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Relative equilibria of two and three satellite vortices in a rotating shallow water layer

have been recorded via Particle Image Velocimetry (PIV) and their autorotation speed

was estimated. This study shows that these equilibria retain the fundamental character-

istics of Kelvin’s equilibria, and could be adequately described by the classical idealized

point vortex theory. The same conclusion can also be inferred using the experimental

dataset of Bergmann et al. [J. Fluid Mech. 2011, 2012] if the assigned field’s contribution

to pattern rotation is included.

1. Introduction

The idea of rotating N -point vortices was first used by W. Thomson (1878) (Lord

Kelvin) as a basis to build the well-known (but now abandoned) vortex atom theory.

Kelvin’s conceptual polygons resemble closely those that Mayer (1878) and Grzybowski
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et al. (2000) observed in experiments with magnetized needles and millimeter-sized mag-

netized disks under the influence of an externally applied magnetic field. The point vortex

model survived to the decline of vortex atom theory and found applications in several

fields of physics such as superfluidity, plasma physics and climatology; see Yarmuchk et

al. (1979), Fine et al. (1995), Durkin & Fajans (2000), Morikawa & Swenson (1971)

and Bauer & Morikawa (1976).

The question of linear stability of N equal strength vortices, positioned at the vertices

of regular polygons, remains of particular interest for its theoretical and practical sig-

nificance. This question was first tackled by J.J. Thomson (1883). A complete analysis

of the stability of point vortices system including the influence of an assigned rotating

background fluid (of relevance here) was carried by Havelock (1931). Recently, this lin-

ear stability analysis was generalized to the case of N helical vortices by Okulov (2004).

Stable stationary vortex patterns are ubiquitous in rotating fluids. Examples include

the vortex patterning observed in rotating superfluid 4He, gyrating electron columns

confined in Malmberg-Penning trap and stable helical multiplets of vortex in a rotating

cavity flow; see Yarmuchk et al. (1979), Fine et al. (1995), Durkin & Fajans (2000) and

Sørensen et al. (2011).

Recently, using Particle Image Velocimetry (PIV), Bergmann et al. (2011) reported

experimental details on vortex patterns within a swirling shallow water layer. They have

observed an ensemble of three-satellite vortices, equally distributed in a ring of certain

radius rotating around the axis of rotation in unison. The study by Bergmann et al.

(2011), among other things, tried to verify the conjecture of Vatistas et al. (2008) on the

origin of the polygonal patterns in a hollow-core vortex within a swirling shallow water

layer, Vatistas (1990), Jansson et al. (2006) and Ait Abderrahmane et al. (2009, 2011).

The conjecture was based on two strong observations and states that these polygons
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are the results of strong satellite vortices at their apexes. The first observation was the

striking correspondence between the stability properties of these polygonal patterns and

Thomson’s point vortex configurations. The second was that the vortex-ring to tank

(boundary) radii ratios satisfied closely Havelock’s (1931) limiting values for stability.

The conclusion of Bergmann et al. (2011) was that these polygonal figures could not

possibly be described by the simplified point vortex model.

The validity of the conjecture in Vatistas et al. (2008) is the central question examined

also in the present paper. With respect to this question the results of Bergmann et al.

(2011) as indicated in Bergmann et al. (2012) are inconclusive. The last is the result of

not accounting for the background fluid rotation. Here by background flow we mean the

flow inside the vortex-ring induced by the rotating disk at the bottom of the container,

which is characterized by more or less constant rotational speed (vorticity); see Fig.

7c and Fig. 1b in Bergmann et al. (2011) and Bergmann et al. (2012), respectively. It

will be confirmed below that the background flow inside the ring is in solid body like

rotation. Although an accurate way to estimate the background flow could be a matter

of discussion, such flow cannot be simply omitted when the question whether or not

the observed regular vortex pattern can be described by the old point vortex theory, is

addressed.

The flow under consideration is complex but employing the experimental approach of

Bergmann et al. (2011) one can gain a deeper insight of the event. In order to acquire

additional details of the phenomenon, we carefully conducted our experiments, following

a similar experimental method as in Bergmann et al. (2011). We show that our results

and in fact those presented in Bergmann et al. (2011, 2012) support the fact that the

flow under consideration can be reasonably described by the point-vortex theory if the

contribution of the assigned flow is taken into consideration. In order to estimate the
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Figure 1. A schematic of the experimental apparatus. The present tests were conducted using

tap water. The height of the (quiescent) water layer H0 was 34 and 40 mm, the disk and tank

radius were Rd = 126 mm and R = 142 mm, respectively.

rotational speed of the vortex pattern, Bergmann et al. (2011, 2012) as well as the present

work require a formula that accounts for the background fluid rotation, see Havelock

(1931). The relationship employed by Bergmann et al. (2011, 2012) (their Eq. 4.1) is

only applicable to the case of a quiescent carrier fluid, or in the frame of reference

rotating with the bulk fluid, inside the vortex ring. We show here that accounting for the

last detail, our present experiments and indeed those of Bergmann et al. (2011) indicate

that the measured speed of pattern autorotation is consistent with that predicted by the

idealized point vortex theory.

2. Experiment setup

The experimental setup employed in this study is the same as that described in more

detail in Vatistas et al. (2008). A shallow layer of water was brought into swirl by a

rotating disk (in the counterclockwise direction) at the bottom of a Plexiglas stationary

cylindrical tank; see Fig. 1. The main control parameter is the frequency f of the rotating
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Figure 2. Sample of raw images used in the data analysis showing the white Polystyrene

particles as were distributed on the free surface.

disk. The height H0 of the (quiescent) water layer, the radius R and Rd of the cylindrical

container and the disk could be also considered as other control parameters but in our

experiments these were kept constant. The flow field on the free surface of the swirling

shallow water layer was obtained using PIV. White Polystyrene 250 µ-mm-spherical

particles (lighter than water), spread as sparsely as possible over the free surface, were

used to measure the velocity field at the free surface. The flow field dynamics are imaged

from above using a high speed camera (model PCO.1200hs). A sample of raw images

used for the data analysis are shown in Fig. 2 (a,b).

The data analysis begun with the extraction of the flow field on the free liquid surface

as viewed by an observer located in the laboratory frame of reference. The streamlines for

this flow field, shown in blue in Fig. 3 (a,b), were constructed first. The streamlines of the
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combined flow as seen by an observer rotating with the background fluid, are illustrated in

Fig. 3 (a,b). This is achieved by subtracting the counterclockwise background flow, which

as shown below rotates at a constant angular velocity. In this frame of reference, a central

vortex (in green) comes into view. For the case of a two-vortex pattern the central vortex

is absent; because perhaps it was too weak to be observed. Counterclockwise rotating

satellite vortices (in black) and clockwise rotating lateral vortices (in red) are nested into

the background flow. The latters are located outside the vortex ring at the disk radius,

Rd, and they are similar to those following the shear layer instability in rotating fluid,

see Poncet & Chauve (2007) and Rabaud & Couder (1983). Note that the interplay

between the inertial and shear instabilities or between the vortices inside and outside the

vortex ring can be an interesting research that is beyond the scope of the present paper.

In the frame of the present study that is limited to counterclockwise rotating satellite

vortices, the lateral vortices seem not to have a significant influence. The counterclock-

wise rotating satellite vortices are arranged symmetrically on a ring around the axis of

rotation. These, having swirling speeds that are higher than the carrier fluid (∼= 3 times

more in the case of triangular pattern and ∼= 2 times more in the case of ellipsoidal pat-

tern) distort the otherwise circular streamlines of the underlying flow thus giving them a

polygonal shape. A schematic of the flow configuration is displayed in Fig. 4a. Here, the

rotating background fluid speed was estimated using the flow velocity measured along a

ray that begins at the origin and passes through a satellite vortex. Along this ray the

influence of the central, satellite and lateral vortices which are expected to modulate the

motion of the assigned swirling flow field is minimal. Also along this ray the water depth

is low enough to match the one assigned by the rotating disk. The flow measurements

indicate that the background fluid motion is in solid body rotation; see Fig. 5. This cor-

responds to the quasi-straight dotted-line, Fig. 7c in Bergmann et al. (2011) and more
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or less to a constant vorticity plateau inside the vortex ring; see Fig. 1b in Bergmann et

al. (2012). Here, we would like to point out that the highly spiky vorticity plateau inside

the vortex-ring is unphysical; this should stem from the order of approximation of the

derivative used in the calculation of their vorticity from the velocity field. In this case

working with the velocity field, as done in our study, shall provide more confidence than

working with vorticity.

3. Results and Discussion

The kinematics of these vortex ensembles in relation to the background flow can be

described by the relation provided by Havelock (1931) for a system of vortices arranged

in ring in an assigned flow, i.e.,

Ω(Rv)p/l =
(N − 1) Γ

4πR2
v

+ Ω(Rv)f/l (3.1)

where (N−1)Γ
4πR2

v

is the autorotation of the vortex system for an observer rotating with

angular speed of the assigned flow, and Ω(Rv) and Γ are the angular velocity of the ring

(of radius Rv) and the circulation of a satellite vortex, respectively. The subscripts p, f ,

and l indicate vortex pattern, fluid, and laboratory respectively, while / denotes ‘relative

to’.

In the case of the system of three vortices, the angular velocity of the background

flow, i.e., the slope of the solid body rotation region, is found to be 10.8 rad/s, see Fig.

5a. The strength or the circulation Γ of the satellite vortices in Eq. (3.1) is estimated

as 2πrv, where r = 10 mm and v = Vθ(Rv + r) − Vθ(Rv) = 0.33 m/s where r denotes

the radius of the satellite vortex, v the tangential velocity relative to the background

flow and Rv = 0.075 m. The estimated autorotation of the vortex system is 0.6 rad/s

and hence the angular velocity of the pattern estimated from Eq. (3.1) is 11.4 rad/s.



8 H. Ait Abderrahmane et al.

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1 a)

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1
b)

Figure 3. Streamline configuration constructed based on the surface flow PIV measurements.

The blue lines indicate the streamlines of the flow field as seen from the laboratory frame of

reference. The black lines represent the streamlines as seen by an observer rotating with the

fluid angular velocity Ω(Rv), where Rv (ring radius; where the centers of satellites vortices are

located). The green line represents the central vortex while the red lines represent the clockwise

rotating lateral vortices.

However, the measured value from the recorded raw images is 11.9 rad/s. The difference

between the estimated and the measured values of the angular velocity of the three-

vortex ensemble is approximately 4%. According to Havelock (1931) the autorotation of

the vortex arrangement with outer boundary is

(N − 1) Γ

4πR2
v

+
Γ

2πRv

N−1
∑

s=0

(

R2/Rv

)

C − Rv

R4/R2
v + R2

v − 2R2C
(3.2)

where C = cos (2sπ/N). Therefore, the difference becomes approximately 3% if one

considers the influence of the cylindrical boundary.

Similar analysis was also carried out on a system of two satellite vortices, see Fig. 5b.

The angular velocity of the background flow is found to be 13.4 rad/s, see Fig. 5b. The



9

Figure 4. Schematic of the satellite vortices distribution.

estimated autorotation of the vortex system is 0.5 rad/s and hence the angular velocity

of the pattern estimated from Eq. (3.1) is 13.9 rad/s. However, the measured one from

the recorded raw images is 14.9 rad/s. The difference between the estimated and the

measured values of the angular velocity of the three-vortex ensemble is approximately

7%. Based on the above analysis, one can easily notice that in order to compare the

angular velocities in the laboratory frame of reference, the Eq. 4.1 in Bergmann et al.

(2011, 2012) should have included the contribution of the assigned flow field, as shown

in Havelock (1931). In the following we demonstrate that if Bergmann et al. (2011) had

taken into consideration the rotation of the carrier fluid then the estimated and measured

angular velocities in the laboratory frame of reference would not differ by one order of

magnitude.

The first issue that one can easily notice in Bergmann et al. (2011) is the estimation
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Figure 5. Tangential velocity Vθ in the laboratory frame of reference as function of distance

(in m) from the rotation axis on a ray passing through a satellite vortex. a) triangular pattern,

b) ellipsoidal pattern.
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of the rotational angular speed of the vortex pattern. The given value of 2.44 rad/s,

considered as the angular speed of the pattern, is in fact the rotational speed of the quasi-

solid body rotation of the background flow Ω(Rv)f/l as defined previously. Otherwise,

one could not justify or explain the fact that vortices at each arm can still be observed

after subtracting the rotation rate of the figure, see Fig. 8(b) in Bergmann et al. (2011).

The vortices were observable because the background flow and not the rotation rate of

the figure has been subtracted. However, if one uses the flow measurements to estimate

the angular speed of the pattern, then the angular velocity of the vortex centers or

vortex-ring located at radius (Rv ≈ 110 mm) from the center of the rotation, provides

a more appropriate value for the speed of the ensemble. The last angular velocity value

can be obtained from the curve represented in Fig. 7 of Bergmann et al. (2011) by a

dotted line; its value is Vθ(Rv)p/l = 302 mm/s. Hence the speed of the vortex pattern

is Ω(Rv)p/l = 302/110 = 2.74 rad/s. As expected, this value is higher than that of the

fluid (2.44 rad/s), which also explains the spiraling effects around the satellite vortices as

mentioned also in Bergmann et al. (2011). Due to mutual advection, the angular speed of

the vortex pattern is the difference between the rotational speed of the ensemble and the

background flow; both estimated in the laboratory frame of reference, i.e., Ω(Rv)p/l −

Ω(Rv)f/l = Ω(Rv)p/f = 2.74 − 2.44 = 0.3 rad/s. The last value is very close to the

estimated value (0.26 rad/s) obtained using the Eq. 4.1 in Bergmann et al. (2011, 2012).

The same result can also be obtained via the additional data provided in Fig. 1b of

Bergmann et al. (2012). Their figure indicates that the maximum total vorticity value

(satellite vortex plus background fluid) is approximately Ωtotal = 20 rad/s, and that the

average vorticity in the region inside the ring is Ωfluid ≈ 6 rad/s. Hence, for an observer

in the rotating frame of reference riding the background flow, the vorticity inside the

satellite vortices is Ωvortex = Ωtotal − Ωfluid = 14 rad/s. The rotational speed of a
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satellite vortex is then ω = Ωvortex/2 = 7 rad/s. The maximum tangential velocity of

the vortex can be calculated as V = ω r = 0.14 m/s provided that the radius of this

vortex r = 0.020 m. Hence, using Eq. 4.1 in Bergmann et al. (2011) the rotational speed

of the three-vortex system in the fluid frame of reference is Ωfluid = V r/R2
v = 0.23 rad/s

(where Rv = 0.110 m is the radius of the vortex-ring). This value is very close to the

value (0.26 rad/s) given in Bergmann et al. (2011, 2012). Note that this estimation can

essentially vary due the uncertainty in the evaluation of the average vorticity inside the

vortex ring because of the spiky profile.

4. Conclusion

The present work fortifies our previous conjecture in Vatistas et al. (2008), that the

observed regular vortex patterns are a real fluid manifestation of the venerable fluid flow

problem, idealized long ago via Hamiltonian potential point vortices. The strengthening

of our original argument involves the value of the pattern speed which is shown to be

consistent with that predicted using the old simplified theory by Havelock (1931). Addi-

tional evidence in support of the present confirmation is the fact that stability conditions

of this cluster, in terms of the ratio Rv/R (where R is the radius of the containing vessel),

are very close to Havelock’s theoretical limits 0.567 and 0.462 for three and two vortex-

patterns, respectively. The corresponding ratios found experimentally are: Rv/R = 0.53

and Rv/R = 0.49 for three and two vortex ensembles, respectively. The same holds true

for the case of Bergmann et al. (2011) where their experimental data yielded a ratio of

0.567.
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