable the results were, and

whether there was a link between the functional annotation and the result, both in terms of

quality and quantity of the annotation. For this reason, we include P. chrysosporium RP78

that was automatically annotated at the Joint Genome Institute (JGI).

This section describes the Datasets, the Methods, the Results, and then presents the case of

P. chrysosporium RP78 in detail. This is followed by Discussion.

3.3.1 Datasets

The protein sequences and annotation information of these fungi are gathered from three

different resources. The Aspergillus genomes from AspGD, the N. crassa genome from

the Broad Insittute, and P. chrysosporium from JGI. Table 14 shows the summary of the

genomes involved in this study.

Genome
Size
(Mbp)

Source
Genetic
Elements

No.

A. fumigatus Af293 29 http://www.aspergillusgenome.org/ Chromosomes 8

A. nidulans FGSCA4 30 http://www.aspergillusgenome.org/ Chromosomes 8

A. niger CBS513.88 34 http://www.aspergillusgenome.org/ Contigs 19

A. oryzae RIB40 38 http://www.aspergillusgenome.org/ Chromosomes 8
Contigs 3

N. crassa OR74A 40 https://www.broadinstitute.org/ Supercontig 7
Chromosomes 1

P. chrysosporium RP78 35 http://jgi.doe.gov/ Scaffolds 178

Table 14: Sources of Fungal Genomes for Case Study

The summary of six fungal genomes: five well-curated fungal genomes and one automatically
annotated fungal genome P. chrysosporium RP78. Column 1 contains the name of the strains,
followed by the size column that indicates the size for each strain in mega base pair (Mbp),
the source websites, the type of Genetic Elements, and the last column (No.) displays the
number of genetic elements.

The datasets for A. fumigatus Af293, A. nidulans FGSCA4 and A. niger CBS513.88 are as

of March 2014, and the datasets for A. oryzae RIB40 are as of June 2014. The annotations
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for the genes are GO terms from either manual curation, or orthology to a gene in another

Aspergillus species that is manually curated.

The download site at AspGD provides protein sequences as .fasta files; genome information

with gene definitions in .gff files; and GO annotations for all genomes in one file in standard

GAF format in the sequences, gff and go directories respectively.

A_nidulans_FGSC_A4_version_current_orf_trans_all.fasta

A_nidulans_FGSC_A4_version_current_features.gff

gene_association.aspgd

The Broad Institute information forN. crass OR74A is available at http://www.broadinstitute.

org/annotation/genome/neurospora/MultiDownloads.html. It is equivalent information,

though formatted differently: the gff files use the suffix gtf, and the tsv file for the GO

terms is not in GAF format. The only annotations in the files from Broad are manually

curated annotations.

neurospora_crassa_or74a_12_transcripts.gtf

neurospora_crassa_or74a_12_proteins.fasta

http://www.broadinstitute.org/annotation/genome/neurospora/assets/go_for_nc12.tsv

The dataset of P. chrysosporium RP78 v2.1 is downloaded from JGI. Table 15 shows the

annotation files that contain information used to create the input file for Pathway Tools.

The annotations are automatically computed by the pipeline at JGI.

Table 16 shows the number of curated pathways in MetaCyc from the different kingdoms of

life. Note the predominance of pathways from bacteria. Statistics on the reference pathways

in MetaCyc used in reconstructions is shown in Table 17.

3.3.2 Methods

We develop metabolic models and pathway genome databases (PGDBs) using PathoLogic

of Pathway Tools Software v17.5. The annotation input files for each genome are formatted

according to the PathoLogic (.pf) format. This format accepts information on the roles of
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Description Filename Total

Scaffolds Pchrysosporium BestModelsv2.1.gff.gz 178

Transcripts in FASTA BestModels2.1.transcripts.gz 10048

Transcripts (KEGG) Pchrysosporium ecpathwayinfo BestModels2.1.tab.gz 4012

EC (KEGG) Pchrysosporium ecpathwayinfo BestModels2.1.tab.gz 2155

Pathways (KEGG) Pchrysosporium ecpathwayinfo BestModels2.1.tab.gz 107

Table 15: Annotation for P. chrysosporium RP78

This table displays genome annotation for P. chrysosporium (version 2.0) downloaded
from JGI. There are 412 scaffolds being annotated in gff but only 178 can be used for
PathoLogic annotation. The FASTA file represents DNA sequences where 10048 genes
were annotated. But only 4012 genes were annotated by KEGG, together with 2155
EC numbers assigned and a total of 107 pathways. All this information is used for the
PathoLogic input file annotation.

Source Total
Bacteria 883
Plants 607
Fungi 199
Mammals 159
Archaea 112

Table 16: Source of Curated Pathways in MetaCyc

Indicative source of curated pathways in MetaCyc, as of
v13.1 As of v17.5 MetaCyc has about 35% more pathways.

Description Total
Pathways 2089
Polypeptides 10885
Protein Complexes 3356
Enzymes 9146
Enzymatic reactions 11410
Compounds 10965
Transporters 101
Transport reactions 154

Table 17: Biological Entities in MetaCyc

Biological entities in MetaCyc version 17.5 used in case
studies.
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genes in terms of text descriptions, EC numbers, GO terms, and KEGG pathways. For

the Aspergillus genomes, the information on genes and sequence assemblies are extracted

from the gff, sequence, and GO directories on the AspGD download site. The EC numbers

for enzymes are retrieved from Uniprot. For N. crassa OR74A from the Broad Institute

the information on genes, GO annotations, and EC numbers are in the downloads. For P.

chrysosporium RP78 v2.0 from JGI there are 412 scaffolds in the gff file, but only 178 with

genes used for PathoLogic. From the downloads, there are EC numbers assigned to 2155

proteins that is used together with the GO annotations.

MetaCyc contains a list of reactions and a list of pathways defined in terms of the reactions.

PathoLogic identifies a list of potential reactions for an organism from the gene annota-

tions, primarily the EC numbers assigned to genes. From the list of reactions PathoLogic

selects the pathways most likely to occur in the organism using an algorithm based on ran-

dom forests [KLC11, DPK10]. In addition PathoLogic runs the Transport Inference Parser

(TIP) [LPK08] to predict transport reactions based on keywords in the gene descriptions

and annotations.

3.3.3 Results

The reconstruction of each metabolic model took between 25 to 35 minutes on a workstation

with 3.4GHz processor and 16GB memory running Linux. Table 18 shows a summary of the

statistics for each model.

3.3.4 Details for P.chrysosporium RP78

Phanerochaete chrysosporium is the model organism for white-rot fungi which have extraor-

dinary capabilities to degrade lignin and a wide range of toxic chemical pollutants. Its

genome was the first genome from a basidomycote fungus to be sequenced [MLP+04]. It is

the most extensively studied white rot organism due to its unique ability to degrade dioxins,

polychlorinated biphenyls (PCBs) and other chloroorganics. This makes it a spearhead fungi

in bioremediation research. Its gene complement of glycosyl hydrolases, cytochrome P450

peroxidases, and oxidases is impressive. Therefore, in silico metabolic network reconstruc-

tion of P. chrysosporium is anticipated to help in understanding its metabolic capabilities

and in predicting the functions of genes and proteins.
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Description Afu And Ang Aor Ncr Pch
Pathway 287 312 319 302 299 227
Enzymatic Reaction 1871 1868 1963 1875 1900 1480
Transport Reaction 12 11 10 12 13 10
Genes 10073 10983 14296 12176 10812 9624
Polypeptides 10074 10923 14970 12176 10815 10007
Enzymes 1615 1580 1997 1782 1327 1742
Transporters 37 41 38 38 44 41
Compounds 1326 1350 1434 1311 1461 1212
Pathway Holes (%) 315 (32) 335 (31) 343 (32) 340 (33) 248 (25) 311 (37)

Table 18: Statistics on PGDBs for Six Fungal Genomes

Afu: A. fumigatus Af293, And: A. nidulans FGSC A4, Abg: A. niger CBS513.88, Aor:
A. oryzae RIB40, Ncr: N. crassa OR74A, and Pch: P. chrysosporium RP78. The pathway
indicates the number of base pathways, enzymatic reactions are reactions that are catalyzed
only by enzymes, transport reactions are reactions occured in cellular compartments where the
involved substrates reside, genes and polypeptides are to represent the number of predicted
genes and proteins respectively, enzymes are the proteins that catalyze reactions, transporters
represent total number of membrane transport proteins in each fungal genome, compounds
are small molecules used in the reactions, while the pathway holes represents the number of
missing enzymes or gaps that exist in base pathways, together with the percentage displayed
in the brackets.

Based on the dataset, a PGDB for P. chrysosporium is developed using PathoLogic and is

given the name PHACHCyc. The predicted number of pathways and other biological entities

are shown in Table 18.

An analysis of the completeness of the model looked at both the overall number of path-

ways (Table 18) the percentage of holes (Table 18), the pathways with and without holes

(Table 19), and the distribution of holes across pathways (Figure 17).

Description Total Percentage
Pathway reactions that are holes 311 36.5
Pathway reactions that are not holes 540 63.5
Total no. of pathway with holes 125 55.1
Total no of pathway without holes 102 44.9

Table 19: Pathway Holes Predicted by Pathway Hole Filler

The table shows the pathway holes predicted by Pathway Hole Filler. These are the total
number of pathway holes occur in PHACHCyc, the number of pathways affected and the
percentage for each case.

The single pathway with the highest number of holes, 24, in Figure 17 is the Palmitate
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Figure 17: Histogram of the Pathway Hole Distribution for PHACHCyc

The pathway hole distribution for PHACHCyc. The number on the top of each bar
represents the number of pathways corresponding to the number of holes.

Biosynthesis I (animal & fungi) pathway which is essential for fatty acid biosynthesis. The

pathway has 32 reactions in total. One of the pathways that is missing only a single GPR is

the TCA cycle II (plants and fungi) in Figure 18. The figure has an arrow pointing to the

hole.

The impact of hole-filling is investigated to see the effectiveness of the Pathway Hole Filler

program [GK04] of Pathway Tools. Hole-filling is a semi-automated process that returns a

ranked list of candidate genes for the hole, together with a score given as a percentage. The

default threshold for accepting a gene to fill a hole is 90%. Figure 19 considers a range of

thresholds from 90% down to 50% and shows the number of holes filled, and the number of

holes remaining. At a threshold of 90% about 45% of the holes are filled. Without further

experimental results, we do not know whether a correct Gene-Protein-Reaction association

has been made to fill a hole.
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Figure 18: TCA Cycle Model for PHACHCyc

The TCA cycle predicted for P. chrysosporium RP78 is TCA cycle II (plants
and fungi). The black arrow is pointing to a missing reaction in this pathway.

3.3.5 Discussion

This section discusses all aspects of the case studies including P. chrysosporium. Evaluation

of the methods for GENRE is very problematic because new organisms do not have a ground

truth available, and similarly novel pathways in model organisms do not have a ground truth

available. Validation of predictions requires wet lab experiments. Therefore the arguments

in this section are internal validations based on statistics of the reconstructed metabolic

pathway models.

Quality of Genome Assembly and Annotation Affects GENRE

The selected fungal genomes exhibit a range of completeness for their genome assemblies,

as shown in Table 14. Several have assemblies that contain complete chromosomes: A.

fumigatus Af293, A. nidulans FGSC A4, A. oryzae RIB40, and N. crassa OR74A. A. niger

CBS 513.88 has an assembly with approximately two contigs per chromosome, while P.

chrysosporium RP78 has many hundreds of contigs, which would be considered a moderate

quality assembly.
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Figure 19: Number of Hole Candidates versus Cutoff

The number of hole candidates based on the probability cut off. The number at each
point of the blue line represents the total number of candidate genes that filled the holes.
The number at each point of the green line represents the total number of holes remaining
after hole filling. Due to some double counting of holes, the sum of holes filled and holes
unfilled is more than 311, the total number of holes.

The selected fungi display some phylogenetic diversity. N. crassa OR74A is a yeast, while

the others are filamentous fungi. P. chrysosporium RP78 is a basidomycote, while the others

are ascomycote.

The genome annotations range from fully automatic (P. chrysosporium RP78 ) to fully man-

ual ( N. crassa OR74A) with the Aspergillus genomes combining manual curation and an-

notation transfer by orthology from other Aspergillus species. One would deem manual

annotations to be high quality and automatic annotation to be low quality, as a rule of

thumb. This is supported by Table 11 and Table 13. The number of verified ORFs indicates

the number of gene predictions that are supported by experimental evidence. This is sub-

stantially higher for A. nidulans FGSC A4 at 1113, than for the other Aspergillus genomes;

it is not available for N. crassa OR74A, and is presumably zero for P. chrysosporium RP78.
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The number of manually curated GO terms by aspect (BP, MF, CC) in Table 13 shows that

cellular components in N. crassa OR74A, a yeast, are better known than for the filamentous

fungi, and that the cellular components for A. nidulans FGSC A4 are much better studied

than the other Aspergillus genomes. This relationship holds true for the number of ORFs for

which there is a curated GO term for each of the three aspects. Note that P. chrysosporium

RP78 has no manually curated GO terms at all.

However, the results in Table 18 do not show substantial differences between the models

of the Aspergillus genomes themselves, nor with the model of N. crassa OR74A in terms

of number of pathways. On the other hand, the model of P. chrysosporium RP78 has 227

pathways compared to the approximately 300 pathways of the other models.

So the evidence shows a clear distinction between automatic annotation for a moderate

quality assembly and manual annotation for a high quality assembly. However, the evidence

does not show a difference between manual curation alone, as in N. crassa OR74A, and

manual curation plus limited automatic annotation in the Aspergillus genomes.

Automated GENREs are incomplete

Table 18 shows that the number of holes in pathways accounts for over 30% of all reactions.

For the worst assembly and annotation of a genome, namely P. chrysosporium RP78, the

percentage reaches 37%. Table 19 for P. chrysosporium RP78 shows that only 102 or 45%

of pathways in the model have no holes at all. Therefore, the PGDB has incomplete GPR

associations.

Automated GENREs after hole-filling are incomplete

The recommended threshold in Pathway Tools for accepting a putative GPR for a hole is

90%. At this level, Figure 19 shows that 45% of the holes in the model for P. chrysosporium

RP78 are filled. However, this leaves 182 holes, which is 20% of all reactions. Therefore,

even after hole-filling, the PGDB has incomplete GPR associations.

Transporters are very incomplete

Table 18 shows that Pathway Tools identifies 10–13 transport reactions, and associates 37–44

genes with the transport reactions for the fungal genomes. This is from a repertoire of 154

transport reactions and 101 transporter proteins in MetaCyc (Table 17). In Chapter 4 we see

that there are 205 transport reactions forA. niger CBS 513.88 in a manual GENRE [ANN08],

and that a fungal genome has about 500 transporters predicted. Therefore the information

in a PGDB about transport is very incomplete.
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3.4 Conclusion

This chapter presents the experiments and evaluation of the metabolic pathways reconstruc-

tion of six fungal genomes using Pathway Tools. MetaCyc is a well-established curated

reference template for GENREs; however, MetaCyc is by no means complete. Furthermore,

most of the information is for prokaryotes. In order to be able to move to the next steps

in GENRE and perform flux balance analysis, the metabolic pathway model needs to be

connected and to include the core metabolism of the organism.

Our evaluation relied on internal validation of the model through counts of entities, in

particular, using the number of pathways to gauge the extent of the model, and the number

of holes before and after hole-filling to measure the completeness of the model. We had no

ground truth, nor access to wet lab validation, in order to perform external validation. This

is true for known pathways, and more so for de novo pathways.

The Transport Inference Parser (TIP) [LPK08] is very limited in the prediction of trans-

porters. Furthermore, Pathway Tools models only the extracellular space, the periplasmic

space, the cytosol, and the mitochondrion.

The heavy dependence on genome annotation for GENRE, in our experience, only had

an impact for automated annotations for which there was no review, as in the case of P.

chrysosporium. The PGDBs for the other genomes were roughly equivalent. It did not matter

whether there were only manual annotations, as in N. crassa, or those manual annotations

were augmented by additional trusted annotations from orthologs, as in the Aspergillus

genomes. Presumably they each covered the core known metabolism in each of them, as this

would be the first step in manual annotation.

The issues identified for eukaryotes in particular are the need to model a cell’s internal

organelles, predict localization of proteins, and predict transport proteins with their specific

substrate and membrane localization. In summary:

• The reference template approaches are dependent on the body of existing knowledge,

and the effort to manually curate the scientific literature to extract that knowledge

and encode it in public databases.

• The evaluation of methods is difficult when applied to new genomes. Internal validation

of the model can be measured in terms of numbers of pathways, reactions, and GPR

associations to indicate coverage, and by the number of holes to indicate completeness.
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Further internal validation requires constructing a systems biology model so one can

apply flux balance analysis for atoms, charges, energy, etc. External validation requires

the scientist to make predictions from the model and then to validate those predictions

in the wet lab; this is not expertise available usually to the developer of algorithms.

• The validation of methods for de novo discovery of pathways is difficult, even for

model organisms. Internal validation shows that the pathways are sound in terms of

the chemical transformation of compounds, but external validation of the existence of

the pathway in the organism requires extensive wet lab work.

• Even with gap filling, there are typically many holes in the resulting reconstruction.

Most approaches to gap-filling do not make use of gene expression data, which today

can be readily available even for non-model organisms through RNA-Seq.

• The widely available and widely used tools are biased towards prokaryotes. In partic-

ular, they do not model cell compartments such as mitochondrion, Golgi, peroxisome,

ER, vacuole, or lysosome in their reconstructions.

• Transport reactions are often an afterthought in the modeling of the cell, despite the

fact that the reconstruction needs to view the cell as a closed system importing and

exporting compounds to its surroundings in order to perform internal validation.
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Chapter 4

Prediction of Transport Proteins

This chapter investigates how to include transport reactions, transporter proteins, and the

GPR associations for transport in the reconstruction of metabolic pathways. For prokary-

otes, it is sufficient to model the transport across the cell membrane. However, eukaryotes

have internal organelles, therefore the reconstruction requires modeling of the cell internal

components and the intracellular transport across their membranes. The transport reaction

should represent the transport of one or more specific substrates across a specific mem-

brane. The GPR association should identify the transmembrane protein that performs the

movement of those substrates across that membrane.

The official home of transporters is the Transporter Classification (TC) scheme and its as-

sociated collection of transporters, the Transporter Classification Database (TCDB). Some

predictors of transport proteins target the TC as the goal of the predictor. However, the

TCDB does not explicitly identify a transport reaction, the specific substrate, or the mem-

brane for each of its entries. Therefore, other predictors target the prediction of substrates

directly. However, they are able to predict the type of substrate being transported, but

not the specific substrate. Unfortunately, the actual problem addressed by each predictor

of transport proteins is so diverse that meaningful comparison of their performance is im-

possible. We develop a scheme to describe and compare the existing work, and carry out a

case study on a fungal genome to get a deeper understanding of the existing work, and to

compare them in a practical setting.

The most useful approach seemed a direct application of sequence similarity as used in the

protocol of Milton Saier’s lab. So we automate the protocol and include localization to
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identify which organelle membrane is involved in the transport reaction.

The prediction of which specific substrate is transported by the transport protein is beyond

the current state of the art. We explore various approaches that offer potential solutions,

but we do not solve the problem. The lack of characterized examples is a major factor in

our failure; there are often sufficient examples within a type of substrate to effectively train

a predictor, while for each specific substrate the number of examples is insufficient for this

task.

In order to make effective use of available examples, and to prepare for the day when sufficient

examples are available for specific substrates, we propose a framework for the transport

prediction problem that draws on our experience. This is a proposal, not a worked solution,

that relates the exsiting sources of knowledge and identifies two key aspects: first, that the

problem is hierarchical in nature, corresponding to the subset grouping of the substrates

based on their chemical and physical properties; and second, that it is a multi-label machine

learning problem.

The chapter is organized as follows: Section 4.1 presents the scheme for describing and com-

paring existing methods; Section 4.2 presents the state of the art; Section 4.3 presents the

case study of the existing methods when applied to a fungal genome; Section 4.4 presents

the TransATH system which automates Saier’s protocol and demonstrates TransATH on

the fungal genome of the case study; Section 4.5 presents an evaluation of the thresholds to

use for blastp and the correctness of TransATH; Section 4.6 explores approaches to predict-

ing specific substrates given a transport protein; Section 4.7 proposes a framework for the

transport prediction problem; and Section 4.8 presents the lessons learned.

4.1 A Scheme to Compare Transport Predictors

The existing work on predicting transporters is quite diverse, and lacks any clear comparisons

between the different schools of work. Therefore, to make the similarities and differences

between the approaches clear, we required a scheme for structuring the descriptions. Table 23

presents an overview of the work on the transport protein prediction problem using the

scheme.

For the purposes of GENRE and assigning a gene to a transport reaction, the prediction must

target the specific substrate(s) transported, and the membrane across which the transport
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takes place. Predicting the specific substrate is difficult because the specificity depends on

a small number of residues at specific sites in the protein, and the number of characterized

transporters is small.

Existing work on the prediction of whether a protein is a transporter adopts one of two

approaches, either

TC: classifying the protein according to the Transporter Classification (TC) of the Interna-

tional Union of Biochemistry and Molecular Biology (IUBMB), or

Substrate: classifying according to the type of substrate transported: amino acid, anion,

cation, electron, protein/mRNA, sugar, and other.

There are many interpretations in the literature of the prediction problem for transporters.

This makes comparison of the existing approaches difficult to compare. In describing the

work on the problem of transporter prediction we introduce the following dimensions with

their values:

Scale: P (protein), G (genome);

Classifier: B (binary), MC (multi-class), ML (multi-label);

Target: Transporter, TC-Superfamily, TC-Family, TC-Subfamily, TC-ID, Sub-

strateType, Substrate;

Scope: All, B (Bacteria/Prokaryote), F (Fungi), P (Plant), H (Human);

Localization: NoLoc, Loc;

Two important variations are whether the problem is to classify a particular protein (P), or

to classify all proteins in an organism’s genome (G). More importantly, to take advantage

of the fact that all transporters in the genome are the goal, and use techniques such as

gap-filling. No existing predictor works at the genome scale.

A second distinction is the type of classifier, be it a binary classifier (B), multi-label classifier

(ML), or multi-class classifier (MC). For example, on sugars, for a protein p, (B) does p

transport the substrate glucose? (MC) which single substrate in the set {glucose, maltose,

xylose} does p transport? and (ML) which subset of substrates in the set {glucose, maltose,

xylose} does p transport?
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The basic classification task is also interpreted depending on whether the target of the

prediction is to classify transporters, their TC family, or their substrate. We identify the

following specific prediction tasks and their targets:

Transporter: Given a protein p, is p a transport protein?

TC-Superfamily: Given a protein p, and a superfamily X, is p a transport protein in X?

TC-Family: Given a protein p, and a family X, is p a transport protein in X?

TC-Subfamily: Given a protein p, and a subfamily X, is p a transport protein in X?

TC-ID: Given a protein p, and a TCDB protein with identifier X, is p a transport protein

with X as its nearest neighbour in TCDB?

SubstrateType: Given a protein p, and a category of substrates S, does p transport a

substrate in S?

Substrate: Given a protein p, and a substrate s, does p transport the substrate s?

The scope of the classifier is also important. Most approaches present themselves as generic,

that is, covering all kingdoms of life, even though they are trained, evaluated and tested on

a few specific organisms, or the TCDB which is biased towards the model organisms.

Finally, the issue of predicting the localization of transport is important in eukaryote cells.

Most existing approaches treat this as a separate problem.

4.2 The State of the Art

For most of the work done on the prediction of transport proteins [GO14], there is no

available software, so it is difficult to reproduce the work and to compare the results of

different articles. The two schools of predicting substrate category or TC family further

complicate any comparisons. A summary of the work using our dimensions of the transport

protein prediction problem is given in Table 23.

Research on prediction of transporters has three main sources of gold standard datasets:

1. the model organism databases for E. coli, S. cerevisiae, and A. thaliana;

2. the UniProt/SwissProt database of reviewed protein annotations that includes the data

from (1); and
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3. the Transporter Classification Database (TCDB) [SLBG].

The number of experimentally characterized transport proteins is quite small. So one is

either restricted to small datasets and a restricted range of target classes for prediction, or

one includes proteins with electronic annotations.

In the TCDB, there is great imbalance between the size of families, which impacts the

evaluation of the predictors, or restricts the range of target classes. Of the 835 families, 137

have only a single member, and 734 have size from 1 to 20; therefore there are 101 families

of size greater than 20. The largest families are 3.A.1, The ATP-binding cassette (ABC)

superfamily, of size 1569, and 2.A.1, The major facilitator superfamily (MFS), of size 720.

Further details are given in Table 20.

Size Number
1 137

2–20 597
21–50 77
51–100 12
101–200 6
201–300 4
700+ 2

Table 20: Number of TC Families of Given Sizes

The table shows the number of TC families of size within the specified range. The
number 20 is taken as an indication that the family is large enough to support the
training of a predictor using machine learning. As of May 2014.

4.2.1 TransAAP

The TransAAP [RKP04] is a semi-automated analysis pipeline to input data into Trans-

portDB. TransAAP targets only prokaryotes. A new genome is matched against the curated

set of TransportDB proteins with assigned family using BLAST with e-value cut-off of 1e-3.

Information from these BLAST searches against TransportDB are collected, as is informa-

tion from searches against non-transporters in the nr protein database, and classification by

COG. A web-based interface displays the information to help a human annotator decide and

assign possible substrates or functions.
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4.2.2 Transport Inference Parser

Pathway Tools includes the Transport Inference Parser (TIP) [LPK08] which analyses key-

words in a gene annotation to assign GPR associations to transport reactions in MetaCyc.

4.2.3 Saier Lab

G-Blast [RS12] screens proteins against all entries in TCDB using BLAST to retrieve the

top hit, and HMMTOP to determine information about TMS for the query and the hit

sequence. It is an integral part of a manual protocol to predict the transport proteins for a

genome [PVL+14] developed by Saier’s lab.

[G-Blast ] Run blastp against TCDB with e-value 1e-3 and no low complexity filter.
[G-Blast ] Run HMMTOP to determine TMS.
[TMS check] Use WHAT [ZSJ01] with window size of 19 and angle of 100 degrees to
create hydropathy plot.
[TMS check (Manual)] Check plot and TMS prediction.
[TMS?] Reject any protein with zero TMS in target or query.

[G-Blast ] Run blastp with e-value 0.1.
[Putative transporters (Manual)] A new hit (query) may be member of new transporter
family.

[Beta-barrel proteins] Run BOMP (Beta-barrel integral Outer Membrane Proteins) pro-
gram (http://services.cbu.uib.no/tools/bomp/handleForm).
[Manual review] Hits may be putative transporters.

Figure 20: Protocol of Saier Lab

On the basis of sequence similarity, and on the basis of the number and location of TMS, with

entries of known function in TCDB, the transport proteins are classified into families and

subfamilies which often allows the “prediction of substrate type with confidence.” [PVL+14].

4.2.4 Zhao Lab

The Zhao Lab has developed three methods: a nearest neighbour approach [LDZ08]; Trans-

portTP [LBUZ09]; and TrSSP [MCZ14]. The nearest neighbour approach achieved a bal-

anced accuracy of 67.0%.

TransportTP [LBUZ09] is a two-phase algorithm that combines homology and machine learn-

ing to predict TC family of one or more proteins. For training and cross-validation testing,
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TransportTP used the yeast proteome. For testing, it used 10 genomes from the Trans-

portDB database [RCP07] of annotated prokaryote transporters. As an independent test,

TransportTP is trained on the proteome of the plant A. thaliana and then used to predict

the transporters in 4 other plant proteomes.

The overall process consists of a pre-processor phase, a phase to construct an initial classifier,

and a phase to refine the classifier.

The preprocessing phase uses (1) the TCDB database of transporters classified into TC su-

perfamilies and TC families; (2) the Pfam database of protein domains; and (3) the Gene

Ontology subgraph rooted at term GO:0022857 transmembrane transporter and the asso-

ciated sequences. The preprocessing phase constructs (A) a HMM for each TC superfamily

and for each TC family that had sufficient members using the SAM program; and (B) a

mapping of Pfam domains to TC families or superfamilies using an all-vs-all HMM search

of Pfam against the TCDB.

The initial classifier integrated the results of BLAST search and HMM search. The BLAST

search is performed against the TCDB, while the HMM search is performed against the

collection (A) of HMMs from the preprocessing phase.

The final classifier is constructed as an ensemble of balanced SVMs from a large feature

space of the transporters identified by the initial classifier. The intent of the ensemble is to

refine the classification and remove false positives. The feature space has seven parts, each

derived separately:

1. The first category of features is the e-values of the protein against each entry in the

TCDB generated during the BLAST search and the HMM search during the initial

classification phase;

2. The second category are binary features (whether or not the classification falls into

channels, carriers, or primary active transporter) and the sizes of the initially classified

families;

3. The third category is the number of transmembrane segments for the protein and for

the TC families;

4. The fourth category is the consistency of TC family amongst the top k-homologs from

the initial search;
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5. The fifth category is the occurrence of Pfam domains in the protein from those domains

that map to TC families or superfamilies;

6. The sixth category is the occurrence of a GO term by BLAST search of the protein

against the associated sequences; and

7. The seventh category is an indication of non-transport function as measured by key-

words associated with the top BLAST neighbours in SwissProt.

TransportTP achieved a balanced accuracy of 81.8%. They compared TransportTP with

their earlier work [LDZ08] using nearest neighbours with balanced accuracy of 67.0%, the

initial classifier, and the individual components BLAST search and HMM search of the initial

classifier. Compared with the SVM-Prot classifier [LHC+06], on the five TC superfamilies

and three families used by SVM-Prot, TransportTP achieved better performance in recall

and precision: SVM-Prot achieved an average recall of 81.0% and an average precision of

26.1%.

The Transporter Substrate Specificity Prediction Server (TrSSP) [MCZ14] is a web server to

predict membrane transport proteins and their substrate category. The substrate categories

are: (1) oligopeptides (amino acid); (2) anion; (3) cation; (4) electron; (5) protein/mRNA;

(6) sugar; and (7) other. TrSSP makes a top-level prediction of whether the protein is a

transporter, or not. A SVM is applied with highest accuracy being reported using amino

acid index (AAindex) and Position-Specific Scoring Matrix (PSSM).

4.2.5 Gromiha Lab

Gromiha and Yabuki [GY08] reported that a k-nearest neighbour method using the amino

acid composition could discriminate non-transporters and transporters with accuracy about

80%. The use of PSSM profiles and 49 amino acid physicochemical properties showed an

increase of 5–10% in discrimination accuracy [OCG10].

Gromiha and Yabuki [GY08] used amino acid composition for discriminating channels/pores,

electrochemical and active transporters, with an accuracy of 64%. Again, using PSSM

profiles and amino acid properties, they obtained an average accuracy of 78% [OCG10].

Ou et al. [OCG10] also considered six major families in TCDB. Their method based on PSSM

profiles and amino acid properties showed an average accuracy of 69%, with an improvement

of 8% over amino acid composition.
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Chen et al. [COLG11] considered four major classes of substrates: (i) electron, (ii) pro-

tein/mRNA, (iii) ion and (iv) others. They analyzed the characteristic features of trans-

porters associated with these targets using amino acid properties. They used various fea-

tures, amino acid composition, residue pair preference, amino acid properties and PSSM

profiles and developed an algorithm based on radial basis function (RBF) networks to dis-

criminate transporters with different substrates with an AUC of 0.90, 0.86, 0.77 and 0.86,

respectively.

4.2.6 Helms Lab

Schaadt et al. [SCH10] used amino acid composition, characteristics of amino acid residues

and conservation to detect transporters based on different substrates, amino acids, oligopep-

tides, phosphates and hexoses and showed an accuracy of 75% to 90%. They classified to

four substrate categories: amino acid, oligopeptide, phosphate, and hexose. The number of

characterized transporters in A. thaliana for the four substrates numbered from 13 to 17.

They constructed a vector for each protein using various types of amino acid composition,

AAC, PAAC, PseAAC, PsePAAC, MSA-AAC, and used Euclidean distance from the query

protein’s vector to the known vectors to rank the substrate categories. They found that AAC

did not yield accurate results. However, PAAC performed as well as the more complicated

PsePAAC and MSA-AAC, yielding accuracy over 90%.

Schaadt and Helms [SH12] compared the similarity of transporters in TCDB and annotated

transporters in A. thaliana using amino acid composition and classified the proteins into

three families. By distinguishing the amino acid composition of TMS and non-TMS regions,

they could classify four different families with an accuracy of 80%.

Barghash and Helms comparison [BH13] performed a comparison of three different ap-

proaches (homology, HMMER, MEME) for predicting substrate category and predicting

TC family. They used four substrate categories, metal ions, phosphate, sugar, and amino

acid; and 29 TC families, with the most numerous examples. The datasets are from E. coli,

S. cerevisiae, and A. thaliana, consisting of the 155, 158, 177, respectively, proteins that had

both a substrate annotation and TC family annotation that are experimentally determined.

We summarize the best and worst of their results in Table 21 and Table 22. There are many

proteins that are unclassified by their predictors, the overall prediction of TC family is better
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Homology HMM MEME
Best Worst Best Worst Best Worst

P 97.5 54.1 97.5 73.3 100 9.6
R 97.5 62.9 97.5 73.3 100 36.6
F 97.5 55.2 97.5 73.3 100 13.0
U 35.0 0.0 2.5 76.7 28.3 0.0

Table 21: Results Predicting TC Family

The table compares the results of BLAST, HMMER, and MAST for predicting TC fam-
ily [BH13]. It presents the best and the worst results for each method as determined by
F-measure. Abbreviations: P for precision; R for Recall, F for F-measure; and U for Unclas-
sified. All results are given as percentages.

Homology HMM MEME
Best Worst Best Worst Best Worst

P 95.5 34.9 99.3 51.4 82.9 25.0
R 100 51.5 96.2 51.4 96.7 31.7
F 97.2 35.7 97.2 51.4 87.7 27.3
U 45.7 1.4 45.7 93.1 68.7 0.0

Table 22: Results Predicting Substrate Category

The table compares the results of BLAST, HMMER, and MAST for predicting substrate
category [BH13]. It presents the best and the worst results for each method as determined
by F-measure. Abbreviations: P for precision; R for Recall, F for F-measure; and U for
Unclassified. All results are given as percentages.

than that of substrate category, and homology performs as well if not better than the other

two approaches.

Work Scale Classifier Target Scope Localization Dataset Software
TransAAP [RKP04] P B Transporter B NoLoc TransportDB Web

P MC TC-Family B NoLoc
G-Blast [RS12] P B Transporter All NoLoc TCDB Yes

P MC TC-ID All NoLoc
TransportTP [LBUZ09] P B Transporter All NoLoc TransportDB Web

P MC TC-Family All NoLoc S. cerevisiae
A. thaliana

TrSSP [MCZ14] P B Transporter All NoLoc SwissProt Web
P ML SubstrateType(7) All NoLoc

Table 23: Existing Work on Predicting Transport Proteins

4.3 Case Study

In 2008 MR Andersen [ANN08] published a comprehensive gapless metabolic model of the

CBS 513.88 strain of the fungus Aspergillus niger widely used for the production of chemicals.
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The model was based on extensive review of the literature and comparisons with models of

closely related species and strains. The model was gapless so there are no missing reactions

and the network is connected.

The genome has 14,156 ORFs. The GENRE contained 1190 unique reactions and identified

GPR associations for 871 ORFs. The modeled cellular compartments are extracellular space,

cytosol, and mitochondrion. The metabolic reactions numbered 986 of which 131 have no

assigned GPR. There were 205 transport reactions of which only 3 have assigned GPR, so

1.46% of transport reaction have assigned GPR, compared to 96.86% for metabolic reactions.

The transport across the cell membrane from extracellular space to cytosol covers 151 trans-

port reactions, while transport across the mitochondrion membrane covered 54 transport

reactions. The metabolites transported included nucleotides, amino acids, alcohols, acids,

fatty acids, phosphate, urea, aldehydes, sugars, and others (CO2, H2O, O2, H2O2, etc). Of

particular interest to us are the sugars. There are 21 sugars in total: disaccharides (tre-

halose, lactose, maltose), and monosaccharides categorized by the number of carbon atoms

as tetrose, pentose (arabinose, ribose, ribulose, xylose, xylulose), and hexose (glucose, galac-

tose, mannose, iditol, sorbose, rhamnose). There are separate transport reactions for the two

forms D- and L- of arabinose and xylulose; and separate transport reactions for the open

chain and ring forms of glucose: D−glucose, α−D−glucose and β−D−glucose.

Note that for S. cerevisiae, the most studied fungi, there are 66 transporters, of which 15 are

sugar transporters. Of these 15 there are 5 that are experimentally characterized as sugar

transporters, and 3 of the characterized sugar transporters are for a specific sugar, glucose.

4.3.1 A Pathway Tools Reconstruction

We constructed a GENRE for A. niger CBS 513.88 with Pathway Tools and the AspGD

annotation. Pathway Tools includes the Transport Inference Parser (TIP) [LPK08] which

analyses keywords in a gene annotation to assign GPR associations to transport reactions in

MetaCyc. The model contained 332 pathways, 1868 metabolic reactions, and 10 transport

reactions. There were 1580 ORFs assigned to metabolic reactions, and 41 ORFs assigned to

transport reactions. There were 335 holes (31%) in the model.

Pathway Tools models only the extracellular space [out] and the cytosol [in]. Figure 21

shows the 10 transport reactions of the A. niger CBS 513.88 Pathway Tools GENRE.
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(1) NADP+ +NADH+H+
[out] ←−→ NAD+ +NADPH+H+

[in]

(2) UDP−α−D−glucose + glucosyl−glycogenin[in] −−→
1 ,4−α−D−glucosylglycogenin + UDP+H+

[out]

(3) phospolipid[in]+ATP+H2O←−→ phospolipid[out]+ADP+phosphate+H+

(4) Cu2+[in] +ATP+H2O −−→ Cu2+[out] +ADP+ phosphate + H+

(5) ATP + H+
[in] +H2O←−→ ADP+ phosphate + H+

[out]

(6) Ca2+[out] +ATP+H2O←−→ Ca2+[in] +ADP+ phosphate + H+

(7) ATP + 3H+
[in] +H2O←−→ ADP+ phosphate + 4H+

[out]

(8) oligopeptide[out] +ATP+H2O←−→ oligopeptide[in] +ADP+ phosphate

(9) xenobiotic[in] +ATP+H2O←−→ xenobiotic[out] +ADP+ phosphate

(10) 4H+
[in] −−→ 4H+

[out]

Figure 21: Transport Reactions Predicted by Transport Inference Parser

We investigated the application of existing methods for predicting transporters to our case

study; in particular, for the transport of sugar. The results were poor and not in agreement

with each other. This contradicts the good results by the authors of the existing work

as reported in Section 4.2. Indeed, our approach using homology is competitive with the

existing approaches.

We also report results for two important substeps: the predicting of transmembrane seg-

ments, and the localization of transporters.

4.3.2 TCDB-Blast— Our G-Blast(v2) Implementation

We modified the G-Blast version 2 implementation of Saier’s lab to do more than simply take

the top BLAST hit, and calculate the number of TMS using HMMTOP. The details are in

Section 4.4. The results here refer to TCDB-Blast, the modified G-Blast(v2) which collects

all hits passing a set of thresholds: e-value 1e-20; percent alignment 70%; query coverage 70%;

subject coverage 70%; and difference in length of 10%. The standard thresholds for BLAST

alignments for the purpose of functional annotation of proteins in general [HPCW11] use

percent identity of 70% rather than percent alignment; however, for transmembrane proteins

there is less conservation of identity during evolution. After running HMMTOP, we rejected

sequences without a TMS.

79



4.3.3 Sanity Check of Prediction on TCDB

The TCDB dataset as of May 2014 has 11572 transporter sequences. UniProt has 11589 pro-

tein sequences tagged with TC-IDs. Out of 11589, 5321 are reviewed sequences (SwissProt),

while 6268 are unreviewed. There are discrepancies due to update and synchronization

between these two databases.

We ran each predictor against the TCDB. The results are in Table 24. Not surprisingly,

the direct homology approach using TCDB-Blast performed best. What is surprising is

how many transporters were predicted to be non-transporters by TransportTP and TrSSP.

This reinforces the evidence of poor coverage of prediction techniques from Barghash and

Helms [BH13].

Predictor TCDB Transporter Non-Transporter
No. Pct No. Pct

TCDB-Blast 11572 11218 96.9 354 3.1
TransportTP 11572 5517 47.7 6055 52.3
TrSSP 11572 7528 65.0 4044 35.0

Table 24: Predictions on TCDB

4.3.4 A niger CBS 513.88

Each of the systems is run on the genome of A niger CBS 513.88. We determined the

total number of proteins predicted as transporters (see Table 25) and focused in on those

predicted as sugar transporters (see Table 26) either as members of TC family 2.A.1.1 or

as transporters of the substrate category sugar. Note that the number of transmembrane

proteins is 5702 based on those with at least one TMS as determined by HMMTOP, and

the number of possible sugar porters is 461, based on those with between 10 and 12 TMS as

determined by HMMTOP.

ORFs MRA TIP TB TP TR
14067 3 41 565 673 3582

Table 25: Predicted Transporters in the Case Study

The number of ORFs in A. niger CBS 513.88 predicted to be transporters by
different approaches: MRA, manually by MR Andersen [ANN08]; TIP, Pathway
Tools Transport Inference Parser; TB, TCDB-Blast; TP, TransportTP; TR,
TrSSP.
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ORFs Motifs Predictors
ST1 ST2 TB TP TR

14067 74 65 62 23 482

Table 26: Predicted Sugar Transporters in the Case Study

The number of ORFs in A. niger CBS 513.88 predicted to be sugar transporters
by different approaches: ST1, Prosite PS00216 Sugar Transport 1 motif; ST2,
Prosite PS00217 Sugar Transport 2 motif; TB, TCDB-Blast; TP, TransportTP;
TR, TrSSP. Note that [ANN08] had 21 unique sugar transport reactions.

4.3.4.1 Topology

We compared the results of two common predictors HMMTOP v2.1 and TMHMM v2.0 of

transmembrane helices on two subsets of the TCDB, namely the MFS Superfamily (2.A.1),

and the Sugar Porters (Family 2.A.1.1). Table 27 shows the results. As sugar transporters

in TCDB all have 12 TMS, HMMTOP is clearly better, confirming the overall best rating

for HMMTOP for predicting topology of membrane proteins in a broader comparison of

systems [RCL+14].

Helices 8 9 10 11 12
HMMTOP v2.1 3 5 111
TMHMM v2.0 2 3 18 17 79

Table 27: Comparison of HMMTOP and TMHMM on Sugar Porters

4.3.4.2 Localization

For localization of the 62 sugar transporters in A. niger CBS 513.88 as predicted by TCDB-

Blast, LocTree3 placed 48 in the plasma membrane, 10 in the mitochondrion membrane, and

4 in the vacuole membrane.

4.3.4.3 Sugar Transporters

We compared the TrSSP predictions of the 62 sugar transporters predicted by TCDB-Blast in

Table 28. Almost always, TrSSP predicted at least one other substrate category in addition

to sugar, generally amino acid and/or anion. In 13 cases (21%), TrSSP did not predict the

substrate to be sugar.
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TCDB-Blast Prediction A. niger TrSSP Prediction
SubFamily
TC #

SubFamily Name TCID Hits SequenceID AA An Ca El Pr/
mR

Su Ot Uk

2.A.1.1 Sugar Porter (SP) 2.A.1.1.7 P11636 An01g00820 X X X
An01g10970 X X X
An07g06300 X X X X
An08g03850 X X X
An12g01560 X X
An14g04280 X X X
An14g06890 X X
An15g04270 X X X
An16g06580 X X X
An18g01700 X X X X

2.A.1.1.10 P15685 An02g02810 X X X
2.A.1.1.11 P53048 An08g08000 X X X
2.A.1.1.33 Q8NJ22 An06g02270 X X X
2.A.1.1.38 P39932 An01g08780 X X X

An02g00060 X X
An04g08030 X X
An05g02010 X X X
An07g01260 X X
An18g00040 X X X
An18g00440 X X

2.A.1.1.39 P49374 An02g00590 X X X X
An02g07850 X X X
An03g01620 X X X X
An07g10370 X
An08g04040 X X
An11g01100 X X X X

2.A.1.1.40 Q64L87 An01g00850 X X X X
An04g10090 X X X
An06g00560 X X X X
An07g01310 X X
An11g05280 X X X X
An12g05820 X X
An16g06610 X X X
An18g01760 X X X X

2.A.1.1.51 Q2MEV7 An15g00310 X X
2.A.1.1.57 Q8J0V1 An12g07450 X X X X
2.A.1.1.58 Q8J0U9 An02g03540 X X X

An03g02190 X X
An05g01290 X X X

2.A.1.1.68 A3M0N3 An03g01750 X X
An11g00120 X X X
An15g03940 X X X X

2.A.1.1.69 A1Z264 An14g02700 X X
2.A.1.1.70 Q0ULF7 An15g01500 X X X X
2.A.1.1.73 Q5A8J5 An01g14620 X X

An02g11260 X X X X
An05g02510 X X X
An07g06880 X X X
An09g02930 X X X
An14g02740 X X X
An14g03990 X X X

2.A.1.1.82 Q7SCU1 An12g09270 X X X X
2.A.1.1.83 Q7SD12 An03g05320 X X

An04g02790 X X X
An08g09350 X X
An09g04810 X X X X
An13g03250 X X
An14g01600 X X X
An16g06220 X X

2.A.1.1.96 P38142 An09g04680 X X
2.A.1.1.110 P39924 An08g08520 X X X
2.A.1.1.117 G4N740 An06g02030 X X X

Table 28: TCDB-Blast Results for Sugar Porters with their TrSSP Substrates Prediction

TrSSP prediction of substrate category for the TCDB-Blast predicted sugar transporters in A.
niger CBS 513.88. Abbreviations: Ca: Cation, An: Anion, Su: Sugar, El: Electron, Pr/mR:
Protein/mRNA, Ot: Other, Uk: Unknown 82



4.3.5 Transport Prediction on Fungal Genomes

The transport predictors are applied to a number of fungal genomes. Table 29 summarizes

the number of predictions by fungal genome and by predictor. Further details of the results

for TransportTP are shown in Table 50 in Appendix B; and for TCDB-Blast in Table 52 in

Appendix C. In Appendix D in Table 53 is a comparison of the TrSSP results with TCDB-

Blast results for the channel/pores transporters. Appendix D also contains Table 54 which

shows the usual localization of predicted sugar porters and highlights the unusual predicted

localizations by LocTree3 for the fungal genomes.

Genomes TCDB-Blast TransportTP TrSSP
A. fumigatus Af293 448 528 2892
A. nidulans FGSC A4 503 605 3220
A. niger CBS513.88 565 673 3582
A. niger NRRL3 649 701 3758
A. oryzae RIB40 622 784 3754
N. crassa OR74A 311 348 2657
P. chrysosporium RP78 231 338 2692
S. pombe 243 222 1519

Table 29: Summary of Results by TCDB-Blast, TransportTP and TRSSP

Number of transporters predicted by the tools for the eight fungal genomes.
TCDB-Blast and TransportTP use a threshold e-value 1e-20. There is no thres-
hold for TrSSP prediction results.

4.3.6 Discussion

From the state of the art, it is clear that neither software nor web services are available for

most of the approaches in the literature. Furthermore, the tools are not directly comparable

becuase they are solving diverse problems, so one is left with “comparing apples and oranges”.

In the case study, we evaluate the available tools in the same setting.

Coverage of transporters is poor

The sanity check as presented in Table 24 reveals that both TransportTP and TrSSP recog-

nize less than 65% of the entries in the TCDB as transporters.

Coverage is 97% for TCDB-Blast, which uses sequence similarity against TCDB as its pre-

diction. However, the argument is circular, as we use the TCDB as the benchmark for the

sanity check.
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Sequence similarity works best

Table 24 and the other tables in Section 4.3 show prediction by sequence similarity to work

well, and generally better than other methods. This confirms the results of the Barghash

and Helms comparison [BH13] above.

Overprediction by TrSSP

TrSSP [MCZ14] is the most recent work from Zhao’s lab. It is their first effort to predict sub-

strate rather than TC family, and it is their first multi-label predictor. Table 25 shows that

TrSSP predicts 3583 transporters for A. niger CBS 513.88, while TCDB-Blast and Trans-

portTP predict 565 and 673 respectively. These latter numbers are more in line with the

consensus that filamentous fungi have some 500 to 800 transporters. Similarly, in Table 26

TrSSP predicts 482 sugar transporters compared to 62 and 23 by TCDB-Blast and Trans-

portTP, respectively, and compared to 74 and 65 by the Prosite motifs Sugar Transport 1

and Sugar Transport 2 respectively.

On closer inspection in Table 28, TrSSP predicts 3–4 substrates for each sugar transporter

identified by TCDB-Blast.

The numbers suggest strongly that TrSSP is overpredicting, maybe by a factor of 4 to 8

times.

Topology prediction does not identify TCID

As transporters are transmembrane proteins, one direct approach to identifying them is to

use the number of TMS as an identifying attribute. However, strict reliance on the equality

of the number of TMS would miss many cases due to the errors in the prediction of topology,

as highlighted in Table 27.

4.4 Automation of Manual Protocol of Saier

This section presents an implementation that automates the protocol for predicting the

transporters in a genome used by Saier’s lab. The reason for this choice are multifold:

the Barghash and Helms comparison [BH13] shows that homology works as well as other

approaches in predicting transporters; Milton Saier and the TCDB are the authority on

transporters; Saier’s lab uses homology; and Saier’s lab applies their approach to whole

genomes. The protocol used by Saier’s lab is as we discerned it to be from their publications.
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Our system is named TransATH, which stands for Transporters via ATH (Annotation Trans-

fer by Homology).

4.4.1 The Protocol

Saier’s lab has analysed the genomes of several organisms for their complement of trans-

porters [YS12, GNY+13, PVL+14]. Figure 22 shows the protocol that we obtained from the

Materials and Methods sections of their papers [YS12, GNY+13, PVL+14].

[G-Blast ] Run blastp against TCDB with e-value 1e-3 and no low complexity filter.
[G-Blast ] Run HMMTOP to determine TMS.
[TMS check] Use WHAT [ZSJ01] with window size of 19 and angle of 100 degrees to
create hydropathy plot.
[TMS check (Manual)] Check plot and TMS prediction.
[TMS?] Reject any protein with zero TMS in target or query.

[G-Blast ] Run blastp with e-value 0.1.
[Putative transporters (Manual)] A new hit (query) may be member of new transporter
family.

[Beta-barrel proteins] Run BOMP (Beta-barrel integral Outer Membrane Proteins) pro-
gram (http://services.cbu.uib.no/tools/bomp/handleForm).
[Manual review] Hits may be putative transporters.

Figure 22: Protocol of Saier Lab

Algorithm 1 shows G-Blast(v2). This is an algorithmic formalization of Saier’s protocol in

Figure 22. For clarity we make explicit the use of the Blast+ package for BLAST from https:

//blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download.

Algorithm 1 G-Blast(v2)

Require: a genome G as .fasta file of protein sequences
Require: the TCDB as a Blast+ protein sequence database with TCID as identifiers
Require: a mapping TC2TMS from the TCDB to the number of TMS of the entry
Ensure: result is list<gid, tcid> of matches of proteins gid in G with transporters tcid
1: function G-Blast(v2)(G, TCDB)
2: list<gid, tcid, , , , , > := Blast+:blastp(G, TCDB, e-3)
3: return list<gid, tcid> where
4: ( TC2TMS(tcid) ̸= 0) ∧ (computeTMS(gid) ̸= 0)
5: Comment We omit searching for putative transporters
6: Comment We omit searching for beta-barrel transporters
7: end function
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Algorithm 2 presents the TransATH algorithm for the implementation of the protocol of

Saier’s lab for determining the transporters in a given genome. TransATH stands for Trans-

porters via ATH (Annotation Transfer by Homology). Note that Algorithm 2 requires several

items of information from the TCDB to be provided. This pre-processing is presented in

Algorithm 3. We represent this information as mappings from the TCID to the information,

irrespective of whether it is easily available at TCDB or not. The information on topology

of a protein can be retrieved from UniProtKB for the entries of SwissProt; in other cases,

the information may be computed by HMMTOP. Algorithm 4 presents a utility function

find transporters which calls TCDB-Blast, the BLAST search at the heart of TransATH. Al-

gorithm 5 shows TCDB-Blast, the BLAST search of the TCDB using our choice of thresholds.

Algorithm 6 shows the algorithm to determine the topology of a protein, and Algorithm 7

shows the algorithm to determine subcellular localization. Finally Algorithm 8 presents an

extended version of TransATH, which includes subcellular localization information.

Algorithm 2 TransATH— Transporters via ATH (Annotation Transfer by Homology)

Require: a genome G as .fasta file of protein sequences
Require: the TCDB as a Blast+ protein sequence database with TCID as identifiers
Require: a mapping TC2UniProt from the TCDB to the UniProt identifier of the entry
Require: a mapping TC2TMS from the TCDB to the number of TMS of the entry
Require: a mapping TC2Family from the TCDB to the TC family of the entry
Require: a mapping TC2SubstrateGP from the TCDB to the Substrate Group of the entry
Require: a mapping TC2SpecSubstrate from the TCDB to the Specific Substrate of the

entry
Ensure: creates a table describing the complement of transporters in the genome G
1: list<gid, tcid> := find transporters(G, TCDB)
2: sort list by lexicographical order of tcid
3: for all <gid, tcid> in list do
4: output TC2Family(tcid),
5: tcid,
6: TC2UniProt(tcid),
7: TC2TMS(tcid),
8: TC2SubstrateGP (tcid),
9: TC2SpecSubstrate(tcid),
10: gid,
11: computeTMS(gid)
12: end for
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Algorithm 3 Pre-Processing for TransATH

Require: the TCDB
Require: SwissProt
Ensure: the TCDB as a Blast+ protein sequence database with TCID as identifiers
Ensure: a mapping TC2UniProt from the TCDB to the UniProt identifier of the entry
Ensure: a mapping TC2TMS from the TCDB to the number of TMS of the entry
Ensure: a mapping TC2Family from the TCDB to the TC family of the entry
Ensure: a mapping TC2SubstrateGP from the TCDB to the Substrate Group of the entry
Ensure: a mapping TC2SpecSubstrate from the TCDB to the Specific Substrate of the

entry
Ensure: a mapping TC2Loc from the TCDB to the subcellular localization of the entry
1: download data from TCDB website
2: compute the TCDB Blast+ protein sequence database with TCID identifiers
3: manually curate list of Substrate Group terms
4: manually curate list of Specific Substrate terms
5: for all gid in TCDB and Swissprot do
6: retrieve TMS data for gid from SwissProt
7: retrieve subcellular localization for gid from SwissProt
8: end for
9: for all gid in TCDB without TMS data do
10: computeTMS(gid)
11: end for
12: for all gid in TCDB without subcellular localization do
13: computeLocalization(gid)
14: end for

Algorithm 4 find transporters

Require: a genome G as .fasta file of protein sequences
Require: the TCDB as a Blast+ protein sequence database with TCID as identifiers
Require: a mapping TC2TMS from the TCDB to the number of TMS of the entry
Ensure: result is list<gid, tcid> of matches of proteins gid in G with transporters tcid
1: function find transporters(G, TCDB)
2: list<gid, tcid, , , , , > := TCDB BLAST(G, TCDB)
3: return list<gid, tcid> where
4: ( TC2TMS(tcid) ̸= 0) ∧ (computeTMS(gid) ̸= 0)
5: end function
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4.4.2 TCDB-Blast Search

We modified G-Blast(v2), the second version of the G-Blast implementation of Saier’s lab

to do more than simply take the top BLAST hit. The results here refer to TCDB-Blast,

the modified G-Blast(v2) which collects all hits passing a set of thresholds: e-value 1e-20;

percent identity 40%; query coverage 70%; subject coverage 70%; and difference in length

of 10%, which were selected following the evaluation in Section 4.5. Algorithm 5 shows the

main step of the algorithm for the BLAST search of the TCDB.

Algorithm 5 The Algorithm for TCDB-Blast

Require: a genome G as .fasta file of protein sequences
Require: the TCDB as a Blast+ protein sequence database with TCID as identifiers
Ensure: result is list<gid, tcid, pid, qcov, scov, eval, score> of matches <gid, tcid> meeting

thresholds, with percent identity pid, query coverage qcov, subject coverage scov, e-value
eval, and score score

1: function TCDB BLAST(G, TCDB)
2: Set e-value threshold tevalue := 1e-20
3: Set percent identity threshold tpid := 40%
4: Set query coverage threshold tqcov := 70%
5: Set subject coverage threshold tscov := 70%
6: Set difference threshold tdiff := 10%
7: list<gid, tcid, pid, qcov, scov, eval, score> := Blast+:blastp(G, TCDB, tevalue)
8: return list<gid, tcid, pid, qcov, scov, eval, score> where
9: ( pid ≥ tpid) ∧ (qcov ≥ tqcov) ∧ (scov ≥ tscov)∧
10: ( |length(gid)− length(tcid)|/max(length(gid), length(tcid)) ≤ tdiff )
11: end function

4.4.3 Topology Step

There are several programs for predicting the topology of membrane proteins. Topology

is widely predicted using TMHMM. However, as shown above in Section 4.3.4.1, HMM-

TOP is superior. In a comparison of nine programs on four TC families [RCL+14], HMM-

TOP [TS01] is overall the best, performing best for the sugar porters, and performing well

for the other families. Also performing well were MEMSAT-SVM [NJ10] and SPOCTO-

PUS [VBSE08]. Note that Saier’s protocol [PVL+14] manually considers hydropathy plots

using WHAT [ZSJ01] to correct HMMTOP predictions.

The term hydropathy, which means “strong feeling about water”, is introduced by Kyte

and Doolittle [KD82] in 1982 to refer to the relationship between the hydrophilicity and
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hydrophobicity of an amino acid. The hydropathy plot averages across a window to smooth

out the values.

A similar tool, the hydrophobic moment plot of Eisenberg and co-workers [EWT82, ESKW84],

is used in the protocol of UniProt (http://www.uniprot.org/help/transmem), which re-

quires agreement of at least two methods from TMHMM, MEMSAT, Phobius and the hy-

drophobic moment plot method to predict alpha-helical TMS. Phobius is used to resolve

conflicts between overlaps in predicted N-terminal signal peptides and transmembrane do-

mains.

Our implementation relied on TM-Coffee [CDTTN12] which computes MSA of transmem-

brane proteins, to determine the alignment of the TMS regions of the query protein sequence

with the the TMS regions of the entry in TCDB. This approach uses the transmembrane

proteins in SwissProt as further entries in the MSA.

Algorithm 6 shows our implementation to determine the topology of a protein.

Algorithm 6 computeTMS function for Topology

Require: a protein sequence gid
Ensure: result is <num, topology> of the number and topology of TMS of gid
1: function computeTMS(gid)
2: <num, topology> := HMMTOP(gid)
3: msa := TM-Coffee(gid, SwissProt )
4: adjust list<num, topology> based on the alignment msa
5: return list<num, topology>
6: end function

4.4.4 Localization Step

A widely used tool for subcellular localization in fungi is WoLF PSORT [HPO+07]. It

predicts localization to the nucleus, mitochondrion, cytosol, plasma membrane, extracellular

region, Golgi, endoplasmic reticulum, peroxisome, vacuole, and several dual localizations.

WoLF PSORT does not explicitly separate localizations inside an organelle and localizations

in the membrane of an organelle.

A tool for localization prediction that has a comprehensive treatment of placing proteins in

membranes of organelles is LocTree3 [GHH+14]. LocTree3 targets 18 sites, including 8 mem-

branes: plasma membrane, nuclear membrane, mitochondrion membrane, ER membrane,
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Golgi membrane, vacuole membrane, peroxisome membrane, and chloroplast membrane.

LocTree3 achieves an overall accuracy of 80%. Furthermore, LocTree3 is shown to be supe-

rior to existing tools, including WoLF PSORT, in the experimental comparison [GHH+14].

Algorithm 7 computeLocalization function

Require: a transmembrane protein sequence gid
Ensure: result is the localization of protein gid
1: function computeLocalization(gid)
2: return LocTree3( gid )
3: end function

Algorithm 8 presents an extended version of Saier’s protocol which includes localization

information. Although the TCDB does not store localization information, for those entries

in SwissProt, the localization can be retrieved using the UniProt identifier of the TCDB

entry. In other cases, it can be computed using LocTree3.

Algorithm 8 TransATH Extended Version

Require: a genome G as .fasta file of protein sequences
Require: the TCDB as a Blast+ protein sequence database with TCID as identifiers
Require: a mapping TC2UniProt from the TCDB to the UniProt identifier of the entry
Require: a mapping TC2TMS from the TCDB to the number of TMS of the entry
Require: a mapping TC2Family from the TCDB to the TC family of the entry
Require: a mapping TC2SubstrateGP from the TCDB to the Substrate Group of the entry
Require: a mapping TC2SpecSubstrate from the TCDB to the Specific Substrate of the

entry
Require: a mapping TC2Loc from the TCDB to the subcellular localization of the entry
Ensure: creates a table describing the complement of transporters in the genome G
1: list<gid, tcid> := find transporters(G, TCDB)
2: sort list by lexicographical order of tcid
3: for all <gid, tcid> in list do
4: output TC2Family(tcid),
5: tcid,
6: TC2UniProt(tcid),
7: TC2TMS(tcid),
8: TC2SubstrateGP (tcid),
9: TC2SpecSubstrate(tcid),
10: TC2Loc(tcid),
11: gid,
12: computeTMS(gid),
13: computeLocalization(gid)
14: end for
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4.4.5 Substrate Information

In the application of the protocol [PVL+14], Saier assigns a Substrate Group and Specific

Substrate to each predicted transporter. The categories of Substrate Group that Saier uses

are given in Section 2.3.1.2. Such information may be implicit in the descriptions of TCDB

entries, and in their related literature, but it is not officially defined in the Transporter

Classification, nor is it explicitly accessible on the TCDB website.

For our purposes, this information is captured in a file mapping each TCID to a Substrate

Group and to a Specific Substrate, where possible. The mapping is then used to augment

the prediction.

4.4.6 Case Study Revisited

To demonstrate our implementation of Saier’s protocol we apply it to our case study genome

of A. niger CBS 513.88 to produce Table 30 that mimics [PVL+14, Table 1]. Table 30

presents the results of TransATH for the A. niger CBS 513.88 genome. The table is organised

by TC-Family. The columns Family and Family Name contain the TC-Family identifier and

its name. The column TCID contains the TCID of the matching TCDB entry predicted

by TransATH. The column Hit is the UniProtKB identifier for the matching TCDB entry.

The column HTMS contains the number of TMS for the hit. The column Substrate Group

contains the name of the group for the substrate transported by the hit, if known. The

column Specific Substrate contains the name of the substrate transported by the hit, if

known. The column Query is the identifier for the entry in the A. niger CBS 513.88 genome.

The column QTMS contains the number of TMS for the query.

Table 30: TransATH Results for A. niger CBS 513.88

Family Family Name TCID Hit HTMS
Substrate

Group

Specific

Substrate
Query QTMS

1.A. Alpha-type channel-forming proteins and peptides
1.A.9 the neurotransmitter receptor, cys

loop, ligand-gated ion channel (lic)

family.

1.A.9.5.2 O95166 1 Anion Unknown An07g10020 1

1.A.11 the ammonia transporter channel 1.A.11.1.4 O67997 12 Cation Ammonia An08g03200 11
(amt) family. 1.A.11.3.1 P40260 11 Unknown Unknown An08g03200 11

1.A.11.3.2 P41948 11 Unknown Unknown An08g03200 11
1.A.11.3.2 P41948 11 Unknown Unknown An14g02390 11
1.A.11.3.3 Q8NKD5 11 Cation NH4+ An08g03200 11
1.A.11.3.3 Q8NKD5 11 Cation NH4+ An14g02390 11
1.A.11.3.4 Q96UY0 11 Unknown Unknown An08g03200 11
1.A.11.3.4 Q96UY0 11 Unknown Unknown An14g02390 11
1.A.11.3.5 Q59UP8 11 Cation NH4+ An08g03200 11
1.A.11.3.5 Q59UP8 11 Cation NH4+ An14g02390 11

1.A.17 the calcium-dependent chloride 1.A.17.6.4 B0YES0 7 Anion Unknown An14g03020 7
channel (ca-clc) family. 1.A.17.6.4 B0YES0 7 Anion Unknown An14g01960 8

Continued on next page
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Table 30 – continued from previous page

Family Family Name TCID Hit HTMS
Substrate

Group

Specific

Substrate
Query QTMS

1.A.23 the small conductance mechanosen-

sitive ion channel (mscs) family.

1.A.23.4.9 F9X0Q3 6 Cation Ca2+ An15g03150 6

1.A.33 the cation channel-forming heat

shock

1.A.33.1.2 P0A6Y8 1 Unknown Unknown An11g04180 1

protein-70 (hsp70) family. 1.A.33.1.2 P0A6Y8 1 Unknown Unknown An16g09260 1
1.A.33.1.3 P08107 1 Cation Unknown An11g04180 1
1.A.33.1.3 P08107 1 Cation Unknown An16g09260 1

1.A.46 the anion channel-forming be-

strophin (bestrophin) family.

1.A.46.2.2 Q5AXS1 3 Anion Unknown An14g05100 3

1.A.56 the copper transporter (ctr) family. 1.A.56.1.10 A9XIK8 3 Cation Cu2+ An02g11700 3
1.A.77 the mg(2+)/ca(2+) uniporter

(mcu) family.

1.A.77.1.5 Q7S4I4 2 Cation Mg2+,Ca2+ An04g06590 2

1.A.88 the fungal potassium channel (f-

kch) family.

1.A.88.1.4 A2QW01 4 Cation K+ An11g03330 4

1.B. Beta-type Barel porins
1.B.69 the peroxysomal membrane 1.B.69.1.4 A2R8R0 4 Peptide Unknown An16g08040 4

porin 4 (pxmp4) family. 1.B.69.1.6 B0CP94 4 Unknown Unknown An16g08040 4
1.F. Vesicle fusion pores proteins
1.F.1 the synaptosomal vesicle fusion

pore (svf-pore) family.

1.F.1.1.2 P33328 1 Nonselective Unknown An12g07570 1

1.H. Paracellular Channels
1.H.1 the claudin tight junction 1.H.1.4.1 F5H8T9 5 Cation Unknown An08g01170 4

(claudin) family. 1.H.1.4.3 G3XZI4 5 Unknown Unknown An07g08960 5
2.A. Carrier-type facilitators
2.A.1 the major facilitator superfamily

(mfs).

2.A.1.1.5 P43581 12 Unknown Unknown An05g01290 12

2.A.1.1.6 P13181 12 Unknown Unknown An03g02190 12
2.A.1.1.7 P11636 12 Monocarboxylate Quinate:H+ An08g03850 12
2.A.1.1.8 P30605 12 Unknown Unknown An04g00340 12
2.A.1.1.21 O74969 12 Unknown Unknown An03g02190 12
2.A.1.1.22 O74849 12 Unknown Unknown An03g02190 12
2.A.1.1.22 O74849 12 Unknown Unknown An05g01290 12
2.A.1.1.31 P39004 12 Unknown Unknown An05g01290 12
2.A.1.1.33 Q8NJ22 12 Sugar Fructose:H+ An15g01500 12
2.A.1.1.33 Q8NJ22 12 Sugar Fructose:H+ An06g02270 12
2.A.1.1.36 Q400D8 12 Unknown Unknown An02g03540 12
2.A.1.1.36 Q400D8 12 Unknown Unknown An03g02190 12
2.A.1.1.36 Q400D8 12 Unknown Unknown An05g01290 12
2.A.1.1.38 P39932 12 Sugar Glycerol:H+ An14g02740 12
2.A.1.1.38 P39932 12 Sugar Glycerol:H+ An09g02930 12
2.A.1.1.38 P39932 12 Sugar Glycerol:H+ An14g03990 12
2.A.1.1.39 P49374 12 Sugar Glucose An11g01100 12
2.A.1.1.39 P49374 12 Sugar Glucose An02g00590 12
2.A.1.1.39 P49374 12 Sugar Glucose An03g01620 12
2.A.1.1.40 Q64L87 12 Sugar Xylose An01g00850 12
2.A.1.1.51 Q2MEV7 12 Sugar Glucose/Xylose An15g03940 12
2.A.1.1.51 Q2MEV7 12 Sugar Glucose/Xylose An12g07450 12
2.A.1.1.57 Q8J0V1 12 Sugar Monosaccharides An12g07450 12
2.A.1.1.57 Q8J0V1 12 Sugar Monosaccharides An15g03940 12
2.A.1.1.58 Q8J0U9 12 Sugar Glucose:H+ An02g03540 12
2.A.1.1.58 Q8J0U9 12 Sugar Glucose:H+ An05g01290 12
2.A.1.1.58 Q8J0U9 12 Sugar Glucose:H+ An03g02190 12
2.A.1.1.67 Q2MDH1 12 Unknown Unknown An03g02190 12
2.A.1.1.67 Q2MDH1 12 Unknown Unknown An05g01290 12
2.A.1.1.68 A3M0N3 12 Sugar Glucose An15g03940 12
2.A.1.1.68 A3M0N3 12 Sugar Glucose An12g07450 12
2.A.1.1.70 Q0ULF7 12 Unknown Unknown An15g01500 12
2.A.1.1.70 Q0ULF7 12 Unknown Unknown An06g02270 12
2.A.1.1.73 Q5A8J5 12 Sugar Glycerol:H+ An14g02740 12
2.A.1.1.73 Q5A8J5 12 Sugar Glycerol:H+ An09g02930 12
2.A.1.1.73 Q5A8J5 12 Sugar Glycerol:H+ An14g03990 12
2.A.1.1.105 P54862 12 Unknown Unknown An03g02190 12
2.A.1.1.108 P32465 12 Unknown Unknown An05g01290 12
2.A.1.1.108 P32465 12 Unknown Unknown An02g03540 12
2.A.1.1.110 P39924 12 Sugar Hexose An05g01290 12
2.A.1.1.111 P23585 12 Unknown Unknown An05g01290 12
2.A.1.1.111 P23585 12 Unknown Unknown An03g02190 12
2.A.1.1.112 Q9P3U6 12 Unknown Unknown An05g01290 12
2.A.1.1.117 G4N740 12 Sugar Glucose An15g03940 12
2.A.1.2.6 P28873 11 Unknown Unknown An18g01720 11
2.A.1.2.16 Q07824 12 Amines Spermine/Spermidine An09g03320 12
2.A.1.2.16 Q07824 12 Amines Spermine/Spermidine An18g01150 12
2.A.1.2.16 Q07824 12 Amines Spermine/Spermidine An01g11540 12
2.A.1.2.17 P38124 12 Specific drug Fluconazole:H+ An16g02610 12
2.A.1.2.17 P38124 12 Specific drug Fluconazole:H+ An18g01720 11
2.A.1.2.23 Q70WR7 12 Sugar Fructose An15g04060 11
2.A.1.2.35 O94528 12 Cation Unknown An18g01720 11
2.A.1.2.35 O94528 12 Cation Unknown An16g02610 12
2.A.1.2.45 C5E4Z7 12 Unknown Unknown An15g04060 11
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2.A.1.2.46 C5DX43 12 Unknown Unknown An15g04060 11
2.A.1.2.48 A2QTF4 9 Specific drug Tetracycline An09g01910 9
2.A.1.2.67 P53283 11 Unknown Unknown An04g08300 12
2.A.1.2.77 Q8NKG7 12 Multiple drug Unknown An02g09970 12
2.A.1.2.77 Q8NKG7 12 Multiple drug Unknown An17g01070 11
2.A.1.2.77 Q8NKG7 12 Multiple drug Unknown An04g08300 12
2.A.1.2.77 Q8NKG7 12 Multiple drug Unknown An02g03620 12
2.A.1.2.77 Q8NKG7 12 Multiple drug Unknown An08g06980 12
2.A.1.2.78 B6HIC2 12 Multiple drug Unknown An02g09970 12
2.A.1.2.78 B6HIC2 12 Multiple drug Unknown An17g01070 11
2.A.1.2.85 B6H9Q3 12 Multiple drug Phenylacetate/penoxyacetate An04g08300 12
2.A.1.2.85 B6H9Q3 12 Multiple drug Phenylacetate/penoxyacetate An04g07680 12
2.A.1.2.85 B6H9Q3 12 Multiple drug Phenylacetate/penoxyacetate An02g09970 12
2.A.1.2.85 B6H9Q3 12 Multiple drug Phenylacetate/penoxyacetate An02g03620 12
2.A.1.2.85 B6H9Q3 12 Multiple drug Phenylacetate/penoxyacetate An17g01070 11
2.A.1.2.86 B6HN82 12 Specific drug Isopenicillin N An16g00090 12
2.A.1.2.86 B6HN82 12 Specific drug Isopenicillin N An04g08250 12
2.A.1.2.86 B6HN82 12 Specific drug Isopenicillin N An02g03670 12
2.A.1.2.86 B6HN82 12 Specific drug Isopenicillin N An08g10970 12
2.A.1.3.52 Q08902 14 Cation NH4+ An08g08220 14
2.A.1.3.52 Q08902 14 Cation NH4+ An08g08710 14
2.A.1.3.52 Q08902 14 Cation NH4+ An10g00700 14
2.A.1.3.65 H2E274 14 Multiple drug Unknown An12g08620 14
2.A.1.3.65 H2E274 14 Multiple drug Unknown An01g11290 15
2.A.1.3.65 H2E274 14 Multiple drug Unknown An09g00870 13
2.A.1.3.65 H2E274 14 Multiple drug Unknown An01g15000 14
2.A.1.3.65 H2E274 14 Multiple drug Unknown An06g00770 14
2.A.1.8.5 P22152 12 Anion Nitrate An08g05670 12
2.A.1.8.13 Q8X193 12 Unknown Unknown An08g05670 12
2.A.1.9.7 P25346 13 Organoions Phospholipid An16g06190 12
2.A.1.14.38 P40445 12 Unknown Unknown An16g01940 11
2.A.1.14.38 P40445 12 Unknown Unknown An01g11450 11
2.A.1.14.38 P40445 12 Unknown Unknown An08g06430 9
2.A.1.14.38 P40445 12 Unknown Unknown An07g00980 10
2.A.1.16.1 P39980 15 Siderophore Ferroxamine An01g00720 14
2.A.1.16.7 Q870L2 14 Siderophore Ferric triacetylfusarinine C An03g03560 14
2.A.1.16.7 Q870L2 14 Siderophore Ferric triacetylfusarinine C An07g06240 14
2.A.1.19.38 Q9C101 11 Unknown Unknown An12g00940 11
2.A.1.19.38 Q9C101 11 Unknown Unknown An07g07980 12
2.A.1.58.1 Q5A7S4 10 Sugar N-acetylglucosamine:H+ An16g09020 12
2.A.1.58.1 Q5A7S4 10 Sugar N-acetylglucosamine:H+ An06g02510 11
2.A.1.58.4 Q01HW9 11 Unknown Unknown An06g02510 11
2.A.1.58.5 C9S7Y7 10 Unknown Unknown An09g02880 10
2.A.1.75.2 E9CYW5 12 Monocarboxylate Unknown An14g04560 12

2.A.3 the amino acid-polyamine- 2.A.3.4.1 P19807 12 Amino acid Choline An15g01900 12
organocation (apc) family. 2.A.3.4.1 P19807 12 Amino acid Choline An09g05010 12

2.A.3.4.2 Q9Y860 12 Amino acid GABA An16g02000 12
2.A.3.4.2 Q9Y860 12 Amino acid GABA An09g02550 12
2.A.3.4.3 P32837 12 Amino acid GABA An14g01850 12
2.A.3.4.3 P32837 12 Amino acid GABA An17g01540 12
2.A.3.4.6 Q9UT18 12 Amino acid Thiamin An02g09790 12
2.A.3.8.4 P50276 11 Amino acid Met An04g03940 12
2.A.3.10.1 P06775 12 Unknown Unknown An13g00840 12
2.A.3.10.2 P19145 12 Unknown Unknown An13g00840 12
2.A.3.10.4 P04817 12 Amino acid Arg An13g03650 12
2.A.3.10.4 P04817 12 Amino acid Arg An09g06730 12
2.A.3.10.8 P38967 12 Unknown Unknown An13g00840 12
2.A.3.10.10 P32487 12 Amino acid Arg,His,Lys An13g03650 12
2.A.3.10.11 P38971 12 Unknown Unknown An13g03650 12
2.A.3.10.11 P38971 12 Unknown Unknown An09g06730 12
2.A.3.10.13 P53388 12 Amino acid Unknown An12g04180 12
2.A.3.10.13 P53388 12 Amino acid Unknown An13g03650 12
2.A.3.10.17 Q8J266 12 Unknown Unknown An12g10130 12
2.A.3.10.17 Q8J266 12 Unknown Unknown An09g00400 11
2.A.3.10.18 Q8NKC4 13 Amino acid Unknown An09g00400 11
2.A.3.10.18 Q8NKC4 13 Amino acid Unknown An05g01740 11
2.A.3.10.19 P38090 12 Amino acid Polyamine/Carnitine An04g00530 12
2.A.3.10.19 P38090 12 Amino acid Polyamine/Carnitine An04g09620 12
2.A.3.10.20 P43059 12 Unknown Unknown An09g06730 12
2.A.3.10.20 P43059 12 Unknown Unknown An13g03650 12
2.A.3.10.21 Q9URZ4 12 Amino acid Arg, Lys An13g00840 12
2.A.3.10.22 Q2VQZ4 12 Unknown Unknown An13g00840 12
2.A.3.10.23 Q5AG77 12 Amino acid Arg,Leu,Met,Phe An13g00840 12
2.A.3.10.24 Q59YT0 12 Amino acid Unknown An13g00840 12
2.A.3.10.25 Q59WB3 12 Unknown Unknown An13g00840 12
2.A.3.10.26 Q59NZ6 12 Unknown Unknown An13g00840 12
2.A.3.10.28 O60170 12 Amino acid Arg,Lys An13g00840 12

2.A.4 Cation diffusion facilitator (CDF)

family.

2.A.4.2.2 P20107 6 Cation Zn2+, Co2+ An15g03900 6

2.A.5 the zinc (zn(2+))-iron 2.A.5.1.1 P32804 8 Cation Zn2+ An01g01620 8
(fe(2+)) permease (zip) family. 2.A.5.1.1 P32804 8 Cation Zn2+ An15g07190 8

2.A.5.1.1 P32804 8 Cation Zn2+ An01g06690 7
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2.A.6 Resistance-nodulation-cell division

(RND) superfamily.

2.A.6.6.3 Q12200 13 Lipid Sphingolipid An11g05000 13

2.A.7 the drug/metabolite transporter 2.A.7.13.2 Q5A477 9 Nucleotide GDP-mannose An17g02140 10
(dmt) superfamily. 2.A.7.24.11 Q4WUA9 10 Unknown Unknown An03g03820 10

2.A.7.24.11 Q4WUA9 10 Unknown Unknown An01g00340 10
2.A.16 the telurite-resistance/ 2.A.16.4.1 A2QYD7 9 Unknown Unknown An12g00870 9

dicarboxylate transporter (tdt)

family.

2.A.16.4.2 A3R044 10 Unknown Unknown An12g00870 9

2.A.16.4.3 Q2TJJ2 10 Unknown Unknown An12g00870 9
2.A.17 the proton-dependent oligopeptide 2.A.17.2.1 Q9P380 12 Peptide Unknown An12g01210 11

transporter (pot) family. 2.A.17.2.1 Q9P380 12 Peptide Unknown An08g04600 11
2.A.17.2.2 P32901 12 Peptide dipeptide,tripeptide An12g01210 11

2.A.18 the amino acid/auxin permease 2.A.18.4.1 P38680 11 Amino acid Unknown An15g07550 11
2.A.18.4.1 P38680 11 Amino acid Unknown An09g03660 11
2.A.18.4.1 P38680 11 Amino acid Unknown An16g05880 11
2.A.18.4.2 Q6IT47 11 Amino acid Unknown An15g07550 11
2.A.18.4.2 Q6IT47 11 Amino acid Unknown An09g03660 11
2.A.18.4.2 Q6IT47 11 Amino acid Unknown An16g05880 11
2.A.18.7.1 P36062 11 Unknown Unknown An04g02150 11

2.A.19 the ca(2+):cation antiporter 2.A.19.2.2 Q99385 11 Cation Ca2+,K+ An01g03100 11
(caca) family. 2.A.19.2.2 Q99385 11 Cation Ca2+,K+ An19g00340 11

2.A.19.2.8 O59940 10 Cation Ca2+,K+ An01g03100 11
2.A.21 the solute:sodium symporter 2.A.21.6.1 P33413 15 Amines Urea,polyamines An01g03790 15

(sss) family. 2.A.21.6.1 P33413 15 Amines Urea,polyamines An18g01360 15
2.A.21.6.2 Q9FHJ8 15 Unknown Unknown An01g03790 15
2.A.21.6.4 Q59VF2 15 Unknown Unknown An01g03790 15

2.A.29 the mitochondrial carrier 2.A.29.1.1 P05141 4 Unknown Unknown An18g04220 6
(mc) family. 2.A.29.1.2 P12235 6 Unknown Unknown An18g04220 6

2.A.29.1.3 P04710 4 Unknown Unknown An18g04220 6
2.A.29.1.4 Q8TFA7 4 Unknown Unknown An18g04220 6
2.A.29.1.6 Q8LB08 4 Unknown Unknown An18g04220 6
2.A.29.1.7 P18239 4 Nucleotide ATP:ADP antiporter An18g04220 6
2.A.29.1.8 Q9H0C2 5 Unknown Unknown An18g04220 6
2.A.29.1.9 P18238 6 Unknown Unknown An18g04220 6
2.A.29.1.10 P12236 6 Unknown Unknown An18g04220 6
2.A.29.2.1 P22292 6 Unknown Unknown An02g01730 5
2.A.29.2.2 O89035 2 Unknown Unknown An02g01730 5
2.A.29.2.3 Q06143 6 Dicarboxylate Unknown An02g01730 5
2.A.29.2.5 Q99297 1 Dicarboxylate Unknown An08g01370 3
2.A.29.2.6 Q8SF04 4 Unknown Unknown An11g02540 6
2.A.29.2.7 Q9UBX3 3 Unknown Unknown An02g01730 5
2.A.29.2.8 Q03028 4 Unknown Unknown An08g01370 3
2.A.29.2.10 Q8IB73 6 Dicarboxylate alpha-ketogluterate An11g02540 6
2.A.29.2.11 Q9CR62 5 Unknown Unknown An02g01730 5
2.A.29.2.13 Q02978 6 Unknown Unknown An02g01730 5
2.A.29.4.1 P12234 6 Unknown Unknown An02g12070 4
2.A.29.4.2 Q00325 6 Unknown Unknown An02g12070 4
2.A.29.4.3 P23641 6 Inorganic phosphate An01g13600 6
2.A.29.4.3 P23641 6 Inorganic phosphate An02g04160 4
2.A.29.4.4 P40035 6 Inorganic phosphate An02g04160 4
2.A.29.4.5 Q8VEM8 6 Unknown Unknown An02g12070 4
2.A.29.4.6 Q9FMU6 7 Inorganic phosphate An02g12070 4
2.A.29.5.1 P10566 6 Cation Fe2+ An06g01730 6
2.A.29.5.2 P23500 6 Unknown Unknown An06g01730 6
2.A.29.5.3 Q287T7 1 Unknown Unknown An06g01730 6
2.A.29.5.5 Q920G8 1 Unknown Unknown An06g01730 6
2.A.29.5.7 Q9NYZ2 1 Unknown Unknown An06g01730 6
2.A.29.7.3 P38152 4 Dicarboxylate Tricarboxylate An11g11230 3
2.A.29.7.3 P38152 4 Dicarboxylate Tricarboxylate An18g00070 2
2.A.29.7.4 Q7KSQ0 6 Unknown Unknown An11g11230 3
2.A.29.8.2 Q27257 6 Unknown Unknown An03g03360 6
2.A.29.8.4 Q12289 5 Cation Carnitine An03g03360 6
2.A.29.8.11 P38087 6 Unknown Unknown An18g05590 2
2.A.29.8.12 P32331 4 Organic acid Unknown An18g05590 2
2.A.29.9.1 Q01356 3 Amino acid Unknown An03g06860 5
2.A.29.10.4 P38127 4 Nucleotide Pyrimidine An14g01860 5
2.A.29.10.5 P40556 4 Nucleotide NAD+, pyruvate An04g01190 4
2.A.29.10.7 Q9BSK2 6 Unknown Unknown An14g01860 5
2.A.29.13.1 P33303 2 Dicarboxylate Succinate, fumerate An04g09030 1
2.A.29.14.1 O75746 3 Unknown Unknown An07g03070 5
2.A.29.21.1 P38988 5 Nucleotide Guanine An07g10010 5
2.A.29.29.1 Q04013 2 Dicarboxylate Tricarboxylates An09g06670 2
2.A.29.29.1 Q04013 2 Dicarboxylate Tricarboxylates An02g11090 5

2.A.39 the nucleobase:cation symporter-1

(ncs1) family.

2.A.39.3.7 Q10279 13 Nucleobase Uracil:cation An08g06240 12

2.A.40 the nucleobase:cation symporter-2 2.A.40.4.1 Q07307 12 Nucleobase Urate, xanthine An07g01950 15
(ncs2) family. 2.A.40.4.1 Q07307 12 Nucleobase Urate, xanthine An02g00560 13

2.A.40.4.4 P48777 14 Nucleobase Purine An07g01950 15
2.A.40.4.4 P48777 14 Nucleobase Purine An02g00560 13
2.A.40.7.1 Q7Z8R3 12 Nucleobase Purine An13g02390 10
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2.A.41 the concentrative nucleoside trans-

porter (cnt) family.

2.A.41.2.7 Q874I3 12 Nucleoside Unknown An08g10300 13

2.A.43 the lysosomal cystine transporter

(lct) family.

2.A.43.2.7 P38279 7 Unknown Unknown An09g06510 7

2.A.47 the divalent anion:na(+) symporter 2.A.47.2.1 P25360 10 Unknown Unknown An01g03120 11
(dass) family. 2.A.47.2.2 P27514 12 Anion Phosphate An01g03120 11

2.A.47.2.3 P39535 12 Unknown Unknown An01g03120 11
2.A.52 the ni(2+)-co(2+) transporter

(nicot) family.

2.A.52.1.8 Q7S3L8 7 Cation Ni2+ An12g04470 8

2.A.53 the sulfate permease (sulp) family. 2.A.53.1.2 P23622 13 Anion sulphate An15g04600 15
2.A.55 the metal ion (mn(2+)-iron) 2.A.55.1.1 P38925 11 Unknown Unknown An04g05680 11

transporter (nramp) family. 2.A.55.1.2 P38778 10 Unknown Unknown An04g05680 11
2.A.55.1.4 Q10177 11 Cation Mn2+ An04g05680 11

2.A.59 the arsenical resistance-3 2.A.59.1.1 Q06598 10 Unknown Unknown An18g03550 10
(acr3) family. 2.A.59.1.2 P45946 10 Anion Unknown An18g03550 10

2.A.66 the multidrug/oligosaccharidyl-

lipid/polysaccharide (mop) flippase

superfamily.

2.A.66.1.5 P38767 11 Specific drug Unknown An08g07590 12

2.A.67 the oligopeptide transporter 2.A.67.1.1 O14411 19 Peptide Unknown An14g05290 15
(opt) family. 2.A.67.1.1 O14411 19 Peptide Unknown An11g05350 16

2.A.67.1.2 P40900 17 Unknown Unknown An14g05290 15
2.A.67.1.2 P40900 17 Unknown Unknown An11g05350 16
2.A.67.1.3 P40897 15 Unknown Unknown An16g00810 14
2.A.67.1.5 O14031 15 Peptide Glutathione An16g00810 14
2.A.67.1.5 O14031 15 Peptide Glutathione An14g05290 15
2.A.67.1.5 O14031 15 Peptide Glutathione An11g05350 16
2.A.67.1.5 O14031 15 Peptide Glutathione An11g03640 15

2.A.69 the auxin efflux carrier (aec) family. 2.A.69.2.3 B8MZ51 10 Unknown Unknown An01g11100 10
2.A.72 the k(+) uptake permease (kup)

family.

2.A.72.3.2 O74724 14 Cation K+ An02g05630 13

2.A.89 the vacuolar iron transporter (vit)

family.

2.A.89.1.1 P47818 5 Unknown Unknown An16g03690 5

2.A.96 the acetate uptake transporter 2.A.96.1.3 Q5B2K4 6 Anion Acetate An07g08810 6
(acetr) family. 2.A.96.1.3 Q5B2K4 6 Anion Acetate An13g02020 7

2.A.96.1.4 P25613 6 Unknown Unknown An13g02020 7
2.A.96.1.6 O14201 6 Unknown Unknown An07g08810 6
2.A.96.1.7 P32907 6 Unknown Unknown An13g02020 7

2.A.105 the mitochondrial pyruvate carrier

(mpc) family.

2.A.105.1.1 P53157 2 Monocarboxylates Pyruvate An04g02140 2

2.A.108 the iron/lead transporter 2.A.108.1.1 P40088 7 Cation Unknown An01g08950 7
(ilt) family. 2.A.108.1.1 P38993 1 Cation Unknown An15g05520 1

2.A.108.1.1 P38993 1 Cation Unknown An01g08960 1
2.A.108.1.1 P40088 7 Cation Unknown An16g01130 7
2.A.108.1.1 P40088 7 Cation Unknown An15g05510 7
2.A.108.1.2 Q9P8U9 7 Cation Fe2+ An01g08950 7
2.A.108.1.2 Q9P8U9 7 Cation Fe2+ An16g01130 7
2.A.108.1.2 Q9P8U9 7 Cation Fe2+ An15g05510 7
2.A.108.1.3 Q9P8U8 7 Cation Fe2+ An01g08950 7
2.A.108.1.3 Q9P8U8 7 Cation Fe2+ An16g01130 7
2.A.108.1.3 Q9P8U8 7 Cation Fe2+ An15g05510 7
2.A.108.1.4 P43561 1 Cation Unknown An15g05520 1
2.A.108.1.4 P43561 1 Cation Unknown An01g08960 1
2.A.108.1.5 Q09919 7 Unknown Unknown An01g08950 7
2.A.108.1.5 Q09919 7 Unknown Unknown An16g01130 7
2.A.108.1.5 Q09919 7 Unknown Unknown An15g05510 7

3.A. P-P-bond hydrolysis-driven transporters
3.A.1 the atp-binding cassette (abc) 3.A.1.201.1 P08183 12 Unknown Unknown An17g01770 12

superfamily. 3.A.1.201.3 P21439 12 Unknown Unknown An17g01770 12
3.A.1.201.10B0Y3B6 12 Multiple drug Unknown An17g01770 12
3.A.1.201.10B0Y3B6 12 Multiple drug Unknown An04g08340 9
3.A.1.201.16I0DHH7 12 Unknown Unknown An17g01770 12
3.A.1.201.17Q9NRK6 6 Unknown Unknown An04g07060 6
3.A.1.201.18 P36619 13 Unknown Unknown An04g08340 9
3.A.1.203.1 P28288 5 Unknown Unknown An08g05780 3
3.A.1.203.3 P33897 4 Unknown Unknown An08g05780 3
3.A.1.203.7 Q9UBJ2 5 Lipid Unknown An08g05780 3
3.A.1.203.7 Q9UBJ2 5 Lipid Unknown An01g03680 4
3.A.1.203.10 I7MJ28 6 Unknown Unknown An08g05780 3
3.A.1.205.1 P33302 15 Unknown Unknown An01g12380 12
3.A.1.205.1 P33302 15 Unknown Unknown An15g02930 16
3.A.1.205.1 P33302 15 Unknown Unknown An05g01660 11
3.A.1.205.1 P33302 15 Unknown Unknown An08g03300 11
3.A.1.205.1 P33302 15 Unknown Unknown An08g04500 11
3.A.1.205.1 P33302 15 Unknown Unknown An13g03570 13
3.A.1.205.1 P33302 15 Unknown Unknown An07g01250 14
3.A.1.205.2 P32568 12 Unknown Unknown An01g12380 12
3.A.1.205.2 P32568 12 Unknown Unknown An07g01250 14
3.A.1.205.2 P32568 12 Unknown Unknown An08g03300 11
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3.A.1.205.3 Q02785 15 Unknown Unknown An07g01250 14
3.A.1.205.4 P43071 13 Multiple drug Unknown An01g12380 12
3.A.1.205.4 P43071 13 Multiple drug Unknown An05g01660 11
3.A.1.205.4 P43071 13 Multiple drug Unknown An15g02930 16
3.A.1.205.4 P43071 13 Multiple drug Unknown An13g03570 13
3.A.1.205.4 P43071 13 Multiple drug Unknown An08g03300 11
3.A.1.205.4 P43071 13 Multiple drug Unknown An08g04500 11
3.A.1.205.4 P43071 13 Multiple drug Unknown An07g01250 14
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An15g02930 16
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An01g12380 12
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An05g01660 11
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An13g03570 13
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An08g03300 11
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An08g04500 11
3.A.1.205.5 P78595 11 Multiple drug Phospholipid An07g01250 14
3.A.1.205.6 Q8X0Z3 14 Unknown Unknown An13g03060 11
3.A.1.205.6 Q8X0Z3 14 Unknown Unknown An15g01130 15
3.A.1.205.7 P78577 11 Multiple drug Unknown An13g03060 11
3.A.1.205.7 P78577 11 Multiple drug Unknown An14g03570 14
3.A.1.205.7 P78577 11 Multiple drug Unknown An14g02610 11
3.A.1.205.7 P78577 11 Multiple drug Unknown An11g02110 12
3.A.1.205.11 P41820 13 Unknown Unknown An08g03300 11
3.A.1.205.11 P41820 13 Unknown Unknown An15g02930 16
3.A.1.205.11 P41820 13 Unknown Unknown An05g01660 11
3.A.1.205.11 P41820 13 Unknown Unknown An07g01250 14
3.A.1.205.11 P41820 13 Unknown Unknown An08g04500 11
3.A.1.205.11 P41820 13 Unknown Unknown An01g12380 12
3.A.1.205.11 P41820 13 Unknown Unknown An13g03570 13
3.A.1.205.11 P41820 13 Unknown Unknown An11g02110 12
3.A.1.205.12 P51533 15 Unknown Unknown An15g02930 16
3.A.1.205.12 P51533 15 Unknown Unknown An01g12380 12
3.A.1.205.12 P51533 15 Unknown Unknown An05g01660 11
3.A.1.205.12 P51533 15 Unknown Unknown An08g03300 11
3.A.1.205.12 P51533 15 Unknown Unknown An07g01250 14
3.A.1.205.12 P51533 15 Unknown Unknown An13g03570 13
3.A.1.205.12 P51533 15 Unknown Unknown An08g04500 11
3.A.1.208.2 Q92887 16 Multiple drug Organic anion An03g04060 13
3.A.1.208.11 P39109 14 Peptide Bilirubin An03g04060 13
3.A.1.208.16 Q10185 16 Unknown Unknown An03g04060 13
3.A.1.208.28Q9P5N0 12 Unknown Unknown An03g04060 13
3.A.1.208.32D2WF19 16 Unknown Unknown An03g04060 13
3.A.1.210.1 P40416 5 Cation Unknown An08g10600 5
3.A.1.210.2 Q02592 10 Cation Glutathione An07g07500 11
3.A.1.210.4 O75027 5 Unknown Unknown An08g10600 5
3.A.1.210.7 Q9XUJ1 10 Unknown Unknown An08g10600 5
3.A.1.210.8 Q9LVM1 7 Unknown Unknown An08g10600 5
3.A.1.212.2 P33311 5 Unknown Unknown An04g07060 6

3.A.2 the h(+)- or na(+)-translocating f-

type,

3.A.2.1.3 P05626 2 Cation H+ An16g07290 2

v-type and a-type atpase (f-atpase) 3.A.2.2.3 P25515 4 Unknown Unknown An02g08020 4
superfamily. 3.A.2.2.3 P25515 4 Unknown Unknown An10g00680 4

3.A.2.2.3 P32842 4 Unknown Unknown An07g05080 4
3.A.2.2.3 P32842 4 Unknown Unknown An02g08020 4
3.A.2.2.3 P32842 4 Unknown Unknown An10g00680 4
3.A.2.2.3 P32563 9 Unknown Unknown An04g05310 7
3.A.2.2.3 P25515 4 Unknown Unknown An07g05080 4
3.A.2.2.3 P37296 8 Unknown Unknown An04g05310 7
3.A.2.2.4 Q93050 8 Unknown Unknown An04g05310 7
3.A.2.2.5 P59229 4 Unknown Unknown An02g08020 4
3.A.2.2.5 P59227 4 Unknown Unknown An10g00680 4
3.A.2.2.5 P59229 4 Unknown Unknown An10g00680 4
3.A.2.2.5 P59228 4 Unknown Unknown An10g00680 4
3.A.2.2.5 P59227 4 Unknown Unknown An02g08020 4
3.A.2.2.5 P59227 4 Unknown Unknown An07g05080 4
3.A.2.2.5 P59228 4 Unknown Unknown An07g05080 4
3.A.2.2.5 P59229 4 Unknown Unknown An07g05080 4
3.A.2.2.6 P63082 4 Unknown Unknown An02g08020 4
3.A.2.2.6 Q91V37 5 Unknown Unknown An15g05730 5
3.A.2.2.6 P63082 4 Unknown Unknown An10g00680 4
3.A.2.2.6 P63082 4 Unknown Unknown An07g05080 4
3.A.2.2.6 Q9Z1G4 9 Unknown Unknown An04g05310 7
3.A.2.2.6 Q920R6 9 Unknown Unknown An04g05310 7
3.A.2.2.7 G5EDB8 5 Unknown Unknown An15g05730 5
3.A.2.2.7 P34546 4 Unknown Unknown An02g08020 4
3.A.2.2.7 Q21898 4 Unknown Unknown An02g08020 4
3.A.2.2.7 P34546 4 Unknown Unknown An10g00680 4
3.A.2.2.7 Q21898 4 Unknown Unknown An10g00680 4
3.A.2.2.7 P34546 4 Unknown Unknown An07g05080 4
3.A.2.2.7 P30628 7 Unknown Unknown An04g05310 7
3.A.2.2.8 Q4UJ88 4 Unknown Unknown An02g08020 4
3.A.2.2.8 Q4UJ88 4 Unknown Unknown An10g00680 4
3.A.2.2.8 Q4UJ88 4 Unknown Unknown An07g05080 4

Continued on next page
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3.A.3 the p-type atpase (p-atpase) 3.A.3.1.7 Q2U3D2 10 Cation Unknown An14g02290 10
superfamily. 3.A.3.2.3 P13586 10 Unknown Unknown An02g14450 9

3.A.3.2.6 Q9UUX9 10 Cation Ca2+ An02g14450 9
3.A.3.2.7 P16615 11 Cation Ca2+ An18g06290 10
3.A.3.2.9 O75185 10 Unknown Unknown An02g14450 9
3.A.3.2.13 P92939 10 Unknown Unknown An18g06290 10
3.A.3.2.19 Q9SY55 12 Unknown Unknown An18g06290 10
3.A.3.2.27 Q9UUY2 10 Cation Ca2 An08g03090 10
3.A.3.2.32 Q49LV5 11 Unknown Unknown An18g06290 10
3.A.3.2.35 Q9HDW7 12 Unknown Unknown An08g03090 10
3.A.3.2.36 Q5IH90 10 Unknown Unknown An18g06290 10
3.A.3.2.37 O76974 10 Unknown Unknown An18g06290 10
3.A.3.3.1 P07038 10 Cation H+ An01g05670 11
3.A.3.3.1 P07038 10 Cation H+ An16g05840 10
3.A.3.3.1 P07038 10 Cation H+ An09g05950 10
3.A.3.3.6 P05030 10 Cation H+ An01g05670 11
3.A.3.3.6 P05030 10 Cation H+ An16g05840 10
3.A.3.3.6 P05030 10 Cation H+ An09g05950 10
3.A.3.8.2 P39524 8 Lipid Phospholipid An12g04500 10
3.A.3.8.4 P32660 10 Lipid Phospholipid An12g08790 8
3.A.3.8.4 P32660 10 Lipid Phospholipid An09g03160 10
3.A.3.8.5 Q12675 10 Unknown Unknown An12g08790 8
3.A.3.8.10 Q5KP96 10 Unknown Unknown An12g04500 10
3.A.3.9.1 P13587 10 Unknown Unknown An15g01830 10
3.A.3.9.1 P13587 10 Unknown Unknown An09g00690 8
3.A.3.9.2 P22189 10 Unknown Unknown An15g01830 10
3.A.3.9.2 P22189 10 Unknown Unknown An09g00690 8
3.A.3.9.3 O13398 10 Unknown Unknown An09g00690 8
3.A.3.9.3 O13398 10 Unknown Unknown An15g01830 10
3.A.3.9.4 P78981 10 Unknown Unknown An15g01830 10
3.A.3.9.4 P78981 10 Unknown Unknown An09g00690 8
3.A.3.9.5 B5B9V9 10 Cation Unknown An15g01830 10
3.A.3.9.5 B5B9V9 10 Cation Unknown An09g00690 8
3.A.3.9.6 Q4PI59 10 Unknown Unknown An09g00690 8
3.A.3.9.6 Q4PI59 10 Unknown Unknown An15g01830 10

3.A.5 the general secretory pathway 3.A.5.8.1 P32915 12 Protein Peptide An03g04340 10
(sec) family. 3.A.5.9.1 Q9H9S3 10 Protein Protein An03g04340 10

3.A.5.9.1 P61619 12 Protein Protein An03g04340 10
3.A.5.9.1 P60059 1 Protein Protein An01g11630 1

3.A.8 the mitochondrial protein translo-

case

3.A.8.1.1 P39515 4 Protein Protein An11g02140 3

(mpt) family. 3.A.8.1.1 Q02776 1 Protein Protein An07g07880 2
3.A.8.1.1 P32897 3 Protein Protein An02g01360 3

3.A.16 the endoplasmic reticular retro-

translocon (er-rt) family.

3.A.16.1.2 E7NGV2 1 Protein Protein An14g00230 2

3.A.19 the tms recognition/insertion com-

plex (trc) family.

3.A.19.1.2 A2QHQ3 3 Protein Protein An04g00670 3

3.D. Oxidoreduction-driven transporters
3.D.1 the h(+) or na(+)-translocating

nadh

3.D.1.6.1 P42026 2 Unknown Unknown An11g08840 1

dehydrogenase (ndh) family. 3.D.1.6.2 Q7S1I2 1 Cation H+ An16g02130 1
3.D.1.6.2 Q02854 3 Cation H+ An14g00060 2
3.D.1.6.2 P25710 3 Cation H+ An06g01390 4
3.D.1.6.3 Q9FNN5 1 Unknown Unknown An04g05640 1
3.D.1.6.3 Q42577 1 Unknown Unknown An11g08840 1
3.D.1.6.4 Q6V9B2 1 Unknown Unknown An04g05640 1

3.D.2 the proton-translocating transhy-

drogenase (pth) family.

3.D.2.3.1 P11024 16 Cation Unknown An02g09810 14

3.D.3 the proton-translocating quinol: 3.D.3.2.1 P08067 1 Electron Unknown An14g04080 1
cytochrome c reductase (qcr) super-

family.

3.D.3.3.1 P07143 2 Electron Unknown An01g06180 2

8.A. Auxiliary transport proteins
8.A.27 the cdc50 p-type atpase lipid flip-

pase subunit (cdc50) family.

8.A.27.1.2 P25656 3 Lipid Unknown An07g10420 2

9.A. Recognized transporters of known biochemical
9.A.2 the endomembrane protein-70 9.A.2.1.1 E7NFP9 9 Protein Protein An06g01200 10

(emp70) family. 9.A.2.1.2 Q9LIC2 10 Unknown Unknown An06g01200 10
9.A.2.1.6 Q99805 9 Unknown Unknown An06g01200 10

9.A.6 the atp exporter (atp-e) family. 9.A.6.1.1 P36051 14 Nucleotide ATP An14g00900 14
9.A.41 the capsular polysaccharide ex-

porter (cps-e) family.

9.A.41.1.1 P44669 1 Unknown Unknown An11g04180 1

9.A.54 the lysosomal cobalamin (b12)

transporter (l-b12t) family.

9.A.54.1.3 A6QTW5 10 Protein cobalamin An16g09150 10

9.B. Putative transport proteins
9.B.1 the integral membrane caax pro-

tease

9.B.1.1.2 Q8RX88 7 Unknown Unknown An04g01950 7

Continued on next page
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(caax protease) family. 9.B.1.1.3 P47154 5 Peptide Unknown An04g01950 7
9.B.1.2.2 F9FER0 5 Peptide Unknown An14g03420 6

9.B.7 the putative sulfate transporter

(cysz) family.

9.B.7.2.3 E2PST1 5 Protein Unknown An07g06140 5

9.B.16 the putative ductin channel 9.B.16.1.1 P23380 4 Unknown Unknown An02g08020 4
(ductin) family. 9.B.16.1.1 P23380 4 Unknown Unknown An10g00680 4

9.B.16.1.1 P23380 4 Unknown Unknown An07g05080 4
9.B.16.1.2 Q03105 4 Unknown Unknown An02g08020 4
9.B.16.1.2 Q03105 4 Unknown Unknown An10g00680 4
9.B.16.1.2 Q03105 4 Unknown Unknown An07g05080 4

9.B.25 the mitochondrial inner/outer

membrane fusion (mmf) family.

9.B.25.1.1 P32266 1 Nucleotide Unknown An08g04250 1

9.B.26 the regulator of er stress and au-

tophagy tmem208 (tmem208) fam-

ily.

9.B.26.1.4 K9FAK7 2 Unknown Unknown An12g03980 2

9.B.82 endoplasmic reticulum retrieval 9.B.82.1.1 P25560 4 Unknown Unknown An02g02830 4
protein1 (putative heavy metal 9.B.82.1.2 O15258 4 Unknown Unknown An02g02830 4
transporter) (rer1) family. 9.B.82.1.3 O48670 4 Unknown Unknown An02g02830 4

9.B.119 the glycan synthase, fks1 (fks1)

family.

9.B.119.1.1 P38631 16 Sugar Unknown An06g01550 18

9.B.142 the integral membrane glycosyl- 9.B.142.3.3 B3S136 13 Unknown Unknown An16g08570 13
transferase family 39 (gt39) family. 9.B.142.3.5 G9P430 13 Sugar Unknown An16g08570 13

9.B.143 the 6 tms duf1275/pf06912

(duf1275) family.

9.B.143.5.1 G7XY82 6 Unknown Unknown An10g00830 6

4.4.7 The TransATH Web Service

The beta version of TransATH is publicly available and can be accessed at http://transath.

umt.edu.my. Figure 23 shows the input page for the user to upload a fasta file of protein

sequences. The user is able to choose the thresholds for percentage alignment and e-values.

For percent alignment the thresholds from 40 for less stringent filtering to over 70 for more

stringency. For e-value thresholds there are six choices: 10, e-5, e-10, e-20, e-30 and e-50.

Figure 23: Input Page for TransATH
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TransATH takes approximately 80–100 minutes for a typical fungal genome fasta input file

of size approximately 10MB using a web server with an 8-core processor, 8GB memory

and 45GB of disk space. A link to the result page is generated once TransATH finishes.

Figure 24 shows an example of an output page that displays a table of predicted transporters

immitating the result by Saier [PVL+14, Table 1]. There are nine columns: Family TC#,

Family Name, Hit TCID, Access in TCDB, Hit TMS#, Substrate Group, Specific Substrate,

Sequence ID# and Query TMS#.

The user is able to download the whole table in tsv format by clicking on the first icon at

the top right of the output page.

The user can generate a pie chart of the predicted substrate groups by clicking on the View

Chart icon at the top right of the result page. Figure 25 shows an example. By mousing

over the pie chart, the specific slice will be highlighted and the Percentage Values box to the

left of the chart wlll display the substrate group name with its percentage of the total.

Figure 24: Page of Results of TransATH for A.niger CBS513.88

This is a beta version of TransATH. To date, there are 467 TCIDs from the TCDB that

map to information on their substrate groups and specific substrates. There are 32 substrate

groups identified to date, including the Unknown group. This preprocessing was done man-

ually for the beta implementation of TransATH. In future we will extract the roughly 4000
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entries available in merlin [DRFR15] which were also manually collected from the TCDB.

The beta version of the implementation does not use the web services of TM-Coffee and

LocTree3 yet. HMMTOP is used to compute the TMS, and localization information is not

yet available. Furthermore, the facility to be notified by email does not function yet. The

system will in future notify users when jobs complete and provide a link to the result page

of the job.

Figure 25: Pie Chart of TransATH Predictions for A.niger CBS513.88

4.5 Evaluation

This section addresses two questions. The first question is what is the impact of the choice of

thresholds for TCDB-Blast on its performance? In particular, how do our choice of thresholds

affect performance relative to G-Blast(v2)? Section 4.5.1 addresses this question using a gold

standard set of transporters and non-transporters from S. cerevisiae. Section 4.5.2 presents

the impact of the choice of thresholds on the genome of A. niger CBS 513.88. The second

question is how do we evaluate the performance of TransATH? Section 4.5.3 addresses this

question.
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4.5.1 Thresholds for TCDB-Blast

G-Blast(v2) and TCDB-Blast both use blastp to search the TCDB for hits of protein se-

quences of a genome. G-Blast(v2) sets an e-value cut-off of e-3 for its main search, and then

a lenient cut-off of e-1 when searching for putative transporters. Note that in this thesis

the exponent is always base 10, so e-3 is 0.001 which is 10−3. G-Blast(v2) does not apply

thresholds to the other parameters. In Section 4.3 TCDB-Blast requires each of the following

thresholds to be met: e-value 1e-20; percent alignment 70%; query coverage 70%; subject

coverage 70%; and difference in length of 10%.

This section answers the following questions: What is the effect of using other thresholds?

How does TCDB-Blast compare to G-Blast(v2)?

For the evaluation we took the gold standard dataset used by [BH13, Table S3] of 177 trans-

porters in S. cervisiae that have been experimentally characterized. These were the positive

examples in the dataset. A set for negative examples of size 177 was chosen at random

from S. cervisiae at SGD (http://www.yeastgenome.org) taking care to avoid entries in

the positive set and transmembrane proteins. The gold standard dataset of positives and

negatives was compared against the 11,572 entries of the TCDB as of May 2014.

Table 31 shows the effect of different e-value cut-offs for the blastp search using no other

thresholds. The impact of the a more stringent threshold has minimal effect on the number

of results for transporters. However, for non-transporters there is a noticeable effect at e-3,

e-10, and e-30.

Cut-Off e-1 e-3 e-5 e-10 e-20 e-30 e-50

Results for Transporters 177 177 176 176 175 174 174
Results for Non-Transporters 37 23 22 17 14 10 9

Table 31: Effect of e-value Cut-off
The number of results when using blastp to search the 354 protein sequences of the gold standard
dataset consisting of 177 transporters and 177 non-transporters against the 11,572 entries of the
TCDB as of May 2014 with the given e-value cut-off. No other thresholds were set.

BLAST returns a local alignment. By default the alignment has gaps. Gap to amino acid

alignments are ignored in two statistics of interest: percent identity and percent alignment.

The percent identity of the alignment is the percentage of the aligned region where the two

aligned amino acids are identical. A related statistic is the percent alignment which is the

number of amino acid to amino acid alignments (not necessarily identical) divided by the
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length of the alignment (including gaps). Table 32 shows the effect of different thresholds

for percent alignment. Table 33 shows the effect of different thresholds for percent identity.

Clearly there is no impact of the threshold for percent alignment. For percent identity the

most noticeable effect on transporters occurs at a threshold of 50%, while for non-transporters

there is a large impact at a threshold of 50% and a lesser impact at a threshold of 60%.

Threshold 30 40 50 60 70 80 90

Results for Transporters 177 177 177 177 177 177 177
Results for Non-Transporters 37 37 37 37 37 37 36

Table 32: Effect of Percent Alignment
The number of results when using blastp to search the 354 protein sequences of the gold
standard dataset consisting of 177 transporters and 177 non-transporters against the 11,572
entries of the TCDB as of May 2014 with the given percent alignment threshold. An e-value
cut-off of e-1 was used. No other thresholds were set.

Threshold 30 40 50 60 70 80 90

Results for Transporters 175 175 170 169 167 162 160
Results for Non-Transporters 23 23 10 6 6 6 6

Table 33: Effect of Percent Identity
The number of results when using blastp to search the 354 protein sequences of the gold
standard dataset consisting of 177 transporters and 177 non-transporters against the 11,572
entries of the TCDB as of May 2014 with the given percent identity threshold. An e-value
cut-off of e-1 was used. No other thresholds were set.

Query coverage is the percentage of the query sequence that is included in the alignment.

Table 34 shows the effect of different thresholds for query coverage. The impact is relatively

minor for transporters and non-transporters. There is a noticeable effect for non-transporters

at a threshold of 80% coverage.

Threshold 50 60 70 80 90

Results for Transporters 175 174 173 172 172
Results for Non-Transporters 17 16 15 12 12

Table 34: Effect of Coverage Threshold
The number of results when using blastp to search the 354 protein sequences of the gold
standard dataset consisting of 177 transporters and 177 non-transporters against the 11,572
entries of the TCDB as of May 2014 with the given query coverage threshold. An e-value
cut-off of e-1 was used. No other thresholds were set.

Percent difference is the percentage that the query sequence the subject sequence differ in

102



length. Table 35 shows the effect of different thresholds for percent difference. The impact

is relatively minor for transporters and non-transporters.

Threshold 20 15 10 5

Results for Transporters 177 176 176 175
Results for Non-Transporters 19 18 18 16

Table 35: Effect of Percent Difference Threshold
The number of results when using blastp to search the 354 protein sequences of the gold
standard dataset consisting of 177 transporters and 177 non-transporters against the 11,572
entries of the TCDB as of May 2014 with the given percent difference threshold. An e-value
cut-off of e-1 was used. No other thresholds were set.

The effect of each parameter is monotonic: as we make the parameter more stringent we

obtain fewer results because more sequences are filtered out. However, there are some changes

in thresholds for parameters that have a noticeable effect, mainly on the results for non-

transporters than for transporters. Table 31 suggests using a threshold for e-value of e-30

rather than e-20. Table 33 suggests using a threshold for percent identity of 50% or 60%

rather than 70%. Table 34 suggests using a threshold for query coverage of 80% rather

than 70%. Table 36 and Table 37show the results for different combinations of parameter

thresholds. They include the F-measure for each combination:

F = 2 ∗ TP/(2 ∗ TP + FP + FN)

where TP is the number of true positives, FP the number of false positives, and FN the

number of false negatives. Table 36 and Table 37 compare G-Blast(v2) and TCDB-Blast.

Table 37 shows the optimal thresholds for TCDB-Blast. The optimal thresholds for TCDB-

Blast use 60% as the threshold for percent identity. The other suggested threshold values have

no effect on the results. With the optimal thresholds, TCDB-Blast achieves an F-measure

of 95.73% which is slightly better than the F-measure of 93.90% achieved by G-Blast(v2).

4.5.2 Thresholds of TCDB-Blast for A. niger CBS 513.88

This section explores how the choice of thresholds impacts the results when using blastp to

search the 14,067 protein sequences of A. niger CBS 513.88 against the 11,572 entries of the

TCDB as of May 2014 with different combination of thresholds. The threshold for percent

alignment has minimal impact. The threshold for percent identity has a major impact and
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G-Blast(v2) Transporters Non-Transporters F-measure
e-value %ID QCov Diff
e-1 0 0 100 177 37 90.54
e-3 0 0 100 177 23 93.90

Table 36: F-Measures for G-Blast(v2) Predictions for Combinations of Thresholds
The number of results when using blastp to search the 354 protein sequences of the gold
standard dataset consisting of 177 transporters and 177 non-transporters against the 11,572
entries of the TCDB as of May 2014 with different combination of thresholds. In this trial
neither G-Blast(v2) nor TCDB-Blast removed sequences without transmembrane segments.
G-Blast(v2) uses an initial e-value threshold of e-3 for transporters, and then a threshold of
e-1 for putative transporters. The table shows the effect of both thresholds. G-Blast(v2) does
not explicity constrain percent identity, query coverage, and percent difference, so the table
shows the default values for these parameters that do not filter out any alignments. Bold
indicates the maximum F-measure.

greatly limits the number of results. The remaining thresholds have a gradual impact as

they are made more stringent. Table 39 shows the effect of different e-value cut-offs for the

blastp search using no other thresholds. Table 40 shows the effect of different thresholds

for percent alignment. Table 41 shows the effect of different thresholds for percent identity.

Table 42 shows the effect of different thresholds for query coverage. Table 43 shows the effect

of different thresholds for percent difference.

Table 38 shows the results for different combinations of parameter thresholds. It highlights

the impact of the threshold for percent identity. It suggests a threshold of 40% be used rather

than the threshold of 60% found to be optimal in the previous evaluation in Section 4.5.1.

4.5.3 Correctness of TransATH

The methodology used to determine the correctness of the predictions by TransATH in

Table 30 was to compare the predictions with the high confidence annotations for transporters

in the AspGD database.

The AspGD is a well-curated database. Annotation information is recorded in terms of the

Gene Ontology. The curators read the literature in order to assess which evidence code to as-

sign to a Gene Ontology term. The experimental evidence codes of Inferred from Experiment

(EXP), Inferred from Direct Assay (IDA), Inferred from Physical Interaction (IPI), Inferred

from Mutant Phenotype (IMP), Inferred from Genetic Interaction (IGI), and Inferred from
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TCDB-Blast Transporters Non-Transporters F-measure
e-value %ID QCov Diff
e-20 70 70 10 166 6 95.13
e-20 60 70 10 168 6 95.73
e-20 50 70 10 169 8 95.48
e-20 40 70 10 169 9 95.21
e-30 70 70 10 166 6 95.13
e-30 60 70 10 168 6 95.73
e-30 50 70 10 169 8 95.48
e-30 40 70 10 169 9 95.21
e-30 70 80 10 166 6 95.13
e-30 60 80 10 168 6 95.73
e-30 50 80 10 169 8 95.48
e-30 40 80 10 169 9 95.21

Table 37: F-Measures for Prediction using Combinations of Thresholds
The number of results when using blastp to search the 354 protein sequences of the gold
standard dataset consisting of 177 transporters and 177 non-transporters against the 11,572
entries of the TCDB as of May 2014 with different combination of thresholds. In this trial
neither G-Blast(v2) nor TCDB-Blast removed sequences without transmembrane segments.
For TCDB-Blast uses default thresholds of e-20, 70%, 70%, and 10% for e-value, percent
identity, query coverage, and percent difference, respectively. The effect of modifying the
threshold for percent identity is shown in the first block. The effect of using e-30 as the
threshold for e-value is shown in the second block. The effect of modifying the threshold for
query coverage is shown in the third block. Bold indicates the maximum F-measure.

Expression Pattern (IEP) indicate the inference by the curators from the experimental evi-

dence presented in the literature. In addition the team at AspGD has compared the genomes

of the Aspergillus genomes and other well-curated fungal genomes to create high confidence

orthology mappings between the genomes. They use this to assign GO terms based on or-

thology. Although they assign the evidence code Inferred from Electronic Annotation (IEA)

to the GO term, the source indicates the orthologous gene that is experimentally character-

ized. In addition there are the GO terms with evidence code IEA where the source is an

InterPro entry. This indicates an inference because an InterPro domain was located on the

sequence.

The TCDB as of May 2014 has 9 entries from A. niger CBS 513.88 as shown in Table 44.

The high confidence AspGD annotations for transporters were determined by downloading

the gene_association.aspgd file from the AspGD website at http://www.aspgd.org. The

entries pertaining to A. niger CBS 513.88 were extracted and cross-referenced with the set

105

http://www.aspgd.org


TCDB-Blast Results
e-value %ID QCov Diff
e-20 70 70 10 55
e-20 60 70 10 93
e-20 50 70 10 170
e-20 40 70 10 321
e-20 30 70 10 696

Table 38: A. niger CBS 513.88 Predictions using Combinations of Thresholds
The number of results when using blastp to search the 14,067 protein sequences of A. niger CBS
513.88 against the 11,572 entries of the TCDB as of May 2014 with different combination of
thresholds.

Cut-Off e-1 e-3 e-5 e-10 e-20 e-30 e-50
Results 2803 2108 1866 1576 1295 1124 833

Table 39: Effect of e-value Cut-off
The number of results when using blastp to search the 14,067 protein sequences of A. niger
CBS 513.88 against the 11,572 entries of the TCDB as of May 2014 with the given e-value
cut-off. No other thresholds were set.

Threshold 30 40 50 60 70 80 90

Results 2803 2803 2803 2803 2803 2794 2661

Table 40: Effect of Percent Alignment
The number of results when using blastp to search the 14,067 protein sequences of A. niger
CBS 513.88 against the 11,572 entries of the TCDB as of May 2014 with the given percent
alignment threshold. An e-value cut-off of e-1 was used. No other thresholds were set.

Threshold 30 40 50 60 70 80 90

Results 2052 2052 300 124 65 28 13

Table 41: Effect of Percent Identity
The number of results when using blastp to search the 14,067 protein sequences of A. niger
CBS 513.88 against the 11,572 entries of the TCDB as of May 2014 with the given percent
identity threshold. An e-value cut-off of e-1 was used. No other thresholds were set.

Threshold 50 60 70 80 90

Results 1593 1447 1291 1117 834

Table 42: Effect of Coverage Threshold
The number of results when using blastp to search the 14,067 protein sequences of A. niger
CBS 513.88 against the 11,572 entries of the TCDB as of May 2014 with the given query
coverage threshold. An e-value cut-off of e-1 was used. No other thresholds were set.
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Threshold 20 15 10 5

Results 1722 1576 1424 1194

Table 43: Effect of Percent Difference Threshold
The number of results when using blastp to search the 14,067 protein sequences of A. niger
CBS 513.88 against the 11,572 entries of the TCDB as of May 2014 with the given percent
difference threshold. An e-value cut-off of e-1 was used. No other thresholds were set.

Gene TCID UniProt Substrate Group Specific Substrate

An04g00670 3.A.19.1.2 A2QHQ3 Protein Protein
An05g01290 2.A.1.1.58 Q8J0U9 Sugar Glucose:H+
An07g06140 9.B.7.2.3 E2PST1 Protein Unknown
An07g08960 1.H.1.4.3 G3XZI4 Unknown Unknown
An09g01910 2.A.1.2.48 A2QTF4 Specific drug Tetracycline
An11g03330 1.A.88.1.4 A2QW01 Cation K+
An12g00870 2.A.16.4.1 A2QYD7 Unknown Unknown
An12g07450 2.A.1.1.57 Q8J0V1 Sugar Monosaccharides
An16g08040 1.B.69.1.4 A2R8R0 Peptide Unknown

Table 44: TCDB Entries from A. niger CBS 513.88
The table shows information for the 9 TCDB entries that come from A. niger CBS 513.88.
The Gene column shows the gene identifier in AspGD. The TCID column shows the identifier
in the TCDB. The UniProt column shows the identifier in UniProt. The Substrate Group
column shows the type of substrate transported, as known by TCDB. The Specific Substrate
column shows the specific substrate transported, as known by TCDB. As of May 2014.

of all GO terms in BP (Biological Process) and MF (Molecular Function) in the subtree of

GO:0006810(transport) from BP and GO:0005215(transporter activity) from MF. The GO

terms with experimental evidence codes and the GO terms that had IEA evidence code and

were derived by orthology were extracted to give the final list of high confidence annotations

for transporters in A. niger CBS 513.88. The list contained 242 GO terms for 190 individual

genes. Table 45 shows the information for the 10 genes with expermental evdidence.

From the total 242 GO terms for 190 genes only a few include detail about the substrate

being transported. Table 46 shows the 33 GO terms for Molecular Function for 30 genes

where information about the substrate being transported is given.

Of the nine genes from A. niger CBS 513.88 that are entries in the TCDB as of May 2014,

only three have high confidence GO term annotations relating to transport in the AspGD

as shown in Table 47.
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Gene GO ID Description Code Source Domain

An12g07450 GO:0034219 carbohydrate transmembrane
transport

IDA PMID:14717659 P

An12g07450 GO:0034219 carbohydrate transmembrane
transport

IMP PMID:14717659 P

An14g03790 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An11g09910 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An01g03190 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An03g04215 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An12g07570 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An14g00010 GO:0006886 intracellular protein transport IMP PMID:11489135 P
An14g00010 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An12g01190 GO:0016192 vesicle-mediated transport IMP PMID:24295824 P

An02g08670 GO:0090481 pyrimidine nucleotide-sugar
transmembrane transport

IGI P

An06g00300 GO:0090481 pyrimidine nucleotide-sugar
transmembrane transport

IGI P

Table 45: Transport GO Entries with Experimental Evidence for A. niger CBS 513.88
The table shows information for the genes from A. niger CBS 513.88 with transport-related
GO terms supported by experimental evidence. The Gene column shows the gene identifier
in AspGD. The GO ID column shows the Gene Ontology identifier for the GO term. The
Description column shows the short description of the GO term. The Code column shows the
evidence code for the GO term as curated by AspGD. The Source column shows the source of
the evidence. The Domain column shows the GO domain BP(P), MF(F), CC(C) of the GO
term. As curated in the AspGD as of 28 March 2016.

For the evaluation TransATH was run at transath.umt.edu.my using the thresholds: e-

value 1e-20; percent identity 40%; query coverage 70%; subject coverage 70%; and difference

in length of 10%. The TCDB as of May 2014 was used. Sequences in the TCDB and in the

A. niger CBS 513.88 genome without transmembrane segments were filtered out.

In total TransATH returned predictions for 221 sequences in the A. niger CBS 513.88

genome. Of these 52 were matches to the 190 genes that had high confidence GO terms

related to transport according to AspGD. Another 85 of the 190 genes had blastp hits to

TCDB sequences that fell below the thresholds set for this evaluation. A further 20 genes

with predictions by TransATH that did not have high confidence GO terms for transport in

the AspGD had GO terms for transport inferred from InterPro domain hits in AspGD. In

summary 157 of the 221 sequences in the A. niger CBS 513.88 genome for which TransATH

returned a prediction had good corroborating evidence in the AspGD that they were trans-

porters.
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Gene GO ID Description Code Source Domain

An01g00720 GO:0042929 ferrichrome transporter activity IEA CGD:CAL0000196424 F
An01g03640 GO:0008565 protein transporter activity IEA SGD:S000003530 F
An01g08400 GO:0008565 protein transporter activity IEA SGD:S000005595 F
An01g14510 GO:0008526 phosphatidylinositol transporter ac-

tivity
IEA SGD:S000004372 F

An02g03540 GO:0005358 high-affinity hydrogen:glucose sym-
porter activity

IEA PomBase:SPBC4B4.08 F

An02g03540 GO:0055054 fructose:proton symporter activity IEA PomBase:SPBC4B4.08 F
An02g04260 GO:0008565 protein transporter activity IEA SGD:S000003413 F
An02g07570 GO:0015248 sterol transporter activity IEA SGD:S000006066 F
An02g13460 GO:0051183 vitamin transporter activity IEA SGD:S000003154 F
An03g01800 GO:0005324 long-chain fatty acid transporter ac-

tivity
IEA SGD:S000003269 F

An04g01190 GO:0051724 NAD transporter activity IEA SGD:S000001268 F
An05g01660 GO:0015244 fluconazole transporter activity IEA CGD:CAL0000186516 F
An07g09190 GO:0005324 long-chain fatty acid transporter ac-

tivity
IEA SGD:S000000245 F

An08g01030 GO:0008565 protein transporter activity IEA SGD:S000001054 F
An10g00500 GO:0008565 protein transporter activity IEA SGD:S000007256 F
An11g03640 GO:0015198 oligopeptide transporter activity IEA SGD:S000006398 F
An11g05000 GO:0046624 sphingolipid transporter activity IEA SGD:S000005927 F
An12g01210 GO:0042937 tripeptide transporter activity IEA SGD:S000001801 F
An14g06210 GO:0008526 phosphatidylinositol transporter ac-

tivity
IEA SGD:S000005175 F

An15g02930 GO:0015244 fluconazole transporter activity IEA CGD:CAL0000186516 F
An15g07460 GO:0042937 tripeptide transporter activity IEA CGD:CAL0000191307 F
An15g07510 GO:0042937 tripeptide transporter activity IEA CGD:CAL0000200802 F
An15g07510 GO:0042936 dipeptide transporter activity IEA CGD:CAL0000200802 F
An16g03590 GO:0008526 phosphatidylinositol transporter ac-

tivity
IEA PomBase:SPAC3H8.10 F

An16g03590 GO:0008525 phosphatidylcholine transporter ac-
tivity

IEA PomBase:SPAC3H8.10 F

An16g04270 GO:0008565 protein transporter activity IEA SGD:S000003690 F
An16g08830 GO:0008565 protein transporter activity IEA SGD:S000000375 F
An17g00560 GO:0008565 protein transporter activity IEA SGD:S000005658 F
An18g04110 GO:0008565 protein transporter activity IEA SGD:S000006046 F
An18g04910 GO:0032217 riboflavin transporter activity IEA SGD:S000005833 F
An12g07450 GO:0005358 high-affinity hydrogen:glucose sym-

porter activity
IEA AspGD:ASPL0000073615 F

An01g11630 GO:0008565 protein transporter activity IEA SGD:S000002493 F
An03g04340 GO:0015197 peptide transporter activity IEA SGD:S000004370 F

Table 46: Transport GO MF Entries with Substrate Information for A. niger CBS 513.88
The table shows GO MF information for the genes from A. niger CBS 513.88 with high confidence
transport-related GO terms that include information on the substrate. The Gene column shows
the gene identifier in AspGD. The GO ID column shows the Gene Ontology identifier for the GO
term. The Description column shows the short description of the GO term. The Code column
shows the evidence code for the GO term as curated by AspGD. The Source column shows the
source of the evidence. The Domain column shows the GO domain BP(P), MF(F), CC(C) of the
GO term. As curated in the AspGD as of 28 March 2016.
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Gene GO ID Description Code Source Domain

An12g07450 GO:0005358 high-affinity hydrogen:glucose
symporter activity

IEA AspGD:ASPL0000073615 F

An02g03540 GO:0005358 high-affinity hydrogen:glucose
symporter activity

IEA PomBase:SPBC4B4.08 F

An02g03540 GO:0055054 fructose:proton symporter activ-
ity

IEA PomBase:SPBC4B4.08 F

An12g00870 GO:0000316 sulfite transport IEA AspGD:ASPL0000109974 P

Table 47: Transport GO Entries with TCDB Entries for A. niger CBS 513.88
The table shows the available high confidence GO terms in AspGD for the nine TCDB entries
from A. niger CBS 513.88. The Gene column shows the gene identifier in AspGD. The GO ID
column shows the Gene Ontology identifier for the GO term. The Description column shows
the short description of the GO term. The Code column shows the evidence code for the GO
term as curated by AspGD. The Source column shows the source of the evidence. The Domain
column shows the GO domain BP(P), MF(F), CC(C) of the GO term. Note that only 3 of the
9 genes have high confidence GO terms relating to transport. Note that An02g03540 appears
to have superceded An05g01290 in the genome. As of 28 March 2016.

For the 30 genes in Table 46 with information on the substrate transported, TransATH

returned predictions for 11 of the 30 genes. Another 9 of the 30 genes had blastp hits to

TCDB sequences that fell below the thresholds set for this evaluation. Table 48 shows the

TransATH predictions for the 11 genes for comparison with the information in Table 46. For

9 of the 11 genes with predictions from TransATH and in Table 46 there is agreement on

the substrate transported, while for the other two (An05g01660 and An15g02930) there is

agreement at the Substrate Group level if fluconazole is considered a Multiple Drug.

In conclusion, at the level of predicting transporter versus non-transporter, TransATH was

correct at least for 157 of the 221 sequences predicted to be transporters; that is, there was

had good corroborating evidence in the AspGD that they were transporters. This is at least

71.0% of the predictions were correct. Keep in mind that 43.7% (6141/14067) of genes in

the A. niger CBS 513.88 genome have no annotation.

At the level of predicting substrate, TransATH returned predictions for 11 of the 30 genes

in Table 46 with information on the substrate transported. For 9 of the 11 there was

good agreement on the substrate, and for the other 2 there was plausible evidence that the

predictions were correct at the level of Substrate Group.
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Family Family Name TCID Hit HTMS Substrate
Group

Specific Sub-
strate

Query QTMS

2.A.1 major facilitator superfamily (mfs). 2.A.1.16.1 P39980 15 Siderophore Ferroxamine An01g00720 14
3.A.5 general secretory pathway (sec)

family.
3.A.5.9.1 P60059 1 Protein Protein An01g11630 1

2.A.1 major facilitator superfamily (mfs). 2.A.1.1.36 Q400D8 12 Unknown Unknown An02g03540 12
2.A.1 major facilitator superfamily (mfs). 2.A.1.1.58 Q8J0U9 12 Sugar Glucose:H+ An02g03540 12
2.A.1 major facilitator superfamily (mfs). 2.A.1.1.108 P32465 12 Unknown Unknown An02g03540 12
3.A.5 general secretory pathway (sec)

family.
3.A.5.8.1 P32915 12 Protein Peptide An03g04340 10

3.A.5 general secretory pathway (sec)
family.

3.A.5.9.1 Q9H9S3 10 Protein Protein An03g04340 10

3.A.5 general secretory pathway (sec)
family.

3.A.5.9.1 P61619 12 Protein Protein An03g04340 10

2.A.29 mitochondrial carrier (mc) family. 2.A.29.10.5 P40556 4 Nucleotide NAD+, pyru-
vate

An04g01190 4

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.1 P33302 15 Unknown Unknown An05g01660 11

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.4 P43071 13 Multiple
drug

Unknown An05g01660 11

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.5 P78595 11 Multiple
drug

Phospholipid An05g01660 11

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.11 P41820 13 Unknown Unknown An05g01660 11

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.12 P51533 15 Unknown Unknown An05g01660 11

2.A.67 oligopeptide transporter (opt) fam-
ily.

2.A.67.1.5 O14031 15 Peptide Glutathione An11g03640 15

2.A.6 resistance-nodulation-cell division
(rnd) superfamily.

2.A.6.6.3 Q12200 13 Lipid Sphingolipid An11g05000 13

2.A.17 proton-dependent oligopeptide
transporter (pot) family.

2.A.17.2.1 Q9P380 12 Peptide Unknown An12g01210 11

2.A.17 proton-dependent oligopeptide
transporter (pot) family.

2.A.17.2.2 P32901 12 Peptide dipeptide,
tripeptide

An12g01210 11

2.A.1 major facilitator superfamily (mfs). 2.A.1.1.51 Q2MEV7 12 Sugar Glucose/Xylose An12g07450 12
2.A.1 major facilitator superfamily (mfs). 2.A.1.1.57 Q8J0V1 12 Sugar Monosaccharides An12g07450 12
2.A.1 major facilitator superfamily (mfs). 2.A.1.1.68 A3M0N3 12 Sugar Glucose An12g07450 12
3.A.1 atp-binding cassette (abc) super-

family.
3.A.1.205.1 P33302 15 Unknown Unknown An15g02930 16

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.4 P43071 13 Multiple
drug

Unknown An15g02930 16

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.5 P78595 11 Multiple
drug

Phospholipid An15g02930 16

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.11 P41820 13 Unknown Unknown An15g02930 16

3.A.1 atp-binding cassette (abc) super-
family.

3.A.1.205.12 P51533 15 Unknown Unknown An15g02930 16

Table 48: TransATH Predictions for Genes with Substrate Information
The table shows the TransATH predictions for the genes from A. niger CBS 513.88 with in-
formation about substrates available from the high confidence GO terms in AspGD related to
transport. The columns Family and Family Name contain the TC-Family identifier and its name.
The TCID column shows the identifier in the TCDB. The column Query is the identifier for
the entry in the A. niger CBS 513.88 genome. The column Hit is the UniProtKB identifier for
the matching TCDB entry. The columns QTMS and HTMS contain the number of TMS for the
query and the hit, respectively, as determined by HMMTOP. The Substrate Group column shows
the type of substrate transported, as known by TCDB. The Specific Substrate column shows the
specific substrate transported, as known by TCDB. As of 28 March 2016.
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4.6 Predicting Specific Substrates

This section explores a number of approaches to solving the problem of predicting the spe-

cific substrates transported across a membrane by a given transmembrane transporter pro-

tein. The review of the state of the art in Section 4.2 does not discover any predictor for

transporters that works at this level of specificity. Furthermore, the known examples of

transporters, as illustrated in Section 2.3, show that the specific substrate is determined by

only a few residues in the protein sequence. Hence, on the face of this evidence, the task is

likely to be difficult.

For this work we focus on sugar porters.

The techniques that hold promise for the exploration are

▶ multiple sequence alignment (MSA);

▶ profile HMM;

▶ identifying clades in phylogenetic trees [Wu15];

▶ amino acid composition and the various alphabets for amino acids (Section 2.5.3);

▶ multilevel alphabets [HKMG13]; and

▶ identifying specificity-determining positions [CC14].

Multiple sequence alignments are at the heart of many techniques to explore protein families.

By considering several members of the protein family rather than a single member, or pair

of members in a pairwise sequence alignment, the MSA hopes to amplify the signal in the

sequences that characterize the family. However, the MSA algorithms do not guarantee an

optimal alignment, and they differ in the alignment that they do compute. So the choice

of MSA algorithm can play a major role in the effectiveness of the downstream application.

The MSA algorithms that we consider are

▶ Clustal Omega [SWD+11], the latest in the Clustal series of algorithms, which is fast

and scaleable, and capable of aligning 10,000 or more sequences;

▶ MAFFT [KS13], which was used in phylogenetic analysis of the GH10 xylanase en-

zymes [Wu15];

▶ AQUA [MCT+10], which considers alignments from MAFFT and MUSCLE [Edg04], re-

fines them with RASCAL [TTP03], assesses the refined alignments with NorMD [TPR+01],

and which is used at EMBL to construct eggNOG [PFS+13]; and
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▶ PipeAlign [PBB+03], which is a pipeline — no longer available — for constructing

protein families, constructing a MSA, and identifying subfamilies and adjusting the

MSA to reflect the distinguishing features of the subfamilies within the family.

For this work the algorithm should produce an alignment consistent with the TMS regions

within the full MSA, as the TMS contain the specificity determining residues.

For profile Hidden Markov Models (HMM) we use the HMMER package [Edd98]. We use

hmmbuild to train HMMs, given a MSA, and subsequently use hmmscan to scan protein

sequences against trained HMMs. In their work on TransportTP, Li et al (2009) [LBUZ09]

only build HMMs for TC families of size at least 5. However, they only achieve precision

and recall greater than 70% for families of size greater than 15.

In the phylogenetic analysis of the GH10 xylanase enzymes [Wu15] a Maximum Likelihood

tree is constructed using RAxML [Sta14] with a bootstrap value of 1000 to estimate branch

support. Subfamilies are based on the topology of the phylogenetic tree requiring boostrap

support of at least 55%. Subfamilies are validated by considering average percent identity

of pairwise alignments within a subfamily and between subfamilies. This analysis is done

by aligning the catalytic domains of the enzymes only, and not the full protein sequence.

For transporters, that is, sugar porters, we consider the alignment of the Prosite Sugar -

Transport 1 domain.

Section 2.5.3 introduces the many variations on amino acid composition and the various

alphabets for amino acids. Let us be precise about the definition of each of those we consider,

and let C(x) denote a generic amino acid composition function for a protein sequence x. The

composition functions that we use are as follows. The length function L is defined as

L(x) = |x|, the number of amino acids in x. (1)

The amino acid composition function AAC is a vector of length 20 defined as

AAC(x)[a] = |{i : a = x[i]}|/L(x). (2)

The pair amino acid composition function PAAC is a vector of length 400 defined as

PAAC(x)[aa′] = |{i : aa′ = x[i..i+ 1]}|/(L(x)− 1). (3)
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Helms work [SCH10] shows that there is no gain to be had by considering the more com-

plicated variations of amino acid composition. However, their work [SH12] obtains a 10%

improvement by considering the amino acid composition of the TMS and non-TMS regions

of the protein individually. Let us define, for an amino acid composition function C and

a protein x, CTMS(x) as the value of C when restricted to the TMS segments of x, and

CTMS(x) as the value of C when restricted to the non-TMS segments of x.

It is convenient to record the number of TMS in the protein, so define

TMS(x) = number of transmembrane segments in x. (4)

When we need to be precise, we will indicate the method M such as HMMTOP or TMHMM

used to determine the TMS and denote this as

TMSM(x) = number of transmembrane segments in x as computed by method M, (5)

and use TMS(x) to be the number of TMS as curated in SwissProt.

The feature vector that we consider, based on the lessons from Helms work, is

L(x).TMS(x).AAC(x).PAACTMS(x).PAACTMS(x) (6)

where . is the concatenation operator. This is a vector of length 822.

An alphabet in Section 2.5.3 is a translation function t from the set of amino acids A to

a set of symbols S. The translation may be applied to the protein sequence x to yield a

sequence t(x) of symbols. The composition of t(x) in terms of the frequency of each symbol

s, or each pair of symbols ss′, can be determined directly from t(x) or by “translating” the

composition vector of x. Let Ct:A→S(x) denote the composition of t(x), then

Ct:A→S(x)[s] =
∑

a∈t−1(s)

C(x)[a]. (7)

As a shorthand, we will write Ct(x) or C(t(x)).

In 2013 Hod et al. [HKMG13] introduced the concept of a multilevel alphabet to protein

sequence analysis from the field of signal processing. They solved a difficult problem of finding

short motifs by encoding several alphabets for amino acids with information on secondary
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structure and surface accessibility into a single alphabet, and then applying MEME to the

translated sequences, in order to find the motifs. For transporters, the TMS represent the

secondary structure, and Helms work has shown the importance of using properties of both

the TMS and non-TMS regions of the protein sequence. So the approach of Hod et al.

appears to be a way to generalize Helms work to use amino acid composition and various

alphabets together.

For families of enzymes, there is much success at determining which positions and residues

within the catalytic domain are the active site, based on knowledge from 3D structures of

enzymes and enzymes bound to their ligands (substrates). Many prediction methods for the

specificity-determining positions and specificity-determining residues exist [CC14], including

recent work predicting detailed enzyme function [NNM14]. There is no predictor specifically

designed for transporters; however, the survey [CC14] does compare existing predictors on a

dataset of transporters, amongst its numerous comparisons. Unfortunately, their comparison

does not reveal any significant difference in performance between the predictors. Hence, any

predictor is as good a choice as the next for our exploration. Of course, these methods are

strongly dependent on the MSA.

4.7 A New Computational Framework

This section presents a proposal for a way forward for the prediction of transport that

attempts to cope with a number of inherent problems to the field. The problems are

• The Transporter Classification (TC) and the TCDB are the official collectors and

describers of transporters. As such they act as the final arbiters of knowledge about

transporters. However, the state of the TCDB does not provide vital information for

GENRE such as database fields for substrates and transporter reactions.

• GENREs and researchers work with transporters in terms of the specific substrates

that they transport, the mechanism of transport, and the localization of the transport

reaction. These two perspectives, namely TC and substrate, need to be reconciled. In

particular, there needs to be an official standard for naming substrates, and classes

of substrates. This role could be filled by ChEBI. Furthermore, there needs to be a

standard identifier for transport reactions; a role which might be taken up by the TC,

or BioPAX, or BiGG.
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• The datasets are small, as experimentally characterized transporters are small in num-

ber, and their number is very variable across the different TC families.

• The task is hierarchical. One reason for this hierarchy is the need to aggregate data

on specific substrates in order to have a dataset for a “group” of substrates that is

sufficiently large for the purpose of machine learning. A second reason is that biology

organizes knowledge hierarchically as a way to deal with complexity. A third reason

is the need to summarize the knowledge on all the transporters in a genome; this may

involve information on a subset of 500 genes in a genome of 12,000 genes.

• The task is multi-label classification. That is, a transporter may facilitate the move-

ment of more than a single substrate. We have examples of sugar transporters which

transport four substrates, although with different levels of efficiency.

Therefore the challenge is to predict as much as we can about the transporters in a genome, as

precisely and as reliably as we can, given the available data or knowledge about transporters.

So the machine learning problem

1. adapts to the amount of available data (and its predictive power);

2. measures reliability of predictions, so it can determine whether the available data is

sufficient for this purpose;

3. seeks to make a prediction that is as precise as possible (in the hierarchy), given the

need to be reliable;

4. seeks to include multiple labels in the prediction, where possible, in recognition that

this is a multi-label classification task; and

5. identifies those niches amongst the space of transporters where the available data

supports precise and reliable prediction.

Given a suitable framework, then our ability to make predictions should improve as the

dataset of experimentally characterized transporters increases.

There are several hierarchies related to the framework. There is the protein family orga-

nization in the Transporter Classification (TC) of transporter versus non-transporter, TC

superfamily, TC family, and TC subfamily. There are the various groupings of specific sub-

strates that could be organized into hierarchies; for example, sugar, monosaccharide, pentose,
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arabinose, D-arabinose. There is the hierarchy in the Gene Ontology terms for transporters,

which individually captures mechanism, substrate, and localization. A part of the GO hi-

erarchy mirrors a substrate hierarchy. The GO terms cross-reference to ChEBI when they

specify a substrate.

Hierarchical multi-label classification [VSS+08] is often transformed into other tasks [SJF11]

or performed incrementally [CBGZ06]. However, hierarchical multi-label classification can

be performed directly using traditional machine learning techniques such as genetic algo-

rithms [CBdC12], neural networks [CBDC14], decision trees [VSS+08], SVM [RSSST06],

and ensembles [ZSK14].

One inspiration for the proposed framework in this section is the history of hierarchical

multi-label classification for predicting gene function where it has been occasionally used in

the context of a single hierarchy, such as FunCat from MIPs, or directed-acyclic graph, such

as the Gene Ontology [BST06, SVS+10, BCFdC13, SCMD13, FF+14].

However, in our task there are multiple hierarchies, which may complicate the classification

problem. Nevertheless, another inspiration is the recent harmonization effort [CVP+15] of

the TCDB, GO, and Pfam which illustrates how to relate the hierarchies. This effort should

help address the difficulty of comparing predictors that target the TC with those that target

substrates.

The framework takes a relational view of the available dataset and the properties of the

transporters. The framework is a new “twist” on the feature vector approach of TransportTP.

TransportTP adopts a somewhat complicated hybrid approach where its algorithm is a

series of phases. It uses amino acid composition, Pfam domains, and GO terms amongst

the features. The feature space can be structured as a relational space, and relations can

represent the associations between the various hierarchies.

In this dataspace, requirement (5) needs to identify a niche, which we call a transporter

cluster T , that is as specific as possible, given the available data, and that is a group of

related transport proteins. The classification task for the transporter cluster T is to extract

characterizing features of T in order to be able to classify query proteins into the cluster T .

Sometimes the cluster may be a substrate category, sometimes a TC family, sometimes a

TC subfamily, and maybe a specific substrate.

The proposed computational framework for the transporter prediction problem is multi-

hierarchical multi-label classification using a relational dataspace.
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For the solution of the classification problem, a proposed way to proceed is to first identify

a transporter cluster T , and then develop a profile HMM classifier from a suitable multiple

sequence alignment MSA of the protein sequences in the cluster T . One would want the

MSA to conserve the topology by aligning TMS with TMS. One would also want the MSA to

align specificity-determining residues so that information on those positions and residues are

incorporated into the profile HMM, even if one did not explicitly run a specificity-determining

residue method.

There are many clustering techniques that one might apply to identify a transporter cluster.

From the relational dataspace representation, one is able to transform the representation

into a feature vector, a network, or relations, and thus apply techniques from data mining,

graph mining, and machine learning to identify clusters.

4.7.1 The Relational Dataspace

The dataspace represents the knowledge about a set of proteins, their properties, and their

classifications. The classifications of interest are

▶ the Transporter Classification (TC); and

▶ the Gene Ontology (GO).

Important properties for proteins are

▶ the Pfam domains of the protein;

▶ the TMS of the protein; and

▶ the amino acid composition of the protein;

in particular, but the list of properties is open-ended. The proteins of interest are those with

curated information, such as

▶ the proteins in SwissProt;

▶ the proteins in TCDB; and

▶ the proteins in genomes that are well-curated.

Most of the proteins of interest will be in SwissProt, but some will be in UniProtKB and

unreviewed.

The information is modeled as relations.
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Proteins are represented by their UniProt Identifier pid.

Transporter Classification information from the TCDB is encoded as a set of relations:

TC( pid, TCID, TC subfamily, TC family, TC superfamily )

TCsubstrate( pid, TCID, substrate group, specific substrate )

These entries will define the “standard” names for substrates and define the hierarchy for

one level of substrates, as well as the hierarchy of TC families.

Gene Ontology information is encoded as a set of relations:

GOTransport( GOterm )

GONonTransport( GOTerm )

GOaspect( GOterm, BP|MF|CC )

GOparent( GOterm, GOterm )

GOroot( GOterm )

which captures the GO hierarchy, which is a DAG allowing for multiple parents; the root

terms of the hierarchy; the aspect to which the term belongs; and whether the GO term is

associated with transporters only; or is clearly indicative of a non-transporter.

The GO annotation from SwissProt and other curated databases is represented by

GO( pid, GOterm, evidenceCode, source )

Pfam Domain information is encoded as a set of relations:

PfamTransport( PfamID )

PfamNonTransport( PfamID )

which captures those Pfam domains which are only associated with transporters, or never

associated with transporters. The relation

Pfam( pid, PfamID, start, end )

records the existence of a Pfam domain at the [start..end] position of a protein.

119



Transmembrane Segment information is encoded by the relations:

TMSnumber( pid, count, source )

TMS( pid, start, end, source )

record the number of TMS for a protein, and the existence of a TMS at the [start..end]

position of a protein, according to the tool source, or according to Swissprot as the source.

Amino Acid Composition is recorded in the relations:

AALength( pid, protein length )

AATMS( pid, TMS count )

AA AAC( pid, AAC vector )

AA PAAC( pid, PAAC vector )

AA PAAC TMS( pid, PAAC TMS vector )

AA PAAC notTMS( pid, PAAC notTMS vector )

which are the components of the 822 dimensional vector selected in Section 4.6,

L(x).TMS(x).AAC(x).PAACTMS(x).PAACTMS(x)

together with PAAC(x).

Substrates as they are grouped or organized into a hierarchy need to be captured in the

dataspace. This information needs to include, and be consistent with, the information used

in TCDB as represented in the TCsubstrate relation above. A standard set of names or

identifiers need to be assigned to the substrates and the groupings. The relations are

SubstrateID( substrateName )

SubstrateParent( SubstrateName, SubstrateName of Parent )

SubstrateRoot( SubstrateName )

Note that a “substrate” is either a specific substrate, a grouping of substrates, or a class

of substrates. For human readers, there could be a second argument providing a brief text

description in the SubstrateName relation.
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4.8 Conclusion

In this chapter we investigate the issue of including transport reactions, transporter proteins,

and the GPR associations for transport in the reconstruction of metabolic pathways. To

clarify the state of the art in that area, we develop a scheme to describe and compare

the different approaches. This is necessary so that we can show that the existing work of

predicting transport proteins actually is diverse and incomparable. We use a case study to

get a deeper understanding of the existing work, and to compare them in a practical setting

using a fungal genome of interest. In Section 4.4 we automate a protocol for determining the

transporters in a genome that is used in the lab of Milton Saier, who develops the Transporter

Classification and maintains the TCDB. In Section 4.6 we explore how to predict specific

substrates of transporters. This is a very difficult problem, so we do not find a solution.

Based on our experience, in Section 4.7 we propose a framework for the overall problem of

predicting transporters, which includes the problem of determining specific substrates.

The scheme to describe and compare existing methods for predicting transporters allowed

us to perform a meaningful analysis of the state of the art. This guided our case study that

applied existing techniques to the fungal genome of A. niger CBS 513.88 for which there is

a manually created and curated GENRE available.

This study reveals several issues:

• the disjointedness of the field with little connection between those that use the Trans-

porter Classification (TC) as their target for prediction, and those that use the chemical

substrates being transported as their target for prediction;

• the limited coverage of the predictors, due to the small size of available Gold Standard

datasets for transport; and

• the inability of the techniques to predict the specific substrate, or specific collection

of substrates, that is transported across the membrane by the transport protein, even

though they could identify the type of substrate in some cases.

In Section 4.4 we automate a protocol of Saier’s lab for determining the transporters in a

genome, and applied the implementation to the fungal genome of A. niger CBS 513.88. This

included determining localization, and improvements in predicting transmembrane segments

(TMS) of a protein.
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In Section 4.6 we explore how to predict specific substrates of transporters. Section 4.6 shows

just how difficult the problem is, as we explore a number of approaches in order to address

the problem, but we come up short. We do not find a solution to the problem of predicting

specific substrates.

In Section 4.7 we propose a framework for the overall problem of predicting transporters,

which includes the problem of determining specific substrates. From our perspective, it

clearly identifies the issues of how to best proceed given the amount of experimental evidence

for transporters, and how to harmonize the different points of view. It is however, only a

proposal, and not a worked solution.
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Chapter 5

Conclusion

This chapter concludes the thesis. It recaps the thesis work, and presents a summary of

challenges addressed, the progress made, and the current state of the art. It also presents

the contributions of our work, the limitations of our work, and potential future directions

for this work.

This thesis deals with computational aspects of the automatic reconstruction of the metabolic

pathways of an organism. It is motivated by the critical role of genome-scale network re-

constructions (GENREs) of metabolism in systems biology, and the significant impact of

systems biology on biology today, especially in industrial applications.

Chapter 2 contains the background material that is important to the understanding of this

dissertation. Key are the Gene-Protein-Reaction (GPR) associations that are the units

of the metabolic pathway reconstructions. They relate the central dogma of biology that

genes through the processes of transcription and translation produce proteins, and these

proteins in turn carry out the functional roles of the cell, including the enzymatic reactions

of metabolism and the transport reactions across membranes.

In Chapter 3, through a review of the state of the art and case studies with fungal genomes,

we investigate the reconstruction of metabolic pathways and the obstacles to full automation

of the process. The first constribution of the thesis is to identify those obstacles and identify

the issues preventing automation.

In Chapter 4 we investigate the issue of including transport reactions, transporter proteins,

and the GPR associations for transport in the reconstruction of metabolic pathways. To
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clarify the state of the art in that area, we develop a scheme to describe and compare

the different approaches. This is necessary so that we can show that the existing work of

predicting transport proteins actually is diverse and incomparable. We use a case study to

get a deeper understanding of the existing work, and to compare them in a practical setting

using a fungal genome of interest. In Section 4.4 we automate a protocol for determining the

transporters in a genome that is used in the lab of Milton Saier, who develops the Transporter

Classification and maintains the TCDB. In Section 4.6 we explore how to predict specific

substrates of transporters. This is a very difficult problem, so we do not find a solution.

Based on our experience, in Section 4.7 we propose a framework for the overall problem of

predicting transporters, which includes the problem of determining specific substrates.

The chapter is organized as follows: Section 5.1 presents the contributions of our work;

Section 5.2 discusses the limitations of our work; and Section 5.3 offers some directions for

future work. For transparency, Section 5.4 points ot very late-breaking work that is directly

relevant to this thesis.

5.1 Contributions

Contribution 1: Identification of issues in the reconstruction of metabolic networks.

The issues for eukaryotes in particular are the need to model a cell’s internal organelles,

predict localization of proteins, and predict transport proteins with their specific substrate

and membrane localization.

The issues identified are as follows.

• The reference template approaches are dependent on the body of existing knowledge,

and the effort to manually curate the scientific literature to extract that knowledge

and encode it in public databases.

• The evaluation of methods is difficult when applied to new genomes. Internal validation

of the model can be measured in terms of numbers of pathways, reactions, and GPR

associations to indicate coverage, and by the number of holes to indicate completeness.

Further internal validation requires constructing a systems biology model so one can

apply flux balance analysis for atoms, charges, energy, etc. External validation requires
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the scientist to make predictions from the model and then to validate those predictions

in the wet lab; this is not expertise available usually to the developer of algorithms.

• The validation of methods for de novo discovery of pathways is difficult, even for

model organisms. Internal validation shows that the pathways are sound in terms of

the chemical transformation of compounds, but external validation of the existence of

the pathway in the organism requires extensive wet lab work.

• Even with gap filling, there are typically many holes in the resulting reconstruction.

Most approaches to gap-filling do not make use of gene expression data, which today

can be readily available even for non-model organisms through RNA-Seq.

• The widely available and widely used tools are biased towards prokaryotes. In partic-

ular, they do not model cell compartments such as mitochondrion, Golgi, peroxisome,

ER, vacuole, or lysosome in their reconstructions.

• Transport reactions are often an afterthought in the modeling of the cell, despite the

fact that the reconstruction needs to view the cell as a closed system importing and

exporting compounds to its surroundings in order to perform internal validation.

Contribution 2: A scheme to describe and compare existing methods for predicting trans-

porters.

The scheme allowed us to perform a meaningful analysis of the state of the art. This guided

our case study that applied existing techniques to the fungal genome of A. niger CBS 513.88

for which there was a manually created and curated GENRE available.

This study reveals several issues:

• the disjointedness of the field with little connection between those that use the Trans-

porter Classification (TC) as their target for prediction, and those that use the chemical

substrates being transported as their target for prediction;

• the limited coverage of the predictors, due to the small size of available Gold Standard

datasets for transport; and

• the inability of the techniques to predict the specific substrate, or specific collection

of substrates, that is transported across the membrane by the transport protein, even

though they could identify the type of substrate in some cases.
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A paper describing this work appeared at the 2015 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology in Niagara Falls:

Faizah Aplop and Greg Butler, On predicting transport proteins and their sub-

strates for the reconstruction of metabolic networks, Proceedings of the 2015

IEEE Conference on Computational Intelligence in Bioinformatics and Compu-

tational Biology, CIBCB 2015, Niagara Falls, ON, Canada, August 12–15, 2015.

Contribution 3: Automation of a protocol used in Saier’s lab for the determination of

transporters for an organism. This included determining localization, and improvements in

predicting transmembrane segments (TMS) of a protein.

In Section 4.4 we automate a protocol of Saier’s lab for determining the transporters in a

genome, and applied the implementation to the fungal genome of A. niger CBS 513.88.

Contribution 4: Exploration of techniques to predict the specific substrates transported

by a transporter.

In Section 4.6 we explore how to predict specific substrates of transporters. This is a very

difficult problem, so we do not find a solution.

Contribution 5: A proposed framework for the overall problem of predicting transporters,

which includes the problem of determining specific substrates.

Based on our experience, in Section 4.7 we propose a framework for the overall problem of

predicting transporters, which includes the problem of determining specific substrates.

5.2 Limitations

In Chapter 4 we demonstrate an implementation to automate the protocol used in Saier’s lab.

This is beta version software that is available at transath.umt.edu.my. The documentation

is lacking.

In Chapter 4 we demonstrate the difficult nature of predicting the specific substrates that

are transported by a transport protein. Section 4.6 shows just how difficult the problem

is, as we explore a number of approaches in order to address the problem, but we come up

short. We do not find a solution to the problem of predicting specific substrates.
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The framework in Section 4.7 is a proposal for the problem of predicting transport. From

our perspective, it clearly identifies the issues of how to best proceed given the amount of

experimental evidence for transporters, and how to harmonize the different points of view.

It is however, only a proposal, and not a worked solution.

5.3 Future Directions

In Section 4.7 we propose a framework for the problem of predicting transport proteins.

This includes harmonizing the different schemes from TC, GO, Pfam, and substrates. The

framework is a roadmap for moving ahead.

The techniques in Section 4.6 should be revisited now and then as more experimental data

is collected.

The first future direction is to cluster the sequences of the TCDB using any one of the

available approaches such as MCL (Markov Clustering) [VD00] which is widely used for

clustering protein families, and Transitivity Clustering [Wit10] which computes a hierarchical

clustering. Ideally the clusters would match the TC classification of Superfamily, Family and

Subfamily. For each cluster, one could compute an MSA and then construct a HMM to act

as a classifier for the cluster and as predictors for TC-Family and TC-Subfamily.

The second future direction is to attempt to predict the sites in the protein sequence that

are responsble for the substrate specificity of the transporter. One should then investigate

whether the properties of the amino acids at these sites can be used to predict the substrate.

From known examples it is likely that the sites are located in the TMS regions of the

protein, and the number of important sites is small. Therefore a multiple sequence alignment

algorithm which preseves TMS regions, such as TM-Coffee [CDTTN12], would be a good

choice. The MSA could then be processed by JDet [MGMR+12] to determine the specificity-

determining sites. A predictor for the specific substrate transported could be based on the

amino acids at these sites using the various alphabets in Table 6 or the multilevel alphabet

encoding of Hod et al. [HKMG13].

Hod et al. [HKMG13] use the secondary structure of the protein in their multilevel alphabet

encoding. For transporters this could be generalized to record the location relative to the

start or end of a TMS rather than simply TMS versus non-TMS. For substrate specificity

of transporters this level of precision in location seems to be important. Therefore a third
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future direction would be to combine the information on amino acid composition in the 822-

dimensional vector of Section 4.6 with the various amino acid alphabets in Table 6 and with

this encoding of location relative to the TMS apply the approach of Hod et al. [HKMG13].

The fourth future direction would be to construct the relational dataspace described in Sec-

tion 4.7 and explore available machine learning approaches. Two candidates from clustering

would be MCL (Markov Clustering) [VD00] and Transitivity Clustering [Wit10].

5.4 Postscript

On 6 April 2015, the PhD work of Oscar Dias at University of Minho in Portugal was

published:

Oscar Dias, Miguel Rocha, Eugénio C Ferreira and Isabel Rocha, Reconstruct-

ing genome-scale metabolic models with merlin, Nucleic Acids Research, 43(8):

3899–3910, 2015.

The merlin system is a robust implementation for the automatic reconstruction of metabolic

networks that has the features that we identified in this thesis as lacking in existing systems,

and necessary for the investigation of fungal genomes. The merlin system handles eukaryote

genomes, and includes the determination of transport Gene-Protein-Reaction associations,

as well as localization of reactions across a number of compartments: mitochondrion, endo-

plasmic reticulum (ER), and Golgi apparatus.

In merlin, transport proteins are predicted based on the existence of TMS as predicted by

TMHMM, and by similarity to entries in TCDB using the Smith-Waterman algorithm. The

association of transport reactions and specific substrates for the predicted transport proteins

is taken from a manually curated database of some 4000 TCDB entries.

In merlin, localization is determined using PSORTb 3.0 for prokaryotes, and WoLF PSORT

for eukaryotes. These tools predict localizations in organelles, and the definition of organelle

for these tools includes the membrane. In merlin, localization in membranes of an organelle

is assumed for the proteins predicted to be transport proteins.

The merlin paper emphasises that no other system exists for the reconstruction of metabolic

pathways with these three features, namely, predicts transport GPR; models localization;

and handles genomes of eukaryotes.
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The merlin software is available as open source Java code.

Note that merlin adopts different strategies to the steps of predicting transport, and to

predicting localization than we do in this work. In particular, the prediction of transport

is conditional upon TMS as predicted by TMHMM. Section 4.3 shows that TMHMM is

not always accurate, and this work develops a better approach. For localization, we adopt

LocTree3. LocTree3 has demonstrated superiority to WoLF PSORT, and LocTree3 directly

predicts localization to membranes.

As in merlin, we map from TC entries to substrates; in our case, substrate group and specific

substrate. However, we do not identify a transport reaction, which merlin does.

Our automated approach, as in merlin, builds on identfying similar sequences in TCDB.

However, we recognize that this is limiting in that it does not discover novel transporters.

Therefore we investigate other means of predicting substrates in Section 4.6.
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Appendix A

Sugar Porters

This appendix presents information on the known sugar transporters in the TCDB. Table 49

lists the members of TC-Subfamily 2.A.1.1 which are the sugar porters. The column ID

contains the identifier, which includes the UniProtKB identifier as welll as the TCID. The

column Description contains the nam of the transporter. The column Organismal Type

contains the type of organism from which the protein comes. The column Status indicates

whether the UniProtKB entry is reviewed or not.

Table 49: Sugar Porter Subfamily in TCDB as of May 2014

ID Description Organismal Type Status

gnl|TC-DB|P0AEP1|2.A.1.1.1 Galactose-proton symporter Bacteria Reviewed

gnl|TC-DB|P0AE24|2.A.1.1.2 Arabinose-proton symporter Bacteria Reviewed

gnl|TC-DB|P0AGF4|2.A.1.1.3 D-xylose-proton symporter Bacteria Reviewed

gnl|TC-DB|P21906|2.A.1.1.4 Glucose facilitated diffusion pro-

tein

Bacteria Reviewed

gnl|TC-DB|P43581|2.A.1.1.5 Hexose transporter HXT10 Yeast Reviewed

gnl|TC-DB|P13181|2.A.1.1.6 Galactose transporter (Galactose

permease)

Yeast Reviewed

gnl|TC-DB|P11636|2.A.1.1.7 Quinate permease (Quinate trans-

porter)

Fungi Reviewed

gnl|TC-DB|P30605|2.A.1.1.8 Myo-inositol transporter 1 Yeast Reviewed

gnl|TC-DB|P07921|2.A.1.1.9 Lactose permease Yeast Reviewed

gnl|TC-DB|P15685|2.A.1.1.10 Maltose permease MAL6T Yeast Reviewed

gnl|TC-DB|P53048|2.A.1.1.11 General alpha-glucoside permease Yeast Reviewed

gnl|TC-DB|Q07647|2.A.1.1.12 Glucose transporter type 3 Animals Reviewed

Continued on next page
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Table 49 – continued from previous page

ID Description Organismal Type Status

gnl|TC-DB|P22732|2.A.1.1.13 Solute carrier family 2, facilitated

glucose transporter member 5

Animals Reviewed

gnl|TC-DB|P15686|2.A.1.1.14 H(+)/hexose cotransporter 1 Plants Reviewed

gnl|TC-DB|P95908|2.A.1.1.15 Sugar Transporter Archaea Unreviewed

gnl|TC-DB|Q01441|2.A.1.1.16 Membrane transporter D2 Protozoa Reviewed

gnl|TC-DB|P10870|2.A.1.1.17 High-affinity glucose transporter

SNF3

Protozoa Reviewed

gnl|TC-DB|Q06222|2.A.1.1.18 Glucose transporter 2A Yeast Reviewed

gnl|TC-DB|Q12300|2.A.1.1.19 High-affinity glucose transporter

RGT2

Yeast Reviewed

gnl|TC-DB|Q01440|2.A.1.1.20 Membrane transporter D1 Protozoa Reviewed

gnl|TC-DB|O74969|2.A.1.1.21 High-affinity glucose transporter

ght2 (Hexose transporter 2)

Yeast Reviewed

gnl|TC-DB|O74849|2.A.1.1.22 High-affinity fructose transporter

ght6 (Hexose transporter 6)

Yeast Reviewed

gnl|TC-DB|Q92339|2.A.1.1.23 High-affinity gluconate transporter

ght3 (Hexose transporter 3)

Yeast Reviewed

gnl|TC-DB|O97467|2.A.1.1.24 Hexose Transporter 1 Protozoa Unreviewed

gnl|TC-DB|Q96QE2|2.A.1.1.25 Proton myo-inositol co-transporter

(Hmit)

Animals Reviewed

gnl|TC-DB|O34718|2.A.1.1.26 Metabolite Transport Protein Bacteria Reviewed

gnl|TC-DB|P42417|2.A.1.1.27 Myo-inositol transport protein Bacteria Reviewed

gnl|TC-DB|P11166|2.A.1.1.28 The erythrocyte/brain hexose fa-

cilitator, Gtr1 or Glut1

Animals Reviewed

gnl|TC-DB|P11168|2.A.1.1.29 Glucosamine/glucose uniporter,

Glut-2

Animals Reviewed

gnl|TC-DB|P32467|2.A.1.1.30 Low affinity glucose transporter

HXT4 (LGT1)

Yeast Reviewed

gnl|TC-DB|P39004|2.A.1.1.31 High affinity hexose transporter

HXT6

Yeast Reviewed

gnl|TC-DB|P15729|2.A.1.1.32 Glucose transport protein Bacteria Reviewed

gnl|TC-DB|Q8NJ22|2.A.1.1.33 Hexose transporter (Similarity) Yeast Unreviewed

gnl|TC-DB|Q8VZ80|2.A.1.1.34 H+ symporter, AtPLT5 Plants Reviewed

gnl|TC-DB|Q7BEC4|2.A.1.1.35 Glucose transport protein GlcP Bacteria Unreviewed

gnl|TC-DB|Q400D8|2.A.1.1.36 Putative low affinity glucose trans-

porter MstE

Fungi Unreviewed

gnl|TC-DB|Q6PXP3|2.A.1.1.37 Intestinal facilitative glucose trans-

porter 7

Animals Reviewed

gnl|TC-DB|P39932|2.A.1.1.38 Sugar transporter STL1 Yeast Reviewed

gnl|TC-DB|P49374|2.A.1.1.39 High-affinity glucose transporter Yeast Reviewed

gnl|TC-DB|Q64L87|2.A.1.1.40 Xylhp (Fragment) Yeast Unreviewed

Continued on next page
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Table 49 – continued from previous page

ID Description Organismal Type Status

gnl|TC-DB|O52733|2.A.1.1.41 D-xylose-proton symporter Bacteria Reviewed

gnl|TC-DB|Q8G3X1|2.A.1.1.42 D-Glucose-proton symporter Bacteria Unreviewed

gnl|TC-DB|A0ZXK6|2.A.1.1.43 Monosaccharide transporter Fungi Unreviewed

gnl|TC-DB|Q9BYW1|2.A.1.1.44 Solute carrier family 2, facilitated

glucose transporter member 11

Animals Reviewed

gnl|TC-DB|Q8L6Z8|2.A.1.1.45 D-xylose-proton symporter-like 1 Plants Reviewed

gnl|TC-DB|Q9JIF3|2.A.1.1.46 Solute carrier family 2, facilitated

glucose transporter member 8

Animals Reviewed

gnl|TC-DB|Q5ERC7|2.A.1.1.47 Glucose transporter 9b Animals Unreviewed

gnl|TC-DB|Q9LNV3|2.A.1.1.48 Sugar transport protein 2 Plants Reviewed

gnl|TC-DB|Q39228|2.A.1.1.49 Sugar transport protein 4 Plants Reviewed

gnl|TC-DB|Q94AZ2|2.A.1.1.50 Sugar transport protein 13 Plants Reviewed

gnl|TC-DB|Q2MEV7|2.A.1.1.51 Glucose/xylose symporter 1 Yeast Unreviewed

gnl|TC-DB|Q26579|2.A.1.1.52 Glucose transport protein Animals Unreviewed

gnl|TC-DB|Q8NTX0|2.A.1.1.53 Myo-Inositol upatake porter, IoIT1 Bacteria Unreviewed

gnl|TC-DB|Q8NL90|2.A.1.1.54 Myo-Inositol uptake porter, IoIT2 Actinobacteria Unreviewed

gnl|TC-DB|P96710|2.A.1.1.55 L-Arabinose-proton symporter

AraE

Bacteria Reviewed

gnl|TC-DB|Q9SFG0|2.A.1.1.56 High affinity Monosaccharides:

H+ symporter, Stp6

Plants Reviewed

gnl|TC-DB|Q8J0V1|2.A.1.1.57 High affinity glucose:H+ sym-

porter, MstA

Fungi Unreviewed

gnl|TC-DB|Q8J0U9|2.A.1.1.58 Low affinity glucose:H+ sym-

porter, MstC

Fungi Unreviewed

gnl|TC-DB|O95528|2.A.1.1.59 The glucose transporter, GLUT10 Animals Reviewed

gnl|TC-DB|P23586|2.A.1.1.60 The major hexose transporter,

Htr1

Plants Reviewed

gnl|TC-DB|Q9FMX3|2.A.1.1.61 High affinity Monosaccharides

transporter, STP11

Plants Reviewed

gnl|TC-DB|O23492|2.A.1.1.62 High affinity plasma membrane

myoinositol-specific H+ sym-

porter, INT4

Plants Reviewed

gnl|TC-DB|Q9C757|2.A.1.1.63 Low affinity inositol Plants Reviewed

gnl|TC-DB|B1PM37|2.A.1.1.64 The hexose transporter, Hxs1 Yeast Unreviewed

gnl|TC-DB|A0QZX3|2.A.1.1.65 Glucose permease GlcP Bacteria Unreviewed

gnl|TC-DB|Q8VZR6|2.A.1.1.66 The tonoplast H+:inositol trans-

porter 1, Int1

Plants Reviewed

gnl|TC-DB|Q2MDH1|2.A.1.1.67 Glucose/xylose facilitator 1 Gxf1 Yeast Unreviewed

gnl|TC-DB|A3M0N3|2.A.1.1.68 Glucose transporter/sensor RGT2 Yeast Unreviewed

gnl|TC-DB|A1Z264|2.A.1.1.69 Sugar & polyol transporter 1,

SPT1

Red Algae Unreviewed
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gnl|TC-DB|Q0ULF7|2.A.1.1.70 MFS permease Fungi Unreviewed

gnl|TC-DB|B1PLM1|2.A.1.1.71 Hexose (glucose) transporter, GT4

(D2)

Trypanosomatidae Unreviewed

gnl|TC-DB|Q9NRM0|2.A.1.1.72 Human SLC2A9a and SLC2A9b

isoform mediate electrogenic trans-

port of urate

Animals Reviewed

gnl|TC-DB|Q5A8J5|2.A.1.1.73 Glycerol uptake permease, STL1 Yeast Unreviewed

gnl|TC-DB|Q926Q9|2.A.1.1.74 The putative L-rhamnose porter,

RhaY

Firmicutes,

Actinobacte-

ria

Unreviewed

gnl|TC-DB|Q9XIH7|2.A.1.1.75 The fructose/xylose:H+ sym-

porter, PMT1

Plants Reviewed

gnl|TC-DB|O76486|2.A.1.1.76 Glucose transporter GT1 Eukaryota Unreviewed

gnl|TC-DB|O61059|2.A.1.1.77 D-glucose/D-ribose transporter

LmGT2

Protozoa Unreviewed

gnl|TC-DB|O61060|2.A.1.1.78 Glucose transporter LmGT3 Protozoa Unreviewed

gnl|TC-DB|Q1XF07|2.A.1.1.79 Putative polyol transporter PLT4 Plants Unreviewed

gnl|TC-DB|P14672|2.A.1.1.80 Solute carrier family 2, facili-

tated glucose transporter member

4, SLC2A4

Animals Reviewed

gnl|TC-DB|Q0SE66|2.A.1.1.81 Glucose uptake porter, Glcp Bacteria Unreviewed

gnl|TC-DB|Q7SCU1|2.A.1.1.82 The cellobiose/cellodextrin trans-

porter, Cdt-1

Fungi Unreviewed

gnl|TC-DB|Q7SD12|2.A.1.1.83 The cellobiose/cellodextrin trans-

porter, Cdt-2

Fungi Unreviewed

gnl|TC-DB|Q96290|2.A.1.1.84 Monosaccharide-sensing protein 1,

TMT1/TMT2 glucose/sucrose:H+

antiporter

Plants Reviewed

gnl|TC-DB|Q8LPQ8|2.A.1.1.84 Monosaccharide-sensing protein 2,

TMT1/TMT2 glucose/sucrose:H+

antiporter

Plants Reviewed

gnl|TC-DB|A8KB28|2.A.1.1.85 Slc2A10 (Glut10) facilitative glu-

cose transporter

Animals Unreviewed

gnl|TC-DB|H9BPB6|2.A.1.1.86 Facilitative glucose transporter 1,

GLUT1

Animals Unreviewed

gnl|TC-DB|Q8TD20|2.A.1.1.87 Solute carrier family 2, facilitated

glucose transporter member 12,

SLC2A12

Animals Reviewed

gnl|TC-DB|Q9UGQ3|2.A.1.1.88 Solute carrier family 2 facilitated

glucose transporter member 6,

SLC2A6

Animals Reviewed
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gnl|TC-DB|Q9NY64|2.A.1.1.89 Solute carrier family 2 facilitated

glucose transporter member 8,

SLC2A8

Animals Reviewed

gnl|TC-DB|Q8TDB8|2.A.1.1.90 Solute carrier family 2 facilitated

glucose transporter member 14,

SLC2A14

Animals Reviewed

gnl|TC-DB|P11169|2.A.1.1.91 Solute carrier family 2 facilitated

glucose transporter member 3,

SLC2A3

Animals Reviewed

gnl|TC-DB|P38055|2.A.1.1.92 Inner membrane metabolite trans-

port protein ydjE

Bacteria Reviewed

gnl|TC-DB|P53142|2.A.1.1.93 Vacuolar protein sorting-

associated protein 73, VPS73

Fungi Reviewed

gnl|TC-DB|Q12407|2.A.1.1.94 Putative metabolite transport pro-

tein, YDL199C

Fungi Reviewed

gnl|TC-DB|Q46909|2.A.1.1.95 Inner membrane metabolite trans-

port protein, YgcS

Bacteria Reviewed

gnl|TC-DB|P38142|2.A.1.1.96 Probable metabolite transport

protein, YBR241C

Fungi Reviewed

gnl|TC-DB|O04036|2.A.1.1.97 Sugar transporter ERD6 Plants Reviewed

gnl|TC-DB|Q9FRL3|2.A.1.1.98 Sugar transporter ERD6-like 6,

At1g75220

Plants Reviewed

gnl|TC-DB|A1Z8N1|2.A.1.1.99 Facilitated trehalose transporter,

Tret1-1

Animals Reviewed

gnl|TC-DB|P43562|2.A.1.1.100 Probable metabolite transport

protein, YFL040W

Fungi Reviewed

gnl|TC-DB|Q04162|2.A.1.1.101 Probable metabolite transport

protein, YDR387C

Fungi Reviewed

gnl|TC-DB|Q56ZZ7|2.A.1.1.102 Plastidic glucose transporter 4,

At5g16150

Plants Reviewed

gnl|TC-DB|Q0WWW9|2.A.1.1.103 D-xylose-proton symporter-like 3,

At5g59250

Plants Reviewed

gnl|TC-DB|P30606|2.A.1.1.104 Myo-inositol transporter 2, ITR2 Fungi Reviewed

gnl|TC-DB|P54862|2.A.1.1.105 Hexose transporter HXT11

(LGT3)

Fungi Reviewed

gnl|TC-DB|P46333|2.A.1.1.106 Probable metabolite transport

protein, CsbC

Bacili Reviewed

gnl|TC-DB|P54854|2.A.1.1.107 Hexose transporter HXT15 Fungi Reviewed

gnl|TC-DB|P32465|2.A.1.1.108 Low-affinity glucose transporter

HXT1

Fungi Reviewed

gnl|TC-DB|P42833|2.A.1.1.109 Hexose transporter HXT14 Fungi Reviewed
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gnl|TC-DB|P39924|2.A.1.1.110 Hexose transporter HXT13 Fungi Reviewed

gnl|TC-DB|P23585|2.A.1.1.111 High-affinity glucose transporter

HXT2

Fungi Reviewed

gnl|TC-DB|Q9P3U6|2.A.1.1.112 High-affinity glucose transporter

ght1

Yeast Reviewed

gnl|TC-DB|P37514|2.A.1.1.113 Putative metabolite transport pro-

tein yyaJ

Bacili Reviewed

gnl|TC-DB|P31679|2.A.1.1.114 Putative metabolite transport pro-

tein yaaU

Bacteria Reviewed

gnl|TC-DB|P76230|2.A.1.1.115 Putative metabolite transport pro-

tein ydjK

Bacteria Reviewed

gnl|TC-DB|C4B4V9|2.A.1.1.116 L-arabinose transporter, araE Actinobacteria Unreviewed

gnl|TC-DB|G4N740|2.A.1.1.117 Glucose transporter rco-3/MoST1 Fungi Unreviewed

gnl|TC-DB|Q97xw7|2.A.1.1.118 Mfs porter of 435 aas Crenarchaea Unreviewed
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Appendix B

TransportTP Results

This appendix presents the results of TransportTP on each of the eight fungal genomes in

our study. Table 50 presents the number of proteins in each fungi that matches a given

TCID. The table is organised by TC-Family. The columns Family and family Name contain

the TC-Family identifier and its name. The column TCID contains the TCID of the TCDB

entry predicted to be in a fungi predicted by TransportTP. Only those identifiers predicted

in at least one fungi occur in this column. The last 8 columns contain the number of

transporters in each fungi. The column headings indicate the fungi using the following code:

Aaf :A.fumigatus Af293, Ani:A. nidulans, Anc:A.niger CBS513.88, Ann:A. niger NRRL3,

Aor: A. oryzae, Ncr:N. crassa, Pch:P. chrysosporium RP78, Spo:S. pombe.

Table 50: TransportTP Results for Fungal Genomes

Family Family Name TCID Aaf Ani Anc Ann Aor Ncr Pch Spo

1.A.1. The Voltage-gated Ion Channel (VIC) Superfamily 1.A.1.11.10 - - - - - - - 1

1.A.1.11.17 1 1 1 1 1 1 1 -

1.A.1.7.1 1 - 1 1 1 - - -

1.A.11. The Ammonia Transporter Channel (Amt) Family 1.A.11.3.1 1 1 1 1 1 1 1 -

1.A.11.3.2 - - 1 1 - 1 - 1

1.A.11.3.3 2 2 1 1 3 1 1 1

1.A.11.3.4 - - - - - 1 - -

1.A.33. The Cation Channel-forming Heat Shock Protein-70 1.A.33.1.2 1 1 1 1 1 - - -

(Hsp70) Family 1.A.33.1.3 - - - - - - 1 -

1.A.35. The CorA Metal Ion Transporter (MIT) Family 1.A.35.2.1 1 1 1 1 2 1 1 2

1.A.35.2.2 1 1 1 1 1 1 - -

1.A.35.5.1 1 2 1 1 2 1 1 1

1.A.4. The Transient Receptor Potential Ca2+ 1.A.4.4.1 1 - - - - - - -

Channel (TRP-CC) Family 1.A.4.7.1 - - 2 4 1 - - -

1.A.4.7.2 - - 1 - 2 - - -

1.A.56. The Copper Transporter (Ctr) Family 1.A.56.1.10 - - - - - 2 - -

1.A.56.1.5 - 1 1 - - - - 2

1.A.56.1.6 - - - - - - - 1
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1.A.8. The Major Intrinsic Protein (MIP) Family 1.A.8.6.1 - - - - - - 1 -

1.A.8.6.2 1 1 1 1 1 1 1 -

1.A.8.7.1 2 3 2 2 2 - 3 1

1.A.8.9.3 - 1 - - - - 1 -

1.A.8.9.4 - - 1 1 1 - - -

2.A.1. The Major Facilitator Superfamily (MFS) 2.A.1.1.1 1 - 1 1 1 1 1 -

2.A.1.1.2 - - - - 1 1 1 -

2.A.1.1.3 1 - 1 1 1 - - -

2.A.1.1.5 - 1 1 1 1 - - -

2.A.1.1.6 - - 1 1 1 - - -

2.A.1.1.7 1 1 3 3 2 1 1 -

2.A.1.1.8 1 1 1 1 1 - 1 1

2.A.1.1.9 2 2 1 1 1 2 1 -

2.A.1.1.10 1 1 1 1 1 1 - -

2.A.1.1.11 1 2 1 1 1 1 - -

2.A.1.1.12 - - - - - 1 - -

2.A.1.1.14 1 - 1 1 1 - - -

2.A.1.1.18 1 - - 1 - - - -

2.A.1.1.19 1 1 1 1 1 - - -

2.A.1.1.21 1 - 1 1 1 - - 1

2.A.1.1.22 - - 1 1 - - - 1

2.A.1.1.23 - - - - - - - 1

2.A.1.1.30 - 1 1 1 - - - -

2.A.1.1.31 1 - - - 1 - - -

2.A.1.1.33 2 1 1 1 1 1 1 -

2.A.1.1.34 - 1 1 1 1 - - -

2.A.1.1.36 - 1 - - - - 1 -

2.A.1.1.38 2 2 2 2 2 1 1 -

2.A.1.1.39 1 2 1 1 1 1 1 -

2.A.1.1.40 1 1 1 1 1 1 1 -

2.A.1.1.43 1 1 1 1 1 - 1 -

2.A.1.1.49 - - 1 - 1 - - -

2.A.1.1.51 1 1 2 2 1 1 - -

2.A.1.1.55 - 1 - - - - - -

2.A.1.1.57 1 1 1 1 1 1 1 -

2.A.1.1.58 1 1 1 1 1 1 1 -

2.A.1.1.60 1 - 1 1 - - - -

2.A.1.1.63 - - - - - 1 - -

2.A.1.1.64 1 - - - - 1 - -

2.A.1.2.1 - 1 1 1 - - - 1

2.A.1.2.2 1 1 1 1 1 1 - -

2.A.1.2.6 1 1 1 1 1 1 - -

2.A.1.2.7 - 1 - - - - - -

2.A.1.2.16 2 2 3 3 4 1 2 3

2.A.1.2.17 1 1 1 1 1 1 1 -

2.A.1.2.23 1 1 1 1 1 1 1 -

2.A.1.2.31 1 1 1 - 1 1 1 -

2.A.1.2.33 1 1 1 1 1 1 - 1

2.A.1.2.35 1 1 2 3 2 1 1 2

2.A.1.2.36 1 1 1 1 1 - 1 -

2.A.1.3.1 1 1 1 1 1 1 1 1

2.A.1.3.8 1 - - - - - - -

2.A.1.3.11 - - - - 1 - - -

2.A.1.3.15 - - 1 1 1 - - -

2.A.1.3.29 1 1 1 1 1 1 1 1

2.A.1.3.30 - - - - 1 - - -

2.A.1.7.2 1 1 1 1 1 1 1 -

2.A.1.8.5 1 1 1 1 1 1 1 -

2.A.1.9.1 1 1 1 1 1 - 1 1
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2.A.1.9.2 - 1 - 1 - 1 - -

2.A.1.9.3 - - 1 1 - - - -

2.A.1.12.2 1 1 1 1 1 1 1 -

2.A.1.13.2 - 1 1 1 - - - -

2.A.1.13.3 - - - - 1 - - -

2.A.1.13.4 1 2 1 1 2 1 1 -

2.A.1.14.11 2 2 1 1 2 2 2 2

2.A.1.14.12 1 1 1 1 1 1 - -

2.A.1.14.17 1 1 1 1 3 2 1 1

2.A.1.14.18 - - 1 1 1 - 1 -

2.A.1.14.19 1 1 1 1 1 1 - 1

2.A.1.14.20 1 1 1 - 1 - 1 1

2.A.1.14.3 2 2 2 2 2 1 2 -

2.A.1.14.4 2 2 3 2 2 1 1 1

2.A.1.14.8 - 1 1 1 1 - 1 -

2.A.1.14.9 - 1 - 1 - 1 - -

2.A.1.16.1 1 1 1 1 1 1 1 1

2.A.1.16.2 1 1 1 1 1 - - 1

2.A.1.16.3 1 1 1 1 1 - - 1

2.A.1.16.4 1 1 1 1 1 - - -

2.A.1.22.1 - - - - - 1 - -

2.A.1.24.1 - - 1 1 - 1 - -

2.A.1.25.1 1 1 1 1 1 1 1 1

2.A.1.28.2 - 1 1 1 - - - -

2.A.1.48.1 - 1 1 1 - - - -

2.A.1.48.2 1 - 1 1 1 1 1 1

2.A.1.48.3 2 1 2 3 1 1 2 1

2.A.1.48.4 2 1 2 1 2 2 1 2

2.A.1.58.1 1 1 1 1 1 1 1 1

2.A.2. The Glycoside-Pentoside-Hexuronide (GPH):Cation

Symporter Family

2.A.2.6.1 2 2 4 4 2 3 2 1

2.A.3. The Amino Acid-Polyamine-Organocation 2.A.3.1.2 1 1 1 1 1 - 1 -

(APC) Family 2.A.3.10.10 - 1 1 1 1 1 - 1

2.A.3.10.11 1 - - - - - - -

2.A.3.10.13 1 1 1 1 1 1 1 1

2.A.3.10.14 1 - - - 1 1 - 1

2.A.3.10.17 - 1 - - 1 1 1 -

2.A.3.10.18 2 - 1 1 1 1 - -

2.A.3.10.19 1 1 1 1 1 1 - -

2.A.3.10.2 1 1 1 1 2 1 - -

2.A.3.10.21 1 1 1 1 1 1 - 4

2.A.3.10.22 - - 1 1 1 - - 1

2.A.3.10.3 1 1 1 1 1 1 - 1

2.A.3.10.4 1 1 1 1 1 - - -

2.A.3.10.8 - 1 - - - - - -

2.A.3.4.1 1 1 2 2 2 1 1 -

2.A.3.4.2 4 2 3 2 2 2 1 -

2.A.3.4.3 1 1 1 1 1 2 2 3

2.A.3.4.6 1 1 1 1 1 - 1 2

2.A.3.8.1 - 1 1 1 - 1 - -

2.A.3.8.15 - 1 - - - - 1 -

2.A.3.8.2 1 - 1 1 1 - - -

2.A.3.8.4 1 1 1 1 1 1 1 -

2.A.4. The Cation Diffusion Facilitator (CDF) Family 2.A.4.2.2 2 2 2 1 1 2 1 1

2.A.4.4.1 1 1 1 2 1 - - -

2.A.4.4.2 - 1 - - - 1 - -

2.A.4.4.5 - - - - - - - 1

2.A.4.5.1 2 1 1 2 1 5 1 -
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2.A.5. The Zinc (Zn2+)-Iron (Fe2+) Permease (ZIP) Family 2.A.5.1.1 2 2 3 4 6 4 3 1

2.A.5.4.3 1 - - - - 1 - -

2.A.5.4.4 - 1 1 1 1 - 1 1

2.A.6. The Resistance-Nodulation-Cell Division 2.A.6.6.1 - - 1 1 - - - -

(RND) Superfamily 2.A.6.6.3 - - - - - 1 - -

2.A.7. The Drug/Metabolite Transporter 2.A.7.10.1 1 - 1 1 1 1 - 1

(DMT) Superfamily 2.A.7.10.2 - - - - - - 1 -

2.A.7.11.1 - - - - - - - 1

2.A.7.12.4 - 1 - - - - - -

2.A.7.12.7 1 - - 1 1 1 - -

2.A.7.12.8 - - 1 - - - 1 1

2.A.7.12.9 - - - - - - 1 -

2.A.7.13.1 - 1 - - - 1 - -

2.A.7.13.2 1 1 1 1 1 - 1 1

2.A.7.16.1 - - - - - - 1 -

2.A.7.16.2 - - - - - - 1 -

2.A.7.24.1 - - - - - 1 1 1

2.A.7.24.6 1 1 1 1 1 - - -

2.A.7.9.1 - - - - - 1 - -

2.A.7.9.4 1 - - - - 1 - -

2.A.9. The Cytochrome Oxidase Biogenesis (Oxa1) Family 2.A.9.1.1 1 1 - - 1 - - 2

2.A.16. The Telurite-resistance/Dicarboxylate 2.A.16.2.1 2 3 3 4 2 1 - 1

Transporter (TDT) Family 2.A.16.4.1 2 1 1 1 2 - 2 4

2.A.17. The Proton-dependent Oligopeptide Transporter

(POT) Family

2.A.17.2.1 2 2 1 2 4 - - 1

2.A.17.2.2 2 1 1 1 2 2 1 -

2.A.18. The Amino Acid/Auxin Permease (AAAP) Family 2.A.18.4.1 3 6 2 2 2 1 1 -

2.A.18.4.2 3 1 3 3 3 1 1 -

2.A.18.5.2 1 1 1 1 1 1 1 -

2.A.18.6.2 - - - - - - 1 -

2.A.18.6.6 1 1 1 1 - 1 1 1

2.A.18.7.1 2 2 2 2 1 2 1 1

2.A.19. The Ca2+:Cation Antiporter (CaCA) Family 2.A.19.2.1 - - - - - - 1 -

2.A.19.2.2 4 3 4 4 4 9 1 -

2.A.19.2.4 - - - - 1 - - 1

2.A.19.4.4 1 1 1 1 1 1 - 1

2.A.19.7.1 1 1 1 1 1 1 1 1

2.A.20. The Inorganic Phosphate Transporter (PiT) Family 2.A.20.2.1 1 1 1 1 1 2 - -

2.A.20.2.2 2 2 - - 1 - - -

2.A.21. The Solute:Sodium Symporter (SSS) Family 2.A.21.6.1 3 4 4 4 3 1 3 3

2.A.22. The Neurotransmitter:Sodium Symporter 2.A.22.3.1 - 1 - - - - - -

(NSS) Family 2.A.22.6.3 - - - - 1 - - -

2.A.23. The Dicarboxylate/Amino Acid:Cation (Na+ or H+)

Symporter (DAACS) Family

2.A.23.2.3 - 1 - - - - - -

2.A.29. The Mitochondrial Carrier (MC) Family 2.A.29.1.5 - - - - - 1 - -

2.A.29.1.5 - - - - - - 1 -

2.A.29.1.7 1 - 1 - 1 - - -

2.A.29.1.7 - 1 - 1 - - 1 1

2.A.29.2.1 1 - 1 - 1 2 - -

2.A.29.2.1 - 1 - 1 - - - -

2.A.29.2.3 1 - 1 - 1 1 - -

2.A.29.2.3 - 1 - 1 - - 1 -

2.A.29.2.5 1 - 1 - - 1 - -

2.A.29.2.5 - 1 - 1 - - 1 1

2.A.29.2.8 - - - - 1 - - -

2.A.29.2.9 - - - - - - 1 -

2.A.29.4.1 - - - - - - 1 -

2.A.29.4.3 1 - 1 - 1 1 - -
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2.A.29.4.3 - 1 - 1 - - 1 -

2.A.29.4.4 1 - 1 - 1 2 - -

2.A.29.4.4 - 1 - 1 - - - 1

2.A.29.5.1 1 - 1 - 1 1 - -

2.A.29.5.1 - 1 - 1 - - - 1

2.A.29.5.3 1 - 1 - 1 - - -

2.A.29.5.3 - 1 - 1 - - 1 -

2.A.29.6.1 1 - 1 - 1 1 - -

2.A.29.6.1 - 1 - 1 - - - -

2.A.29.7.3 1 - 1 - 2 1 - -

2.A.29.7.3 - 1 - 1 - - 1 1

2.A.29.8.2 - - - - - 1 - -

2.A.29.8.2 - - - - - - 1 -

2.A.29.8.3 - 1 - - - - - -

2.A.29.8.4 1 - 1 - 1 1 - -

2.A.29.8.4 - 1 - 1 - - 1 -

2.A.29.8.5 1 - 1 - 1 1 - -

2.A.29.8.5 - 1 - 1 - - - 1

2.A.29.9.1 1 - 1 - 1 1 - -

2.A.29.9.1 - 1 - 1 - - 1 -

2.A.29.10.2 - - 1 - - - - -

2.A.29.10.2 - 1 - 1 - - 1 -

2.A.29.10.3 1 - - - 1 1 - -

2.A.29.12.1 1 - 1 - 1 1 - -

2.A.29.12.1 - 1 - 1 - - 1 1

2.A.29.13.1 1 - 1 - 1 1 - -

2.A.29.13.1 - 1 - 1 - - 1 -

2.A.29.14.1 1 - - - - 1 - -

2.A.29.14.1 - 1 - - - - 1 -

2.A.29.14.2 - - 1 - 1 - - -

2.A.29.14.2 - - - 1 - - - -

2.A.29.15.1 1 - 1 - 1 1 - -

2.A.29.15.1 - 1 - 1 - - 1 1

2.A.29.16.1 1 - 1 - 1 1 - -

2.A.29.16.1 - - - 1 - - 1 -

2.A.29.17.1 1 - 1 - - 1 - -

2.A.29.17.1 - 1 - 1 - - 1 -

2.A.29.17.2 - - - - - - - 1

2.A.29.18.1 - - 1 - - 1 - -

2.A.29.18.1 - - - 1 - - 1 1

2.A.29.18.2 - - - - - - - 1

2.A.29.20.1 - - - - - - 1 -

2.A.29.21.1 1 - 1 - 1 1 - -

2.A.29.21.1 - 1 - 1 - - 1 1

2.A.29.22.1 1 - - - - - - -

2.A.29.22.1 - 1 - 1 - - - -

2.A.29.23.2 1 - 1 - 1 1 - -

2.A.29.23.2 - 1 - 1 - - 1 1

2.A.29.27.1 1 - 1 - 1 1 - -

2.A.29.27.1 - 1 - 1 - - 1 1

2.A.29.28.1 - 1 - - - - - -

2.A.29.29.1 1 - 1 - 1 1 - -

2.A.29.29.1 - 1 - 1 - - 1 1

2.A.29.30.1 1 - 1 - 2 1 - -

2.A.29.30.1 - 1 - 1 - - 1 1

2.A.30. The Cation-Chloride Cotransporter (CCC) Family 2.A.30.2.1 1 - - - - - - 1

2.A.30.4.2 - 1 - - - - - -

2.A.30.5.1 - - - - - 1 - -
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2.A.30.5.2 - - 1 1 1 - - -

2.A.31. The Anion Exchanger (AE) Family 2.A.31.3.2 2 2 3 3 2 2 1 1

2.A.36. The Monovalent Cation:Proton Antiporter-1 2.A.36.2.1 1 1 1 1 1 1 1 1

(CPA1) Family 2.A.36.4.1 1 1 1 2 1 1 - -

2.A.36.4.2 - 3 - - 1 1 - -

2.A.36.4.3 - - 1 - - - - 1

2.A.36.4.4 2 1 1 1 1 - 1 1

2.A.37. The Monovalent Cation:Proton Antiporter-2 (CPA2)

Family

2.A.37.4.1 1 1 1 1 1 1 2 1

2.A.38. The K+ Transporter (Trk) Family 2.A.38.2.1 - - - - - 1 - -

2.A.38.2.2 1 - 1 1 - 1 - 1

2.A.38.2.3 - - 1 1 1 - 1 -

2.A.38.2.4 1 2 1 1 3 - - 1

2.A.38.2.5 1 1 - - - - 1 -

2.A.39. The Nucleobase:Cation Symporter-1 (NCS1) Family 2.A.39.2.1 - - 1 - 1 - - -

2.A.39.2.2 - - 1 2 - - - -

2.A.39.2.3 1 - 1 1 - - - -

2.A.39.2.4 2 4 1 1 1 2 2 -

2.A.39.3.1 1 2 2 2 1 - 1 2

2.A.39.3.2 1 - - - 1 1 - -

2.A.39.3.3 - 1 1 1 1 - - 1

2.A.39.4.1 - - - - 1 - - -

2.A.40. The Nucleobase:Cation Symporter-2 (NCS2) Family 2.A.40.4.1 - 1 1 1 - - - -

2.A.40.5.1 1 1 1 1 1 1 1 1

2.A.41. The Concentrative Nucleoside Transporter 2.A.41.2.7 1 1 1 1 1 1 1 -

(CNT) Family 2.A.41.3.1 1 1 1 1 1 - - 1

2.A.43. The Lysosomal Cystine Transporter (LCT) Family 2.A.43.1.1 1 1 1 1 - 1 - -

2.A.43.3.1 1 1 1 1 1 1 1 -

2.A.44. The Formate-Nitrite Transporter (FNT) Family 2.A.44.1.1 - - - - - 1 - -

2.A.44.2.1 1 1 - 1 2 - - -

2.A.47. The Divalent Anion:Na+ Symporter (DASS) Family 2.A.47.2.1 - - - - - 1 - -

2.A.47.2.2 1 1 1 1 1 - 1 1

2.A.49. The Chloride Carrier/Channel (ClC) Family 2.A.49.1.2 3 3 - 3 - 3 1 2

2.A.49.1.3 - - 1 - 1 - 1 -

2.A.49.2.2 - - - - 1 - - -

2.A.49.2.3 - - 1 - 1 1 - -

2.A.50. The Glycerol Uptake (GUP) Family 2.A.50.1.1 - - - - - - 1 1

2.A.52. The Ni2+-Co2+ Transporter (NiCoT) Family 2.A.52.1.1 1 1 1 1 1 1 - -

2.A.52.1.3 - - - - - - - 1

2.A.53. The Sulfate Permease (SulP) Family 2.A.53.1.2 1 1 2 2 1 2 1 2

2.A.53.1.3 1 - - - 1 2 1 -

2.A.53.1.7 - - 1 1 - - - -

2.A.53.11.1 1 1 1 1 1 - - -

2.A.53.2.6 - - - - - - - 1

2.A.53.2.8 - 1 - - - - - -

2.A.53.7.1 1 1 1 1 1 1 1 1

2.A.54. The Mitochondrial Tricarboxylate Carrier (MTC)

Family

2.A.54.1.1 1 1 1 1 2 1 - 1

2.A.55. The Metal Ion (Mn2+-iron) Transporter (Nramp) 2.A.55.1.1 - - - - - 2 - -

Family 2.A.55.1.2 1 1 1 1 1 - - 1

2.A.55.1.3 - - - - - - 2 -

2.A.57. The Equilibrative Nucleoside Transporter (ENT)

Family

2.A.57.3.1 1 1 1 1 1 - - -

2.A.59. The Arsenical Resistance-3 (ACR3) Family 2.A.59.1.1 - - - - - - 1 -

2.A.59.1.2 3 1 1 1 1 1 - -

2.A.66. The Multidrug/Oligosaccharidyl-lipid 2.A.66.1.15 1 1 1 1 1 1 1 1

/Polysaccharide (MOP) Flippase Superfamily 2.A.66.1.5 1 1 1 1 1 2 1 2

2.A.66.3.1 1 - 1 1 1 - 1 -
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2.A.67. The Oligopeptide Transporter (OPT) Family 2.A.67.1.1 1 1 2 1 2 1 5 -

2.A.67.1.2 2 1 3 3 5 1 5 2

2.A.67.1.3 1 - 1 1 - 1 1 1

2.A.67.1.4 - 1 1 1 - 1 - -

2.A.67.3.1 - - - - - - 1 -

2.A.72. The K+ Uptake Permease (KUP) Family 2.A.72.2.1 - - - - - - 1 -

2.A.72.3.2 - - 1 1 1 1 - -

2.A.72.3.4 - - - - - - 1 -

2.A.89. The Vacuolar Iron Transporter (VIT) Family 2.A.89.1.1 2 2 2 2 2 1 1 -

2.A.94. The Phosphate Permease (Pho1) Family 2.A.94.1.2 - - 1 1 - 1 - -

3.A.1. The ATP-binding Cassette (ABC) Superfamily 3.A.1.106.1 - - - - - - 1 -

3.A.1.120.1 - - - - - - - 1

3.A.1.120.5 - - - - - 1 - 1

3.A.1.121.2 1 1 1 1 1 - - -

3.A.1.121.4 1 1 1 1 1 1 2 2

3.A.1.201.1 1 2 1 1 2 1 - -

3.A.1.201.2 1 - 1 1 2 1 - -

3.A.1.201.3 1 - 1 - - 2 1 1

3.A.1.201.5 1 1 - - - - 1 -

3.A.1.201.6 - 1 1 1 1 - - -

3.A.1.201.7 1 - - - 1 - 1 1

3.A.1.201.9 1 - 1 1 1 1 - -

3.A.1.202.1 - - 1 1 - - - -

3.A.1.203.1 1 1 1 1 1 1 2 -

3.A.1.203.3 1 1 1 1 1 1 - -

3.A.1.204.2 - - - - - - 1 -

3.A.1.204.3 - - - - - 1 - -

3.A.1.204.4 - - 1 - - - 2 -

3.A.1.204.5 - 1 1 1 2 1 1 -

3.A.1.204.6 - - - - 1 - - -

3.A.1.204.7 1 1 1 1 1 1 - -

3.A.1.205.1 1 1 2 1 1 - - -

3.A.1.205.10 1 - - - - - - -

3.A.1.205.11 1 1 1 1 1 - 1 1

3.A.1.205.2 1 1 1 1 1 - 1 -

3.A.1.205.3 1 - - - - - - -

3.A.1.205.4 1 1 1 1 - 1 - -

3.A.1.205.6 2 1 1 1 1 1 1 -

3.A.1.205.7 1 1 1 1 2 1 - -

3.A.1.206.1 1 - 1 1 - 1 - -

3.A.1.208.1 - - - 1 - - - -

3.A.1.208.10 - - 1 - - 1 - -

3.A.1.208.11 1 1 - 1 2 - 1 -

3.A.1.208.12 2 1 1 1 1 1 1 1

3.A.1.208.13 - - - - 1 1 1 1

3.A.1.208.14 1 1 1 1 1 - 1 -

3.A.1.208.15 - - - - 2 - 1 -

3.A.1.208.16 - 1 1 1 1 - 1 1

3.A.1.208.17 - - 1 1 - - 1 -

3.A.1.208.18 - - - - 1 - - -

3.A.1.208.2 1 1 1 1 - - - -

3.A.1.208.3 - 1 1 2 1 - 1 -

3.A.1.208.4 1 - 1 1 2 - - -

3.A.1.208.5 1 1 - 1 1 1 2 -

3.A.1.208.6 - - 1 1 1 - - -

3.A.1.208.7 1 - - - - 1 1 -

3.A.1.208.8 - 1 1 - 1 2 - -

3.A.1.208.9 1 1 1 1 1 - - -
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3.A.1.210.1 1 1 1 1 1 1 1 1

3.A.1.210.2 1 1 1 1 1 1 - 1

3.A.1.210.6 - - - - - - 1 -

3.A.1.211.2 1 1 - - - 1 - -

3.A.1.211.5 - - - - 1 - - -

3.A.1.212.1 1 1 1 1 1 1 1 -

3.A.1.212.2 - - - - - - - 1

3.A.2. The H+- or Na+-translocating F-type, V-type 3.A.2.1.3 2 3 2 4 2 3 2 2

and A-type ATPase (F-ATPase) Superfamily 3.A.2.2.3 3 5 4 4 4 3 3 3

3.A.2.2.4 1 1 1 1 1 2 1 2

3.A.3. The P-type ATPase (P-ATPase) Superfamily 3.A.3.1.1 1 - 2 1 1 - 1 -

3.A.3.1.3 - 1 - - - - - -

3.A.3.1.4 1 - - - - - - -

3.A.3.10.1 1 1 1 1 1 1 1 1

3.A.3.13.1 1 - 1 - - - - -

3.A.3.14.1 - 1 - 1 1 1 1 -

3.A.3.15.1 - - - - - - - 1

3.A.3.17.1 - - - - - - - 1

3.A.3.2.1 - 1 - - - 1 - -

3.A.3.2.10 1 1 1 1 1 - - -

3.A.3.2.11 - - - - - - 1 -

3.A.3.2.14 - 1 1 1 1 - - -

3.A.3.2.15 1 - - - 1 1 - -

3.A.3.2.19 - - - - - - 1 -

3.A.3.2.2 1 1 1 1 1 - - 1

3.A.3.2.3 - - - - - - 1 -

3.A.3.2.5 - - - - - - - 1

3.A.3.2.6 1 1 1 1 1 1 - -

3.A.3.2.7 1 1 1 1 1 1 - -

3.A.3.3.1 1 1 1 1 1 2 - 1

3.A.3.3.6 1 1 1 1 1 - - -

3.A.3.3.7 - - - - - - 1 -

3.A.3.5.14 1 - - - 1 1 1 -

3.A.3.5.17 1 - - - - - - 1

3.A.3.5.3 - - - - - - 1 -

3.A.3.5.8 - 1 1 1 1 1 - -

3.A.3.5.9 1 1 1 1 1 1 1 -

3.A.3.8.1 1 1 - - 1 1 1 1

3.A.3.8.2 2 1 1 1 1 1 1 1

3.A.3.8.4 - 1 - - 1 1 1 1

3.A.3.8.5 1 - 1 1 - 1 1 1

3.A.3.8.6 - - - - - - - 1

3.A.3.9.1 - - - - - 1 - -

3.A.3.9.2 1 1 - - 1 1 - 1

3.A.3.9.3 1 1 1 1 1 1 - -

3.A.3.9.4 1 - 1 - - - - -

3.A.5. The General Secretory Pathway (Sec) Family 3.A.5.8.1 1 1 1 1 1 1 - -

3.A.5.9.1 - - - - - - 1 -

3.A.8. The Mitochondrial Protein Translocase (MPT) Fam-

ily

3.A.8.1.1 1 1 1 1 1 1 - 1

3.D.1. The Proton-translocating NADH Dehydrogenase 3.D.1.6.2 10 11 6 6 12 5 5 -

(NDH) Family 3.D.1.6.4 - - - - - - - 1

3.D.2. The Proton-translocating Transhydrogenase (PTH)

Family

3.D.2.3.1 - - - - 1 - 1 -

3.D.3. The Proton-translocating Quinol:Cytochrome c Re-

ductase (QCR) Superfamily

3.D.3.3.1 3 3 2 2 3 2 2 3

3.D.4. The Proton-translocating Cytochrome Oxidase

(COX) Superfamily

3.D.4.7.1 - - - - - - - 1
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3.D.4.8.1 4 4 1 1 4 1 2 3

3.E.1. The Ion-translocating Microbial Rhodopsin 3.E.1.4.2 - 1 1 1 1 1 - -

(MR) Family 3.E.1.4.3 1 - - - - - - -

3.E.1.5.1 - - - - - - 4 1
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Appendix C

TCDB-Blast Results

This appendix presents the results of TCDB-Blast on the eight fungal genomes in our study.

C.1 TCDB-Blast Results for A. niger CBS 513.88

This section presents detailed statistics for TCDB-Blast when run on the A. niger CBS

513.88 genome. Table 51 presents the statistics of each alignment. The table is organised

by TC-Family. The columns Family and Family Name contain the TC-Family identifier and

its name. The column Query is the identifier for the entry in the A. niger CBS 513.88

genome. The column Hit is the UniProtKB identifier for the matching TCDB entry. The

column TCID contains the TCID of the matching TCDB entry predicted by TCDB-Blast.

The columns QTMS and HTMS contain the number of TMS for the query and the hit,

respectively, as determined by HMMTOP. The last four columns contain the statistics for

the blastp alignment between the query and the hit: %ID is the percent identity, QCov is

the query coverage, SCov is the subject coverage (in this case the subject is the TCDB hit),

Diff is the percent difference of the lengths of the query and hit, and eVal is the e-value.
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Table 51: TCDB-Blast Results for A. niger CBS513.88

Family Family Name Query Hit TCID QTMS HTMS %ID QCov SCov Diff eVal

1.A.9 the neurotransmitter recep-

tor, cys loop, ligand-gated

ion channel (lic) family.

An07g10020 O95166 1.A.9.5.2 1 1 59.48 98 99 1 e-48

1.A.11 the ammonia transporter An08g03200 O67997 1.A.11.1.4 11 12 43.31 86 94 9 e-84

channel (amt) family. An08g03200 P40260 1.A.11.3.1 11 11 47.87 88 86 3 e-136

An08g03200 P41948 1.A.11.3.2 11 11 51.84 96 92 4 e-156

An14g02390 P41948 1.A.11.3.2 11 11 46.32 89 84 5 e-118

An08g03200 Q8NKD5 1.A.11.3.3 11 11 63.89 95 96 0 0

An14g02390 Q8NKD5 1.A.11.3.3 11 11 45.11 88 88 1 e-121

An08g03200 Q96UY0 1.A.11.3.4 11 11 63.90 88 89 2 0

An14g02390 Q96UY0 1.A.11.3.4 11 11 46.25 84 85 1 e-117

An08g03200 Q59UP8 1.A.11.3.5 11 11 52.62 88 88 0 e-148

An14g02390 Q59UP8 1.A.11.3.5 11 11 47.62 89 88 1 e-133

1.A.17 the calcium-dependent chlo- An14g03020 B0YES0 1.A.17.6.4 7 7 75.14 99 99 0 0

ride channel (ca-clc) family. An14g01960 B0YES0 1.A.17.6.4 8 7 43.56 89 89 0 0

1.A.23 the small conductance

mechanosensitive ion channel

(mscs) family.

An15g03150 F9X0Q3 1.A.23.4.9 6 6 55.44 85 77 9 0

1.A.33 the cation channel-forming An11g04180 P0A6Y8 1.A.33.1.2 1 1 47.55 91 96 5 e-172

heat shock protein-70 (hsp70) An16g09260 P0A6Y8 1.A.33.1.2 1 1 44.48 99 95 4 e-156

family. An11g04180 P08107 1.A.33.1.3 1 1 60.79 90 95 5 0

An16g09260 P08107 1.A.33.1.3 1 1 56.86 97 93 4 0

1.A.46 the anion channel-forming

bestrophin (bestrophin) fam-

ily.

An14g05100 Q5AXS1 1.A.46.2.2 3 3 69.07 94 96 2 e-176

1.A.56 the copper transporter (ctr)

family.

An02g11700 A9XIK8 1.A.56.1.10 3 3 47.33 91 82 9 e-40

1.A.77 the mg(2+)/ca(2+) uni-

porter (mcu) family.

An04g06590 Q7S4I4 1.A.77.1.5 2 2 44.96 80 79 2 e-101

1.A.88 the fungal potassium channel

(f-kch) family.

An11g03330 A2QW01 1.A.88.1.4 4 4 95.49 100 100 0 0

1.B.69 the peroxysomal membrane An16g08040 A2R8R0 1.B.69.1.4 4 4 100.00 100 100 0 e-160

porin 4 (pxmp4) family. An16g08040 B0CP94 1.B.69.1.6 4 4 41.59 99 101 3 e-50

1.F.1 the synaptosomal vesicle fu-

sion pore (svf-pore) family.

An12g07570 P33328 1.F.1.1.2 1 1 55.32 79 82 3 e-30

1.H.1 the claudin tight junction An08g01170 F5H8T9 1.H.1.4.1 4 5 46.64 87 90 3 e-78

(claudin) family. An07g08960 G3XZI4 1.H.1.4.3 5 5 80.91 100 100 0 0

2.A.1 the major facilitator An05g01290 P43581 2.A.1.1.5 12 12 43.34 87 87 1 e-117

superfamily (mfs). An03g02190 P13181 2.A.1.1.6 12 12 40.57 87 85 3 e-127

An08g03850 P11636 2.A.1.1.7 12 12 55.58 100 100 0 0

An04g00340 P30605 2.A.1.1.8 12 12 40.56 98 92 7 e-114

An03g02190 O74969 2.A.1.1.21 12 12 41.60 85 90 5 e-135

An03g02190 O74849 2.A.1.1.22 12 12 40.59 86 89 4 e-138

An05g01290 O74849 2.A.1.1.22 12 12 40.12 92 93 1 e-125

An05g01290 P39004 2.A.1.1.31 12 12 40.29 90 86 5 e-121

An15g01500 Q8NJ22 2.A.1.1.33 12 12 57.72 85 84 2 0

An06g02270 Q8NJ22 2.A.1.1.33 12 12 44.33 102 101 1 e-148

An02g03540 Q400D8 2.A.1.1.36 12 12 71.28 101 100 0 0

An03g02190 Q400D8 2.A.1.1.36 12 12 52.15 92 91 1 0

An05g01290 Q400D8 2.A.1.1.36 12 12 50.68 95 91 4 0

An14g02740 P39932 2.A.1.1.38 12 12 47.16 99 93 6 e-169

An09g02930 P39932 2.A.1.1.38 12 12 44.47 96 89 7 e-152

An14g03990 P39932 2.A.1.1.38 12 12 41.12 97 91 7 e-145

An11g01100 P49374 2.A.1.1.39 12 12 47.01 93 91 2 e-156

An02g00590 P49374 2.A.1.1.39 12 12 43.19 101 100 1 e-160

An03g01620 P49374 2.A.1.1.39 12 12 40.84 102 95 7 e-129
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An01g00850 Q64L87 2.A.1.1.40 12 12 41.70 88 96 9 e-126

An15g03940 Q2MEV7 2.A.1.1.51 12 12 51.63 93 94 1 e-162

An12g07450 Q2MEV7 2.A.1.1.51 12 12 44.05 95 97 2 e-122

An12g07450 Q8J0V1 2.A.1.1.57 12 12 91.13 100 100 0 0

An15g03940 Q8J0V1 2.A.1.1.57 12 12 45.98 92 92 1 e-128

An02g03540 Q8J0U9 2.A.1.1.58 12 12 89.20 96 92 4 0

An05g01290 Q8J0U9 2.A.1.1.58 12 12 53.95 96 89 7 0

An03g02190 Q8J0U9 2.A.1.1.58 12 12 53.50 95 91 4 0

An03g02190 Q2MDH1 2.A.1.1.67 12 12 41.33 94 96 2 e-137

An05g01290 Q2MDH1 2.A.1.1.67 12 12 40.41 99 98 1 e-118

An15g03940 A3M0N3 2.A.1.1.68 12 12 50.39 97 97 0 e-170

An12g07450 A3M0N3 2.A.1.1.68 12 12 42.20 94 95 0 e-114

An15g01500 Q0ULF7 2.A.1.1.70 12 12 69.15 90 87 3 0

An06g02270 Q0ULF7 2.A.1.1.70 12 12 42.21 93 92 2 e-118

An14g02740 Q5A8J5 2.A.1.1.73 12 12 53.16 95 93 2 0

An09g02930 Q5A8J5 2.A.1.1.73 12 12 49.43 100 96 3 e-172

An14g03990 Q5A8J5 2.A.1.1.73 12 12 46.59 96 94 3 e-163

An03g02190 P54862 2.A.1.1.105 12 12 40.35 93 91 2 e-130

An05g01290 P32465 2.A.1.1.108 12 12 42.62 87 83 5 e-122

An02g03540 P32465 2.A.1.1.108 12 12 42.44 85 84 2 e-129

An05g01290 P39924 2.A.1.1.110 12 12 40.12 92 89 4 e-120

An05g01290 P23585 2.A.1.1.111 12 12 41.76 94 94 0 e-125

An03g02190 P23585 2.A.1.1.111 12 12 40.31 92 94 3 e-132

An05g01290 Q9P3U6 2.A.1.1.112 12 12 40.04 91 88 3 e-121

An15g03940 G4N740 2.A.1.1.117 12 12 47.71 95 92 4 e-161

An18g01720 P28873 2.A.1.2.6 11 11 42.02 83 84 1 e-115

An09g03320 Q07824 2.A.1.2.16 12 12 43.60 91 88 4 e-129

An18g01150 Q07824 2.A.1.2.16 12 12 40.49 87 90 3 e-116

An01g11540 Q07824 2.A.1.2.16 12 12 40.17 84 82 3 e-121

An16g02610 P38124 2.A.1.2.17 12 12 40.76 84 86 2 e-105

An18g01720 P38124 2.A.1.2.17 11 12 40.13 81 85 4 e-114

An15g04060 Q70WR7 2.A.1.2.23 11 12 60.19 89 84 6 0

An18g01720 O94528 2.A.1.2.35 11 12 50.21 82 89 7 e-161

An16g02610 O94528 2.A.1.2.35 12 12 46.58 81 85 6 e-133

An15g04060 C5E4Z7 2.A.1.2.45 11 12 60.23 89 82 8 0

An15g04060 C5DX43 2.A.1.2.46 11 12 57.39 89 86 4 0

An09g01910 A2QTF4 2.A.1.2.48 9 9 90.80 100 100 0 0

An04g08300 P53283 2.A.1.2.67 12 11 54.36 106 95 10 0

An02g09970 Q8NKG7 2.A.1.2.77 12 12 69.74 78 83 6 0

An17g01070 Q8NKG7 2.A.1.2.77 11 12 43.86 81 74 8 e-110

An04g08300 Q8NKG7 2.A.1.2.77 12 12 42.79 83 82 1 e-129

An02g03620 Q8NKG7 2.A.1.2.77 12 12 41.84 78 85 9 e-119

An08g06980 Q8NKG7 2.A.1.2.77 12 12 40.86 77 83 7 e-113

An02g09970 B6HIC2 2.A.1.2.78 12 12 72.99 85 93 9 0

An17g01070 B6HIC2 2.A.1.2.78 11 12 41.45 81 76 6 e-104

An04g08300 B6H9Q3 2.A.1.2.85 12 12 78.79 99 97 2 0

An04g07680 B6H9Q3 2.A.1.2.85 12 12 76.34 98 96 2 0

An02g09970 B6H9Q3 2.A.1.2.85 12 12 41.44 79 84 6 e-113

An02g03620 B6H9Q3 2.A.1.2.85 12 12 40.72 77 84 8 e-105

An17g01070 B6H9Q3 2.A.1.2.85 11 12 40.00 80 73 9 e-92

An16g00090 B6HN82 2.A.1.2.86 12 12 56.94 100 96 3 0

An04g08250 B6HN82 2.A.1.2.86 12 12 45.49 92 92 1 e-135

An02g03670 B6HN82 2.A.1.2.86 12 12 44.99 94 96 3 e-141

An08g10970 B6HN82 2.A.1.2.86 12 12 42.51 101 96 5 e-125

An08g08220 Q08902 2.A.1.3.52 14 14 57.89 89 92 4 0

An08g08710 Q08902 2.A.1.3.52 14 14 51.45 101 100 0 e-180

An10g00700 Q08902 2.A.1.3.52 14 14 40.87 99 102 3 e-127
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An12g08620 H2E274 2.A.1.3.65 14 14 49.20 97 100 3 0

An01g11290 H2E274 2.A.1.3.65 15 14 46.93 89 90 1 e-157

An09g00870 H2E274 2.A.1.3.65 13 14 44.76 90 88 2 e-138

An01g15000 H2E274 2.A.1.3.65 14 14 44.55 89 90 0 e-146

An06g00770 H2E274 2.A.1.3.65 14 14 42.38 84 85 1 e-123

An08g05670 P22152 2.A.1.8.5 12 12 65.42 100 100 1 0

An08g05670 Q8X193 2.A.1.8.13 12 12 56.20 99 101 1 0

An16g06190 P25346 2.A.1.9.7 12 13 51.24 97 93 4 e-169

An16g01940 P40445 2.A.1.14.38 11 12 43.18 88 91 2 e-147

An01g11450 P40445 2.A.1.14.38 11 12 43.07 90 99 9 e-150

An08g06430 P40445 2.A.1.14.38 9 12 40.75 92 99 7 e-139

An07g00980 P40445 2.A.1.14.38 10 12 40.39 91 95 5 e-132

An01g00720 P39980 2.A.1.16.1 14 15 41.61 101 93 8 e-145

An03g03560 Q870L2 2.A.1.16.7 14 14 57.56 90 90 1 0

An07g06240 Q870L2 2.A.1.16.7 14 14 41.19 100 95 5 e-154

An12g00940 Q9C101 2.A.1.19.38 11 11 46.51 86 90 5 e-150

An07g07980 Q9C101 2.A.1.19.38 12 11 40.98 87 92 5 e-125

An16g09020 Q5A7S4 2.A.1.58.1 12 10 47.19 95 95 0 e-151

An06g02510 Q5A7S4 2.A.1.58.1 11 10 43.37 90 82 10 e-111

An06g02510 Q01HW9 2.A.1.58.4 11 11 41.76 94 92 2 e-81

An09g02880 C9S7Y7 2.A.1.58.5 10 10 40.17 76 79 4 e-67

An14g04560 E9CYW5 2.A.1.75.2 12 12 50.91 99 103 4 0

2.A.3 the amino acid-polyamine- An15g01900 P19807 2.A.3.4.1 12 12 51.25 93 85 8 e-161

organocation (apc) family. An09g05010 P19807 2.A.3.4.1 12 12 48.80 97 89 8 e-163

An16g02000 Q9Y860 2.A.3.4.2 12 12 69.88 96 96 0 0

An09g02550 Q9Y860 2.A.3.4.2 12 12 54.81 99 98 0 0

An14g01850 P32837 2.A.3.4.3 12 12 43.61 91 86 5 e-140

An17g01540 P32837 2.A.3.4.3 12 12 43.00 93 85 8 e-131

An02g09790 Q9UT18 2.A.3.4.6 12 12 45.23 97 96 1 e-154

An04g03940 P50276 2.A.3.8.4 12 11 53.97 92 88 4 0

An13g00840 P06775 2.A.3.10.1 12 12 43.21 98 95 3 e-160

An13g00840 P19145 2.A.3.10.2 12 12 51.85 102 99 3 0

An13g03650 P04817 2.A.3.10.4 12 12 45.26 92 88 4 e-161

An09g06730 P04817 2.A.3.10.4 12 12 45.22 92 85 8 e-156

An13g00840 P38967 2.A.3.10.8 12 12 44.31 98 96 1 e-149

An13g03650 P32487 2.A.3.10.10 12 12 43.41 106 98 8 e-167

An13g03650 P38971 2.A.3.10.11 12 12 43.19 100 99 1 e-151

An09g06730 P38971 2.A.3.10.11 12 12 42.97 95 91 5 e-151

An12g04180 P53388 2.A.3.10.13 12 12 50.27 98 90 7 e-169

An13g03650 P53388 2.A.3.10.13 12 12 41.19 89 83 7 e-119

An12g10130 Q8J266 2.A.3.10.17 12 12 40.72 98 96 2 e-115

An09g00400 Q8J266 2.A.3.10.17 11 12 40.55 73 79 7 e-95

An09g00400 Q8NKC4 2.A.3.10.18 11 13 78.92 72 76 6 0

An05g01740 Q8NKC4 2.A.3.10.18 11 13 42.66 86 89 3 e-142

An04g00530 P38090 2.A.3.10.19 12 12 45.89 95 92 3 e-155

An04g09620 P38090 2.A.3.10.19 12 12 41.15 97 90 8 e-136

An09g06730 P43059 2.A.3.10.20 12 12 43.64 97 92 5 e-134

An13g03650 P43059 2.A.3.10.20 12 12 43.16 93 92 1 e-131

An13g00840 Q9URZ4 2.A.3.10.21 12 12 45.92 101 101 1 e-166

An13g00840 Q2VQZ4 2.A.3.10.22 12 12 48.30 91 99 8 e-152

An13g00840 Q5AG77 2.A.3.10.23 12 12 48.44 98 99 1 e-179

An13g00840 Q59YT0 2.A.3.10.24 12 12 57.04 97 97 1 0

An13g00840 Q59WB3 2.A.3.10.25 12 12 45.22 100 97 4 e-146

An13g00840 Q59NZ6 2.A.3.10.26 12 12 45.17 92 93 2 e-152

An13g00840 O60170 2.A.3.10.28 12 12 44.44 88 89 2 e-144

2.A.4 the cation diffusion facilita-

tor (cdf) family.

An15g03900 P20107 2.A.4.2.2 6 7 42.54 93 91 2 e-103
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2.A.5 the zinc (zn(2+))-iron An01g01620 P32804 2.A.5.1.1 8 8 58.47 105 97 7 e-141

(fe(2+)) permease (zip) An15g07190 P32804 2.A.5.1.1 8 8 55.71 104 98 6 e-136

family. An01g06690 P32804 2.A.5.1.1 7 8 43.09 89 83 7 e-76

2.A.6 the resistance-nodulation-cell

division (rnd) superfamily.

An11g05000 Q12200 2.A.6.6.3 13 13 40.21 97 106 8 0

2.A.7 the drug/metabolite An17g02140 Q5A477 2.A.7.13.2 10 9 68.08 81 83 3 e-138

transporter (dmt) An03g03820 Q4WUA9 2.A.7.24.11 10 10 67.40 96 94 2 0

superfamily. An01g00340 Q4WUA9 2.A.7.24.11 10 10 52.58 97 89 8 e-147

2.A.16 the telurite-resistance/ An12g00870 A2QYD7 2.A.16.4.1 9 9 96.68 100 100 0 0

dicarboxylate transporter An12g00870 A3R044 2.A.16.4.2 9 10 50.44 88 91 4 e-111

(tdt) family. An12g00870 Q2TJJ2 2.A.16.4.3 9 10 77.29 92 87 5 0

2.A.17 the proton-dependent An12g01210 Q9P380 2.A.17.2.1 11 12 42.25 98 92 6 e-164

oligopeptide transporter An08g04600 Q9P380 2.A.17.2.1 11 12 40.98 90 89 1 e-124

(pot) family. An12g01210 P32901 2.A.17.2.2 11 12 46.81 94 91 3 e-177

2.A.18 the amino acid/auxin An15g07550 P38680 2.A.18.4.1 11 11 56.72 95 93 1 e-168

permease (aaap) family. An09g03660 P38680 2.A.18.4.1 11 11 52.72 90 90 0 e-143

An16g05880 P38680 2.A.18.4.1 11 11 48.16 92 92 0 e-129

An15g07550 Q6IT47 2.A.18.4.2 11 11 64.86 99 100 0 0

An09g03660 Q6IT47 2.A.18.4.2 11 11 52.89 92 94 2 e-148

An16g05880 Q6IT47 2.A.18.4.2 11 11 52.26 94 96 2 e-152

An04g02150 P36062 2.A.18.7.1 11 11 42.32 82 88 8 e-127

2.A.19 the ca(2+):cation antiporter An01g03100 Q99385 2.A.19.2.2 11 11 51.00 93 98 5 e-119

(caca) family. An19g00340 Q99385 2.A.19.2.2 11 11 41.03 95 90 5 e-75

(caca) family. An01g03100 O59940 2.A.19.2.8 11 10 53.69 91 89 2 e-132

2.A.21 the solute:sodium symporter An01g03790 P33413 2.A.21.6.1 15 15 46.82 102 94 7 0

(sss) family. An18g01360 P33413 2.A.21.6.1 15 15 40.25 96 89 7 e-159

An01g03790 Q9FHJ8 2.A.21.6.2 15 15 40.74 95 93 2 e-141

An01g03790 Q59VF2 2.A.21.6.4 15 15 45.68 95 89 6 0

2.A.29 the mitochondrial carrier An18g04220 P05141 2.A.29.1.1 6 4 48.29 92 98 7 e-85

(mc) family. An18g04220 P12235 2.A.29.1.2 6 6 47.26 92 98 7 e-84

An18g04220 P04710 2.A.29.1.3 6 4 66.02 97 100 3 e-152

An18g04220 Q8TFA7 2.A.29.1.4 6 4 64.95 91 94 3 e-135

An18g04220 Q8LB08 2.A.29.1.6 6 4 58.56 92 95 4 e-122

An18g04220 P18239 2.A.29.1.7 6 4 73.74 93 93 0 e-161

An18g04220 Q9H0C2 2.A.29.1.8 6 5 49.17 95 96 1 e-89

An18g04220 P18238 2.A.29.1.9 6 6 71.04 93 97 4 e-156

An18g04220 P12236 2.A.29.1.10 6 6 47.12 92 99 7 e-84

An02g01730 P22292 2.A.29.2.1 5 6 40.56 91 91 0 e-66

An02g01730 O89035 2.A.29.2.2 5 2 45.45 88 96 9 e-76

An02g01730 Q06143 2.A.29.2.3 5 6 49.29 89 94 5 e-86

An08g01370 Q99297 2.A.29.2.5 3 1 55.19 101 100 1 e-120

An11g02540 Q8SF04 2.A.29.2.6 6 4 43.45 92 98 6 e-63

An02g01730 Q9UBX3 2.A.29.2.7 5 3 45.82 88 96 8 e-74

An08g01370 Q03028 2.A.29.2.8 3 4 56.54 100 99 2 e-113

An11g02540 Q8IB73 2.A.29.2.10 6 6 43.94 92 91 1 e-76

An02g01730 Q9CR62 2.A.29.2.11 5 5 43.06 92 92 0 e-68

An02g01730 Q02978 2.A.29.2.13 5 6 41.61 91 91 0 e-67

An02g12070 P12234 2.A.29.4.1 4 6 48.08 76 79 4 e-83

An02g12070 Q00325 2.A.29.4.2 4 6 47.39 76 79 4 e-82

An01g13600 P23641 2.A.29.4.3 6 6 57.93 92 93 1 e-115

An02g04160 P23641 2.A.29.4.3 4 6 41.78 95 94 1 e-72

An02g04160 P40035 2.A.29.4.4 4 6 63.05 96 98 2 e-136

An02g12070 Q8VEM8 2.A.29.4.5 4 6 48.78 76 80 6 e-90

An02g12070 Q9FMU6 2.A.29.4.6 4 7 55.17 84 85 1 e-111

An06g01730 P10566 2.A.29.5.1 6 6 48.63 92 93 2 e-88

An06g01730 P23500 2.A.29.5.2 6 6 45.70 95 99 5 e-85

An06g01730 Q287T7 2.A.29.5.3 6 1 40.98 96 92 4 e-68
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An06g01730 Q920G8 2.A.29.5.5 6 1 40.89 91 86 6 e-66

An06g01730 Q9NYZ2 2.A.29.5.7 6 1 41.45 95 90 6 e-68

An11g11230 P38152 2.A.29.7.3 3 4 47.65 101 100 1 e-85

An18g00070 P38152 2.A.29.7.3 2 4 40.15 91 90 1 e-59

An11g11230 Q7KSQ0 2.A.29.7.4 3 6 40.14 96 90 7 e-62

An03g03360 Q27257 2.A.29.8.2 6 6 40.61 70 73 4 e-41

An03g03360 Q12289 2.A.29.8.4 6 5 40.41 75 75 1 e-50

An18g05590 P38087 2.A.29.8.11 2 6 45.67 99 91 8 e-82

An18g05590 P32331 2.A.29.8.12 2 4 50.34 95 94 1 e-91

An03g06860 Q01356 2.A.29.9.1 5 3 53.73 98 89 9 e-111

An14g01860 P38127 2.A.29.10.4 5 4 43.93 99 92 7 e-88

An04g01190 P40556 2.A.29.10.5 4 4 40.69 81 85 5 e-67

An14g01860 Q9BSK2 2.A.29.10.7 5 6 41.05 93 101 8 e-63

An04g09030 P33303 2.A.29.13.1 1 2 62.54 94 95 1 e-131

An07g03070 O75746 2.A.29.14.1 5 3 43.08 93 95 2 e-156

An07g10010 P38988 2.A.29.21.1 5 5 71.67 95 98 3 e-154

An09g06670 Q04013 2.A.29.29.1 2 2 66.45 96 97 1 e-143

An02g11090 Q04013 2.A.29.29.1 5 2 52.05 93 93 0 e-105

2.A.39 the nucleobase:cation

symporter-1 (ncs1) fam-

ily.

An08g06240 Q10279 2.A.39.3.7 12 13 45.64 96 93 4 e-157

2.A.40 the nucleobase:cation An07g01950 Q07307 2.A.40.4.1 15 12 59.53 95 96 1 0

symporter-2 (ncs2) family. An02g00560 Q07307 2.A.40.4.1 13 12 46.46 81 89 8 e-156

An07g01950 P48777 2.A.40.4.4 15 14 75.23 94 94 0 0

An02g00560 P48777 2.A.40.4.4 13 14 45.21 84 90 7 e-148

An13g02390 Q7Z8R3 2.A.40.7.1 10 12 67.37 74 74 1 0

2.A.41 the concentrative nucleoside

transporter (cnt) family.

An08g10300 Q874I3 2.A.41.2.7 13 12 42.49 98 96 1 e-150

2.A.43 the lysosomal cystine trans-

porter (lct) family.

An09g06510 P38279 2.A.43.2.7 7 7 42.95 99 105 6 e-74

2.A.47 the divalent anion:na(+) An01g03120 P25360 2.A.47.2.1 11 10 40.85 73 69 5 e-160

symporter (dass) family. An01g03120 P27514 2.A.47.2.2 11 12 40.23 106 105 1 0

An01g03120 P39535 2.A.47.2.3 11 12 40.79 72 72 0 e-157

2.A.52 the ni(2+)-co(2+) trans-

porter (nicot) family.

An12g04470 Q7S3L8 2.A.52.1.8 8 7 54.39 77 83 7 e-123

2.A.53 the sulfate permease (sulp)

family.

An15g04600 P23622 2.A.53.1.2 15 13 48.11 101 100 1 0

2.A.55 the metal ion (mn(2+)-iron) An04g05680 P38925 2.A.55.1.1 11 11 50.82 75 75 0 e-144

transporter (nramp) family. An04g05680 P38778 2.A.55.1.2 11 10 51.93 72 75 5 e-139

An04g05680 Q10177 2.A.55.1.4 11 11 52.63 73 80 9 e-145

2.A.59 the arsenical resistance-3 An18g03550 Q06598 2.A.59.1.1 10 10 40.12 91 84 8 e-75

(acr3) family. An18g03550 P45946 2.A.59.1.2 10 10 46.33 92 99 7 e-95

2.A.66 the

multidrug/oligosaccharidyl-

lipid/polysaccharide (mop)

flippase superfamily.

An08g07590 P38767 2.A.66.1.5 12 11 45.47 73 78 7 e-122

2.A.67 the oligopeptide transporter An14g05290 O14411 2.A.67.1.1 15 19 43.12 100 98 2 0

(opt) family. An11g05350 O14411 2.A.67.1.1 16 19 41.89 101 100 1 0

An14g05290 P40900 2.A.67.1.2 15 17 43.40 99 97 2 0

An11g05350 P40900 2.A.67.1.2 16 17 41.65 100 99 1 0

An16g00810 P40897 2.A.67.1.3 14 15 43.41 93 90 3 0

An16g00810 O14031 2.A.67.1.5 14 15 50.07 93 85 9 0

An14g05290 O14031 2.A.67.1.5 15 15 47.74 95 86 9 0

An11g05350 O14031 2.A.67.1.5 16 15 45.55 94 86 9 0

An11g03640 O14031 2.A.67.1.5 15 15 41.67 89 83 6 e-177

2.A.69 the auxin efflux carrier (aec)

family.

An01g11100 B8MZ51 2.A.69.2.3 10 10 72.04 101 99 2 0
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2.A.72 the k(+) uptake permease

(kup) family.

An02g05630 O74724 2.A.72.3.2 13 14 54.48 99 91 8 0

2.A.89 the vacuolar iron transporter

(vit) family.

An16g03690 P47818 2.A.89.1.1 5 5 46.15 74 69 8 e-48

2.A.96 the acetate uptake An07g08810 Q5B2K4 2.A.96.1.3 6 6 69.84 88 85 3 e-116

transporter (acetr) family. An13g02020 Q5B2K4 2.A.96.1.3 7 6 61.34 79 80 1 e-96

An13g02020 P25613 2.A.96.1.4 7 6 45.95 74 78 6 e-49

An07g08810 O14201 2.A.96.1.6 6 6 40.64 76 72 5 e-44

An13g02020 P32907 2.A.96.1.7 7 6 45.05 74 79 6 e-49

2.A.105 the mitochondrial pyruvate

carrier (mpc) family.

An04g02140 P53157 2.A.105.1.1 2 2 59.81 86 82 4 e-40

2.A.108 the iron/lead transporter An01g08950 P40088 2.A.108.1.1 7 7 50.00 81 77 4 e-106

(ilt) family. An15g05520 P38993 2.A.108.1.1 1 1 48.51 98 95 2 0

An01g08960 P38993 2.A.108.1.1 1 1 48.21 95 92 4 0

An16g01130 P40088 2.A.108.1.1 7 7 46.33 89 84 5 e-96

An15g05510 P40088 2.A.108.1.1 7 7 43.33 95 89 7 e-102

An01g08950 Q9P8U9 2.A.108.1.2 7 7 54.69 83 84 2 e-117

An16g01130 Q9P8U9 2.A.108.1.2 7 7 50.14 90 91 0 e-109

An15g05510 Q9P8U9 2.A.108.1.2 7 7 46.24 99 98 1 e-113

An01g08950 Q9P8U8 2.A.108.1.3 7 7 51.94 80 81 1 e-112

An16g01130 Q9P8U8 2.A.108.1.3 7 7 47.49 89 89 0 e-104

An15g05510 Q9P8U8 2.A.108.1.3 7 7 46.41 96 95 1 e-115

An15g05520 P43561 2.A.108.1.4 1 1 46.63 96 96 0 0

An01g08960 P43561 2.A.108.1.4 1 1 43.87 99 97 1 e-171

An01g08950 Q09919 2.A.108.1.5 7 7 50.47 83 81 3 e-110

An16g01130 Q09919 2.A.108.1.5 7 7 45.92 93 89 4 e-100

An15g05510 Q09919 2.A.108.1.5 7 7 43.90 87 83 5 e-92

3.A.1 the atp-binding cassette An17g01770 P08183 3.A.1.201.1 12 12 41.10 48 99 1 0

(abc) superfamily. An17g01770 P21439 3.A.1.201.3 12 12 40.03 49 99 1 0

An17g01770 B0Y3B6 3.A.1.201.10 12 12 79.79 49 94 6 0

An04g08340 B0Y3B6 3.A.1.201.10 9 12 58.24 99 95 4 0

An17g01770 I0DHH7 3.A.1.201.16 12 12 40.19 46 97 2 0

An04g07060 Q9NRK6 3.A.1.201.17 6 6 44.84 75 80 6 e-162

An04g08340 P36619 3.A.1.201.18 9 13 42.19 44 97 5 0

An08g05780 P28288 3.A.1.203.1 3 5 41.87 82 88 7 e-159

An08g05780 P33897 3.A.1.203.3 3 4 44.13 89 85 5 0

An08g05780 Q9UBJ2 3.A.1.203.7 3 5 44.20 89 85 5 0

An01g03680 Q9UBJ2 3.A.1.203.7 4 5 40.26 84 92 10 e-162

An08g05780 I7MJ28 3.A.1.203.10 3 6 41.95 83 81 2 e-163

An01g12380 P33302 3.A.1.205.1 12 15 48.91 92 94 2 0

An15g02930 P33302 3.A.1.205.1 16 15 48.57 96 95 1 0

An05g01660 P33302 3.A.1.205.1 11 15 46.72 101 100 1 0

An08g03300 P33302 3.A.1.205.1 11 15 46.02 45 94 4 0

An08g04500 P33302 3.A.1.205.1 11 15 45.41 97 94 3 0

An13g03570 P33302 3.A.1.205.1 13 15 45.09 100 98 2 0

An07g01250 P33302 3.A.1.205.1 14 15 42.39 104 99 5 0

An01g12380 P32568 3.A.1.205.2 12 12 41.01 94 96 2 0

An07g01250 P32568 3.A.1.205.2 14 12 40.48 96 92 4 0

An08g03300 P32568 3.A.1.205.2 11 12 40.35 44 90 3 0

An07g01250 Q02785 3.A.1.205.3 14 15 40.51 90 86 5 0

An01g12380 P43071 3.A.1.205.4 12 13 51.30 92 95 2 0

An05g01660 P43071 3.A.1.205.4 11 13 50.91 100 99 0 0

An15g02930 P43071 3.A.1.205.4 16 13 48.73 100 100 1 0

An13g03570 P43071 3.A.1.205.4 13 13 46.99 99 97 2 0

An08g03300 P43071 3.A.1.205.4 11 13 45.30 44 92 3 0

An08g04500 P43071 3.A.1.205.4 11 13 44.48 100 98 2 0

An07g01250 P43071 3.A.1.205.4 14 13 43.40 99 95 4 0
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An15g02930 P78595 3.A.1.205.5 16 11 49.40 96 95 1 0

An01g12380 P78595 3.A.1.205.5 12 11 49.22 92 95 3 0

An05g01660 P78595 3.A.1.205.5 11 11 49.12 99 99 0 0

An13g03570 P78595 3.A.1.205.5 13 11 45.65 100 99 1 0

An08g03300 P78595 3.A.1.205.5 11 11 44.61 45 92 3 0

An08g04500 P78595 3.A.1.205.5 11 11 43.73 96 95 2 0

An07g01250 P78595 3.A.1.205.5 14 11 42.59 102 98 4 0

An13g03060 Q8X0Z3 3.A.1.205.6 11 14 40.65 45 90 8 0

An15g01130 Q8X0Z3 3.A.1.205.6 15 14 40.31 88 88 1 0

An13g03060 P78577 3.A.1.205.7 11 11 78.66 97 96 0 0

An14g03570 P78577 3.A.1.205.7 14 11 66.09 96 97 0 0

An14g02610 P78577 3.A.1.205.7 11 11 47.50 100 96 5 0

An11g02110 P78577 3.A.1.205.7 12 11 42.78 92 96 4 0

An08g03300 P41820 3.A.1.205.11 11 13 44.68 45 91 5 0

An15g02930 P41820 3.A.1.205.11 16 13 43.75 93 91 3 0

An05g01660 P41820 3.A.1.205.11 11 13 42.77 95 93 2 0

An07g01250 P41820 3.A.1.205.11 14 13 42.43 98 92 6 0

An08g04500 P41820 3.A.1.205.11 11 13 41.67 97 93 4 0

An01g12380 P41820 3.A.1.205.11 12 13 41.21 93 93 1 0

An13g03570 P41820 3.A.1.205.11 13 13 40.57 97 94 3 0

An11g02110 P41820 3.A.1.205.11 12 13 40.01 43 90 3 0

An15g02930 P51533 3.A.1.205.12 16 15 46.99 99 94 5 0

An01g12380 P51533 3.A.1.205.12 12 15 46.30 96 94 2 0

An05g01660 P51533 3.A.1.205.12 11 15 44.94 106 101 4 0

An08g03300 P51533 3.A.1.205.12 11 15 44.65 46 92 7 0

An07g01250 P51533 3.A.1.205.12 14 15 44.39 93 86 8 0

An13g03570 P51533 3.A.1.205.12 13 15 42.46 105 99 6 0

An08g04500 P51533 3.A.1.205.12 11 15 42.37 100 94 6 0

An03g04060 Q92887 3.A.1.208.2 13 16 41.21 82 82 0 0

An03g04060 P39109 3.A.1.208.11 13 14 48.97 100 102 2 0

An03g04060 Q10185 3.A.1.208.16 13 16 45.40 98 102 4 0

An03g04060 Q9P5N0 3.A.1.208.28 13 12 42.01 97 102 5 0

An03g04060 D2WF19 3.A.1.208.32 13 16 46.91 100 101 2 0

An08g10600 P40416 3.A.1.210.1 5 5 56.73 95 99 5 0

An07g07500 Q02592 3.A.1.210.2 11 10 43.19 89 98 10 0

An08g10600 O75027 3.A.1.210.4 5 5 52.29 85 81 4 0

An08g10600 Q9XUJ1 3.A.1.210.7 5 10 43.97 80 72 10 e-157

An08g10600 Q9LVM1 3.A.1.210.8 5 7 54.56 83 83 1 0

An04g07060 P33311 3.A.1.212.2 6 5 47.97 75 76 2 0

3.A.2 the h(+)- or na(+)- An16g07290 P05626 3.A.2.1.3 2 2 45.79 88 88 0 e-65

translocating f-type, v-type An02g08020 P25515 3.A.2.2.3 4 4 71.70 99 99 1 e-75

and a-type atpase (f-atpase) An10g00680 P25515 3.A.2.2.3 4 4 63.87 95 97 2 e-64

superfamily. An07g05080 P32842 3.A.2.2.3 4 4 58.06 77 76 1 e-43

An02g08020 P32842 3.A.2.2.3 4 4 50.31 100 98 2 e-49

An10g00680 P32842 3.A.2.2.3 4 4 49.35 94 94 0 e-44

An04g05310 P32563 3.A.2.2.3 7 9 46.96 101 102 1 0

An07g05080 P25515 3.A.2.2.3 4 4 45.14 89 90 1 e-35

An04g05310 P37296 3.A.2.2.3 7 8 42.33 106 101 4 0

An04g05310 Q93050 3.A.2.2.4 7 8 42.31 101 103 2 0

An02g08020 P59229 3.A.2.2.5 4 4 55.03 93 90 3 e-50

An10g00680 P59227 3.A.2.2.5 4 4 54.73 90 90 0 e-47

An10g00680 P59229 3.A.2.2.5 4 4 54.73 90 89 1 e-47

An10g00680 P59228 3.A.2.2.5 4 4 54.73 90 90 1 e-47

An02g08020 P59227 3.A.2.2.5 4 4 53.16 98 96 2 e-50

An07g05080 P59227 3.A.2.2.5 4 4 48.39 77 76 1 e-35

An07g05080 P59228 3.A.2.2.5 4 4 48.39 77 75 2 e-35

An07g05080 P59229 3.A.2.2.5 4 4 48.39 77 75 2 e-35
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An02g08020 P63082 3.A.2.2.6 4 4 62.84 92 95 4 e-60

An15g05730 Q91V37 3.A.2.2.6 5 5 61.44 77 75 2 e-58

An10g00680 P63082 3.A.2.2.6 4 4 60.14 90 95 5 e-55

An07g05080 P63082 3.A.2.2.6 4 4 52.42 77 80 4 e-35

An04g05310 Q9Z1G4 3.A.2.2.6 7 9 42.61 101 102 1 0

An04g05310 Q920R6 3.A.2.2.6 7 9 40.09 101 103 2 0

An15g05730 G5EDB8 3.A.2.2.7 5 5 59.28 84 78 7 e-54

An02g08020 P34546 3.A.2.2.7 4 4 56.38 93 93 0 e-50

An02g08020 Q21898 3.A.2.2.7 4 4 54.36 93 88 5 e-42

An10g00680 P34546 3.A.2.2.7 4 4 53.02 91 93 2 e-46

An10g00680 Q21898 3.A.2.2.7 4 4 52.70 90 88 3 e-38

An07g05080 P34546 3.A.2.2.7 4 4 50.00 77 77 1 e-32

An04g05310 P30628 3.A.2.2.7 7 7 40.18 105 99 6 0

An02g08020 Q4UJ88 3.A.2.2.8 4 4 48.32 93 90 2 e-35

An10g00680 Q4UJ88 3.A.2.2.8 4 4 46.62 90 90 1 e-33

An07g05080 Q4UJ88 3.A.2.2.8 4 4 42.74 77 75 2 e-25

3.A.3 the p-type atpase (p-atpase) An14g02290 Q2U3D2 3.A.3.1.7 10 10 72.55 92 96 4 0

superfamily. An02g14450 P13586 3.A.3.2.3 9 10 48.78 96 104 8 0

An02g14450 Q9UUX9 3.A.3.2.6 9 10 55.26 99 99 0 0

An18g06290 P16615 3.A.3.2.7 10 11 53.26 100 97 3 0

An02g14450 O75185 3.A.3.2.9 9 10 42.31 97 105 8 0

An18g06290 P92939 3.A.3.2.13 10 10 48.64 102 97 5 0

An18g06290 Q9SY55 3.A.3.2.19 10 12 52.58 98 99 1 0

An08g03090 Q9UUY2 3.A.3.2.27 10 10 51.17 86 89 3 0

An18g06290 Q49LV5 3.A.3.2.32 10 11 52.85 99 98 1 0

An08g03090 Q9HDW7 3.A.3.2.35 10 12 44.92 79 88 10 0

An18g06290 Q5IH90 3.A.3.2.36 10 10 49.13 102 94 8 0

An18g06290 O76974 3.A.3.2.37 10 10 46.31 100 97 3 0

An01g05670 P07038 3.A.3.3.1 11 10 71.85 89 93 4 0

An16g05840 P07038 3.A.3.3.1 10 10 47.93 90 97 7 0

An09g05950 P07038 3.A.3.3.1 10 10 44.99 90 100 10 0

An01g05670 P05030 3.A.3.3.6 11 10 66.35 87 91 5 0

An16g05840 P05030 3.A.3.3.6 10 10 47.43 92 99 8 0

An09g05950 P05030 3.A.3.3.6 10 10 45.14 90 100 10 0

An12g04500 P39524 3.A.3.8.2 10 8 53.96 99 99 0 0

An12g08790 P32660 3.A.3.8.4 8 10 52.53 86 83 3 0

An09g03160 P32660 3.A.3.8.4 10 10 48.12 99 90 10 0

An12g08790 Q12675 3.A.3.8.5 8 10 51.08 86 81 6 0

An12g04500 Q5KP96 3.A.3.8.10 10 10 57.09 84 86 2 0

An15g01830 P13587 3.A.3.9.1 10 10 47.67 91 96 5 0

An09g00690 P13587 3.A.3.9.1 8 10 46.64 103 98 4 0

An15g01830 P22189 3.A.3.9.2 10 10 49.11 88 97 10 0

An09g00690 P22189 3.A.3.9.2 8 10 48.11 101 102 1 0

An09g00690 O13398 3.A.3.9.3 8 10 50.44 98 95 3 0

An15g01830 O13398 3.A.3.9.3 10 10 49.57 91 97 6 0

An15g01830 P78981 3.A.3.9.4 10 10 50.70 87 95 9 0

An09g00690 P78981 3.A.3.9.4 8 10 49.17 98 98 0 0

An15g01830 B5B9V9 3.A.3.9.5 10 10 54.97 88 92 5 0

An09g00690 B5B9V9 3.A.3.9.5 8 10 54.02 100 95 5 0

An09g00690 Q4PI59 3.A.3.9.6 8 10 43.27 100 93 7 0

An15g01830 Q4PI59 3.A.3.9.6 10 10 40.84 97 99 2 0

3.A.5 the general secretory An03g04340 P32915 3.A.5.8.1 10 12 65.06 100 100 0 0

pathway (sec) family. An03g04340 Q9H9S3 3.A.5.9.1 10 10 66.38 97 97 0 0

An03g04340 P61619 3.A.5.9.1 10 12 66.31 98 99 0 0

An01g11630 P60059 3.A.5.9.1 1 1 52.24 96 99 3 e-22

3.A.8 the mitochondrial protein An11g02140 P39515 3.A.8.1.1 3 4 74.48 94 92 3 e-74

translocase (mpt) family. An07g07880 Q02776 3.A.8.1.1 2 1 42.70 70 76 8 e-72
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An02g01360 P32897 3.A.8.1.1 3 3 42.26 83 76 9 e-41

3.A.16 the endoplasmic reticu-

lar retrotranslocon (er-rt)

family.

An14g00230 E7NGV2 3.A.16.1.2 2 1 50.24 77 84 9 e-66

3.A.19 the tms recognition/insertion

complex (trc) family.

An04g00670 A2QHQ3 3.A.19.1.2 3 3 100.00 93 93 0 e-135

3.D.1 the h(+) or na(+)- An11g08840 P42026 3.D.1.6.1 1 2 74.05 72 73 1 e-93

translocating nadh An16g02130 Q7S1I2 3.D.1.6.2 1 1 64.17 101 99 2 e-49

dehydrogenase (ndh) family. An14g00060 Q02854 3.D.1.6.2 2 3 59.66 94 93 1 e-71

An06g01390 P25710 3.D.1.6.2 4 3 47.42 99 97 3 e-61

An04g05640 Q9FNN5 3.D.1.6.3 1 1 75.66 84 85 2 0

An11g08840 Q42577 3.D.1.6.3 1 1 73.38 70 71 0 e-86

An04g05640 Q6V9B2 3.D.1.6.4 1 1 72.58 85 87 2 0

3.D.2 the proton-translocating

transhydrogenase (pth)

family.

An02g09810 P11024 3.D.2.3.1 14 16 49.17 100 100 1 0

3.D.3 the proton-translocating An14g04080 P08067 3.D.3.2.1 1 1 57.38 77 85 10 e-79

quinol:cytochrome c reduc-

tase (qcr) superfamily.

An01g06180 P07143 3.D.3.3.1 2 2 64.14 79 81 2 e-120

8.A.27 the cdc50 p-type atpase lipid

flippase subunit (cdc50) fam-

ily.

An07g10420 P25656 8.A.27.1.2 2 3 46.93 89 92 3 e-118

9.A.2 the endomembrane protein- An06g01200 E7NFP9 9.A.2.1.1 10 9 42.86 105 101 4 e-176

70 (emp70) family. An06g01200 Q9LIC2 9.A.2.1.2 10 10 41.19 99 100 1 e-165

An06g01200 Q99805 9.A.2.1.6 10 9 40.18 102 99 3 e-167

9.A.6 the atp exporter (atp-e) fam-

ily.

An14g00900 P36051 9.A.6.1.1 14 14 41.04 97 105 8 0

9.A.41 the capsular polysaccharide

exporter (cps-e) family.

An11g04180 P44669 9.A.41.1.1 1 1 41.57 79 86 8 e-122

9.A.54 the lysosomal cobalamin

(b12) transporter (l-b12t)

family.

An16g09150 A6QTW5 9.A.54.1.3 10 10 51.31 99 97 2 0

9.B.1 the integral membrane caax An04g01950 Q8RX88 9.B.1.1.2 7 7 43.26 93 100 7 e-117

protease (caax protease) An04g01950 P47154 9.B.1.1.3 7 5 45.09 98 99 1 e-137

family. An14g03420 F9FER0 9.B.1.2.2 6 5 50.17 91 99 8 e-93

9.B.7 the putative sulfate trans-

porter (cysz) family.

An07g06140 E2PST1 9.B.7.2.3 5 5 100.00 100 100 0 0

9.B.16 the putative ductin channel An02g08020 P23380 9.B.16.1.1 4 4 60.38 99 100 1 e-59

(ductin) family. An10g00680 P23380 9.B.16.1.1 4 4 57.42 95 97 3 e-52

An07g05080 P23380 9.B.16.1.1 4 4 57.26 77 78 2 e-39

An02g08020 Q03105 9.B.16.1.2 4 4 60.39 96 100 4 e-61

An10g00680 Q03105 9.B.16.1.2 4 4 56.49 94 100 6 e-55

An07g05080 Q03105 9.B.16.1.2 4 4 52.42 77 81 5 e-36

9.B.25 the mitochondrial in-

ner/outer membrane fusion

(mmf) family.

An08g04250 P32266 9.B.25.1.1 1 1 42.66 95 99 4 0

9.B.26 the regulator of er stress

and autophagy tmem208

(tmem208) family.

An12g03980 K9FAK7 9.B.26.1.4 2 2 65.41 76 78 3 e-57

9.B.82 endoplasmic reticulum An02g02830 P25560 9.B.82.1.1 4 4 45.45 93 94 1 e-53

retrieval protein1 (putative An02g02830 O15258 9.B.82.1.2 4 4 54.76 89 86 4 e-63

heavy metal transporter)

(rer1) family.

An02g02830 O48670 9.B.82.1.3 4 4 52.27 93 92 1 e-59

9.B.119 the glycan synthase, fks1

(fks1) family.

An06g01550 P38631 9.B.119.1.1 18 16 62.17 95 96 1 0

9.B.142 the integral membrane An16g08570 B3S136 9.B.142.3.3 13 13 55.44 92 98 7 0
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glycosyltransferase family 39

(gt39) family.

An16g08570 G9P430 9.B.142.3.5 13 13 76.84 96 95 0 0

9.B.143 the 6 tms duf1275/pf06912

(duf1275) family.

An10g00830 G7XY82 9.B.143.5.1 6 6 91.16 100 100 0 e-167
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C.2 TCDB-Blast Results for Fungal Genomes

Table 52 presents the number of proteins in each fungi that matches a given TCID. The table

is organised by TC-Family. The columns Family and Family Name contain the TC-Family

identifier and its name. The column TCID contains the TCID of the TCDB entry predicted

to be in a fungi. Only those identifiers predicted in at least one fungi occur in this column.

The last 8 columns contain the number of transporters in each fungi as predicted by TCDB-

Blast. The column headings indicate the fungi using the following code: Aaf :A.fumigatus

Af293, Ani:A. nidulans, Anc:A.niger CBS513.88, Ann:A. niger NRRL3, Aor: A. oryzae,

Ncr:N. crassa, Pch:P. chrysosporium RP78, Spo:S. pombe.

Table 52: TCDB-Blast Results for Fungal Genomes

Family Family Name TCID Aaf Ani Anc Aor Ann Ncr Pch Spo

1.A.1 the voltage-gated ion channel (vic) superfamily. 1.A.1.11.23 - - - - - - - 1

1.A.4 the transient receptor potential ca(2+) 1.A.4.10.1 - - - - - - - 1

channel (trp-cc) family. 1.A.4.9.2 - - - - - - - 1

1.A.8 the major intrinsic protein (mip) family. 1.A.8.6.1 - - - 1 - - - -

1.A.8.6.2 - - - 1 - - - -

1.A.8.6.3 - - - 1 - - - -

1.A.8.6.4 1 1 - 1 1 - - -

1.A.8.7.1 - - - - - - - 1

1.A.8.9.4 - - - 1 - - - -

1.A.9 the neurotransmitter receptor, cys loop, ligand-gated

ion channel (lic) family.

1.A.9.5.2 1 1 1 1 1 1 1 1

1.A.11 the ammonia transporter channel (amt) family. 1.A.11.1.4 1 1 1 1 1 1 - -

1.A.11.3.1 1 2 1 1 1 2 2 1

1.A.11.3.2 2 3 2 2 2 3 2 2

1.A.11.3.3 2 3 2 3 2 3 2 2

1.A.11.3.4 2 2 2 2 2 3 2 2

1.A.11.3.5 2 2 2 2 2 3 2 2

1.A.14 the testis-enhanced gene transfer (tegt) family. 1.A.14.3.2 - - - - - 1 - -

1.A.16 the formate-nitrite transporter (fnt) family. 1.A.16.2.2 - 1 - 1 1 1 - -

1.A.17 the calcium-dependent chloride channel (ca-clc) 1.A.17.5.5 - 1 - - - - - -

family. 1.A.17.6.2 - - - - - - - 1

1.A.17.6.4 2 2 2 2 2 1 - -

1.A.23 the small conductance mechanosensitive ion channel

(mscs) family.

1.A.23.4.9 1 1 1 1 1 - - -

1.A.33 the cation channel-forming heat shock protein-70 1.A.33.1.2 2 2 2 2 3 3 3 4

(hsp70) family. 1.A.33.1.3 2 2 2 2 3 3 3 4

1.A.35 the cora metal ion transporter (mit) family. 1.A.35.2.3 - - - - - - - 1

1.A.35.5.5 - - - - - - - 1

1.A.43 the camphor resistance (crcb) family. 1.A.43.2.3 - - - - - - - 2

1.A.43.2.6 - - - - - 1 - -

1.A.46 the anion channel-forming bestrophin (bestrophin) 1.A.46.2.1 1 1 - 1 1 1 - -

family. 1.A.46.2.2 - 1 1 1 1 - - -

1.A.55 the synaptic vesicle-associated ca(2+) channel, flower

(flower) family.

1.A.55.4.1 1 1 - - 1 1 - 1

1.A.56 the copper transporter (ctr) family. 1.A.56.1.10 - - 1 - 1 2 - -

1.A.56.1.5 - - - - - - - 2

1.A.56.1.6 - - - - - - - 1

1.A.77 the mg(2+)/ca(2+) uniporter (mcu) family. 1.A.77.1.5 1 - 1 1 1 1 - -
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1.A.81 the low affinity ca(2+) channel (lacc) family. 1.A.81.4.1 - - - - - 1 - -

1.A.81.5.1 1 1 - 2 1 1 - -

1.A.88 the fungal potassium channel (f-kch) family. 1.A.88.1.4 - - 1 - 1 - - -

1.A.88.1.6 - - - - - 1 - -

1.B.69 the peroxysomal membrane porin 4 (pxmp4) family. 1.B.69.1.1 - - - 1 - - - -

1.B.69.1.4 1 1 1 1 1 1 - -

1.B.69.1.6 1 1 1 1 1 1 - -

1.B.69.1.7 - 1 - 1 - - - -

1.C.47 the insect/fungal defensin (insect/fungal defensin)

family.

1.C.47.1.8 - 2 - - - - - -

1.F.1 the synaptosomal vesicle fusion pore (svf-pore) fam-

ily.

1.F.1.1.2 2 1 1 1 1 - 1 1

1.H.1 the claudin tight junction (claudin) family. 1.H.1.4.1 1 - 1 1 1 1 - -

1.H.1.4.3 1 1 1 1 1 - - -

1.H.1.4.5 - - - 1 - - - -

2.A.1 the major facilitator superfamily (mfs). 2.A.1.1.104 - - - - - - - 2

2.A.1.1.105 2 3 1 3 - - - 4

2.A.1.1.107 1 3 - 2 - 1 - 1

2.A.1.1.108 2 3 2 3 2 1 - 5

2.A.1.1.10 - - - 1 - 1 - -

2.A.1.1.110 1 3 1 1 1 1 - -

2.A.1.1.111 2 3 2 3 2 1 - 6

2.A.1.1.112 1 3 1 1 2 1 - 8

2.A.1.1.117 2 4 1 3 1 4 1 -

2.A.1.1.11 - 1 - 1 - 2 - -

2.A.1.1.21 1 3 1 2 1 1 1 8

2.A.1.1.22 1 3 2 1 2 - - 8

2.A.1.1.23 - - - - - - - 8

2.A.1.1.30 2 3 - 2 - 1 - 3

2.A.1.1.31 1 3 1 2 2 1 - 2

2.A.1.1.33 1 1 2 1 2 - - -

2.A.1.1.36 3 3 3 3 3 2 1 7

2.A.1.1.38 3 2 3 4 3 1 - -

2.A.1.1.39 1 3 3 3 3 1 1 -

2.A.1.1.40 1 2 1 1 2 1 1 -

2.A.1.14.17 1 1 - 1 - - 1 1

2.A.1.14.18 1 1 - 1 - - 1 -

2.A.1.14.19 1 1 - 1 - - - 2

2.A.1.14.20 - - - 1 - - - 2

2.A.1.14.38 3 5 4 5 4 3 3 -

2.A.1.14.4 - - - - - - - 1

2.A.1.1.51 3 5 2 3 2 3 1 -

2.A.1.1.57 3 4 2 3 2 3 1 -

2.A.1.1.58 3 3 3 3 3 2 1 7

2.A.1.1.5 2 3 1 3 1 - - 5

2.A.1.16.1 1 1 1 1 1 - - -

2.A.1.1.64 - - - - - 3 - -

2.A.1.16.5 - - - - - - - 1

2.A.1.16.6 - - - - - - - 1

2.A.1.1.67 2 3 2 3 2 1 - 4

2.A.1.16.7 2 4 2 2 2 - - -

2.A.1.1.68 3 5 2 3 2 3 1 -

2.A.1.1.6 1 3 1 2 - 1 - 3

2.A.1.1.70 1 1 2 1 2 - - -

2.A.1.1.73 3 2 3 4 3 1 1 -

2.A.1.1.7 1 3 1 2 2 1 - -

2.A.1.1.82 1 1 - - - 1 - -

2.A.1.1.83 3 1 - 2 - 1 3 -
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2.A.1.1.8 - - 1 - 1 - - 2

2.A.1.19.38 - 1 2 1 2 - 2 1

2.A.1.19.48 - 2 - 1 - 1 1 -

2.A.1.2.16 2 4 3 3 3 1 - 4

2.A.1.2.17 - - 2 - 2 - - 1

2.A.1.2.1 - - - - - - - 3

2.A.1.2.23 - 1 1 - - - - -

2.A.1.2.33 - - - - - - - 1

2.A.1.2.35 - - 2 1 3 - 3 2

2.A.1.24.2 - - - - - - - 1

2.A.1.2.45 - 1 1 - - - - -

2.A.1.2.46 - 1 1 1 1 - - -

2.A.1.2.48 - - 1 - - - - -

2.A.1.2.59 - - - - - - - 3

2.A.1.2.66 - - - - - - 1 -

2.A.1.2.67 1 - 1 - - - 2 -

2.A.1.2.6 - - 1 - 1 - - 1

2.A.1.2.76 - - - - - - - 3

2.A.1.2.77 4 2 5 5 6 2 5 1

2.A.1.2.78 1 2 2 2 1 1 4 -

2.A.1.2.79 1 2 - 1 1 - - -

2.A.1.2.85 2 - 5 2 3 1 4 1

2.A.1.2.86 2 6 4 7 5 1 1 -

2.A.1.3.52 2 1 3 2 3 1 - 1

2.A.1.3.65 3 2 5 8 7 3 - -

2.A.1.48.2 - - - - 1 - - -

2.A.1.48.3 - - - - - - - 1

2.A.1.48.4 - - - - - - - 1

2.A.1.58.1 3 2 2 2 2 1 1 1

2.A.1.58.4 3 1 1 1 1 - - 1

2.A.1.58.5 1 1 1 - 2 1 - -

2.A.1.75.2 1 1 1 1 1 1 - -

2.A.1.8.13 2 2 1 1 1 - - -

2.A.1.8.5 2 2 1 1 1 - - -

2.A.1.9.10 - - - - - - 1 2

2.A.1.9.1 1 - - - 1 1 3 -

2.A.1.9.2 1 - - - 1 1 3 -

2.A.1.9.7 - - 1 - 1 - 1 -

2.A.1.9.8 - - - - - - 1 4

2.A.2 the glycoside-pentoside-hexuronide (gph):cation sym-

porter family.

2.A.2.6.1 - - - - - - - 1

2.A.3 the amino acid-polyamine-organocation (apc) family. 2.A.3.10.10 2 - 1 2 2 - - -

2.A.3.10.11 2 - 2 2 2 - - -

2.A.3.10.13 1 1 2 2 2 - 1 -

2.A.3.10.14 - - - - - 1 - 1

2.A.3.10.15 - 1 - 1 - - - -

2.A.3.10.16 - - - - - - - 1

2.A.3.10.17 - 1 2 3 - 2 2 -

2.A.3.10.18 1 - 2 2 2 - - -

2.A.3.10.19 1 4 2 2 2 1 - -

2.A.3.10.1 1 1 1 1 1 2 - 2

2.A.3.10.20 2 - 2 2 2 - - -

2.A.3.10.21 1 1 1 2 1 1 - 8

2.A.3.10.22 1 1 1 2 1 - - 8

2.A.3.10.23 1 1 1 1 1 1 - 8

2.A.3.10.24 1 1 1 2 1 2 - 6

2.A.3.10.25 1 1 1 1 1 2 - 2

2.A.3.10.26 1 1 1 1 1 - - 2
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2.A.3.10.28 1 1 1 2 1 - - 8

2.A.3.10.2 2 1 1 1 1 3 - 7

2.A.3.10.4 2 - 2 2 2 - - -

2.A.3.10.6 - - - - - - - 1

2.A.3.10.7 - - - 1 - - - -

2.A.3.10.8 1 1 1 1 1 1 - 5

2.A.3.10.9 - - - - - 1 - -

2.A.3.4.1 - - 2 2 2 - - -

2.A.3.4.2 2 1 2 - 2 - - -

2.A.3.4.3 2 1 2 2 2 - - -

2.A.3.4.6 1 - 1 1 1 - - 2

2.A.3.8.4 1 1 1 1 1 - - -

2.A.4 the cation diffusion facilitator (cdf) family. 2.A.4.2.1 - - - - - - 1 -

2.A.4.2.2 - - 1 - - - 1 -

2.A.5 the zinc (zn(2+))-iron (fe(2+)) permease (zip) family. 2.A.5.1.1 2 1 3 4 4 - 1 -

2.A.5.1.8 - - - - - - - 1

2.A.5.5.4 - - - - - - - 1

2.A.6 the resistance-nodulation-cell division (rnd) super-

family.

2.A.6.6.3 - - 1 - - 1 - -

2.A.7 the drug/metabolite transporter (dmt) superfamily. 2.A.7.12.4 - - - - - - - 1

2.A.7.12.5 - - - - - - - 1

2.A.7.12.7 - - - - - - 1 1

2.A.7.12.8 - - - - - - - 1

2.A.7.12.9 - - - - - - 1 1

2.A.7.13.1 - 1 - - - - 1 1

2.A.7.13.2 1 1 1 1 1 1 - 1

2.A.7.16.3 - - - - - - - 1

2.A.7.24.11 1 1 2 1 2 1 - -

2.A.7.24.7 - - - - - 1 - -

2.A.7.25.2 - 1 - 1 1 - - -

2.A.7.25.5 - - - 1 - - - -

2.A.7.25.6 1 1 - 1 1 2 - -

2.A.7.25.7 1 1 - 1 1 - - -

2.A.7.25.9 - 1 - - - - - -

2.A.7.32.4 - - - - - 1 - -

2.A.7.9.17 - - - - 1 - - -

2.A.7.9.18 - - - - - - - 1

2.A.16 the telurite-resistance/dicarboxylate 2.A.16.2.1 - - - - - - - 2

transporter (tdt) family. 2.A.16.4.1 3 - 1 2 1 - - -

2.A.16.4.2 3 - 1 2 1 - - -

2.A.16.4.3 2 - 1 2 1 - - -

2.A.17 the proton-dependent oligopeptide transporter (pot) 2.A.17.2.1 2 1 2 2 2 - 1 1

family. 2.A.17.2.2 1 1 1 1 1 - - 1

2.A.18 the amino acid/auxin permease (aaap) family. 2.A.18.4.1 1 1 3 3 3 1 - -

2.A.18.4.2 1 1 3 3 3 1 - -

2.A.18.6.10 1 - - - 1 - - -

2.A.18.7.1 - 1 1 - 1 - - 1

2.A.18.7.3 - - - - - - - 1

2.A.19 the ca(2+):cation antiporter (caca) family. 2.A.19.2.2 - 1 2 2 2 - - 1

2.A.19.2.8 1 1 1 1 1 - - 1

2.A.20 the inorganic phosphate transporter (pit) family. 2.A.20.2.1 1 2 - 2 - 2 - -

2.A.20.2.2 1 2 - 2 - 2 - -

2.A.21 the solute:sodium symporter (sss) family. 2.A.21.6.1 1 1 2 1 2 1 - 1

2.A.21.6.2 1 1 1 1 1 1 1 1

2.A.21.6.3 1 1 - 1 - 1 1 1

2.A.21.6.4 1 1 1 1 1 1 - 1

2.A.21.6.5 - - - - - 1 - -

2.A.29 the mitochondrial carrier (mc) family. 2.A.29.10.1 1 - - - - - - -

Continued on next page

159



Table 52 – continued from previous page

Family Family Name TCID Aaf Ani Anc Aor Ann Ncr Pch Spo

2.A.29.10.2 1 1 - - - - 1 -

2.A.29.10.4 1 1 1 1 1 1 - 1

2.A.29.10.5 - - 1 - 1 - - -

2.A.29.10.6 - - - - - - 1 -

2.A.29.10.7 - - 1 1 1 - - -

2.A.29.1.10 1 1 1 1 1 1 2 1

2.A.29.1.1 1 1 1 1 1 1 2 1

2.A.29.12.4 - - - - - 1 1 1

2.A.29.1.2 1 1 1 1 1 1 2 1

2.A.29.13.1 1 - 1 1 1 1 1 -

2.A.29.1.3 1 1 1 1 1 1 2 1

2.A.29.14.1 1 1 1 1 1 - 1 -

2.A.29.1.4 1 1 1 1 1 1 2 1

2.A.29.15.1 - 1 - 1 1 1 1 1

2.A.29.16.3 - - - - - - - 1

2.A.29.1.6 1 1 1 1 1 1 2 1

2.A.29.1.7 1 1 1 1 1 1 2 1

2.A.29.18.1 - - - - - - 1 -

2.A.29.18.3 - - - - - - 1 -

2.A.29.1.8 1 1 1 1 1 1 2 1

2.A.29.1.9 1 1 1 1 1 1 2 1

2.A.29.2.10 1 1 1 1 1 2 - -

2.A.29.2.11 1 1 1 - 1 1 - -

2.A.29.21.1 1 1 1 1 1 1 1 1

2.A.29.2.13 1 1 1 - 1 1 - -

2.A.29.2.1 1 - 1 - 1 - - -

2.A.29.2.2 1 1 1 - 1 - 1 -

2.A.29.23.4 - 1 - - - 1 1 -

2.A.29.2.3 1 1 1 - 1 - 1 -

2.A.29.2.5 1 1 1 1 1 1 - 1

2.A.29.2.6 1 1 1 1 1 - - -

2.A.29.2.7 1 1 1 - 1 - - -

2.A.29.2.8 1 1 1 1 1 1 - 1

2.A.29.29.1 1 1 2 2 2 1 - 1

2.A.29.4.1 - 1 1 1 1 2 - -

2.A.29.4.2 - 1 1 1 1 2 - -

2.A.29.4.3 2 1 2 3 2 1 1 -

2.A.29.4.4 1 1 1 1 1 1 1 1

2.A.29.4.5 1 1 1 1 1 2 - -

2.A.29.4.6 1 1 1 1 1 2 - -

2.A.29.5.1 1 1 1 1 1 1 1 1

2.A.29.5.2 1 1 1 1 1 1 1 1

2.A.29.5.3 1 - 1 1 1 1 1 -

2.A.29.5.5 - - 1 1 1 1 1 -

2.A.29.5.7 1 1 1 1 1 1 1 -

2.A.29.7.3 1 1 2 2 2 1 1 1

2.A.29.7.4 - - 1 - 1 - - -

2.A.29.8.11 1 1 1 1 1 1 1 1

2.A.29.8.12 1 1 1 1 1 1 1 1

2.A.29.8.1 - - - - - - 1 -

2.A.29.8.2 - - 1 - 1 - 1 -

2.A.29.8.3 - - - - - - 1 -

2.A.29.8.4 - - 1 - 1 1 1 -

2.A.29.9.1 - - 1 1 1 1 1 -

2.A.31 the anion exchanger (ae) family. 2.A.31.3.2 - - - - - 1 1 -

2.A.36 the monovalent cation:proton antiporter-1 (cpa1) 2.A.36.4.3 - - - - - - - 1

family. 2.A.36.4.5 - - - - - - - 1

2.A.38 the k(+) transporter (trk) family. 2.A.38.2.2 - - - - - 1 - -
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2.A.39 the nucleobase:cation symporter-1 (ncs1) family. 2.A.39.2.1 1 1 - 1 1 - - -

2.A.39.2.3 1 1 - 1 1 - - -

2.A.39.2.4 1 1 - 1 1 - - -

2.A.39.3.1 - - - - - - - 1

2.A.39.3.7 1 1 1 2 1 1 1 2

2.A.40 the nucleobase:cation symporter-2 (ncs2) family. 2.A.40.4.1 1 2 2 1 2 1 1 1

2.A.40.4.4 1 2 2 1 2 1 1 1

2.A.40.7.1 1 1 1 1 1 3 1 1

2.A.40.7.3 - 1 - 1 1 2 1 1

2.A.41 the concentrative nucleoside transporter (cnt) family. 2.A.41.2.7 1 1 1 1 1 1 - -

2.A.43 the lysosomal cystine transporter (lct) family. 2.A.43.2.7 - - 1 - - - - -

2.A.43.4.1 - - - - - - - 1

2.A.47 the divalent anion:na(+) symporter (dass) family. 2.A.47.2.1 - - 1 1 1 - - -

2.A.47.2.2 - - 1 1 1 - - -

2.A.47.2.3 - - 1 1 1 - - -

2.A.49 the chloride carrier/channel (clc) family. 2.A.49.1.2 1 1 - - 1 1 1 1

2.A.49.1.3 1 1 - - 1 1 - -

2.A.50 the glycerol uptake (gup) family. 2.A.50.1.1 - - - - - 2 1 -

2.A.52 the ni(2+)-co(2+) transporter (nicot) family. 2.A.52.1.3 - 1 - - - 1 - 1

2.A.52.1.8 - 1 1 - - 1 - 1

2.A.53 the sulfate permease (sulp) family. 2.A.53.1.1 1 - - - - 1 1 2

2.A.53.1.2 1 1 1 1 2 1 1 2

2.A.53.3.10 - 1 - - - - - -

2.A.53.3.7 1 1 - - - - - 1

2.A.54 the mitochondrial tricarboxylate carrier (mtc) family. 2.A.54.1.4 1 1 - 2 1 1 - 1

2.A.55 the metal ion (mn(2+)-iron) transporter (nramp) 2.A.55.1.1 1 1 1 1 1 2 - 1

family. 2.A.55.1.2 1 1 1 1 1 1 - 1

2.A.55.1.3 - - - - - - - 1

2.A.55.1.4 - 1 1 1 1 1 - 1

2.A.59 the arsenical resistance-3 (acr3) family. 2.A.59.1.1 - - 1 - 1 - 1 -

2.A.59.1.2 3 - 1 - 1 - - -

2.A.66 the multidrug/oligosaccharidyl-lipid/polysaccharide

(mop) flippase superfamily.

2.A.66.1.5 - 1 1 - 1 - - -

2.A.67 the oligopeptide transporter (opt) family. 2.A.67.1.1 3 2 2 4 4 1 2 2

2.A.67.1.2 2 1 2 2 4 2 2 1

2.A.67.1.3 1 - 1 2 1 - 1 1

2.A.67.1.5 3 1 4 2 5 2 - 2

2.A.69 the auxin efflux carrier (aec) family. 2.A.69.2.3 1 1 1 1 1 1 - -

2.A.72 the k(+) uptake permease (kup) family. 2.A.72.3.2 - - 1 1 1 1 - -

2.A.85 the aromatic acid exporter (arae) family. 2.A.85.3.1 - - - - - - - 1

2.A.85.3.5 - - - - - - 1 -

2.A.89 the vacuolar iron transporter (vit) family. 2.A.89.1.1 1 - 1 - 1 - - -

2.A.89.3.8 - - - - - - - 1

2.A.96 the acetate uptake transporter (acetr) family. 2.A.96.1.3 1 2 2 1 2 1 - 1

2.A.96.1.4 1 - 1 - 1 1 - -

2.A.96.1.6 1 1 1 1 2 - - 1

2.A.96.1.7 1 - 1 - 1 1 - -

2.A.96.2.1 1 1 - - - - - -

2.A.97 the mitochondrial inner membrane k(+)/h(+) and

ca(2+)/h(+) exchanger (letm1) family.

2.A.97.1.2 - 1 - - - - - -

2.A.105 the mitochondrial pyruvate carrier (mpc) family. 2.A.105.1.1 1 - 1 - 1 1 1 2

2.A.105.1.2 - - - - - - 1 1

2.A.105.1.4 - - - - - - 1 -

2.A.106 the ca(2+):h(+) antiporter-2 (caca2) family. 2.A.106.2.4 - - - - - - - 2

2.A.108 the iron/lead transporter (ilt) family. 2.A.108.1.1 2 - 5 2 5 1 - -

2.A.108.1.2 1 - 3 1 3 - - 1

2.A.108.1.3 1 - 3 1 3 - - -

2.A.108.1.4 1 - 2 1 2 - - -
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2.A.108.1.5 1 - 3 1 3 - - 1

2.A.108.1.7 1 - - 1 - - 1 -

3.A.1 the atp-binding cassette (abc) superfamily. 3.A.1.201.10 3 2 2 3 2 1 2 -

3.A.1.201.11 1 1 - 2 1 1 2 -

3.A.1.201.16 1 - 1 1 1 - - -

3.A.1.201.17 1 1 1 1 1 1 - 1

3.A.1.201.18 1 2 1 3 1 1 1 1

3.A.1.201.1 1 - 1 - 1 1 1 -

3.A.1.201.3 - - 1 - 1 - - -

3.A.1.203.10 1 - 1 1 1 - - -

3.A.1.203.1 1 - 1 1 1 - - -

3.A.1.203.3 1 - 1 1 1 1 1 -

3.A.1.203.7 1 2 2 1 2 1 1 -

3.A.1.204.9 - - - - - - 1 -

3.A.1.205.11 6 7 8 8 10 1 2 1

3.A.1.205.12 6 7 7 7 10 1 - -

3.A.1.205.1 5 7 7 7 9 1 - 1

3.A.1.205.2 3 2 3 2 4 1 2 1

3.A.1.205.3 2 1 1 1 1 - 1 -

3.A.1.205.4 6 6 7 7 10 1 1 1

3.A.1.205.5 6 7 7 7 10 1 1 1

3.A.1.205.6 1 2 2 1 2 2 2 -

3.A.1.205.7 3 4 4 7 4 1 - -

3.A.1.206.2 - - - - - - - 1

3.A.1.208.11 1 1 1 1 1 1 1 2

3.A.1.208.12 - - - 1 - - - -

3.A.1.208.16 1 1 1 1 1 1 1 2

3.A.1.208.18 - - - - - 1 - -

3.A.1.208.27 - - - - - 1 - -

3.A.1.208.28 1 1 1 1 1 1 1 2

3.A.1.208.2 - - 1 - 1 - - -

3.A.1.208.32 1 1 1 1 1 1 1 2

3.A.1.208.8 - - - - - 1 - -

3.A.1.210.11 - - - - - - 1 -

3.A.1.210.1 1 1 1 1 1 1 1 1

3.A.1.210.2 - - 1 2 1 - - 1

3.A.1.210.3 - - - - - - 1 -

3.A.1.210.4 1 1 1 1 1 1 1 1

3.A.1.210.6 - - - 2 - - - 1

3.A.1.210.7 1 1 1 1 1 - - 1

3.A.1.210.8 1 1 1 1 1 1 1 1

3.A.1.210.9 - - - - - - 2 1

3.A.1.212.1 - - - - - - - 1

3.A.1.212.2 1 1 1 1 1 1 - 1

3.A.2 the h(+)- or na(+)-translocating f-type, v-type 3.A.2.1.2 - 1 - 1 1 - - -

and a-type atpase (f-atpase) superfamily. 3.A.2.1.3 1 2 1 2 1 1 - 2

3.A.2.1.4 - 1 - 1 1 1 - -

3.A.2.2.3 7 9 8 9 8 7 5 7

3.A.2.2.4 1 1 1 1 1 - 2 -

3.A.2.2.5 6 6 8 8 8 6 6 6

3.A.2.2.6 5 5 6 5 6 3 5 3

3.A.2.2.7 5 5 7 7 7 5 5 4

3.A.2.2.8 2 - 3 3 3 2 2 2

3.A.3 the p-type atpase (p-atpase) superfamily. 3.A.3.10.13 - - - - - - - 1

3.A.3.10.19 - - - - - - 1 1

3.A.3.10.1 - - - - - - 1 1

3.A.3.10.2 1 1 - 1 1 - 1 1

3.A.3.10.3 1 1 - 1 1 1 1 1
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3.A.3.10.7 1 - - - - - 1 -

3.A.3.10.8 - - - - - 1 - -

3.A.3.1.11 - - - - - - 1 -

3.A.3.1.1 - - - - - - 3 -

3.A.3.1.4 - - - - - - 1 -

3.A.3.1.6 - - - - - - 1 -

3.A.3.1.7 2 - 1 2 2 - - -

3.A.3.2.13 1 1 1 1 1 1 1 -

3.A.3.2.16 - - - - - - 1 1

3.A.3.2.17 1 1 - 1 1 1 1 -

3.A.3.2.19 1 1 1 1 1 1 1 -

3.A.3.2.27 1 2 1 - 1 1 - 1

3.A.3.2.2 1 - - - - 1 - -

3.A.3.2.32 1 1 1 1 1 1 1 -

3.A.3.2.34 - - - - - - 1 1

3.A.3.2.35 2 3 1 1 2 - - 1

3.A.3.2.36 1 1 1 1 1 1 1 -

3.A.3.2.37 1 1 1 1 1 1 1 -

3.A.3.2.3 - - 1 - - 1 1 1

3.A.3.2.5 - - - - - - 1 1

3.A.3.2.6 1 1 1 1 1 1 - -

3.A.3.2.7 1 1 1 1 1 1 1 -

3.A.3.2.9 - - 1 - - 1 1 1

3.A.3.3.1 3 2 3 3 4 1 - 2

3.A.3.3.6 3 2 3 3 4 1 - 2

3.A.3.3.7 - - - - - - 1 -

3.A.3.3.8 - - - - - - 1 -

3.A.3.3.9 - - - - - - 1 -

3.A.3.5.14 1 - - 1 - - - -

3.A.3.5.29 - - - - - - - 1

3.A.3.8.10 1 1 1 1 1 1 1 1

3.A.3.8.13 - - - - - - 1 1

3.A.3.8.1 - - - - - - 1 1

3.A.3.8.2 1 1 1 1 1 1 - 1

3.A.3.8.4 1 1 2 1 2 1 - -

3.A.3.8.5 1 1 1 1 2 1 - -

3.A.3.8.6 - 1 - - - - 1 1

3.A.3.8.8 - - - - - - 1 1

3.A.3.9.1 3 3 2 3 2 3 - 1

3.A.3.9.2 3 3 2 3 2 3 - 1

3.A.3.9.3 3 3 2 3 2 3 - 1

3.A.3.9.4 3 3 2 3 2 3 - 1

3.A.3.9.5 3 3 2 3 2 3 - 1

3.A.3.9.6 3 2 2 3 2 3 - 1

3.A.5 the general secretory pathway (sec) family. 3.A.5.8.1 1 1 1 1 1 1 1 1

3.A.5.9.1 2 3 3 2 3 3 2 2

3.A.8 the mitochondrial protein translocase (mpt) family. 3.A.8.1.1 3 2 3 1 3 2 2 3

3.A.16 the endoplasmic reticular retrotranslocon (er-rt) fam-

ily.

3.A.16.1.2 - 1 1 - 1 - - 1

3.A.19 the tms recognition/insertion complex (trc) family. 3.A.19.1.2 1 1 1 1 1 1 - -

3.D.1 the h(+) or na(+)-translocating nadh dehydrogenase 3.D.1.2.1 1 1 - 1 - - 1 -

(ndh) family. 3.D.1.6.1 1 - 1 1 - 1 - -

3.D.1.6.2 9 7 3 7 3 4 1 -

3.D.1.6.3 1 1 2 - 1 - - -

3.D.1.6.4 1 1 1 1 1 - 1 -

3.D.1.7.1 - - - 1 - - 1 -

3.D.2 the proton-translocating transhydrogenase (pth) fam-

ily.

3.D.2.3.1 1 - 1 - 1 1 1 -
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3.D.3 the proton-translocating quinol:cytochrome c 3.D.3.2.1 1 2 1 2 1 1 1 2

reductase (qcr) superfamily. 3.D.3.3.1 2 2 1 2 1 1 1 2

3.D.4 the proton-translocating cytochrome oxidase 3.D.4.11.1 2 1 - 1 - - - 3

(cox) superfamily. 3.D.4.3.1 - - - 1 - - - -

3.D.4.6.1 1 1 - 1 - - - 1

3.D.4.6.2 1 2 - 2 - - - 2

3.D.4.7.1 2 1 - 1 - - - 3

3.D.4.8.1 3 3 - 3 - - - 3

3.E.1 the ion-translocating microbial rhodopsin (mr) 3.E.1.4.2 1 - - - - 1 - -

family. 3.E.1.4.3 1 - - - - 1 - -

3.E.1.5.1 - - - - - - 4 -

8.A.13 the tetratricopeptide repeat (tpr1) family. 8.A.13.1.1 - - - - - - - 1

8.A.27 the cdc50 p-type atpase lipid flippase subunit (cdc50) 8.A.27.1.1 - - - 1 - - - -

family. 8.A.27.1.2 1 1 1 1 1 1 - 2

8.A.27.1.5 1 1 - - - - - -

8.A.40 the tetraspanin (tetraspanin) family. 8.A.40.2.1 - - - - - 1 - -

8.A.41 the strech-activated calcium channel auxiliary 8.A.41.1.6 - - - - - 1 - -

protein, mid1 (mid1) family. 8.A.41.1.7 - - - - - - - 1

9.A.2 the endomembrane protein-70 (emp70) family. 9.A.2.1.1 1 1 1 1 1 1 1 -

9.A.2.1.2 1 - 1 1 1 1 - -

9.A.2.1.4 - - - - 1 1 - -

9.A.2.1.6 1 1 1 1 1 1 - -

9.A.6 the atp exporter (atp-e) family. 9.A.6.1.1 - 1 1 - 1 1 - 1

9.A.26 the lipid-translocating exporter (lte) family. 9.A.26.1.3 1 - - - - - - -

9.A.27 the non-classical protein exporter (ncpe) family. 9.A.27.1.3 - - - - - - - 1

9.A.41 the capsular polysaccharide exporter (cps-e) family. 9.A.41.1.1 2 2 1 1 2 2 2 3

9.A.54 the lysosomal cobalamin (b12) transporter 9.A.54.1.2 - - - 1 - 1 - -

(l-b12t) family. 9.A.54.1.3 1 1 1 1 1 1 - -

9.A.62 the aaa-atpase, bcs1 (bcs1) family. 9.A.62.1.1 1 - - 1 1 1 1 1

9.B.1 the integral membrane caax protease (caax protease) 9.B.1.1.1 - - - 1 - - - -

family. 9.B.1.1.2 1 1 1 1 1 1 - -

9.B.1.1.3 1 1 1 1 1 1 1 -

9.B.1.2.2 1 1 1 1 1 1 - -

9.B.7 the putative sulfate transporter (cysz) family. 9.B.7.2.3 - - 1 - - - - -

9.B.12 the sensitivity to sodium or salt stress-induced hy-

drophobic peptide (sna) family.

9.B.12.2.2 1 1 - - 1 - 1 1

9.B.16 the putative ductin channel (ductin) family. 9.B.16.1.1 2 3 3 3 3 2 2 2

9.B.16.1.2 2 3 3 3 3 2 2 2

9.B.20 the putative mg(2+) transporter-c (mgtc) family. 9.B.20.1.3 1 - - - - - - -

9.B.25 the mitochondrial inner/outer membrane fusion

(mmf) family.

9.B.25.1.1 1 - 1 - 1 1 - -

9.B.26 the regulator of er stress and autophagy tmem208

(tmem208) family.

9.B.26.1.4 1 1 1 - 1 - - -

9.B.82 endoplasmic reticulum retrieval protein1 (putative 9.B.82.1.1 1 1 1 1 1 1 1 1

heavy metal transporter) (rer1) family. 9.B.82.1.2 1 1 1 1 1 1 1 1

9.B.82.1.3 1 1 1 1 1 1 1 1

9.B.119 the glycan synthase, fks1 (fks1) family. 9.B.119.1.1 1 1 1 1 1 1 1 4

9.B.131 the post-gpi attachment protein (p-gap2) family. 9.B.131.1.1 1 1 - 1 1 1 - 1

9.B.135 the membrane trafficking yip (yip) family. 9.B.135.1.1 - - - - - - - 1

9.B.142 the integral membrane glycosyltransferase family 39 9.B.142.3.3 1 1 1 1 1 1 1 1

(gt39) family. 9.B.142.3.5 1 1 1 1 1 1 1 1

9.B.143 the 6 tms duf1275/pf06912 (duf1275) family. 9.B.143.5.1 1 1 1 2 1 - - -

9.B.143.5.2 - - - - - - 1 -

9.B.158 the 4 tms putative dmt2 (dmt2) family. 9.B.158.1.8 - 1 - - - - - -

9.B.158.1.9 - 1 - - - 1 - -
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Appendix D

TCDB-Blast Results with Substrates

and Localization

This appendix presents the results detailing predictions of substrates and localization.

D.1 TCDB-Blast Results with TrSSP Predictions

This section considers the TC-Family 1.A of channels and pores in the TCDB. Table 53

presents the predictions of TrSSP for those proteins in the eight fungal genomes that TCDB-

Blast predicts to belong to TC-Family 1.A. The columns Family and Family Name contain

the TC-Family identifier and its name. The column TCID contains the TCID of the TCDB

entry predicted TCDB-Blast. The column Hit is the UniProtKB identifier for the matching

TCDB entry. The column Query is the identifier for the entry in the fungal genome. The

last 8 columns indicate the substrate groups predicted by TrSSP for the query protein: AA:

Amino acid, An: Anion, Ca: Cation, El: Electron, Pr/mR: Protein/mRNA, Su: Sugar,

Ot: Other, NA: no prediction was made by TrSSP.
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Table 53: TCDB-Blast Results for Channels/Pores with Substrate Prediction

Family Family Name TCID Hit Query AA An Ca El
Pr/

mR
Su Ot NA

1.A.1 The voltage-gated ion 1.A.1.11.17 Q1HHN2 An08g03400 X

channel (vic) NRRL3 10990 X

superfamily. NCU02762T0 X

1.A.1.11.23 O14234 SPAC6F6.01 X X

1.A.11 The ammonia trans-

porter channel (amt)

family.

1.A.11.3.1 P40260 AN7463 X X

NCU03257T0 X X X X

jgi|Phchr1|134974|e

gww2.11.183.1

X X

1.A.11.3.2 P41948 SPAC664.14 X X X

1.A.11.3.3 Q8NKD5 Afu1g10930 X X X

AN1181 X X X X

AN10097 X X X

An08g03200 X X

An01g11640 X X X X

AO090038000314 X X

AO090023000411 X X X X

NRRL3 10976 X X

NRRL3 02582 X X X X

NCU01065T0 X X X

NCU06613T0 X X X X X

jgi|Phchr1|121517|e

gwh2.5.220.1

X X X

SPCPB1C11.01 X X X

1.A.11.3.5 Q59UP8 Afu5g11020 X X X X

AN0209 X X X X X

An14g02390 X X X X X

AO090026000749 X X X X X

NRRL3 00794 X X X X X

NCU05843T0 X X X X

SPAC2E1P3.02C X X X X

1.A.14 The testis-enhanced

gene transfer (tegt)

family.

1.A.14.3.3 A2VCJ6 jgi|Phchr1|133598|e

gww2.6.475.1

X X X X

1.A.16 The formate-nitrite

transporter (fnt) fam-

ily.

1.A.16.2.1 P35839 AO090038000194 X X X X X

1.A.16.2.2 Q5AST3 AN8647 X X X X X

AO090012000169 X X X X

NRRL3 02998 X X X X X

NCU00758T0 X X X X

1.A.17 The calcium-dependent

chloride channel (ca-

clc) family.

1.A.17.5.5 G2Y513 Afu1g02130 X

AN2880 X

NCU00789T0 X

jgi|Phchr1|124528|e

gwh2.12.23.1

X

jgi|Phchr1|35406|

gww2.1.47.1

X

SPBC354.08C X X

1.A.17.5.8 J5PL79 Afu5g10920 X X

AN0229 X X X

An16g01540 X

Continued on next page
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Table 53 – continued from previous page

Family Family Name TCID Hit Query AA An Ca El
Pr/

mR
Su Ot NA

An14g03660 X X X X

AO090010000441 X

NRRL3 07300 X

NRRL3 00911 X X X

NCU06986T0 X

NCU06986T1 X

jgi|Phchr1|126382|e

gwh2.7.45.1

X

1.A.17.5.9 Q9SY14 An01g06130 X

NRRL3 02124 X

SPAC2G11.09 X

1.A.17.6.2 B6JZY0 SPBC691.05C X

1.A.17.6.4 B0YES0 Afu4g02970 X X

Afu4g03330 X

AN2477 X

AN7165 X

An14g03020 X

An14g01960 X

AO090012000168 X

AO090011000165 X

NRRL3 00851 X

NRRL3 00758 X

NCU08273T0 X X

jgi|Phchr1|137491|e

gww2.3.132.1

X

1.A.23 The small conductance

mechanosensitive ion

channel (mscs) family.

1.A.23.4.9 F9X0Q3 Afu2g15000 X

AN7571 X

An15g03150 X

AO090012000418 X

NRRL3 03830 X

1.A.33 The cation channel-

forming heat shock

protein-70 (hsp70)

family.

1.A.33.1.2 P0A6Y8 SPAC664.11 X

1.A.33.1.3 P08107 Afu2g04620 X X X

Afu1g07440 X X

AN2062 X X

An11g04180 X X X

An16g09260 X

AO090012000995 X X X

NRRL3 09797 X X X

NRRL3 06609 X

NCU03982T0 X X

NCU09602T0 X X X

NCU05269T0 X X X

NCU05269T1 X X X

NCU02075T0 X X

jgi|Phchr1|123502|e

gwh2.1.247.1

X X X

jgi|Phchr1|131983|e

gww2.9.92.1

X X X

SPCC1739.13 X X X

1.A.35 The cora metal ion

transporter (mit)

family.

1.A.35.2.3 O13657 SPBC27B12.12C X

Continued on next page
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Table 53 – continued from previous page

Family Family Name TCID Hit Query AA An Ca El
Pr/

mR
Su Ot NA

1.A.35.5.5 Q02783 AN7826 X

AO090011000032 X X

SPBC25H2.08C X

1.A.4 The transient receptor

potential ca(2+) chan-

nel (trp-cc) family.

1.A.4.10.1 O94543 SPCC1322.03 X

1.A.4.4.1 Q12324 Afu3g13490 X

AN3155 X

An02g09390 X

AO090012000784 X

NRRL3 05486 X

NCU16725T0 X

jgi|Phchr1|138594|e

gww2.8.86.1

X X

1.A.4.9.1 Q08967 AN1950 X X

1.A.4.9.2 Q09917 SPAC1F7.03 X X

1.A.4.9.3 P39719 Afu4g13340 X X

An01g09050 X X

An01g06610 X X

AO090001000726 X X

AO090005000355 X X

AO090009000239 X X

AO090038000415 X X

NRRL3 02376 X X

NRRL3 02161 X X

NCU05785T0 X X

1.A.43 The camphor resistance

(crcb) family.

1.A.43.2.3 S9W181 SPBPB8B6.06C X X X X

SPAC977.11 X X X X

1.A.43.2.6 Q7SB51 NCU06262T0 X

1.A.46 The anion channel-

forming bestrophin

(bestrophin) family.

1.A.46.2.1 Q5BB29 Afu5g06660 X

AN2251 X

AO090701000199 X

NRRL3 06477 X

NCU09677T0 X

1.A.46.2.2 Q5AXS1 AN6909 X

An14g05100 X

AO090113000012 X X

NRRL3 01019 X

1.A.55 The synaptic vesicle-

associated ca(2+) chan-

nel flower family.

1.A.55.4.1 B8N1Q6 Afu3g10600 X X

AN11770 X

NRRL3 06946 X

NCU04760T0 X X

SPBC32F12.12C X X

1.A.56 The copper transporter

(ctr) family.

1.A.56.1.10 A9XIK8 AN2934 X X

An02g11700 X X X X

NRRL3 05315 X X

NCU03281T0 X

NCU03281T1 X X X

1.A.56.1.4 Q06686 Afu2g03730 X X X

1.A.56.1.5 O94722 SPCC1393.10 X X

1.A.56.1.5 Q9P7F9 SPAC1142.05 X X X

Continued on next page
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Table 53 – continued from previous page

Family Family Name TCID Hit Query AA An Ca El
Pr/

mR
Su Ot NA

1.A.56.1.6 Q9USV7 SPBC23G7.16 X

1.A.77 The mg(2+)/ca(2+)

uniporter (mcu) family.

1.A.77.1.5 Q7S4I4 Afu4g10310 X

An04g06590 X

AO090003001191 X

NRRL3 07719 X

NCU08166T0 X

1.A.8 The major intrinsic pro-

tein (mip) family.

1.A.8.18.1 E3UN01 AO090010000024 X X X

1.A.8.18.3 E3UMZ5 NRRL3 01299 X X X

1.A.8.6.4 H6B4G1 Afu4g03390 X X X

H6B4G1 AN10902 X X

H6B4G1 NRRL3 00798 X

1.A.8.7.1 P43549 An16g00230 X

NRRL3 07402 X

SPAC977.17 X

1.A.8.9.1 P47862 jgi—Phchr1—138875—e -

gww2.8.316.1

X X

1.A.8.9.4 Q6ZXT4 AO090010000705 X X

1.A.81 The low affinity ca(2+)

channel (lacc) family.

1.A.81.3.2 Q5A4M8 AN4615 X X

An07g06530 X X

AO090011000512 X X X

NRRL3 04731 X X

1.A.81.4.1 A7UX97 NCU10610T0 X X X

1.A.81.5.1 I3VPY1 Afu3g09060 X X

AN3036 X X X

AO090103000234 X X

AO090005001364 X X X X

NRRL3 07102 X X X X

NCU02219T0 X X

1.A.88 The fungal potassium

channel (f-kch) family.

1.A.88.1.4 A2QW01 An11g03330 X

NRRL3 09876 X

1.A.88.1.6 Q9P5J0 NCU03928T0 X

1.A.9 The neurotransmit-

ter receptor cys loop

ligand-gated ion chan-

nel (lic) family.

1.A.9.5.2 O95166 Afu1g07470 X X

AN5131 X X

An07g10020 X X

AO090012000997 X X X

NRRL3 05018 X X

NCU01545T0 X X

jgi—Phchr1—122422—e -

gwh2.1.1122.1

X X X

SPBP8B7.24C X X

1.B.69 The peroxysomal mem-

brane porin 4 (pxmp4)

family.

1.B.69.1.4 A2R8R0 Afu8g04780 X

AN1483 X

An16g08040 X

AO090005000669 X

NRRL3 06705 X

NCU00828T0 X

1.C.47 The insect/fungal de-

fensin family.

1.C.47.1.8 B1NJ41 AN11510 X

Continued on next page
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Family Family Name TCID Hit Query AA An Ca El
Pr/

mR
Su Ot NA

AN5046 X

1.F.1 The synaptosomal vesi-

cle fusion pore (svf-

pore) family.

1.F.1.1.2 P33328 Afu6g02920 X X X

AN8769 X X

An12g07570 X X X

AO090012000430 X X X

NRRL3 03138 X X X

jgi|Phchr1|134289|e -

gww2.12.354.1

X

SPAC6G9.11 X X

Q04338 Afu4g10710 X

AN1973 X

An04g05980 X

AO090003001144 X

NRRL3 07766 X

SPBC3B9.10 X

1.H.1 The claudin tight junc-

tion family.

1.H.1.4.1 F5H8T9 An08g01170 X

AO090012000911 X

NRRL3 10815 X

NCU03601T0 X

1.H.1.4.3 G3XZI4 Afu6g07470 X X

AN5213 X

An07g08960 X

AO090005001554 X X

AO090026000374 X

NRRL3 04918 X

1.H.1.4.5 Q2TX92 AO090010000235 X X

1.I.1 The nuclear pore com-

plex (npc) family.

1.I.1.1.1 P38181 AO090005000465 X

NCU04463T0 X

P39685 Afu3g05500 X

AN3454 X

An11g11140 X

AO090020000021 X

NRRL3 09229 X

NCU10747T0 X

SPBC29A10.07 X
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D.2 TCDB-Blast Results with LocTree3 Predictions

This section considers the localization of the members of the TC-Superfamily 2.A.1, the MFS

Superfamily, as predicted by TCDB-Blast for the eight fungal genomes in our study. The

localizations are the predictions of LocTree3. Only those sequences in unusual localizations

for the given TCID are listed. The usual localization is defined to be the most common

localization predicted for sequences with the given TCID. Table 54 presents the predictions of

LocTree3 for those proteins in the eight fungal genomes that TCDB-Blast predicts to belong

to TC-Superfamily 2.A.1 and that have an unusual localization. The columns Subfamily

and Subfamily Name contain the TC-Subfamily identifier and its name. The column TCID

contains the TCID of the TCDB entry predicted TCDB-Blast. The column Hit is the

UniProtKB identifier for the matching TCDB entry. The column Query is the identifier for

the entry in the fungal genome. The column Location (Usual) contains the usual localization

for the given TCID. The column Location (Unusual) contains the localization predicted for

the given query sequence in the fungal genome, where a horizontal line makes the start of

a new unusual localization and a blank inidcates a continuance of the unusual localization.

Mem. is short for membrane.

Table 54: Usual and Unsual Location of MFS Superfamily 2.A.1.

Subfamily Subfamily Name TCID Hit Query
Location

(Usual)

Location

(Unusual)

2.A.1.1 Sugar Porters (SP) 2.A.1.1.7 P11636 AN1109 Plasma Mem. Vacuole Mem.

An07g06300 Mito Mem.

An15g04270

AO090113000088

AO090001000641

NRRL3 03902

NRRL3 04711

2.A.1.1.10 P15685 AO090011000064 Plasma Mem. Mito Mem.

NCU07861T0

2.A.1.1.38 P39932 AN2584 Plasma Mem. Mito Mem.

AN3115

An04g08030

NRRL3 07609

Afu4g14610 Vacuole Mem.

AN5067

2.A.1.1.39 P49374 An07g10370 Plasma Mem. Vacuole Mem.

An08g04040

NRRL3 05043

AO090010000063 Mito Mem.

2.A.1.1.40 Q64L87 An16g06610 Plasma Mem. Vacuole Mem.

AO090001000381

2.A.1.1.57 Q8J0V1 AO090023000340 Plasma Mem Mito Mem.

2.A.1.1.68 A3M0N3 Afu6g14590 Plasma Mem Vacuole Mem.

2.A.1.1.73 Q5A8J5 Afu5g01080 Plasma Mem. Mito Mem.

AN9168 Vacuole Mem.

Continued on next page
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Table 54 – continued from previous page

Subfamily Subfamily Name TCID Hit Query
Location

(Usual)

Location

(Unusual)

2.A.1.1.82 Q7SCU1 Afu1g17310 Plasma Mem. Mito Mem.

NCU00809T0

AN6831 Vacuole Mem.

2.A.1.1.83 Q7SD12 Afu8g04480 Mito Mem. Vacuole Mem.

An09g04810

AO090166000089

2.A.1.1.117 G4N740 An06g02030 Plasma Mem. Mito Mem.

NRRL3 11786

2.A.1.2 The Drug: H+ Antiporter-1 2.A.1.2.1 P33532* SPAC17A2.01 Plasma Mem. ER Mem.

SPCC965.13

AO090012000612

NRRL3 07427

An18g00480

AO090009000046

NRRL3 10205

NRRL3 03393

AN5540

AO090023000700

Afu8g04702

Afu5g00430

AN10207

AN5763

AN3398

An07g05880

NRRL3 10675

NRRL3 02942

NRRL3 06692

NRRL3 04678

SPBC1271.10C

An03g05750

An16g02610

NRRL3 07101

NRRL3 08364

jgi|Phchr1|140622|e gww2.17.40.1

jgi|Phchr1|126074|e gwh2.13.144.1

jgi|Phchr1|138927|e gww2.8.161.1

AO090011000474 Mito Mem.

NRRL3 05523

2.A.1.2.58 Q8RWN2 Afu1g06440 Plasma Mem. ER Mem.

Afu1g13800

Afu2g11420

Afu2g11580

Afu2g16860

Afu3g01120

Afu3g01890

Afu3g02060

Afu3g02780

Afu5g02700

Afu6g13780

Afu7g04900

An02g01100

An02g03620

An02g09970

An02g13050

An02g14470

An03g00320

An04g08250

Continued on next page
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Subfamily Subfamily Name TCID Hit Query
Location

(Usual)

Location

(Unusual)

AN3270

AN5369

AN5559

AN6451

AN6477

AN6942

AN7972

AN0732

AN10036

AN10152

An07g00300

An08g06980

An08g08560

An08g10970

An09g02210

An09g02580

An09g05070

An11g07300

An11g08990

An11g09140

An12g02800

An13g03610

An15g04580

An16g01040

An16g01660

An18g00700

NRRL3 00171

NRRL3 00195

NRRL3 00202

NRRL3 00407

NRRL3 01291

NRRL3 02997

NRRL3 03925

NRRL3 03930

NRRL3 04250

NRRL3 05458

NRRL3 05968

NRRL3 06167

NRRL3 07288

NRRL3 07345

NRRL3 07535

NRRL3 07590

NRRL3 08755

NRRL3 08973

NRRL3 09414

NRRL3 09421

NRRL3 09550

NRRL3 10222

NRRL3 10595

NRRL3 11027

NRRL3 11278

NRRL3 11761

AO090001000704

AO090003000523

AO090003000563

AO090003001037

AO090005000054
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Subfamily Subfamily Name TCID Hit Query
Location

(Usual)

Location

(Unusual)

AO090005000991

AO090010000036

AO090010000105

AO090010000160

AO090010000186

AO090011000014

AO090011000049

AO090011000413

AO090012000288

AO090012000494

AO090020000544

AO090023000405

AO090026000005

AO090026000193

AO090026000247

AO090026000485

AO090102000049

AO090102000135

AO090102000388

AO090103000346

AO090113000138

AO090113000181

AO090138000118

NCU00306T0

NCU06519T0

jgi|Phchr1|133216|e gww2.1.267.1

jgi|Phchr1|140008|e gww2.2.378.1

jgi|Phchr1|26770|gwh2.2.173.1

jgi|Phchr1|122451|e gwh2.1.419.1

SPAC11D3.05

SPBC530.02

SPCC794.04C

Afu1g03730 Vacuole Mem.

AN4019

AO090003000971

AO090023000061

NCU06341T0

jgi|Phchr1|131654|e gww2.26.8.1

SPCC330.07C

SPCC613.01

SPCC613.02

SPCC757.11C

2.A.1.3 The Drug:H+ Antiporter-2 2.A.1.3.32* Q9ZGB6 An03g01790 Vacuole Mem. Plasma Mem.

NRRL3 08650

2.A.1.3.33 O32182 An01g01245 Plasma Mem. Vacuole Mem.

An07g00060

AO090012000158

NRRL3 04232

NCU09978T0

jgi|Phchr1|136833|e gww2.7.170.1

jgi|Phchr1|37613|gww2.4.148.1

2.A.1.3.47* Q9C1B3 NRRL3 00256 Plasma Mem. Vacuole Mem.

2.A.1.3.65 H2E274 Afu1g16910 Vacuole Mem. Plasma Mem.

Afu3g14720

Afu6g14640

An01g11290

An02g02780
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Subfamily Subfamily Name TCID Hit Query
Location

(Usual)

Location

(Unusual)

An04g06250

AN11217

AN11821

An11g08620

An12g08620

An16g01590

AN3491

AN3884

AN7200

AO090001000543

AO090003001490

AO090010000407

AO090023000039

AO090026000199

AO090026000577

AO090038000038

AO090701000567

NCU00711T0

NCU00857T0

NCU03789T0

NCU09458T0

NCU09458T1

NCU09640T0

NRRL3 03067

NRRL3 06038

NRRL3 07295

NRRL3 07740

NRRL3 08967

jgi|Phchr1|122125|e gwh2.9.150.1

2.A.1.7 Fucose: H+ Symporter 2.A.1.7.1 P11551 AN5742 Plasma Mem. ER Mem.

NRRL3 10670

An18g06310 GA Mem.

2.A.1.7.13 Q08280 AO090011000241 Plasma Mem. GA Mem.

AO090308000019

NRRL3 04481

2.A.1.8 Nitrate/Nitrite Porter (NNP) 2.A.1.8.13 Q8X193 AN0399 Plasma Mem. Vacuole Mem.

2.A.1.9 Phosphate: H+ Symporter 2.A.1.9.2 Q7RVX9 An04g04240 Plasma Mem. ER Mem.

(PHS) NRRL3 07894

jgi|Phchr1|125289|e gwh2.27.9.1

jgi|Phchr1|128372|e gwh2.4.612.1

2.A.1.9.7* P25346 AN5549 Plasma Mem. ER Mem.

AN2864

An11g02600

An02g08180

AO090003000167

NRRL3 09931

NRRL3 05607

jgi|Phchr1|4504|fgenesh1 pg.

C scaffold 7000317

SPBC1271.09

2.A.1.13.19 Q08268 AN4481 ER Mem. Plasma Mem.

NRRL3 04850

NCU06167T0

NCU16370T0

2.A.1.13.4 Q08777 An11g08190 ER Mem. Plasma Mem.

An11g07630

AO090023000881

Continued on next page
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Table 54 – continued from previous page

Subfamily Subfamily Name TCID Hit Query
Location

(Usual)

Location

(Unusual)

NRRL3 07645

NCU05089T0

2.A.1.14 An:Ca Symporter (ACS) 2.A.1.14.11 P53322 NRRL3 03334 Plasma Mem. Mito Mem.

2.A.1.14.3 P70786 AN9000 Plasma Mem. Mito Mem.

2.A.1.14.36 Q07904 AO090010000742 Plasma Mem. Mito Mem.

NRRL3 09657

jgi|Phchr1|133152|e gww2.1.449.1

2.A.1.14.37 P39709 AN3066 Plasma Mem. Mito Mem.

AN4107

2.A.1.16 Siderophore-Iron Transporter 2.A.1.16.1 P39980 An01g00720 Plasma Mem. Vacuole Mem.

(SIT) NRRL3 01644

2.A.1.16.5 O94607 AO090001000692 Plasma Mem. Vacuole Mem.

2.A.1.16.6 O74395 AN7485 Vacuole Mem. ER Mem.

SPBC4F6.09

AO090009000061 Plasma Mem.

2.A.1.16.7 Q870L2 AN3160 Vacuole Mem. Plasma Mem.

An03g03560

AO090023000049

NRRL3 08534

2.A.1.19 Organic Ca Transporter 2.A.1.19.38 Q9C101 NRRL3 08676 Plasma Mem. ER Mem.

(OCT) NRRL3 09127

NRRL3 03935

jgi|Phchr1|138989|e gww2.8.136.1

AO090012000051 Peroxisome Mem.

2.A.1.19.48 Q0CZ13 AO090026000209 Plasma Mem. Vacuole Mem.

2.A.1.25 Peptide-Acetyl-Coenzyme A 2.A.1.25.1 O00400 AN4836 ER Mem. Plasma Mem.

Transporter (PAT) AO090020000192

2.A.1.48 Vacuolar Basic AA Trans-

porter (V-BAAT)

2.A.1.48.3 Q09752 AO090102000036 Vacuole Mem. Plasma Mem.

2.A.1.58 N-Acetylglucosamine 2.A.1.58.1 Q5A7S4 Afu1g00440 ER Mem. GA Mem.

Transporter (NAG-T) AN1427

AN8127

An16g09020

NRRL3 06628

2.A.1.58.5 C9S7Y7 Afu3g15000 ER Mem. GA Mem.

AO090124000021
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Haussler. Hidden Markov models in computational biology: Applications to

protein modeling. Journal of Molecular Biology, 235(5):1501–1531, 1994.

[KCVSZ+11] Ingrid M. Keseler, Julio Collado-Vides, Alberto Santos-Zavaleta, Martin

Peralta-Gil, Socorro Gama-Castro, Luis Muniz-Rascado, Cesar Bonavides-

Martinez, Suzanne Paley, Markus Krummenacker, Tomer Altman, Pallavi

Kaipa1, Aaron Spaulding, John Pacheco, Mario Latendresse, Carol Fulcher,

185

http://www.iubmb.org/
http://www.iubmb.org/
http://bioinformatics.ai.sri.com/ptools/release-notes.html
http://bioinformatics.ai.sri.com/ptools/release-notes.html


Malabika Sarker, Alexander G. Shearer, Amanda Mackie, Ian Paulsen,

Robert P. Gunsalus, and Peter D. Karp. EcoCyc: a comprehensive database

of Escherichia coli biology. Nucleic Acids Research, 39:D583–D590, 2011.

[KD82] Jack Kyte and Russell F Doolittle. A simple method for displaying the hydro-

pathic character of a protein. Journal of molecular biology, 157(1):105–132,

1982.

[KL] Kanehisa Laboratories. Kegg: Kyoto Encyclopedia of Genes and Genomes.

http://www.genome.jp/kegg/. Accessed in Feb, 2013.

[KLC11] Peter D. Karp, Mario Latendresse, and Ron Caspi. The Pathway Tools path-

way prediction algorithm. Standards In Genomic Sciences, 5:424–429, 2011.

[KPK+09] P.D. Karp, S.M. Paley, M. Krummenacker, M. Latendresse, J.M. Dale, T. J.

Lee, P. Kaipa, F. Gilham, A. Spaulding, L. Popescu, T. Altman, I. Paulsen,

I.M. Keseler, and R. Caspi. Pathway Tools version 13.0: integrated software

for pathway/genome informatics and systems biology. Briefings in Bioinfor-

matics, 11(1):40–79, 2009.

[KPR02] P.D. Karp, S. Paley, and P. Romero. The Pathway Tools software. Bioinfor-

matics, 18:S225–S232, 2002.

[KR93] Peter D. Karp and Monica Riley. Representations of metabolic knowl-

edge. Proceedings of First International Conference on Intelligent Systems

for Molecular Biology, pages 207–215, 1993.

[KS13] Kazutaka Katoh and Daron M Standley. MAFFT multiple sequence alignment

software version 7: improvements in performance and usability. Molecular

Biology and Evolution, 30(4):772–780, 2013.

[KTY+13] Masaaki Kotera, Yasuo Tabei, Yoshihiro Yamanishi, Toshiaki Tokimatsu, and

Susumu Goto. Supervised de novo reconstruction of metabolic pathways from

metabolome-scale compound sets. Bioinformatics, 29(13):i135–i144, 2013.

[Kuy08] Frans A. Kuypers. Cell membranes. In Steven R. Goodman, editor, Medical

Cell Biology, chapter 2, pages 27–57. Elsevier/Academic Press, Amsterdam

Boston, third edition, 2008.

186

http://www.genome.jp/kegg/


[Lag93] Rosario Lagunas. Sugar transport in Saccharomyces cerevisiae. FEMS Micro-

biology Reviews, 104:229–242, 1993.

[LBUZ09] Haiquan Li, Vagner A Benedito, Michael K Udvardi, and Patrick Xuechun

Zhao. TransportTP: A two-phase classification approach for membrane trans-

porter prediction and characterization. BMC Bioinformatics, 10(418):1–13,

2009.

[LBZ+00] Harvey Lodish, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, David

Baltimore, and James Darnell. Protein structure and function. In Molecular

Cell Biology, chapter 3, pages 78–83. W.H. Freeman & Co, New York, fourth

edition, 2000.

[LDZ08] Haiquan Li, Xinbin Dai, and Xuechun Zhao. A nearest neighbor approach for

automated transporter prediction and categorization from protein sequences.

Bioinformatics, 24(9):1129–1136, 2008.

[LHC+06] HH Lin, LY Han, CZ Cai, ZL Ji, and YZ Chen. Prediction of transporter

family from protein sequence by support vector machine approach. Proteins:

Structure, Function, and Bioinformatics, 62(1):218–231, 2006.

[Loi12] Nicolas Loira. Scaffold-based Reconstruction Method for Genome-Scale

Metabolic Models. PhD thesis, Université Sciences et Technologies-Bordeaux
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[ÖSF+10] Gabriel Östlund, Thomas Schmitt, Kristoffer Forslund, Tina Köstler, David N.
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and Sašo Džeroski. Predicting gene function using hierarchical multi-label

decision tree ensembles. BMC Bioinformatics, 11(1):2, 2010.

[SWD+11] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus,

Weizhong Li, Rodrigo Lopez, Hamish McWilliam, Michael Remmert, Jo-
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