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Abstract

Efficient Spectrum Utilization
in Large-Scale RWA and RSA Problems

Maryam Daryalal

While the Routing and Wavelength Assignment (RWA) problem has been widely studied, very

few studies attempt to solve realistic size instances, namely, with 100 wavelengths per fiber and a

few hundred nodes. Indeed, state of the art is closer to around 20 nodes and 30 wavelengths. In this

study, we are interested in reducing the gap between realistic data sets and testbed instances, using

exact methods.

We propose different algorithms that lead to solve exactly or near exactly much larger instances

than in the literature, with up to 150 wavelengths and 90 nodes. Extensive numerical experiences

are conducted on both the static and the dynamic cases. For the latter, we investigate how much

bandwidth is wasted when no lightpath re-arrangement is allowed, and compare it with the number

of lightpath re-arrangement it requires in order to fully maximize the grade of service. Results show

that the amount of lightpath re-arrangement remains very small in comparison to the amount of

wasted bandwidth if not done.

The Routing and Spectrum Assignment (RSA) problem is a much more difficult problem than

RWA, considered in elastic optical networks. Although investigated extensively, there is still a gap

between the size of the instances that can be solved using the current heuristic or exact algorithms,

and the size of the instances arising in the industry. As the second objective of this study, we aim to

reduce the gap between the two, using a new mathematical modeling, and compare its performance

with the best previous algorithms/models on realistic data instances.
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Chapter 1

Introduction

In the past decade, communication networks have played an undeniably crucial role in our daily

life. As societies develop, the effect of this role becomes more tangible. As a vivid example, one

can consider social networking services such as Facebook, Twitter and Telegram. Nowadays, they

are an integrated part of entertainment, broadcasting, marketing and spreading rumors, and even

have gone to the point where they can effectively enlighten (or mislead) the public about previously

elite-bounded subjects like politics. In such a demanding situation, high-speed and flawless service

to the users of communication networks is of vital importance. Optical networks have provided us

with a fast and reliable transmission system by incorporating the fastest medium possible: light.

This study is an attempt to optimize the utilization of the resources in common optical networks,

by developing new large-scale optimization algorithms that are specifically designed to deal with

large size instances. Following sections state the context and description of the problems that we

will handle. The objectives and contributions of the thesis will be presented and the plan of the

thesis will follow.

1.1 Background

As of July, 2016, there are more than 3,424,971,237 internet users, a 7.5% growth over the

last year [Worldometers.info, 2016]. Estimates suggest that annual global IP traffic will reach 1.1

ZB (1 ZB = 230 TB) by the end of 2016 (first time surpassing zettabyte), and will increase to 2.3
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ZB per year by 2020, at a compound annual growth rate of 22% [Cisco, 2016]. The continuous

growth of traffic, nourished by the emerging rich-content, high-rate and bursty applications, such

as video-on-demand, on-line gaming, high-definition television (HDTV), and cloud computing, can

only be met with the abundant capacity provided by optical transport networks. Considering this

rapid growth of traffic requests, researchers constantly seek to improve the underlying infrastructure

and technology, along with designing algorithms to efficiently incorporate the full potentials of the

networks.

Wavelength division multiplexing (WDM) networks have been serving us for a long time, being

the dominant transmission systems in the industry. Their full potential has not yet been met, but the

historical data suggests that we are at the edge of surpassing their capacity (see Section 2.3). As a

result, network operators are now moving to elastic optical networking (EON), a technology that

increases the capacity of the networks by providing a much more flexible pattern (see Section 2.3).

In a network, enabling a service and making it available for receiver points is called provi-

sioning. In the context of optical networks, Integer Linear Programming (ILP) tools have proven

themselves beneficial in finding quality solutions (optimal or near-optimal) for provisioning of the

traffic requests (see Sections 2.2 and 2.3). With the current rise of bandwidth unit requests, the size

of the provisioning instances has grown as well. The promising potential of large-scale optimiza-

tion frameworks developed in the field of Operations Research, makes it inevitable to revisit and

improve some of the previously designed algorithms.

1.2 Problems

For both classical and elastic optical networks, provisioning problems are as follows. Routing

and wavelength assignment (RWA) is the key provisioning problem of classical WDM networks.

The main challenge in elastic optical networks is optimizing further the spectrum usage through the

so-called routing and spectrum assignment (RSA) problem.

In this thesis, three provisioning problems are revisited in order to be further optimized, with

the common motivation that there is a considerable gap between the size of the instances for which

the existing solution approaches are efficient and effective, and the ones that industry faces today.

2



The considered problems are as follows.

(1) Efficient spectrum utilization in offline large-scale RWA problems: this is the classic RWA

problem with static traffic, i.e., all the bandwidth unit requests are at hand.

(2) Optimizing spectrum utilization in dynamic RWA: we consider the case where traffic is in-

cremental, arriving at subsequent time periods, within the today’s context of rapid network

traffic growth.

(3) Large-scale elastic optical path networking models: in this problem we go one step further to

achieve more flexibility and save on inter-carrier guard bands, see Section 2.3.

In all three cases, we are interested in designing algorithms that can meet the expectations of

the industry, in terms of exact or near exact solutions of realistic network and traffic instances.

1.3 Research Objective and Contributions

In the following sections, we first describe our objectives for the problems stated in Section 1.2,

then present the contributions we had in this thesis.

1.3.1 Objectives

Our main objective in this thesis is to increase the scalability of the exact algorithms for the RWA

problem with static/dynamic traffic, and RSA problem with static traffic. While RWA problem was

the focus of many studies in the 80’s, numerous heuristics have been proposed. However, they

have not been tested and compared on very large data instances except for very few papers, see,

e.g., [Nagatsu et al., 1996, Noronha et al., 2006, Martins et al., 2012, Kogantia and Sidhu, 2014],

and most of the time, they come without any information on the accuracy of their solutions. On

the other hand, exact methods have difficulties to scale. For RWA problem with static traffic, the

improvement of the algorithms can be done through the maximization of lightpaths with a route

using a short path selected among all shortest paths or k-shortest paths with a small k, for every

node pair, rather than using a single shortest path selected at random among all shortest paths, as

3



is done in many previous studies. To further enhance the algorithms, the proper strategy of path

selection will be studied.

In dynamic RWA problem, our secondary objective is to revisit the problem with the goal of

evaluating the minimum number of lightpath re-arrangement it requires in order to remain with an

optimized RWA provisioning, using an exact solution process. We investigate how much bandwidth

is wasted when no lightpath re-arrangement is allowed, and compare it with the number of lightpath

re-routing it requires in order to fully maximize the grade of service. In the algorithms for this

problem, we use the results obtained for the RWA problem with static traffic.

1.3.2 Contributions

The contribution of the thesis includes:

• Proposing two ε-optimal algorithms for large-scale RWA problem with static traffic. The

algorithms are very efficient and capable of solving instances with up to 90 nodes and 150

wavelengths.

◦ B. Jaumard, M. Daryalal. Solving very large RWA data instances. IEEE Canadian

Conference on Electrical and Computer Engineering (CCECE), pages xx, 2016.

• Proposing two highly efficient heuristics for RWA problem with static traffic. We showed the

algorithms achieve very good solutions with remarkably high accuracy from the ε-optimal

algorithms.

◦ B. Jaumard, M. Daryalal. Enhanced RWA solutions for very large data instances. In

Large Scale Complex Network Analysis (LSCNA), pages 1-17, 2015.

• Designing an effective path selection strategy in order to further enhance the solutions of

large-scale RWA problem with static traffic. With this paper, we have the ε−optimal algo-

rithms (with very small ε) that solve the largest traffic/network RWA instances of the litera-

ture.

◦ B. Jaumard, M. Daryalal. Efficient spectrum utilization in large scale RWA problems.

(under revision) IEEE/ACM Transactions on Networking.
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• Proposing a column generation algorithm for a large-scale RWA problem with incremental

traffic, with/without lightpath re-arrangements. The results showed that when lightpath re-

arrangement is possible, the algorithm is very successful in achieving the maximum GoS

while re-arranging a very small percentage of lightpaths.

◦ B. Jaumard, M. Daryalal. Optimizing spectrum utilization in dynamic RWA. In IEEE

International Conference on Optical Network Design and Modeling (ONDM), pages

1-6, 2016.

• Presenting a mathematical formulation and an ε-optimal algorithm for RSA problem, while

considering guard bands. The algorithm was able to outperform all best existing solution

approaches in the literature.

◦ B. Jaumard, M. Daryalal. Large-scale elastic optical path networking models. IEEE

International Conference on Transparent Optical Networks (ICTON), pages 1-4 2016.

1.3.3 Thesis Organization

The thesis is organized as follows. Chapter 2 presents the preliminary materials and a literature

review on the related subjects. We first briefly introduce the concepts of mathematical and linear

programming. Then we proceed to a description of column generation and branch-and-price meth-

ods. After a short review on WDM networks and various types of multiplexing, RWA problem is

stated in detail. Related works for both static and dynamic cases are comprehensively described. Fi-

nally, elastic optical networks and the notion of spectrum slot are discussed, followed by examining

the works in the literature for solving the RSA problem.

Chapter 3 formally states the RWA problem, by defining the notations and parameters, and pre-

senting the mathematical formulations for the problem with static and dynamic traffic, the latter

with/without lightpath re-arrangements. New solution algorithms are provided for all three cases.

For the static traffic, two ε-optimal and two heuristic algorithms are designed. The ε-optimal al-

gorithms are improving the existing exact methods, and their enhancement lies in the use of three

different mathematical formulations. Each formulation is used when it is the most useful one inside

5



the steps of the solution process. This contrasts with the literature works that only use one mathe-

matical model at a time in the proposed exact methods. We conclude Chapter 3 by showing how the

new solution approaches of directed RWA problem with static traffic can be modified to solve the

undirected case.

Chapter 4 presents the statement for RSA problem, then proceeds with providing a new mathe-

matical formulation, based on an original mathematical decomposition. An ε-optimal algorithm is

designed to solve the new proposed formulation.

Chapter 5 conducts a comprehensive numerical study on the performance of the designed al-

gorithms in the previous chapters, as well as characteristics of the solutions. Several comparisons

between static and dynamic RWA are presented.

Chapter 6 concludes the thesis and proposes future lines of research.
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Chapter 2

Literature Review and Preliminaries

This chapter provides an overview on the preliminaries and basic concepts used throughout

the thesis. Section 2.1 presents a basic summary of linear programming and column generation

methods, essential to our new and enhanced solution approaches. Sections 2.2 and 2.3 introduce the

problems of routing and wavelength assignment, and routing and spectrum assignment respectively.

A comprehensive literature review on the related works, both in the context of RWA/RSA problems

and solution algorithms is provided, leading to identification of deficiencies in the existing solution

approaches in the literature.

2.1 Column Generation Modeling and Algorithms

Mathematical programming is a branch of management science in which mathematical models

and approaches help a decision maker in optimally allocating resources while considering a set

of limitations (constraints). This optimization can be with regard to minimizing or maximizing

a certain objective, and some restrictions on the possible decisions, that can be stated in terms

of mathematical functions. Therefore a (deterministic) mathematical program can be written as

follows:

max or min f0(x) (1)

7



subject to:

fj(x) ≤ bj j = 1, . . . ,m (2)

x ∈ X , (3)

where x is an n-dimensional vector. Function f0(x) is called the objective function and Equations

(2) are constraints. These constraints define a numerical restriction on the functions fj(x), j =

1, . . . ,m. Equations (3), through the set X , e.g., {0, 1}n or Zn
+, define the domain of the decision

variables. A vector x̂ that satisfies all the constraints is feasible. A feasible vector x� at which f0

achieves its best value (minimum or maximum) defines an optimal vector, and its associated value

f0(x
�) is called the optimum value.

In this section, a subcategory of mathematical programs and a powerful approach for solving

them are described.

2.1.1 Linear Programming

A mathematical program is linear, if all functions fj(x), j = 0, . . . ,m are linear. It is common

to express a linear program (LP) as follows:

min cTx =

n∑
i=1

cixi (4)

subject to:

ATx ≥ b (5)

xi ≥ 0 i = 1, . . . , n, (6)

where x ∈ R
n, A ∈ R

m×n, b and c are m and n-dimensional real vectors, respectively. From the

above definition, it can be concluded that having real vector decision variables in a mathematical

program with linear objective and constraint functions is enough for having a linear program, since

it can easily be transformed to the standard form stated above.

Solving a linear program has been proved to be polynomial [Khachiyan, 1980]. One of the

8



most practical algorithms for solving the problem (4) - (6) is simplex method. Although not worst-

case polynomial, it is a powerful method that exploits the geometrical characteristics of feasibility

spaces in linear programs to achieve optimality. This algorithm traverses the boundaries of the

feasibility space in order to find the optimal solutions. Unlike the simplex method, interior point

methods are a category of algorithms that move through the interior of the feasibility space toward

the optimum point [Potra and Wright, 2000]. Karmarkar’s algorithm [Karmarkar, 1984], the first

efficient polynomial time method for solving a linear program, belongs to this class.

In spite of all the powerful approaches that exist for linear programs, if the number of variables

and/or constraints becomes exponential, no existing algorithm is able to solve a linear program in

reasonable time, even if the number of constraints remains small. Hence, researchers turned to

decomposition methods for solving such linear programs. Section 2.1.2 elaborates on one of these

methods that handles the problems with a large number of variables.

Integer Linear Programming

If an additional constraint of the form x ∈ Z
n is added to program defined by (4) - (6), we have

an integer linear program (ILP):

min cTx =
n∑

i=1

cixi (7)

subject to:

x ∈ S = {x ∈ Z
n
+ : ATx ≥ b}, (8)

where Z
n
+ is the set of non-negative integer vectors. Solving this problem is much harder than LP,

and is proved to be NP-complete [Papadimitriou, 1981]. There are numerous general approaches to

solve an ILP, most notably branch-and-bound algorithm. In many of these approaches, one of the

steps is solving a relaxation of the ILP. A relaxation of an ILP is any problem of the form:

9



min fR(x) (9)

subject to:

x ∈ S ′, (10)

such that S ⊆ S ′ and fR(x) ≤ cTx for x ∈ S [Nemhauser and Wolsey, 1988]. LP relaxation is a

common type of relaxation, in which only the integrality constraints x ∈ Z
n are relaxed.

2.1.2 Implicit Enumeration in Large-Scale ILP Problems

Column Generation method, first proposed by Dantzig and Wolfe [1960] and implemented by

Gilmore and Gomory [1961], is a decomposition method for solving linear programs with a huge

number of variables. The method is based on a concept called duality. With every linear problem

(4) - (6), a dual problem is associated. It is defined as follows:

max πb (11)

subject to:

πTA ≤ c (12)

πj ≥ 0 j = 1, . . . ,m. (13)

In this context, model (4) - (6) is called the primal problem. A major result in linear programming

is strong duality. It states that if a linear programming problem has an optimal solution, then so

does its dual problem, and cTx� = π�b, when x� and π� are optimal vectors of primal and dual

problems, respectively [Chvatal, 1983, Kuhn et al., 1958]. In the following, once again we explain

the duality theory using explicitly the concept of columns, that is defined as the columns of matrix

A, i.e., the coefficient vectors of x. Define by xa, a ∈ C, C ⊂ R
m, a decision variable and a its

associated column, and by ca ∈ R the cost of column a. Let b ∈ R
m be the right-hand side of the

constraints. The primal (P) and dual (D) problems are defined as follows:

10



(P)

min
∑
a∈C

caxa (14)

subject to:∑
a∈C

axa ≥ b (15)

xa ≥ 0, a ∈ C, (16)

(D)

max πb (17)

subject to:

πa ≤ ca, a ∈ C (18)

π ≥ 0, (19)

where π is the vector of dual variables associated with Constraints (15). According to the strong

duality theory, if a primal solution x∗ is optimal for P, then π∗ = cBB
−1 is optimal for the problem

D, where B is the optimal basis of problem P.

If C is too large, solving the problem becomes intractable. In a column generation approach,

one starts with a very small subset C′ ⊆ C and builds the Restricted Master Problem (RMP). This

is obtained by replacing the set C in P and D, with set C′, which results in problems PC′ and DC′ .

The column generation method starts with PC′ and obtains a primal feasible solution x̂. Due to the

strong duality theory, x̂ is optimal for problem P if and only if its associated dual vector π̂ satisfies

the following constraint:

π̂a ≤ ca, ∀a ∈ C. (20)

Consequently, the solution of the pricing problem (PP) allows checking the optimality of a solution

x̂:

(PP) min{ca − π̂a : a ∈ C}. (21)

The value ca − π̂a is called the reduced-cost associated with variable xa and measures how much

the objective function will change if variable xa enters the basis (the reader who is not familiar with

linear programming concepts is referred to Chvatal [1983] for detailed explanations). Hence, if the

value of the reduced-cost is positive for all a ∈ C, i.e., if the optimal solution of the PP is positive,

the problem (14) - (16) has been solved to optimality because no variable exists that, if added to

(14) - (16), can improve its new resulting optimum value. Otherwise, the most promising variable

is added to the RMP and this continues until no other promising column remains left out from the

RMP. Figure 2.1 illustrates the column generation algorithm.
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Figure 2.1: Column generation flowchart

2.1.3 Branch-and-Price Algorithm

There are two standard techniques for solving an ILP [Nemhauser and Wolsey, 1988]:

• Cutting-plane algorithm, where an LP relaxation is solved iteratively and, in each iteration, a

linear constraint (cut) is added to the formulation such that no feasible solution is excluded,

while the solution is being driven toward integrality.

• Branch-and-bound algorithm, using LP relaxation. In every iteration, the feasible space of

the problem is partitioned into ν > 1 sub-spaces, resulting in ν smaller subproblems (nodes).

This is done using a pre-defined format called branching scheme. At every node, the local

lower bound is achieved using an LP relaxation, while the local upper bound is obtained

by some pre-defined heuristic. By keeping track of the previous nodes and comparing, the

global lower and upper bounds are determined and potentially some unpromising nodes are

exempted from investigation (pruning). The algorithm continues until either a certain level

of precision or solution accuracy is attained, or no candidate node is left for investigation.

Figure 2.2 illustrates the procedure.

Branch-and-price algorithm is a hybrid of branch-and-bound method within a column genera-

tion context. While it is conducted, in each node, for solving the LP relaxation of the ILP, a column

12



Figure 2.2: Branch-and-bound flowchart

generation approach is employed, utilizing RMP and PP formulations given before. In other words,

branch-and-price integrates branch-and-bound and column generation methods in order to handle

very large ILP problems. Branching occurs when the RMP is proved to have been solved to opti-

mality, i.e., no other columns are eligible to enter. For a thorough study of this algorithm, the reader

may refer to [Barnhart et al., 1998].

2.2 Routing and Wavelength Assignment Problem

Offline routing and wavelength assignment (RWA) is a problem arising in the provisioning or

the dimensioning of optical networks. As stated before, today’s communication industry is facing

a rapid expansion of traffic requests. The following numbers provide an idea of what growth of

traffic means in 2016. For instance, Global Internet Protocol (IP) traffic has increased more than

fivefold in the past 5 years, and will increase nearly threefold over the next 5 years according to

a Cisco study [Cisco, 2016]. A recent study [Durairajan et al., 2015] of the US long-haul fiber-

optic infrastructure, based on the detailed fiber deployment maps from 5 tier-1 and 4 major cable

providers (AT&T, Comcast, Cogent, EarthLink, Integra, Level3, Suddenlink, Verizon and Zayo),
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suggests that the US long-haul fiber network has 273 nodes/cities, 2411 links, and 542 conduits1

(with multiple tenants).

2.2.1 Networking Problems

The high bandwidth requirements in present day applications makes it necessary to perform

several types of optimizations, on the existing and future networks. These optimizations might

occur in provisioning or dimensioning a network, assuming a static environment. It is important

to setup an optimized network in order to meet the required expectations that increase daily, while

remaining cost-efficient as long as possible.

Networking problems can be classified into three categories [Mukherjee, 2006]:

• Traffic engineering: traffic is routed in an environment that is assumed to be in steady-state.

The routing problem together with bandwidth assignment is also known as bandwidth provi-

sioning or provisioning. The objective is usually minimizing the blocking rate.

• Network engineering: this is a “maintenance problem”. Networks are constantly facing in-

creased traffic, thus, sooner or later there will be some congestions in parts of the network.

Network engineering seeks to find and resolve these problems by measuring the exhaustion

probability and adding additional capacity or re-routing the traffic to overcome traffic conges-

tion.

• Network planning: a dimensioning problem in which, assuming a steady-state environment,

an estimation of the traffic in the future is used to design a network from scratch.

In this thesis, we focus on the provisioning problems in WDM and elastic optical networks, as well

as network engineering in dynamic RWA problems.

2.2.2 WDM Networks

Wide-area WDM (Wavelength Division Multiplexing) networks built on the concept of RWA are

envisioned to form the backbone component of the optical network infrastructure. WDM networks
1A conduit is defined as a “tube” or trench specially built to house the fiber of potentially multiple providers.
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meet the high bandwidth requirements, by dividing the huge transmission bandwidth of an optical

fiber into multiple communication channels called wavelengths. In a WDM network, a lightpath is

defined by the combination of a routing path p and a wavelength λ.

Multiplexing

In a telecommunication network, one fundamental characteristic is the ability of transmitting

simultaneously multiple data and connection requests. Therefore, multiple signals need to be trans-

mitted on a shared (expensive) medium, as obviously it is not possible to have a medium for every

single request. This is where multiplexing plays a very important role. There are three common

types of multiplexing [Kuri, 2003]: Time Division Multiplexing (TDM, Elliot and Schunneman

[1971]), Code Division Multiplexing (CDM, Hoffmann [2004]) and Frequency Division Multiplex-

ing (FDM, Liu [2011]). As “wavelength” and “frequency” are in a direct inverse relation (frequency

× wavelength = c, where c is the speed of light), WDM is basically FDM. The most common type

of multiplexing in networks incorporating light as transmission medium, i.e., optical networks, is

WDM [Sivalingam and Subramaniam, 2000]. Width of range of frequencies that can be transmitted

on a medium is called its bandwidth. In FDM, bandwidth is divided into non-overlapping frequency

sub-bands (sub-channels). For every signal, a specific frequency acts as a carrier (modulating),

called subcarrier. As a result, multiple signals are combined into a single one. Figure 2.3 illustrates

this type of multiplexing. A simplified WDM transmission system is illustrated in Figure 2.4.

Figure 2.3: Wavelength division multiplexing [Pan-Dacom-Direkt, 2016]
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Figure 2.4: WDM transmission system [Kuri, 2003]

In FDM, in order to prevent the interference between the spectrum of subcarriers, or inter-

carrier interference, guard bands are employed, resulting in an inefficient usage of bandwidth.

Orthogonal Frequency Division Multiplexing (OFDM) [Saeki, 1999] is an FDM scheme, in which

subcarriers are orthogonal to each other, hence removing the requirement for guard bands [Papadim-

itriou et al., 2003] (of course there is still the need to have guard bands between adjacent requests

to distinguish them). Figure 2.5 shows the concept of orthogonality in subcarrier frequencies. In

orthogonal subcarriers, the peak of one subcarrier corresponds to the null of the adjacent subcarrier.

Figure 2.5: Orthogonal subcarrier frequencies [Hwang, 2009]
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2.2.3 RWA Problems and Algorithms

The RWA problem consists of choosing a route and a wavelength for each connection request, so

that no two connections using the same wavelength share the same fiber (for a formal definition, see

Section 3). If different lightpaths traversing through the same fiber do not have distinct wavelengths,

a wavelength conflict occurs [Jia et al., 2013]. An optical network utilizes optical connections, i.e.,

lightpaths, which traverse multiple fiber links and optical nodes, all with the same wavelength: this

is the so-called wavelength continuity constraint [Ramaswami et al., 2009]. For each connection

request, a lightpath is requested and provisioned. Thus, RWA problem assigns routes to the lightpath

requests, and associates wavelengths to each of the links along those routes, while considering the

following critical criteria:

• No wavelength conflict on links is acceptable, assuming every link contains 1 fiber.

• Wavelength continuity constraint on the route should be respected.

Figure 2.6 represents some valid and invalid lightpaths, under the assumption that every link is

associated with two directional fibers, one in each direction.

(a) Valid lightpaths (b) Wavelength conflict

Figure 2.6: Lightpaths in a network

Wavelength continuity constraint can be relaxed if there are wavelength converters in the net-

work. If not, every lightpath must utilize the same wavelength traversing on all of the fiber links
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making its path [Bandyopadhyay, 2007]. Networks in which a wavelength converter is used to con-

vert the wavelength of the data before forwarding it on the next link are referred to as wavelength-

convertible networks [Ramamurthy and Mukherjee, 1998]. While there are also some works study-

ing RWA problem in wavelength-convertible networks [Subramaniam et al., 1996, Lee and Li,

1993], it has been shown that wavelength conversion is not of great help for maximizing the grade

of service (GoS) [Schupke, 2002, Jaumard et al., 2006b, Zhang et al., 2013], in spite of studies

advertising some benefit of wavelength conversion, e.g., [Chu and Li, 2005].

Directed vs. Undirected Networks

In a communication network, traffic can be symmetric or asymmetric. In some cases, distin-

guishing between these two is not very obvious. For example, in a one-to-one video chat the traffic

is symmetric, but it becomes asymmetric if there are more than two points in the conference. A

study by Pesovic and Sharpe [2012] showed that, although traffic in networks is increasing both in

downstream and upstream directions, the overall traffic today is asymmetric. However, most indus-

tries still have equipment suitable for symmetric traffic [Walkowiak et al., 2015]. For this reason,

undirected problems are still of interest. In studying RWA problems, we will focus on directed

networks and provide formulations and algorithms for them, although some modifications will be

mentioned in Section 3.3.7 in order to show how to solve RWA problems on an undirected network.

Objective Function

Given a set of lightpath requests, two variants of the RWA problem have been studied in the

literature:

• max-RWA: Here, the objective is to maximize the number of lightpath requests that can be

routed with a given number of wavelengths, or in other words, within a given network trans-

port capacity. This corresponds to maximizing the grade of service (GoS), equivalent to min-

imizing the blocking rate. max-RWA is useful for provisioning a network, while the number

of available wavelengths is predetermined.

• min-RWA: Given a set of requests, the objective is to minimize the number of wavelengths
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to route all the requests. min-RWA is used when planning/dimensioning of a network is

considered.

In this thesis, we focus on the max-RWA problem, as provisioning is the main concern of the

industry. However, most exact solution algorithms are easy to adapt for min-RWA, by modifying

the objective function accordingly and adding a constraint to serve all the requests.

Static RWA Problem

With respect to traffic, RWA can be classified in two broad categories: static problems in which

the set of connections are known in advance and dynamic problems in which a lightpath is set up

for each connection request as it arrives, and the lightpath is released after some finite amount of

time [Gerstel and Kutten, 1997]. Figure 2.7 illustrates these concepts.

Figure 2.7: Static and dynamic traffic

RWA Literature Review: Heuristics and Meta-Heuristics

The static RWA problem is also known as the Static Lightpath Establishment (SLE) problem

[Zang et al., 2000]. It is proved to be NP-complete [Ramaswami and Sivarajan, 1995] and can

be divided into a routing subproblem and a wavelength assignment subproblem to become more

tractable [Zang et al., 2000]. The common three approaches to tackle the routing subproblem are:
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(1) Fixed routing [Chan and Yum, 1994, Birman and Kershenbaum, 1995, Subramaniam and

Barry, 1997],

(2) Fixed-alternate routing [Birman and Kershenbaum, 1995, Ramamurthy and Mukherjee, 2002,

Yao and Ramamurthy, 2004, Harai et al., 1997, Lin et al., 2006, Yates et al., 1997],

(3) Adaptive routing [He et al., 2007, Mokhtar and Azizoğlu, 1998, Pointurier et al., 2006, 2008,

Ngo et al., 2004, Yoo et al., 2003].

The first two types are referred to as static routing algorithms and the third one is known as

dynamic routing algorithms [Randhawa and Sohal, 2010]. Fixed routing is the simplest approach

in which the routes are calculated offline. The main focus while using the fixed routing algorithms

is on the wavelength assignment part. In fixed alternate routing approach, there is an ordered list of

fixed routes to each destination node in addition to the fixed path. Alternate paths are utilized in the

case that the previous fixed paths are not available. Common shortest path algorithms like Dijkstras

algorithm can be used to calculate these fixed paths. In adaptive routing algorithms, each path is

calculated online and based on the current network situation.

There are also different works investigating wavelength assignment subproblems. Like routing

approaches, these algorithms are divided into static and dynamic categories. Static wavelength as-

signment problems are formulated as graph-coloring problem [Li and Simha, 2000, Kuri et al., 2003,

Noronha and Ribeiro, 2006c] or bin packing problem [Skorin-Kapov, 2007]. In graph-coloring

problem, nodes of a graph should be colored in such a way that no two adjacent nodes have the

same color. The objective is to minimize the number of required colors. This number is called

chromatic number of the graph. This problem is NP-complete [Pardalos et al., 1998]. Bin packing

is also a classical combinatorial optimization problem in which n items with different sizes should

be placed in minimum number of bins with the same capacity. This problem has also been shown

to be NP-hard [Simchi-Levi, 1994]. First Fit (FF), Best Fit (BF), Best Fit Decreasing (BFD) and

First Fit Decreasing (FFD) algorithms are proposed approaches based on bin packing problem for

wavelength assignment problem [Pardalos et al., 1998]. The FF algorithm puts each item in the first

bin with enough capacity. The BF algorithm packs each item into the bin with minimum capacity

left for other items [Hsu et al., 2014]. Unlike FF and BF, the BFD and FFD algorithms are offline
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algorithms. In these algorithms, due to full information about items, they are sorted nonincreasingly

and the FF and BF algorithms are performed [Pardalos et al., 1998]. In order to apply FF, BF, FFD

or BFD, lightpath requests represent items and duplicates of a graph represent bins such that each

copy corresponds to one of the wavelengths [Hsu et al., 2014].

Krishnaswamy and Sivarajan [2001b] formulated the problem as an integer linear program

(ILP). They solved the ILP for toy size networks and developed an algorithm to obtain a solution

for large size problems by solving the LP relaxation of the ILP formulation. Bandyopadhyay et al.

[2016] proposed six heuristics for static RWA problems and showed that these heuristics outperform

the existing ones in terms of network resource conservation.

RWA Literature Review: Exact Algorithms

Among the papers that explored exact solutions, we find three classes of ILP formulations for

RWA problem:

• Link-based: it is determined whether the traffic between a certain node pair is served by a link

� and a wavelength λ. In other words, the goal is to assign available links and wavelengths

to the node pairs. In these formulations, routing is explicitly done. Wavelength continuity is

guaranteed by adding appropriate constraints.

• Path-based: for each demand, a pre-defined set of all paths or a subset of them is calculated

and some of them are used as serving paths, along with assigning wavelengths to them. Path-

based formulations do not need the wavelength continuity constraints.

• Configuration-based: for a given wavelength, all the paths are considered, then routing is

done implicitly by choosing non-overlapping paths. For every wavelength, at most one con-

figuration is chosen. This ensures the wavelength continuity.

Comparison of link and path based formulations can be found in [Jaumard et al., 2007, 2009]

with the objective of maximizing the grade of service. The authors showed that very often, but not

always, the linear programming (LP) bound is equal to the ILP value, with however an LP solution

that is usually with fractional values. Nevertheless, it means that the LP value can be an excellent
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lower bound for the min-RWA (upper bound for the max-RWA) problem. Another comment was

that, in the optimal solution, most of the chosen paths are shortest paths. These observations were

made while experimenting with small/medium size instances. But as it is shown in Chapter 5, these

results are challenged as we move to large size instances. It is therefore required to enhance the

solution methods that rely on those observations.

The largest instances that have been solved exactly so far for mesh networks are the EON net-

work (20 nodes, and 39 optical links) with 24 wavelengths, the Brazil network (27 nodes and 70

optical links) with 14 wavelengths, both for the GoS maximization [Jaumard et al., 2007]. In terms

of heuristics, large instances have been solved by Martins et al. [2012]: 26 realistic instances with up

to either 90 nodes or 175 links, where the quality of the solution is assessed by comparing with lower

bounds obtained using the formulations in Jaumard et al. [2007, 2009]. Other large instances have

been solved with different heuristics or meta-heuristics in [Noronha and Ribeiro, 2006a, Kogantia

and Sidhu, 2014, Noronha and Ribeiro, 2006b], or with ILP models using a limited pre-computed

set of paths and a rounding off technique to derive integer solutions, e.g., Banerjee and Mukherjee

[1996].

Several surveys have been written on the RWA problem, where the reader can find a compre-

hensive survey of the various mathematical models that have been investigated, see, e.g., [Jaumard

et al., 2007] for symmetrical traffic and [Jaumard et al., 2006a] for asymmetrical traffic. Other

recent surveys can be found in [Miliotis et al., 2003] and [Zang et al., 2000].

There are several papers specifically using column generation technique to solve RWA prob-

lems. Here, we will have a review on some of these papers separately.

Column Generation in RWA

Lee et al. [2000] considered RWA in ring networks without wavelength conversion in order to

minimize the number of wavelengths. After solving the LP relaxation of the problem by using the

column generation technique, they apply branch-and-price to obtain the optimal solution. Lee et al.

[2002] proposed an algorithm based on column generation that is a unified approach to routing and

wavelength assignment. They implemented the algorithm on 3 networks with 18 nodes and 39 links

as the largest one. Several column generation formulations for RWA problem have been reviewed in
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Jaumard et al. [2009]. Vignac et al. [2009] proposed a two stage hierarchical optimization algorithm

in which grooming and routing problems are solved by column generation and then wavelength

assignment is performed. The objective is to minimize the number of optical hops. Colombo

and Trubian [2014] used column generation to solve a multicast RWA. They proposed two exact

algorithms and one tabu search heuristic to address the pricing problem. They solved 900 instances

with number of nodes in {20, 40, 60, 80, 100} and considering at most 5 wavelengths. Experimental

results show that in most cases the solutions obtained from the LP relaxation are integral. Duhamel

et al. [2016] proposed two heuristics based on column generation technique in order to maximize

the number of connections with continuity constraints.

It should be mentioned that, employing column generation in solving RWA problems was initi-

ated by Lee et al. [2000], then became practical in Jaumard et al. [2009]. In Lee et al. [2000], the

decomposition was done with a non-scalable pricing problem, i.e., an independent set problem for

the pricing where each node of the associated graph is a potential path. This results in an exponential

number of variables, which leads to a non-practical pricing problem unable to generate/guarantee an

optimal or ε-optimal solution. Jaumard et al. [2009] made the column generation approach practical

by providing a link formulation for the pricing problem. Still, this solution method needs very long

CPU times and is unable to solve very large size instances.

Column Generation Modeling vs. Various ILP Formulations

In Jaumard et al. [2007], a theoretical and experimental study is proposed for comparing the

different LP bounds provided by the various existing ILP RWA models: all LP bounds are shown to

be exact. Moreover, a comparison of the models is made with respect to their numbers of variables

and constraints: it clearly shows that the CG model is the most economical one. We provide a

synthesis of all the results discussed in Jaumard et al. [2007, 2006a, 2009] in Table 2.1 and include

the CG ILP model for the max-RWA problem (described in Section 3.2.2), see Appendix A for the

other ILP models.
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ILP # variables # constraintsmodels

Link formulations, results adapted from Table 1
in Jaumard et al. [2007] using the formulations in Appendix A

RWA k
Link formulation #1: request indexed

W |K|(1 + |L|) (n+ 2 + |L|)W |K|+ |L|W + |K|
RWA s

Link formulation #2: source indexed
nW |L| n(n− 1)(W + 2) + |L|W

RWA sd
Link formulation #3: node pair indexed

n(n− 1)W |L| n(n− 1)(n− 2)W + 2n(n− 1) +W |L|
Path formulations

zPATH W |P| W |L|+ |SD|
Configuration (CG) formulations (see Sections 3.2.2 and 3.3 for the details)

CG ILP(�)

Master Problem
2|SD|+ 1 2|SD|+ 1

Pricing Problem (Link Formulation)
|L| |SD| |L|+ 2|SD|+ (n− 2)|SD|

Pricing Problem (Path Formulation with
One Shortest Path per Node Pair)

|SD| |L|+ |SD|
n,L,W,SD : see Section 3.1 for their definition
P = set of all possible paths in the optical network
K = set of individual requests
(�) with a column generation implementation in which we keep only the basis

variables, see, e.g., Chvatal [1983]

Table 2.1: Comparison of the number of variables and constraints in the ILP RWA models

Incremental Dynamic RWA Problem

In dynamic WDM networks, connection arrivals and departures are stochastic in nature and con-

nection provisioning is accomplished via online (or dynamic) RWA algorithms. Hence, it is likely

that after some time, some of the already provisioned connections may become sub-optimal with

respect to the current network provisioning. To enhance the grade of service, it may be desirable to

seek a new RWA solution for all (or a subset) of the active connections. Migrating traffic from their

previously optimized provisioning to a new one is referred to as traffic migration or traffic defrag-

mentation. Other terms that are used in the literature are re-routing or lightpath re-arrangement:

they refer to the action of altering the physical path and/or wavelength of an established connection.

Two types of dynamic RWA problems should be distinguished:

• Short-term dynamic or daily RWA problem, in which add/drops in connections represent the

variations of traffic during a day or a week (e.g., the difference between the traffic load during

the weekdays and weekends).

• Evolutionary dynamic RWA problem, following the rapid growth of the traffic, in which
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incoming requests are much more significant than outgoing ones. This can be captured by

incremental dynamic RWA problem that is only concerned with incoming requests.

While studying the dynamic traffic, our focus will be on incremental dynamic RWA problem. It

should be mentioned that, the provided solution process can be adapted to daily RWA problem rather

easily, but it is not done in this thesis. Therefore, we will look at lightpath re-arrangement when a

new batch of connection requests comes, and minimize the number of lightpath re-arrangement so

as to keep the network in a state that corresponds to the maximization of the grade of service. In

other words, each new connection request or batch of connections is handled simultaneously with

lightpath re-arrangement in order to maximize the GoS.

While reviewing the previous work, we will limit ourselves to the studies with no wavelength

conversion. As stated before, wavelength conversion is not of great help for maximizing the GoS.

Indeed, authors looking at exact methods usually conclude that wavelength conversion does not

help, while authors considering heuristics have an opposite conclusion. Many studies have been

conducted on re-routing or lightpath re-arrangement, all of them with heuristics. The early ones

were limited to rings or torus (see, e.g., [Saengudomlert et al., 2006]). Other studies look at general

mesh networks (see, e.g., [Lee and Li, 1996, Datta et al., 2003]) with many of them made before

2000, with the consideration of shortest paths only, and sometimes with a unique arbitrarily chosen

shortest path for a given node pair, while, as is observed in Chapter 5, several shortest paths do

exist in most networks, and even more second shortest paths that are only one hop longer than

the shortest paths. More recently, some authors looked at the cases with scheduling [Koubaa and

Gagnaire, 2010, Zhang et al., 2010], impairment [Amdouni et al., 2012] or grooming [Yao and

Ramamurthy, 2008] considerations.

2.3 Routing and Spectrum Assignment Problem

According to Kaminow et al. [2013], today in a common 100 Gb/s fixed channel grid, wave-

lengths (channels) are spaced at 50 GHz, as is recommended by ITU [2012]. This scheme is unlikely

to accommodate bit-rates beyond 100 Gb/s [Gerstel et al., 2012]. However, Figure 2.8 shows that,

based on the historical trends, soon there will be requirements for channels with higher capacities,
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beyond 400 Gb/s and 1 Tb/s [Kaminow et al., 2013]. The historical data in Figure 2.8, reveals that

up to 100 Gb/s, the channel capacity has always been larger than the Ethernet port speed (the input),

as it should be, since the transportation capacity has to be larger than or equal to the the amount of

submitted data packets. But the trend suggests that Ethernet port speed might exceed the channel

capacity after 100 Gb/s point. Note that, the single carrier bit-rate can be increased to up to 200

Gb/s using a higher order modulation, but the applicable transmission distance becomes very short

[López and Velasco, 2016].

Figure 2.8: Channel capacity vs. Ethernet port speed [Kaminow et al., 2013]

In order to face the steady growth of the optical networks, network operators are now moving to

flexible or elastic optical networking. In such networks, the optical spectrum is used more efficiently

by allowing finer grid spacing, resulting in sub-streams, called slots. There is still some debates on

the partitioning of the spectrum, with 6.25 GHz and 12.5 GHz being the main candidates of width

slots, though 6.25 is not yet operational today [López and Velasco, 2016]. ITU [2012] recommends a

frequency slot with 6.25 GHz nominal central frequency and 12.5 GHz width. Figure 2.9 illustrates

the efficiency of a flexible grid over a fixed one. In a fixed grid, the entire channel capacity is spent

on a single bit-rate demand. The smaller the bit-rate demand (e.g. 10 Gb/s) the more inefficient

is the spectrum usage. In addition, requests are granted using adjacent slots, and the end of the

granted slots is marked by a guard band. This mechanism allows for serving high bit-rate requests

as big as 400Gb/s and 1Tb/s. Interested reader may refer to the surveys by [Talebi et al., 2014] and
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[Sócrates-Dantas et al., 2014] for further discussion.

Figure 2.9: Fix and flexible frequency grids

With elastic optical networks, the challenge is optimizing the spectrum usage through the so-

called routing and spectrum assignment (RSA) problem. It is a much more difficult problem than

the classical routing and wavelength assignment problem. Although we will provide practical algo-

rithms for solving realistic data instances in current wavelength-routed optical networks in Chapter

3, network utilization efficiency is limited due to their rigid nature. There are two main issues with

the current WDM networks:

(1) One limitation is related to the worst case design in current wavelength-routed optical net-

works. In these networks, all data streams with the same rates occupy the same spectral width

regardless of the path’s distance. This fact will result in large transport margins at receiving

end for most of the optical paths which are less than the longest path [Jinno et al., 2010].

(2) The other limitation, apart from the worst case design, comes from mismatch of granulari-

ties between the client layer and the physical wavelength layer. Network operators are very

much concerned by the efficient utilization of the already deployed network capacity. Current

wavelength-routed optical path networks require the full allocation of wavelength capacity to

lightpaths between node pairs even when the traffic is not sufficient to fill the entire capacity

of wavelength. It leads to inefficient capacity utilization, an issue expected to become even
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more significant with the deployment of higher capacity WDM networks, and driven by the

imminent optical capacity crunch [Chen et al., 2014].

Distance-adaptive resource allocation algorithms are the solutions to the first issue and Orthog-

onal Frequency Division Multiplexing (OFDM), also referred to as spectrum-sliced elastic optical

path network or SLICE is the solution known to address the second issue. OFDM modulation

technique allows the allocation of the bandwidth resources with granularity finer than a wavelength

[Gerstel et al., 2012, Chen et al., 2014]. In other words, it can generate a large number of sub-

streams (slots) by splitting a data stream and adaptively assign them to the end-to-end optical path

based on the client data rate and the available spectral resources [Shieh, 2011, Jinno et al., 2009,

Kozicki et al., 2009, Sone et al., 2009]. Note that, because of using the OFDM mechanism, there is

no need for inter-carrier guard bands.

We consider the provisioning problem of an OFDM optical network, where connections are

provisioned for their requested rate by elastically allocating spectrum using a variable number of

OFDM subcarriers and choosing an appropriate modulation level taking into account the transmis-

sion distance. This corresponds to the so-called static RSA problem. Static (or offline) RSA arises

when a set of traffic demands is known in advance, while in dynamic (or online) problems, optical

paths are set up as needed [Talebi et al., 2014]. In RSA problem, the requested traffic is served using

a number of slots that need to be contiguous. This requirement, referred to as contiguity constraint,

separates the RSA problem from RWA problem, making it much more complex. Static RSA has

been proved to be NP-hard in different studies [Shirazipourazad et al., 2013, Wang et al., 2011b].

It should be mentioned that, the common objective function for RSA problems is maximizing the

throughput, unlike RWA that maximizes the GoS (see Section 4.2). Throughput is defined as the

amount of bandwidth requests successfully transmitted over the network and is often measured in

bits per second (b/s).

RSA has been investigated under different circumstances, hence several modeling and solution

approaches have been proposed to tackle this problem. Wang et al. [2011b] formulated the RSA

problem using an integer linear programming framework to solve small size instances and proposed

two heuristic algorithms to obtain practical solutions. The objective function is to minimize the
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maximum number of subcarriers required on any fiber of an OFDM-based spectrum-sliced elas-

tic optical path network. Klinkowski and Walkowiak [2011] also formulated the RSA problem as

an ILP using path-link approach [Pióro and Medhi, 2004]. Since the solution is not attainable for

large size instances, they proposed a heuristic for these cases. Christodoulopoulos et al. [2010] pre-

sented a heuristic that served the connection requests one by one and studied the problem under two

different ordering policies, along with a simulated annealing metaheuristic to improve the ordering.

Takagi et al. [2011] proposed a dynamic routing and frequency slot assignment algorithm for SLICE

networks that employ distance adaptive modulation.

Several attempts has been made in the literature to solve the problem exactly. Christodoulopou-

los et al. [2010] presented an optimal ILP-RSA algorithm and a decomposition method in which

RSA is broken into two subsequent subproblems, namely, Routing and Spectrum Allocation (R+SA).

Other attempts at deigning an exact algorithm for RSA problem, mostly focus on the techniques

based on column generation method. These will be investigated further in the next subsection.

Other works in the context of RSA are as follows. Patel et al. [2012] addressed the routing,

wavelength assignment, and spectrum allocation problem (RWSA) with the objective of maximizing

spectral efficiency. They formulated the RWSA problem using an integer linear program. After

proving the NP-completeness of the RWSA problem, three efficient algorithms have been proposed.

Walkowiak et al. [2014] addressed an offline problem of RSA with dedicated path protection. They

applied a meta-heuristic approach and developed a Tabu Search-based algorithm (TS), and a hybrid

Adaptive Frequency Assignment-TS (AFA/TS) algorithm to minimize the width of the spectrum

resources.

Column Generation in RSA: Different Possible Configuration Definitions

Several authors investigated ILP formulations with and without explicit modulation concerns,

however early proposed formulations are not scalable and work only on toy examples with a very

limited number of slots. There are some more recent studies considering some column generation

models with different decomposition schemes. Ruiz et al. [2013] used column generation tech-

nique to solve RSA, with the minimization of the number of denied demands and the amount of
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unserved bit-rate. They are able to solve data instances with up to 96 slots, and an overall de-

mand distributed over a set of 180/210 node pairs in the Spain network (21 nodes, 37 links, see

Section 5.2.1). Klinkowski et al. [2014] focused on presenting a stronger formulation with valid

inequalities (cuts). They developed and combined a clique cut generation procedure with a column

generation technique. They evaluated the performance of the algorithm on a network with 21 nodes

and 35 links and compared the results with a basic column generation algorithm. Klinkowski and

Walkowiak [2015] formulated the RSA problem as a mixed-integer program and solved it using a

branch-and-price algorithm. In order to enhance the performance of their algorithm, a simulated

annealing-based heuristic was employed in the search for upper bound solutions. Moataz [2015]

investigated a decomposition based on slot configurations, which gathers all the slot-paths using a

given slot (with a slot-path being a path together with a slot), in an attempt to generalize the wave-

length configurations used in the context of the RWA problem [Jaumard et al., 2009], with one slot

acting as one wavelength in the formulation. However, results were quite disappointing, and the

resulting algorithm was not scalable due to a very slow convergence of the column generation for

solving the LP relaxation.

In the column generation framework of Ruiz et al. [2013], a pricing problem corresponds to a

multiple slot-path. A multiple slot-path, is a path, together with a set of consecutive slots (in Ruiz

et al. [2013] it is referred to as “lightpath” but we change the term to avoid confusion with the

concept of lightpath in the context of RWA problem). The advantage of such formulation is that

it is easy to take care of contiguity constraints, however it is applicable to one demand at a time.

The main drawback is that too many columns are generated, at least O(n2), where n is the number

of the nodes. Furthermore, for a given node pair, there are as many slot-paths as the number of

potential paths and the possible positions in the slot grid. The strength of the algorithm by Moataz

[2015], is its ability to handle more than one demand at a time, which potentially leads to less calls

to the pricing problem. The major drawback is the presence of the contiguity constraints in the

master problem, that are very expensive in terms of their number. As a result, the algorithm was not

scalable, and had a very slow convergence of the column generation for solving the LP relaxation.

We will present a more balanced decomposition that addresses the drawbacks of the two previously

proposed decomposition schemes and outperforms their algorithms.
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Directed vs. Undirected

As mentioned before, traffic today is considered to be asymmetric. However, the state of the art

algorithms for RSA problems only have been able to tackle the instances with undirected links, and

even for this type, only small size instances have been solved. In this thesis, while studying RSA

problem, we will focus on undirected networks and design a solution algorithm to solve realistic

instances that their size matches up to today optical networks.

Guard Band

One assumptions that has been considered widely in the studies is related to the guard band

requirements. The guard bands are used in order to facilitate the signal filtering. Any two adjacent

wavelength are separated by guard band frequencies [Ramaswami et al., 2009]. Chen et al. [2013]

proposed a multipath RSA and showed the effect of guard band size. The results showed that

multipath routing is beneficial for elastic optical networks with small guard bands. Wang et al.

[2011a] showed that considering fixed size guard bands may lead to underutilization of spectrum

resources. Most of the mathematical models have been formulated without guard band requirements

except few studies e.g., Jaumard and Daryalal [2016], Velasco et al. [2012].

Conclusions of the Chapter

Existing exact solutions for RWA problem, in both static and dynamic cases, are not scalable

for real instances in today optical networks. The gap between the size of the problems that these

algorithms are able to solve and the instances required by the industry, will only grow considering

the expansion in traffic requests. We will address this issue by improving the existing exact solution

approaches, leading to design of highly efficient algorithms, both exact and heuristic, that are able

to solve realistic size instances.

To further increase the efficiency of spectrum usage, elastic optical networks are emerging.

There are three major drawbacks in the current literature works for RSA problem:

(1) Many of the proposed algorithms are heuristic. While heuristics allow faster solution of

difficult combinatorial problems, they provide solutions with no estimation of their quality,
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i.e., how far they are from an optimal solution.

(2) The proposed exact formulations are not scalable.

(3) Few of the studies consider the guard band requirement in their mathematical models.

In this study we will improve the scalability of exact solutions for RSA problem, alongside with

considering the guard band in our formulations.

32



Chapter 3

Routing and Wavelength Assignment

Problem

This chapter considers the routing and wavelength assignment problem. The original contribu-

tion of this chapter lies in the enhancement of the previously proposed column generation models.

This includes a new solution scheme, that make use of three different ILP models at different stages

of the solution process. In addition, new heuristics are proposed for (i) generating quickly promis-

ing wavelength configurations, (ii) generating sets of potential paths adapted to the length of the

shortest paths and overall demand of each bandwidth request.

The plan of this chapter is as follows. Section 3.1 states the RWA problem, introducing the

concepts and notations used both in static and dynamic case. Section 3.2 provides decomposition

formulations for RWA problem considering both static and dynamic traffic. Sections 3.3 and 3.4

propose solution algorithms for the mathematical formulations obtained in Section 3.2, for static

and dynamic RWA problems, respectively.

3.1 Problem Statement

Consider a WDM optical network represented by a multigraph G = (V, L) with node set V

indexed by v, where each node is associated with a node of the physical network, and with link set

L indexed by � where each link is associated with a fiber link of the physical network: the number
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of links from v to v′ is equal to the number of fibers supporting traffic from v to v′. Connections

and fiber links are assumed to be directional, and the traffic to be asymmetrical. The set of avail-

able wavelengths is denoted by Λ, and is indexed by λ with W = |Λ|. The traffic is defined by

a n × n matrix D where Dsd defines the number of requested bandwidth units (i.e., number of

wavelengths) from vs to vd. All wavelengths are assumed to have the same transport capacity. Let

SD = {(vs, vd) ∈ V × V : Dsd > 0} be the set of node pairs with traffic. The set of outgoing

(resp. incoming) fiber links at node v is indicated by ω+(v) (resp. ω−(v)). We assume that the

same wavelength is used from the source to the destination for all connection requests. Note that it

has been shown (see Jaumard et al. [2005, 2006b]) that wavelength conversion (i.e., multiple-hop

connections) does not help very much in order to reduce the blocking rate (max-RWA problem, see

page 18).

The RWA problem is considered under two different traffic assumptions: static and dynamic,

described in the next two subsections.

3.1.1 RWA Problem with Static Traffic

The static RWA problem applies to the case in which the set of connections is known in advance.

This problem can be formally stated as follows: given a multigraph G corresponding to a WDM

optical network, and a set of requested connections, find a suitable lightpath (p, λ) for each granted

connection, where a lightpath is defined by the combination of a routing path p and a wavelength

λ, so that no two paths sharing a fiber link of G are assigned the same wavelength. We study the

objective of maximizing the number of granted connections, leading to the max-RWA problem.

3.1.2 RWA Problem with Dynamic Traffic

The dynamic RWA problem deals with the problems in which connection requests arrive dy-

namically and remain for some amount of time before departing. Very often, optical connections

are leased for long periods of time (e.g., weeks or months), and thus new connection requests come

with significant lead time to set-up. In addition, they are often configured manually. In this study,

we limit ourselves to incremental traffic and will assume new connection requests come in batches.

In the context of incremental traffic, we look at the traffic increase over a set T of time periods.
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The dynamic RWA problem can be formally stated as follows: at time period t ∈ T , given G defined

earlier, a matrix Dt−1 containing the traffic requests at time period t− 1 (both granted and denied),

and a set of newly requested connections indicated by a matrix DNEW, assign available lightpaths to

the new incoming connection requests such that the wavelength continuity constraint is respected

over available wavelength resources. Note that the total amount of traffic request at time period

t is obtained by the summation on the granted and denied traffic at time period t − 1, and newly

received traffic at t. We consider the objective of maximizing the GoS, i.e., dynamic max-RWA

problem. Our objective is to investigate further the spectrum usage under different traffic increment

rate and lightpath re-arrangement assumptions.

At each time period t ∈ T , following parameters are at hand.

• Dt = (Dt
sd)(vs,vd)∈SDt , the overall set of traffic request at time t, where the requested traffic

from node vs to vd at time period t is defined by:

Dt
sd = Dt−1

sd + new granted requests during t+ new denied requests during t, (22)

and the set of node pairs with traffic is SDt = {(vs, vd) : Dt
sd > 0}, i.e., the set of node pairs

(vs, vd) for which there are some traffic requests from vs to vd at time t.

• The set of new requests that are described by an n × n matrix DNEW,t where DNEW,t
sd =

Dt
sd \GoSt−1

sd defines the number of newly requested connections from vs to vd at time t, and

GoSt−1
sd is the set of granted requests from vs to vd out of Dt−1. Consequently, SDNEW,t =

{(vs, vd) : DNEW,t
sd > 0}.

• The set of legacy requests which are already provisioned, and described by an n × n matrix

DLEG,t = (GoSt−1
sd )(vs,vd)∈SD(t−1) .

• ΛUSED
t−1 , the set of used wavelengths for provisioning the traffic up to time period t − 1, i.e.,

GoSt−1.

In order to alleviate the notation, and since we deal with a generic time period t, through the re-

mainder of the thesis the index t is dropped from DNEW,t, DLEG,t and SDNEW,t. Therefore, if there

is no possible confusion in time period, DNEW, DLEG and SDNEW are used. In the following, we will
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discuss two assumptions based on which two different formulations for the dynamic max-RWA will

be given.

Incremental Traffic without Lightpath Re-arrangement

Assume that no lightpath re-arrangement of an already provisioned request is allowed. As a

result, the provisioning of the new connection requests (DNEW) needs to be made using lightpaths

that do not conflict with those already used for the connection requests of DLEG. The new requests

can be provisioned either on the already used wavelengths (ΛUSED
t−1 ) if enough spare resources are

available, or on an additional wavelength as long as we do not exceed the number of available

wavelengths (W ).

Incremental Traffic with Lightpath Re-arrangement

Under the scenario that lightpath re-arrangement is allowed, the objective is to provision a new

batch of connection requests while allowing some minimum lightpath re-arrangement in order to

maximize the GoS. Again, the new lightpaths can be defined using either the wavelengths already

activated for the provisioning of DLEG, or wavelengths newly made available for the new traffic.

Lightpath re-arrangements consist in either modifying the wavelength of an existing lightpath, or

considering a new routing and wavelength.

3.2 Column Generation Formulation for RWA Problem

As mentioned before, several authors have already investigated modeling the RWA problem

with a decomposition model, within the framework of exact solution schemes, (see page 22). We

revisit those models here, with the goal of enhancing them in order to solve much larger RWA

instances. We first recall the decomposition optimization formulation, CG ILP model, based on

maximal independent set, as initially proposed by Lee et al. [2000] and improved by Jaumard et al.

[2009], and then discuss how to improve it further.
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3.2.1 Wavelength Configuration

Lee et al. [2000] introduced the concept of independent routing configurations. Each config-

uration is associated with a set of paths that are independent from each other, so that all of them

together can be used for satisfying a given fraction of the connections with the same wavelength.

Within a wavelength configuration, routes must be pairwise link disjoint. Jaumard et al. [2009] fur-

ther improved the concept by considering only maximal configurations. We call these configurations

wavelength configurations.

(a) Physical topology: each edge repre-

sents two directional fibers, one in each di-

rection

(b) Potential wavelength configuration #1:

it provides, e.g., 1 bandwidth unit from v1

and v3

(c) Potential wavelength configuration #2 (d) Potential wavelength configuration #3

Figure 3.1: Potential wavelength configurations

A wavelength configuration c can be formally represented by a non-negative vector ac such

that acsd = number of bandwidth units from vs to vd that are supported by configuration c. In an

static RWA problem, acsd ≤ Dsd for (vs, vd) ∈ SD. In the case of incremental traffic we have

acsd ≤ Dt
sd − GoSt−1

sd for (vs, vd) ∈ SDNEW if re-arrangement is not allowed, and acsd ≤ Dt
sd
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otherwise. See Figure 3.1 for an illustration of a wavelength configuration.

For static traffic, we denote by C the set of all possible wavelength configurations. In time period

t of dynamic RWA problem, traffic requests of Dt−1 are already provisioned with the wavelengths

of ΛUSED
t−1 . For λ ∈ ΛUSED

t−1 , we define a set of configurations Cλ such that each configuration c ∈ Cλ

contains the legacy lightpaths associated with Dt−1 in addition to some new lightpaths associated

with DNEW = Dt \ GoSt−1. As we might have additional available wavelengths, in the dynamic

case let C be the set of configurations associated with a generic wavelength λ ∈ Λ \ ΛUSED
t−1 .

Decision Variables

We use two sets of variables. The first set of variables, zc ∈ Z
+, enables the selection of the

best configurations and of their number of occurrences (i.e., to how many wavelengths they apply).

Note that, in dynamic case, zc associated with wavelength configurations for λ ∈ ΛUSED
t−1 is a binary

decision variable as each set Cλ is associated with a specific wavelength.

The second set of variables, y, compute the GoS for each node pair, so that their sum provides

the overall GoS. In static max-RWA, ysd, determines the number of granted requests (vs, vd) ∈ SD.

With incremental traffic, we have 0 ≤ ysd ≤ Dt
sd−GoSt−1

sd for (vs, vd) ∈ SDNEW if re-arrangement

is not allowed, and GoSt−1
sd ≤ ysd ≤ Dt

sd for (vs, vd) ∈ SDt otherwise.

3.2.2 Formulation of RWA Problem with Static Traffic

The basic model of static max-RWA is written as follows. Assuming that the configurations are

at hand, the model selects the best wavelength configurations to maximize the grade of service, i.e.,

the number of granted connections.

max
∑

(vs,vd)∈SD
ysd (23)
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subject to:

∑
c∈C

zc ≤ W (24)

ysd ≤
∑
c∈C

acsdzc (vs, vd) ∈ SD (25)

ysd ≤ Dsd (vs, vd) ∈ SD (26)

zc ∈ Z
+ c ∈ C (27)

ysd ≥ 0 (vs, vd) ∈ SD. (28)

Observe that, since Dsd ∈ Z
+, we have ysd ∈ Z

+. However, we do not need to explicitly enforce

it.

Constraints (24) ensure that we do not select more wavelength configurations than the number of

available wavelengths. Constraints (25) compute the GoS for node pair (vs, vd): equality is enforced

with the combination of (23) and (25), and we do not explicitly enforce the equality constraints.

This is due to the fact that in practice, having an equality constraint is equivalent to two inequality

constraints in reverse direction. Thus, solving a problem that has equality constraints is often harder.

The bounds in Constraints (25) prevent the variables ysd to become more than the accumulative

number of granted requests over all the configurations, while the maximization objective forces

them to achieve the highest possible value. Hence, there is no need for the equality constraints

and we can ease the solution of the linear relaxation of (23) - (28) by avoiding them. Constraints

(26) prevent from granting more connections than requested. Constraints (27) and (28) define the

domains of the variables.

Note that Model (23) - (28) can be written with only one set of variables in a very compact

formulation, which is less self explanatory, as follows:

max
∑
c∈C

∑
(vs,vd)∈SD

acsdzc (29)
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subject to:

∑
c∈C

zc ≤ W (30)

∑
c∈C

acsdzc ≤ Dsd (vs, vd) ∈ SD (31)

zc ∈ Z
+ c ∈ C. (32)

However, we continue with Model (23) - (28), as the description of the objective function and

constraints are more clear.

3.2.3 Formulation of RWA Problem with Dynamic Traffic

In the following sections, we provide mathematical formulations for the dynamic RWA problem

considering two assumptions regarding the possibility of lightpath re-arrangements.

Dynamic RWA with No Lightpath Re-arrangement

For each wavelength, the model selects at-most 1 configuration with the objective of maximizing

the grade of service. The optimization model (Dt−1 → Dt) can be written as follows:

max
∑

(vs,vd)∈SDNEW

ysd (33)

subject to:

∑
c∈Cλ

zc ≤ 1 λ ∈ ΛUSED
t−1 (34)

∑
c∈C

zc ≤ W − |ΛUSED
t−1 | (35)

ysd ≤
∑

c∈C∪ ⋃

λ∈ΛUSED
t−1

Cλ

acsdzc (vs, vd) ∈ SDNEW (36)
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ysd ≤ Dt
sd − GoSt−1

sd (vs, vd) ∈ SDNEW (37)

zc ∈ {0, 1} c ∈ Cλ, λ ∈ ΛUSED
t−1 (38)

zc ∈ Z c ∈ C (39)

ysd ≥ 0 (vs, vd) ∈ SDNEW. (40)

For every wavelength λ ∈ ΛUSED
t−1 , constraints (34) restrict the number of chosen configurations to

be at most 1. Constraints (35) determine the number of new required wavelengths and make sure it

does not exceed the number of available ones. Constraints (36) determine the number of bandwidth

units. Constraints (37) prevent the number of bandwidth units from being more than requests. Last

three sets of constraints determine the domain of the variables.

Dynamic RWA with Lightpath Re-arrangement

In order to improve the grade of service in a dynamic RWA problem, one might allow some

lightpath re-arrangements taking into account that new connection requests come with enough lead

time to set-up. Note that, in an ideal situation, all the required resources (fibers carrying an specific

wavelengths) would be available at the time of lightpath re-arrangement. This is called a Make-

Before-Break (MBB) policy. But the actual situations might be far from ideal and establishing a

new lightpath be impossible without first disrupting an old lightpath. This leads to a Break-Before-

Make (BBM) policy. For example, in Figure 3.2, assume that a bandwidth request for node pair

(v5, v6) is received. In order to grant this bandwidth unit using the configuration in Figure 3.2(a) and

obtaining the configuration in Figure 3.2(b), we need to re-route the lightpaths for node pairs (v1, v5)

and (v1, v6). But it is not possible to establish the new lightpath from v1 to v5 without disrupting

the lightpath from v1 to v6, because it contains the needed fibers < v1, v4 > and < v4, v5 >. As

a result of a BBM policy, there will be some service disruptions in the network while re-arranging

the lightpaths. In such a case, the objective is to minimize the number of lightpath re-arrangements,

while achieving a grade of service as close as possible to the one of the static max-RWA problem.

Unlike the case, at a time period t, not only we provision new traffic requests, but we also allow

some lightath re-arrangements if it helps increasing the GoS. For wavelength λ ∈ ΛUSED
t−1 , denote by
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(a) Old Configuration (b) New Configuration

Figure 3.2: Potential wavelength reconfigurations

γc, total number of re-arranged lightpaths in configuration c ∈ Cλ. The penalty for every unit of

re-arrangement is indicated by PENAL. The resulting optimization model can be written as follows:

max
∑

(vs,vd)∈SDt

ysd − PENAL
∑

λ∈ΛUSED

∑
c∈Cλ

γczc (41)

subject to:

(34) − (36), (38) − (40) (42)

GoSt−1
sd ≤ ysd ≤ Dt

sd (vs, vd) ∈ SDt (43)

The second term of objective function (41) is the total cost of disrupting the lightpaths. Constraints

(43) bound the number of granted requests and ensure that all previously granted traffic requests are

still provisioned, subject to some possible lightpath re-arrangement.

3.3 Solution Process: Static Case

3.3.1 Implicit Enumeration of Wavelength Configurations

The model proposed in 3.2.2 has an exponential number of variables, and therefore is not scal-

able if solved using classical ILP tools. Indeed, we need to use column generation techniques in

order to manage a solution process that only requires an implicit enumeration of the wavelength con-

figurations (see Section 2.1.2). Column generation method allows the exact solution of the linear

relaxation of model (23) - (28), i.e., where constraints zc ∈ Z
+ are replaced by zc ≥ 0, for c ∈ C. It

consists in solving alternatively a restricted master problem (the model of 3.2.2 with a very limited
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number of columns/variables) and the pricing problem (generation of a new wavelength configu-

ration) until the optimality condition is satisfied (i.e., no wavelength configuration with a negative

reduced cost). In other words, when a new wavelength configuration is generated, it is added to the

current restricted master problem only if its addition implies an improvement of the optimal value of

the current restricted master problem. This condition, indeed an optimality condition, can be easily

checked with the sign of the reduced cost, denoted by COST, see Equation (44) for its expression of

variables zc.

Once the optimal solution of the LP relaxation (z�LP) has been reached, we solve exactly the

last restricted master problem, i.e., the restricted master problem (RMP) of the last iteration in the

column generation solution process. It allows the generation of an ILP solution from the pool of

generated columns in RMP, whose value is denoted by z̃ILP. Note that, such a value is usually not

an optimal one for the problem (23) - (28). Generation of an optimal one would require the use of a

branch-and-price algorithm as explained in Chapter 2 (see Section 2.1.3). However, we can assess

the accuracy (ε) of of an ε-optimal ILP solution z̃ILP as follows:

ε =
z�LP − z̃ILP

z�LP

.

As we will see in the numerical results (see Chapter 5), ε is usually fairly small in practice, and

the recourse to branch-and-price is not needed to reach satisfactory ε-optimal solutions. However,

branch-and-price methods can be used in order to find optimal solutions, if the accuracy (ε) is not

satisfactory, see, e.g., Barnhart et al. [1998], Jaumard et al. [2009].

3.3.2 ε-Optimal Algorithms: CG, CG+ and CG++

In the context of the present study, we investigated different algorithms, in which the differences

lie in the generation process of new augmenting configurations, i.e., of configurations that give rise

to an improvement of the value of the current restricted master problem, when solving its linear

relaxation.

The first CG-ILP algorithm, denoted by CG for short, relies on a mathematical model with a

link formulation, in order to generate new augmented wavelength configurations. In the context of
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column generation, the configuration generator corresponds to the so-called pricing problem. The

pricing problem with a link formulation will be called PPLINK (see Section 3.3.4 for its detailed

description), and corresponds to the algorithm used in Jaumard et al. [2009]. The flowchart of

algorithm CG is represented in Figure 3.3.

Figure 3.3: Generic flowchart for CG algorithm

Based on the observation made by several researchers, and investigated later in Chapter 5, that

a very high percentage of lightpaths are supported by shortest paths, or k-shortest paths with a

small k, we propose to investigate a path formulation, called PPPATH, for the pricing problem (see

Section 3.3.5 for its detailed description), with different strategies for selecting the paths. Since we

cannot consider all possible paths, otherwise the pricing problem would not be scalable, we need to

combine the use of PPPATH with PPLINK in order to get an ε-optimal algorithm. Indeed, when PPPATH

is no more able to output an augmenting wavelength configuration, we switch to PPLINK, and check

whether it is still possible to generate an augmented wavelength configuration using more diverse

paths than those considered in PPPATH. Flowchart of the corresponding algorithm is represented in

Figure 3.4.

We investigated two variants for PPPATH. In the first one, we consider only the shortest paths,

and in the second one, we consider the shortest paths, as well as a selection of k-shortest paths (see

Section 3.3.6 for how we made the selection). The resulting ε-optimal algorithms are called CG+

and CG++, respectively.
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Figure 3.4: Generic flowchart for CG+ and CG++ algorithms

3.3.3 Heuristic Algorithms: CGH+ and CGH++

We derive two heuristic algorithms from the CG+ and CG++ algorithms, with the elimination of

the recourse to PPLINK in order to limit the computational times. The resulting heuristic algorithms

are called CGH+ and CGH++ and are summarized in the flowchart represented in Figure 3.5. Both

CGH+ and CGH++ are associated with different path selections.

Figure 3.5: Generic flowchart for CGH+ and CGH++ algorithms

In the next two sections, we provide the detailed mathematical formulations of PPLINK and

PPPATH.
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3.3.4 Pricing Problem - Link Formulation

As always with the column generation method, the objective of the pricing problem (i.e., gen-

erator of new wavelength configurations) is the reduced cost (COSTLINK
c ) of variable zc. In order to

alleviate the notations, index c will be omitted in the remainder of this section.

Let u(24) ≥ 0 and u(25)
sd ≥ 0 be the values of the dual variables associated with constraints (24)

and (25) in the optimal solution of the linear relaxation of the current restricted master problem (see

the flowchart in Figure 3.4). Consider the following set of variables:

αsd
� = 1 if link � is used in a route from vs to vd, 0 otherwise.

The link formulation of the pricing problem can be written as follows:

Wavelength Configuration Generator - Link Model PPLINK

max COSTLINK = −u(24) +
∑

(vs,vd)∈SD

∑
�∈ω+(vs)

αsd
� u(25)

sd (44)

subject to:

∑
(vs,vd)∈SD

αsd
� ≤ 1 � ∈ L (45)

∑
�∈ω+(v)

αsd
� =

∑
�∈ω−(v)

αsd
� (vs, vd) ∈ SD,

v ∈ V \ {vs, vd} (46)∑
�∈ω+(vs)

αsd
� ≤ Dsd (vs, vd) ∈ SD (47)

∑
�∈ω−(vs)

αsd
� =

∑
�∈ω+(vd)

αsd
� = 0 (vs, vd) ∈ SD (48)

αsd
� ∈ {0, 1} � ∈ L, (vs, vd) ∈ SD. (49)

Constraints (45) ensure wavelength continuity, i.e., that a link cannot be traversed by more than

one route in any given wavelength configuration. Routes are established with the help of the flow

conservation constraints (46): if no route is selected for node pair (vs, vd), then αsd
� = 0 for all
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links � ∈ L, otherwise, the sum of the outgoing flow values at the source node (
∑

�∈ω+(vs)

αsd
� ) gives

the number of link-disjoint routes from vs to vd in the wavelength configuration under construction.

Constraints (47) avoid exceeding the demand in terms of the number of lightpaths. Constraints (48)

prevent loops around the source or the destination nodes from arising. Constraints (49) define the

domain of variables αsd
� .

Correspondence between variables of the pricing problem and coefficients of the master prob-

lem:

asd =
∑

�∈ω+(vs)

αsd
� . (50)

Observe that it is not forbidden to select several pairwise link-disjoint paths for a given pair

(vs, vd) of source and destination nodes. Indeed, asd is equal to the number of link-disjoint paths

from vs to vd in the configuration under construction.

3.3.5 Pricing Problem - Path Formulation

In the path formulation, we provide a set Psd of paths for each source and destination pair of

nodes, see Section 3.3.6 for the definition of Psd.

The path formulation for the wavelength configuration generator is denoted by PPPATH. It uses

the set of decision variables:

βsd
p = 1 if path p is used in the wavelength configuration under construction, 0 otherwise.

PPPATH is written as follows:

Wavelength Configuration Generator - Path Model PPPATH

max COSTPATH = −u(24) +
∑

(vs,vd)∈SD

∑
p∈Psd

βsd
p u(25)

sd (51)
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subject to:

∑
(vs,vd)∈SD

∑
p∈Psd

δp�β
sd
p ≤ 1 � ∈ L (52)

∑
p∈Psd

βsd
p ≤ Dsd (vs, vd) ∈ SD (53)

βsd
p ∈ {0, 1} � ∈ L, (vs, vd) ∈ SD. (54)

Pairwise link disjointness for paths is guaranteed thanks to constraints (52), in which δp� is a binary

value representing the presence of link � in path p. Constraints (53) enforce not to exceed the

lightpath demand. Constraints (54) define the domain of variables βsd
� .

Correspondence between variables of the pricing problem and coefficients of the master problem

is established using:

asd =
∑
p∈Psd

βsd
p .

As with the link formulation, it is possible to select several pairwise link disjoint paths for a node

pair (vs, vd).

3.3.6 Computation and Selection of k-Shortest Paths

As explained in Section 3.3.2, the difference between CG+ and CG++ (as well as CGH+ and

CGH++) is that in the former, the pool of paths P =
⋃

(vs,vd)∈SD Psd contains only the shortest

paths, while in the latter some k-shortest paths are also considered. In order that the proposed

CG++ and CGH++ solution algorithms be effective, we must carefully choose the paths to consider:

a sufficiently large number so that we can maximize the GoS, but not too many in order not to

increase too much the size of the constraint matrix in PPPATH. In addition, considering paths that are

much longer than the shortest paths may lead to an inefficient use of the spectrum.

We explore several strategies in which paths are first selected in the set of shortest paths, and

next in the set of k-shortest paths. Very efficient algorithms already exists for enumerating such

paths, see Yen [1971], Epstein [1998], and we use the open library Pavon-Marino and Izquierdo-

Zaragoza [2015] that provides an implementation of Yen’s algorithm Yen [1971]. We denote by
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P1
sd the set of all shortest paths from vs to vd, and then by Pk

sd the set of paths that their length is

equal to the k shortest distinct value of length. For instance, if the ordered list according to the

length of paths is: p1, p2, . . . , p9 of length 1, 1, 2, 2, 2, 4, 4, 4, 4 respectively, then P1 = {p1, p2},

P2 = {p3, p4, p5} and P3 = {p6, p7, p8, p9}.

Strategy 1

We consider the same number of k-shortest paths, in addition to the shortest paths, for each node

pair, say kSP. After extensive numerical experiments on different data sets with various network

topologies, the acceptable compromise we found between computing times and GoS was kSP = 15.

The drawbacks of Strategy 1 is:

• Choosing at random the paths in the last Pi set that is considered for reaching the number

of selected paths, results in not considering other paths in the same set that can be more

desirable.

• Selecting a number of paths that is independent of the traffic demand, leads to potentially

having too few or too much potential paths for some requests.

Strategy 2

We modify the criterion for selecting the best paths in the last considered Pi as follows: Firstly,

taking into account the traffic demand, we select the number of paths with the following fairness

criterion:
Dsd

number of candidate paths from vs to vd
= ρ,

where our experiments showed that an acceptable compromise between the computing times and

the GoS led to a ρ constant value equal to 0.5. Secondly, we enumerate all the paths p of Pi and

order them in the increasing order of ∑
�∈p

LOAD�,

where LOAD� is an estimate on the number of lightpaths going through � when maximizing the

GoS using the following routing formulation that ignores the wavelength continuity constraints and
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omits integrality requirements for the ϕsd
� variables:

max
∑

(vs,vd)∈SD
dsd (55)

subject to

∑
�∈ω+(vs)

ϕsd
� =

∑
�∈ω−(vd)

ϕsd
� = 0 (vs, vd) ∈ SD (56)

∑
�∈ω+(vs)

ϕsd
� =

∑
�∈ω+(vd)

ϕsd
� = dsd (vs, vd) ∈ SD (57)

∑
�∈ω+(v)

ϕsd
� =

∑
�∈ω−(v)

ϕsd
� v ∈ V \ {vs, vd},

(vs, vd) ∈ SD (58)∑
(vs,vd)∈SD

ϕsd
� ≤ W � ∈ L (59)

0 ≤ ϕsd
� � ∈ L, (vs, vd) ∈ SD (60)

0 ≤ dsd ≤ Dsd (vs, vd) ∈ SD. (61)

Each variable dsd represents the fraction of the demand that is granted for node pair (vs, vd), and

each variable ϕsd
� defines the amount of traffic going through � with respect to the demand of node

pair (vs, vd). Note that Constraints (56) - (58) are multi-commodity flow constraints. Constraints

(59) define the capacity of the links. As the result of the above model, the estimated load of each

link is LOAD� =
∑

sd∈SD
ϕsd
� .

Strategy 3

Network topologies are usually mesh topologies, and consequently, the lengths of the shortest

paths vary from one node pair to the next. In addition, the traffic is not uniform. So, in this third

strategy, we consider a number of paths that is larger if the traffic demand is larger, and larger as

the length of the shortest path is longer: we generate the first (Dsd / length of shortest paths) =

(Dsd/�
SHORT
sd ) paths, where �SHORT

sd is the length of the shortest path from vs to vd. When �SHORT
sd = 1,
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we only select the one-hop paths made of �sd, the link from vs to vd (note that there might be more

than one if there are more than one fiber link). Again, we choose the paths of the last considered Pi

set according to the same criterion as in Strategy 2.

Observe that we can force the lightpath of one-hop requests to be routed on a one-hop route

without loss of generality, thanks to the following result.

Theorem 1. Consider the max-RWA problem. There is at least one optimal solution in which

one hop requests are provisioned (lightpaths) on one hop path(s) if they can be granted, i.e., if

Dsd ≤ Wrsd, where rsd is the number of links from vs to vd.

Proof. Consider a pair (vs, vd) ∈ SD with 0 < Dsd ≤ rsdW such that vs and vd are connected in

G by at least one link. Denote it by �sd one of the links connecting vs to vd.

Assume that there is an optimal RWA solution such that Dsd is not routed completely on links

from P1
sd, i.e., on one-hop lightpaths. We next show that such an optimal solution can be modified

in order that it satisfies the property stated in the theorem.

Four cases need to be distinguished, and the transformation described for each of them can be

repeated on each link from vs to vd possibly several times, until the optimal solution satisfies the

stated property. Indeed, each transformation reduces the number of demands that do not satisfy the

property by one unit at a time.

• There is at least one Dsd demand that is routed on a path with at least two hops and �sd has

at least one available wavelength: Rerouting that latter demand on �sd does not change the

GoS and reduces by one unit the demand that does not satisfy the stated property.

• There is at least one Dsd demand, say k, that is routed on a path with at least two hops and all

wavelengths of �sd (as well as on all links from vs to vd) are used in a lightpath. Assume that

k is provisioned with lightpath (p, λ). Observe that �sd /∈ p as otherwise p is not a simple path

(i.e., without loop). Since all wavelengths of �sd are used, there exists a multi-hop lightpath

(p′, λ), with �sd ∈ p′, which is used to provision a request, say k′. For example, in the left

network of Figure 3.6, k = (v1, v4) and k′ = (v2, v5). Modify the provisioning of k′ so that,

instead of using �sd with wavelength λ, it uses the multi-hop lightpath of k with wavelength

λ. Re-provision k on the one-hop lightpath (�sd, λ). The fraction of Dsd that does not satisfy
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the stated property, reduces by one unit. See Figure 3.6 for an example of the provisioning

transformations. Wavelength continuity is respected, as both lightpaths (p, λ) and (p′, λ) are

using the same wavelength.

(a) Original routing of the lightpaths (b) Modified lightpaths

Figure 3.6: Lightpath modifications

• There is at least one Dsd demand that is denied and �sd has at least one available wavelength:

Contradicts the assumption that the solution is optimal, therefore that case can be omitted.

• There is at least one Dsd demand that is denied and �sd (as well as on all links from vs to

vd) are used in a lightpath: then, there exists a one multi-hop request, say k, which is routed

through a link from vs to vd. Assume it is on �sd. Denying k and granting one demand unit

of Dsd on �sd reduces by one unit the demand that does not satisfies the stated property.

�

3.3.7 A Note on Undirected RWA Problem with Static Traffic

In this section, we show how the model and solution approaches of RWA problem with directed

links and asymmetric traffic can be changed to help solve the undirected RWA problem.

For undirected case of max-RWA, we consider the directed case and assume that all links are

bidirectional and all demands are symmetric. Then in making the configurations, for every node

pair {vs, vd} ∈ SD, we force the opposite paths to be the same. The basic model of undirected

max-RWA problem is the same as model (23)-(28). Considering our approach, the only changes are

going to be in the formulations of the pricing problems defined for solution approach.
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The general framework and concepts in the algorithms presented for directed RWA problem are

the same for undirected case. The difference lies in the formulations of the pricing problems that

generate improving columns. In an undirected network, these formulations are also responsible for

forcing the notion of undirected links and symmetric traffic.

In the link formulation PPLINK, adding following constraints forces the paths of node pairs

(vs, vd) and (vd, vs) to be defined on the same links in opposite order and direction:

αsd
� = αds

�′ (vs, vd) ∈ SD, vs ≤ vd, l = l′t ∈ L. (62)

Constraints (62) force the paths of reverse pairs to be the same, but in opposite directions. This

constraint implements the semantics of undirected graph. Note that, because there is no loop in the

paths selected by PPLINK thanks to Constraints (48), just forcing the opposite links to be selected for

reverse node pairs is enough for having the same paths in opposite direction, since there is only one

way for them to establish a valid connected path.

In the path formulation, the job is is easier, as we are dealing with actual paths, not the con-

stituent links. Adding the following constraints to PPPATH adds the semantics of an undirected graph

to the problem:

βsd
p = β′ds

p (vs, vd) ∈ SD, vs ≤ vd, p = p′ ∈ Psd. (63)

Constraints (63) ensure that for every pair and its reverse, two paths in opposite direction are se-

lected.

We will use this formulation in Chapter 5 to assess the solutions of RSA problem which is stated

and solved for an undirected graph, and provide comparisons between RSA and RWA problems.

3.4 Solution Process: Dynamic Case

Column generation method allows the exact solution of the linear relaxation of models (33) -

(40) and (41) - (43), i.e., where constraints zc ∈ Z
+ are replaced by zc ≥ 0, for c ∈ C, and

zc ∈ {0, 1} are replaced by 0 ≤ zc ≤ 1 , for c ∈ Cλ for λ ∈ ΛUSED
t−1 .
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3.4.1 Solution Approach with No Lightpath Re-arrangement

Let λP be the set of lightpaths used to grant connections for the legacy traffic. In every wave-

length configuration c ∈ Cλ with λ ∈ ΛUSED, the set of available links is limited to those that do not

belong to any lightpath with wavelength λ in the provisioning of the legacy traffic. At time period

t, the set of available links Lt
λ for wavelength λ, is:

Lt
λ = L \ {� ∈ L : ∃p with � ∈ p and (p, λ) ∈ λP}. (64)

Considering the potentially different sets of Lt
λ for λ ∈ ΛUSED

t−1 , these sets are defined for each of

them, while a single set represents all the new wavelengths in λ ∈ L \ ΛUSED
t−1 .

As before, the proposed algorithm for solving the problem generates new augmenting config-

urations, using a link and a path mathematical formulation that serve as configuration generators.

With dynamic traffic, PPλ
LINK and PPλ

PATH are the two resulting pricing problems defined for every

used wavelength, λ ∈ ΛUSED
t−1 and PPLINK and PPPATH for the new wavelengths. They are called in

sequence as illustrated in Figure 3.7, always PPλ
LINK and PPλ

PATH for λ ∈ ΛUSED
t−1 , before the generic

PPLINK and PPPATH for the additional wavelengths, as long as they generate improving wavelength

configurations.

Figure 3.7: Solution approach for dynamic requests
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Each PPPATH/PPλ
PATH considers a set of restricted paths in order to generate a new improving

configuration. As will be investigated in Section 5.1.2, it is worth adding few additional k-shortest

paths to the set of shortest paths. Consequently, we use the pool of paths selected in 3.3.6 for CG++

in order to define the set of paths in PPPATH/PPλ
PATH.

At time period t, after the insertion of a first set of initial configurations capturing the provi-

sioning of the legacy traffic (i.e., of Dt−1), the algorithm computes the sets Lt
λ for all λ ∈ ΛUSED

t−1 .

The column generation algorithm then alternately solves the restricted master problem (i.e., models

(33) - (40) and (41) - (43) with a very small number of variables/columns) and the pricing problems

PPPATH/PPλ
PATH and PPLINK/PPλ

LINK, until the optimality condition is satisfied. In choosing the wave-

length for consideration in each iteration, a round robin approach is used. The strategy is as follows.

Firstly, the algorithm iterates through already provisioned wavelengths, until no other improving

configurations are found. Then, it proceeds to the new wavelengths and iteratively tries to find new

improving configurations. When no such configuration can be found, the algorithm goes back to the

wavelengths in the set ΛUSED
t−1 and repeats until the stopping condition is fulfilled, i.e., the reduced

cost of all pricing problems is positive, see again the flowchart of Figure 3.7 for an overview of the

algorithm.

Pricing Problem - Link Formulation

As always with the column generation method, the objective of the pricing problem is the re-

duced cost (COSTLINK
c ) of variable zc. In order to alleviate the notations, index c will be omitted in

the remainder of this section.

We first describe PPλ
LINK for λ ∈ ΛUSED

t−1 . Let u(34) ≥ 0 and u(36)
sd ≥ 0 be the values of the dual

variables associated with constraints (34) and (36) in the optimal solution of the linear relaxation of

the current restricted master problem . Consider the following set of variables:

αsd
� = 1 if link � ∈ Lt

λ is used in a route from vs to vd, 0 otherwise.

For a wavelength λ ∈ ΛUSED
t−1 , PPλ

LINK can be written as follows:

max −u(34) +
∑

(vs,vd)∈SDNEW

∑
�∈ω+(vs)

αsd
� u(36)

sd (65)

55



subject to:

∑
(vs,vd)∈SDNEW

αsd
� ≤ 1 � ∈ Lt

λ (66)

∑
�∈ω+(v)

αsd
� =

∑
�∈ω−(v)

αsd
� (vs, vd) ∈ SDNEW,

v ∈ V \ {vs, vd} (67)∑
�∈ω+(vs)

αsd
� ≤ Dt

sd − GoSt−1
sd (vs, vd) ∈ SDNEW (68)

∑
�∈ω−(vs)

αsd
� =

∑
�∈ω+(vd)

αsd
� = 0 (vs, vd) ∈ SDNEW (69)

αsd
� ∈ {0, 1} � ∈ Lt

λ, (vs, vd) ∈ SDNEW. (70)

Constraints (66) prevent wavelength clashes, i.e., that a link cannot be traversed by more than one

route in any given wavelength configuration. Routes are established with the help of the flow con-

servation constraints (67): if no route is selected for node pair (vs, vd), then αsd
� = 0 for all links

� ∈ Lt
λ, otherwise, the sum of the outgoing flow values at the source node (

∑
�∈ω+(vs)

αsd
� ) gives the

number of link-disjoint routes from vs to vd in the wavelength configuration under construction.

Constraints (69) prevent loops around the source or the destination nodes from arising. Constraints

(70) define the domain of variables αsd
� . Correspondence between variables of the pricing problem

and coefficients of the master problem is established by:

asd =
∑

�∈ω+(vs)

αsd
� .

For λ ∈ Λ \ΛUSED
t−1 PPLINK is very similar to PPλ

LINK: Constraints (66) and (70) are written for all

� ∈ L, and the reduced-cost becomes as follows:

max −u(35) +
∑

(vs,vd)∈SDNEW

∑
�∈ω+(vs)

αsd
� u(36)

sd . (71)

In other words, objective function (65) has to be updated in order to consider u(35) ≥ 0 rather than

u(34).
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Pricing Problem - Path formulation

In the pricing problem considering the path formulation, at time period t for every wavelength

λ ∈ ΛUSED
t−1 we provide a set P λ,t

sd of paths for each source and destination pair of nodes, which only

contain links belonging to Lt
λ. Recall the definition of Pi

sd from Section 3.3.6. Then the pool of

considered paths for λ ∈ ΛUSED
t−1 and node pair (vs, vd ∈ SDNEW) is:

P λ,t
sd =

k⋃
i=1

{p ∈ Pi
sd : p only contains link(s) � ∈ Lt

λ}, (72)

for some k (see Section 3.3.6 for more details).

PPλ
PATH for uses the set of decision variables:

βsd
p = 1 if path p is used in the wavelength configuration under construction, 0 otherwise.

At time period t, the mathematical model for PPλ
PATH, λ ∈ ΛUSED

t−1 is written as follows:

max −u(34) +
∑

(vs,vd)∈SDNEW

∑
p∈Pλ,t

sd

βsd
p u(36)

sd (73)

subject to:

∑
(vs,vd)∈SDNEW

∑
p∈Pλ,t

sd

δp�β
sd
p ≤ 1 � ∈ Lt

λ (74)

∑
p∈Pλ,t

sd

βsd
p ≤ Dt

sd − GoSt−1
sd (vs, vd) ∈ SDNEW (75)

βsd
p ∈ {0, 1} p ∈ P λ,t

sd , (vs, vd) ∈ SDNEW. (76)

We guarantee paths that are pairwise link disjoint thanks to Constraints (74), in which δp� is a binary

value representing the presence of link � in path p. Constraints (75) enforce not to exceed the

lightpath demand. Constraints (76) define the domain of variables βsd
p .

Correspondence between variables of the pricing problem and coefficients of the master problem

is established by:

asd =
∑

p∈Pλ,t
sd

βsd
p .
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For λ ∈ Λ \ ΛUSED
t−1 PPPATH is very similar to PPλ

PATH: The pool of paths is updated to Psd =⋃k
i=1 Pi

sd in the entire model. Constraints (74) are written for all � ∈ L, and the reduced-cost

becomes as follows:

max −u(35) +
∑

(vs,vd)∈SDNEW

∑
p∈P t

sd

βsd
p u(36)

sd . (77)

In other words, objective function (73) has to be updated in order to consider u(35) ≥ 0 rather than

u(34).

3.4.2 Solution Approach with Lightpath Re-arrangement

Assuming re-arrangement of lightpaths is allowed and there is no sensitive traffic request with

restriction on dismantling, the sets of available links and paths for all wavelengths remain intact,

i.e., for all λ ∈ Λ and time periods t, Lt
λ = L and P λ,t

sd = Psd for all node pairs.

The following modifications to PPλ
LINK provides a configuration generator for the current prob-

lem. Denote by P̄ λ,t−1
sd , (vs, vd) ∈ SDt−1, the set of assigned paths for legacy pair (vs, vd) using

wavelength λ ∈ ΛUSED
t−1 . For every p ∈ P̄ λ,t−1

sd , γp is a binary variable equal to 1 if path p ∈ P̄ λ,t−1
sd

is modified in the new configuration for λ ∈ ΛUSED
t−1 . The mathematical formulation of PPλ

LINK,

λ ∈ ΛUSED
t−1 , is as bellow:

max − PENAL
∑

(vs,vd)∈SDt−1

∑
p∈P̄λ,t−1

sd

γp − u(34) +
∑

(vs,vd)∈SDt

∑
�∈ω+(vs)

αsd
� u(36)

sd (78)

subject to:

∑
(vs,vd)∈SDt

αsd
� ≤ 1 � ∈ L (79)

∑
�∈ω+(v)

αsd
� =

∑
�∈ω−(v)

αsd
� (vs, vd) ∈ SDt, v ∈ V \ {vs, vd} (80)

∑
�∈ω+(vs)

αsd
� ≤ Dt

sd (vs, vd) ∈ SDt (81)
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∑
�∈ω−(vs)

αsd
� =

∑
�∈ω+(vd)

αsd
� = 0 (vs, vd) ∈ SDt (82)

αsd
� ≥ 1− γp p ∈ P̄ λ,t−1

sd , � ∈ p, (vs, vd) ∈ SDt−1 (83)

αsd
� ∈ {0, 1} � ∈ L, (vs, vd) ∈ SDt (84)

γp ∈ {0, 1} p ∈ P̄ λ,t−1
sd , (vs, vd) ∈ SDt−1. (85)

In objective function (78), PENAL is the unit penalty for disrupting some previously established

lightpaths. The first term of this objective function is the total resulting penalty. Constraints (79)-

(82) and (84) are the counterparts of Constraints (45)-(48) and (70), modified to account for changes

in the defining set of links and node pairs. In order to determine the number of disrupted lightpaths

in PPλ
LINK, Constraints (83) and (85) are added. Considering the uniqueness of paths in every con-

figuration, Constraints (83) determine the values of γp, p ∈ P̄ λ,t−1
sd , by checking whether all its

consisting links contribute to the provisioning of node pair (vs, vd). Constraints (85) define the

domain of variables γ.

Correspondence between variables of the pricing problem and the coefficients γ in the master

problem becomes:

γ =
∑

p∈P̄λ,t−1

γp,

where P̄ λ,t−1 =
⋃

(vs,vd)∈SDt−1 P̄
λ,t−1
sd .

For λ ∈ Λ \ ΛUSED
t−1 , PPLINK is obtained by removing Constraints (83) and (85) from PPλ

LINK and

the penalty term from the reduced-cost (78).

Similarly, PPλ
PATH is modified as follows. Let γsd, be the number of disrupted lightpaths in

configuration c ∈ Cλ for wavelength λ ∈ ΛUSED
t−1 . The mathematical formulation of PPλ

PATH is then:

max −PENAL
∑

(vs,vd)∈SDt−1

γsd − u(34) +
∑

(vs,vd)∈SDt

∑
�∈ω+(vs)

αsd
� u(36)

sd (86)
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subject to:

∑
(vs,vd)∈SDt

∑
p∈Psd

δp�β
sd
p ≤ 1 � ∈ L (87)

∑
p∈Psd

βsd
p ≤ Dt

sd (vs, vd) ∈ SDt (88)

|P̄ λ,t−1
sd | −

∑
p∈

P̄λ,t−1
sd ∩Psd

βsd
p ≤ γsd (vs, vd) ∈ SDt−1 (89)

βsd
p ∈ {0, 1} p ∈ Psd, (vs, vd) ∈ SDt (90)

γsd ∈ Z
+ (vs, vd) ∈ SDt−1. (91)

As with PPλ
LINK, objective function (86) contains a term for the penalty associated with disrupting

lightpaths. Constraints (87)-(88) and (90) are equivalent to Constraints (74)-(75) and (76) in the

PPλ
PATH with no lightpath re-arrangements, except for the modified sets of links, paths, and con-

sidered node pairs. The number of re-arranged lightpaths is computed using the Constraints (89):

if(vs, vd) ∈ SDt−1 the summation of variables βsd
p over all the previously selected paths p from the

pool of k-shortest paths Psd, is less than the number of granted bandwidth units in the selected con-

figuration of λ, the difference is the number of lightpaths that need to be re-arranged. Constraints

(91) define the domain of the γ variables. In the limit of the summation in Constraints (89), the

intersection P̄ λ,t−1
sd ∩ Psd is needed because the selected paths for wavelength λ are not necessarily

from Psd and some of them might have been generated using a link formulation.

Correspondence between variables of the pricing problem and the coefficients in the master

problem is:

γ =
∑

(vs,vd)∈SDt−1

γsd.

The path formulation of PPPATH for new wavelengths λ ∈ Λ\ΛUSED
t−1 , can be written by removing

Constraints (89) and (91) from PPλ
PATH and the penalty term from the reduced-cost (86).
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Conclusions of the Chapter

In this chapter, we have proposed enhanced and new solution processes for solving the static

and dynamic RWA problems, respectively. All proposed solutions make use of the combination of

path selection heuristics and the exact solution of 3 different ILP models, in such a way that, we are

able to output ε-optimal solutions with small ε, as we will see in Chapter 5.
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Chapter 4

Routing and Spectrum Assignment

Problem

In the previous chapter, we focused on the provisioning problem in WDM networks and de-

signed large-scale algorithms to utilize these networks as close as possible to their maximum po-

tential. This chapter goes one step further, and deals with the much harder problem of spectrum

utilization in elastic optical network. The original contribution of this chapter is providing a new

decomposition scheme and presenting a new solution algorithm for solving this decomposition that

resembles the successful one of RWA problem.

This chapter is organized as follows. Section 4.1 formally states the RSA problem. Section

4.2 models the problem using a mathematical formulation and Section 4.3 provides the solution

algorithm.

4.1 Statement of the RSA Problem

Let us consider an elastic (flexgrid) optical network, represented by an undirected graph G =

(V, L) with optical node set V (indexed by v) and fiber link (edge) set L (indexed by �). Connections

and fiber links are assumed to be undirected, and the traffic to be symmetrical. The bandwidth is

slotted into a set S (generic index s) of spectrum slots (or slices). A guard band g (number of slots)

is required between two contiguous spectrum allocations. The available bandwidth over every fiber
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Figure 4.1: Connection requests using a group of spectrum contiguous slots

link is defined by the overall number of spectrum slots (12.5 GHz steps in this study). The traffic is

defined by a set K of requests where each request k ∈ K has a source (sk), a destination (dk) and

a spectrum demand Dk, expressed in terms of a number of slots, requested to be contiguous. We

assume that no regenerator is used, and therefore, the number of slots corresponds to the modulation

that is compatible with the distance between sk and dk and that uses the minimum number of slots.

The RSA problem can be formally stated as follows: given a graph G corresponding to an elastic

optical network, and a set of requested connections, find a path and a spectrum allocation for every

request respecting the continuity and contiguity constraints. The path together with a slot is called

a slot-path. The objective is to minimize the blocking rate, that is equivalent to maximizing the

number of accepted connections, leading to the max-RSA problem.

It is worth noting that, if there are too many small requests, close to the full bandwidth of a single

wavelength, RSA is not of interest over RWA, because of its requirement for guard band. Figure 4.2

illustrates this with an example. In this figure, assume the same amount of available spectrum on

both grids. A fixgrid today usually has fibers that carry 50 GHz wavelengths with bandwidths up to

100 Gb/s. Each of these wavelengths would be equal to four 12.5 GHz slots. A 100 GB/s request

can be transmitted on a single wavelength in a fixgrid, and on three slots in a flexgrid. But in elastic

optical networks, we need guard bands between requests in order to distinguish them. Therefore,

if we assume a single slot guard band, there is no gain in RSA over RWA. So, although we do

not aggregate the traffics for every node pair, we know that, in order for the RSA to be of interest,

we cannot have many requests, especially if all the node pairs (or a high percentage of them) have

traffic.
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Figure 4.2: 100 Gb/s connection requests on RSA vs. RWA

4.2 Configuration Optimization Model

We propose a new decomposition scheme that relies on slot-path configurations. In the fol-

lowing, we first introduce the notion of slot-path configurations, then provide the mathematical

formulation.

4.2.1 Slot-path Configuration

Our new decomposition scheme takes advantage of slot-path configurations, such that, for each

configuration, blocks of consecutive slots are all starting at the same slot, see Figure 4.3 for an

illustration of three slot-paths in the Spain network represented in Figure 4.4. For example, the blue

slot-path in Figure 4.4, serving the requests between v2 and v10, consists of 9 slots (as is seen in

Figure 4.3) and goes through links �2, �8 and �11. The slots are contiguous, and the same slots are

reserved for this particular slot-path on all its constituent links. Slot-paths blue, green and orange,

do not share a link and each have different number of slots, but in all of them the starting slot is

the same. This makes a valid configuration. Consequently, each configuration is indexed by s, the

starting slot, and contains a set of slot-paths using one or more slots, but such that the first slot of

each slot-path is s indexed. Whenever a request is granted in a configuration, it is for its overall

bandwidth/slot requirement, with taking care of the slot contiguity constraint.

A configuration c ∈ C =
⋃

s∈S Cs is characterized by: ack that is equal to 1 if request k is

provisioned in c, 0 otherwise, and as,ck,� that is equal to one if k is provisioned with a slot-path going
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Figure 4.3: A slotpath configuration example

through link � and slot s, 0 otherwise.

4.2.2 Formulation of RSA Problem

The objective of RSA problem is maximizing the throughput, unlike the RWA problem which

considered the GoS. The reason is that we want to measure the spectrum efficiency more precisely.

Companies today, charge the customers not only on the number of the lightpath/slot-paths, but also

on the provided speed (Gb/s). In industry, RWA is still evaluated with “older” criteria, while RSA

(which is more data-driven) is evaluated based on throughput. Considering the concept of slot-paths,

the model of RSA problem is written as follows:

max
∑
c∈C

(∑
k∈K

Dk a
c
k

)
zc (92)

subject to:

∑
c∈Cs

zc ≤ 1 s ∈ S (93)

∑
c∈C

ackzc ≤ 1 k ∈ K (94)
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Figure 4.4: Three slot-paths on Spain network

∑
c∈C

∑
k∈K

as,ck,�zc ≤ 1 s ∈ S, � ∈ L (95)

zc ∈ {0, 1} c ∈ C. (96)

The objective function (92) measures the total throughput. Constraints (93) allow at most one

configuration per “starting” slot. Constraints (94) ensure that each request is accepted at most once.

Constraints (95) do not allow more than one slot-path going through a given link (�) for a given slot

(s). Constraints (96) determine the domain of variables zc.

4.3 Solution Scheme

As the number of variables of model (92) - (96) is exponential, we need to, again, as for RWA,

recourse to column generation techniques for solving the linear relaxation as in Ruiz et al. [2013].

Consequently, we define the corresponding slot-path configuration generator problem (called pric-

ing problem in the column generation literature). The flowchart of the solution scheme is depicted

in Figure 4.5. In order to ease the solution of the configuration generator, we consider two formu-

lations, a link one that can check thoroughly for new improving configurations, but that is compu-

tationally expensive, and a path one, that is more scalable, with a set of pre-computed paths, but
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Figure 4.5: Flowchart of column generation algorithm for RSA problem

which do not guarantee to find an improving configuration when one exists. The role and order of

the two pricing problems is depicted in the flowchart of Figure 4.5 in order to guarantee an optimal

solution of the linear relaxation of (92) - (96).

Our model considers having the guard bands between requests. Roughly speaking, we are going

to increase the slot requirement by one unit on the right endpoint, except when the last required

slot reaches the right boundary of the spectrum. Although the idea is simple, the formulations

become more complex. Thus, to ease the understanding, in mathematical formulations for the

pricing problems, we are going to first present the model without the guard band, then explain the

needed constraints for guard bands.

4.3.1 Pricing Problem - Link Formulation

As always with the column generation method, the objective of the pricing problem (i.e., gen-

erator of new configurations) is the reduced cost (COSTLINK
c ) of variable zc. In order to alleviate the

notations, index c will be omitted in the remainder of this section.

Let u(93)
s ≥ 0, u(94)

k ≥ 0 and u(95)
s� ≥ 0 be the values of the dual variables associated with

constraints (93), (94) and (95) in the optimal solution of the linear relaxation of the current restricted

master problem (see the flowchart in Figure 4.5).
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Let Ks be the set of requests that have the potential to be provisioned in PPs
LINK:

Ks = {k ∈ K : s+Dk − 1 ≤ |S|}.

In other words, for s ∈ S, Ks contains all the requests that, if started from s, can respect the conti-

guity constraint: there is enough consecutive slots after s that can carry the requested bandwidth.

In order to reduce the number of different notations, in the model, we have used the same notation

for parameter of the master problem and decision variables of the pricing problem, dropping the

index c. Therefore, with some abuse of notation, the following are the sets of variables:

ak,s� = 1 if link � is used in a route of width Dk slots from sk to dk such that the index of the lower

slot is s, 0 otherwise.

ak = 1 if request k is granted in the configuration under construction, 0 otherwise.

For slot s ∈ S, the link formulation of the Slot-path Configuration Generator, called PPs
LINK, can

be written as follows:

max COSTLINK =
∑
k∈Ks

Dkak − u(93)
s −

∑
k∈Ks

u(94)
k ak −

∑
k∈Ks

s+Dk−1∑
s′=s

∑
�∈L

u(95)
s′� ak,s

′
� (97)

subject to:

∑
k∈Ks

ak,s� ≤ 1 � ∈ L (98)

∑
�∈ω(sk)

ak,s� =
∑

�∈ω(dk)
ak,s� = ak k ∈ Ks (99)

∑
�∈ω(v)

ak,s� ≤ 2 ak k ∈ Ks, v ∈ V \ {sk, dk} (100)

∑
�∈ω(v)\{�′}

ak,s� ≥ ak,s�′ �′ ∈ ω(v), v ∈ V \ {sk, dk},

k ∈ Ks (101)

Dk−1∑
i=1

ak,s+i
� = ak,s� (Dk − 1) � ∈ L, k ∈ Ks (102)
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ak,s
′

� ∈ {0, 1} s′ ∈ {s, s+ 1, . . . , s+Dk − 1}

k ∈ Ks, � ∈ L (103)

ak ∈ {0, 1} k ∈ Ks. (104)

Constraints (98) are the continuity constraints, i.e., a link cannot be traversed by more than one

route in any given slot-path configuration. Routes are established with the help of constraints (100)

and (101): if no route is selected for request k, then ak,s� = 0 for all links � ∈ L, otherwise, ak = 1

and intermediate nodes of the single path from sk to dk are identified. Constraints (102) take care of

the slot contiguity constraints, and reserve adjacent slots in order to fulfil the slot demand of granted

requests. Constraints (103) define the domain of variables ak,s
′

� , and constraints (104) define the

domain of variables ak.

We now provide the formulation, considering the guard band. Guard band is one slot, therefore,

in order to enforce it, every request requires one more slot (rightmost one), unless the last slot

granted to a request to fulfil its spectrum demand, is the last slot available in the spectrum. The link

formulation considering the guard band is as follows:

max COSTLINK =
∑
k∈Ks

Dkak − u(93)
s −

∑
k∈Ks

u(94)
k ak

−
∑

k∈Ks :s+Dk−1<|S|

s+Dk∑
s′=s

∑
�∈L

u(95)
s′� ak,s

′
�

−
∑

k∈Ks :s+Dk−1=|S|

s+Dk−1∑
s′=s

∑
�∈L

u(95)
s′� ak,s

′
� (105)

subject to:

(98), (99), (100), (101), (104)

Dk∑
i=1

ak,s+i
� = ak,s� Dk � ∈ L, k ∈ Ks : s+Dk − 1 < |S| (106)

Dk−1∑
i=1

ak,s+i
� = ak,s� (Dk − 1) � ∈ L, k ∈ Ks : s+Dk − 1 = |S| (107)
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ak,s
′

� ∈ {0, 1} s′ ∈ {s, s+ 1, . . . , s+Dk − 1}, k ∈ Ks, � ∈ L

p ∈ Pk, r ∈ Ks : s+Dk − 1 < |S| (108)

ak,s
′

� ∈ {0, 1} s′ ∈ {s, s+ 1, . . . , s+Dk − 1}, k ∈ Ks, � ∈ L

p ∈ Pk, k ∈ Ks : s+Dk − 1 = |S| (109)

Constraints (98), (99), (100), (101) and (104) do not need any change when guard band is consid-

ered. However, Constraints (102) need to be splitted in to two categories: if for a request k ∈ Ks,

s ∈ S, the spectrum demand needs all the remaining slots in the spectrum after s, then there is no

need for a guard band and the contiguity constraints are guaranteed thanks to Constraints (107), oth-

erwise a guard band is needed and Constraints (106) ensure that the assigned slots for a request and

the associated guard band are next to each other. In the objective function (105), the term associated

with the dual values of Constraints (95), is splitted in to two terms the same way as in Constraints

(106) and (107). Constraints (108) and (109) are the modified versions of Constraints (103) for RSA

problem with guard bands.

4.3.2 Pricing Problem - Path Formulation

In the path formulation, we provide a pre-computed set Psd of paths for each source and desti-

nation pair (vs, vd) of nodes, which will be used for provisioning requests between vs and vd. We

denote by Pk the set of paths associated with requests k. Selection of paths (how many for each

node pair) is made as in the algorithms we developed for the Routing and Wavelength Assignment

(RWA) problem, see Jaumard and Daryalal [2015]. The path formulation for the wavelength con-

figuration generator is denoted by PPs
PATH. It uses the set of decision variables: βk,s

p = 1 if path p is

used in the wavelength configuration under construction for provisioning request k, 0 otherwise.

For slot s ∈ S, the path formulation of the Slot-path Configuration Generator, called PPs
PATH,

can be written as follows:

max COSTPATH =
∑
k∈Ks

Dkak − u(93)
s −

∑
k∈Ks

u(94)
k ak −

∑
k∈Ks

∑
p∈Pk

s+Dk−1∑
s′=s

u(95)
s′,�δ

�
pβ

k,s′
p (110)
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subject to:

∑
k∈Ks

∑
p∈Pk

βk,s
p δ�p ≤ 1 � ∈ L (111)

∑
p∈Pk

βk,s
p = ak k ∈ Ks (112)

Dk−1∑
i=1

βk,s+i
p = βk,s

p (Dk − 1) p ∈ Pk, k ∈ Ks (113)

βk,s′
p ∈ {0, 1} s′ ∈ {s, . . . , s+Dk − 1}

p ∈ Pk, k ∈ Ks (114)

ak ∈ {0, 1} k ∈ Ks. (115)

Pairwise link disjointness for paths is guaranteed thanks to constraints (111), in which δ�p is a binary

parameter indicating whether link � belongs or not to path p. Constraints (112) enforces to choose

only one slot-path per granted request. Constraints (113) ensure the slot contiguity requirement for

each request. Constraints (114) and (115) define the domain of the variables.

Correspondence between variables of the pricing problem and coefficients of the master prob-

lem:

ask,� =
∑
p∈Pk

s+Dk−1∑
s′=s

δ�pβ
k,s′
p .

As for PPs
LINK, considering the guard band changes the contiguity constraints. The path formu-

lation considering the guard band is as follows:

max COSTPATH =
∑
k∈Ks

Dkak − u(93)
s −

∑
k∈Ks

u(94)
k ak

−
∑

k∈Ks :s+Dk−1<|S|

∑
p∈Pk

s+Dk∑
s′=s

u(95)
s′,�δ

�
pβ

k,s′
p

−
∑

k∈Ks :s+Dk−1=|S|

∑
p∈Pk

s+Dk−1∑
s′=s

u(95)
s′,�δ

�
pβ

k,s′
p (116)
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subject to:

(111), (112), (115)

Dk∑
i=1

βk,s+i
p = βk,s

p Dk p ∈ Pk, k ∈ Ks : s+Dk − 1 < |S| (117)

Dk−1∑
i=1

βk,s+i
p = βk,s

p (Dk − 1) p ∈ Pk, k ∈ Ks : s+Dk − 1 = |S| (118)

βk,s′
p ∈ {0, 1} s′ ∈ {s, . . . , s+Dk}, p ∈ Pk

k ∈ Ks : s+Dk − 1 < |S| (119)

βk,s′
p ∈ {0, 1} s′ ∈ {s, . . . , s+Dk − 1}, p ∈ Pk

k ∈ Ks : s+Dk − 1 = |S|. (120)

In the above formulation, the objective function, contiguity and domain constraints differ from their

previous form. For s ∈ S, Constraints (118) take care of the contiguity restrictions for the requests,

that if granted in this configuration, there is no slots left in the spectrum after s, while Constraints

(117) concerns all the remaining requests in Ks. Constraints (119) and (120) define the domain of

the variables. The objective function (116) is defined the same way as in equation (105).

Conclusions of the Chapter

In this chapter, we presented a new decomposition scheme for solving max-RSA problem with

static traffic. Further, a new algorithm is provided to solve this new decomposition. The algorithm

takes advantage of path and link formulations to improve the solutions and at the end ensures their

optimality. Numerical results in Chapter 5 show that the algorithm is successful in solving instances

based on a typical network example in the literature, and surpasses far beyond other existing solution

algorithm by solving instances with up to 400 slots, which was at most 96 in Ruiz et al. [2013].

72



Chapter 5

Numerical Results

The original contribution of this chapter is a very thorough set of experiments for the static

RWA/RSA and dynamic RWA problems. Results show that we manage to reach our goal of solving

both RWA and RSA data instances whose sizes match those of today real optical networks.

The chapter is organized as follows. In the first part, Section 5.1, we examine our proposed

solution algorithms for static and dynamic RWA problem, and assess their performances in com-

parison to a well-known existing algorithm in the literature. In the second part, Section 5.2, several

instances are being solved using the solution algorithm provided to solve the RSA problem, and the

results are discussed

5.1 Large-Scale RWA Problem

We present here the numerical experiments that were conducted in order to validate and test

the performance of the proposed algorithms: the three ε-optimal algorithms, CG, CG+, and CG++,

as well as the two heuristic algorithms, CGH+ and CGH++. After describing the data sets (Section

5.1.1), we discuss the results for the static case (Section 5.1.2), starting with the quality of the

solutions (Section 5.1.2), exact vs. heuristic solutions (Section 5.1.2), and then the impact of the

path selection on the GoS (Section 5.1.2), as well as the usage of the bandwidth spectrum from one

link to the next (Section 5.1.2). The remaining results refer to the dynamic case (Section 5.1.3)

where we investigate the bandwidth spectrum waste when no re-arrangements are performed.
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All computational results have been obtained with running the programs on a server with the

help of CPLEX [Cplex, 2014] (version V12.6.2) for solving the (integer) linear programs. Several

fine tuning of cplex parameters are required for solving the data sets as efficiently as possible. These

include switching off the presolve operations, restricting the number of threads to 1, solving the

problems using Barrier algorithms, setting the emphasis of the pricing problem on feasibility rather

than optimality, and switching back the solver of pricing problems to traditional branch-and-bound,

rather than dynamic search. Programs never used more than 2Gb memory and 2 CPUs.

5.1.1 Data Sets

We run experiments on six different networks: NSFNET [Orlowski et al., 2007], USANET

[Batayneh et al., 2011], GERMANY [Orlowski et al., 2007], NTT [Vega-Rodriguez and Rubio-

Largo], ATT [Martins et al., 2012], and BRAZIL [Jaumard et al., 2006b], whose characteristics are

reported in Table 5.1. Column entitled ”deg.” is the average nodal degree, in order to measure the

network connectivities. Last two columns report on the traffic distribution thanks to the mean and

the variance on the number of requests per node pair with traffic, as identified by μ and σ, respec-

tively. Topologies are reproduced in Figures 5.1-5.6 where undirected lines represent bidirectional

links.

Figure 5.1: Network topologies: NSF

For each network topology, we consider various traffic instances with up to 150 wavelengths.

For the first traffic instances of the NSF and USA topologies, the directed traffic demand matrix

T = [Tsd] is generated by drawing integer traffic demands (with one unit being the transport capacity
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Figure 5.2: Network topologies: USA

Figure 5.3: Network topologies: GER

of one wavelength) uniformly at random in {0, 1, 2, 3, 4, 5}. For the GERMANY topology, the first

traffic instance (i.e., GER100) comes from the snd·lib library [Orlowski et al., 2007].

For the NTT topology, the first two traffic instances (i.e., NTT42 and NTT50) are from [Vega-

Rodriguez and Rubio-Largo]. The next augmented traffic instances correspond to incremental

traffic: NSF/USA/GER/NTTλ ⊆ NSF/USA/GER/NTTλ′ where NSF/USA/GERλ′ are built upon

NSF/USA/GERλ by REPEAT times randomly adding ALEA more requests for each pair of nodes.

ALEA is taken uniformly at random from {1, 2, 3, 4, 5} for NSF/USA and from {0, 1, 2, 3} for GER-

MANY. For NSF, REPEAT = 10, 19, for USA, REPEAT = 4, 8 and for GERMANY, REPEAT = 1, 5.

NTT150 is built directly upon NTT50, considering a random additional number of requests from

{1, . . . , 25}, which leads to a less uniform traffic instance, as shown by the variance indicator in
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Figure 5.4: Network topologies: NTT

Figure 5.5: Network topologies: ATT

the last column of Table 5.1. Traffic matrix of BRAZIL comes from Jaumard et al. [2006b]. We

selected a limited number of traffic instances when reporting on the numerical experiments, their

characteristics are described in Table 5.1, the index of the instance names refer to the number of

wavelengths.

5.1.2 Static Case: Algorithm Comparative Performances

Solution Accuracies and Algorithm Efficiencies

In Tables 5.2 and 5.3, we compare the performances of the four new proposed algorithms and

the algorithm of Jaumard et al. [2009], using Strategy 3 for selecting the paths.

In Table 5.2, we focus on the comparison of the maximum GoS, and the number of generated
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Figure 5.6: Network topologies: BRAZIL

Table 5.1: Characteristics of the datasets

Data |V | |L| deg. W |SD| ∑
Dsd

Traffic

instances distribution
μ σ

NSF30

14 40 3.0
30 141 436 3.1 1.4

NSF75 75 182 1,371 7.5 2.4
NSF115 115 182 2,194 12.1 2.7
USA75

24 88 3.7
75 455 1,336 2.9 2.4

USA125 125 541 2,422 4.5 1.9
USA150 150 552 3,509 6.4 2.2
GER100

50 176 3.5
100

660
2,365 3.6 6.2

GER130 130 3,041 6.2 4.6
GER150 150 4,989 8.6 6.3
NTT42

55 144 2.6
42 338 1,038 3.1 1.4

NTT50 50 452 1,362 3.0 1.4
NTT150 150 452 5,684 12.6 7.4
ATT20 90 274 3.0 20 272 359 1.3 0.7
ATT113 71 350 4.9 113 2,869 2,918 1.0 0.7
BRAZIL48 27 140 5.2 48 549 1,370 2.5 1.1

wavelength configurations, using either PPPATH or PPLINK. While there is no dominance in terms of

best generated ε-optimal solutions between CG and CG+, algorithm CG++ dominates both CG and

CG+ for all data sets, increasing the number of granted demand from 2 (NSF30) to 71 (NTT150)

lightpaths.

In Table 5.3, we report the number of columns in the last iteration of the column generation

algorithms, and the computational times (in seconds). Reported computational times (in columns

entitled CPU) do not include the preprocessing operations, which is reported in the columns entitled

PRE CPU. While in most cases CG+ is much faster than CG, it requires more iterations. However, as

the pricing problem restricts the search of wavelength configurations using pre-computed shortest
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Table 5.2: Static case: comparative performance of the algorithms
ε-optimal algorithms Heuristic algorithms

Data
z�LP

CG [Jaumard et al., 2009] CG+ CG++ CGH+ CGH++

instances z̃ILP ε #PPLINK z̃ILP ε
#PP iter

z̃ILP ε
#PP iter

z̃ILP ε #PPPATH z̃ILP ε #PPPATH
PATH LINK PATH LINK

NSF30 430 412 4.2 85 419 2.6 158 6 421 2.1 140 3 410 4.7 88 411 4.4 100

NSF75 1,242 1,218 1.9 109 1,221 1.7 189 7 1,230 1.0 217 3 1,198 3.5 126 1,222 1.6 108

NSF115 1,924 1,898 1.4 92 1,900 1.2 167 6 1,909 0.8 217 2 1,854 3.6 104 1,904 1.0 108

USA75 1,281 1,229 4.1 249 1,227 4.2 378 2 1,241 3.1 402 2 1,227 4.2 345 1,234 3.7 253

USA125 2,255 2,190 2.9 324 2,160 4.2 315 1 2,201 2.4 458 2 2,160 4.2 315 2,160 4.2 299

USA150 3,029 2,914 3.8 252 2,885 4.8 255 1 2,975 1.8 508 2 2,885 4.8 255 2,885 4.8 258

GER100 2,306 2,185 5.2 349 2,197 4.7 2,850 42 2,245 2.7 537 3 2,099 9.0 236 2,206 4.3 336

GER130 2,960 2,791 5.7 437 2,840 4.1 3,543 104 2,889 2.4 639 3 2,658 10.2 192 2,798 5.5 414

GER150 4,663 4,472 4.1 731 4,502 3.5 6,253 119 4,519 3.1 937 6 4,219 9.5 336 4,466 4.2 711

NTT42 1,038 1,031 0.7 16 1,024 2.3 75 2 1,038 0.0 31 2 1,022 1.5 57 1,025 1.3 20

NTT50 1,362 1,356 0.4 32 1,310 3.8 287 5 1,362 0.0 59 2 1,308 4.0 112 1,318 3.2 55

NTT150 5,553 5,431 2.2 314 5,372 3.3 2,292 55 5,502 0.9 867 21 5,204 3.6 277 5,431 2.2 311

ATT20 359 328 8.6 118 328 8.6 2,571 62 354 1.4 380 7 272 24.2 113 321 10.6 71

ATT113 2,918 2,856 2.1 319 2,884 1.2 7,303 112 2,902 0.5 397 6 2,740 6.1 1,182 2,841 2.6 211

BRAZIL48 1,370 1,297 5.3 168 1,295 5.5 895 17 1,317 3.9 313 2 1,273 7.0 195 1,301 5.0 156
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Table 5.3: Static case: computational times (seconds) of the algorithms
CG ε-optimal algorithms Heuristic algorithms

Data
z̃ILP GoS CPU # cols.

CG+ CG++ CGH+ CGH++

instances
PRE CPU CPU # cols. PRE CPU CPU # cols. CPU # cols. CPU # cols.

NSF30 412 94.5 20 84 0 3 157 2 7 139 1 87 6 99

NSF75 1,218 88.7 26 108 0 3 188 3 7 216 2 125 5 107

NSF115 1,898 86.5 24 91 0 3 166 3 7 216 1 103 5 107

USA75 1,229 92.0 663 248 1 34 377 12 129 401 27 344 70 252

USA125 2,190 90.4 1,211 323 1 21 314 17 138 457 21 314 106 298

USA150 2,914 83.0 890 251 1 17 254 21 155 507 15 254 87 257

GER100 2,185 92.4 6,045 348 2 885 2,849 47 427 536 13 235 161 335

GER130 2,791 91.8 7,050 436 2 2,111 3,542 54 467 638 12 191 108 413

GER150 4,472 78.9 16,863 730 2 3,448 6,252 70 1,747 936 23 335 283 710

NTT42 1,031 99.3 49 15 0 4 74 25 5 30 1 56 5 19

NTT50 1,356 99.6 161 31 1 22 286 30 7 58 2 111 8 54

NTT150 5,431 95.5 2,403 313 1 686 2,291 48 183 866 10 276 81 310

ATT20 328 91.3 1,644 117 1 1,917 2,570 76 1,473 379 8 112 131 70

ATT113 2,877 97.9 26,035 318 9 3,807 7,302 714 893 396 1,018 1,181 273 210

BRAZIL48 1,297 94.7 1,145 167 1 1,191 894 23 563 312 195 181 44 155
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paths most of the time (indeed, 97% of the time on average), then computational times can be

significantly reduced.

CG++ requires more computational time than CG+, in all smaller data sets even if there are

less wavelength configurations generated. This is due to the fact that PPPATH contains more paths

and therefore requires longer computational times for its solution. However, the number of calls to

PPLINK is less for CG++ than for CG+. This is as expected since PPPATH is richer in terms of the

number of paths that are considered. The effect of this smaller number of calls to PPLINK is revealed

in the largest data sets, i.e., GER network, NTT150, ATT and BRAZIL. In Table 5.2, it can be seen

that in the latter data sets, the number of calls to PPLINK is much smaller for CG++ than for CG+ ; it

results in significantly smaller computational times.

Comparison of CG, CG+, and CG++

We observe in Table 5.2 that the number of wavelength configuration generations with the link

formulation, i.e., PPLINK, which is more computationally expensive than PPPATH, decreases, as we

move from CG to CG+, and then to CG++. Except for NTT150, the number of PPLINK solutions is

very small for CG++, contributing significantly to the overall reduction of the computational effort

for CG++.

As the size of the network topology increases, i.e., moving from NSF to USA topology, while

CG performs better than CG+ in terms of GoS, the differences between the computational times

widen: on average, computational times for CG are 43 times longer than for CG+. It is interesting

to observe that except for USA75, we recourse to PPLINK only one time, meaning that the solution

provided by the wavelength configurations of PPPATH account for most of the computational times,

and explain the reduction of it in comparison with algorithm CG. CG++ improves on CG+, while

requiring to generate less wavelength configurations for USA75 and USA130, but more wavelength

configurations for the largest USA data set USA150. This can be explained by the larger number of

considered k-shortest paths.

In GERMANY network, except for one instance, CG+ gets better solutions than CG, with an

increased number of lightpaths ranging from 12 (in addition to 2,185 in GER75) to 49 (in addition to

2,791 in GER130). Computational times of CG in most cases are higher than those of CG+, i.e., on
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average 5 times larger. As for previous networks, CG++ always returns better GoS results than both

CG and CG+. It is interesting to see that CG++ succeeds in obtaining better results in considerably

shorter time than CG+, which itself performs dramatically faster than CG. In fact, the computational

times of CG are on average 13 times longer than that of CG++, which is a significant improvement.

This can be explained by the low number of PPLINK solutions in CG++ (from 3 to at most 21), that

can make up for the larger computing times of its PPPATH problem in comparison to that of CG+.

NTT network has an interesting feature and that is the degree of its nodes, which in most cases

is equal to 2. In two out of three data sets, CG++ reaches 100% GoS. Using Strategy 3 for NTT150,

the number of pre-computed paths is 1,568. Table 5.3 shows that this set of paths is rich enough to

reduce the number of calls to PPLINK, while it is not too big, which otherwise would increase the

computing times of PPPATH.

Exact vs. Heuristic

When comparing with the exact methods, the heuristic algorithms fulfil their purpose: they

provide very good solutions with small computational times. Indeed, differences between the accu-

racies of the exact and heuristic algorithms is, in most cases, quite low. For CGH+ the difference

between returned GoS and the corresponding ε-optimal GoS from CG+ varies between 0 lightpaths

(0% in all USA instances) to 283 (6.3% in GER130). The performance of the algorithm CGH++

is even better, with the difference between its solution and that of CG++ lying in the range of 5

lightpaths (0.3% in NSF115) to 91 (3.1% GER130).

Heuristic CGH++ always obtains better heuristic solutions than CGH+. Improvement can lead

to up to 247 more granted lightpaths, see, e.g., data set GER150, 4,219 granted lighpaths with CGH+

vs. 4,466 with CGH++, while the lower bound is equal to 4,663. The resulting accuracy is ε = 4%,

which is excellent for this large data set with 50 nodes, 176 links, 5666 lightpath requests, and 150

wavelengths. Computational time of CGH++ is usually larger than CGH+, due to the larger number

of considered paths in the wavelength generator problems (i.e., the pricing problems).

81



Table 5.4: Comparison of various strategies for selecting the set of paths in CG++
CG algorithm CG++ algorithm

Data

z�LP z̃ILP

Strategy 1 Strategy 2 Strategy 3

Instances z̃ILP

#
CPU z̃ILP

#
CPU z̃ILP

#
CPU

PPPATH PPLINK PPPATH PPLINK PPPATH PPLINK

NSF30 430 412 415 127 2 29 415 110 1 14 421 140 3 7

NSF75 1,242 1,218 1,222 108 1 3 1,222 127 1 55 1,230 217 3 7

NSF115 1,924 1,898 1,907 145 2 2 1,907 114 1 61 1,909 217 2 7

USA75 1,281 1,229 1,234 253 1 67 1,237 238 1 259 1,241 402 2 129

USA125 2,255 2,190 2,191 361 3 92 2,195 311 1 737 2,201 458 2 138

USA150 3,029 2,914 2,948 406 3 80 2,961 292 1 797 2,975 508 2 155

GER100 2,306 2,185 2,206 336 1 82 2,226 317 1 358 2,245 537 3 427

GER130 2,960 2,791 2,861 432 2 107 2,874 399 1 802 2,889 639 3 467

GER150 4,663 4,472 4,507 1,443 11 808 4,507 692 2 3,354 4,519 937 6 1,747

NTT42 1,038 1,031 1,038 28 2 6 1,038 11 1 19 1,038 31 2 5

NTT50 1,362 1,356 1,362 103 3 5 1,362 29 1 19 1,362 59 2 7

NTT150 5,553 5,431 5,431 311 1 75 5,491 273 1 1,672 5,502 867 21 183

ATT20 359 330 330 544 3 1,906 335 512 1 3,493 354 380 7 1,473

ATT113 2,918 2,877 2,884 419 9 2,806 2,889 286 2 4,688 2,902 397 6 893

BRAZIL48 1,370 1,297 1,303 157 1 1,235 1,300 142 1 1,709 1,317 313 2 563
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Path Selection

It is of interest to notice that, while the number of shortest paths for a given node pair is usually

very small, although it increases with the length of the shortest path, the number of k-shortest paths

in P2 can increase sharply. For instance, the number of 2nd shortest paths can reach 52 and 70 for

some node pairs in USA and GER networks, respectively.

Table 5.5: Characteristics of the selected paths in ε-optimal solutions of CG++

Data SP1 SP2 SP3 SP4 SP≥5

instances # % # % # % # % # %

NSF30 391 83.2 66 14.0 11 2.3 1 0.2 1 0.2

NSF75 1,116 87.9 136 10.7 18 1.4 0 0.0 0 0.0

NSF115 1,808 89.2 193 9.5 24 1.2 2 0.1 0 0.0

USA75 914 61.0 418 27.9 154 10.3 10 0.7 2 0.1

USA125 1,599 62.0 670 26.0 278 10.8 26 1.0 7 0.3

USA150 2,108 64.5 831 25.4 299 9.1 24 0.7 6 0.2

GER100 1,321 49.8 841 31.7 383 14.5 78 2.9 27 1.0

GER130 1,642 49.5 923 27.8 559 16.8 153 4.6 42 1.3

GER150 3,221 64.9 1,002 20.2 742 14.9 0 0.0 0 0.0

NTT42 1,304 81.2 173 10.8 86 5.4 25 1.6 17 1.1

NTT50 1,409 79.9 202 11.5 94 5.3 37 2.1 22 1.2

NTT150 4,633 77.8 900 15.1 298 5.0 84 1.4 37 0.6

ATT20 205 51.5 49 12.3 58 14.6 26 6.5 60 15.1

ATT113 1,195 40.2 1,264 42.5 500 16.8 7 0.2 5 0.2

BRAZIL48 739 46.7 640 40.5 201 12.7 1 0.1 0 0.0

In Table 5.4, we compare the three strategies for selecting the paths in CG++ and this table is

a summary of the extensive computational experiments we conducted. For Strategy 1, we found

out that a good value was kSP = 15, and in Strategy 2, a good constant value ρ = 0.5. Both

correspond to a very good compromise between the computational times and the maximum GoS
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value. Computational times in columns entitled CPU are in seconds and do not include the time

needed for preprocessing.

Results of Table 5.4 show that CG++ using Strategy 1 mostly has the smallest computational

times, while Strategy 3 results in improved GoS. In all data sets, Strategy 2 is at least as good as

Strategy 1, and, in many cases, improves it. However, the computational time is increased drasti-

cally, due to a significantly larger number of considered paths, while not all of them are very useful.

Strategy 3 improves the GoS of almost all the data sets, while reducing the computational time com-

pared to Strategy 2. For example, employing Strategy 3 in solving NTT150 grants 71 and 11 more

requests than Strategy 1 and 2 respectively, while the computational times are still in a reasonable

range. In conclusion, algorithm CG++ with Strategy 3 provides the best GoS within reasonable

computational times.

Characteristics of the selected paths in CG++ are described in Table 5.5. We observe that,

while shortest paths play an important role in the ε-optimal solution of CG++, 2nd and 3rd shortest

paths also have a significant share in the final set of chosen paths. It is interesting to see that, for

ATT113, the share of the 2nd shortest paths is even more than the 1st shortest paths. This justifies the

enlargement of the initial set of pre-computed paths to take into account the paths beyond shortest

paths.

Spectrum Utilization

Lastly, we investigate the bandwidth spectrum usage for 3 instances, in the ε-optimal solutions

of CG++. In Table 5.6, we report the average, min and max link spectrum usage for the ε-optimal

solutions of Algorithm CG++, while in Figure 5.7, we display the spectrum link usage for 3 different

instances.
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Table 5.6: Average, min and max link spectrum usage (%)

Data
Min Average σ Max

instances
NSF30 50.0 84.4 13.0 100.0
NSF75 44.0 62.0 7.6 69.3
NSF115 50.4 71.7 7.7 80.0
USA75 29.3 71.8 16.4 96.0
USA125 32.8 63.8 14.3 84.8
USA150 36.7 63.2 14.7 86.7
GER100 0.0 53.5 28.6 97.0
GER130 0.0 51.7 28.0 93.8
GER150 0.0 55.3 29.2 90.0
NTT42 0.0 19.2 9.1 40.8
NTT50 0.0 31.7 14.2 58.0
NTT150 0.0 62.8 20.8 88.7
ATT20 0.0 41.0 31.0 100.0
ATT113 0.0 24.9 23.6 97.3
BRAZIL48 37.5 72.0 15.0 100.0

(a) GER150 (b) USA150

(c) ATT113

Figure 5.7: Bandwidth spectrum usage with CG++

85



For both GER150 and the ATT113 instances, the variance in the spectrum usage of links is quite

high, while in USA150, it is smaller. It can be explained by the characteristics of the topologies:

USA is closer to a grid like topology in which nearly all links participate equally in the overall set

of k-shortest paths, while GER and ATT topologies are more irregular. It may mean that if traffic

patterns deviate further from rather homogeneously distributed traffic patterns (see the mean and the

variance of the current traffic patterns in Table 5.1), then, we might observe even larger variances in

the spectrum usage of the links.

Figure 5.8: Comparison between the highly loaded links in the solutions of model (55) - (61) vs.
CG++ model: NSF115

Figure 5.9: Comparison between the highly loaded links in the solutions of model (55) - (61) vs.
CG++ model: USA150

In Figures 5.8 - 5.12, we have indicated in red the links with the highest number of lightpath

traversals, and in green the links with the small number. Blue links represent the most loaded links

obtained by solving the max-flow formulation (55) - (60). Comparison between the sets of blue and
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Figure 5.10: Comparison between the highly loaded links in the solutions of model (55) - (61) vs.
CG++ model: GER150

Figure 5.11: Comparison between the highly loaded links in the solutions of model (55) - (61) vs.
CG++ model: NTT150

red links shows that the max-flow model is successful in identifying the potentially bottleneck links.

This leads to a smarter approach in selecting the paths used in the wavelength generator problem

PPPATH of the CG++ algorithm with Strategy 3. It also results in a more load balanced solution

that has less highly loaded links. In NTT150, link �(6,4) is the least loaded link after solving the

problem with CG++ and has a 0% spectrum usage. Since the number of traffic requests in NTT150

between node v6 and v4 is 0, the result is justified. GER150 has three links with 0% spectrum

usage: �(28,29), �(46,71), �(49,18), meaning that those links do not belong to any path of interest for

provisioning the demand.
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Figure 5.12: Comparison between the highly loaded links in the solutions of model (55) - (61) vs.
CG++ model: BRAZIL48

5.1.3 Dynamic Case: Algorithm Performances

In order to simulate the incremental traffic, the connection requests of every data set are divided

into smaller sets, such that SDt−1 ⊆ SDt and for every pair (vs, vd) ∈ SDt, Dt−1
sd ≤ Dt

sd. This

is done in consecutive steps of size δ: in each time period, δ traffic requests are selected randomly,

from the original demand set SD at time t = 0. The requests are selected one unit at a time.

Wasted Spectrum Utilization

We use four different values of δ, 10, 50, 200 and 500, and report the results in Table 5.7 for the

first dynamic RWA model, with no lightpath re-arrangement. We report the maximum GoS for each

strategy and dataset. The results for the static case are obtained by considering all the traffic requests

at once at time period t = 1 and solving the problem using algorithm CG++ with strategy 3. After

each addition of δ unit requests, we optimize their provisioning while preserving the provisioning

of the legacy requests. We keep adding batches of δ requests until all requests have been added.

We observe that, when there is no lightpath re-arrangement, GoS with dynamic traffic is much

less than the optimum GoS of the static case. The difference varies with the step size δ. In every

data set, up to a turning point, a greater step size affects more the set of available lightpaths and

causes the GoS to drop. From that turning point on, sets of new traffic requests become big enough

and GoS behavior is closer to the one of the static traffic. For instance, in GER130, GoS decreases
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Table 5.7: Dynamic RWA with no lightpath re-arrangement

Data
GoS

instances Static
Dynamic

δ = 10 δ = 50 δ = 200 δ = 500

NSF30 96.6 83.7 71.6 74.1 96.6
NSF75 89.6 71.3 62.3 56.6 63.0
NSF115 87.0 70.6 61.3 52.8 59.4
USA75 92.9 87.0 78.6 71.2 78.5
USA125 90.9 80.6 76.5 66.3 68.7
USA150 84.8 73.7 65.8 57.6 59.3
GER100 94.9 82.7 75.7 68.9 76.3
GER130 95.0 81.8 71.6 67.9 71.7
GER150 79.8 60.7 55.0 44.7 48.5
NTT42 100.0 98.1 96.3 93.3 96.6
NTT50 100.0 90.1 89.4 85.2 89.7
NTT150 96.8 76.4 73.9 59.9 63.5
ATT120 98.6 81.3 75.5 86.1 98.6
ATT2113 99.5 84.5 80.0 85.5 95.5

as the step size grows from 50 to 200. After this point, with increasing the step size, GoS starts to

improve.

Minimizing the Lightpath Re-arrangements

We summarize in Table 5.8 the results obtained when considering some lightpath re-arrangement.

In these experiments, the value for PENAL is 0.1. For each problem instance, we report the maximum

GoS (absolute and percentage values), the cumulative number of re-arranged lightpaths (absolute

and percentage values), and then the average number of lightpath re-arrangement per time period.

As can be observed, this last number is quite small, i.e., always smaller than 8%. This shows

that, by allowing the re-arrangement of lightpaths, one can achieve a GoS very close to that of the

static traffic, while paying the cost of re-arranging a very small percentage of already established

lightpaths.

5.2 Large-Scale RSA Problem

We implemented the algorithms proposed in the previous section and tested them on the Spain

network (21 nodes, 35 edges) as in [Ruiz et al., 2013], see Figure 5.13.
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Table 5.8: Dynamic RWA with minimum lightpath re-arrangement

Data
δ

GoS Cumulative disruption
Average

instances
disruption

# % # % %

NSF30 50 415 95.2 78 18.8 3.7

NSF75 200 1,222 89.0 215 17.6 1.9

NSF115 500 1,920 87.5 361 18.8 4.3

USA75 50 1,234 92.4 351 28.4 1.1

USA75 200 1,234 92.4 314 25.4 4.1

USA125 100 2,160 89.2 573 26.5 1.4

USA125 500 2,158 89.1 447 20.7 5.6

USA150 200 2,855 81.4 802 28.1 1.9

USA150 500 2,841 81.0 695 24.5 3.1

GER100 250 2,206 93.3 505 22.9 2.9

GER100 500 2,201 93.1 392 17.8 4.7

GER130 250 2,861 94.1 856 29.9 2.8

GER130 500 2,848 93.7 670 23.5 4.4

GER150 250 4,507 79.5 1,712 38.0 1.9

GER150 500 4,483 79.1 1,303 29.1 3.0

NTT42 200 1,038 100.0 9 0.9 0.2

NTT50 200 1,362 100.0 24 1.8 0.8

NTT150 500 5,431 95.5 111 2.0 0.2

ATT1 50 359 100.0 160 44.6 7.3

ATT2 250 2,898 99.3 840 29.0 3.3
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Figure 5.13: Spain network topology

All computational results have been obtained with running the programs on a 1.9-2.5GHz Core

i5 machine with 4GB RAM running Windows 10, with the help of CPLEX (version V12.6.2) for

solving the (integer) linear programs.

5.2.1 Data Sets

We conducted our experiments on several randomly generated data instances. Each instance is

characterized by:

• A random selection of K source/destination pairs,

• A traffic profile in which each demand has a number of slots randomly generated in {1, 2, . . . , 8}
or {2, 4, . . . , 16}.

For computing the associated bandwidth, we assumed a slot width of 12.5 GHz and a spectral

efficiency of 25 Gb/s per slot as in [Ruiz et al., 2013].

5.2.2 Algorithm Performance

While the largest instances that Ruiz et al. [2013] were able to solve had up to 180 demands and

96 available slots, we were able to solve instances with 180 requests and 400 available slots on the

91



Spain network. The heuristic rule that we borrowed from Jaumard and Daryalal [2015] works well

as it allowed us to reach the optimal LP relaxation value in much less time than Ruiz et al. [2013].

We observe that for all data sets, the optimal LP value is indeed equal to the input load, and

can be reached fairly easily. Therefore, a challenge is to generate sufficiently good columns (i.e.,

lightpath configurations) in order to get good integer solutions, with a reasonable integrality gap (ε).

While ε is not very small, it is comparable or smaller than what has been obtained by Ruiz et al.

[2013].
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Table 5.9: Performance of the algorithm for RSA problem
Traffic # ε-optimal solution load

demand precomputed Weighted GoS (Tbps) Unweighted GoS average per link (%) # CPU

Total load
|D| |S|

k-shortest
GoSLB GoSILP % ε

# granted
%

# lightpaths
μ σ

cols time

(in Tbps) paths requests per config. (sec.)

Randomly generated (node pair) requests with a random number of slots drawn in {2, 4, . . . , 16} slots

7.45 35 80 639 7.45 6.70 90% 10% 30 86% 6.2 40.0 15.9 331 134

9.76 45 110 791 9.76 8.80 90% 10% 38 84% 6.7 35.5 10.7 365 177

10.70 60 156 812 10.70 9.45 88% 12% 51 85% 9.8 22.3 6.3 375 261

15.50 64 170 847 15.50 12.95 84% 16% 52 81% 7.7 28.9 9.2 477 630

15.10 70 236 956 15.10 13.10 87% 13% 59 84% 6.9 21.8 7.4 519 1,342

16.85 80 256 971 16.85 14.45 86% 14% 68 85% 7.7 23.1 5.8 622 1,419

Randomly generated (node pair) requests with a random number of slots drawn in {1, 2, . . . , 8} slots

3.67 35 50 451 3.67 3.17 86% 14% 30 86% 5.8 27.9 12.3 208 50

4.75 45 60 498 4.75 4.15 87% 13% 41 91% 4.8 34.3 12.4 326 86

6.77 60 75 904 6.77 5.75 85% 15% 50 83% 4.5 35.1 12.1 654 147

7.45 64 85 717 7.45 6.00 81% 19% 51 80% 7.4 31.7 11.3 380 176

7.37 70 100 729 7.37 6.17 84% 16% 57 81% 6.1 24.9 12.6 305 263

9.67 80 120 1,014 9.67 8.15 84% 16% 68 85% 7.2 29.0 8.7 356 323

11.95 112 150 1,301 11.95 10.22 86% 14% 98 88% 7.6 29.1 7.1 480 417

20.52 180 330 2,202 20.52 16.85 82% 18% 148 82% 7.1 20.8 4.6 635 1,606

20.52 180 400 2,202 20.52 18.27 92% 8% 160 89% 8.9 19.0 3.9 840 2,760
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Chapter 6

Conclusion and Future Works

We studied the problem of Routing and Wavelength Assignment (RWA) in WDM networks,

when the size of the problem is big, either due to the structure of the network itself, or the number

of incoming requests and available wavelengths. We provided exact solutions for both static and

dynamic traffic.

In a static state, we proposed very efficient algorithms for solving large scale RWA problems,

which allow the exact solutions of data sets with up to 90 nodes and 150 wavelengths. In addition,

we also provided two heuristics that provide very good solutions, in very short computing times,

while their accuracy can be assessed. It appears that the concept of limiting the search of wavelength

configurations using shortest paths, or a limited number of k-shortest paths is very promising in

terms of enhancing the performance of the ε-optimal or heuristic algorithms. Under dynamic traffic,

we found out that the level of re-arrangement that is required for maintaining a network in the state

of maximum GoS, is indeed very small (always smaller than 8%).

Future work should account for multi-rate lightpaths, and the minimum number of required

regenerators in the static case. Taking into account that the traffic can be divided into sensitive and

non-sensitive one, under dynamic traffic one can explore whether the re-arrangement level remains

small, when restricted to non sensitive lightpaths.

We also examined the Routing and Spectrum Assignment problem (RSA) and enhanced state

of the art results when big instances are concerned. We provided a new decomposition model for

the RSA problem which outperformed the performances of the decomposition used in Ruiz et al.
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[2013]. Improvements are still needed in order to solve realistic sized data instances.

Future work will include improving the scalability of the proposed solution scheme, and the

selection of the modulation. We might also consider the use of regenerators to enhance further the

GoS at the expense of an additional cost.
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Appendix A

Existing ILP max-RWA Models

We provide here a review on the ILP max-RWA formulations of the literature. There are three

general classes of ILP formulations for max-RWA problem. The first one corresponds to link for-

mulations and uses variables indexed with links. The second class of formulations relies on paths,

resulting in path formulations. The third one uses configurations and decomposition schemes and

is reviewed in the core part of the paper. General definitions and notations are the same as the ones

in Section 3.1.

A.1 Link Formulations

There are mainly three types of link formulations, characterized by the way the connection re-

quests are considered: individually (model RWA k), grouped with respect to their source/destination

nodes (model RWA sd), grouped with respect to their source nodes (model RWA s).

A.1.1 RWA k Request Indexed Model

Many authors used that formulation, it is the most used exact ILP one for the max RWA problem,

see, e.g., Krishnaswamy [1998]. Every connection request k ∈ K is characterized by its source vks

and its destination vkd . Variables are defined as follows:

xλk = 1 if request k is granted by wavelength λ, 0 otherwise.

xλk� = 1 if request k is granted by wavelength λ on link �, 0 otherwise.
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The mathematical formulation is as follows:

max zRWA k(x) =
∑
k∈K

∑
λ∈Λ

xλk (121)

subject to:

∑
�∈ω+(v)

xλk� =
∑

�∈ω−(v)

xλk� k ∈ K,λ ∈ Λ, v ∈ V \ {vks , vkd} (122)

∑
�∈ω+(vks )

xλk� =
∑

�∈ω−(vkd )

xλk� = xλk k ∈ K,λ ∈ Λ (123)

∑
�∈ω−(vks )

xλk� =
∑

�∈ω+(vkd )

xλk� = 0 k ∈ K,λ ∈ Λ (124)

∑
k∈K

xλk� ≤ 1 � ∈ L, λ ∈ Λ (125)

∑
λ∈Λ

xλk ≤ 1 k ∈ K (126)

xλk� ≤ xλk k ∈ K, � ∈ L, λ ∈ Λ (127)

xλk , x
λ
k�,∈ {0, 1} k ∈ K, � ∈ L, λ ∈ Λ. (128)

The objective function (121) maximizes the number of granted requests. Constraints (122) and (123)

establish the routes while respecting the wavelength continuity constraints. Loops at the source and

destination nodes are eliminated by Constraints (124). Constraints (125) prevent the wavelength

conflict: on each link, each wavelength belongs to at most one lightpath. Constraints (126) make

sure at most one wavelength is used for every request. Consistency between variables is guaranteed

thanks to Constraints (127). Constraints (128) define the domain of the variables.

A.1.2 RWA s Source Indexed Model

The second model is a source indexed formulation in which requests are grouped based on their

source nodes. This type of modelling was studied in Coudert and Rivano [2002], Tornatore et al.

[2002], Krishnaswamy and Sivarajan [2001a] and improved in Jaumard et al. [2007]. Let Ks denote

the set of connection requests starting from node vs, while V Ds contains their destination nodes.
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Define by Ds =
∑

v∈V Ds Dsd, the aggregated traffic request from node vs. Consider the following

variables:

yλs� = 1 if a connection request from vs is granted by wavelength λ on link �, 0 otherwise.

The mathematical formulation is as follows:

max zRWA s(y) =
∑

(vs,vd)∈SD

⎛
⎝∑

λ∈Λ

∑
�∈ω−(vd)

yλs� −
∑
λ∈Λ

∑
�∈ω+(vd)

yλs�

⎞
⎠ (129)

subject to:

∑
�∈ω+(v)

yλs� −
∑

�∈ω−(v)

yλs� = 0 λ ∈ Λ, vs ∈ V : Ds > 0, v ∈ V \ (V Ds ∪ {vs})

(130)∑
λ∈Λ

∑
�∈ω−(vd)

yλs� −
∑
λ∈Λ

∑
�∈ω+(vd)

yλs� ≤ Dsd vs ∈ V : Ds > 0, vd ∈ V Ds (131)

∑
�∈ω+(vd)

yλs� −
∑

�∈ω−(vd)

yλs� ≤ 0 λ ∈ Λ, vs ∈ V : Ds > 0, vd ∈ V Ds (132)

∑
vs∈V :Ds>0

yλs� ≤ 1 � ∈ L, λ ∈ Λ (133)

yλs� ∈ {0, 1} � ∈ L, λ ∈ Λ, vs ∈ V : Ds > 0. (134)

Again, the objective (129) maximizes the grade of service. Constraints (130) - (132) are flow conser-

vation constraints and take care of wavelength continuity requirements. Constraints (133) guarantee

that there is at most one connection request per wavelength on each link. Constraints (134) define

the domains of the variables.

A.1.3 RWA sd Node Pair Indexed Model

Link model RWA sd aggregates the requests according to their source and destination nodes. It

uses the following variables:

yλsd� = 1 if a connection request from vs to vd is granted by wavelength λ on link �, 0 otherwise.
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The mathematical formulation is as follows:

max zRWA sd(y) =
∑
λ∈Λ

∑
(vs,vd)∈SD

∑
�∈ω+(vs)

yλsd� (135)

subject to:

∑
�∈ω+(v)

yλsd� =
∑

e∈ω−(v)

yλsd� λ ∈ Λ, (vs, vd) ∈ SD, v ∈ V \ {vs, vd} (136)

∑
λ∈Λ

∑
�∈ω+(vs)

yλsd� =
∑
λ∈Λ

∑
�∈ω−(vd)

yλsd� ≤ Dsd (vs, vd) ∈ SD (137)

∑
λ∈Λ

∑
�∈ω−(vs)

yλsd� =
∑
λ∈Λ

∑
�∈ω+(vd)

yλsd� = 0 (vs, vd) ∈ SD (138)

∑
(vs,vd)∈SD

yλsd� ≤ 1 � ∈ L, λ ∈ Λ (139)

yλsd� ∈ {0, 1} � ∈ L, λ ∈ Λ, (vs, vd) ∈ SD. (140)

The objective (135) maximizes the grade of service. Constraints (136) and (137) are the continuity

constraints. Constraints (138) prevent the loops around source and destination nodes. Wavelength

conflict is avoided thanks to Constraints (139). Constraints (140) define the domain of the variables.

A.2 Path Formulation

This section discusses the ILP model that uses path variables. Such a model was studied in

e.g., Lee et al. [2002], Saad and Luo [2002]. Note that it is an exact model only if all paths are

considered, and therefore not scalable as soon as we consider topologies with more than 10 nodes.

Let P =
⋃

sd∈SD Psd be the overall set of simple (i.e., loopless) paths indexed by p, and δp� a

parameter that is equal to 1 if link � is in path p, 0 otherwise. Consider the following variables:

xλp = 1 if a lightpath is established using path p and wavelength λ, 0 otherwise.

The mathematical formulation is as follows:

max zPATH(x) =
∑
λ∈Λ

∑
p∈P

xλp (141)
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subject to:

∑
p∈P

δp�x
λ
p ≤ 1 � ∈ L, λ ∈ Λ (142)

∑
λ∈Λ

∑
p∈Psd

xλp ≤ Dsd (vs, vd) ∈ SD (143)

xλp ∈ {0, 1} p ∈ P , λ ∈ Λ. (144)

Again, the objective (141) maximizes the grade of service. Constraints (142) make sure that only

one lightpath is going through every pair of wavelengths and links. Constraints (143) force the

model to grant at most Dsd lightpaths to every pair (vs, vd). Constraints (144) define the domains

of the variables.
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