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ABSTRACT

Some Fluctuation identities of Hyper-Exponential Jump-Diffusion Processes

Nhat Linh Vu

Meromorphic Lévy processes have attracted the attention of a lot of researchers recently

due to its special structure of the Wiener-Hopf factors as rational functions of infinite degree

written in terms of poles and roots of the Laplace exponent, all of which are real numbers.

With these Wiener-Hopf factors in hand, we can explicitly derive the expression of fluctu-

ation identities that concern the first passage problems for finite and infinite intervals for

the Meromorphic Lévy process and the resulting process reflected at its infimum. In this

thesis, we consider some fluctuation identities of some classes of Meromorphic jump-diffusion

processes with either the double exponential jumps or more general the hyper-exponential

jumps. We study solutions to the one-sided and two-sided exit problems, and potential mea-

sure of the process killed on exiting a finite or infinite intervals. Also, we obtain some results

to the process reflected at its infimum.

iii



1 INTRODUCTION

Lévy processes are stochastic processes with independent and stationary increments. The

best known and most important examples are Poisson processes, Brownian motion, Cauchy

processes, and more general the stable processes. They are prototypes of Markov processes

(actually they form the class of space-time homogeneous Markov processes) and of semi-

martingales. Historically, the first researches go back to the late 20’s with the study of

infinitely divisible distributions. Their general structure had been gradually discovered by

de Finetti, Kolmogorov, Lévy, Khintchine and Itô. After the pioneer contribution of Hunt

in the mid-50’s, the spreading of the theory of Markov processes and its connection with

abstract potential theory has had a considerable impact on Lévy processes. Many important

properties of sample paths of Lévy processes have been noted by Getoor (1961), Rogozin

(1972), and others. Further developments in this setting were made quite recently by Bertoin

(1996), Barndorff et al (2001) Doney and Kyprianou (2006), Sato (2013) and others.

Lévy processes play an important role in several fields of science, such as in physics, for

the study of tribulence, laser cooling and quantum field theory; in engineering, for the study

of networks, queues and dams; in economics, for continuous time-series models; in actuarial

science, for the calculation of insurance and re-insurance risk; in risk Gerber-Shiu theory, for

the study of risk models; and of course, in mathematical finance, for the stock price in the

market. A comprehensive overview of several applications of Lévy processes can be found

in Prabhu (1998), in Barndorff et al (2001), in Pistorius (2003), in Kyprianou et al (2005),

and in Kyprianou (2006).

In mathematical finance, Lévy processes are becoming extremely fashionable because

they can describe the observed reality of financial markets in a more accurate way than

models based on Brownian motion (though it is a very basic case of Lévy processes). In the

real world, we observe that asset price processes have jumps or spikes, and risk managers have

1



to take them into consideration. Models that accurately fit return distributions are essential

for the estimation of profit and loss distributions. Similarly, in the risk-neutral world, we

observe that implied volatilities are constant neither across strike nor across maturities as

stipulated by the model of Black and Scholes (1973). Therefore, traders need models that

can capture the behavior of the implied volatility smiles more accurately in order to handle

the risk of trades. Lévy processes provide us with the appropriate tools to adequately and

consitently describe all these observations, both in the real and in the risk-neutral world.

One of the most obvious and fundamental problems that can be stated for a Lévy process,

particularly in relation to its role as a modelling tool, is the distributional characterization

of the time at which a Lévy process first exits either an infinite or a finite interval together

with its overshoot and undershoot beyond the boundary of the interval. The theory of

Lévy processes forms the cornerstone of an enormous volume of mathematical literature

which supports a wide variety of applied and theoretical stochastic models. As a family of

stochastic processes, Lévy processes are now well understood and the exit problem has seen

many different approaches dating back to the 1960s. Namely, Getoor (1961) and Rogozin

(1972) were the pedal for other researchers to study more on the exit problems of Lévy

processes.

Nonetheless, Lévy process is still a large field to study. It is classified into different

classes such as, subordinators (an increasing Lévy process), spectrally negative Lévy pro-

cesses (process with no positive jumps), jump-diffusion processes and so on. Subordinators

and spectrally negative Lévy processes had attracted lots of reseachers, and their fluactua-

tion identities had been established (for more details see Bertoin (1996), Avram et al (2004),

Chiu and Yin (2005), Doney and Kyprianou (2006), and Baurdoux (2009)). On the other

hand, jump-diffusion processes have been noticed recently due to its special application in

finance (an introduction of jump-diffusion models can be found in Tankov and Voltchkova

(2009)). Starting with seminal paper of Merton (1976) and up to the present date, various

aspects of jump-diffusion models have been studied in the academic finance community. In
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the last decade, the research departments of major banks started to accept jump-diffusions

as a valuable tool in their day-to-day modeling. The interest to jump-diffusion models in

finance is gradually increasing because models using Brownian motion does not accurately

describe the path of the stock price. Also, the continous models need to be replaced by

dicontinous models due to the presence of jumps in observed prices.

Despite the maturity of this field of study, it is surprising to note that, until very recently

before the discovering of Wiener-Hopf factorization, there were fewer than a handful of exam-

ples for which explicit analytical detail concerning the first exit problem could be explored.

Given the closeness in mathematical proximity of the first exit problems to the characteriza-

tion of the Wiener-Hopf factorization, one might argue that the lack of concrete examples of

the former was a consequence of the same being true for the latter. The landscape for both

the Wiener-Hopf factorization problem and the first exit problems has changed quite rapidly

in the last ten years with the discovery of a number of new mathematically tractable families

of Lévy processes. Kyprianou (2006) and Kyprianou et al (2011) have successfully solved the

exits problems of some classes of Lévy processes. The Meromorphic class of Lévy process is

one case of jump-diffusion processes. It can be simply understood as a Lévy process whose

Lévy measure has a density with respect to the Lebesgue measure of an infinite mixture sum

of exponential random variable with different rates. The hyper-exponential jump-diffusion

process is a special case of this class of Lévy process with a finite mixture sum. Thank to its

special structure, the Wiener-Hopf factors can be expressed as rational functions of infinite

degree written in terms of poles and roots of the Laplace exponent, all of which are real

numbers. Therefore, the solutions to the first exit problems can be expressed explicitely.

Initially, Kou and Wang (2003) gave an explicit expression for the one-sided exit prob-

lems of the double exponential jump-diffusion processes, the special case of hyper-exponential

jump-diffusion process, in which there are only upward and downward jumps following expo-

nential distributions with distinct rates. Their approach used infinitesimal generator, Itô’s

formula and the resulting martingales to derive the result. Later on, Chen et al (2007) pro-
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posed another approach connecting ODE boundary problems to exit problems of schochastic

processes. And in Chen et al (2013), they found an explicit expression for the two-sided exit

problems for hyper-exponential jump-diffusion processes. Recently, Aoudia and Renaud

(2014) studied a more general case for the mixed-exponential jump-diffusion model.

Furthermore, jump-diffusion processes with one or two reflecting barriers appear in many

applications in economics, finance, queueing, mathmatical biology, and electrical engineering.

Thus, it drawed attention from lots of researchers. Dong and Han (2015) proposed an explicit

expression for the exit-problem of process reflected at its supremum for hyper-Erlang jump-

diffusion process. Their approach basically used Itô’s formula and martingales, but they had

done extra work to derive the infinitesimal generator of the reflected process.

Indeed, in Kyprianou et al (2012) which concern the Meromorphic jump-diffusion pro-

cesses, with the key of explicit Wiener-Hopf factors, they first studied explicit identities for

the exponentially discounted first passage problem. Then they considered the more compli-

cated two-sided exit problems. Inspired by a technique of Rogozin (1972), they solve the

system of equations which characterize the discounted overshoot distribution on either side

of the interval. Furthermore, they directly derived the potential measure on exiting infinite

and finite intervals for both Meromorphic jump-diffusion process and the resulting process

reflected at its infimum. At the end, they presented some numerical examples.

In this thesis, we first give a brief introduction to jump-diffusion processes and review

various mathematical tools needed to apply these processes for option pricing and hedging.

Particularly, we focus on some fluctuation identities for the jump-diffusion processes: the

double exponential jump-diffusion processes for the simple case and the hyper-exponential

jump-diffustion processes for the general case. These identities are for the one-sided and

two-sided exit problems and potential measure of the processes. Furthermore, we prove

some results on the process reflected at its infimum: the expression of potential measure and

consequensely the joint density of overshoot and undershoot.

This thesis is organized as following: Section 2 presents some definitions and previous
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results. Section 3 considers some fluctuation identities of hyper-exponential jump-diffusion

processes. Section 4 discusses some similar results for the reflected processes at its infimum.

Then, we will give some numerical examples in Section 5. Section 6 and Section 7 are for

future study and appendix, respectively.
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2 DEFINITIONS AND PREVIOUS RESULTS

2.1 Lévy processes

In this section, we introduce some basic concepts of Lévy processes.

Definition 2.1 (Lévy process) A process X = {Xt : t ≥ 0}, defined on a probability space

(Ω,F ,P), is said to be one-dimentional Lévy process taking real value if it possesses the

following properties:

(i) The paths of X are P-almost surely right-continuous with left limit.

(ii) P(X0 = 0) = 1.

(iii) For 0 ≤ s ≤ t,Xt −Xs is equal in distribution to Xt−s.

(iv) For 0 ≤ s ≤ t,Xt −Xs is independent of {Xu : u ≤ s}.

From the definition above, it is difficult to see just how rich the class of Lévy processes

is. De Finetti (1929) introduced the notion of infinitely divisible distributions and showed

that they have an intimate relationship with Lévy processes.

Definition 2.2 We say that a real-valued random variable, Θ, has an infinitely divisible dis-

tribution if, for each n = 1, 2, ..., there exits a sequence of i.i.d. random variables Θ1,n, ..., Θn,n

such that

Θ
d
= Θ1,n + ...+Θn,n,

where
d
= is equality in distribution.

Alternatively, we could have expressed this relation in terms of probability laws. That is

to say, the law μ of a real-valued random variable is infinitely divisible if, for each n = 1, 2, ...,

there exits another law μn of a real-valued random variable such that μ = μ∗nn . (Here μ∗nn

denotes the n-fold convolution of μn.) So, one way to establish whether a given random

variable has an infinitely divisible distribution is via its characteristic exponent. Suppose

that Θ has characteristic exponent Ψ(u) := − logE(eiuΘ), defined for all u ∈ R. Then Θ
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has an infinitely distribution if, for all n ≥ 1, there exits a characteristic exponent of a

probability distribution, say Ψn, such that Ψ(u) = nΨn(u), for all u ∈ R. The full extent to

which we may characterise infinitely divisible distribution is described by the characteristic

exponent Ψ and an expression known as the Lévy Khintchine formula.

Theorem 2.1 (Lévy-Khintchine formula)([20]) A probability law, μ, of a real-valued random

variable is infinitely divisible with charateristic exponent (Lévy exponent) Ψ.

∫
R

eiθxμ(dx) = e−Ψ(θ), or Ψ(θ) := − logE(eiθX) for θ ∈ R,

if and only if there exists a triple (a, σ,Π), where a, σ ∈ R, and Π is a measure concentrated

on R\{0} satisfying
∫
R
(1 ∧ x2)Π(dx) <∞, such that

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫
R

(1− eiθx + iθx1|x|<1)Π(dx),

for every θ ∈ R. Moreover, the triple (a, σ2,Π) is unique.

We also want to introduce the Laplace exponent which is defined as

ψ(θ) := − logE(e−θXt),

so

ψ(θ) = aθ +
1

2
σ2θ2 +

∫
R

(1− eθx + θx1|x|<1)Π(dx).

Now consider

X t = sup
x≤t

Xs and X t = inf
x≤t

Xs,

then by Duality Lemma in [20], the pairs (X t, X t −Xt) and (Xt −X t,−X t) have the same

distribution in P. Also, we define

Gt = sup{s < t : Xs = Xs} and Gt = sup{s < t : Xs = Xs}.

7



Then we have the following Wiener-Hopf factorization theorem which plays an essential role

in developing fluctuation results of Lévy processes. The Wiener-Hopf factorization may be

found as a common reference to a multitude of statements concerning the distributional

decomposition of the path of any Lévy process, when sampled at an independent and expo-

nentially distributed time.

Theorem 2.2 (Wiener-Hopf factorization)([20]) Suppose that X is any Lévy process other

than a compound Poissson process. As usual, denote by eq an independent and exponentially

distributed random variable with parameter q > 0.

(i) The pairs

(Geq , Xeq) and (eq −Geq , Xeq −Xeq)

are independent and infinitely divisible, yielding the factorization

q

q − iv +Ψ(θ)
= Ψ+

q (v, θ).Ψ
−
q (v, θ),

where θ, v ∈ R,

Ψ+
q (v, θ) = E(eivGeq+iθXeq ) and Ψ−q (v, θ) = E(eivGeq

+iθXeq ).

Here, the pair Ψ+
q (v, θ) and Ψ−q (v, θ) are called the Wiener-Hopf factors.

(ii) Via analytical extension, the Wiener-Hopf factors may be identified from the Laplace

transforms

Ψ+
q (v, θ) = E(eivGeq+iθXeq ) =

K(q, 0)
K(q + α, β)

and Ψ−q (v, θ) = E(eivGeq
+iθXeq ) =

K̂(q, 0)
K̂(q + α, β)

,

where α, β ∈ C
+.

(iii) The Laplace exponent K(α, β) and K̂(α, β) may also be identified in terms of the law of
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X by

K(α, β) = k exp

(∫ ∞

0

∫
(0,∞)

(e−t − e−αt−βx)
1

t
P(Xt ∈ dx)dt

)
,

K̂(α, β) = k̂ exp

(∫ ∞

0

∫
(−∞,0)

(e−t − e−αt+βx)
1

t
P(Xt ∈ dx)dt

)
,

where α, β ≥ 0; k and k̂ are strictly positive constants.

(iv) By setting v = 0 and taking limits as q tends to zero in (i), we obtain

kk̂Ψ(θ) = K(0,−iθ)K̂(0, iθ).

We give an example of the Wiener-Hopf factorization for the simple Lévy process, the

Brownian motion.

Recall that if Xt is a standard Brownian motion, then it has the characteristic exponent

Ψ(θ) = θ2

2
, for θ ∈ R. Then

q

q − iv + θ2

2

=

√
2q√

2q − 2iv − iθ
.

√
2q√

2q − 2iv + iθ
.

From part (iii) of the theorem above, we can identify

K(α, β) = K̂(α, β) =
√
2α + β,

for α, β ≥ 0. The fact that both K and K̂ have the same expression is obvious by symmetry.

We now introduce some fluctuation identities of Lévy processes. The first one are the

one-sided and two-sided exit problems. In general, the exit problems of any Lévy process

are problems concerning the Laplace transform of τ+a and Xτ+a
. For example,

One-sided exit problem: Ex

(
e−qτ

+
a , Xτ+a

∈ dy
)
,
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Two-sided exit problem: Ex

(
e−qτ

+
a , τ+a < τ−0

)
,

where q ≥ 0, τ+a = inf{t ≥ 0 : Xt > a}, and τ−0 = inf{t ≥ 0 : Xt < 0} with the convention

inf{∅} = ∞. The exit problems for spectrally negative Lévy processes are very well-known

and fully discovered (for details, see Kyprianou (2006)). The solutions are expressed in

terms of scale function W (q)(x) and Z(q)(x) (for more details on scale functions see Biffis and

Kyprianou (2010)) which are defined as follow.

Definition 2.3 For any q ≥ 0, we have W (q)(x) = 0 for x < 0 and W (q) is characterised as

a strictly increasing and continuous function on [0,∞) with Laplace transform satistifies

∫ ∞

0

e−βxW (q)(x)dx =
1

ψ(β)− q
for β > Φ(q),

where Φ(q) = sup{θ ≥ 0 : ψ(θ) = q} is the right invese of the Laplace exponent ψ(θ). Then

we let Z(q)(x) be

Z(q)(x) := 1 + q

∫ x

0

W (q)(y)dy, for x ∈ R.

Another useful tool to study the overshoot and undershoot distributions at the first

passage within an interval is the potential measure of the process.

Definition 2.4 For q ≥ 0, a q-potential measure of any Lévy process X killed on exiting

[0, a] when issued from x is defined as

U (q)(a, x, dy) :=

∫ ∞

0

e−qtPx

(
Xt ∈ dy, τ > t

)
dt, (1)

where

τ := τ+a ∧ τ−0 = inf{t ≥ 0 : Xt < 0 or Xt > a}.

Now, if for each x ∈ [0, a], a density of U (q)(a, x, dy) exists with respect to Lebesque

measure, then it is called the potential density and denoted by u(q)(a, x, y). Also, we want
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to introduce a q-potential measure of X killed on exiting [0,∞) when issued from x as

R(q)(x, dy) :=

∫ ∞

0

e−qtPx

(
Xt ∈ dy, τ−0 > t

)
dt.

Then the q-potential density of X killed on exiting [0,∞) is r(q)(x, y). The expression of

potential measure of spectrally negative Lévy processes had been discovered using the scale

function (for more details, see Chapter 8 of Kyprianou (2006)). We also consider the fluctu-

ation identities of Lévy process reflected at its infimum which defined as

Definition 2.5 Given any Lévy process Xt, a resulting process reflected at its infimum is

defined as

Yt := Xt −X t ∧ 0.

It can be showed that Yt is also a Markov process (see Bertoin (1996)). So, we can use

Markov properties to derive the fluctuation identities of process reflected at its infimum.

2.2 Meromorphic jump-diffusion processes

We start by giving the definition of a general Meromorphic class of Lévy processes.

Definition 2.6 A Lévy process Xt is said to belong to the Meromorphic class (M class) if

and only if the Lévy measure Π(dx) has a density with respect to the Lebesque measure, given

by

π(x) = I{x>0}
∑
n≥1

pnη
+
n e
−η+n x + I{x<0}

∑
n≥1

qnη
−
n e

η−n x, (2)

where all the coefficients pn, qn, η+, η− are positive, the sequences {η+n }n≥1 and {η−n }n≥1
are strictly inscreasing, and η+ → +∞ and η− → +∞ as n→ +∞.

To ease the notations, we denote

E[ · |X0 = x] = Ex[ · ] and E[ · |X0 = 0] = E[ · ],
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P[ · |X0 = x] = Px[ · ] and P[ · |X0 = 0] = P[ · ].

The following theorem concerns about the Wiener-Hopf factorization of the Meromorphic

processes which plays essential role in deriving expression of potential measure in later sec-

tions.

Theorem 2.3 ([21]) If Xt is a Meromorphic process and eq is an independent exponential

random variable with rate q, then

(i) The Wiener-Hopf factors are given by

φ+
q (iz) = E

[
e−zXeq

]
=
∏
n≥1

1 + z
η+n

1 + z
ρn

, φ−q (−iz) = E

[
ezXeq

]
=
∏
n≥1

1 + z
η−n

1 + z
ρ−n

. (3)

(ii) For x ≥ 0

P(Xeq ∈ dx) = ā(η+, ρ)T × v̄(ρ, x)dx, P(−Xeq ∈ dx) = ā(η−, ρ−)T × v̄(ρ−, x)dx, (4)

where all roots {ρn,−ρ−n } of equation: ψ(z) = q are real and interlacing with the poles

{η+,−η−n } as

...− η−2 < −ρ−2 < −η−1 < −ρ−1 < 0 < ρ1 < η+1 < ρ2 < η+2 < ...,

ā(η+, ρ) = [a0(ρ, η
+), a1(ρ, η

+), a2(ρ, η
+), ...]T ,

ā(η−, ρ−) = [a0(ρ
−, η−), a1(ρ−, η−), a2(ρ−, η−), ...]T ,

v̄(ρ, x) = [δ0(x), ρ1e
−ρ1x, ρ2e−ρ2x, ...]T , v̄(ρ−, x) = [δ−0 (x), ρ

−
1 e
−ρ−1 x, ρ−2 e

−ρ−2 x, ...]T ,

a0(η
+, ρ) = lim

n→+∞

n∏
k=1

ρk
η+k

, an(η
+, ρ) =

(
1− ρn

η+n

) k �=n∏
k≥1

1− ρn
η+k

1− ρn
ρk

,

a0(η
−, ρ−) = lim

n→+∞

n∏
k=1

ρ−k
η−k

, an(η
−, ρ−) =

(
1− ρ−n

η−n

) k �=n∏
k≥1

1− ρ−n
η−k

1− ρ−n
ρ−k

.
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(iii) For every q > 0

P(Xeq ∈ dx) = q

[
1(x>0)

∑
n≥1

e−ρnx

ψ′(ρn)
− 1(x<0)

∑
n≥1

e−ρ
−
n x

ψ′(ρ−n )

]
dx.

Remark ([21]) If the process Xt has a finite sequence {ηn}n=1,2,...,N and either N or

N + 1 roots ρN , then all the formulas in the theorem above are still valid if we adopt

notation ηk =∞ for k > N and ρk =∞ for k > N or (or k > N + 1).

A basic example of Meromorphic process is that the process consists of only two types

of jump: upward exponential jump and downward exponential jump, and this is called a

double exponential jump-diffusion process, defined as below.

Definition 2.7 A double exponential jump-diffusion process Xt is defined as

Xt = μt+ σWt +
Nt∑
i=1

Yi, X0 ≡ 0. (5)

Here {Wt : t ≥ 0} is a standard Brownian motion with W0 = 0. {Nt : t ≥ 0} is a Poisson

process with rate λ, constant μ and σ > 0 are the drift and volatility of the diffusion part

respectively, and the jump sizes {Y1, Y2...} are independent and identically distributed random

variables. The common density of Y is given by

fY (y) = I{y>0}pη+1 e
−η+1 y + I{y<0}qη−1 e

η−1 y,

where p,q ≥ 0 are constant, p + q = 1, and η+1 , η
−
1 > 0. And it has the following Laplace

exponent

ψ(θ) = θμ+
σ2θ2

2
+ λ

[
qη−1

η−1 + θ
+

pη+1
η+1 − θ

− 1

]
.

Now, for q > 0 consider the equation ψ(θ) = q which has exactly four real roots (the

expression of the four roots is given in the appdendix of this paper) {ρ1(q), ρ2(q), ρ3(q), ρ4(q)}
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interlacing with its two poles {−η−1 , η+1 }

ρ4(q) < −η−1 < ρ3(q) < 0 < ρ1(q) < η+1 < ρ2(q).

This is easily seen by look at these limits

lim
θ→−∞

ψ(θ) = lim
θ→−(η−1 )+

ψ(θ) = lim
θ→(η+1 )−

ψ(θ) = lim
θ→+∞

ψ(θ) = +∞,

lim
θ→−(η−1 )−

ψ(θ) = lim
θ→(η+1 )+

ψ(θ) = −∞ and lim
θ→0

ψ(θ) = −q < 0.

To ease the expression, we denote {ρ1, ρ2, ρ3, ρ4} for {ρ1(q), ρ2(q), ρ3(q), ρ4(q)}. Hence, ap-

plying Theorem 2.3 and its Remark into our Xt process we obtain

P(Xeq ∈ dx) =

(
1− ρ1

η+1

)(
ρ2

ρ2 − ρ1

)
ρ1e

−ρ1x +
(
η+1 − ρ2

η+1

)(
ρ1

ρ1 − ρ2

)
ρ2e

−ρ2x, (6)

P(−Xeq ∈ dx) =

(
1 +

ρ3
η−1

)(
ρ4

ρ3 − ρ4

)
ρ3e

ρ3x +

(
η−1 + ρ4

η−1

)(
ρ3

ρ4 − ρ3

)
ρ4e

ρ4x. (7)

A general version of double exponential jump-diffusion process is the hyper-exponential

jump-diffusion process which consists of upward jumps with m distinct rates and downward

jumps with n distinct rates.

Definition 2.8 A hyper-exponential jump diffusion is defined as

Xt = μt+ σWt +
Nt∑
n=1

Yn, X0 ≡ 0.

Here {Wt : t ≥ 0} is a standard Brownian motion with W0 = 0. {Nt : t ≥ 0} is a Poisson

process with rate λ, constant μ and σ > 0 are the drift and volatility of the diffusion part

respectively, and the jump sizes {Y1, Y2...} are independent and identically distributed random
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variables. The common density of Y is given by

fY (y) = I{y>0}
m∑
i=1

piη
+
i e
−η+i y + I{y<0}

n∑
i=1

qiη
−
i e

η−i y, (8)

where
∑m

i=1 pi +
∑n

i=1 qi = 1, pi, qi ≥ 0, η+i , η
−
i ≥ 0. And it has Laplace exponent given by

ψ(θ) = θμ+
σ2θ2

2
+ λ

[
m∑
i=1

piη
+
i

η+i + θ
+

n∑
i=1

qiη
−
i

η−i − θ
− 1

]
.

The following lemma concerns about the roots of the equation ψ(x) = q.

Lemma 2.1 [18] Consider the hyper-exponential jump-diffusion process Xt, then the equa-

tion

ψ(x) = q for all q > 0,

has exactly S = m+ n+ 2 distinct real roots interlacing with their poles as

0 < ρ1 < η+1 < ρ2 < ... < ρm < η+m < ρm+1,

0 < −ρm+2 < η−1 < −ρm+3 < ... < −ρm+n+1 < η−n < −ρm+n+2.

In addition, let the overall drift of the jump-diffusion process be

ψ′(0) = μ+ λ

( m∑
i=1

pi
η+i
−

n∑
i=1

qi
η−i

)
.

Then as q → 0,

ρm+2 →

⎧⎪⎪⎨
⎪⎪⎩
ρ∗m+2 if ψ′(0) ≥ 0,

0 if ψ′(0) < 0,

ρi → ρ∗i for i = m+ 3, m+ 4, ..., S,

where ρ∗m+2, ρ∗m+3, ...ρ
∗
S are the distinct real roots of the equation: ψ(x) = 0.
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Again, using Theorem 2.3 we obtain the density of Xeq and −Xeq for hyper-exponential

jump-diffusion process as below

P(Xeq ∈ dx) = ā(η+, ρ)T × v̄(ρ, x)dx, P(−Xeq ∈ dx) = ā(η−, ρ−)T × v̄(ρ−, x)dx, (9)

where

ā(η+, ρ) = [a1(η
+, ρ), a2(η

+, ρ), ..., am+1(η
+, ρ)]T ,

ā(η−, ρ−) = [a1(η
−, ρ−), a2(η−, ρ−), ..., an+1(η

−, ρ−)]T ,

v̄(ρ, x) = [ρ1e
−ρ1x, ρ2e−ρ2x, ..., ρm+1e

−ρm+1x]T ,

v̄(ρ−, x) = [−ρm+2e
ρm+2x,−ρm+3e

ρm+3x, ...,−ρSeρSx]T ,

ai(η
+, ρ) =

(
1− ρi

η+i

) m+1∏
k �=i,k=1

1− ρi
η+k

1− ρi
ρk

, ai(η
−, ρ−) =

(
1 +

ρi
η−i−m−1

) n+1∏
k �=i,k=1

1 + ρi
η−k

1− ρi
ρk+m+1

,

with the convention that η+m+1 = η−n+1 = +∞.

2.3 One-sided exit problems of hyper-exponential jump-diffusion

processes

In this section, we present some known results for the one-sided exit problems of jump-

diffusion processes. The first one is the one-sided exit problem of double exponential jump-

diffusion processes proposed by Kou and Wang (2003). Their approach used the infinitesimal

generator, Itô’s formula and the resulting martingale to derive the result.

Theorem 2.4 [18] Let Xt be the double exponential jump-diffusion process. Then for any

a, q > 0, we have the following results concerning the Laplace transforms of τ+a = inf{t ≥ 0 :

16



Xt > a} and Xτ+a

E[e−qτ
+
a ] =

η+1 − ρ1
η+1

ρ2
ρ2 − ρ1

e−aρ1 +
ρ2 − η+1

η+1

ρ1
ρ2 − ρ1

e−aρ2 , (10)

E[e−qτ
+
a , Xτ+a

− a > y] = e−η
+
1 y (η

+
1 − ρ1)(ρ2 − η+1 )

η+1 (ρ2 − ρ1)
[e−aρ1 − e−aρ2 ] for all y ≥ 0,(11)

E[e−qτ
+
a , Xτ+a

= a] =
(η+1 − ρ1)

ρ2 − ρ1
e−aρ1 +

(ρ2 − η+1 )

ρ2 − ρ1
e−aρ2 . (12)

More general, Kyprianou et al (2012) derived the expression of one-sided exit problem of

Meromorphic processes using the direct proof of Lemma 1 in [2].

Theorem 2.5 ([21]) Define a matrix A having entries

aij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if i = 0, j ≥ 0,

ai(η
+, ρ)b0(ρ, η

+) if i ≥ 1, j = 0,

ai(η
+,ρ)bj(ρ,η

+)

η+j −ρi
if i ≥ 1, j ≥ 1,

then for a > 0, y ≥ 0, we have

E

[
e−qτ

+
a , Xτ+a

∈ dy
]
= v̄(ρ, a)T ×A× v̄(η+, y)dy, (13)

where

b0(ρ, η
+) =

1

ρ1
lim

n→+∞

n∏
k=1

η+k
ρk+1

, bn(ρ, η
+) = −

(
1− η+n

ρn

) ∏
k≥1,k �=n

1− η+n
ρk

1− η+n
η+k

.

Using the theorem above, we can modify the matrix A to obtain the one-sided exit

problems for our hyper-exponential jump-diffusion processes as following

E

[
e−qτ

+
a , Xτ+a

∈ dy
]

= v̄(ρ, a)T × Ā× v̄(η+, y)dy, (14)

E

[
e−qτ

−
a , Xτ−a ∈ dy

]
= v̄(ρ−, a)T × B̄ × v̄(η−, y)dy, (15)

17



where ρ−1 = ρm+2, ρ
−
2 = ρm+3, ..., ρ

−
n+1 = ρS, τ

−
a = inf{t ≥ 0 : Xt < a}, × is the dot product,

and

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1(η
+, ρ)b0(ρ, η

+) a1(η
+, ρ)b1(ρ, η

+) . . . a1(η
+, ρ)bm(ρ, η

+)

a2(η
+, ρ)b0(ρ, η

+) a2(η
+, ρ)b1(ρ, η

+) . . . a2(η
+, ρ)bm(ρ, η

+)

...
...

. . .
...

am+1(η
+, ρ)b0(ρ, η

+) am+1(η
+, ρ)b1(ρ, η

+) . . . am+1(η
+, ρ)bm(ρ, η

+)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

B̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1(η
−, ρ−)b0(ρ−, η−) a1(η

−, ρ−)b1(ρ−, η−) . . . a1(η
−, ρ−)bn(ρ−, η−)

a2(η
−, ρ−)b0(ρ−, η−) a2(η

−, ρ−)b1(ρ−, η−) . . . a2(η
−, ρ−)bn(ρ−, η−)

...
...

. . .
...

an+1(η
−, ρ−)b0(ρ−, η−) an+1(η

−, ρ−)b1(ρ−, η−) . . . an+1(η
−, ρ−)bn(ρ−, η−)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

2.4 Two-sided exit problems of double exponential jump-diffusion

processes

The following two theorems are from Xu (2010) concerning the two-sided exit problems of

double exponential jump-diffusion processes. She mimicked the approach of Kou and Wang

(2003) for the case of two-sided exit problems.

Theorem 2.6 ([29]) For any q, a, b > 0 and τ = inf{t ≥ 0 : Xt < −a or Xt > b}, then

E(e−qτ ;Xτ ≥ b) = A1e
−ρ1b + A2e

−ρ2b + A3e
−ρ3a + A4e

−ρ4a, (16)

where

A1 =
A11

η+1 A
, A2 =

A21

η+1 A
, A3 =

A31

η+1 A
, A4 =

A41

η+1 A
,

.

18



A := (ρ2−ρ1)(ρ4−ρ3)
(ρ1−η+1 )(ρ2−η+1 )(ρ3−η+1 )(ρ4−η+1 )

+ e−aρ2

(ρ1−η+1 )(ρ2+η−1 )

(
(ρ1+ρ3)(ρ2+ρ4)

(ρ3+η+1 )(ρ4−η−1 )
e−aρ3 − (ρ1+ρ4)(ρ2+ρ3)

(ρ4+η+1 )(ρ3−η+1 )
e−aρ4

)
+ (ρ1+ρ3)(ρ2+ρ4)

(ρ2−η+1 )(ρ4+η+1 )(ρ1+η−1 )(ρ3−η−1 )
e−a(ρ1+ρ4)+ e−a(ρ1+ρ3)

(ρ3+η+1 )(ρ1+η−1 )

(
(ρ1+ρ4)(ρ2+ρ3)

(ρ2−η+1 )(−ρ4+η−1 )
+ (ρ2−ρ1)(ρ4−ρ3)

(ρ4+η+1 )(ρ2+η−1 )
e−a(ρ2+ρ4)

)
,

A11 :=
e−aρ2

ρ2+η−1

(
e−aρ4ρ4(ρ2+ρ3)

(ρ4+η+1 )(ρ3−η−1 )
− e−aρ3ρ3(ρ2+ρ4)

(ρ3+η+1 )(ρ4−η−1 )

)
− ρ2(ρ3−ρ4)

(ρ2−η+1 )(ρ4−η−1 )(−ρ3+η−1 )
,

A31 :=
e−aρ1

ρ1+η−1

(
e−a(ρ4+ρ2)ρ4(ρ2−ρ1)
(ρ4+η+1 )(ρ2+η+1 )

+ ρ2(ρ1+ρ4)

(ρ2−ρ1)(−ρ4+η−1 )

)
+ e−aρ2ρ1(ρ2+ρ4)

(ρ1−η+1 )(ρ4−η−1 )(ρ2+η−1 )
,

−A21 is obtained from A11 by changing ρ2 to ρ1, and −A41 is obtained from A31 by changing

ρ4 to ρ3.

Theorem 2.7 [29] For any q, b, y > 0, then

E(e−qτ ;Xτ − b > y) = B1e
−ρ1b +B2e

−ρ2b +B3e
−ρ3a +B4e

−ρ4a, (17)

where

B1 =
e−yη

+
1 B11

η+1 A
, B2 =

e−yη
+
1 B21

η+1 A
, B3 =

e−yη
+
1 B31

η+1 A
, B4 =

e−yη
+
1 B41

η+1 A
,

B11 :=
−ρ3 + ρ4

(ρ4 − η−1 )(−ρ3 + ρ2)
+

e−a(ρ2+ρ4)(ρ2 + ρ3)

(ρ2 + η−1 )(ρ3 − η−1 )
− e−a(ρ2+ρ3)(ρ2 + ρ4)

(ρ2 + η−1 )(ρ4 − η−1 )
,

B31 :=
e−aρ2(ρ2 + ρ4)

(ρ4 − η−1 )(ρ2 + η−1 )
+

e−aρ1(ρ1 + ρ4)

(ρ1 + η−1 )(−ρ4 + η−1 )
+

e−a(ρ1+ρ2+ρ4)(−ρ1 + ρ2)

(ρ1 + η−1 )(ρ2 + η−1 )
,

−B21 is obtained from B11 by changing ρ2 to ρ1, and −B41 is obtained from B31 by changing

ρ4 to ρ3.
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2.5 Two-sided exit problems of hyper-exponential jump-diffusion

processes

The first passage functional of a process Xt is defined as

Φ(x) = Ex[e
−qτg(Xτ )],

where q ≥ 0, g is a nonnegative bounded measureable function, X0 = x a.s under Px and τ

is the exit time of X from a finite interval I = (h1, h2), ie,

τ = inf{t ≥ 0 : Xt > h2 or Xt < h1}.

Then the following boundary value problem which admits at most one solution must be

solved. Find Φ ∈ C([h1, h2]) ∩ C2((h1, h2)) such that

⎧⎪⎪⎨
⎪⎪⎩
(L − q)Φ = 0 on (h1, h2),

Φ = g on (−∞, h1] ∪ [h2,∞),

(18)

where L is the infinitesimal generator of X given by

Lh(x) = μh′(x) +
σ2

2
h′′(x) + λ

∫
h(x+ y)f(y)dy − λh(x).

The following two theorems give the expression of the solution for the boundary value

problem above.

Theorem 2.8 ([11]) Suppose that Φ is a bounded solution to the boundary value problem

above, and on (h1, h2), Φ(x) =
∑S

i=1 Qie
ρix for some constants Qi (S = m + n + 2, is the

total number of distict real roots of the equation ψ(x) = q). Then the constant vector Q

satisfies the equation

AQ = V g, (19)
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where matrix A and elements of vector V g are defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1h2

ρ1−η+1
. . . eρSh2

ρS−η+1
...

. . .
...

eρ1h2

ρ1−η+m . . . eρSh2

ρS−η+m

eρ1h2 . . . eρSh2

eρ1h1

ρ1+η−1
. . . eρSh1

ρS+η−1
...

. . .
...

eρ1h1

ρ1+η−n
. . . eρSh1

ρS+η−n

eρ1h1 . . . eρSh1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V g(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∫∞
h2

g(y)e−η
+
i (y−h2)dy, if 1 ≤ i ≤ m,

g(h2), if i = m+ 1,

∫ h1

−∞ g(y)eη
−
i−m−1(y−h1)dy, if m+ 2 ≤ i ≤ S − 1,

g(h1), if i = S,

.

Theorem 2.9 ([11]) Given a constant q ≥ 0 and a nonnegative bounded function g on

(h1, h2)
c, the function Φ(x), defined by the formula

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩
∑S

i=1 Qie
ρix, if x ∈ (h1, h2),

g(x) if x /∈ (h1, h2),

, (20)

solves the boundary value problem above. Additionally, Φ(x) = Ex[e
−qτg(Xτ )].

These two theorems will be used to derive the two-sided exit problems for special choice

of (h1, h2) and the function g(x) in the next section.

2.6 Some facts about reflected Brownian motion with drift

A linear Brownian motion is defined as

Bt = μt+ σWt,
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where Wt is a standard Brownian motion and the constant μ and σ > 0 are the drift and

the volatility of the process. Then from [9] we obtain the following results for the reflected

linear Brownian motion with drift defined as |Bt| and βa = inf{t ≥ 0 : |Bt| > a}

Px

(
|Bt| ∈ dy

)
=

1√
2πt

(
e−(

y
σ
−μt−x)/2t + e−(

y
σ
+μt+x)/2t

)
dy, (21)

Px

(
|Beq | ∈ dy

)
=

λσ√
2λσ2 + μ2

(
eμ(

y
σ
−x)−| y

σ
−x|
√

2λ+(μ
σ
)2 + eμ(

y
σ
+x)−| y

σ
+x|
√

2λ+(μ
σ
)2
)
dy, (22)

Ex

[
e−qβa

]
=

eμx+x
√

2q+(μ
σ
)2 + e−μx−x

√
2q+(μ

σ
)2

e
μ
σ
a+ a

σ

√
2q+(μ

σ
)2 + e−

μ
σ
a− a

σ

√
2q+(μ

σ
)2

x ∈ [0, a]. (23)

These facts of reflected Brownian motion with drift play a role in deriving the potential

measure of hyperexponential jump-diffusion process reflected at its infimum in Section 4.
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3 FLUCTUATION IDENTITIES OF HYPER EX-

PONENTIAL JUMP-DIFFUSION PROCESSES

3.1 Two-sided exit problems

Kyprianou et al (2012) had alrealy derived solutions to the two-side exit problems for the

Meromorphic processes. However, their expressions are too general and not explicit. Fur-

thermore, we have to solve the system of linear matrix equations. Therefore, in this section,

we want to provide more explicit solutions for two-side exit problems.

From Theorems 2.8 and 2.9 in the previous section, we see that with an appropriate

choice of function g(x), one can easily derive solution to two-sided exit problems from an

interval (a, b). As a result, we have the following corollaries regarding to two-sided exit

problems from the upper level a. The first corollary is the two-sided exit problem resulting

by either creeping or jump over the level a.

Corollary 3.1 Consider the hyper-exponential jump-diffusion process Xt, given x ∈ (0, a),

let q ≥ 0, and τ = τ+a ∧ τ−0 . Then

Ex

[
e−qτ1{Xτ≥a}

]
=

S∑
i=1

D1
i e

ρix =
S∑

i=1

(−1)m+i+1det(A1
i )∑S

j=1(−1)m+j+1eρjadet(A1
j )
eρix, (24)

where D1 = {D1
1, D

1
2, ..., D

1
S} is the unique vector from Theorem 2.8, and det(A1

i ) is the

determinant of sub-matrix obtained by deleting the ith column from the following matrix
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A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1eρ1a

ρ1−η+1
ρ2eρ2a

ρ2−η+1
. . . ρSe

ρSa

ρS−η+1
...

...
. . .

...

ρ1eρ1a

ρ1−η+m
ρ2eρ2a

ρ2−η+m . . . ρSe
ρSa

ρS−η+m

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

...
...

. . .
...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. Using Theorems 2.8 and 2.9 in introdution Section with the settings (h1, h2) = (0, a)

and g(x) = 1{x≥a}, one can easily check that the matrix equation AQ = V g has the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
...

...
. . .

...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m

eρ1a eρ2a . . . eρSa

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

...
...

. . .
...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

...

Qm

Qm+1

Qm+2

...

QS−1

QS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
η+1
...

− 1
η+m

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can write this system of linear equations in a matrix form as follow
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
− 1

η+1
...

...
. . .

...
...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m − 1
η+m

eρ1a eρ2a . . . eρSa 1

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

0

...
...

. . .
...

...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

0

1 1 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1eρ1a

ρ1−η+1
ρ2eρ2a

ρ2−η+1
. . . ρSe

ρSa

ρS−η+1
0

...
...

. . .
...

...

ρ1eρ1a

ρ1−η+m
ρ2eρ2a

ρ2−η+m . . . ρSe
ρSa

ρS−η+m 0

eρ1a eρ2a . . . eρSa 1

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

0

...
...

. . .
...

...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

0

1 1 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The second matrix is obtained by doing the matrix operations. That is, we want to make

the last column become all zeros except for the (m+ 1)th entry, so for each row i from 1 to

m, we multiply it by η+i and then add to the (m + 1)th row. Now, applying the Crammer’s

rule we obtain our desired solution for D1
i

D1
i = Qi =

(−1)m+i+1det(A1
i )∑S

j=1(−1)m+j+1eρjadet(A1
j )
,

where matrix A1 is defined as in the corollary.

The second corollary concerns about two-sided exit problem resulted by jumping over

the level a.

Corollary 3.2 Given x ∈ (0, a) and q ≥ 0, then

Ex

[
e−qτ1{Xτ>a}

]
=

S∑
i=1

D2
i e

ρix =
S∑

i=1

(−1)i+1det(A2
i )∑S

j=1(−1)j η
+
1 eρja

ρj−η+1
det(A2

j )
eρix. (25)

And hence

Ex

[
e−qτ1{Xτ=a}

]
= Ex

[
e−qτ1{Xτ≥a}

]
− Ex

[
e−qτ1{Xτ>a}

]
=

S∑
i=1

(D1
i −D2

i )e
ρix, (26)
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where det(A2
i ) is the determinant of the sub-matrix obtained by deleting the ith column from

the following matrix

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1eρ1a(η
+
2 −η+1 )

(ρ1−η+1 )(ρ1−η+2 )

ρ2eρ2a(η
+
2 −η+1 )

(ρ2−η+1 )(ρ2−η+2 )
. . .

ρSe
ρSa(η+2 −η+1 )

(ρS−η+1 )(ρS−η+2 )

...
...

. . .
...

ρ1eρ1a(η
+
m−η+1 )

(ρ1−η+1 )(ρ1−η+m)

ρ2eρ2a(η
+
m−η+1 )

(ρ2−η+1 )(ρ2−η+m)
. . .

ρSe
ρSa(η+m−η+1 )

(ρS−η+1 )(ρS−η+m)

eρ1a eρ2a . . . eρSa

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

...
...

. . .
...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. Similar to the proof of Corollary 3.1, we consider the settings (h1, h2) = (0, a) and g(x) =

1{x>a}, then we have

V g = (− 1

η+1
,− 1

η+2
, ...,− 1

η+m
, 0, ..., 0)T .

Then the system of linear equations: AQ = V g can be reduced as following

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
−1
η+1

...
...

. . .
...

...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m
−1
η+m

eρ1a eρ2a . . . eρSa 0

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

0

...
...

. . .
...

...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

0

1 1 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−η+1 eρ1a

ρ1−η+1
−η+1 eρ2a

ρ2−η+1
. . .

−η+1 eρSa

ρS−η+1
1

ρ1eρ1a(η
+
2 −η+1 )

(ρ1−η+1 )(ρ1−η+2 )

ρ2eρ2a(η
+
2 −η+1 )

(ρ2−η+1 )(ρ2−η+2 )
. . .

ρSe
ρSa(η+2 −η+1 )

(ρS−η+1 )(ρS−η+2 )
0

...
...

. . .
...

...

ρ1eρ1a(η
+
m−η+1 )

(ρ1−η+1 )(ρ1−η+m)

ρ2eρ2a(η
+
m−η+1 )

(ρ2−η+1 )(ρ2−η+m)
. . .

ρSe
ρSa(η+m−η+1 )

(ρS−η+1 )(ρS−η+m)
0

eρ1a eρ2a . . . eρSa 0

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

0

...
...

. . .
...

...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

0

1 1 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

26



Here, the second matrix is obtained by first multiplying the first row by −η+1 and the others

from 2th row to mth row by η+i . Then, for each row from 2 to m, we add it to the first row.

Now, applying the Cramer’s rule we obtain our desired solution for D2
i

D2
i = Qi =

(−1)i+1det(A2
i )∑S

j=1(−1)j η
+
1 eρja

ρj−η+1
det(A2

j )
,

where det(A2
i ) is defined in the corollary.

The following corallary considers the density of overshoot in the exit problem resulted

by jumping over level a.

Corollary 3.3 Given x ∈ (0, a), q ≥ 0, and s > 0, then

Ex

[
e−qτ1{Xτ>a+s}

]
=

1

det(A)

S∑
i=1

m∑
j=1

(−1)i+j+1 e
−η+j s

η+j
det(Ai

j)e
ρix. (27)

And hence

Ex

[
e−qτ , Xτ − a ∈ ds

]
=

S∑
i=1

m∑
j=1

Di,je
−η+j seρix =

1

det(A)

S∑
i=1

m∑
j=1

(−1)i+j+1det(Ai
j)e

−η+j seρix,

(28)

where matrix A is defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
...

...
. . .

...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m

eρ1a eρ2a . . . eρSa

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

...
...

. . .
...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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and det(Ai
j) is the determinant of sub-matrix obtained by deleting the ith column and the jth

row of matrix A.

Proof. Again with the settings (h1, h2) = (0, a) and g(x) = 1x>a+s for s ≥ 0, it is easy to

check that

V g = (−e−η
+
i s

η+i
,−e−η

+
2 s

η+2
, ...,−e−η

+
ms

η+m
, 0, ..., 0)T .

Then the system of equations: AQ= V g can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
...

...
. . .

...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m

eρ1a eρ2a . . . eρSa

1
ρ1+η−1

1
ρ2+η−1

. . . 1
ρS+η−1

...
...

. . .
...

1
ρ1+η−n

1
ρ2+η−n

. . . 1
ρS+η−n

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

...

Qm

Qm+1

Qm+2

...

QS−1

QS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− e−η+1 s

η+1
...

− e−η+ms

η+m

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using Cramer’s rule we obtain

Qi =
1

det(A)

m∑
j=1

(−1)i+j+1 e
−η+j s

η+j
det(Ai

j).

Using the same idea, one can easily show the following three corollaries regarding to

two-sided exit problems from lower level 0.
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Corollary 3.4 Given x ∈ (0, a) and q ≥ 0, then

Ex

[
e−qτ1{Xτ≤0}

]
=

S∑
i=1

C1
i e

ρix =
S∑

i=1

(−1)S+idet(A3
i )∑S

j=1(−1)S+jdet(A3
j )
eρix, (29)

where det(A3
i ) is the determinant of the sub-matrix obtained by deleting the ith column of

the following matrix

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
...

...
. . .

...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m

eρ1a eρ2a . . . eρSa

ρ1
ρ1+η−1

ρ2
ρ2+η−1

. . . ρS
ρS+η−1

...
...

. . .
...

ρ1
ρ1+η−n

ρ2
ρ2+η−n

. . . ρS
ρS+η−n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The proof is similar to one above with the settings (h1, h2) = (0, a) and g(x) =

1{x≤0}.

Corollary 3.5 Given x ∈ (0, a) and q ≥ 0, then

Ex

[
e−qτ1{Xτ<0}

]
=

S∑
i=1

C2
i e

ρix =
S∑

i=1

(−1)m+idet(A4
i )∑S

j=1(−1)m+j η−1
ρj+η−1

det(A4
j )
eρix. (30)

And hence

Ex

[
e−qτ1{Xτ=0}

]
= Ex

[
e−qτ1{Xτ≤0}

]
− Ex

[
e−qτ1{Xτ<0}

]
=

S∑
i=1

(C1
i − C2

i )e
ρix, (31)

where det(A4
i ) is the determinant of the sub-matrix obtained by deleting the ith column from
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the following matrix

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1a

ρ1−η+1
eρ2a

ρ2−η+1
. . . eρSa

ρS−η+1
...

...
. . .

...

eρ1a

ρ1−η+m
eρ2a

ρ2−η+m . . . eρSa

ρS−η+m

eρ1a eρ2a . . . eρSa

ρ1(η
−
1 −η−2 )

(ρ1+η−1 )(ρ1+η−2 )

ρ2(η
−
1 −η−2 )

(ρ2+η−1 )(ρ2+η−2 )
. . .

ρS(η
−
1 −η−2 )

(ρS+η−1 )(ρS+η−2 )

...
...

. . .
...

ρ1(η
−
1 −η−n )

(ρ1+η−1 )(ρ1+η−n )

ρ2(η
−
1 −η−n )

(ρ2+η−1 )(ρ2+η−n )
. . .

ρS(η
−
1 −η−n )

(ρS+η−1 )(ρS+η−n )

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The result can be obtained with the settings (h1, h2) = (0, a) and g(x) = 1{x<0}.

Corollary 3.6 Given x ∈ (0, a), q ≥ 0, and s < 0, then

Ex

[
e−qτ1{Xτ<s}

]
=

1

det(A)

S∑
i=1

n∑
j=1

(−1)m+i+j+1 e
η−j s

η−j
det(Ai

j)e
ρix. (32)

And hence

Ex

[
e−qτ , Xτ ∈ ds

]
=

S∑
i=1

n∑
j=1

Ci,je
η−j seρix =

1

det(A)

S∑
i=1

n∑
j=1

(−1)m+i+jdet(Ai
j)e

η−j seρix, (33)

where matrix A is defined as in the corollary 3.3 and det(Ai
j) is the determinant of sub-

matrix obtained by deleting the ith column and the (m+ j + 1)th row of matrix A.

Proof. The proof is similar to the one in Corollary 3.3 with the settings (h1, h2) = (0, a) and

g(x) = 1{x<s}.
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3.2 One-sided exit problems

As mentioned in the introduction, Kyprianou et al (2012) also proposed the density of one-

sided exit problems for the Meromorphic processes. Also, we have induced the expression

for our hyper-exponential jump-diffusion processes. However, this density cannot be used to

obtain the one-sided exit problem resulted by creeping over that level. Therefore, we want

to use another appoarch to derive solutions to the one-sided exit problems.

The one-sided exit problems for the special case of the double exponential jump-diffusion

process can be found in Kou and Wang (2003). To expand the result to the hyper-exponential

jump-diffusion processes, we first derive the following theorem.

Theorem 3.1 Given x ∈ (−∞, h2), h2 ≥ 0, g(x) is a nonnegative bounded measureable

function, and let τ = inf{t ≥ 0 : Xt /∈ (−∞, h2]}, then the solution of the following boundary

value problem ⎧⎪⎪⎨
⎪⎪⎩
(L − q)Φ = 0 in (−∞, h2),

Φ = g on [h2,∞),

is Φ(x) =
∑m+1

i=1 Qie
ρix for the constant vector Q = [Q1, Q2, ..., Qm+1]

T satisfies the equation

BQ = V g,

where the matrix B and elements of vector V g are defined as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρ1h2

ρ1−η+1
. . . eρm+1h2

ρm+1−η+1
...

. . .
...

eρ1h2

ρ1−η+m . . . eρm+1h2

ρm+1−η+m

eρ1h2 . . . eρm+1h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V g(i) =

⎧⎪⎪⎨
⎪⎪⎩
− ∫∞

h2
g(y)e−η

+
j (y−h2)dy, if 1 ≤ i ≤ m,

g(h2), if i = m+ 1

.

Here we assume the matrix B is invertible.
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Proof. By mimicking the proof of Proposition 2.2 in [11], since (L − q)Φ = 0 on (−∞, h2)

and Φ(x) =
∑m+1

i=1 Qie
ρix, then for x ∈ (−∞, h2), we have

0 =
σ2

2
Φ′′(x) + cΦ′(x) + λ

∫
Φ(x+ y)f(y)dy − (λ+ q)Φ(x)

=
m+1∑
i=1

Qie
ρix

(
σ2

2
ρ2i + cρi − λ− q

)
+ λ

∫
Φ(x+ y)f(y)dy. (34)

Also,

∫
Φ(x+ y)f(y)dy

=

∫ ∞

−∞
Φ(u)f(u− x)du

=

∫ h2

−∞
Φ(u)f(u− x)du+

∫ ∞

h2

Φ(u)f(u− x)du

=

∫ h2−x

−∞
Φ(x+ y)f(y)dy +

∫ ∞

h2

g(u)
m∑
j=1

pjη
+
j e
−η+j (u−x)du

=

∫ 0

−∞
Φ(x+ y)f(y)dy +

∫ h2−x

0

Φ(x+ y)f(y)dy +
m∑
j=1

pjη
+
j e

η+j x

∫ ∞

h2

g(y)e−η
+
j ydy

=

∫ 0

−∞

m+1∑
i=1

Qie
ρi(x+y)

n∑
j=1

qjη
−
j e

η−j ydy +

∫ h2−x

0

m+1∑
i=1

Qie
ρi(x+y)

m∑
j=1

pjη
+
j e
−η+j ydy

+
m∑
j=1

pjη
+
j e

η+j x

∫ ∞

h2

g(y)e−η
+
j ydy

=
m+1∑
i=1

Qie
ρix

n∑
j=1

qjη
−
j

∫ 0

−∞
e(ρi+η−j )ydy +

m+1∑
i=1

Qie
ρix

m∑
j=1

pjη
+
j

∫ h2−x

0

e(ρi−η
+
j )ydy

+
m∑
j=1

pjη
+
j e

η+j x

∫ ∞

h2

g(y)e−η
+
j ydy

=
m+1∑
i=1

Qie
ρix

n∑
j=1

qjη
−
j

ρi + η−j
+

m+1∑
i=1

Qie
ρix

m∑
j=1

pjη
+
j

ρi − η+j

(
e(ρi−η

+
j )(h2−x) − 1

)

+
∑m

j=1 pjη
+
j e

η+j x
∫∞
h2

g(y)e−η
+
j ydy. (35)
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From (34) and (35), we have

0 =
m+1∑
i=1

Qie
ρix

(
σ2

2
ρ2i+cρi−λ−+λ

[ n∑
j=1

qjη
−
j

ρi + η−j
+

m∑
j=1

pjη
+
j

ρi − η+j

])
+λ

m∑
j=1

pjη
+
j e

η+j x

∫ ∞

h2

g(y)e−η
+
j ydy

+λ

m+1∑
i=1

Qie
ρix

m∑
j=1

pjη
+
j

ρi − η+j
e(ρi−η

+
j )(h2−x).

Using the fact that ψ(ρi)− q = 0 for all i we obtain

m+1∑
i=1

Qie
ρix

m∑
j=1

pjη
+
j

ρi − η+j
e(ρi−η

+
j )(h2−x) = −

m∑
j=1

pjη
+
j e

η+j x

∫ ∞

h2

g(y)e−η
+
j ydy

which implies
m∑
j=1

pjη
+
j e

η+j x
m+1∑
i=1

Qi
eρih2

ρi − η+j
=

m∑
j=1

pjη
+
j e

η+j x

∫ ∞

h2

−g(y)e−η+j (y−h2)dy.

This can be rewritten in a matrix form BQ = V g defined as in the theorem.

Theorem 3.2 Given q ≥ 0 and also a nonnegative bounded function g on (−∞, h2)
c, and

τ+h2
= inf{t ≥ 0 : Xt /∈ (−∞, h2]}.

Then

Ex

[
e−qτ

+
h2g(Vτ+h2

)
]
=

m+1∑
i=1

Qie
ρix. (34)

Proof. The proof is similar to the proof of Theorem 4.1 in [13] by replacing R+ with (−∞, h2].

Now, we are ready to obtain the one-sided exit problems for hyper-exponential jump-

diffusiion processes. The following three corollaries are on the one-sided exit problems from

the upper level 0.
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Corollary 3.7 Given x ∈ (−∞, 0), then

Ex

[
e−qτ

+
0 , Xτ+0

≥ 0

]
=

m+1∑
i=1

d1i e
ρix =

m+1∑
i=1

(−1)m+i+1det(B1
i )∑m+1

j=1 (−1)m+j+1det(B1
j )
eρix, (35)

where det(B1
i ) is the determinant of sub-matrix obtained by deleting the ith column from the

following matrix

B1 =

⎡
⎢⎢⎢⎢⎣

ρ1
ρ1−η+1

. . . ρm+1

ρm+1−η+1
...

. . .
...

ρ1
ρ1−η+n . . . ρm+1

ρm+1−η+n

⎤
⎥⎥⎥⎥⎦ .

Proof. The proof is similar to the case of two-sided exit problems using the Theorems 3.1

and 3.2 above with the settings h2 = 0 and g(x) = 1(x≥0).

Corollary 3.8 Given x ∈ (−∞, 0), then

Ex

[
e−qτ

+
0 , Xτ+0

> 0

]
=

m+1∑
i=1

d2i e
ρix =

m+1∑
i=1

(−1)i+1det(B2
i )∑m+1

j=1 (−1)j+1 η+1
ρj−η+1

det(B2
j )
eρix. (36)

And hence

Ex

[
e−qτ

+
0 , Xτ+0

= 0

]
= Ex

[
e−qτ

+
0 , Xτ+0

≥ 0

]
− Ex

[
e−qτ

+
0 , Xτ+0

> 0

]
=

m+1∑
i=1

(d1i − d2i )e
ρix, (37)

where det(B2
i ) is the determinant of sub-matrix obtained by deleting the ith column from the

following matrix

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1(η
+
1 −η+2 )

(ρ1−η+1 )(ρ1−η+2 )
. . .

ρm+1(η
+
1 −η+2 )

(ρm+1−η+1 )(ρm+1−η+2 )

...
. . .

...

ρ1(η
+
1 −η+n )

(ρ1−η+1 )(ρ1−η+n )
. . .

ρm+1(η
+
1 −η+n )

(ρm+1−η+1 )(ρm+1−η+n )

1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. With the settings h2 = 0 and g(x) = 1(x>0), we can obtain our desired result.
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Corollary 3.9 Given x ∈ (−∞, 0), s > 0, then

Ex

[
e−qτ

+
0 , Xτ+0

> s

]
=

1

det(B)

m+1∑
i=1

m∑
j=1

e−η
+
j s

η+j
(−1)i+j+1det(Bi

j)e
ρix.

Thus

Ex

[
e−qτ

+
0 , Xτ+0

∈ ds

]
=

1

det(B)

m+1∑
i=1

m∑
j=1

(−1)i+j+1det(Bi
j)e

−η+j seρixds =
m+1∑
i=1

m∑
j=1

di,je
η+j eρixds,

where det(Bi
j) is the determinant of sub-matrix obtained by deleting the jth row and the ith

column from the following matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρ1−η+1

. . . 1
ρm+1−η+1

...
. . .

...

1
ρ1−η+n . . . 1

ρm+1−η+n

1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. In this case, the settings are h2 = 0 and g(x) = 1(x>s).

Moreover, one can easily derive the following theorem using the same method as in the

proof of Theorems 3.1 and 3.2. For the one-sided exit problems from below, we have the

similar resulting theorem.

Theorem 3.3 Given x ∈ (h1,∞), let g, defined on [h1,∞) for h1 ≤ 0, be a nonnegative

bounded measurable function, and let τ = inf{t ≥ 0 : Xt /∈ [h1,∞)}. Then the solution of

the following boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
(L − q)Φ = 0 in (h1,∞),

Φ = g on (−∞, h1],
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is Φ(x) = Ex

[
e−qτ

−
h1g(Xτ−h1

)
]
=

S∑
i=m+2

Qie
ρix.

for the constant vector Q satisfies the equation

CQ = V g,

where the invertible matrix C and elements of vector V g are defined as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eρm+2h1

ρm+2+η−1
. . . eρSh1

ρS+η−1
...

. . .
...

eρm+2h1

ρm+2+η−n
. . . eρSh1

ρS+η−n

eρm+2h1 . . . eρSh1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V g(i) =

⎧⎪⎪⎨
⎪⎪⎩
∫ h1

−∞ g(y)eη
−
j (y−h1)dy, if 1 ≤ i ≤ n,

g(h2), if i = n+ 1,

.

Now, we are ready to state the following three corollaries concerning about one-sided exit

problems from lower level 0.

Corollary 3.10 Given x ∈ (0,∞), then

Ex

[
e−qτ

−
0 , Xτ−0

≤ 0

]
=

S∑
i=m+2

c1i e
ρix =

S∑
i=m+2

(−1)S−idet(C1
i−m−1)∑S

j=m+2(−1)S−jdet(C1
j−m−1)

eρix, (38)

where det(C1
i−m−1) is the determinant of sub-matrix obtained by deleting the ith column of

the matrix

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρm+2

ρm+2+η−1
. . . ρS

ρS+η−1
...

. . .
...

ρm+2

ρm+2+η−n
. . . ρS

ρS+η−n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. Apply the Theorem 3.3 above for h1 = 0 and g(x) = 1(x≤0).
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Corollary 3.11 Given x ∈ (0,∞), then

Ex

[
e−qτ

−
0 , Xτ−0

< 0

]
=

S∑
i=m+2

c2i e
ρix =

S∑
i=m+2

(−1)i−mdet(C2
i−m−1)∑S

j=m+2(−1)j−m η−1
ρj+η−1

det(C2
j−m−1)

eρix. (39)

And hence

Ex

[
e−qτ

−
0 , Xτ−0

= 0

]
= Ex

[
e−qτ

−
0 , Xτ−0

≤ 0

]
−Ex

[
e−qτ

−
0 , Xτ−0

< 0

]
=

S∑
i=m+2

(c1i−c2i )e
ρix, (40)

where det(C2
i−m−1) is the determinant of sub-matrix obtained by deleting the ith column of

the matrix

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρm+2(η
−
1 −η−2 )

(ρm+2+η−1 )(ρm+2+η−2 )
. . .

ρS(η
−
1 −η−2 )

(ρS+η−1 )(ρS+η−2 )

...
. . .

...

ρm+2(η
−
1 −η−n )

(ρm+2+η−1 )(ρm+2+η−n )
. . .

ρS(η
−
1 −η−n )

(ρS+η−1 )(ρS+η−n )

1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. Again, with the settings h1 = 0 and g(x) = 1(x<0).

Corollary 3.12 Given x ∈ (0,∞), s < 0, then

Ex

[
e−qτ

−
0 , Xτ−0

< s

]
=

1

det(C)

S∑
i=m+2

n∑
j=1

eη
−
j s

η−j
(−1)i+j−m+1det(Ci−m−1

j )eρix, (41)

Ex

[
e−qτ

−
0 , Xτ−0

∈ ds

]
=

1

det(C)

S∑
i=m+2

n∑
j=1

eη
−
j s(−1)i+j−mdet(Ci−m−1

j )eρixds (42)

=
S∑

i=m+2

n∑
j=1

ci,je
η−j seρixds.

where det(Ci−m−1
j ) is the determinant of sub-matrix obtained by deleting the jth row and
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the ith column from the following matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρm+2+η−1

. . . 1
ρS+η−1

...
. . .

...

1
ρm+2+η−n

. . . 1
ρS+η−n

1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. Here, the settings are h1 = 0 and g(x) = 1(x<s).
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3.3 Potential measures of jump-diffusion processes

Recall that for q ≥ 0, a q-potential measure of any Lévy process X killed on exiting [0, a]

when issued from x is defined as

U (q)(a, x, dy) :=

∫ ∞

0

e−qtPx

(
Xt ∈ dy, τ > t

)
dt,

and a q-potential measure of X killed on exiting [0,∞) when issued from x as

R(q)(x, dy) :=

∫ ∞

0

e−qtPx

(
Xt ∈ dy, τ−0 > t

)
dt,

where

τ = τ+a ∧ τ−0 := inf{t ≥ 0 : Xt < 0 or Xt > a}.

Although the potential measure of Meromorphic processes is given in Kyprianou et al

(2012), that expression is not very handy because it is not explicit and we have to solve

the system of linear matrix equations. In this section, we first want to derive the potential

measure for double exponential jump-diffusion processes. Then we generalize the idea to the

case of hyper-exponential. The approach in Kyprianou et al (2012) and our approach are

quite similar except that in their approach, to derive U (q)(a, x, dy) they used the q-potential

measure killed on exiting (−∞, a] and the discounted joint overshoot and undershoot distri-

bution for the two-sided exit problem.

Theorem 3.4 Suppose, for q ≥ 0, R(q)(x, dy) is the q-potential measure of the double expo-

nential jump-diffusion process Xt killed on exiting [0,∞), where x, y ∈ [0,∞). Then it has

a density qr(q)(x, y) given by

C1(e
ρ3(x−y)−eρ3x−ρ1y)+C2(e

ρ4(x−y)−eρ4x−ρ1y)+C3(e
ρ3(x−y)−eρ3x−ρ2y)+C4(e

ρ4(x−y)−eρ4x−ρ2y),
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where

C1 :=

(
1− ρ1

η+1

)(
ρ2

ρ1 − ρ2

)(
1 +

ρ3
η−1

)(
ρ4

ρ4 − ρ3

)(
1

ρ1 − ρ3

)
ρ3ρ1,

C2 :=

(
1− ρ1

η+1

)(
ρ2

ρ1 − ρ2

)(
η−1 + ρ4

η−1

)(
ρ3

ρ3 − ρ4

)(
1

ρ1 − ρ4

)
ρ1ρ4,

C3 :=

(
η+1 − ρ2

η+1

)(
ρ1

ρ2 − ρ1

)(
1 +

ρ3
η−1

)(
ρ4

ρ4 − ρ3

)(
1

ρ2 − ρ3

)
ρ2ρ3,

C4 :=

(
η+1 − ρ2

η+1

)(
ρ1

ρ2 − ρ1

)(
η−1 + ρ4

η−1

)(
ρ3

ρ3 − ρ4

)(
1

ρ2 − ρ4

)
ρ4ρ2.

Proof. For x ∈ [0,∞), we have

R(q)(x, dy) =

∫ ∞

0

e−qtPx

(
Xt ∈ dy, τ−0 > t

)
dt =

1

q
Px

(
Xeq ∈ dy,Xeq ≥ 0

)
,

where the second equality followed by conditioning on eq. Using translation invariant of Xt

and the independence of Xeq − Xeq and Xeq by Wiener-Hopf factorization theorem, we

obtain

R(q)(x, dy) =
1

q
P(Xeq ∈ dy − x,Xeq ≥ −x)

=
1

q
P

(
(Xeq −Xeq) +Xeq ∈ dy − x,−Xeq ≤ x

)
=

1

q

∫
[x−y,x]

P
(
(Xeq −Xeq) ∈ dy − x+ z

)
P(−Xeq ∈ dz)

=
1

q

∫
[x−y,x]

P(Xeq ∈ dy − x+ z)P(−Xeq ∈ dz) (by duality).

The two probabilities above are introduced in the introduction section, so we can develop
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the expression for R(q)(x, dy) as follow

[
1

q

∫ x

x−y

[(
1− ρ1

η+1

)(
ρ2

ρ2 − ρ1

)
ρ1e

−ρ1(y−x+z) +

(
η+1 − ρ2

η+1

)(
ρ1

ρ1 − ρ2

)
ρ2e

−ρ2(y−x+z)

]

×
[(

1 +
ρ3
η−1

)(
ρ4

ρ3 − ρ4

)
ρ3e

ρ3z +

(
η−1 + ρ4

η−1

)(
ρ3

ρ4 − ρ3

)
ρ4e

ρ4z

]
dz

]
dy.

This shows that there exists a density, r(q)(x, y) for the measure R(q)(x, dy). With a simple

integration, the above expression turns out to be

C1(e
ρ3(x−y)−eρ3x−ρ1y)+C2(e

ρ4(x−y)−eρ4x−ρ1y)+C3(e
ρ3(x−y)−eρ3x−ρ2y)+C4(e

ρ4(x−y)−eρ4x−ρ2y).

Now, we can use R(q)(x, dy) to derive U (q)(a, x, dy) in the theorem below.

Theorem 3.5 Suppose, for q ≥ 0, U (q)(a, x, dy) is the q-potential measure of the double

exponential jump-diffusion process Xt killed on exiting [0, a], where x, y ∈ [0, a]. Then it has

a density u(q)(a, x, y) given by

r(q)(x, y)−r(q)(a, y)
4∑

i=1

(D1
i −D2

i )e
ρix− 1

q

4∑
i=1

Di,1e
ρix

(
C1

η+ − ρ3
(eρ3(a−y)−e−ρ3a−ρ1y)

+
C2

η+ − ρ4
(eρ4(a−y)−e−ρ4a−ρ1y)+

C3

η+ − ρ3
(eρ3(a−y)−e−ρ3a−ρ2y)+

C4

η+ − ρ4
(eρ4(a−y)−e−ρ4a−ρ2y)

)
,

where Ci and r(q)(x, y) are defined as in Theorem 3.4; D1
i , D

2
i , and Di,1 are defined as in

(24),(25), and (28) respectively.
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Proof. Now, we have

qU (q)(a, x, dy) = Px(Xeq ∈ dy, τ > eq)

= Px(Xeq ∈ dy,Xeq ≥ 0, Xeq ≤ a) (since τ = τ+a ∧ τ−0 > eq)

= Px(Xeq ∈ dy,Xeq ≥ 0)− Px(Xeq ∈ dy,Xeq > 0, Xeq > a)

= Px(Xeq ∈ dy,Xeq ≥ 0)− Px(Xeq ∈ dy,Xeq > 0, Xeq > a, τ ≥ eq)

−Px(Xeq ∈ dy,Xeq > 0, Xeq > a, τ < eq).

Here in the last equality, we imposed an extra condition τ ≥ eq and τ < eq in the second

probability. Notice that the second probability above is zero due to the conflict of {Xeq ≥ a}
and {τ ≥ eq}. Thus, we obtain that

qU (q)(a, x, dy) = Px(Xeq ∈ dy,Xeq ≥ 0)− Px(Xeq ∈ dy,Xeq > 0, Xeq > a, τ < eq)

= Px(Xeq ∈ dy,Xeq ≥ 0)− Px(Xeq ∈ dy,Xeq > 0, Xτ = a, τ < eq)

−Px(Xeq ∈ dy,Xeq > 0, Xτ − a > 0, τ < eq)

= Px(Xeq ∈ dy,Xeq ≥ 0)− Pa(Xeq ∈ dy,Xeq ≥ 0)Px(Xτ = a, τ < eq)

−
∫
(0,∞)

Px(Xτ − a ∈ dz, τ < e)Pz+a(Xeq ∈ dy,Xeq ≥ 0),

where in the last equality we conditioned on {Xτ −a} and used the Markov property. Using

qR(q)(x, dy) = Px(Xeq ∈ dy,Xeq ≥ 0) in Theorem 3.4, we obtain

U (q)(a, x, dy)

= R(q)(x, dy)−R(q)(a, dy)Px(Xτ = a, τ < eq)−
∫
(0,∞)

Px(Xτ − a ∈ dz, τ < eq)R
(q)(z + a, dy)

= R(q)(x, dy)−R(q)(a, dy)Ex(e
−qτ , Xτ = a)−

∫
(0,∞)

Ex(e
−qτ , Xτ − a ∈ dz)R(q)(z + a, dy).
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From here, we see that there exists a density u(q)(a, x, y) for the measure U (q)(a, x, dy). For

the expectation in the second term and the third term of the second equality above, we use

the two-sided exit problem results

Ex(e
−qτ , Xτ = a) =

4∑
i=1

(D1
i −D2

i )e
ρix and Ex(e

−qτ , Xτ − a ∈ dz) = e−η
+
1 z

4∑
i=1

Di,1e
ρix.

Thus,

u(q)(a, x, y) = r(q)(x, y)− r(q)(a, y)
4∑

i=1

(D1
i −D2

i )e
ρix −

4∑
i=1

Di,1e
ρix

∫
(0,∞)

e−η
+
1 zr(q)(z + a, y).

Using the expression of r(q)(x, y) in Theorem 3.4, we can evaluate the integral above as

∫
(0,∞)

e−η
+
1 zr(q)(z+a, y) =

1

q

∫ ∞

0

e−η
+
1 z
(
C1(e

ρ3(z+a−y)−eρ3(z+a)−ρ1y)+C2(e
ρ4(z+a−y)−eρ4(z+a)−ρ1y)

+C3(e
ρ3(z+a−y) − eρ3(z+a)−ρ2y) + C4(e

ρ4(z+a−y) − eρ4(z+a)−ρ2y)
)
dz

=
1

q

(
C1

η+1 − ρ3
(eρ3(a−y) − e−ρ3a−ρ1y) +

C2

η+1 − ρ4
(eρ4(a−y) − e−ρ4a−ρ1y)

+
C3

η+1 − ρ3
(eρ3(a−y)−e−ρ3a−ρ2y)+ C4

η+1 − ρ4
(eρ4(a−y)−e−ρ4a−ρ2y)

)
.

From here, we can generalize the idea to find the q-potential measure for hyper-exponential

jump-diffusion process Xt killed on exiting [0,∞). That is

R(q)(x, dy) =
1

q

∫
[x−y,x]

P(Xeq ∈ dy − x+ z)P(−Xeq ∈ dz))

=

{
1

q

∫ x

x−y

(
ā(η+, ρ)T .v̄(ρ, y − x+ z)

)(
ā(η−, ρ)T .v̄(ρ−, z)

)
dz

}
dy,

where ā and v̄ are defined in Theorem 2.3. This shows that there exits a density r(q)(x, y)

of the measure R(q)(x, dy). The density above can be expressed explicitely as
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qr(q)(x, y) =
m+1∑
i=1

ρiai(η
+, ρ)

S∑
j=m+2

aj(η
−, ρ−)ρj

ρi − ρj

(
eρj(x−y) − eρjx−ρiy

)
. (43)

Theorem 3.6 Suppose, for q ≥ 0, U (q)(a, x, dy) is the q-potential measure of a hyper-

exponential jump-diffusion process Xt killed on exiting [0, a], where x, y ∈ [0, a]. Then it

has a density u(q)(a, x, y) given by

r(q)(x, y)− r(q)(a, y)
S∑

i=1

(
D1

i −D2
i

)
eρix− 1

q

m∑
i=1

S∑
j=m+2

S∑
k=1

m+1∑
l=1

Pijkle
ρkx(eρj(a−y) − eρja−ρly),

where

Pijkl =
Dk,ial(η

+, ρ)aj(η
−, ρ−)ρlρj

(ρl − ρj)(η
+
i − ρj)

,

and D1
i , D

2
i , Di,j are defined in (24),(25), and (28) respectively; and r(q)(x, y) is the q-

potential measure of hyperexponential jump-diffusion process killed on exiting [0,∞).

Proof. Using the same reasoning as in the case of double exponential jump-diffusion process,

we have

u(q)(a, x, y) = r(q)(x, y)−r(q)(a, y)E(e−qτ , Xτ = a)−
∫
(0,∞)

Ex(e
−qτ , Xτ −a ∈ dz)r(q)(z+a, y).

Again, the expectations above are the two-sided exit problems which can be expressed as

E(e−qτ , Xτ = a) =
S∑

i=1

(
D1

i−D2
i

)
eρix and Ex

(
e−qτ , Xτ−a ∈ dz

)
=

S∑
i=1

m∑
j=1

Di,je
−η+j zeρix.

So for the integral, we can rewrite it as

1

q

∫ ∞

0

[m+1∑
i=1

ρiai(η
+, ρ)

S∑
j=m+2

aj(η
−, ρ−)ρj

ρi − ρj
(eρj(z+a−y)−eρj(z+a)−ρiy)

]
.

[ S∑
i=1

m∑
j=1

Di,je
−η+j zeρix

]
dz
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=
1

q

∫ ∞

0

[m+1∑
i=1

S∑
j=m+2

ai(η
+, ρ)aj(η

−, ρ−)ρiρj
ρi − ρj

(eρj(a−y) − eρja−ρiy)eρjz
]
.

[ S∑
i=1

m∑
j=1

Di,je
−η+j zeρix

]
dz

=
1

q

∫ ∞

0

[ m∑
i=1

S∑
j=m+2

S∑
k=1

m+1∑
l=1

Dk,ial(η
+, ρ)aj(η

−, ρ−)ρlρj
ρl − ρj

eρkx(eρj(a−y) − eρja−ρly)
]
e(ρj−η

+
i )zdz

=
1

q

m∑
i=1

S∑
j=m+2

S∑
k=1

m+1∑
l=1

Dk,ial(η
+, ρ)aj(η

−, ρ−)ρlρj
(ρl − ρj)(η

+
i − ρj)

eρkx(eρj(a−y) − eρja−ρly).
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4 FLUTUATION IDENTITIES OF PROCESSES RE-

FLECTED AT ITS INFIMUM

Recall that given a hyper-exponential jump-difussion process Xt, a processes reflected at its

infimum is defined as

Yt := Xt −X t ∧ 0.

Then Yt is a Markov process. By using the Markov property, we can derive the q-potential

measure killed on exitting [0, a] of this reflected process defined as

Λ(q)(a, x, dy) :=

∫ ∞

0

e−qtPx(Yt ∈ dy, t < γa)dt,

where γa = inf{t ≥ 0 : Yt > a}.

Theorem 4.1 ([21]) For any q ≥ 0, x, y ∈ [0, a], then

Λ(q)(a, x, dy) = U (q)(a, x, y) +
S∑

i=1

C1
i e

ρix. lim
z→0

( U (q)(a, z, dy)

1−∑S
i=1 C

1
i e

ρiz

)
. (44)

Although this epxression looks nice, we still need to evaluate the limit and we do not

know if this limit exists or not. Another way to derive the potential measure of this reflected

process is to introduce two independent exponential random variables eq and eζ with rates

q and ζ respectively (eq is also independent with the reflected process and eζ is the first

jump time of the process). By conditioning on the arrival time between: eq, eζ , and γa, we

can turn the problem into the potential measure of reflected Brownian motion with drift.

We first derive the potential measure of reflected Brownian motion with drift. Recall that a

linear Brownian motion is defined as

Bt = μt+ σWt,
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where Wt is the standard Brownian motion, then the reflected linear Brownian motion with

drift is defined as |Bt|. Also, we have βa = inf{t ≥ 0 : |Bt| > a}.

Lemma 4.1 Consider |Bt|, a reflected linear Brownian motion with drift, then given x ∈
[0, a] the potential measure of |Bt| which is defined as

B(q)(a, x, dy) :=

∫ ∞

0

e−qtPx(|Bt| ∈ dy, t < βa)dt,

can be expressed as

qB(q)(a, x, dy) =

{
λσ√

2λσ2 + μ2

(
eμ(

y
σ
−x)−| y

σ
−x|
√

2λ+(μ
σ
)2 + eμ(

y
σ
+x)−| y

σ
+x|
√

2λ+(μ
σ
)2
)

− λσ√
2λσ2 + μ2

(
eμ(

y
σ
−a)−| y

σ
−a|
√

2λ+(μ
σ
)2 + eμ(

y
σ
+a)−| y

σ
+a|
√

2λ+(μ
σ
)2
)

× eμx+x
√

2q+(μ
σ
)2 + e−μx−x

√
2q+(μ

σ
)2

e
μ
σ
a+ a

σ

√
2q+(μ

σ
)2 + e−

μ
σ
a− a

σ

√
2q+(μ

σ
)2

}
dy.

Proof. We have

qB(q)(a, x, dy) = Px

(
eq < βa, |Beq | ∈ dy

)
= Px

(
|B̄eq | < a, |Beq | ∈ dy

)
= Px

(
|Beq | ∈ dy

)
− Px

(
|B̄eq | ≥ a, |Beq | ∈ dy

)
= Px

(
|Beq | ∈ dy

)
− Px

(
|B̄eq | ≥ a, |Beq | ∈ dy, βa < eq

)

= Px

(
|Beq | ∈ dy

)
− Px

(
|Beq | ∈ dy, βa < eq

)
= Px

(
|Beq | ∈ dy

)
− Pa

(
|Beq | ∈ dy

)
Px

(
βa < eq

)
= Px

(
|Beq | ∈ dy

)
− Pa

(
|Beq | ∈ dy

)
Ex

(
e−qβa

)
.

Using the results from Section 2.6 for the reflected linear Brownian motion with drift we
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obtain our desired result.

Now, we are ready to state the following theorem.

Theorem 4.2 For any q ≥ 0, x, y ∈ [0, a], we have

Λ(q)(a, x, dy) = U (q)(a, x, dy) + A0

S∑
i=1

C1
i e

ρix, (45)

where

A0 =
B(q+ζ)(a, 0, dy) +

∫ a
0

[
P

(
Yeζ ∈ dx, eζ < eq

)
U (q)(a, x, dy)

]
1− P

(
Yeζ = 0, eζ < eq

)
−∑S

i=1

∫ a

0

[
C1

i e
ρixP

(
Yeζ ∈ dx, eζ < eq

)] ,

P

(
Yeζ = 0, eζ < eq

)
=

∫ ∞

0

ζe−(q+ζ)t

∫ a

0

P(|Bt| ∈ dz)P(z + J ≤ 0)dt,

P

(
Yeζ ∈ dx, eζ < eq

)
=

∫ ∞

0

ζe−(q+ζ)t

∫ a

0

P(|Bt| ∈ dz)P(z + J ∈ dx)dt,

the density of J is fJ(x) = I{x>0}
m∑
i=1

piη
+
i e
−η+i x + I{x<0}

n∑
i=1

qiη
−
i e

η−i x,

Px

(
|Bt| ∈ dz

)
=

1√
2πt

(
e−(

z
σ
−μt−x)/2t + e−(

z
σ
+μt+x)/2t

)
dz.

ζ =
∑m

i=1 η
+
i +
∑n

i=1 η
−
i , B(q)(a, 0, dx) and U (q)(a, x, y) are the q-potential measure of re-

flected linear Brownian motion with drift and the hyper-exponential jump-diffusion process

respectively. J is the jump size of the process Xt. These integrals can be computed explicitly.

Proof. Let

A0 = P

(
eq < γa, Yeq ∈ dy

)
.

For x ∈ [0, a], we see that Yt = Xt if t < τ−0 ∧ τ+a . So we can condition on the exit time
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τ−0 , τ
+
a of process Xt

qΛ(q)(a, x, dy) = Px

(
eq < γa, Yeq ∈ dy

)
= Px

(
τ−0 < eq < τ+a , Yeq ∈ dy

)
+ Px

(
eq < τ−0 ∧ τ+a , Yeq ∈ dy

)
= Px

(
τ−0 < τ+a , τ

−
0 < eq

)
A0 + Px

(
eq < τ,Xeq ∈ dy

)
= A0Ex

[
e−qτ1{Xτ≤0}

]
+ qU (q)(a, x, dy)

= A0

S∑
i=1

C1
i e

ρix + qU (q)(a, x, dy),

where in the last equality, we used the result of the two-sided exit problem (29). Now, for

A0 we denote the first jump time of the hyper-exponential jump-diffusion process as eζ , then

eζ follows an exponential distribution with rate ζ =
∑m

i=1 η
+
i +
∑n

i=1 η
−
i . We also have that

Yt = |Bt| if t < eζ < τ+a . Thus we can condition on the exit time βa of reflected Brownian

motion with drift and eζ to get

A0 = P

(
eq < γa, Yeq ∈ dy

)
= P

(
eq < eζ ∧ γa, Yeq ∈ dy

)
+ P

(
eζ < eq < γa, Yeq ∈ dy

)
= P

(
eq < eζ , eq < βa, |Beq | ∈ dy

)
+ P

(
eζ < eq < γa, Yeq ∈ dy

)
= q

∫ ∞

0

e−qtP
(
t < eζ , t < βa, |Bt| ∈ dy

)
dt+ P

(
eζ < eq < γa, Yeq ∈ dy

)
= q

∫ ∞

0

e−qtP
(
t < eζ

)
P

(
t < βa, |Bt| ∈ dy

)
dt+ P

(
eζ < eq < γa, Yeq ∈ dy

)
= q

∫ ∞

0

e−(q+ζ)t
P

(
t < βa, |Bt| ∈ dy

)
dt+ P

(
eζ < eq < γa, Yeq ∈ dy

)
= qB(q+ζ)(a, 0, dy) + P

(
Yeζ = 0, eζ < eq, eq < γa, Yeq ∈ dy

)

+

∫
(0,a]

P

(
Yeζ ∈ dx, eζ < eq, eq < γa, Yeq ∈ dy

)

= qB(q+ζ)(a, 0, dy)+P

(
Yeζ = 0, eζ < eq

)
A0+

∫
(0,a]

[
P

(
Yeζ ∈ dx, eζ < eq

)
qΛ(q)(a, x, dy)

]
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= qB(q+ζ)(a, 0, dy)+P

(
Yeζ = 0, eζ < eq

)
A0

+

∫
(0,a]

[
P

(
Yeζ ∈ dx, eζ < eq

)(
A0

S∑
i=1

C1
i e

ρix + qU (q)(a, x, dy)
)]

.

Hence

A0 =
qB(q+ζ)(a, 0, dy) + q

∫
(0,a]

[
P

(
Yeζ ∈ dx, eζ < eq

)
U (q)(a, x, dy)

]
1− P

(
Yeζ = 0, eζ < eq

)
−∑S

i=1

∫
(0,a]

[
C1

i e
ρixP

(
Yeζ ∈ dx, eζ < eq

)] .

For the two probabilities in the expression of A0, we notice that at the jump time Yt =

|Bt| + J , where J is the jump size of the hyper-exponential jump-diffusion process. Then J

follows the hype-exponential distribution defined in the introduction. We have

P

(
Yeζ = 0, eζ < eq

)
=

∫ ∞

0

ζe−ζtP
(
Yt = 0, t < eq

)
dt

=

∫ ∞

0

ζe−ζtP(t < eq)P(Yt = 0)dt

=

∫ ∞

0

ζe−(q+ζ)t
P(Yt = 0)dt

=

∫ ∞

0

ζe−(q+ζ)t

∫ a

0

P(|Bt| ∈ dz)P(z + J ≤ 0)dt.

Similarly, we can obtain

P

(
Yeζ ∈ dx, eζ < eq

)
=

∫ ∞

0

ζe−(q+ζ)t

∫ a

0

P(|Bt| ∈ dz)P (z + J ∈ dx)dt.

By Remark 4 and Remark 5 in [21], we can use the conpensation formula to obtain the

following corollary.

Corollary 4.1 Given q ≥ 0, y ≥ a, z ∈ (0, a) and the stopping time γa = inf{t ≥ 0 : Yt > a}
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and γ−a = inf{t ≥ 0 : Yt < a}, the joint density of overshoot and undershoot is

Ex

[
e−qγa ;Yγa ∈ dy;Yγ−a ∈ dz

]
=

(
U (q)(a, x, dy) + A0

S∑
i=1

C1
i e

ρix

)
Π(dy − z), (46)

where Π(x) is the Lévy measure with density given by

π(x) = Ix>0

m∑
i=1

piη
+
i e
−η+i x + Ix<0

n∑
i=1

qiη
−
i e

η−i x.
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5 NUMERICAL EXAMPLES FOR DOUBLE EXPO-

NENTIAL JUMP-DIFFUSION PROCESSES

In this section, we present some numerical examples for the double-exponential jump-diffusion

process. Recall that the double-exponential jump-diffusion process is defined as

Xt = μt+ σWt +
Nt∑
i=1

Yi,

and the common density of Y is

fY (y) = I{y≥0}pη+1 e
−η+1 y + I{y<0}qη−1 e

η−1 y.

To ease the computation, we consider three sets of parameters

Set 1: {μ, σ, p, η+, η−, λ, q} = {1, 1, 0.5, 1, 1, 1, 0.5} ,

Set 2: {μ, σ, p, η+, η−, λ, q} = {1, 1, 0.5, 1, 1, 1, 0.05} ,

Set 3: {μ, σ, p, η+, η−, λ, q} = {−1, 1, 0.5, 1, 1, 1, 0.05}.

Here, we consider the process within the interval [0, 1]. Note that the overall drift the process

is

ψ′(0) = μ+ λ

(
p

η+1
− q

η−1

)
.

So Set 2 deffers from Set 1 in q (practically 1/q is the maturity time) while it deffers from

Set 3 in the positive and negative overall drift μ. Using the theoritical results in previous

sections, we have computed the two-sided exit problem from above (level 1), two-sided exit

problem from below (level 0), one-sided exit problem at level 0, potential measure density

r(q)(x, y) killed on exiting [0,∞) , potential measure density u(q)(x, y) killed on exiting [0, 1],

and the potential measure λ(q)(x, y) killed on exiting [0, 1] of the reflected process. We denote
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the graph as following:

TwosideExitAbovege1(x) := Ex[e
−qτ , Xτ ≥ 1] = Px[Xτ ≥ 1, τ < eq] (red line),

TwosideExitAboveg1(x) := Ex[e
−qτ , Xτ > 1] = Px[Xτ > 1, τ < eq] (green line),

TwosideExitAboveeq1(x) := Ex[e
−qτ , Xτ = 1] = Px[Xτ = 1, τ < eq] (blue line).

Then the two-sided exit problem from below 0, the one-sided exit problem from above 0,

and the one-sided exit problem from below 0 are defined in the same manner. The graphs

on the next page clearly show the effects that we would expect to see. In figure 1 for the exit

problems of double exponential jump-diffusion process, the y-axis is the probability scaled

from zero to one, and the x-axis represents the starting position of the process.

Looking at the graphs for the two-sided exit problem from above level one, they suggest

that when x = 0, the three graph are zero. When x = 1, then P[Xτ ≥ 1, τ < eq] and

P[Xτ = 1, τ < eq] are exactly one while the P[Xτ > 1, τ < eq] is exactly zero; this makes

sense. Also, the graph of P[Xτ ≥ 1, τ < eq] are always higher than the others; and P[Xτ =

1, τ < eq] = P[Xτ ≥ 1, τ < eq]−P[Xτ > 1, τ < eq]. We get the similar results for other types

of exit problems.

Now, comparing the graphs from Set 1 and Set 2 (the time eq in Set 2 is likely longer than

that of Set 1), we see that the area under the curve in Set 2 is larger than that of Set 1. This

is because the event {τ < eq} likely occurs with longer time eq. Besides, graphs in Set 1 and

2 with the positive overall drift are higher than the graphs in Set 3 with the negative overall

drift. Whereas, when considering the exit problems from below (one-sided and two-sided),

graphs in Set 1 and 2 are lower than the ones in Set 3. This is what we expect the graphs

should be because with a positive overall drift, it is more likely for the process to exit from

above, and with a negative overall drift, it is more likely for the process to exit from below.

For the potential measure density (figure 2), since Set 1 and Set 2 have the positive overall

drift while it is the negative drift for the Set 3, this has a strong impact on the potential
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Figure 1: One-sided and Two-sided exit problems of double-exponential jump-diffusion pro-
cesses.
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Figure 2: Potential measure of double-exponential jump-diffusion processes and reflected
processes.

measure density by comparing the graphs between Set 1 and Set 3. Intuitively, potential

measure measures the total time that the process will stay within the interval [0,∞) for the

case of R(q)(x, dy), and within the interval [0, a] for the case of U (q)(a, x, dy), and up to an

independent exponential time eq for Λ
(q)(a, x, dy)). Therefore, with a positive overall drift (

graphs for the first and second set) we see that the mass of q-potential measure concentrates

on the right half interval [0.5, 1] of y. While for the ovrerall negative drift ( graphs in the

third set), the mass concentrates on the left half interval [0, 0.5]. Also, by looking inside the

set 1, we see that the effect of the starting point on potential measure is in consideration
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too. Particularly, when starting from 1, it is unlikely that during the time eq the process

will stay within [0, 1] due to the overall positive drift, whereas it is more likely for the case

starting from 0. Furthermore, by comparing the potential measures within a set, we see that

the potential measure of reflected process has a larger mass than the others.
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6 CONCLUSION AND FUTURE WORK

In this thesis, we have explicitly expressed the solutions to one-sided and two-sided exit

problems as well as the q-potential measure of the hyper-exponential jump-diffusion process

and the process reflected at its infimum. They are the key to obtain Laplace transform of

occupation times for hyper-exponential jump-diffusion processes using the Poisson approach

which had been applied in Li and Zhou (2014) for spectrally negative Lévy processes.

Occupation-time-related derivatives have been attracted much attention from investors

and researchers. A defining charateristic of these contracts is an exercise payoff that depends

on the time spent by the underlying asset in a predetermined region. Typically, the spec-

ification of the occupation regions involves flat barriers. In that sense, these contracts can

be viewed as a generalized type of barrier option. In reality, many occupation-time-related

options are based on a discrete time monitoring. In other words, such derivatives specify a

series of reference dates. The occupation time is defined through the portion of monitoring

dates in which the underlying price is below or above some level or between two levels. Some

research is devoted to the study of such kind of options. However, the common feature of

such research is that the underlying asset price is assumed to follow a geometric Brown-

ian Motion model. Therefore, replacing geometric Brownian Motion by hyperexponential

jump-diffusion process make it more accurate.

Cai et al (2010) proposed occupation times of double-exponential jump-diffusion process,

so in future work, with these fluctuation identities in hand, we can expand the idea to a

more general case for the hyper-exponential jump-diffusion process.
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7 APPENDIX

From Appendix A in Cai et al (2010), the equation ψ(θ) = q can be reduced to

a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

where

a0 = 2qη+1 η
−
1 a1 = −2(μη+1 η−1 − λp(η+1 + η−1 ) + λη+1 + q(η+1 − η−1 )

a2 = −σ2η+1 η
−
1 − 2(μ(η+1 − η−1 )− λ− q) a3 = 2μ− σ2(η+1 − η−1 ) a4 = σ2.

And the four roots are given by

ρ1(q) = − a3
4a4

+
δ1 − δ3

2
ρ2(q) = − a3

4a4
+
δ1 + δ3

2
ρ3(q) =

a3
4a4

+
δ1 − δ2

2
ρ4(q) =

a3
4a4

+
δ1 + δ3

2
.

where

δ1
√

M3 +N0 +N1 δ2 =

√
M4 −N0 −N1 − M5

4δ1
δ3 =

√
M4 −N0 −N1 +

M5

4δ1
,

M0 = a22−3a1a3+12a0a4 M1 = 2a32−9a1a2a3+27a21a4+27a0a
2
3−72a0a2a4 M2 =

√
M2

1 − 4M3
0 ,

M3 =
a23
4a24

− 2a2
3a4

M4 =
a23
2a24

− 4a2
3a4

M5 =
4a2a3
a24

− 8a1
a4
− a33

a34
M6 =

3
√
M1 +M2,

N0 =
3
√
2M0

3a4M6

N1 =
M6

3 3
√
2a4

.
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