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Near limit behavior of the detonation velocity 

by 

John H.S. Lee, Anne Jesuthasan and Hoi Dick Ng 

Abstract 

The behavior of the detonation velocity near the limits is investigated. Circular tubes of diameters 65 

mm, 44 mm and 13 mm are used. To simulate a quasi two-dimensional rectangular geometry thin 

annular channels are also used. The annular channels are formed by a 1.5 m long insert of a smaller 

diameter tube into the larger outer diameter detonation tube. Premixed mixtures of C2H2 + 2.5O2 + 

70%Ar, CH4 + 2O2 and C2H2 + 5N2O + 50%Ar are used in the present study. The high argon dilution 

stoichiometric C2H2 + 2.5O2 mixture has a regular cell size and piecewise laminar reaction zone and thus 

referred to as “stable”. The other two mixtures give highly irregular cell pattern and a turbulent reaction 

zone and are hence, referred to as “unstable” mixtures. Pressure transducers and optical fibers spaced 10 

cm apart along the tube are used for pressure and velocity measurements. Cell size of the three mixtures 

studied is also determined using smoked foils in both the circular tubes and annular channels. The ratio 

d/λ (representing the number of cells across the tube diameter) is found to be an appropriate sensitivity 

parameter to characterize the mixture. The present results indicate that well within the limit, the 

detonation velocity is generally a few percent below the theoretical Chapman-Jouguet (CJ) value. As the 

limit is approached, the velocity decreases rapidly to a minimum value before the detonation fails. The 

narrow range of values of d/λ of the mixture where the velocity drops rapidly is found to correspond to 

the range of values for the onset of single headed spinning detonations. Thus we may conclude that the 

onset of single headed spin can be used as a criterion for defining the limits. Spinning detonations are 

also observed near the limits in annular channels. 

Keywords: detonation limits; detonation failure. 
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1. Introduction 

Detonation limits is an important fundamental as well as practical problem. However, there is no theory 

for predicting the limits nor are there meaningful experimental data for the limits as yet. A review of the 

detonation limit phenomenon together with a comprehensive reference of previous studies is given by 

Lee [1]. The development of a theory for detonation limits is very difficult as it requires the quantitative 

description of the complex mechanisms of propagation of cellular detonations. The measurement of the 

limits experimentally is also difficult due to the fact that the boundary between failure and successful 

propagation is not precise, but spread over a range of conditions. Existing data on the detonation limits 

are specific of the apparatus and procedure used. Furthermore an arbitrary criterion is generally required 

to provide an operational definition of the limits. However, the near limit behavior of the detonation had 

been well established. As the limits are approached, it is generally observed that the detonation velocity 

decreases rapidly, the fluctuation in the detonation velocity increases, and the cell size also increases (or 

equivalently the transverse vibrational frequency of the unstable structure decreases towards the 

fundamental mode). It appears that further progress can be achieved by studying the near limit behavior 

of the detonation wave in more detail. In the present study, we report some results on the near limit 

behavior of the detonation velocity. Although velocity deficit had been extensively investigated in the 

past [2], these studies are mostly carried out under conditions well within the limits. The aim of these 

earlier studies is to extrapolate and obtain an “infinite tube diameter velocity” to serve as a reference for 

comparison with the theoretical Chapman-Jouguet (CJ) values. The present investigation focuses on the 

near limit regime and the velocity is determined until detonation failure occurs. Although the detonation 

velocity is not a sensitive parameter that describes the fundamental propagation mechanism, it is 

compensated by the fact that it can be measured accurately over long distances of propagation of the 

detonation wave. Parameters like the cell size provide a more direct indication of the unstable detonation 
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structure. However, smoked foils are in general difficult to interpret particularly when the cell pattern is 

irregular. Cell size measurements often required a certain degree of subjectiveness. 

 

2. Experimental details 

The experiments are carried out in circular tube of diameter 65, 44 and 13 mm and thin annular channels 

of channel thickness (or height) ranging from 3 mm to 9 mm (i.e., 3.175 mm, 6.35 mm and 9.525 mm). 

The annular channels represent a continuous “quasi two-dimensional” rectangular channel of infinite 

aspect ratio. The annular channel is formed by inserting a smaller diameter tube into the larger outer 

detonation tube. Thus, the present study investigates limits in both geometries of circular tubes and 

“two-dimensional” annular channels. A photograph of the apparatus is shown in Fig. 1. Piezoelectric 

transducers as well as optical fibers are used for pressure and velocity measurements. Three mixtures 

(i.e., C2H2 + 2.5O2 + 70%Ar, CH4 + 2O2, C2H2 + 5N2O + 50%Ar) are used. The first mixture with high 

argon dilution has been found to give a very regular smoked foil pattern and the detonation showed a 

piecewise laminar ZND structure [1, 3-5]. The other two mixtures have a more irregular cellular pattern 

and the reaction zone has a “turbulent like” structure [1, 3-5]. The choice of these two types of so-called 

“stable” and “unstable” mixtures in the present study is motivated by the fact that their failure 

mechanisms are found to be different in the critical tube diameter phenomenon [6]. “Stable” detonations 

in high argon diluted mixtures fail due to excessive curvature of the diffracted shock. For “unstable” 

detonations, failure results when the instability in the diffracted shock front cannot be developed to re-

initiate the detonation [1]. Thus, it would be of interest to study the limit behavior of these two types of 

mixtures. In the present study, the detonation cell size for the three mixtures used are also measured, and 

compared with the GALCIT database [7]. Detonation velocity is measured from the time-of-arrival of 
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the detonation at the various optical probe locations (spaced 10 cm apart along the detonation tube). A 

local velocity (from two adjacent probes) as well as an overall averaged velocity (determined from the 

slope of the detonation trajectory) can be obtained. Well within the limits, the fluctuations in the local 

velocity are small and the averaged local velocity agrees with the global averaged velocity in general. 

However near the limits, the fluctuations of the local velocity become large. Close to failure, the 

fluctuation of the local velocity can be quite significant and it is no longer meaningful to obtain a global 

averaged value of the velocity. The velocity reported in the present study is the averaged velocity 

obtained from the slope of the detonation trajectory. The local velocity fluctuations are only used to 

provide a qualitative idea of the near limit behavior. Detonation failure is generally indicated by a 

continuous decay of the detonation past the minimum velocity. The minimum velocity just prior to 

failure is obtained when the trajectory still indicates a self-sustained detonation without decay.  

 

3. Results and discussion 

In the present study the limits are approached by a reduction in the initial pressure for a given mixture 

composition and a given tube diameter. A reduction in the initial pressure decreases the sensitivity of the 

mixture and is equivalent to an increase in the detonation cell size. Rather than the cell size alone, it is 

found that the ability of a detonation to propagate in a tube depends on the ratio d/λ, i.e., the number of 

cells across the tube diameter [8-11]. Although an attempt was also made in [12] to try various 

parameters for characterization, d/λ still remains the most appropriate sensitivity parameters to bring the 

results together. Indeed, the effect of boundary conditions and the propagation limits should be governed 

by the tube dimension and with the importance of instability in the near-limit conditions, this tube 

diameter should be related to the length scale of the detonation structure itself characterized by λ. 
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In the present results, well within the limit, d/λ >> 1 and d/λ decreases as the limits are approached. The 

velocity versus d/λ for C2H2 + 2.5O2 + 70%Ar is shown in Fig. 2 for the circular tubes. Well within the 

limits (large values of d/λ) the velocity is observed to be close to the theoretical CJ values with a typical 

velocity deficit of a few percent. However as the limits are approached, the detonation velocity 

decreases rapidly to a minimum until no steady detonation can be obtained past the minimum value. For 

C2H2 + 2.5O2 + 70%Ar mixture, the minimum steady velocity obtained is about V/VCJ ≈ 0.85. The rapid 

decrease in the detonation velocity corresponds to the range of d/λ ≈ 0.3 which corresponds to the range 

of d/λ for the onset of spinning detonation of 0.318 ≤ d/λ ≤ 0.5. For CH4 + 2O2, the velocity versus d/λ is 

shown in Fig. 3. The velocity shows a stronger dependence of tube diameter for CH4 + 2O2 than for 

C2H2 + 2.5O2 + 70%Ar (see Fig. 2). Again well within the limit, V/VCJ ≈ 0.97 and the velocity drops 

sharply as the limiting value of d/λ is reached. The drop in detonation velocity is more “precipitous” in 

CH4 + 2O2 than for “stable” detonations in C2H2 + 2.5O2 + 70%Ar. The limiting values of d/λ for the 

three tubes also compare well with the values for the onset of single headed spin of 0.318 ≤ d/λ ≤ 0.5.  

For C2H2 + 5N2O + 50%Ar, the velocity results are shown in Fig. 4. Well within the limit, V/VCJ ≈ 0.97 

but the decrease in velocity as the limits are approached is less rapid than the previous mixtures. Also 

the minimum velocity when the detonation fails is of the order of V/VCJ ≈ 0.87, relatively higher than the 

corresponding values for CH4 + 2O2 and C2H2 + 2.5O2 + 70%Ar.  

For the annular channels, smoked foil records indicate a single headed spin based on the circumference 

of the annular channel (Fig. 5) is also observed prior to failure. This is a surprising result since in a two-

dimensional channel, one would expect failure to corresponds to a “zig-zag” detonation (equivalent to a 

spinning detonation in a round tube) as observed by Dove and Wagner [13]. The existence of a single 

headed spin in the annular channel indicates a certain “robustness” of the detonation which always tends 

to seek the larger length scale to execute a lower frequency unstable mode to continue to maintain self-
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sustained propagation. Failure would have occurred much sooner if based on the “zig-zag” mode 

governed by the smaller dimension of the channel thickness.    

Thus even for annular channels, we use the same parameter d/λ rather than w/λ (where w is the thickness 

of the annular channel). Figure 6 shows the velocity variation with d/λ for C2H2 + 2.5O2 + 70%Ar. The 

minimum velocity prior to failure is now lower than the corresponding values for round tubes. This is 

perhaps a result of the wall boundary layer effect being more prominent for thin annular channels. For 

instance, from [14-16], the displacement thickness due to the wall boundary layer developed behind a 

shock can be estimated by δ ~ ( ) 2080220 ... ux ρμ where x is the distance behind the leading shock, μ the 

gas viscosity, ρ the density and u the gas velocity in the shock frame of reference. Near the limit 

condition, the overall detonation reaction length approximated by the ideal ZND model is of the order of 

~ 1 mm. In the case of the annular channels, the boundary layer is becoming comparable to the channel 

width of few millimeters thickness and its effect would be more prominent than in a round tube of 

diameter of centimeters. Equivalently to the work by Manzhalei [17] which studied detonation 

propagation in capillary tubes with small diameter d, passed the spinning and multiple-cells front 

detonation, a galloping regime is observed and at lower limit when the thickness of the boundary layer is 

~ 0.1d, a low-speed detonation regime of gases also exists. Low speed and galloping detonation regimes 

are often not observed in a tube with larger diameter where the transitional section may occupy a large 

portion of the tube length. This low velocity regime with limiting detonation speed of V/VCJ ~ 0.7 is also 

observed in [18] for the stoichiometric C2H2 + 2.5O2 mixture with the smallest diameter circular tube of 

1.8 mm. Also found in the present results is that the d/λ values at the limit are of the order of the range 

for the onset of single headed spin of 0.318 ≤ d/λ ≤ 0.5. The corresponding velocity plot for CH4 + 2O2 

for annular channels is also illustrated in Fig. 7. The minimum velocity is found to be much lower than 
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that of C2H2 + 2.5O2 + 70%Ar. The limiting values for d/λ also agree with the range for the onset of 

single headed spin of 0.318 ≤ d/λ ≤ 0.5.  

Similar results for the velocity plot for C2H2 + 5N2O + 50%Ar for annular channels is given in Fig. 8. 

The limits correspond also to the onset of spinning detonation in the range of 0.318 ≤ d/λ ≤ 0.5.  

 

4. Conclusion 

It is found that the detonation velocity decreases rapidly as the limits are approached. The velocity 

decreases to a minimum value before the detonation fails. When the detonation is within the limits the 

velocity is typically a few percent lower than the theoretical Chapman-Jouguet value. In the larger 

diameter tubes (65 mm, 44 mm), the velocity decrease is sufficiently rapid to permit the limit condition 

to be defined by the narrow range of the sensitivity parameter d/λ. In small diameter tube (13 mm), the 

velocity decrease is less rapid due to more significant wall effects. It is found that the ratio d/λ provides 

a good measurement for the ability of the detonation to propagate. The ratio d/λ represents the number 

of detonation cells across the tube diameter and it agrees with the well established fact that within the 

limit, the cells are small compared to the tube diameter and near the limit the value of d/λ ≤ 1. The 

present results also show that the limits correspond to the onset of single headed spinning detonation, a 

criterion suggested previously by Gordon et al. [19], Moen et al. [20] and Kogarko and Zel’dovich [21]. 

Even for thin annular channels, it is found that the limits also correspond to the onset of single headed 

spinning detonation around but based on the larger length scale of the circumference of thin annular 

channels than the thickness of the channel. This is in contrast to the expected result that the channel 

thickness being a much smaller length scale than the circumference, should govern the onset of the 

lowest mode of a so-called “zig-zag” detonation. Results for the annular channel indicate that limits for 



  9

annular channel also correspond to the onset of single headed spinning detonation as in round tubes. In 

retrospect this may not be too surprising a result since for a single headed spinning detonation in a round 

tube, the strong Mach stem of the spin head is located only near the tube wall with much of the interior 

of the tube cross section playing a minor role. For thin annular channels, the wall effects are more 

prominent and the drop in detonation velocity as the limit is approached is slightly less rapid than for 

round tubes. Finally, that the disappearance of spinning detonation or the transverse vibrational modes 

corresponds to the failure of the detonation indicates the essential role of instability in maintaining self-

sustained propagation of the detonation wave. Further progress requires a more detailed investigation of 

the structure of the detonation near its failure to reveal the role played by instability in the propagation 

of the detonation.  
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Figure Captions 

Fig. 1 Photograph of the experimental apparatus 

Fig. 2  Variation of normalized detonation velocity with d/λ in C2H2 + 2.5O2 + 70%Ar mixture in 

circular tubes. 

Fig. 3  Variation of normalized detonation velocity with d/λ in CH4 + 2O2 mixture in circular tubes. 

Fig. 4  Variation of normalized detonation velocity with d/λ in C2H2 + 5N2O + 50%Ar mixture in 

circular tubes. 

Fig. 5  Smoked foil records of a spinning detonation (C2H2 + 5N2O + 50%Ar, p0 = 3.5 kPa, 6.35 mm 

annular channel). 

Fig. 6  Variation of normalized detonation velocity with dtube/λ in C2H2 + 2.5O2 + 70%Ar mixture in 

annular channels. 

Fig. 7  Variation of normalized detonation velocity with dtube/λ in CH4 + 2O2 mixture in annular 

channels. 

Fig. 8  Variation of normalized detonation velocity with dtube/λ in C2H2 + 5N2O + 50%Ar mixture in 

annular channels. 
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