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Abstract

Empirical Evaluation and Architecture Design for Big Monitoring Data Analysis

Samneet Singh

Today, monitoring data analysis is an underrated but important process in tech industries. Al-

most, every industry gathers and analyzes monitoring data to improve offered services or to predict

critical issues in advance. However, the monitoring data constitutes V's of big data (i.e. Volume,

Variety, Velocity, Value, and Veracity). Exploration of big monitoring data possess several issues

and challenges. Firstly, a wide range of monitoring data analysis tools are available and these tools

offer a variety of features (i.e. functional and non-functional) that affect the analysis process. How-

ever, these features come with their own setbacks. Therefore, selection of a suitable monitoring

data tools is challenging and difficult to decide. Secondly, the big monitoring data analysis process

contains two main operations of querying and processing a large amount of data. Since the volume

of monitoring data is big, these operations require a scalable and reliable architecture to extract,

aggregate and analyze data in an arbitrary range of granularity. Ultimately, the results of analysis

form the knowledge of the system and should be shared and communicated. The contribution of

this research study is two-fold. Firstly, we propose a generic performance evaluation methodology.

The method uses the Design of Experiment (DoE) evaluation method for the assessment of tools,

workflows and techniques. The evaluation results generated from this methodology provide a base

for selection. Secondly, we designed and implemented a big monitoring data analysis architecture

to provide advanced analytics such as workload forecasting and pattern matching. The architec-

ture offers these services in an available and scalable environment. We implement our design using

distributed tools such as Apache Solr, Apache Hadoop and Apache Spark. We also assessed the per-

formance aspects (i.e. Latency and Fault-tolerance) of the architecture design using the proposed

evaluation method.
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Chapter 1

Introduction

According to HACE theorem (70; 76),

“Big Data starts with large-volume, Heterogeneous, Autonomous sources with distributed and de-

centralized control, and seeks to explore Complex and Evolving relationships among data”

Within the last few years, an estimated 2.5 quintillion bytes of data are generated globally

through a variety of sources. The popular social networking website Facebook, which has more

than 950 million users, generates more than 500 terabytes of new data every day. A debate between

American President Barak Obama and Governor Mitt Romney triggered more than 10 million tweets

in 2012 within 2 hours. Such online discussions provide new means to sense the public interests, and

ultimately, they generate a huge amount of data or ”Big Data” (76). A prediction in an IDC report

states that the global data volume will grow by a factor of 300 i.e. 130 exabytes to 40,000 exabytes,

representing a double growth every two years until 2020 (33). Data generation has never been this

powerful and enormous since the advent of information technology in the early 19th century (67).

Analysis of Big Data yields novel insights beneficial to businesses and organisations (10). It

provides several use cases to enable big data exploration, improved 360 degree view of the customer,

security system surveillance, operation analysis, and data warehouse moderation (71; IBM). Our

work focuses on operation analysis, and specifically, on big monitoring data analysis. Several major

companies such as Ericsson, Amazon, Microsoft, etc., provide a broad range of services, such as

LTE mobile network and IaaS cloud services, which gather and process monitoring data to assess

whether the deployed systems or offered services satisfy customer needs. For instance, a telecom
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vendor who manufactures base stations, gathers some sort of metric data to monitor the services

provided by these base stations. Furthermore, monitoring data allows companies to make crucial

decisions related to improvisation and prevent critical issues prior to their detection.

Big Data can be structured, unstructured or semi-structured (22), and processing it via traditional

analysis tools and sequential analytics is inefficient and problematic. Therefore, new programming

paradigms, like MapReduce, have quickly gained popularity. MapReduce is a parallel programming

model for processing large amounts of data. It is widely used for data mining, bioinformatics, web

indexing and machine learning (77). A well-known implementation of MapReduce programming

model is Apache Hadoop, used for batch-processing large data-intensive applications (17). Simi-

larly, several other distributed frameworks such as Apache Spark (52) or Apache Pig (27) for stream

processing have recently been introduced.

1.1 Problem Statement

Several challenges are associated with analyzing big monitoring data as it exhibits the five VFLs of

Big Data: Volume, Velocity, Variety, Value, and Veracity (51). A wide range of monitoring data

analysis tools are available, offering a variety of functional and non-functional features that affect

the analysis process. For instance, data mining tools such as RapidMiner or KNIME provide a

variety of advanced analytic methods for forecasting, clustering, and visualization. The available

features and the corresponding setbacks of these monitoring data tools need to be carefully consid-

ered in order to select the best tool. Hence, a methodology is required to assess these tools based on

user requirements.

A monitoring data analysis process contains the two main tasks: querying, and processing a

large amount of data. For instance, the Google trace consists of the production workloads running

on Google clusters collected over 6 hours and 15 minutes (19; 54; 62; 63; 75). This dataset contains

over 3 million observations (or data points), each of which consists of six features: 1) Timestamp,

in seconds; 2) JobID, as the unique job identifier; 3) TaskID, as the unique task identifier; 4) Job-

Type; 5) Normalized Task Cores, as the normalized number of CPU cores used; and 6) Normalized

Task Memory, as the normalized value of the average memory consumed by the task. In such a
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trace, to analyze the workload, data needs to be retrieved for particular attributes from an arbitrary

range of granularity (such as in a minute or hourly aggregation). However, since the trace data is

continuously generated at a large volume and requires scalable storage space, a scalable and reli-

able monitoring data analysis architecture design is necessary. The available monitoring systems

rely upon simple aggregation methods for analysis but a system architecture is needed to support

advanced analytics such as workload forecasting or pattern matching in an available and scalable

execution environment.

1.2 Objective

The objective of the research study is two-fold. Firstly, we explore and devise a performance evalu-

ation method to support the selection process of analytics tools for Big Data exploration. Secondly,

we design and implement a monitoring data analysis architecture, which aims to provide a solu-

tion to the following monitoring challenges: 1) Limited monitoring solutions; 2) Availability and

Scalability of the system, and 3) An analysis method to accommodate Big Data. We propose a mon-

itoring infrastructure, CloudAnalyzer, which supports advanced data analytics like forecasting and

pattern matching of workload data traces, provides monitoring services in an available and scalable

environment, and extends distributed frameworks to enable storage and analysis of Big Data.

1.3 Contribution

The contribution of this research study is

I. A generic performance evaluation methodology for the assessment of tools, workflows or

techniques to support selection process, and

II. A big monitoring data analysis architecture to provide the following features:

• Advanced analytics such as workload forecasting and pattern matching

• Integration with cloud platforms and distributed frameworks (such as Apache Hadoop

or Spark)

• Quality attributes such as availability and scalability

3



We have utilized distributed frameworks such as Apache Hadoop, Apache Solr, and Apache Spark

to design and implement big monitoring data analysis architecture. We have also assessed the

performance of the architecture design using the proposed evaluation method.

1.4 Thesis Structure

This thesis is organized as follows.

Chapter 1: briefly discussed the concepts and tools used in the dissertation. It provides a rationale for the

data analysis architecture design described in following chapters.

Chapter 2: discusses several evaluation approaches for efficient assessment of system architecture, and

describes several monitoring architectures proposed over the past few years.

Chapter 3: explains the Design of Experiment (DoE) evaluation method and its application on two dis-

tinct case studies. It paves the path to designing monitoring data analysis architecture.

Chapter 4: proposes monitoring data analysis architecture (i.e. CloudAnalyzer) and discusses its design

and implementation. It also describes the deployment process and provides insight using

multiple case studies.

Chapter 5: evaluates the designed monitoring data analysis architecture using DoE methodology

Chapter 6: discusses the potential future work and summarizes the material presented in this thesis

1.5 Publications

The research presented in this dissertation have been accepted at the following conferences:

I. Singh, S., & Liu, Y. (2016). A cloud service architecture for analyzing big monitoring data.

Tsinghua Science and Technology, 21(01), 55-70.

II. Khan, M. N., Liu, Y., Alipour, H., & Singh, S. (2015, September). Modeling the Autoscal-

ing Operations in Cloud with Time Series Data. In Reliable Distributed Systems Workshop

(SRDSW), 2015 IEEE 34th Symposium on (pp. 7-12). IEEE.
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III. Singh, S., & Liu, Y., Khan, M. N. (2016). Exploring Cloud Monitoring Data Using Search

Cluster and Semantic MediaWiki. 2015 2nd IEEE Conference on Cloud and Big Data Com-

puting.
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Chapter 2

Background

2.1 Introduction

In Chapter 1, we briefly discussed the problems associated with available monitoring data analy-

sis systems. Several monitoring systems like Nagios, Ganglia, and MonALISA rely upon simple

aggregation methods that cannot predict the problems or critical events in advance, nor can they

anticipate future load balancing situations. Advanced analytics methodologies for monitoring data,

such as workload prediction or pattern matching, currently have limited implementation. In this

chapter, we introduce some of the advanced analysis methods that can be integrated with Cloud

infrastructure for effective and efficient monitoring analysis.

2.2 Advanced Data Analysis

Big data analysis is a process of retrieving useful information from rapidly growing data. This

analytical power makes it a useful methodology for industries attempting to gain an edge against

their competition. It can be used for forecasting, anomaly detection, and classification clustering.

This section introduces the preliminaries and discusses some analysis methods used in our research,

based on the type of analysis being performed.
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2.2.1 Forecasting Analysis

One of the popular statistical forecasting analysis approaches is exponential smoothing. The analy-

sis method predicts the future values based on historic and current experience. It is widely used to

process univariate time series data. The three type of exponential smoothing are 1) single (or sim-

ple) exponential smoothing, 2) double exponential smoothing, and 3) triple or Holt-Winters triple

exponential smoothing.

1. Single or Simple Exponential Smoothing is the basic smoothing approach, which assumes the

original data have a stable mean. It is widely used to analyze data for a very short range such

a month, with no trends and seasonality factors (34; 38). It is formulated using the following

equation 1

St = α ∗Xt + (1− α) ∗Xt−1 (1)

In the above formulae, St and Xt are smoothed values and observed values ( for t = 1, 2,

3...T), respectively. Where α is the smoothing factor with value ranging between 0 ≤ α ≤ 1.

The weighted average of each smoothed value St depends upon the previous observations. It

decreases exponentially based on the value of smoothing constant (α). According to equation

1, If the value of α is equal to 1, then the previous observations are completely ignored i.e.

St = Xt. If the value of α is 0, then the smoothed value entirely depends upon the previous

observation i.e. St = Xt−1. The other in-between values will produce intermediate results.

2. Double Exponential Smoothing is a smoothing approach to process data with levels and

trends. It adds two additional components in the Simple Exponential Smoothing equation

(1) to represent level and trends. A level is a smoothed estimate of the value of the data at the

end of each period, whereas, a trend is a smoothed estimate of average growth at the end of

each period (38). The equations associated with double exponential smoothing are provided

in 6 and 5,

St = αyt + (1− α) ∗ (St−1 + bt−1) (2)

7



bt = γ ∗ (St − St−1) + (1− γ) ∗ bt−1 (3)

Double exponential smoothing introduces a trend equation (see equation 5) and an additional

smoothing constant γ. The value of both the smoothing factors (i.e. α and γ) lie between 0

and 1.

3. Triple or Holt-Winters Triple Exponential Smoothing (HWTES) is a data smoothing approach

to process data with both trends and seasonality. A third equation is added to handle seasonal-

ity in the time series data. Holt-Winters proposed two models based on the type of seasonal-

ity, which are the Additive Seasonality Model and the Multiplicative Seasonality Model. The

equations associated with HWTES are given below:

St =
αyt
It−L

+ (1− α) ∗ (St−1 + bt−1) (4)

bt = γ ∗ (St − St−1) + (1− γ) ∗ bt−1 (5)

It = β
yt
St

+ (1− β) ∗ (It−L) (6)

The equations are collectively called Holt-Winters Triple Exponential Smoothing where α, β

and γ are the smoothing constant. The values of these constants are set to obtained minimum

Mean Square Error (MSE) for best forecasting results.

Another forecasting analysis approach used to smoothen data is Kernel density estimation (KDE).

It is a non-parametric approach to estimate probability density function of a random variable. Let

us consider a random variable X . The KDE of a sample Xt = {X1, X2, X3...} is given by,

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
, (7)

where Kh is the non-negative kernel function (30; Wikipedia). A Kernel is a special type of prob-

ability distribution function with the following properties: 1) non-negative; 2) real value; 3) even

number; and 4) its definite integral over its support set must equal to 1 (68). It is applicable on both

univariate and multivariate datasets.
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2.2.2 Clustering Analysis

Within a decade, the size of the cloud has increased from a few hundred cluster nodes to thousands.

Monitoring such a huge cluster results in accumulation of a large volume of data, which can have

hidden useful information e.g. workload patterns. Data clustering is a powerful analysis approach

to retrieve such hidden patterns inside the dataset. For instance, this information can be used for

scheduling and load balancing the cluster, as given in (3; 49). There is a broad range of clustering

algorithms available such as KMeans, DBSCAN, Fuzzy C-Means, BIRCH, and so on. Selecting

these algorithms depends on various factors, which are beyond the scope of our study, but we used

the K-Mean clustering algorithm for our study.

K-Means is a popular and simple approach for data partitioning. It provides an iterative ap-

proach to divide a dataset X = {x1, x2, ...xn} with n objects or data points and d attributes into

k mutually exclusive clusters C = {c1, c2, ...ck} (13). Each center point, defined as the centroid

of the cluster, characterizes the cluster. A KMeans clustering example is shown in figure 2.1. The

Figure 2.1: K Means Clustering Example

objects are distributed based on their distance to the centre point. Different distance metrics such

as Euclidean distance and Mahalanobis distance can be used to calculate the distance between the

object and centroid. Each object belongs to the cluster with shortest distance to its centroid (28).
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2.3 General Tools

2.3.1 Apache Solr

Figure 2.2: SolrCloud

Apache Solr is an open source full text-based search engine. It provides features of faceted

search, hit highlighting and real-time indexing. The core of Solr consists of Apache Lucene’s search

library that allows distributed search and index replication. Solr also provides a Representational

State Transfer (REST), like the Application Program Interface (API), which enables language bind-

ing with Solr. Based on Solr 4.0, SolrCloud further provides the functionalities of running multiple

Solr nodes in a cluster to devise a scalable and highly available cloud computing environment (44).

2.3.2 Apache Hadoop

Apache Hadoop is a framework designed to provide distributed storage and analysis of large vol-

umes of data. Its architecture design includes Hadoop Commons, Hadoop Yarn, Hadoop Distributed

File System (HDFS) and Hadoop MapReduce(29). Hadoop Commons are Java libraries and utilities

required by other Hadoop modules. These libraries provide filesystem and OS level abstractions and

contain the necessary Java files and scripts required to start Hadoop. Hadoop Yarn is a scheduling

module and is responsible for cluster resource management. It facilitates additional services such

as HBase or Apache Pig to run on the top of Hadoop framework. HDFS adopts a master/slave ar-

chitecture, whereby the master node consisting of a single NameNode is responsible for managing
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(a) Apache Hadoop Ecosystem (b) MapReduce Paradigm

Figure 2.3: Apache Hadoop Framework

the file system metadata, and the slave nodes consisting of DataNodes store the actual data(32; 66).

MapReduce is a programming paradigm designed to process large volumes of data in a dis-

tributed environment. Its programming model consists of two stages, the Map Stage and the Reduce

Stage. The Map Stage is responsible for converting the input dataset into key/value pairs (see fig-

ure 2.3b). The input dataset is the file or directory, usually stored in HDFS. The reduce stage is

the combination of two steps, shuffle and reduce. In shuffle step, the worker nodes redistribute data

based on the output keys from mapper stage, such that all data belonging to one key is located at the

same worker node. Finally, the reduce step processes the shuffles key and value dataset in parallel.

2.3.3 Apache Spark

Apache Spark is a distributed computing framework designed to analyze a large amount of data,

especially Big Data. It extends the map-reduce paradigm for complex computation. In contrast

to Apache Hadoop, it can compute using the main memory for faster computation. It requires a

resource manager and a distributed storage system for data processing. Currently, it supports three

resource managers, which are Spark Standalone, Apache Yarn, and Apache Mesos. It runs on var-

ious distributed storage platforms, such as HDFS, Amazon S3, Cassandra, etc. Apache Spark also

provides a unified stack, i.e., integrated components such as Spark SQL, Spark Streaming, Machine

learning library (Mlib), and GraphX, for better data processing. For instance, Mlib provides the

K-Means clustering algorithm efficiently to divide a large number of data points into k specified
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sets or clusters.

Figure 2.4: Apache Spark

2.3.4 MediaWiki

MediaWiki is an open-source application originally developed to power Wikipedia. MediaWiki

helps to search, organize, tag, browse, evaluate, and share information as the wiki’s content (8). Se-

mantic MediaWiki (SMW) is an open-source extension developed for MediaWiki. It adds semantic

annotations that allow a wiki to function as a collaborative database. SMW provides a flexible

means for a developer to describe the trace data that he or she intends to analyze. SMW annotations

define the fields and attributes of the trace data, and their relationship helps to form a structured

query (43). Instead of storing the whole set of raw trace data into SMW’s content database, we

propose a cloud architecture that stores the trace data in a search cluster using SolrCloud. SMW

page issues the queries, and the results are stored back to SMW’s content database for display.
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Chapter 3

Related Work

3.1 Introduction

In this chapter, we discuss related studies related to our research approach. We explored and com-

prehend several software application performance evaluation methods. The evaluation approach

design in our research studies is inspired by these evaluation approaches. Similar, we also discussed

several monitoring and analysis systems. This systems provides a rational to design big monitoring

data analysis system.

3.2 Performance Evaluation Methods

Selection of suitable software applications to carry out specific tasks has become challenging, due to

the rapid development and availability of software. A number of performance evaluation techniques

or methods have been developed to support this selection process. Performance evaluation is a

method to determine the strengths and weaknesses of the underlying architecture or design pattern.

Some evaluation methods developed are discussed in (65), where they are categorized into early and

late evaluation.

The early evaluation methods are software evaluation methods that can assess the software ap-

plication based on its specification and description. They are employed to analyze software quality

attributes such as reliability, performance, scalability and availability. Most of these evaluation
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methods are scenario based. Scenario based evaluation methods identify scenarios in close inter-

action with the stakeholders and systematically investigate the software architecture based on these

scenarios. Some of the examples are Software Architecture Analysis Method (SAAM), Architec-

ture Trade-off Analysis Method (ATAM), Family − Architecture Analysis Method (FAAM), and

Domain Specific Software Architecture Comparison Model (DoSAM) (9; 36; 40; 41).

Figure 3.1: A Conceptual Flow of ATAM

SAAM was first introduced in 1993 as a scenario based early evaluation method (20). The main

advantage is this evaluation method is its adaptive design (39) that allows modification of SAAM’s

rationale design to develop evaluation methods for specific requirements. The method includes

the six steps or activities of 1) scenario development, 2) System Architecture (SA) description, 3)

Scenario classification and prioritization, 4) individual scenario evaluation, 5) scenario interaction,

and 6) overall evaluation (6). ATAM is another evaluation method for assessing quality attributes

such as modifiability, portability, extensibility, and integrability. The assessment method has nine

steps as shown in figure 3.1. DoSAM is another scenario-based evaluation method designed to

assess software quality attributes like performance, scalability, and availability (9).

The late evaluation methods are employed where the software application is prone to changes.

An approach is introduced in (69) to evaluate software application which undergoes modification

during the implementation process. It avoids system degeneration by actively and systematically
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detecting and correcting deviations from the planned design as soon as possible, based on explicit

and implicit architectural guidelines. It has the following seven steps which are as follows: 1)

Select the perspective for evaluation; 2) Define and select guidelines, and establish metrics to be

used in the evaluation; 3) Analyze the planned architectural design in order to define architectural

design goals; 4) Analyze the source code in order to reverse-engineer the actual architectural design;

5) Compare the actual design to the planned design in order to identify deviations; 6) Formulate

change recommendations in order to align actual and planned designs; and 7) Verify that the design

goal violations have been corrected by repeating steps 4 through 6. There are other late evaluation

methods discussed in (26; 48; 57; 64).

Most of these evaluation methods are intended for the evaluation of a single architecture at a

particular point in time. In a case of comparing tools, they mainly focused on comparing their results

against a certain analysis job, for example, the accuracy of classification (12; 72). Inspired by the

property “Velocity” of Big Data analytics, we are more concerned with the performance of different

tools. More importantly, to our knowledge, there lacks a systematic study of evaluating data mining

tools that are driven by requirements derived from a data analysis context. Thus, our study can also

be viewed as an experience report on evaluating data mining tools by following a relatively rigorous

methodology and applying principles of Design of Experiment (DOE) techniques.

DOE emerged traditionally for agriculture, chemical, and process industries. Considering its

natural relationship with experimental activities, suitable DOE techniques have also been employed

in experimental computer science. When it comes to the software engineering field, the main interest

of applying DOE seems to be in software testing from the developer’s perspective (21; 45; 58).

Our study essentially extends the applicability of DOE to software comparison from the end user’s

perspective.

3.3 Distributed Monitoring Data Analysis Architecture

The survey papers (2; 73) of cloud monitoring abstract the process of monitoring process in three

main steps: 1) collection of relevant state, 2) analysis of the aggregated state. and 3)decision making

as a result of the analysis. The requirements of monitoring systems on scalability and fault-tolerance
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have an inherent propensity from cloud computing. A scalable and fault tolerant cloud monitoring

system is free from a single point of failure and bottlenecks, and adapts to elasticity. Since the

monitoring data can be useful long after it has been collected, it is continuously accumulated, so

failures must not interrupt monitoring. The existing monitoring data analysis services are mostly

available as part of IaaS or PaaS cloud services. In general, these monitoring services face many

challenges as discussed in detail in (2), and researchers and several cloud service providers have

proposed monitoring infrastructures to encounter them. As briefly described in Chapter 1, our work

focuses on the following problems associated with monitoring data analysis systems: 1) Need of

advanced monitoring solutions, 2) Extensibility, 3) Scalability, and 4) Availability. In the following

section, we discuss some monitoring data analysis architectures designed to address these issues

and to offer efficient monitoring of IT infrastructures.

Figure 3.2: Nagios Network Model

Nagios is one of the most popular general-purpose monitoring infrastructures available in the

market. It is an integral solution designed to achieve instant awareness of IT infrastructure problems

(23) (2). It adopts Client/Server architecture, carefully designed to inherit scalability and flexibility

(61). Nagios also supports different plugins for local resource monitoring, as shown in Figure 3.2.

Its Executor Plugin (Nagios NRPE) allows remote resource monitoring. Its Service Check Adap-

tor Plugin (Nagios NSCA) supports asynchronous push measurements and events from monitored

nodes. However, the disadvantages of the approach is that it lacks the capability to monitor rapidly

changing and dynamic infrastructure (61) (55).
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Another monitoring system architecture design to monitor large-scale IT infrastructures is Mon-

itoring Agents using a Large Integrated Services Architecture (MonALISA) (59). It adopts the

agent-based architecture in which agents are dynamically registered to the central server. This ar-

chitecture design implicitly provides scalability of the system. Similar to Nagios, MonALISA also

does?t support dynamic infrastructure monitoring.

Figure 3.3: Ganglia Architecture

Ganglia (79) is another popular resource monitoring system. It is designed to monitor grids

but was later adapted to cloud infrastructure (61). Ganglia adopts a hierarchical agent-based archi-

tecture consisting of two main components, gmonds, and gmetad, as shown in Figure 3.3. In this

hierarchical architecture, grounds run on each monitoring nodes. They gather resource information

and pass it on to gmetad upon request. gmetads are responsible for aggregation and visualization of

the collected information. Also, it leverages XDR format for compact, portable data transportation

and RRDtool for data storage and visualization (50). Ganglia lacks some relevant features such as

the discovery function at the inter-cluster level.

DORGAS, introduced in (61), is a monitoring infrastructure built upon data-centric data dis-

tribution service (DDS) (60). It adopts the Publish/Subscribe distributed architecture design to

effectively analyze multi-tenant cloud resources. The architecture is composed of two main com-

ponents: 1) Node Monitoring Agent (NMA), which runs on local nodes, to gather their resource

17



information; and 2) Node Superior Agent(NSA), which collects data remotely from nodes and for-

ward it to the central system. This data-centric approach provisions fault-tolerance and scalability

in the system. Another relevant monitoring system introduced in (55) is GMonE. It uses the typical

Publisher/Subscriber paradigm, which is composed of four main components: 1) GMonEMon; 2)

GMonE plugins; 3) GMonEDB; and 4) GMonEAccess. Its major advantage is that it provides mon-

itoring services at all levels. Besides, GMonE plugins can be used to provide additional monitoring

solutions.

Chaves et al. proposed an abstract general-purpose monitoring data analysis system, Private

cloud monitoring system architecture (PCMONS) in (15), as a monitoring solution for private

clouds. In contrast to previously discussed monitoring solutions, PCMONS utilizes a layered ar-

chitecture style consisting of the following three layers: 1) Infrastructure layer, which offers basic

functionalities, services, and contains software and hardware installations; 2) Integration layer, com-

posed of heterogeneous resources, such as data collector/gatherer, configuration generator, etc.; and

3) View layer, which provides abstract functionalities and an interface for visualizing monitoring

resources. This architecture style can integrate with traditional monitoring solutions like Nagios

and enhance their capabilities.

Another interesting monitoring architecture, Flexible automate cloud monitoring slices (Flex-

ACMs) has been discussed in (7). Its architecture is designed to overcome the issue of manual con-

figuration of monitoring solutions. For instance, the monitoring solution includes aggregating CPU

usage to detect critical events and abnormalities in the IT infrastructure. The design is composed

of the following three main components: 1) Gatherers, to collect the resource information, such as

CPU, Memory, Storage, etc. from the cloud and forward it to the framework core using REST API;

2) Framework core, which is responsible for detecting changes in collected resource information;

and 3) Configurators, to receive resource information and provide required monitoring solutions.

These monitoring applications, PCMONS and FlexACMs, are proposed to inherit extensibility.

Brinkmann, Andre, et al., have designed a monitoring system complementary to their EASI-

CLOUD cloud service to tackle the challenge faced by monitoring systems concerning scalability.

The architecture is divided into three components similar to the previously described PCMONS

and FlexACMs monitoring systems, including Data supplier, Data manager and Data storage and
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preprocessing. One of the main advantages this architecture offers is its distributed management

tree approach. As specified by the author in (78), there are no standard specification and protocols

for cloud-based services, which makes it difficult for service providers to support all the proto-

cols to comply user requirements. However, the distributed management tree comprising of Data

managers makes the system flexible to cover protocol-specific parameters for data acquisition by

implementing specific handlers (78). Data supplier component has the basic functionalities of re-

source gatherer, and EASI-CLOUD allows external tools for data collection. The third component,

Data storage, and preprocessing, is responsible for aggregating the gathered data and acting as the

intermediate stage between management and supplier. The author has described scalability at the

component level. However, the solution does not support storing original resource information that

could be utilized to get some hidden insight of the cluster.

A much closer approach to our research is Cloud Monitoring Engine (CME). It is a distributed

monitoring architecture, introduced in (42), which ensures elasticity and scalability of the moni-

toring system. Its advantage is that it encompasses use of parallel computing for data aggregation.

Also, it uses the MapReduce paradigm to normalize collected data. However, it doesn’t provide any

advanced analytics methods for processing.

Commercial cloud solutions often make use of their monitoring systems. Several cloud-specific

monitoring infrastructures are also known for their efficient monitoring capabilities. Examples of

these monitoring systems are CloudWatch, AzureWatch, and OpenNebula. CloudWatch is a high-

level cloud monitoring solution developed by Amazon to monitor EC2 instances (4) (16) but it

hides low-level services from consumers, such as resource information gathering, collection, and

analysis. Also, the primary focus of CloudWatch is virtual platforms. AzureWatch is another com-

mercial monitoring system to monitor Azure resources, such as instance, storage, websites and web

applications (2).
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Chapter 4

Empirical Evaluation using Design of

Experiments Technique (DoE)

4.1 Introduction

In this paper, we experimentally explore tools and methodologies for running data analysis on tele-

com monitoring data. According to the clarifications in (18; 24), using experimentation to evaluate

tools and methodologies can be regulated by experimental computer science. Considering that eval-

uation methodology underpins all innovation in experimental computer science” (11), we employ

the recently available Domain Knowledge-driven Methodology (DoKnowMe) (47) for this study,

and particularly utilize a set of principled techniques of Design and Analysis of Experiments (DOE)

(5; 56).

We consider two case studies. Firstly, we evaluate the data mining tools on the basis of a set

of requirements. Secondly, we assessed the analysis algorithms (i.e. Outlier detection techniques)

identity a suitable algorithm for a particular workflow design. We conduct the evaluation on datasets

collected from base stations in a trial mobile network with two data ming tools, RapidMiner and

KNIME. The dataset time frames are 1 month, 6 months, 1 year and 2 years. Additionally, we

design workflows on a KPI that provides the average number of connected users per cell on base

stations. We used these workflows to conduct our studies to evaluate data mining tools and outlier

detection algorithms. The observations from this evaluation provide insights of each data mining
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tool and the outlier detection techniques in the context of data analysis workflows. This documented

design of experiment facilitates telecom software engineers to replicate this evaluation study, and

can be expanded for other evaluations.

4.2 The Data Analysis Scenario and Workflow

Big data is the new reality in the telecom world. Over recent years, the mobile broadband traffic

has had an explosive growth due to widespread adoption, advanced new networks, increasing pen-

etration of smartphones, and millions of mobile applications. This growth will continue at a rapid

pace as increasing deployment of Internet of Things, sharable/uploadable/findable content by mo-

bile users, sensors, connected cars and so on. Mobile big data has proven useful for capacity and

performance monitoring (e.g., during normal operation or under massive events), troubleshooting,

realistic lab testing, simulation, new feature design, an architectural evolution of mobile network

infrastructure products.

A telecom vendor is specialized in manufacturing of E-UTRAN Node B (a.k.a eNodeB) or base

stations. eNodeB is the hardware that is connected to the mobile phone network that communi-

cates directly with mobile handsets. To manage the quality of service delivered by eNodeBs, they

are monitored and observed by metrics or key performance indicators (KPIs). KPI measurement

is frequently used and is effective means that mobile operators and mobile network infrastructure

vendors use to search systematically and identify the system/network bottlenecks, troubleshooting,

dimensioning and anomalies. For example, mobile network operators monitor KPIs to ensure an

optimal dimensioning and configuration for their network with efficient use of network resources

and to provide robust QoS and consistently good user experience. For wireless infrastructure ven-

dors, the data collected from the network contains valuable information that can reveal the current

state and quality of both hardware and software.

This brings increasing challenges to processing and analyzing this vast amount of data with

huge variety in a timely fashion. The monitoring data are time series data that consist of more than

200 columns with each representing one KPI. Each KPI is read every 15 minutes, leading to 96

readings per day per KPI. Mining these KPI data will result in technical insights of the effectiveness
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and efficiency of the service provided to the customers.

The existing conventional tools and methodologies of telecom services are not designed for and

simply cannot handle at this scale. As a result, there is only a small percentage of monitoring data

has been analyzed at present. To expend the data analytics scales, data mining workflow tools play

an important role. A suitable tool should address the business requirements of 1) Support workflow

management that scales up day to day productivity of data analytics; 2) Provide flexibility and

modularity for rapid workflow modification; 3) Make use of popular languages and libraries in data

science such as R and Python; 4) Provide user-friendly workflow front end; and 5) Allow scheduling

workflow jobs and even back-fill missing data.

A concept workflow architecture is depicted in Figure 4.1. The workflow includes three phases

1) Extract, 2) Transform and 2) Load. These phases consist of multiple tasks to complete. The

Extract phase consists of two tasks, namely Collect Data, and Merge Data. This phase retrieves the

data from various sources and stores at the staging area 1. The staging area 1 is the file system to

store data in raw form i.e. (flat files). The stored data files are merged to form a single data file

for processing. The merged file is then pushed forward to the Transform phase. In the Transform

phase, the Clean Data task removes inconsistency and bad records in the data file to prevent errors.

The cleaned data is stored in staging area 2 in the form of flat files. The Process Data task of

the Transform phase reads the data file from staging area 2 and commences analysis. A range of

analysis methods can be used to process data. For example, outlier detection techniques, such as

LOC are used for analysis. Finally, the analysis results and the cleaned data are moved to the final

staging area (i.e. Staging Area 3). The staging area 3 is of data storage in relational or No-SQL

databased. The Load phase is responsible for generating a report or visualizing the process data. The

analysis results in the data storage are queried for different purposes. The workflow is composed

and executed within a data mining workflow management framework to execute it in a periodic

manner.

A variety of data mining workflow tools exit. Each has its own set of features. When processing

the data analytics logic on a given infrastructure, these features become a set of factors that affect

both the functional and non-functional attributes of the end data analytics product. The choice of

a tool demands systematic evaluation to identify the relations among the factors, the combinations
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Figure 4.1: The Architecture of Data Analysis

and requirements of requirements of data analytics. Likewise, machine learning algorithms need to

be selected according to the desired features of the data analytics product. The evaluation of data

mining workflow tools and machine learning algorithms are at different granularities: the former

includes the entire workflow runtime, while the latter is a composition component to a workflow.

The question is how to develop a systematic evaluation method that covers both kinds of evaluation.

4.3 The Evaluation Method

Data mining tools are a special type of software that aims for facilitating data mining jobs (53). The

comparison between software products is a typical evaluation practice that belongs to the field of

experimental computer science (18). We adopt the principles of Design of Experiment (DoE) to

guide evaluation implementation for selecting suitable data mining tools. Figure 4.2 outlines the

steps of DoE in eight steps. The description of each step is as follows:

Step 1: Requirement Recognition. Identification of evaluation requirements is the first and fore-

most task in DoE evaluation method. These evaluation requirements are necessary to com-

prehend system related problems as well as the evaluation purpose. The experts with prior

knowledge of associated problems brainstorm to write down a set of evaluation requirement.

At first, the experts use natural language to describe evaluation requirements. They are then
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scrutinized thoroughly and mapped to requirements questions. This process determines the

objective of the assessment process which is to address these requirement questions.

Step 2: Feature Identification. It standardizes the terms, concepts and their relationships within

a system domain to determine a set of features. The features include both functional and non-

functional features. This step utilizes the requirement questions to identify relevant features

for evaluation.

Step 3: Metrics and Benchmark Listing and Selection. Firstly, experts investigate the relevant

metrics and benchmark and prepare a list constituting them. Then, the most appropriate ones

are selected based on the available resources in hand, estimating the overhead of potential ex-

periments, and judging the evaluatorsFL s capabilities of operating different benchmarks. The

selection process is a crucial task and plays an essential role in evaluation implementation.

Once the metric and benchmarks are chosen, the selection of experimental factors begin.

Step 4: Experimental Factors Listing and Selection. The experimental factors are the parame-

ters or variables that affect the performance features selected for evaluation. Similar to the

previous step (i.e. Metrics and benchmark listing and selection), this step lists a set of po-

tential candidate experimental factors. Later, the selection process considers the candidate

factors with highest impact and relevance.

Step 5: Experiment Design. According to DoE, the next step after careful selection of the met-

rics, benchmarks, and experimental factors is to design experiments for evaluation as shown in

Figure 4.2. In the beginning, simple experiments are designed based on the pilot trials. Later

these experiments are modified for more complex designs using DOE techniques. The step

outputs experimental instructions, experimental blueprints, and driving benchmarks. They

are then used to implement these experiments.

Step 6: Experiment Implementation. means carrying out series of experiments. For instance,

observing the behaviour of the system by gradually increasing the value of a selection factor

and taking multiple reading for each value. The results obtained from the implementation

step is moved forward for analysis.
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Step 7: Experiment Analysis. In this step, evaluators comprehend the results and compare differ-

ent systems on both functional and non-functional grounds.

Step 8: Conclusion and Documentation. Finally, the requirement questions are answered based

on the analysis results and documented for future reference.

We apply this evaluation method based on DoE to two aspects of the architecture depicted in

Figure 4.1. The first aspect is evaluating and comparing data mining tools that support all tasks of

the workflow. The second aspect is evaluating the outlier detection algorithms in the task of Process

Data.

Figure 4.2: The Step Skeleton of Design of Experiment
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4.4 Evaluation of Data Mining Tools

A data mining workflow tool is a special type of software that aims for facilitating data mining jobs

(53). It is a core component of the architecture depicted in Figure 4.1 to analyze the monitoring data

collected from base stations. The evaluation of data mining workflow tools focuses on comparing

alternative tools according to both quantitive and qualitative requirements. We apply the process of

evaluation in the aforementioned eight steps.

4.4.1 Requirement Recognition

Driven by the evaluation method, the requirement recognition is both to understand the real-world

problem and to achieve clear statements of the corresponding evaluation purpose. In fact, it is the

recognized evaluation requirement that essentially drives the remaining evaluation steps. In this

case, an engineering team with both telecom engineers and software engineers brainstormed the

selection criteria on data mining tools as follows:

• It should be able to read data either from files (e.g., CSV or Excel files) or provide capabilities

to read data from the database systems.

• It should provide appropriate support for data manipulation and transformation.

• It should provide a useful statistical model or Machine learning support for data processing.

• The application should have interoperability.

• It should accommodate a large volume of data, for example, a data set with approximately 2

million data points.

• It should provide effective data exportation and visualization.

• It should support other Scripting languages, such as R, Python, etc.

• It should process data effectively and efficiently.

• The interface of the tool should be user-friendly and easy to learn.

The main evaluation requirement becomes:

RQ: Given the selection criteria, the key difference between a pair of data mining tools on the

same sets of data.
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Table 4.1: Identified Features of Data Mining Tools

Category Feature

Quantitative
Performance

Data Mining Latency

Data Mining Resource Usage

Qualitative
Indicator

Data Import Support

Data Export Support

Node IO Limit

Scripting Language Support

Visualization Support

Data Manipulation and Transformation

Interoperobility in Batch Mode

Interface Usability

It is clear that the selection criteria of data mining tools include both quantitative (like mining job

performance) and qualitative (like operational capabilities) concerns. Since the evaluation method

encourages defining a set of specific requirement questions to be addressed by potential evaluation

experiments, we further distinguish between those quantitative and qualitative criteria and clarify

the above requirement as follows:

rq1: How fast does a tool perform data mining jobs?

rq2: How many resources does a tool need for data mining jobs?

rq3: How well does a tool match the qualitative selection criteria?

4.4.2 Tool Feature Identification

According to the clarified evaluation requirement and selection criteria, we identify the features

of data mining tools to be evaluated. There are two quantitative performance features and eight

qualitative indicators, as listed in Table 4.1. We mainly focus on the experimental evaluation of the

performance features in the following subsections, while leaving the qualitative discussions to the

end of this study.
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4.4.3 Metrics & Benchmarks Listing and Selection

We consider two typical types of jobs in processing telecommunication service monitoring data,

namely forecasting job and clustering job. We developed solutions for each type of jobs to bench-

mark. For example, to evaluate data mining tools regarding forecasting, we used the scripting

language R to implement a data forecasting algorithm as a baseline. The forecasting algorithm

employs Seasonal Naive and BATS forecasting models and predicts the data point for next three

days. As for the clustering job, we used K-means clustering algorithm to run clustering analysis on

a dataset.

The two metrics we use to measure the performance of data mining tools are the data mining

jobs’ execution time and memory usage. Execution Time is the time required for job completion,

as formulated in Equation (8).

TimeExe = TimeStampEnd − TimeStampStart (8)

Memory Load is the percentage of memory used during the job execution, which is supposed to

be monitored every second.

4.4.4 Experimental Factors Listing and Selection

Knowing the relevant factors (also called parameters or variables) is a tedious but necessary task

of designing proper experiments (37). Our evaluation method distinguishes among the workload-

related, resource-related and capacity-related factor types. We identified experimental factors and

their levels for evaluating data mining tools, as listed below.

• Workload-related factors:

◦ Data Mining Job: Forecasting and Clustering

◦ Workload Size: 1 month, 6 months, 1 year, and 2 years of data

• Resource-related factors:

◦ Tool Brand: RapidMiner and KNIME

• Capacity-related factors:
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Figure 4.3: Workflow of implementing the forecasting job with KNIME.

◦ Latency: Execution Time

◦ Memory: Memory Usage

These benchmarks for forecasting and clustering are employed to vary data mining jobs by

different sizes of workload. The workload of 1 month, 6 month, 1 year and 2 year of data have

2880, 17280, 34560 and 69120 data records respectively. We regard data mining tools as service

resources to be evaluated, and then treat different tool brands as different resource types.

4.4.5 Experimental Design

Evaluation experiments are subsequently prepared and designed by utilizing the selected experi-

mental factors. Here we employ the Full-Factorial Design technique (56). Since the factors Data

Mining Job, Workload Size and Tool Brand have two, four and two values respectively, we have

2× 4× 2 = 16 types of experimental trials. Note that the capacity factor Latency plays a response

role in this design. Considering that Randomization and Replication are two principles of applying

Design of Experiments (56), we decided to repeat 50 times each of the 16 types of experimental
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Table 4.2: A General Full-Factorial Design∗

Trial Data
Mining Job

Workload
Size

Tool
Brand

Execution
Time &
Memory
Usage

1 Clustering 1 month RapidMiner ?∗∗

2 Forecasting 1 year RapidMiner ?

3 Forecasting 2 years KNIME ?

4 Clustering 2 years RapidMiner ?

5 Forecasting 1 year KNIME ?

6 Clustering 1 year RapidMiner ?

7 Clustering 6 months RapidMiner ?

8 Clustering 1 month KNIME ?

9 Forecasting 6 months RapidMiner ?

10 Forecasting 1 month RapidMiner ?

11 Forecasting 2 years RapidMiner ?

12 Clustering 2 years KNIME ?

13 Forecasting 1 month KNIME ?

14 Clustering 6 months KNIME ?

15 Forecasting 6 months KNIME ?

16 Clustering 1 year KNIME ?

*The design matrix was generated by using Minitab.

**The “?” denotes a placeholder for Response value.

Figure 4.4: Workflow of implementing the clustering job with KNIME.

trials, and randomized those trials into a design matrix (please see Table 4.2) by using Minitab1.

4.4.6 Experimental Implementation

The evaluation experiments were implemented following the full-factorial design. The experimen-

tal environment is consistent for running both forecasting and clustering jobs on RapidMiner and
1Minitab: https://www.minitab.com/en-us/
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KNIME.

In the case of the forecasting job run by RapidMiner, the workflow includes three different

phases: (1) The first phase reads data from the CSV files, and then passes the data to the next phase.

(2) The preprocessing phase prepares the data and extracts the training and testing sets from the

entire data set. (3) The last phase is composed of three major processes, namely data processing,

validation, and plotting.

The prepared training data set is fed to the forecasting models, and the testing dataset is used

to validate the forecasting results based on the validation metrics, such as root-mean-square error

(RMSE) and mean absolute error (MAE) (14). This phase also plots the results for the purpose of

visualization.

Along with the changing workloads, RapidMiner’s execution time of running the forecasting job

varies ranging from about 29 seconds to 107 seconds, on average, for the data sizes from 1-month

to 2-year.

Unlike RapidMiner, each of the KNIME nodes supports one input node only. As a result, KN-

IME’s forecasting workflow has four phases, namely reading data, preprocessing, data processing,

and merging and plotting. In particular, the third phase provides data processing and validation,

while the last phase provides data merging and plotting. We show the workflow of KNIME’s fore-

casting job, as illustrated in Figure 4.3.

Given the above experimental setup, a KNIME’s forecasting job takes approximately from 35

seconds for processing 1 month data to around 107 seconds for 2 year data.

As for the clustering job, the corresponding workflow is divided into four phases including

reading, preprocessing, clustering and writing data for both data mining tools. Similarly, here we

only show the workflow of KNIME’s clustering job, as illustrated in Figure 4.4. Since the clustering

job is simpler than the forecasting job, the two tools’ execution time changes between around 8

seconds and about 13 seconds for different sizes of workloads. We further visualize the response

time given the workload size shown in Figure 4.5a and 4.5b.

Likewise, we evaluate the memory usage of running jobs in both the forecasting and clustering

workflows as shown in Figure 4.5c and Figure 4.5d. Both jobs have a steady increase of the memory

usage, indicating that the algorithms applied in each job do not have a big size of intermediate results
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Figure 4.5: Average execution time & memory usages of jobs. The error bars indicate the corre-
sponding standard deviations.

which could lead to intensive demands of memory usage. This is an important indicators to consider

for the workflow design, since an intermediate step can contribute to the capacity related factors,

while the workload related factors (such as the job types and workload sizes) and the resource-

related remain the same.

4.4.7 Experimental Analysis

Given the results from the experimental implementation, we further conduct quantitative and quali-

tative analyses for those features respectively.
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Analysis for Quantitative Features

For evaluating quantitative features, DoE strongly suggests employing suitable statistical methods

for experimental analysis. Note that the statistical methods do not directly prove any factor’s effect

(56) in the context of factorial experimental design. However, statistical analysis can add objectivity

to drawing conclusions and to the potential decision-making process.

In this case, we first investigate if the effect of data mining tools on job execution could be influ-

enced by the other factors, by statistically analyzing the interactions between different experimental

factors against the response Latency. Benefiting from Minitab, we use the Interaction Plot to visual-

ize the factor interactions, as shown in Figure 4.6a. In an interaction plot, the greater the difference

in slope between two lines, the higher the degree of interaction between the corresponding factors

while parallel lines indicate no interaction. It is then clear that there is a potential interaction be-

tween the factors Data Mining Job and Workload Size but no interaction between these two factors

and Tool Brand. In other words, changing the value of Data Mining Job and Workload Size will not

influence the effect of Tool Brand on job execution time.

Secondly, we investigate how significant changing data mining tools would impact on job execu-

tion time, by statistically analyzing the influences of different experimental factors on the response

Latency. We employ the Pareto Chart to visualize the effects of the various experimental factors and

their combinations, as shown in Figure 4.6b. In a Pareto chart, the absolute effect values are drawn

with a reference line. Any effect that extends beyond this reference line indicates a potentially im-

portant factor or factor combination. As can be seen, the factors Data Mining Job and Workload

Size and their combination have potentially significant effects on the execution time of data mining

jobs, whereas Tool Brand seems not to be a major factor regarding the response Latency.

In terms of memory usage, the analysis in Figure 4.6c and Figure 4.6d shows two different tool

brands have a clear cross trend concerning the data mining jobs, More specifically, RapidMiner uses

less memory for the clustering jobs, while KNIME uses less memory for the forecasting jobs.
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Analysis for Qualitative Features

For the qualitative features, we directly discuss them one by one to compare those two data min-

ing tools, and the discussions are based on our experiences of implementing the aforementioned

experiments.

• Data Import Support: Both RapidMiner and KNIME support importing data from a wide

range of file formats and databases, such as CSV files, Excel files, Sequence files, etc. In

addition, they also support model import and data streaming from various databases.

• Data Export Support: Similar to data importation, both KNIME and RapidMiner support

enhanced data exportation support for a wide range of file formats, models, and databases.

However, the open source version of RapidMiner has limitations to the support.

• Node IO Limit: Another desirable feature is the capability of a node to accept multiple input

from and output flow connections to other nodes in a workflow management system. While

RapidMiner allows multiple inputs and output flow capabilities in the workflow designing,

KNIME has a limitation regarding input ports. Since a single node in KNIME has one or

maximum two input port(s), making the workflow design complicated for complex work-

flows.

• Scripting Language Support: KNIME and RapidMiner both have efficient support for R and

Python scripting languages. The advanced Node IO feature (as discussed in the above point)

provides additional flexibility for external scripting languages in the workflow.

• Visualization Support: RapidMiner has exclusive dynamic data visualization support over

KNIME. This feature provides the support to a wide range of charts for visualization, in-

cluding scatter plot, heat maps, multiline plots, etc. However, this feature exacerbates its

performance while visualizing a large amount of data.

• Data Manipulation and Transformation: KNIME and RapidMiner have similar number of

nodes to support data manipulation, statistical modeling, and machine learning algorithms.

They support machine learning algorithms including Decision Trees, K-Means, Support Vec-

tor Machine (SVM), and Bayesian Networks.

• Interoperability in Batch Mode: KNIME and RapidMiner support batch mode processing,
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allowing them to run faster with loading GUI every time a workflow execution takes place.

• Interface Usability: KNIME has the same legacy interface of popular Eclipse IDE, making

it easier for developers to interact efficiently with it. RapidMiner’s interface is more user-

friendly and interactive, and provides effective tutorials which make it easier for a novice to

learn.

4.4.8 Conclusion and Documentation

As regulated by the principles of DoE, we summarize answers to the predefined requirement ques-

tions before drawing conclusions, as outlined below.

rq1: How fast do RapidMiner and KNIME perform data mining jobs respectively?

• When running the forecasting job with different workload sizes, the execution time of

KNIME varies ranging from about 35 to 107 seconds on average and of RapidMiner

takes from nearly 30 to around 105 seconds (See Figure 4.5a). As for the clustering

job with different workload sizes, the latency range of KNIME is from about 9.8 to 13.4

seconds and of RapidMiner’s is from 8 to 9.3 seconds (See Figure 4.5b). RapidMiner

shows comparatively lower latency in both the cases.

rq2: How many resources do RapidMiner and KNIME need for data mining jobs respectively?

• Since the data size is consistent for running both data mining tools, the implementation

of algorithms by each tool is a key factor on the memory consumption of each type of

job. In our case, KNIME shows less memory utilization in case of forecasting, whereas

RapidMiner show less memory usage in case of clustering jobs, as shown in Figure 4.5c

and Figure 4.5d. RapidMiner relatively requires less number of nodes to design a work-

flow, which entails less memory consumption.

rq3: How well do RapidMiner and KNIME match the qualitative selection criteria?

• Given the qualitative discussion in Section 4.4.7, KNIME beats RapidMiner in terms

of “Data Import Support” and “Data Export Support”. RapidMiner is better than
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KNIME in terms of “Node IO Limit”, “Scripting Language Support”, “Visualization

Support” and “Interface Usability”. KNIME and RapidMiner have equivalent capac-

ity with respect to “Data Manipulation and Transformation” and “Interoperability in

Batch Mode”.

Overall, these answers reveal little difference between KNIME and RapidMiner regarding their

quantitative features. The experimental analysis also confirms that Tool Brand is not a significant

factor for executing data mining jobs, although RapidMiner runs slightly faster than KNIME in this

study. Assuming the data analysis architecture has a specific emphasis on features such as “Interface

Usability”, we can select data mining tools based on their qualitative features. In this example,

RapidMiner has more advantages over KNIME for interface usability. Therefore, RapidMiner can

be chosen.

We have documented our evaluation logic and activities including directly reusable codes and

scripts, which would facilitate telecom software engineers to replicate this evaluation study and

evaluate other data mining tools.

4.5 Evaluation of Analysis Methods

The concept architecture in Figure 4.1 is further used to evaluate outlier detection methods with

the workflow step of Process Data. Similar to the evaluation of a data mining tool for the whole

workflow, case study, we employ the eight steps of DoE to compare methods.

4.5.1 Requirement Recognition

After thoroughly brainstorming the requirements with telecommunication engineers, we have de-

veloped the following five requirements for the analysis method:

• Distribution Independent: Several outlier detection methods, especially statistical methods,

which are based on estimating standard deviation, make assumptions about underlying data

distribution. For instance, GrubbFL s test (? ) is an outlier detection technique that assumes

the underlying dataset to be normally distributed. However, it is not possible to assume the
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distribution of all the features in a multivariate dataset. Such dataset contains several features

having distinct data distributions. Thus, the outlier detection approach should be independent

of the distribution.

• Non-Parametric: An outlier detection method should also be non-parametric. Parametric

models have multiple fixed set of parameters. They need to be set to an appropriate value

to achieve efficient detection. Estimating these values for parameters requires adjustment for

every data distribution.

• No Explicit Training: Patterns observed in telecommunication data constantly change due

to the addition of new features or continuous upgrading. Training detection models with an

obsolete dataset entails inefficient results. Therefore, the outlier detection algorithm should

be capable of detecting outliers without explicit training.

• Applicable on Multivariate Dataset: The dataset is multivariate that consists of several

independent features. Thus, the detection method should be applicable on a multidimensional

dataset.

• Applicable on Large Dataset: The outlier detection methods should scale as the size of data

grows.

Following the DoE principles, the main evaluation requirements are identified as follows:

rq1: How efficient the outlier detection method is on a given telecommunication dataset?

rq2: How much is the resource utilization of the method?

rq3: How well does a method match the qualitative selection criteria?

4.5.2 Methodology Feature Identification

Based on requirements, the selection criteria are divided into qualitative indicators and one quan-

titative indicator that is performance. The selection criteria is listed in Table:4.4. We map these

selection criteria to a set of outlier detection methods as shown in Table4.6 . The qualitative indica-

tors help us to filter we out methods from further evaluation steps. For instance, since Grubb’s test is
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distribution dependent, and its assumption of normal distribution contradict the requirements listed

previously, this technique is not selected for further evaluation. Qualitative analysis are discussed

later in section.

Table 4.3: Selection Criteria

Category Features
Qualitative Indicator Distribution Independent

Non-Parametric
No Explicit Training
Multivariate Dataset
Large Data Volume

Quantitative Indicator Efficiency
(Performance) Latency

Memory Usage
Table 4.4: Selection Criteria

4.5.3 Metrics & Benchmarks Listing and Selection

The outlier detection method is supposed to extract data from the staging area 1 as shown in Fig-

ure 4.1 and process the data to determine outliers. Afterwards, the data is labeled and stored for

further analysis in the staging area 3. Hence the execution of the outlier detection method reply

on the entire phases of Extraction, Transform and Loading (ETL). We consider the latency and re-

source usage of the outlier detection method in the context of the whole ETL job. Hence the latency

is measured by means of execution time defined as the time required for a ETL job completion us-

ing Equation (8). We also consider the resource usage in term of memory usage as the size of data

grows.

4.5.4 Experimental Factors Listing and Selection

We identified experimentation factors and categorized them into four groups, namely workload-

related, approach-related, efficiency-related and capacity-related factors.

• Workload-related factors:

− Job: Outlier detection method
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Table 4.5: Outlier Detection Techniques

Category Outlier Detection
Technique

Distribution
Indepen-
dent

Non-
Parametric

No Explicit
Training

Multivariate
Dataset

Large
Data
Volume

Statistical
Approach

Grubb’s Test x x x x

Chi Square Test x x x x
Kernel Density Es-
timation (KDE)

x x x

General Extreme
Student Estimate

x x x x

Classification
Approach

One Class Support
Vector Machine
(SVM)

x

Bayesian Naive x
Random forest x

Clustering
Approach

K-Means x

DBSCAN
OPTICS
Self-Organized
Mapping (SOM)

x

Nearest
Neighbour
Approach

Global KNN

Local Outlier Fac-
tor (LOF)

Table 4.6: Outlier Detection Techniques

− Data size/Number of records: 10,000 , 25,000, 50,000, 100,000, 800,000

• Efficiency-related factors:

− Threshold

− False Positive/Detection Rate

− True Positive/Detection Rate

• Capacity-related factors,

− Latency: Execution Time

− Resource usage: Memory Usage
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4.5.5 Experimental Design and Implementation

The experiment design utilize the experimental factors identified in the previous step to prepare

for experimentation. Based on the metrics, benchmarks and experimental factors, two tables are

designed as shown in table 4.7 and table 4.8.

Table 4.7: Efficiency Selection Metric

Trial Method Threshold False Pos-
itive/De-
tection
Rate

True Posi-
tive/Detec-
tion Rate

1 DBSCAN ? ? ?
2 DBSCAN ? ? ?
3 DBSCAN ? ? ?
4 OPTICS ? ? ?
5 OPTICS ? ? ?
6 OPTICS ? ? ?
7 LOF ? ? ?
8 LOF ? ? ?
9 LOF ? ? ?
10 GKNN ? ? ?

However, experiment implementation involves several tasks for data preparation before com-

mencing the experimentation. These tasks are,

• Data Cleaning: It is a process which removes any sort of syntactic errors, semantic errors and

coverage anomalies present in the dataset prior to its processing. For instance, in our case

rows containing lexical errors such as !DIV0! present in the dataset are eliminated from the

dataset. We manually removed the error by writing R data mining scripts as the amount of

error present was limited and known.

• Data Labelling: The next step is to label the dataset after removing all the removal of un-

wanted and bad data rows from the dataset. We tag the data record in the dataset based on

domain knowledge provisioned by telecommunication experts. For instance, we know that

the success rate always lies between 0 and 1. Any value less than zero and more than one is

an anomaly and thus tagged.

After data preparation, we feed the dataset into the workflow architecture to evaluate different
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Table 4.8: Performance Selection Metric

Experiment Mtethod Data Size Execution
Time

Memory Us-
age

1 DBSCAN 10,000 ? ?
2 DBSCAN 25,000 ? ?
3 DBSCAN 50,000 ? ?
4 DBSCAN 100,000 ? ?
5 DBSCAN 800,000 ? ?
6 OPTICS 10,000 ? ?
7 OPTICS 25,000 ? ?
8 OPTICS 50,000 ? ?
9 OPTICS 100,000 ? ?
10 OPTICS 800,000 ? ?
11 LOF 10,000 ? ?
12 LOF 25,000 ? ?
13 LOF 50,000 ? ?
14 LOF 100,000 ? ?
15 LOF 800,000 ? ?
16 GKNN 10,000 ? ?
17 GKNN 25,000 ? ?
18 GKNN 50,000 ? ?
19 GKNN 100,000 ? ?
20 GKNN 800,000 ? ?

anomaly detection techniques. The experimentation takes place by gradually increasing the amount

of data points (or records). We plotted Receiver operating characteristic ROC curves to measure and

compare the efficiency of these outlier detection techniques. ROC curve is a graphical evaluation

method used for assessing machine learning algorithms, especially, binary classifiers. ROC curve

is obtained by calculating True Positive Rate (TPR) and False Positive Rate (FPR) of the detection

algorithms. Where TPR is a measure of correct positives out of all the positives detected by an

algorithm. On the other hand, FPR is a measure of incorrect positives out of all the positives

detected. The TPR and FPR represents the y-axis and x-axis of the ROC curve and are formulated

using eq 9 and eq 10, respectively.

TPR =
True Positive

(True Positive + False Negative)
(9)

TPR =
False Positive

(False Positive + True Negative)
(10)
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ROC curve for an outlier detection method is obtained by running it under different parameter.

The performance of each outlier detection technique depends on the value assigned to its param-

eters. Each parameter has different impact on the performance. For instance, the accuracy of the

DBSCAN’s prediction highly depends on the value of epsilon and minimum points (i.e. the max-

imum distance between two samples for them to be considered as in the same neighbourhood and

number of data points to consider to form a dense cluster, respectively) (? ). Therefore, we carefully

selected only those parameters which have maximum impact on algorithms performance i.e. epsilon

in case off DBSCAN. After running each outlier detection technique, we compare the results (i.e.

prediction labels) produced during the detection process with the original labels to calculate TPR

and FPR. Then, we plot ROC curve for each outlier detection technique and compared them thor-

ough analysis. In addition, we also profile execution time and memory usage of detection techniques

and plotted the results.

4.5.6 Experimental Analysis

Analysis of Quantitative features

• Efficiency: In the previous step, we carefully executed the experimentation process and plot-

ted the results for analysis. We plotted ROC curve for the outlier detection techniques as

shown in Figure ??. The ROC curve of Local Outlier Factor (LOF) method shows the best

performance among other detection techniques. It shows the maximum TPR of 0.7 attained

with minimum FPR of 0.15, approximately. Whereas, OPTICS and DBSCAN have almost

same area under the curve and shows similar behaviour for obvious reasons.

• Execution Time and Memory Usage: We scrutinize the outliers detection methods to esti-

mate average execution time and average memory usage. For this purpose, ten readings were

taken for execution time and memory usage by gradually increasing the data size, i.e. 10,000,

25,000, 50,000, 100,000 and 800,000 records, at the end of the each cycle of ETL job. We

employ Pareto Chart to visualize effects of the different experimental factors and their com-

binations. We compare LOF with DBSCAN and OPTICS, as shown in Figure 4.9 and Fig-

ure 4.10. In Figure 4.9, the analysis shows that the factor Data Size has a relatively significant
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Figure 4.7: Efficiency Analysis Result

(a) Execution Time Analysis (b) Memory Usage Analysis

Figure 4.8: Average execution time and memory usage of outliers detection methods.

influence on the experimental results. However, in Figure 4.10 neither Technique nor Data

Size has significant influence on the experimental results

Analysis for Qualitative Features

In the case of outlier detection techniques, the quality attributes are used as selection criteria. The

selection process is a subtask and forms a basis quantitative analysis. The outlier detection technique

which complies all these qualitative criteria will be assessed. Each qualitative criteria is analyzed

independently (i.e. without observing the effect of on property on other) for each outlier detection

technique. The study results are illustrated in Table 4.6.
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(a) Execution Tim Analysis (b) Memory Usage Analysis

Figure 4.9: LOF Vs DBSCAN

(a) Execution Time Analysis (b) Memory Usage Analysis

Figure 4.10: LOF Vs OPTICS

• Distribution Independent: Most of the statistical outliers detection techniques, such as GrubbFL

s test and Chi-Square test, are distribution dependent. These statistical approaches rely on the

underlying data distribution, and most of them are only applicable on a normally distributed

dataset. In our case, these techniques are inapplicable as the base stations or eNodeBFLs gen-

erates data with distinct data distributions. After scrutinizing the outlier detection methods

in consideration, we found that GrubbFL s Test, Chi Square Test, Kernel Density Estimation

(KDE), General Extreme Student Estimate are distribution dependent whereas the remaining

techniques are independent of underlying data distribution.

• Non-Parametric: Similarly, distribution independent methods are also non-parametric. There-

fore, based on our analysis GrubbFL s Test, Chi Square Test, Kernel Density Estimation
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(KDE), General Extreme Student Estimate techniques are parametric, and remaining detec-

tion techniques show non-parametric behaviour.

• No Explicit Training: Telecommunication companies generate a large volume of data. The

large volume makes training data preparation a tedious task. Therefore, outlier detection

technique should not need any prior data preparation. Clustering and classification detection

techniques such as One-class support vector machine (SVM), Bayesian naive, Random forest,

K-Means, Self-Organized Mapping (SOM) are effective methodologies for outlier detection

but need explicit training. Training these techniques require preparation of training data which

is not feasible in our case. However, outlier detection techniques such as GrubbFL s Test,

Kernel Density Estimation (KDE), DBSCAN, OPTICS, Global KNN, Local Outlier Factor

(LOF) do not require any training data, thereby, more suitable for analysis.

• Multivariate Data: Statistical outlier detection techniques i.e. (GrubbFL s Test, Chi Square

Test, General Extreme Student Estimate techniques) are only applicable on a univariate dataset.

Whereas, Kernel density estimation (KDE) has an implementation for both univariate and

multivariate dataset. As far our knowledge is concerned, most of the machine learning algo-

rithms apply to both univariate and multivariate data. However, they tend to perform better

on multivariate data than univariate data.

• Large Volume of Data: As it has been already mentioned several times, that the base stations

generate a large volume of data. Hence, the analysis technique should be capable of pro-

cessing large data. In such case, GrubbFL s Test, Chi Square Test, General Extreme Student

Estimate are inapplicable for large datasets, but the remaining techniques work fine on large

datasets.

Based on the above analysis, only four outlier detection techniques are assessed quantitatively.

These techniques are DBSCAN, OPTICS, LOF and Global KNN.

4.5.7 Conclusion and Documentation

As regulated by the DoE principles, we summarize answers to the predefined requirement questions

before drawing conclusions, as outlined below.
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rq1: How efficient the outlier detection method is on a given telecommunication dataset?

• The ROC curve shows LOF’s performance to be quite promising on this particular

dataset with TPR of 0.7 with minimum FPR of 0.15, approximately. Whereas, the Global

KNN methods has TPR of 0.37 with FPR as low as 0.1. DBSCAN and OPTICS shows

almost similar performance with TPR 0.5 and FPR 0.25, approximately.

rq2: How much is the resource utilization of the method?

• The analysis results indicate that Global KNN is the fastest among others outperforming

them with execution time of approximately 2 seconds to process 100,000 data points.

However, its execution time eventually becomes similar to LOF with increasing data

size becoming 3 seconds for 800,000 data points. GKNN and LOF also consume almost

same amount of memory for analysis. However, in case of memory usage, OPTICS has

the minimum utilization for 800,000 data points. Although, the method has maximum

execution time but its memory consumption is comparatively very low. DBSCAN is

unable to process large data volume due to excessive memory use.

rq3: How well does a method match the qualitative selection criteria?

• Given the qualitative discussion in Section 4.4.7, eliminating the detection methods that

do not meet our criteria led us to extract only four methods out of the selected ones.

These methods are DBSCAN, OPTICS, Global KNN and Local Outlier Factor. These

methods are non-parametric, distribution independent, multivariate and does not re-

quire explicit training.

4.6 Motivation for Architecture Design

The evaluation process has allowed us to explore and understand several challenges associated with

monitoring data analysis. The monitoring data exhibits all the five VFLs of Big Data: Volume,

Velocity, Variety, Value, and Veracity (51) which make the data exploration and itFLs analysis bit

complicated. In such a scenario, general, traditional tools and analysis methods are inefficient and
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ineffective. Firstly, its requires a scalable storage for accommodating such huge amount of data.

Secondly, the storage system should be available to guarantee the reliability of data i.e. data should

be missing because of storage node failure. It also ensures that the data is always available for active

monitoring. Thirdly, there is a need to provide advanced analytics such as forecasting for monitoring

data analysis. To overcome this monitoring analysis issue we proposed a monitoring data analysis

architecture. The architecture is designed to provide advanced analytics for monitoring analysis in

an available and scalable environment. The architecture design is discussed in detail in the next

chapter.

4.7 Conclusion

In this chapter, we present our design of experiment to evaluate data mining tools and outlier de-

tection approaches into two different case studies. The aim of this evaluation is to observe them

both quantitatively and qualitatively when running data analytic jobs. The analytics helps to un-

derstand the number of connected users per cell on the base stations in the trial mobile network.

Since the data is constantly generated and accumulated, the workload size given the period of time

datasets are collected become one experimental factor in both the cases. The evaluation becomes

complicated because of Combination of several factors. Therefore, applying DOE principles to our

evaluation study clearly make this practice in a structured eight-step procedure. At the end, the eval-

uation study allows us to address the evaluation requirements. The threats of validation is mainly

in the evaluation environment. We used default settings in each study. Each case can be further

optimized to achieve a better response time and memory utilization. Our purpose is not to com-

pare any data mining tools or outlier detection approach in an absolute measurement, instead, we

focus on the evaluation method that allows observing the features and metrics of these tools or ap-

proaches, respectively. The insights help to make the decision on how a data mining tools or outlier

detection approaches should be fit into the big data analysis architecture. We believe this evaluation

study based on design of experiment can be extended to other data mining tools or outlier detection

approaches of interests.
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Chapter 5

CloudAnalyzer: An Architecture Design

for Big Monitoring Data

5.1 Introduction

A generic monitoring system performs four tasks to monitor IT infrastructure (i.e. cluster of nodes).

This process involves: 1) data collection, 2) data storage, 3) data analysis, and 4) data visualization.

Data collection is a process of gathering resource information (i.e. CPU Usage, Memory Usage,

etc.) from each node of a cluster and storing it in a data storage space. Information gathered could

be stored in different formats, such as in a flat file or a row in a database. Stored data is analyzed to

comprehend different aspects of the cluster through effective visualization. The monitoring process

becomes complicated when it involves monitoring huge volume of data (i.e. Big Data).In such a sce-

nario, traditional monitoring systems are inefficient for analyzing monitoring data. An efficient big

monitoring data analysis system requires reliable resource information collection, essential analysis

methodologies, and effective visualization: it demands data storage space which is fault-tolerant,

scalable and highly available. Also, It should have advanced and reliable analytics methods than

simple aggregation. Besides, there should be an interface for generating reports and displaying the

results for effective documentation and information sharing.

We propose an envisioned architecture design to analyze big monitoring data gathered from de-

ployed IT infrastructure. It has advanced analytics for workload forecasting and pattern matching

49



for efficient monitoring. The core of the architecture contains a central component consists of Rep-

resentation State Transfer (or REST) API which integrates a storage and visualization components.

In this chapter, we explain this proposed architecture design (Section II) followed by its deploy-

ment (Section III). We discuss a case study of analysis of a time series dataset (Section IV), and end

with a summary (Section V).

5.2 CloudAnalyzer: A Cloud Monitoring Architecture

We design a cloud monitoring infrastructure called CloudAnalyzer, to address the above mentioned

issues. It adopts a layered architecture style as shown in Figure 5.1. The architecture is parted by

an extension line into Core and Extension. The Core enables the user to perform advance analysis

such as workload prediction and workload pattern matching on small datasets. As the name spec-

ifies, the Extension adds the ability to run distributed computing algorithms on large datasets. The

architecture is discussed in detail in the following sections.

5.2.1 CloudAnalyzer: Core Architecture

The Core is composed of three essential layers: 1) a CloudAnalyzer Extension, 2) a CloudAnalyzer

Server, and 3) a SolrCloud Cluster. The interaction between these elements allows the monitoring

system (i.e. CloudAnalyzer) to process the workload traces and monitor the patterns that have

occurred.

The top layer, CloudAnalyzer Extension, is a SMW extension design that provides an interactive

interface for underlying architectural layers. It enables a user to configure a wiki page for a par-

ticular trace analysis, set up parameters, launch requests of data access and processing, and finally,

display the generated report. It uses the feature of Special Pages of the MediaWiki engine. These

Special Pages are wiki pages that are created on demand to perform a particular function. Hence,

the CloudAnalyzer extension is a SMW wiki special page created upon request to provision the web

interface: it sends the configuration parameters set up by the user making a HTTP request to the

layer below. Given the range of traces and the type of analysis method, the CloudAnalyzer Extension

uses the annotations from SMW to structure the analysis results and generate corresponding wiki
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Figure 5.1: CloudAnalyzer: Cloud Monitoring Architecture

pages. In SMW, annotation Category provides automatic indices, similar to tables of contents. The

architecture provides several analysis methods, such as Kernel Density Estimation (KDE), Forecast-

ing, etc. The SMW categorizes the generated reports based on these analysis methods. Once the

result returns from the CloudAnalyzer server, a wiki page, or report, is created and then semantically

linked to its corresponding category for its respective analysis method.

The middle layer, CloudAnalyzer REST API, adopts the Representational State Transfer (REST)

architectural style instead of using traditional HTTP methods. The advantages of REST include the

following: it utilizes the Uniform Resource Locator (URL) to identify various web resources; it dis-

solves a very complex application into simple resources; it minimizes the network latency enabling

better performance; and, it enables independence and scalability of component implementations in

a distributed systems (25; 46). Thus, CloudAnalyzer REST-API acts as a bridge to connect Cloud-

Analyzer Extension and the underlying SolrCloud Cluster. The core of REST-API is built on three
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microservices, specifically, search, analysis, and page generator. The CloudAnalyzer Extension uti-

lizes the REST-API’s resources to send processing requests, invoking the analysis package, which

utilizes the search microservice to extract datasets of interest. The search microservice then sends a

search query to the shard of SolrCloud using SolrCloud’s API via HTTP. Upon return of the data,

the analysis package produces the result and sends success response to the CloudAnalyzer. On re-

ceiving a success response, it initializes another request to plot forecasted data for that particular

dataset via HTTP POST method. Finally, the extension sends a request to generate a wiki page,

calling the page generator. This microservice generates the analysis result and creates a new wiki

page using MediaWiki’s markup language. The CloudAnalyzer REST-API is discussed in detail in

later section.

At the bottom layer consists of a cluster of Apache Solr nodes. This SolrCloud Cluster is

responsible for effective data storage and provides availability and scalability to users. It contains

the subset of optional features in Solr for indexing and searching. It also enables horizontal scaling

of a search index using sharding and replication. The structure of SolrCloud cluster consists of the

following components:

• SolrCore encapsulates a single physical index.

• Node is a single instance of Solr. A single Solr instance is bound to a specific port and can

have multiple SolrCores.

• Collection contains a single search index distributed across multiple nodes. A collection has

a name, a shard count and a replication factor. A replication factor specifies the number of

copies of a document in a collection.

• Shard is a logical slice of a single collection. Each shard has a name, a hash range, a leader,

and a replication factor.

• Replica hosts a copy of a shard in a collection, implemented as a single index on a SolrCore.

One replica of every shard is designated as a leader to coordinate indexing for that shard.

Each shard has one and only one leader at any time and leaders are elected using ZooKeeper.

• Cluster includes all the nodes that hosts SolrCores.
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• ZooKeeper provides a distributed coordination service that provides the cluster state man-

agement and the leader-election mechanism for fault-tolerance. ZooKeeper nodes constantly

monitor the Solr nodes in a cluster.

5.2.2 CloudAnalyzer: Extension Architecture

The Extension takes advantage of REST API and acts as a plugin to the Core. It incorporates

additional components to facilitate complex computation of large datasets. It integrates frameworks

such as Apche Hadoop, with the Core. In our case, it consists of an Apache Spark application

running on a Hadoop Yarn cluster. The distributed architecture extension is illustrated in Figure 5.1.

The top layer, CloudAnalyzer Extension, is used by both Core and Extension. It provides the web

interface and performs the same task of initiating a process. However, it adds another microservice

Spark Request Sender to the REST API. It is responsible for comprehending the request initiated by

CloudAnalyzer Extension and forwarding it to another microservice Solr Request Receiver running

at the bottom layer. The interaction between sender and receiver mircoservices takes place using

RabbitMQ. RabbitMQ is a message broker software that implements Advanced Message Queuing

Protocol (AMQP). Solr Request Receiver receives the task information and transforms into Spark

command to process it using Spark cluster.

The bottom layer is consists of Spark on Hadoop Yarn Cluster. Hadoop Yarn is the key feature

of second generation Apache Hadoop. It is a resource management platform for managing and

scheduling user application in a cluster. In Extension, the Hadoop Yarn cluster contains a Yarn

resource manager, a Hadoop name-node and Spark running on a single node. It is also connected

to other Hadoop file system (HDFS) data-nodes, where the user stores resource data as well as the

results retrieved from Spark jobs. The HDFS ensure availability of the data. Also, it is scalable for

accommodating the increasing data size.

5.3 CloudAnalyzer: Workflow

The basic workflow of CloudAnalyzer is illustrated in Figure 5.2. The process begins when a user

interacts with the CloudAnalyzer Extension to send a monitoring request. The monitoring request

53



with specified configuration parameters is received by the CloudAnalyzer Server, which interprets

the request, and initiates a connection establishments process. It is responsible for locating the

available Solr node for establishing a connection. The required amount of resource data is then

retrieved from SolrCloud, and forwarded to the analysis package for processing. The analyzed

results are transformed into wiki pages and the page is injected into SMW. Finally, a user can go

through wiki pages to view or share the results.

Figure 5.2: CloudAnalyzer: Core Workflow

As illustrated in the Figure 5.3, workflow of the extended architecture resembles the work-

flow of the CloudAnalyzer Core Architecture. The special wiki page accepts the required input

parameters from the user. These parameters are then forwarded to the CloudAnalyzer REST-API

in the form of a HTTP POST request. The CloudAnalyzer REST-API comprehends the request

and forwards the parameters that has been recieved wrapped as JSON message to Spark cluster’s

main node. The node receives the JSON message and submits the job request to the Spark clus-

ter. The message encoded in JSON format is passed to the Spark cluster’s main node using the
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Spark Request Sender microservice present in the CloudAnalyzer REST-API. The Spark Request

Receiver microservice running on the Spark cluster’s main node receives the message and decodes

it, submitting the requested Spark job. The messages are passed between nodes using the Advanced

messaging queueing protocol (AMQP). AMQP is a standard protocol for message-passing between

different hosts in a cluster. The spark job after successful completion, the spark job saves the result

and transfers it to the CloudAnalyzer REST-API via secure-shell (ssh). In the end of this sequence,

CloudAnalyzer REST-API sends a success response to the CloudAnalyzer extension, which in turn

sends another request to CloudAnalyzer REST-API to generate a wiki page for the specific result.

Currently, we have implemented KMeans clustering algorithm using the sparkFLs machine learning

library to analyze the trace data by dividing it into required number of sets.

Figure 5.3: CloudAnalyzer: Extension Workflow
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5.4 REST API

The CloudAnalyzer REST-API provides five important Restful resources as shown in Figure 5.4.

These service resources provisions access to CloudAnalyzer’s core functionalities. The four REST-

ful service resources are describes as follows,

Figure 5.4: CloudAnalyzer REST API

• HWTES Processor enables the client to process a specified range of a dataset to determine

workload forecast using Holt Winter’s exponential smoothing (HWTES) method, which runs

forecasting on data stored in both the file system as well as on SolrCloud. Forecast results

can be pulled out anytime using the unique dataset identifier, the initial slice index.

• KDE Processor provides services to determine data points lying outside a particular threshold
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for an arbitrary dataset. It utilizes the Kernel density estimation (KDE) method to determine

workload patterns. Similar to HWTES Process, results can be retrieved from both the file

system as well as SolrCloud. It also contains an implicit plotting service that plots the analysis

results and stores them within the server. Both workload patterns and plots can be accessed

using the initial slice index.

• HWTES Plotter provides functionality to plot the forecast data produced by HWTES Proces-

sor.

• Spark Clustering service runs clustering algorithms on large datasets stored in HDFS to get

better a insight of the dataset. It also plots results obtained for visualization.

• SMW Page Generator creates SMW pages to display the analysis results. It automatically

uploads the pages to SMW client.

The complete documentation of these resources is provided in APPENDIX A.1.

5.5 Architecture Deployment

We deploy the CloudAnalyzer’s prototype using a cluster of Emulab nodes. Emulab is IaaS provided

by the University of Utah (31). We acquire eight nodes in total to set up the testbed. Out of

eight nodes, six nodes are used to deploy SolrCloud Cluster. SolrCloud requires a ZooKeeper

ensemble for monitoring or manage the Solr nodes, thereby three of these six nodes are set up as

ZooKeeper nodes to monitor the other three Solr nodes. The remaining two nodes are used for

SMW and CloudAnalyzer Server each. The network configuration of the CloudAnalyzer is shown

in Figure 5.5a.

SolrCloud Cluster is configured to use a single shard and two replicas in a collection. Fig-

ure 5.5b shows the configuration settings for SolrCloud Cluster. Initially, resource information

(CPU, Memory, etc.) gathered by monitoring agents is transferred to the leader node. The stored

information is replicated and stored in the other two replica nodes. Upon failure of the leader, infor-

mation is available from the replicas. The figure also illustrates the ZooKeeper ensemble zk0, zk1
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and zk2 monitoring shard that consists of three Solr nodes. This ensemble is also responsible for

re-electing the leader node in case of failure.

(a) Emulab Nodes Configuration (b) Single shard and two replicas configuration

Figure 5.5: Architecture Deployment Configuration

In addition, we also deploy 3 additional nodes, yarn0, yarn1 and yarn2, to theCloudAnalyzer

Core architecture extension in order to add another component, the Spark cluster. One node is

specified as the Hadoop Yarn resource manager. The Hadoop Yarn’s namenode contains a resource

manager and a Spark application. It also includes a microservice for receiving requests from the

CloudAnalyzer REST-API. There are two more nodes connected to the Hadoop Yarn and serve the

purpose of data-nodes for HDFS storage.

5.6 Case Study on Monitoring Data Analysis

We consider a case study on analyzing the trace data to predict the workload and understand patterns

in a time series dataset that has levels, trends and seasonality factors. For this purpose, we use

the traceversion1 dataset release by Google (63) as the input to the monitoring system. Google’s

traceversion1 is a collection of resource information gathered from IaaS. It contains the CPU and

memory usage of jobs acquired by a cluster of machines at a particular timestamp. The data is

completely anonymized in several ways. There are no task or jobs name, only numeric identifiers.

Timestamps are relative to the start of data collection. The consumption of CPU and memory is

obscured using a linear transformation (63). We presume the data is normally distributed based
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on central limit theorem, which states that the mean of an arbitrary dataset of a large size from an

arbitrary distribution has approximately normal distribution.

5.6.1 Data Loading

The traceversion1 dataset consists of unstructured data with no unique features. However, Solr-

Cloud requires a unique feature to index the dataset in order to provide its unique functionalities.

Therefore, we use SolrCloud’s implicit indexing functionality that automatically creates a unique

id for each data record while uploading. The automatically generated unique id is configured using

Solr schema file as shown below:

<fieldType name="uuid" class="solr.UUIDField" indexed="true"/>

<uniqueKey>id</uniqueKey>

An example of automatically generated unique id is also given below:

<str name="id">b6f17c35-e5ad-4a09-b799-71580ca6be8a</str>

In addition, SolrCloud also supports several data uploading methods, termed as data handlers,

as specified in (? ). These data handlers include: 1) index handlers for uploading data from files; 2)

data import handlers for uploading data from database; and 3) HTTP POST for uploading data over

the network. As the traceversion1 dataset is in CSV format, we used CSV index handler to directly

upload the dataset to SolrCloud.

SolrCloud does not support interfacing with Hadoop Yarn cluster, and it does not have capa-

bilities to retrieve data from HDFS. However, a single Solr instance can be run over HDFS, but

it retains its high availability and scalability. To avoid this situation, another copy of trace data is

moved to HDFS periodically for processing. The file system is dedicated to the Spark cluster and

provides highly available and scalable storage capabilities.

5.6.2 Data Query

In CloudAnalyzer, data queries are sent via HTTP POST requests. These requests contain the pa-

rameters for specific analysis methods. For instance, if a user intends to request 10,000 data records

from SolrCloud, a sample query is shown below:
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se = SearchOptions();

se.commonparams.q(’*:*’).rows(’100000’)

response = trace_collection.search(se)

The queried data is received in JSON format via HTTP from SolrCloud. The returned data is

further processed by the analysis microservice.

5.6.3 Workload Prediction

The analysis microservice of the CloudAnalyzer implements two main analysis methods, the HWTES

and KDE, explained in detail in Chapter 2. The analysis methods are implemented using the Python

programming language. We use HWTES to forecast the CPU usage of a Google cluster. Prediction

of the future values of CPU usage enables us to trigger an alert in case of critical events. For this

purpose, we periodically analyze a data chunk of 10,000 data points., split into a number of sea-

sons, each with duration L. In our case, the 10,000 data points are split into 4 seasons, 4L, whereby

L contains 2,500 data points. Each season and trend are predicted at the end of each period of

L based on the growth of the previous season and trend. As a result, the analysis method provides

forecasting for time series data of length 4L. Figure 5.6 illustrates theHWTES result for a data chunk

of 10,000 data points of CPU usage from the trace version1 of a Google trace. This particular result

is predicted with smoothing constants alpha(α) = 0.2, beta(β) = 0.2 and gamma(γ) = 0.05.

Figure 5.6: Forecast using HWTES
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5.6.4 Workload Pattern Matching

We use KDE for determining the workload pattern in traceversion1 monitoring data. Firstly, HWSES

is used to decide the upper and lower thresholds, which are calculated by adding and subtracting

the standard deviation from the produced mean, respectively. The smoothing analysis of the CPU

usage for 10,000 data points from traceversion1 is shown in Figure 5.7. Once the threshold is set,

the kernel density is estimated for outliers. Outliers are data points lying above the upper threshold

and below the lower threshold. The kernel density estimated for 4 seasons is shown in Figure 5.8

for outliers above the upper threshold and Figure 5.9 for those below the lower threshold.

Figure 5.7: Moving average using Holt-Winters single exponential smoothing

By calculating the Pearson Correlation of two sequential seasons, we can determine if the outlier

distribution changes significantly or not. The Pearson Correlation is a measure of how well two

datasets are related to each other. The relation is shown in the following Eq.11,

r =
n(Σxy)− (Σx)(Σy)√

[nΣx2 − (Σx)2][nΣy2 − (Σy)2]
(11)

where Pearson’s r value can range from -1 to 1, such that linear relationship between variables is

the following: a perfect negative linear relationship if -1; no linear relationship if 0; perfect positive
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Figure 5.8: KDE for outliers above threshold

Figure 5.9: KDE for outliers below threshold

linear relationship if +1; and a high correlation if 0.5 and 1. Figure 5.8 depicts the KDE analysis for

outliers above the threshold for each season in Figure 5.7. The r value is 0.53, 0.74, and 0.76, for

the correlation values of two consecutive seasons in Figure 5.8. The correlation value between the
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2nd and 3rd season, and the 3rd and 4th season are high due to the low number of outliers. In both

cases, zeros are default values for those spots where there are no outliers. Therefore, statistically,

the correlation values of the seasons are high. This is intuitively meaningful as the low number of

outliers also indicates the likelihood of the upper or lower threshold being crossed is low. Hence,

the changes of workload over these last three partitions are negligible.

5.6.5 Workload Clustering

We used a basic KMeans clustering algorithm for classification of the time series workload data.

For this purpose, we utilized spark’s inbuilt machine learning library to run KMeans, which is the

most commonly used workload classification method. The algorithm divides the dataset into a spec-

ified number of clusters, k, and assigns each datapoint to its closest cluster centroid by identifying

the shortest distance between the data point and the centroids. We have used Euclidean metric to

estimate the distance between data points.

Spark’s KMeans clustering algorithm requires multiple input parameters to classify the dataset,

as described below:

• k decides the number of clusters required from the dataset.

• Runs is the number of times KMeans clustering algorithm should iterate to obtain conver-

gence.

• Max iterations restricts the maximum number of iterations allowed for clustering.

• Initialization mode provides two initialization modes, either random initialization or initial-

ization via k-means ||.

• Initialization steps provides the estimation of number of steps in k-means ||.

• Epsilon is the distance threshold to decide convergence.

To demonstrate how the framework works, we classified the trace data for different values of k.

The workload classification intends to find insight of the task event in the trace data. We ran the

clustering algorithm on 1000k data points for different values of k, i.e. 2, 4, 6, 8, 10 and 12. We
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used k-means || as the initialization mode and kept the convergence threshold / epsilon constant as

0.6. The example results are produced using the framework are illustrated in Figure 5.10.

(a) k = 4 (b) k = 6

(c) k = 8 (d) k = 10

(e) k = 12 (f) k = 14

Figure 5.10: KMeans clustering for different values of k

We scrutinized classification results for different values of k. We observed that most of the data
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points representing the task’s CPU and memory usage in the monitoring dataset have a considerably

low value, utilizing approximately 0.0016 and 0.0031 CPU and memory on average, respectively.

Only some tasks have high CPU and memory usage, i.e 0.287 and 0.018, respectively. This shows

that the cluster may contain similar task events. Due to anonymity of trace data, the observations

are not very conclusive. However, the main focus of the paper is to implement an architecture that

provides such services.

5.6.6 Result Display in SMW

As previously described, the page generator microservice in CloudAnalyzer Server uploads the anal-

ysis results to SMW. The uploading process takes place in three steps. First, the results are uploaded

to SMW as image files. SMW authenticates the page generator microservice as a valid user. After

authentication, SMW grants the page generator microservice access to the upload feature. In the

second step, a new page is created on SMW. Finally, the content of the page is structured using

wiki markup language to represent the results in a comprehensive form. The markup content in Fig-

ure 5.11b shows how results are organized as wiki pages. These wiki pages can be used in various

ways to structure the results so that it helps documentation and sharing of the workload information

of the system.
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(a) Data query wiki page

(b) Wiki-markup for example result page for KDE analysis

Figure 5.11: Semantic-Mediawiki (SMW) Interface

5.7 Conclusion

In this chapter, we propose an architecture that integrates distributed systems and semantic Medi-

aWiki to support the exploration of monitoring data. This architecture benefits from a web-based

MediaWiki interface, and allows a user to define the access to monitoring data and organize the pro-

cessing results. The search-based cluster built on SolrCloud enables indexing of large size of data,

and thus makes the whole architecture suitable to explore and monitor the ever-accumulating data

such as the traces produced from data centres. The architecture also includes an extension, which

runs Spark on Yarn cluster to deploy efficient analysis methods for large data sets. It utilizes the

spark’s MapReduce paradigm to identify the cluster in the dataset using KMeans clustering method.
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The architecture provides a rationale to develop cloud monitoring applications with advance algo-

rithms for forecasting data and identifying workload patterns. Our future work includes developing

more analysis methods for the architecture extension so that this architecture can be generalized for

various applications.
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Chapter 6

Empirical Evaluation of CloudAnalyzer

using DoE

Performance evaluation is an important step in software design quality, since it ensures that the

designed architecture meets all the requirements.We use the edesign of experiment (DoE) evaluation

methodology to assess the performance attributes of the proposed CloudAnalyzer architecture. We

additionally assess the fault-tolerance of the system.

6.1 Empirical Evaluation Using Design of Experiments

We use the previously described DoKnowMe evaluation methodology to evaluate CloudAnalyzer

architecture.

6.1.1 Requirement Recognition

We begin by brainstorming the requirements for evaluation. The proposed architecture should meet

the following criteria:

(1) It should be able to automate report generation and information distribution.

(2) It should provide advanced analytics to process monitoring data.

(3) It should be highly available.
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Table 6.1: Identified Features for Architecture Evaluation

Category Feature

Performance
Features

Latency

Availability

(4) It should be capable of processing a large volume of data.

Based on the above requirements, the following are the requirement questions:

RQ1: How fast does the architecture process monitoring data?

RQ2: How fault-tolerant is the architecture in case of node failure?

6.1.2 Feature Identification

We examine the requirement questions to determine the relevant performance features. According

to the requirements, we focused on three performance features, as in Table 6.1. We mainly focus on

the experimental evaluation of the performance features in this study.

6.1.3 Metric & Benchmark Listing and Selection

We consider three jobs to be performed by the CloudAnalyzer architecture: 1) workload prediction,

2) workload pattern matching, and 3) workload clustering. We have used the Google trace data as a

monitoring input to benchmark. For instance, we run the workload prediction task to observe future

events using HWTES. The purpose of prediction is to forecast critical events and prevent failure

before it takes place.

Based on these jobs, we decide to observe execution time/latency, fault-tolerance/availability

and scalability of the monitoring architecture. Therefore, execution time, fault-tolerance and scal-

ability are the three metrics selected for performance evaluation. Execution time of each job is

evaluated based on the following formula given in equation 12.

ExecutionT ime(Δt) = ResponseT ime(t′)− FetchT ime(t) (12)

The Response Time(t)́ is the total time taken by the CloudAnalyzer server to send a response back
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to the user, whereas the Fetch Time (t) is the time taken by the CloudAnalyzer server to retrieve data

from the bottom storage layer. Therefore, the Execution Time(Δt) is the total time taken to execute

processing, Response Time(t)́, subtracted from Fetch Time (t). The availability and scalability of the

system are also important considerations for evaluation. Availability is evaluated by observing the

cluster while deliberately failing cluster nodes. [TODO: discuss scalability]

6.1.4 Experimental Factors Listing and Selection

Our evaluation method distinguishes among three-factor types, including workload-related, resource-

related and capacity-related factors. Accordingly, we have identified experimental factors and their

levels for evaluating data mining tools, as listed below.

(1) Workload-related factors:

- Jobs: Workload Prediction, Workload Pattern and Workload Clustering

- Workload Size: 100k, 200k, 300k, 400k, 500k, 600k, 700k, 800k

(2) Resource-related factors:

- Monitoring Tool: CloudAnalyzer Architecture

(3) Capacity-related factors:

- Latency: Execution Time

- Availability

- Scalability

Performance is evaluated by employing the previously mentioned benchmark jobs to vary increasing

workload size (i.e. 100k, 200k,..., 800k).
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6.1.5 Experimental Design and Implementation

Performance Experimentation

We organized our requirements as factors, designing the experiment with Full-Factorial Design, as

shown in Table 6.2. We design experiments and measure the end-to-end delay under various work-

loads. A sequence diagram in Figure 6.1 shows the time broken down for operations in order, from

a request being initialized in a SMW page to the result displayed on the SMW page. The response

time provides performance indication of the system in response to different situations like system

failure and scaling during workload changes. Therefore, we conduct experiments to determine the

response time to test performance, scalability and availability of the system architecture. Here, we

explain the experiments in detail.

The aforementioned time metrics of the architecture iare measured by changing the amount

of data being retrieved and processed. We increase this workload incrementally from 10,000 data

Table 6.2: A General Full-Factorial Design∗

Trial Job Workload
Size

Monitoring
Tool

Execution
Time

Availability Scailaibility

1 Workload Prediction 100k CloudAnalyzeer ? ? ? ∗∗

2 Workload Pattern 100k CloudAnalyzeer ? ? ?

3 Workload Clustering 100k CloudAnalyzeer ? ? ?

4 Workload Prediction 200k CloudAnalyzeer ? ? ?

5 Workload Pattern 200k CloudAnalyzeer ? ? ?

6 Workload Clustering 200k CloudAnalyzeer ? ? ?

7 Workload Prediction 300k CloudAnalyzeer ? ? ?

8 Workload Pattern 300k CloudAnalyzeer ? ? ?

9 Workload Clustering 300k CloudAnalyzeer ? ? ?

10 Workload Prediction 400k CloudAnalyzeer ? ? ?

11 Workload Pattern 400k CloudAnalyzeer ? ? ?

12 Workload Clustering 400k CloudAnalyzeer ? ? ?

13 Workload Prediction 500k CloudAnalyzeer ? ? ?

14 Workload Pattern 500k CloudAnalyzeer ? ? ?

15 Workload Clustering 500k CloudAnalyzeer ? ? ?

*The design matrix was generated by using Minitab.

**The “?” denotes a placeholder for Response value.
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Figure 6.1: CloudAnalyzer: Core System Sequence Diagram

records to 50,000 data records, and perform experiments for both analysis methods. The broken-

down times are plotted for both HWTES and KDE, respectively.

We have also evaluated the performance aspect of the clustering functionality provided by Core

architecture extension using a similar approach. In case of clustering, the trace data is stored in

HDFS instead of SolrCloud, and does not explicitly require time for extraction. Hence, the Fetch

Time is replaced by Job Execution time and is shown in Figure 6.2. The Job Execution time is the

total time taken by Spark cluster to process the data. The performance of KMeans clustering is

measured on the basis of the following Eq.13

ExecutionT ime(Δt) = ResponseT ime(t′)− JobExcutionT ime(t) (13)
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Figure 6.2: CloudAnalyzer: Extension System Sequence Diagram)

The response time of the KMeans clustering methods is measured by examining processing

time on varying amounts of data. Initially, we gradually increased the size of data sets form 100,000

data points to 500,000 data points. Later, we jumped from 500,000 to 800,000 data points. We

obtained multiple readings and estimated the average time taken by the KMeans clustering methods

on different datasets.

Fault-Tolerance Experimentation

We design experiments to evaluate the fault tolerance of this architecture by leveraging the fault

tolerant mechanisms supported by SolrCloud. We deliberately put down the nodes of SolrCloud and

the nodes of ZooKeeper. Meanwhile, we measure the Fetch Time and observe any delays in data

accessing. The initial reading for the Fetch Time is observed when all the nodes are alive. Then,

deliberately a node is killed, and its effect on the system’s behaviour is observed by measuring the

Average Fetch Time. These observations are plotted for both HWTES and KDE, as in Figure 6.3a

and Figure 6.3b, respectively.
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(a) Holt-Winters Triple Exponential Smoothing Response
Time

(b) Kernel Density Estimation Response Time

Figure 6.3: CloudAnalyzer: Latency Analysis Result

6.1.6 Experimental Analysis

Latency

The Average Execution Time is steady regardless of the change in workload size, as seen in fig-

ure 6.3a. It is independent of any factors, and solely dependent upon the dataset in consideration.

Also, we observed that the Average Response Time is closely related to Average Fetch Time. Its lin-

ear growth is determined by a gradual increase in the Average Fetch Time, whose growth has directly

proportional to workload size. In contrast, KDE analysis does not show any relationship between

workload size and its Average Response Time (see figure 6.3b). It is dependent on the number of

outliers detected, rather than the Average Fetch Time.

We analyzed the performance of the Extension architecture by observing its execution time

while running a KMeans clustering job. The KMeans clustering results show a behaviour similar to

that of HWTES, with a steady response time that is unaffected by the amount of data. However, the

effect of increase in data size is quite prominent in Average Job Execution time.

Fault-Tolerance

Figure 6.5b, shows the system is continuously responding when nodes of SolrCloud and Zookeeper

are down. The node failure of SolrCloud, however, has a larger effect on the responsiveness of the

architecture. It is observed that the Fetch Time slightly increases with spikes in both HTWES and
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Figure 6.4: Response time and Execution time for KMeans clustering

KDE. The observed spikes make approximately 5% to 15% more of the Fetch Time. This is mainly

due to the election of a new leader node from the remaining nodes when a failure occurs in either

the ZooKeeper ensemble or Solr nodes, and there is an overhead associated to stabilize the cluster.

6.1.7 Conclusion and Documentation

The evaluation of the cloud architecture provides insights for the following performance aspects:

• How fast does the architecture process?

The processing time is directly proportional to data size, taking approximately 22.5 seconds

and 21 seconds to process 100,000 data points for HWTES and KMeans, respectively. How-

ever, the KDE analysis is workload size independent and depends upon the number of outliers.

It takes approximately 33 seconds to process 100,000 data points.

• How fault-tolerant is the architecture is case of node failure?

SolrCloud and Hadoop Clustering provides Scalability and availability in the monitoring

system. The analysis results shows seamless response of the SolrCloud in case of failure. The

storage system remains functional unless all the Solr or ZooKeeper nodes are down.

6.2 Conclusion

In this paper, we evaluate the performance and fault-tolerance of the architecture by using the design

of experiment (DoE) evaluation method. Our observations demonstrate that our architecture is
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(a) Nodes Vs Observation

(b) HWTES: Fetch Time Vs Observations (c) KDE: Fetch time vs total number of observation

Figure 6.5: Responsiveness under node failure

responsive under node failure. The overhead incurred to handle the node failure in the storage

cluster can result in extra delays of retrieving data. Since SolrCloud is optimized for indexing and

data retrieval, the overall response time of this architecture is mainly determined by running analysis

methods. We also evaluated the architecture extension for its performance and observed an increase

in responsiveness with an increasing amount of data.
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Chapter 7

Discussion and Conclusion

In this thesis, we present our empirical evaluation method based on design of experiment (DoE).

It is generic assessment approach to evaluate software applications, such as analysis tools, work-

flow designs, analysis algorithms, etc. We validated the generic behaviour of the evaluation ap-

proach through two case studies. First case study was conducted to assess both functional and

non-functional features of several data mining tools based on a specific set of requirements. The

analysis process reveals a number of connected users per cell on the base stations in a trial mobile

network. Since the data is continuously generating and accumulating the workload size for a given

period of time, the collected datasets become one experimental factor. However, because several

factors are leading to that data, there may be confounds, for example, data mining jobs and tool

brands in case study I. Similar, the second case study evaluates the analysis algorithms (i.e. outlier

detection techniques) to get hidden insight. Our evaluation study aims to minimize such confounds

by applying DoE principles to make this practice into a structured eight-step procedure that ad-

dresses specific requirements. The threats of validation are mainly in the evaluation environment.

We used default settings in each study. Each case can be further optimized to achieve a better re-

sponse time and memory utilization. Our purpose is not to compare any data mining tools or outlier

detection approach in an absolute measurement; instead, we focus on the evaluation method that

allows observing the features and metrics of these tools or approaches, respectively. These insights

will aid decision-making regarding data mining tools or outlier detection approaches as part of the

big data analysis architecture. We believe this evaluation study, based on experimental design, can
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be extended to other data mining tools or outlier detection approaches of interests.

The DoE inspired us to design an architecture to tackle the issues concerning cloud monitor-

ing. For this purpose, we propose an architecture that integrates search-based clusters and semantic

media wiki to support the exploration of cloud monitoring data. This architecture benefits from a

web-based MediaWiki interface and allows a user to define the access to monitoring data and to or-

ganize the processing of results. It also provides advanced monitoring solutions, such as workload

prediction and workload matching. The search-based cluster built on SolrCloud enables indexing

of large size of data, which makes the entire architecture suitable to explore and monitor ever-

accumulating data, such as traces produced from data centers. We evaluate the performance and

fault-tolerance of the architecture by experiments. Our observations demonstrate that the architec-

ture is responsive to node failure. The overhead incurred to handle the node failure in a SolrCloud

cluster can result in extra delays of retrieving data. Since SolrCloud is optimized for indexing

and data retrieval, the overall response time of this architecture is mainly determined by running

analysis methods. The architecture provides a rationale to develop cloud monitoring applications

with advanced analysis algorithms for forecasting and identifying workload patterns. Furthermore,

the architecture is enhanced by realizing Restful services instead of mere data transfer over HTTP

protocol. It is extended to include distributed analysis for processing a large volume of data. The

extension runs Spark on Yarn cluster for deploying efficient analysis methods for large data set. It

utilizes the spark’s MapReduce paradigm to identify the cluster in the dataset using KMeans clus-

tering method. We also evaluated the architecture extension for its performance and the observed

increase in responsiveness with the increasing amount of data.

In future, we will conduct more case studies to assess and validate the generic nature of the

evaluation approach. we will explore more distributed analysis algorithms used to process data in

a distributed environment. Also, we will inculcate more machine learning algorithms for workload

clustering. We will also modify the architecture design to non-data centric architecture design and

induce automatic load balancing.
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Appendix A

Appendix

A.1 REST API Resources

A.1.1 HWTES Processor

• Resource URI : http://host:port/api/process/hwtes/

POST

evaluates forecast data for arbitrary dataset of 10,000 data points using Holt-Winter’s triple

exponential smoothing (HWTES). The dataset is extracted either from a trace-data file or

SolrCloud cluster.
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Parameters Description

alpha constant estimated in such a way that the mean square error (MSE) is minimum

beta same as above

gamma same as above

state ’–l’ or ’–r’ are arguments to decides to load a new dataset or reload the existing

one in the system, respectively.

path/index path variable is specifies alongside load state to locate dataset. For example,

/solr would request to retrieve data from SolrCloud, whereas, path some

-folder/some-file.csvwould extract data from specified file location.

However, index variable is specified alongside reload state, to retrieve data

from existing dataset

• Resource URI : http://host:port/api/process/hwtes/{index}/

GET

returns the list of forecast data for a particular dataset in JSON format.

Parameters Description

index it is the initial dataset index used as an id to find the location of forecast data

list.

DELETE

removes the forecast dataset package for the a particular data.

Parameters Description

index it is the initial dataset index used as an id to find the forecast list request.
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A.1.2 KDE Processor

• Resource URI : http://host:port/api/process/kde/

POST

determines the outliers i.e. data points lying above and below the estimated threshold value

and plot the results.

Parameters Description

state ’–l’ or ’–r’ arguments decides to load a new dataset or reload the existing one.

path/index path variable is specified alongside load state to locate dataset. For example,

/solr would request to retrieve data from SolrCloud, whereas, path some

-folder/some-file.csvwould extract data from specified file location.

However, index variable is specified alongside reload state, to retrieve data

from existing dataset

• Resource URI : http://host:port/api/process/kde/{index}/

GET

returns the number of outliers i.e. data points lying above/below a specific threshold.

Parameters Description

index it is the initial dataset index used as an id to find the forecast list request.

DELETE

purge the KDE results for a particular dataset.

Parameters Description

index it is the initial dataset index used as an id to find the kde data lists location.
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A.1.3 HWTES Plotter

• Resource URI : http://host:port/api/plot/hwtes/

POST

plots the forecast data for a particular dataset.

Parameters Description

index it is the initial dataset index used as an id to find the forecast list location.

• Resource URI : http://host:port/api/plot/hwtes/{index}

GET

returns the forecast plot for particular dataset.

Parameters Description

index it is the initial dataset index used as an id to find the forecast list location.

DELETE

deletes the forecast plot for the specified index.

Parameters Description

index it is the initial dataset index used as an id to find the forecast list location.

A.1.4 Spark Clustering

• Resource URI : http://host:port/api/sparkclustering/kmeans/

POST

provides the information regarding the clusters present in the given dataset.
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Parameters Description

input input path for the file location. The data can be retrieved from HDFS or local

file system by specifying in the URL as hdfs:/// or file:///, respectively

output to save the result obtained after processing.

k it defines the number of clusters to be obtained in the dataset.

iteration number of times data needs to be iterated to get convergence.

size the size of data to utilized for processing.

A.1.5 SMW Page Generator

• Resource URI : http://host:port/api/generate/

POST

structures the analysis results and creates a SMW page using MediaWiki markup language

Parameters Description

index/path the initial dataset index used as an id to find the forecast list location required

for KDE and HWTES only. However, output path of the result location is

required in case of creating KMeans clustering result page.

method ’hwtes’ , ’kde ’ and ’kmeans’ string arguments to create holt winter forecast,

to generate kde outliers estimation page and ’kmeans’ to generate KMeans

clustering page, respectively.

username Semantic-Mediawiki username for access.

password same as above.
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