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An experimental investigation of the explosion characteristics of 33 

dimethyl ether-air mixtures 34 

 35 

Abstract 36 

In this work, experiments are performed to study the explosion characteristics of dimethyl ether 37 

(DME) -air mixtures using a standard 20-L spherical explosion test apparatus. The experimental 38 

data reported in this paper includes: the maximum explosion pressure (pmax), flammability limits, 39 

maximum rate of pressure rise (dp/dt)max, and combustion properties (i.e., laminar burning 40 

velocity, flame radius) of DME-air mixtures at different initial conditions. The experimental 41 

results indicate that the variation between pmax and DME concentration (CDME) exhibits a typical 42 

inverse “U” shaped behavior, with the peak pmax at slightly larger than the stoichiometric 43 

concentration. pmax is also found to decrease as the initial pressure goes down. As the initial 44 

pressure decreases from 100 kPa to 40 kPa, the lower flammability limit (LFL) is observed to 45 

vary slightly, while the upper flammability limit (UFL) is found to have a more significant drop. 46 

The relation between (dp/dt)max and CDME behaves similarly as that of pmax as a function of CDME, 47 

and the explosion pressure rises more abruptly at higher initial pressure. A satisfactory 48 

agreement is also found between the laminar burning velocity determined experimentally from 49 

the pressure measurement and that computed by PREMIX simulations. The present 50 

experimental results also show that the increase of the dimensionless radius of the flame is 51 

slower at higher initial pressure. 52 

 53 

Keywords: Dimethyl ether; Maximum explosion pressure; Flammability limits; Maximum rate 54 

of pressure rise; Laminar burning velocity; Flame radius.  55 

 56 
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1 Introduction 57 

Dimethyl ether (DME:CH3OCH3) is a promising oxygenated fuel that has the potential to be 58 

used as an alternative to natural gas for power production and as a substitute for diesel fuel. 59 

DME has high oxygen content of 35 % by weight, making the combustion smokeless and a high 60 

tolerance to exhaust gas recirculation [1]. The use of DME has been proven to significant 61 

decrease particulate formation, nitrogen or sulfur oxides (NOx and SOx), and carbon monoxide 62 

(CO) emission [2, 3]. DME also has a high Cetane number of 55 to 60 and a boiling point of 63 

-25 °C. These properties are ideal for fast mixture formation, reduction in ignition delay, and 64 

cold start for diesel engines [4]. 65 

Due to its potential as a future alternative fuel, the combustion characteristics of DME have 66 

attracted significant attention in recent years [5-10]. A number of experimental and numerical 67 

studies can be found in the literature on the combustion and emission characteristics of DME 68 

under engine conditions [11-13]. Fundamental properties such as flammability and laminar 69 

burning velocities [14-17], and combustion processes of DME under turbulent conditions [3] 70 

were also reported. Detailed chemical mechanisms for low and high temperature DME oxidation 71 

have been developed and validated [18, 19], and a recent mechanism for DME mixture at high 72 

pressures was also constructed by Burke et al. [20]. Furthermore, the effects of DME addition 73 

on the high-temperature ignition and burning properties of methane-air mixtures were studied 74 

experimentally and numerically [21]. Premixed and non-premixed ignition of methane/DME 75 

binary fuel blends with hot air has been investigated through numerical simulation with detailed 76 

chemistry and complete thermo-chemical as well as transport properties [22]. Detonation 77 

velocities and characteristic cell sizes of DME-oxygen and DME-air mixtures have been 78 

measured by Ng et al. [23] and Diakow et al. [24], and the explosion and detonation 79 
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characteristics of DME were experimentally investigated using a 180-L spherical vessel and a 80 

large-scale detonation tube by Mogi and Horiguchi [25]. In addition, experiments were also 81 

carried out to examine the leakage and explosion of liquid DME [26]. 82 

While DME flames have been studied extensively, comparatively little information exists 83 

on the explosion characteristics, e.g., flammability limits, maximum explosion pressure, pmax, 84 

maximum rate of pressure rise, (dp/dt)max of DME at various initial conditions. The knowledge 85 

of the explosion characteristics of DME is of importance to ensure the safety in industries that 86 

produce or use it. A realistic assessment of the explosion hazards of DME is necessary for 87 

preventive measures of explosion accidents and the design of effective mitigation schemes. 88 

Among those aforementioned combustion and explosion characteristics, a key combustion 89 

property is the laminar burning velocity (SL) which is the velocity of a steady one-dimensional 90 

adiabatic free flame propagating in the doubly infinite domain [27]. It received particular 91 

attention not only because it represents a basic characteristic property (e.g., reactivity, diffusivity, 92 

and exothermicity) of the premixed combustible gasses [28], its accurate knowledge is also 93 

essential for engine design, modeling of turbulent combustion, and validation of chemical 94 

kinetic mechanisms. In addition, the determination of laminar burning velocity is very important 95 

for the analysis and calculations used in the field of explosion protection [29]. Besides 96 

experimental measurement, the laminar burning velocity can also be estimated by numerical 97 

calculation through PREMIX simulations [30], or by semi-empirical mathematical model [31, 98 

32]. The results obtained from experimental measurement and numerical calculation can then be 99 

compared for validation and assessment, together with data reported in the literature [4, 33].  100 

The objective of the present study was twofold. First, the explosion parameters of DME-air 101 

mixtures are systematically measured from experiment. The explosion parameters include: the 102 
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maximum explosion pressure pmax, both lower flammability limit (LFL) and upper flammability 103 

limit (UFL), and the maximum rate of pressure rise (dp/dt)max. Second, the combustion 104 

characteristics (i.e., laminar burning velocity and the evolution of flame radius) are examined in 105 

detail under different initial conditions. The laminar burning velocity obtained from different 106 

methods are also compared and discussed.  107 

 108 

2 Experimental details 109 

2.1 Experimental setup 110 

Measurements of the explosion parameters in DME-air mixtures were carried out in a standard 111 

20-L explosion spherical vessel conforming to the international standard ISO6184-1, see Fig. 1. 112 

It essentially consists of an explosion chamber, an electric ignition system, a control unit, a data 113 

acquisition system, a release valve, a vacuum pump and an air compressor. High-voltage electric 114 

spark was used to supply ignition energy as in previous studies [34-39]. The igniter was 115 

mounted at the center of the spherical bomb and a spark energy of 10 J, estimated from 1/2 CU2 116 

(“C” and “U” refer the capacitance and voltage, respectively. C = 0.1102×10-3 F, U = 426 V), 117 

was delivered by an electric ignition system.  118 

 119 

2.2 Experimental procedure and conditions 120 

For the explosion experiments, gas concentrations were regulated by the gas partial pressures. 121 

The purity of the DME used in this experiment is 99.8 %. During the experiments, the explosion 122 

pressure evolutions were measured by a PCB pressure transducer installed in the vessel wall and 123 

recorded by a data acquisition system for each shot. These data yielded values of the maximum 124 

explosion pressure and maximum rate of pressure rise as illustrated in Fig. 2. This figure shows 125 
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a typical pressure history of the DME-air of CDME = 10% at an initial pressure p0 of 100 kPa. 126 

The combustion time tc is defined as the period from ignition to the time when the overpressure 127 

reaches its maximum. The measurements were repeated at least 3 times, and results were 128 

presented in the figures with error bars determined by the standard deviation. The main sources 129 

of the small variation can stem from the effect of wall cooling, ignition source, the degree of 130 

mixture homogeneity and asymmetry [40]. In this study, a wide range of initial conditions of 131 

DME-air mixtures were used. The initial pressure ranges from 40 kPa to 100 kPa, and fuel 132 

concentrations are from 3 to19.5 %. 133 

3 Results and discussion 134 

3.1 Maximum explosion pressure  135 

Gas explosion max-overpressure is an important parameter of evaluating the explosion hazard. It 136 

reflects the energy distribution of explosive waves in their propagation process [41-46]. The 137 

measurement of the explosion pressure in quiescent DME-air mixtures with various 138 

compositions at the ambient condition are summarized in Table 1. In this table, pmax and its 139 

corresponding tc are directly obtained from the pressure history. For comparison, the adiabatic 140 

pressure pad is also given and is calculated from thermo-chemical analysis using the GASEQ 141 

software [47]. These experimental data of pmax are also compared with those reported by Mogi 142 

and Horiguchi [25], and a curve fit of pmax using smoothing splines is also given for better 143 

comparison, see Fig. 3. The explosion pressure reaches its maximum value at a composition of 144 

7.5 %, which is slightly larger than the stoichiometric concentration (6.5 %). A similar behavior 145 

is also observed by Mogi and Horiguchi [25] in their 180-L spherical vessel. Near the 146 

stoichiometric condition, both the present data as well as the results by Mogi and Horiguchi [25] 147 

agree well with the adiabatic explosion pressure determined from chemical equilibrium within 148 
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the experimental uncertainties. The experimental measurement starts to deviate from the 149 

adiabatic pressure at off-stoichiometric conditions, prominently on the rich side. As pointed out 150 

by Mogi and Horiguchi [25], at those conditions the combustion speed decreases and the event 151 

departs from its constant-volume explosion character. Incomplete combustion and the effect of 152 

cooling also give rise to this discrepancy, which are susceptible to the scale of the apparatus. In 153 

fact, it can also be seen from Fig. 3 that, the results of pmax from this study are slightly larger 154 

than those of Mogi and Horiguchi near stoichiometric concentration, though within 155 

experimental uncertainties. A contrary behavior is also observed as the composition tends to 156 

both the fuel lean and rich sides. It is noteworthy that in [25], Mogi and Horiguchi used a 180-L 157 

spherical vessel, while the present study is performed using a 20-L one. Thus, the discrepancy at 158 

off-stoichiometric conditions can be caused by the wall cooling effects. Near stoichiometric 159 

conditions, the combustion speed is high and the cooling rate has less influence on the 160 

overpressure. However, for incomplete combustion where the temperature is lower (i.e., at off 161 

stoichiometric conditions), the combustion speed becomes slower, which allows a longer time 162 

scale of the phenomenon for the cooling effect to come into play. The faster cooling of a smaller 163 

volume in the 20-L chamber, as compared to the 180-L large-scale apparatus used by Mogi and 164 

Horiguchi [25], thus results in a lower overpressure. 165 

Figures 4 to 6 show the results of pmax for different DME compositions at an initial pressure 166 

lower than the atmospheric condition, i.e., 80 kPa, 60 kPa and 40 kPa. To show the general trend 167 

in the experimental data, curve fits using a third order polynomial are also plotted for better 168 

visualization. Note that there is no previous experimental data at those pressure values for direct 169 

comparison. Therefore, the measured data are merely compared with the chemical equilibrium 170 

results obtained using the GASEQ software [47]. Similarly, large difference is observed as the 171 
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condition moves toward the LFL and UFL. Again, the theoretical maximum explosion pressure 172 

determined from the equilibrium calculation is based on the hypothesis of ideal adiabatic 173 

explosion. As the composition tends to fuel-lean or fuel-rich sides, not only incomplete reaction 174 

occurs but also the heat loss to the surrounding can affect the explosion process, making the 175 

measured values different from the chemical equilibrium calculation of an ideal adiabatic 176 

explosion. It is observed from Figs. 4 to 6 that the value of pmax goes down as the initial pressure 177 

decreases. This observation perhaps suggests that the faster reactivity induced by the higher 178 

initial pressure reduces the effect of heat losses on the explosion process. Hence, the higher 179 

initial pressure may maintain higher explosion temperature, which in turn results in the rise of 180 

overpressure. 181 

 182 

3.2 Flammability limits 183 

Table 2 shows the LFL and UFL for the DME-air mixture at different initial pressures. These 184 

limits were determined when half of the shots at the same condition indicate no occurrence of 185 

explosion. It is observed that the LFL has only a small fluctuation as the initial pressure 186 

decreases, i.e., only a small increase from 3.5 % to 3.75 % as the initial pressure changes from 187 

100 kPa to 40 kPa. However, the UFL is found to have relatively a more significant drop, which 188 

changes from 19 % to 12.5 %. Reducing the initial pressure is found to narrow the interval width 189 

of these two limits. It is worth to point out that this observed behavior is similar to hydrogen/air 190 

[48] in which the lower flammability limit is not significantly sensitive to the initial pressure, 191 

while the latter has more significant effect on the UFL. From the chemical kinetic point-of-view, 192 

the effect of pressure increase has an influence on the reaction rates, especially those involved 193 

third body collisions. As shown in [33], reaction steps involving H and methyl radicals show 194 
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greater sensitivity for rich mixtures at high pressure. Such kinetic effect may thus render the 195 

UFL more sensitive to the initiate pressure.  196 

 197 

3.3 Maximum rate of pressure rise 198 

The maximum rate of pressure rise (dp/dt)max is a commonly examined parameter for explosion 199 

characteristics evaluation and used in deflagration index determination as in several previous 200 

studies [49, 50]. The results of (dp/dt)max as a function of DME concentration at different initial 201 

pressures are shown in Fig. 7. It can be seen that, the relation between (dp/dt)max and CDME is 202 

very similar as that of pmax as a function of CDME. The result indicates that the pressure rises 203 

more abruptly at higher initial pressure. While for the same initial pressure, the value of 204 

(dp/dt)max is larger near the stoichiometric condition. 205 

It is noteworthy that the rate of pressure rise reaches its maximum value at a slightly higher 206 

concentration of approximately 7.5 % (φ = 1.159) than the stoichiometric condition (φ = 1), with 207 

a mean value of 46.09 MPa/s. Although this behavior is similar to that for the natural gas 208 

(NG)-air mixture observed in Zhang et al. [29] (with an average value of 18.86 MPa/s at the NG 209 

concentration of 10.5 % or φ =1.117), yet the pressure increases more abruptly in DME-air than 210 

in NG-air mixtures.  211 

 212 

3.4 Laminar burning velocity  213 

Laminar burning velocity (SL) is a unique property of a combustible mixture, indicating its 214 

reactivity and exothermicity in a given diffusive medium. Since it contains the physico-chemical 215 

information of the mixture, many premixed flame phenomena, e.g., extinction, flash back, 216 

blow-off, and turbulent flame propagation, can be characterized with SL being a reference 217 
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parameter [28]. In this study, the laminar burning velocity is computed through two different 218 

methods. The first one uses the PREMIX module of the CHEMKIN-II. The PREMIX code 219 

adopts a hybrid time-integration/Newton-iteration technique to solve the steady-state mass, 220 

species and energy conservation equations for a freely propagating flame. It has been widely 221 

used in many previous studies [21, 51-54]. In this study, 1200 grid points are imposed in the 222 

PREMIX calculations to assure a fully converged prediction. Also a small time-step ∆t = 223 

5.0×10-7 sec is used for the computation. The present PREMIX calculation is coupled with the 224 

reaction scheme [14] involving 46 species and 263 reactions. This reaction mechanism was also 225 

used previously by Chen et al. [21] to perform PREMIX calculations of the laminar burning 226 

velocities for DME/CH4/air mixtures. The mechanism was verified by Chen et al. [21] by 227 

comparing measured laminar burning velocities from experiment with calculations and the result 228 

shows reasonable agreement with the largest difference less than 10 %. The second method 229 

considers a mathematical model proposed by Dahoe et al. [31, 32], in which the laminar burning 230 

velocity depends on pmax and dp/dt. SL calculated by this model was also used in our previous 231 

study of NG-air mixtures [29]. The model gives the following expression: 232 

2/31/ 1/1/3
0 0 max

L
max 0 max 0

1 1 4 1
( ) 3 3

p p p p dpS
p p V p p p p dt

γ γ
π

−
−       − = − ×      − −         

         (1) 233 

where V is the vessel volume, p and p0 are the actual pressure and initial pressure, γ the adiabatic 234 

coefficient of the unburned gas. SL is determined by a fitting method proposed by Dahoe, in 235 

which SL is calculated by fitting the pressure history measurement (i.e., actual pressure p and 236 

dp/dt). A pressure (p)- laminar burning velocity (SL) curve is then obtained. Afterwards, SL0 at 237 

the reference pressure (i.e., 100 kPa) can be determined by the extrapolate data from a linear 238 

curve fit of p-SL. [55-57]. SL is calculated at a flame radius greater than 6 mm to avoid the effect 239 
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associated to the spark ignition [58], so the result can be considered as an ideal spherical flame 240 

propagating outward. 241 

 The laminar burning velocity of DME-air mixtures at different equivalence ratios under 100 242 

kPa determined using the two aforementioned techniques are shown in Fig. 8. The reported 243 

results by Qin and Ju [33] and Daly et al. [4] are also included in the same figure for comparison. 244 

As shown in Fig. 8, it appears that the computed laminar burning velocity from Eq. (1) agrees 245 

reasonably well with the PREMIX simulation. The largest difference between these two sets of 246 

data is 42.93 % at the fuel rich condition at 100 kPa. At this condition however, the results from 247 

Eq. (1) are very close to the experimental data reported by Qin and Ju [33]. Overall, one can 248 

argue that the above comparison shows no significant difference for computing the laminar 249 

burning velocity using Eq. (1) and the PREMIX code. Similar comparisons of the computed 250 

laminar burning velocity of DME-air mixtures at different equivalence ratios with initial 251 

pressures of 80 kPa, 60 kPa and 40 kPa are also shown in Fig. 9. Again, a reasonable agreement 252 

between the two results still holds.  253 

Figures 8 and 9 also indicate a decreasing trend of SL with the increase of initial pressure, 254 

e.g., SL is found to be 61.52 cm/s at 40 kPa which is larger than 48.40 cm/s at 100 kPa at the 255 

same composition of CDME = 7.5 %. The behavior of decreasing trend of SL with the increase of 256 

initial pressure is caused by the increasing density, ρu, with increasing pressure. As demonstrated 257 

by Law [28], the eigenvalue for flame propagation is SL = f 0/ρu, (where f 0 and ρu are the mean 258 

laminar burning flux and density, respectively). By increasing pressure, f 0 increases. It 259 

demonstrates that the increase in density with pressure dominates over the retarding effect of SL.  260 

 261 



12 
 

3.5 Flame radius  262 

The flame radius, rf, is also calculated through the equation proposed by Dahoe et al. [31, 32] as 263 

follows: 264 

1/31/1/3
0 max

f
max 0

3 1
4

p p pVr
p p p

γ

π

    − = −     −       
           (2) 265 

 f a/r r r=                (3) 266 

where rf is the flame radius, ra the radius of the vessel and r the dimensionless radius of burned 267 

gas. The typical results for stoichiometric DME-air mixtures at different initial pressures are 268 

shown in Fig. 10. It can be seen that the flame radius increases just after the time of 0.02 sec, 269 

and it increases rapidly until it reaches the wall of the spherical chamber. This process is 270 

established as the pressure rise stage. Figure 10 also shows that at the same given time, the 271 

dimensionless radius of the flame is relatively greater (i.e., the flame propagates to a longer 272 

distance at the same time) at lower initial pressure, which is due to the higher burning velocity. 273 

 274 

4 Concluding remarks 275 

This paper presents a detailed investigation on the explosion characteristics (i.e., maximum 276 

explosion pressure, flammability limits, maximum rate of pressure rise) and combustion 277 

properties (i.e., laminar burning velocity, flame radius) of DME-air mixtures. Experiments are 278 

performed by systematically measuring the pressure evolutions in a standard 20-L explosion 279 

spherical vessel. 280 

 The present measurement shows that the variation between pmax and DME concentration 281 

(CDME) exhibits a typical inverse “U” shaped behavior, and pmax reaches its peak value when its 282 

equivalence ratio is slightly larger than 1. It is found from the present measurement that pmax 283 
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decreases as the initial pressure goes down. The flammability region is found to be from 3.5 % 284 

to 19 % of DME by volume at the ambient condition. As the initial pressure decreases from 100 285 

kPa to 40 kPa, the LFL varies slightly and shows little sensitivity to the initial pressure, while 286 

the UFL exhibits a more significant drop. The experimental data also show that the explosion 287 

pressure rises more abruptly at higher initial pressure. The relation between (dp/dt)max and CDME 288 

is found to be very similar to that of pmax as a function of CDME. Laminar burning velocity was 289 

also estimated using both the PREMIX simulation and a mathematical model based on the 290 

measured pressure evolution, and a satisfactory agreement is found between those results, 291 

especially for CDME ≤ 9.5%. A decreasing trend of SL is observed with the increase of initial 292 

pressure. This is due to the resulting increase in density with pressure causing the decreasing the 293 

observed retarding effect of SL. Finally, the calculated dimensionless radius of the flame from 294 

the pressure history is found to be smaller at higher initial pressure. 295 
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Tables 460 

 461 

Table. 1 Mixture compositions for the experimental tests, along with maximum explosion 462 

pressure pmax, corresponding combustion time tc, and adiabatic pressure pad 463 

Table. 2 Flammability limits of DME-air at different initial pressures 464 

 465 

466 
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 467 
 468 
 469 

Table. 1  470 
 471 

Test n. 
DME 
% v/v 

O2 
% v/v 

N2 
% v/v 

pad 

MPa 
pmax 
MPa 

pad-pmax 
MPa 

tc 
s 

1 3.0 20.37 76.63 0.6042 0.1000 0.5042 — 
2 3.5 20.27 76.24 0.6699 0.1446 0.5253 0.3574 
3 4.0 20.16 75.84 0.7316 0.4687 0.2629 0.2612 
4 5.0 19.95 75.05 0.8406 0.8844 -0.0438 0.1064 
5 6.0 19.74 74.26 0.9244 1.0011 -0.0767 0.0726 
6 6.5 19.64 73.87 0.9548 1.0578 -0.1030 0.0732 
7 7.0 19.53 73.47 0.9770 1.0767 -0.0997 0.0610 
8 7.5 19.43 73.08 0.9908 1.0781 -0.0873 0.0668 
9 8.0 19.32 72.68 0.9971 1.0447 -0.0476 0.0610 

10 9.0 19.11 71.89 0.9953 0.9953 0.0000 0.0736 
11 10.0 18.90 71.10 0.9847 0.9157 0.0690 0.1042 
12 11.0 18.69 70.31 0.9704 0.7448 0.2256 0.1752 
13 12.0 18.48 69.52 0.9540 0.5341 0.4199 0.2888 
14 13.0 18.27 68.73 0.9358 0.3364 0.5994 0.3867 
15 14.0 18.06 67.94 0.9161 0.2532 0.6629 1.0900 
16 15.0 17.85 67.15 0.8949 0.1810 0.7139 1.2050 
17 16.0 17.64 66.36 0.8724 0.1286 0.7438 1.3134 
18 17.0 17.43 65.57 0.8486 0.1218 0.7268 1.3265 
19 18.0 17.22 64.78 0.8236 0.1195 0.7041 1.4118 
20 19.0 17.01 63.99 0.7972 0.1192 0.6780 1.4339 
21 19.5 16.91 63.60 0.7836 0.1000 0.6836 — 

 472 
473 
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 474 
 475 
 476 
 477 
 478 
 479 

Table. 2  480 
 481 

p0 (kPa) LFL (% v/v) UFL (% v/v) 
100 3.50 19.00 
80 3.75 15.00 
60 3.33 14.17 
40 3.75 12.50 

 482 
483 
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 484 

Figure captions 485 

Fig. 1 The 20-L explosion spherical vessel (1 = DME, 2 = air). 486 

Fig. 2 Determination of the maximum explosion pressure and the combustion time from a 487 

typical experimental pressure history.  488 

Fig. 3 pmax as a function of DME concentration, compared with Mogi and Horiguchi [25] 489 

and adiabatic pressure from equilibrium calculations (p0 = 100 kPa). A curve fit of pmax 490 

is also shown in the plot. 491 

Fig. 4 pmax as a function of DME concentration, compared with chemical adiabatic pressure 492 

from equilibrium calculations at an initial pressure of p0 = 80 kPa. A curve fit of pmax is 493 

also shown in the plot. 494 

Fig. 5 pmax as a function of DME concentration, compared with adiabatic pressure from 495 

equilibrium calculations at an initial pressure of p0 = 60 kPa. A curve fit of pmax is also 496 

shown in the plot. 497 

Fig. 6 pmax as a function of DME concentration, compared with adiabatic pressure from 498 

equilibrium calculations at an initial pressure of p0 = 40 kPa. A curve fit of pmax is also 499 

shown in the plot. 500 

Fig. 7 Maximum rate of pressure rise as a function of DME concentration for different initial 501 

pressures. Curve fits (shown by the solid lines) are also provided to show the trend in 502 

the data.    503 

Fig. 8 Comparison of the laminar burning velocity from chemical simulation and experiment 504 

at an initial pressure of p0 = 100kPa, Data from Qin and Ju [33] and Daly et al. [4] are 505 

also shown for comparison. 506 
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Fig. 9 Comparison of the laminar burning velocity calculated by detailed reaction kinetic 507 

simulations and determined from explosion properties: (a) 80 kPa, (b) 60 kPa; and (c) 508 

40 kPa. 509 

Fig. 10 Dimensionless radius of burned DME-air mixtures with an equivalent ratio of φ = 1 at 510 

different initial pressures. 511 
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