
1 

 

Nonlinear Dynamics of Silk and Mylar Flags Flapping in 
Axial Flow  

Hamid Ait Abderrahmane1, Michael P. Païdoussis1, Mohamed Fayed2, Hoi Dick Ng2 

1Department of Mechanical Engineering, McGill University, 817Sherbrooke St. W., Montréal, Québec, H3A 2K6 Canada 
2Department of Mechanical and Industrial Engineering, Concordia University, Montréal, Québec, H3G 1M8 Canada 

 

Abstract 
  
In this study, experiments were conducted on the flapping dynamics of flags immersed in an axial 
flow generated by a laboratory scale wind tunnel.  The experimental setup was first validated by 
comparing the critical conditions for flapping onset with relevant results from experimental 
investigations, numerical simulations and theoretical models found in the literature. Short and long 
flags, as well as flags with aspect ratio equal to unity, were considered. Nonlinear dynamic analyses 
including Power spectra, phase-space portraits, Poincaré sections and circle maps obtained from the 
flag transverse displacement time-series indicate that the observed non-periodic flapping mainly 
arises through a quasi-periodic scenario. This paper also reports for the first time a "switching" 
oscillation phenomenon, which is closely related to hysteresis and bistability phenomena. 
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1. Introduction   
 

The flapping of a flexible flag immersed in an axial flow is a canonical problem in fluid-

structure interactions. It is used as a model-example to understand many real-world problems of 

fluid–structure interactions in science, engineering and biology. For comprehensive reviews, the 

reader is referred to Païdoussis [1] and Shelley and Zhang [2].  

Flapping of a flexible plate or flag immersed in an axial flow is a self-sustained phenomenon; 

it involves the coupled dynamics of the fluid flow and the flexible plate. The fluid dynamics involves 

a destabilizing pressure jump across the deflected plate and vorticity shedding at the trailing edge. 

The plate dynamics includes the restoring forces due to the bending rigidity, structural damping, and 

the flow-induced variable tension along the plate. A transfer of energy between the fluid and the flag 

leads to a complex dynamical behavior, resulting either in the stationary stretched-straight state, or in 

periodic and chaotic flappings. A full understanding of the flapping dynamics remains elusive, and 

this justifies the extensive recent theoretical, numerical and experimental studies on the subject; see, 

for instance, Argentina and Mahadevan [3], Shelley, Vandenberghe and Zhang [4], Alben and Shelley 

[5,] Michelin et al. [6], Zhu and Peskin [7,8], Connell and Yue [9], Tang and Païdoussis [10] and Eloy 

et al. [11,12].  

Theoretical approaches for the analysis of the flapping of a flexible plate immersed in axial 

flow adopt a number of hypotheses. For instance, Shelley et al. [5] derived a simple relation for the 

critical flow speed at which the instability (flapping) sets in, by assuming an infinite plate in both 

directions; then modeling the plate as an Euler–Bernoulli beam and assuming the fluid flow to be a 

potential flow. However, in practice, flexible plates are of finite length and width; both dimensions 

affect the stability conditions of the plate. The studies dedicated to the influence of length and width 
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on the flapping dynamics may be divided into two categories, corresponding to the two asymptotic 

limits of the width-to-length ratio H/L, i.e., the aspect ratio. When the aspect ratio is small the plate 

may be considered to be a strip, and the problem can be modeled using the slender-body 

approximation and an unsteady potential flow model; see Datta and Gottenberg [13] and Lemaitre et 

al. [14]. In the latter it was shown that the critical flow velocity at which the flapping starts depends 

on the length of the strip. Lemaitre et al. [14] reported that for short strips the critical flow velocity 

depends on the length, whereas it becomes independent of the length for longer strips. When the 

aspect ratio is very large or infinite, the problem may be considered as being two-dimensional and the 

more physical models take into account vortex shedding (wake) at the trailing edge. Kornecki et al. 

[15] were the first to use this two-dimensional approach to study plates in axial flow. The plate was 

modeled as a linear beam and the aerodynamics at the trailing edge was modeled by the Kutta 

condition (Theodorsen [16]) which ensures vortex advection. Later, Shayo [17] extended the work of 

Kornecki et al. [15] and considered plates of finite width. It was concluded that increasing the aspect 

ratio, i.e., the width of the plate, destabilizes the plate. This conclusion appears to be incorrect 

according to the recent studies of Eloy et al. [11, 12], who investigated the influence of the aspect 

ratio on the instability condition. They discussed the discrepancy between experimental and 

theoretical (two-dimensional model) predictions on the critical condition for instability. As pointed 

out by Eloy et al. [11,12], the two-dimensional models of  Kornecki et al. [15], Huang [18], Watanabe 

et al. [19] and Guo and Païdoussis [20] predict instability of the plate at much lower flow velocities 

than observed in experiments. Eloy et al. [11, 12] argued that the two-dimensional limit cannot be 

achieved experimentally because of the hysteresis phenomenon and three-dimensional effects 

inherent in flutter of large aspect ratio plates. Also, Tang et al. [21] studied the energy transfer from 

the fluid to the plate (and vice versa) and proposed a scheme for its exploitation for power 

generation.  
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 The problem of a flapping flexible plate in axial flow was also investigated numerically. Two 

common techniques were used: the first approach utilized immersed boundary methods (Zhu and 

Peskin [6]) and the second coupled fluid–solid solvers (Connell & Yue [9]). Zhu & Peskin [6] used 

the immersed boundary method to simulate the soap film flow experiments conducted by Zhang et 

al. [22]. Similar dynamics and vortical structures found in the experiment were retrieved. Connell & 

Yue [9] investigated the flapping dynamics of a thin two-dimensional flag of high extensional rigidity 

and low bending rigidity. They conducted a fluid–structure direct simulation (FSDS) that couples a 

direct numerical simulation of the Navier–Stokes equations to a solver for thin-membrane dynamics 

of arbitrarily large amplitudes. They found that the response of the thin membrane depends on the 

mass ratio and they identified three distinct regimes: (i) the first one is a stationary solution 

corresponding to fixed point response, observed for small mass ratios; (ii) the second is a period-one 

limit-cycle flapping for intermediate values of the mass ratio; and (iii) the third is a chaotic flapping 

regime found for large values of the mass ratio. 

The flapping of a flag in axial flow has also been extensively studied experimentally. In 

contrast to both theoretical and numerical investigations which are based on assumptions that 

simplify the problem, the experimental approach is free of such restrictive assumptions. Another 

import issue which is difficult to properly handle in both theoretical modeling and numerical 

simulation is the initial planeity defect. In fact, in the absence of, or weak, wind flow the flag tends to 

bend, sag and twist. In the case of flag made of soft material the flag can also fold in many layers. 

This justifies the extensive experimental investigations aiming to provide new insights into the 

phenomenon and to validate the different theoretical and numerical models. Several experimental 

studies may be found in the recent literature. Among these studies, one should refer to the 

experiments performed by Zhang et al. [22], Shelley et al. [4] Watanabe [19] and Eloy et al. [12]. 

Zhang and his co-authors investigated the flapping of a flexible slender filament in a soap-film 
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tunnel. Shelley et al. investigated the flapping of a flexible plate in a water tunnel, while the 

experiments by Watanabe [19] and Eloy et al. [12] were in a wind tunnel. Note that the flapping of a 

thin filament in a soap-film tunnel can be considered as a two-dimensional problem, which is a 

hypothesis difficult to achieve in wind and water tunnel experiments where the width of the flag 

plays an important role in the stability of the plate. The majority of the experimental studies on 

flapping flag has focused on the critical stability conditions, i.e., the condition at which a flag starts 

flapping. To the best knowledge of the authors, the literature on experimental analysis of the flag 

flapping regimes is inexistent or scarce. 

The present work is an experimental contribution that adds to the wealth of experimental 

data on the flapping of flags. Previous experiments in literature revealed the importance of a number 

of parameters such as the length-to-width and mass ratios, and the bending rigidity of the plates. 

Moreover, besides the structural and aerodynamic forces a flag dynamics includes also complex 

oblique wave patterns travelling along the flag surface, which can be easily observed on flapping flag 

in windy day. These waves should originate from the initial position of the flag in the absence of any 

wind. Such oblique waves start with relatively large amplitude; as it will be argued below these may 

explain the nonlinear character of the dynamics of flapping flags.  

This paper is organized as follows. First we describe the validation of our experimental setup 

through the investigation of the critical instability conditions, i.e., the flow speed at which a 

bifurcation arises from a stationary to a fluttering state. In the second step, we explore the flapping 

dynamics based on reconstructions of the attractors from experimental data. These attractors and the 

transitions between them are discussed using tools from nonlinear time-series analysis, such as the 

correlation dimension, Lyapunov exponents, Poincaré sections and circle maps. In last section, the 

discussion of the results is summarized and concluded.  
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2. Experimental setup 
2.1 Description of the setup and flutter threshold  

To investigate the rich dynamics at work in the flutter phenomenon we used a closed-loop 

wind tunnel (see Fig.1). This is relatively high turbulence intensity tunnel with mean velocity 

variations of Γ = ± 3 %, so that the flag therein may be considered to be subject to continual 

perturbations*. The test-section is rectangular, 0.45 m high by 0.25 m wide, and it is 1.5 m long. 

Transparent walls make observation easy. The flow speed, measured by a Pitot tube was increased 

from 0 up to approximately 6 m/s in an increment of 0.5 m/s. The flags were made of silk or Mylar 

of different span width H and length L. The flags were aligned with the flow in the wind tunnel, and 

were attached to the trailing edge of a 0.45 m long NACA0010 airfoil section to ensure uniform flow 

along the flag. The Mylar sheet used in the experiments has the following properties: density of 1390 

kg/m3, Young’s modulus E = 5.171 109 N/m2, thickness h = 0.0765 mm and Poisson’s ratio ν = 

0.38; the flexural rigidity was determined using the relation D = Eh3/12(1 − ν2). The silk sheet has 

the following properties: density of 563 kg/m3, and thickness h = 0.23 mm; its flexural rigidity was 

estimated using the following relation (Timoshenko [23]): 8373 .mghD c= , where m is the mass per 

unit area and ch  is the minimum height for which a vertical strip clamped at its bottom buckles 

under its own weight.   

In the experiments, motion of the flapping plate was recorded with a high-speed CMOS 

video camera (PCO.1200hs) from above, through the top wall of the wind tunnel, at a rate of 60 

images per second; the camera was aligned with the top edge of the plate.  Afterwards, the images 

*This, in the context of this paper, is considered as a positive feature; by comparing the results to those obtained in very                         
low- turbulence wind tunnels, we can assess how strongly the results are affected by turbulence. 
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were processed and the displacements (amplitudes) of three different points on the plates, located 

1/4, 2/4 and 3/4 of their length, were extracted.  

Similar to other experiments, we have observed three main regimes. The first one is a 

stationary regime; this was observed at small flow velocities. In this regime the Mylar or silk flag was 

aligned with the flow and remained stable, until the critical flow velocity Uc was reached. Above the 

critical flow velocity the structure started to oscillate (flutter) spontaneously; this is the second 

regime. At higher flow speeds, the flapping dynamics becomes more and more complex; this last 

regime is referred to as chaotic flapping. The experimental procedure is as follows.  First, we set the 

flow velocity at a small value, at which the plate remained stationary. We then increased the flow 

velocity gradually in a 0.5 m/s increment to capture the critical value, i.e., the value at which the 

structure would start flapping. The flow velocity was then increased further, with the same 

increment, up to the limit allowed by the experimental setup (6 m/s).  Afterwards, the flow velocity 

was decreased, with the same steps as before, until the plate returned to its initial stable state, which 

defined a second critical speed. Similar to previous experiments (e.g., Eloy [12]), in some cases the 

descending critical speed is much lower than the ascending one, indicating the existence of a 

hysteresis. This phenomenon was observed when the flexible plate is initially subject to a small out-

of-plane bend under its own weight, rather than being perfectly vertical; this occurs for low bending 

rigidity or for elongated (low aspect ratio) flags.  

  The dynamics of the flapping regime was investigated through nonlinear time-series 

analysis technique of the amplitudes of the three aforementioned points on the flexible plate. No 

significant difference in the dynamics was noticed; hence, in what follows, the dynamics of the 

flapping is discussed using only the data collected for the measuring point at 3/4 L.  The technique 

was proposed by Packard et al. [24]. It consists of the reconstruction of a multi-dimensional phase 

portrait, which reveals much about the dynamical behavior of the system, from measurements of a 
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single variable. The procedure relies on the reconstruction of the whole system trajectory in an 

“embedding space”, using the delay-time method of Takens and Mañé [25]. A selection of appropriate 

values for “embedding space” and delay-time is particularly crucial for the reliability of the results. To 

ensure equivalence between the topological properties of the actual and reconstructed attractors we 

adopted the interactive technique suggested by Albano et al. [26].  The authors have combined a 

singular-value decomposition, which leads to a set of statistically independent variables, and the well-

known Grassberger-Procaccia algorithm [27] to determine the dimension of the attractors, which is 

particularly useful and can be used to differentiate between deterministic and stochastic chaos.  

 In the first set of experiments, measurements were made of the critical flow velocities at which 

the flag starts flapping and the corresponding frequencies.  As mentioned earlier, in the wind tunnel 

used in the experiments the turbulence intensity (Γ) is relatively high.  Indeed, in the wind tunnels 

used in some of the previous experiments discussed in the introduction, including those in soap-film 

tunnels (e.g., Zang et al. [21] and Ait Abderrahmane et al. [28]), Γ was very low in some cases less 

than 1%. If, as expected, the effect of the higher Γ does not fundamentally change the dynamics 

qualitatively (and not very much quantitatively either), then these experiments can serve to validate 

the experimental setup and methods of data analysis.  

 The critical velocity is plotted as a function of the mass ratio ( hL mf ρρµ = ) for the Mylar and 

silk flags in Fig.2; fρ  is the fluid density, mρ is the flag density and h is the flag thickness. The 

results are compared with the theoretical models of Yamaguchi et al. [29], Tang and Païdoussis [10], 

Eloy et al. [12], Kornecki et al., [15] and Michelin et al. [6]. 

 The curves in Fig. 2 represent the theoretical critical velocities above which the flag becomes 

unstable and starts to flutter. The first observation is that our experimental results for the Mylar flags 

are fairly close to those predicted by the theoretical models. The second remark is that the critical 
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flow velocity increases with the width of the structure. In other words, increasing the width of the 

flag has a stabilizing effect.  This can be explained by the fact that a flag with large width can bend in 

the span-wise direction which would tend to stiffen the structure and delay the instability. Similarly, 

the initial bending, sagging and twisting of the silk flags (soft material) can explain why they appear to 

be more stable than the Mylar flags as well as the theoretical prediction. Another cause of the higher 

stability of silk flags may be the in-plane deflection, flow-induced tension that tends to reduce the 

initial deformation that might trigger flapping. This initial deflection of the structure could also be 

responsible for the hysteresis phenomenon. 

 Another test of our system is in terms of the flapping frequency at the critical conditions, i.e., the 

frequency at which the flag starts to flap, which is determined using power spectral analysis. These 

frequencies are compared to those predicted by the model of Tang and Païdoussis [10] in Fig.3, 

showing that this model predicts fairly well the initial flapping frequency. 

 Based on the discussion above, we can state that despite the relatively high turbulence in the 

wind-tunnel, our experimental tests follow well those predicted by theory and low-Γ experiments. It 

seems therefore that the perturbations implicit in higher turbulence flow within the wind-tunnel does 

not affect the critical conditions for the flapping.  

 

3. Results of the dynamical analysis of the flapping state  
 

In this section we analyze the onset of flapping and its transition to a chaotic regime using a 

nonlinear time-series analysis method. This method consists of the reconstruction, from the 

transverse displacement time series of the flag, of the attractors that describe the nonlinear dynamics 

of the flapping in phase space. Both the geometry of the attractors and the stability of orbital 
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trajectories on it are discussed. It is worth noting that the time series is first de-noised, using the 

empirical mode decomposition technique of Huang et al. [30]. This method consists of dissecting the 

raw time-series into its intrinsic modes. Only the modes with significant amplitudes are considered; 

the others, with small amplitudes, are considered as intrinsic noise of the time series and they are 

neglected. Based on the discussion above on the influence of the aspect ratio on the critical condition 

for the onset of flapping, one should expect that the aspect ratio influences the flapping dynamics.   

In what follows, we separate the discussion onto three: for short flags, long flags and flags of 

aspect ratio 1. This is rather arbitrary, since our long flags are not very long (H/L=2 and H/L=1.67 

for Mylar and silk flags, respectively) nor our short flags very short (H/L=0.1 and H/L=0.47 for 

Mylar and silk flags, respectively). Nevertheless, this division is for convenience of the discussion.   

3.1 Short flags 

The results of the nonlinear analysis of the onset of flapping of a short Mylar and a short silk 

flag are displayed in Fig.4. The de-noised time series of the transverse displacement of a point at the 

top edge of the flag located at 3/4 from the leading edge is shown in Fig. 4(a) and (b) for Mylar and 

silk flags, respectively. Both time series show erratic oscillations, while the corresponding power 

spectra displayed in Fig. 4(c) and (d) indicate that the onset of flapping of short Mylar and silk flags 

seems to be different. Fig.4(c) shows several peaks clustered around two incommensurate 

frequencies,  Hz.f 64161 =  and Hz.f 6262 = , which may indicate that the flapping starts as a chaotic 

oscillation. The second frequency, 2f , is approximately 3/2 times of the fundamental one, 1f . The 

presence of such a frequency in the flapping power spectra was also reported by Connell and Yue [9]. 

They indicated that the presence of this frequency is a prelude for chaotic flapping. This second 

frequency should be related to the oblique wrinkles or waves travelling along the surface of the flag. 
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The power spectrum for the short silk flag in Fig. 4(d) indicates that flapping is dominated by one 

fundamental frequency and its harmonics. The flapping dynamics of the silk flag, which has a flexural 

rigidity ten times smaller than of a Mylar flag, appears to be more regular that the one of Mylar flag. 

The regularity of silk flag flapping could be explained by the fact that tension force, induced from the 

fluid drag, strongly stretched the silk flag and alleviated the amplitude of the oscillatory motion due 

to oblique travelling waves. The reconstructed attractor from the time series for the Mylar flag is 

shown in Fig. 4(e). Three different time intervals are depicted with the aid of different colors; the 

orbital trajectories are wrinkled in a complicated way around a "tire-like" attractor. The correlation 

dimension of the Mylar flag attractor is estimated, using the standard Grassberger-Procaccia 

algorithm; its value is approximately D = 6.5 which indicates that the geometry of the attractor is 

"strange".  The sensitivity to the initial conditions of the trajectories on the "tire-like" attractor is 

verified through the estimation of the Lyapunov exponents; the exponents were calculated using the 

statistical approach proposed by Lai and Chen [31]. The largest positive Lyapunov exponent is 

positive and its value is 0.05; this means that, along the direction that corresponds to this exponent, 

the orbital trajectories diverge from each other with time; the dynamics around the tire-like attractor 

can be qualified as weakly chaotic. The dynamics on the "tire-like" attractor can be viewed as two 

complicated oscillations that can be described by two cyclic coordinates. Sectioning the "tire-like" 

attractor with a plane, transverse to long cycle coordinate, one can obtain the Poincaré section of the 

attractor shown in Fig. 4(g). This section presents a ring-like structure where lines connecting 

successive points of the Poincaré section often cross the central hole of the ring-like structure, which 

is evidence that the flapping is chaotic. The ring-like structure indicates that the observed chaos has 

arisen from quasi-periodic regime; see Nayfeh and Balachandran [36].  

A similar, tire-like strange attractor and ring-like structures in the Poincaré section were observed 

in the case of silk flag; see Fig. 4(f) and (h). The onset of silk flag flapping is also chaotic and also 
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seems to arise via quasi-periodicity. The correlation dimension of the attractor and the largest 

Lyapunov exponent were estimated and found equal to 5.6 and 0.03, respectively. 

 The onset of flapping in a weakly chaotic regime for both Mylar and silk flags can also be 

confirmed through the corresponding circle maps, see Fig.4 (i) and (j), plotted as follows: first we 

find a centroid of the points that form the Poincaré section and consider nθ  to be the polar angle 

that the nth point makes with the horizontal axis passing through the centroid.  The circle map is a 

plot of nθ against 1n+θ ; it records the progression of the state points on the Poincaré section. Cloudy 

figures in the two circle maps (− Fig.4 (i) and (j) indicate that the dynamics on the tire-like attractor in 

Fig.4(e) and (f)) are in fact chaotic.  

According to the present results, it appears that, for both the short Mylar and silk flags, the onset 

of flapping is chaotic via the quasi-periodic route. This quasi-periodicity is explained by the interplay 

of the pure flapping oscillations and the flags oscillations that results from the oblique travelling 

waves on the flag surface. The second oscillation modulates the fundamental oscillations (flapping). 

The fundamental frequency is the one of the flapping oscillation; this frequency should be related to 

the one at which vortices are shed from the flag trailing edge. The amplitude of the oblique waves, 

which the wind flow transports from the leading towards the trailing edge, is of relatively small 

amplitude (typically two orders of magnitude less than the flapping amplitude (see Fig.4c) for Mylar. 

The amplitude of these waves can be relatively small that they cannot be captured with aide of power 

spectrum analysis; see flag (Fig.4d) for silk flag. In fact, short flags start flapping at relatively high 

flow speed (3 m/s) which induces strong tension force and alleviate the ondulation of the surface of 

the flag, in particular in silk flag.  Equivalently, it is worth noting that the onset of chaotic flapping 

through quasi-periodic route was also observed in flapping of flexible filament in soap film tunnel see 

[28].    
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3.2 Flags with aspect ratio equal to unity 

Similar analysis was conducted with Mylar and silk flags with aspect ratio equal to unity, i.e., 

flags having equal length and height. The reconstructed attractors and correlation functions for the 

Mylar and silk flags are shown in Fig. 5.   

The projection of the reconstructed attractor in three-dimensional space for the Mylar flag is 

depicted in Fig. 5(a). It appears that the attractor is formed from two tori, one embedded in the 

other. The trajectories on the attractor are drawn with three different colors for three consecutive 

time intervals. In contrast to the short flag the flapping dynamics seems to be less irregular.  The 

correlation dimension of this attractor is estimated to be D = 5.6; the attractor is strange. The 

divergence of the orbits on this attractor is investigated through the Lyapunov exponents; the largest 

Lyapunov exponent is 0.05 which indicates that the flapping is weakly chaotic. Thus, from onset, the 

flapping of the Mylar flag is chaotic.  This character of the flapping can also be discerned through the 

power spectrum (not shown here) which indicates one fundamental frequency and a continuous 

decrease of energy beyond that.  A Poincaré section, Fig.5(c), shows that the line connecting 

successive points is broken; moreover, instead of moving forward, in some instances the points 

move backwards, which indicates that for chaotic flapping of the Mylar flag the attractor is no longer 

associated with a torus. Such non-monotonic evolution on the attractor is also seen on the circle map 

shown in Fig.5 (e), and such behavior is associated with a torus breakdown scenario; see  Nayfeh and 

Balachandran [36 ]. Hence, one could infer that the chaotic flapping of the Mylar flag might arise 

through torus breakdown, present in many natural and human-made systems. The chaotic dynamics, 

issued from the torus breakdown, are characterized by the strange attractor with small positive 

Lyapunov exponent, as is the case of the Mylar flag. The projection in 3-D space of the 
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reconstructed attractor for the silk flag is shown in Fig.5 (b). The attractor seems to be made up of a 

folded torus. The estimated correlation dimension is a non-integer number, equal to 4.8.  The largest 

Lyapunov exponent is positive and equal to 0.01; because of the remaining noise in the time series, 

one might consider this small value of the largest exponent to be zero and infer thereby that the 

dynamics on the attractor in Fig. 5(b) is not chaotic. In fact, the corresponding Poincaré section of 

the attractor in Fig. 5(d) shows that the intersection point precesses around a closed curve in a 

monotonic way. This monotonic dynamics can also be seen through the circle map shown in Fig. 

5(f).   It mimics the dynamics on a torus. Hence, the attractor in Fig. 5(b) can be considered as a 

torus in a high embedding dimension or a strange non-chaotic attractor because of its fractal correlation 

dimension. Such attractors are ubiquitous in quasi-periodic forced physical systems; see Grebogi et al. 

[32] and Ditto et al. [33]. Because of a relatively high level of the flow fluctuations in our wind tunnel, 

such quasi-periodic forcing of a flag is probable.  

Continuing with the silk flag, and increasing the flow speed, the attractor is of "tire-like" form; 

see Fig. 6(a). The largest Lyapunov exponent increases and is found to be equal to 0.4; thus, the 

flapping is now chaotic. This chaotic state is confirmed through a Poincaré section which has the 

form of a thin ring on which the Poincaré point marches in a circular path. This ring-like form 

indicates that the chaotic dynamics on the attractor has emerged via the quasiperiodic route to chaos. 

The power spectrum of the flapping shown in Fig. 6(c) indicates the presence of a 3/2 harmonic of 

the fundamental frequency, identified by Connell and Yue [9] as an indication of chaotic flapping.  

With further increase in flow speed, the flapping dynamics becomes even more complicated; in fact 

the Poincaré section loses its ring-like structure and becomes a cloud of points; see Fig. 6(d).   

The results show that a Mylar flag starts flapping directly in chaotic state; this state appears to be 

issued through a torus breakdown scenario. However, for silk flag the transition towards chaotic 

flapping followed a quasi-perdiodic route as in the case of short flags. According to the results above 
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and also later the results in the following section, the transition towards a chaotic flapping through 

torus breakdown seems to be singular. Note that in the chaotic state, the dynamic could be sensible 

to the initial conditions, e.g., the Mylar flag sags under its weight while the silk flag wrinkles in many 

folds. It is suggested that the torus breakdown scenario should be confirmed through further 

experimental investigations.  

 

           3.2.3 Long flags 

 We pursue our investigation, now considering the flapping of long flags, i.e., flags with length 

higher than the height (H/L = 0.1 and H/L = 0.47 for Mylar and silk flags, respectively).  The 

results for both Mylar and silk flags are summarized in Fig .7. The 3-D projections of the 

reconstructed attractors are shown in Fig. 7(a) and (b) for Mylar and silk flags, respectively. The 

attractor in Fig. 7(a) forms a twisted torus; the correlation dimension is approximately D = 4.2 and 

the estimated largest Lyapunov exponent is null. Hence, the onset of flapping for the long Mylar flag 

is not chaotic and the fractal dimension of the attractor suggests that the attractor it is a strange non-

chaotic attractor. In fact, the Poincaré plot in Fig. 7(c) indicates that the points describe a closed circular 

curve which is a characteristic of a torus attractor. Moreover, the corresponding circle map, Fig. 7(e), 

indicates a monotonic evolution of the Poincaré points on a closed curve, which confirms that the 

flapping trajectories lie on the torus-like attractor, i.e., the flapping at its onset is quasi-periodic.  

The onset of flapping of a long silk flag appears to be chaotic. In fact, the reconstructed 

attractor is of tire-like form; the Poincaré plot exhibits a ring like structure but the lines connecting 

subsequent states cross the empty core region; see Fig. 7(b) and (d). This indicates that the flapping 

onset is chaotic and similarly to the cases discussed above, the transition should be through a quasi-
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periodic route. The corresponding circle map, Fig. 7(f),  indicates a cluster of points around four 

regions located on the first bisection line; this indicates that the flapping involves at least four distinct 

modes and the points far from the first bisection are associated with the transitions between the 

involved modes. Note that such a circle map is characteristic of chaotic dynamics.  

Increasing the flow speed from 1.84 m/s, at which the flapping of the long Mylar flag starts, to 

3.3 m/s, the attractor forms a tire-like figure (Fig. 8(a)). The Poincaré section and its corresponding 

circle map indicate that the flapping has become chaotic. It seems that this chaotic flapping has 

arisen from the quasi-periodic regime. The circle map in Fig. 8(d) indicates clusters in three different 

regions near the first bisection, which means that the chaotic flapping regime involves three 

oscillatory modes and that it is switching between these modes.  

The behavior of long flags contrasts with that of flags with aspect ratio equal to unity also in this 

sense: the onset of flapping long Mylar flags is not chaotic, whereas that of long silk flag is. For the 

silk flag, the stabilizing role of the flow-induced tension seems to be overcome by the destabilization 

due to the decrease of the flexural rigidity which is inversely proportional to the flag length. The 

initial conditions also seem to play a key role in the present experiments. Because of the gravity, the 

flags tend to sag or fold in several wrinkles around the holding airfoil. The silk flag wrinkles in much 

more folds than the Mylar flag which tends more to sag. Hence, when the wind begin to blow up the 

initial conditions are different for the two flags. The amplitude of the oblique wave at the surface of 

the flag should be larger for the silk flag, while the long Mylar flag tends more to snap. The nonlinear 

effect should be more prominent in silk flag which triggers chaotic flapping dynamics.  

As a summary of this subsection, devoted to the analysis of the dynamics of flapping flag, one 

can stress the fact that a flapping is in nonlinear regime generally involving two oscillatory motions. 

The first one should be the pure flapping of the flag in similar way as a rigid plate. The second 
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oscillatory motion of amplitude relatively small in comparison with those of the flapping oscillation is 

due to the oblique wave that travels along the flag surface. Note that similar modulation of the 

flapping by a low amplitude wave was reported recently in [28] in the case of flapping filament in 

soap film tunnel. The main route towards chaotic flapping is a quasi-periodic route. The interaction 

of the pure flapping dynamics and the travelling oblique waves seems to involve several modes for 

long flags and the chaotic regime exists as a complex switching from one mode into another. In the 

case of Mylar flag with aspect ratio equal to unity, a transition towards chaos through torus 

breakdown is found. However, further experiments are required to confirm this new finding.  

 

          3.3 Switching oscillation phenomenon 

In the case of the long Mylar flag, we have observed a peculiar but robust phenomenon. At a 

flow velocity just below the critical, the flag flaps for a certain time, and then stops for a very short 

time before flapping again. The dynamics seems to be a continuous back and forth between the 

stationary and flapping regimes; the two regimes coexist and interchange their stability. This peculiar 

behavior is observed when the flapping dynamics exhibits a robust hysteresis; it occurs in the bi-

stability region where stationary and flapping solutions coexist. To illuminate this peculiar dynamics, 

we have used the empirical mode decomposition of the raw time-series into two modes. The raw 

time series of the transverse displacement of the flag is shown in Fig. 9(a). The first two intrinsic 

modes extracted from this time-series are depicted in Fig. 9(b) and (c).  These two modes constitute 

the two unstable solutions: one is stationary and the second is oscillatory. The switching of the flag 

between these two solutions is illustrated through the corresponding attractors in phase space; see 

Fig. 9(d). The fixed point represents a stationary solution, while the limit-cycle represents the 

quasiperiodic oscillatory solutions found at the flapping onset (Fig. 7(a), (c) and (e)). This peculiar 



18 

 

dynamics is observed only in the case of long flags for which the flow speed range over which 

hysteresis occurs is relatively large. It is worth noting that this switching-oscillation phenomenon is 

not accidental; it is repeatable, and it has been also observed in our laboratory in experiments with 

long filaments placed in a soap film tunnel that exhibit strong hysteresis [28].   

 

  3.5 Conclusion    
 

In this paper, we have studied experimentally the flapping dynamics of flags in relatively high 

turbulent flow. We have considered two parameters that might influence the flapping dynamics, 

namely the flexural rigidity and aspect ratio of the flag.  In fact two materials, Mylar and silk, were 

used; the former has a flexural rigidity approximately ten times larger than the second one. Flag 

aspect ratios inferior, equal and superior to one were considered. We have first shown through the 

validation of our experimental setup that turbulence in the flow might have but only a small effect on 

the onset of flapping. Furthermore, the measured instability thresholds follow the trends predicted by 

the theory and confirm the influence of the flag aspect ratio on the onset of the flapping. The onset 

condition seems to be affected by the initial bending, sagging and twisting which might explain the 

fact that silk flags appear to be more stable than the theoretical prediction because of the softness of 

the material.   

Using power spectra and nonlinear time-series analysis, flapping was investigated and its different 

regimes were discussed using the reconstruction of the attractors from the time-series. The orbital 

trajectories of the flapping on the attractor were discussed using the Lyapunov exponents, Poincaré 

sections and circle maps. The results show that both the flexural rigidity and aspect ratio influence 

the flapping dynamics of the flag.  
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The results may be summarized as follows. (i) both Mylar and silk short flags start to flap directly 

in the chaotic regime.  (ii) Similar behaviour was observed for flags with aspect ratio equal to unity 

and made from Mylar, while those made from soft material (silk) exhibit a complicated flapping 

regime, but with a certain level of order within it; the flapping dynamics is described by a Strange Non-

chaotic Attractor (SNA) and such attractors were found in quasi-periodic driven systems. (iii)  Long silk 

flags star to flap directly in the chaotic regime, while those made of Mylar start to flap first in a quasi-

perdiodic regime before becoming chaotic. The main result of the present study is that flapping 

regime is intrinsically a quasi-periodic system consisting of at least two coupled oscillatory motions: 

the main one is the oscillation of the flag as a rigid plate clamped at its leading edge. The second 

oscillation is the relatively low-amplitude and low frequency modulation of the first one due complex 

wave patterns of oblique travelling waves (modes) of the flag surface. Bending vibrations could also 

interfere with flapping and oblique waves in particular in the case of Mylar for which the bending 

rigidity is relatively high. The interplay of these oscillations form a quasiperiodic regime which linear 

analysis (power spectra) fail to capture in most of the cases. In this case the Poincaré section consists 

of discrete points marching on a closed curve, and the circle map describes a monotonic evolution of 

the Poincaré on this closed curve. When the secondary oscillatory motion involves more than one 

mode; the Poincaré section exhibits a ring-like structure, which is an indication of complex multi-

frequency interactions. A quasiperiodicity is inherently unstable and degenerates into chaos through 

the well known quasiperiodic scenario Nayfeh and Balachandran [36]. This ring-like structure, during 

the development of the flapping dynamics towards chaotic states, seems to be robust.  

Finally, we report for the first time a phenomenon of switching-oscillations that consist of the 

back and forth alternation between two states of the flag, stretched straight and flapping states. This 

phenomenon is inherent in the bistability and hysteresis phenomena already reported in the literature. 
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Similar to the two behaviours,   the phenomenon of switching-oscillation can serve as test for 

nonlinear theoretical and numerical models.  
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Figures 

 

Fig.1:  Experimental setup 

 

Fig.2:  Normalized critical velocity URc versus the mass ratio µ;  

here 
D
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Fig.3:  Normalised frequency at onset of flapping ( ) ( ) c
2/1

f
2/5

mc fD/hF ρρ=  versus the mass 
ratio µ; cf is the estimated flapping frequency at its onset; mρ  and fρ  are the flag and fluid density, 

respectively; D  is the flexural rigidity of the flag.  
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Fig.4.  Flapping dynamics for short Mylar and silk flags. Aspect ratio and flow velocity for Mylar flag are 
H/L= 2 and   5.76 m/s respectively.  Aspect ratio and flow velocity for silk flag are H/L= 1.67 and 3 m/s, 
respectively. ( a) and (b) Transverse displacement of a point at the top edge of the flag located at 3/4 from the 
leading edge for Mylar and silk flags, respectively ;  (c) and (d) corresponding power spectrum; (e) and (f) 
reconstructed attractors for Mylar and silk flags, respectively;  (g) and (h) corresponding  Poincaré sections; (i) 
and (j) corresponding circle maps.  

 
 
 

 



27 

 

 

 

 
 

Fig.5. Flapping dynamics for Mylar and silk flags with aspect ratio equal to 1. The flow velocity for the 
Mylar and silk flags is 2.45 m/s and 1.84 m/s, respectively. (a) and (b) Reconstructed attractors for Mylar and 
silk flags, respectively; (c) and (d) corresponding Poincaré sections, (e) and (f) corresponding circle maps.  
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Fig.6. Flapping dynamics for the silk flag with aspect ratio equal to one. For flow speed equal to 2.82 m/s: 

(a) Reconstructed attractors, (b) Poincaré section, (c) power spectrum. (d) Circle map of the flapping dynamics 
when the flow speed had been increased to 3.3 m/s.  
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Fig.7.  Flapping dynamics for long (a,c,e) Mylar and (b,d,f) silk flags. Aspect ratio and flow velocity for the 
Mylar flag are H/L= 0.1 and   1.84 m/s, respectively.  Aspect ratio and flow velocity for silk flag are H/L= 
0.46 and 1.75 m/s, respectively. (a) and (b) Reconstructed attractors; (c) and (d) corresponding Poincaré 
sections; (e) and (f) circle map. 
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Fig.8. Flapping dynamics for long Mylar flags. Aspect ratio and flow velocity for Mylar flag are H/L= 0.1 

and   3.3  m/s, respectively. (a) Reconstructed attractors;  (b) Poincaré section; (c) power spectrum;   (d) circle maps. 
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Fig.9. Switching oscillation phenomenon for long Mylar flag (H/L=0.1), velocity 1.84 m/s,  just 
below the critical flow velocity. (a) Raw time series; (b) and (c) first two empirical mode 

decompositions; (d) phase space plot.  
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