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ABSTRACT 

 

Decentralized and Dynamic Home Health Care Resource Scheduling Using an Agent-Based 

Model 

 

Zhijie Xie 

 

 The purpose of this thesis is to design an agent-based scheduling system, simulated in a 

dynamic environment that will reduce home healthcare service costs. The study focuses on 

situations where a health care agency needs to assign home visits amongst a group of 

independent healthcare practitioners. Each practitioner has different skill sets, time constraints, 

and cost structures, given the nature, time and location of each home visit. Each expects 

reasonable payment commensurate with their skill levels as well as the costs incurred. The 

healthcare agency in turn needs all planned visits performed by qualified practitioners while 

minimizing overall service costs. Decisions about scheduling are made both before and during 

the scheduling period, requiring the health care agency to respond to unexpected situations based 

on the latest scheduling information. 

 This problem is examined in a multi-agent system environment where practitioners are 

modeled as self-interested agents. The study first analyzes the problem for insights into the 

combinatorial nature of such a problem occurring in a centralized environment, then discusses 

the decentralized and dynamic challenges. An iterated bidding mechanism is designed as the 

negotiation protocol for the system. The effectiveness of this system is evaluated through a 

computational study, with results showing the proposed multi-agent scheduling system is able to 

compute high quality schedules in the decentralized home healthcare environment. Following 

this, the system is also implemented in a simulation model that can accommodate unexpected 
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situations. We presents different simulation scenarios which illustrate the process of how the 

system dynamically schedules incoming visits, and cost reduction can be observed from the 

results. 
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Chapter 1 Introduction 

 Home health care plays an increasingly important role in the overall health care system, a 

situation that is complicated by the fact that more and more practitioners are self-employed 

nowadays. Contracting with health care agencies, who in turn represent either health insurers or 

government agencies, these home care professionals provide health services in their patients’ 

homes. Scheduling information is unevenly distributed across a complex environment made up 

of autonomous agencies and individuals, making it difficult for any agency to construct an 

accurate schedule as no single party has a full view of the entire homecare landscape. Moreover, 

agencies typically seek to provide high quality service by making the schedule as flexible as 

possible to accommodate unexpected situations. Although considerable effort has been put 

towards resolving the challenges of home health care scheduling, few researchers have proposed 

solutions that take into consideration the uniquely decentralized environment and dynamic 

characteristics in the problem.  

 

1.1 Background and Motivation 

 Home health care is increasingly seen as complementary to conventional hospitalization, due 

mostly to limited hospital capacity and rising health care costs. Recent years have seen frequent 

discussions on how to contain the growth of health care costs, with public healthcare systems and 

government agencies under tremendous financial pressure to deliver services in a cheaper, more 

efficient manner. According to the Canadian Institute for Health Information (CIHI), total health 

care expenditures increased by around 100% over the last ten years, much higher than the growth 

of either Canada’s gross domestic product (GDP) or population over the same period [1]. Recent 

reports show that a total of $141 billion was spent on health care in 2014, with the average 
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Canadian family contributing $11,735 in taxes towards public health insurance in 2015. It has 

also been reported in the United States that a decade of rising health care costs from 1999 to 

2009 wiped out real income gains for the average US family, while, similar to Canada, 

containing the escalation of costs in the US healthcare system has become a difficult challenge 

due to the complexity of the system’s interacting parts [2].  

 As an integral part of many health care systems, home health care aims to provide treatment 

for illness or injury inside the patient’s residence, playing an important role in helping patients 

recover and regain their independence. The concept of home health care is a distinct type of 

medical service, usually distinguished from other non-medical care. Licensed medical personnel, 

such as registered nurses, licensed practical nurses, or therapists, usually provide such services. 

Another concept mentioned frequently is home care, which normally includes both medical care 

and non-medical care. This thesis uses ‘home health care’ in the broader sense that also includes 

home care. 

 A wider range of health care services or treatments can presently be provided at the 

convenience of the clients’ home, including doctor care, nursing care, laboratory testing, or other 

basic assistance. Transportation expenses involved in traveling between clients’ homes, as well 

as idle time wasted between visits must be reduced, however, in order to contain home health 

care service costs. A growing proportion of health care practitioners in health care systems 

around the world tend to be self-employed rather than hospital or other health care institution 

employees. Increasing numbers of independent practitioners changes the home health care 

environment, increasing the complexity of conventional resource allocation problems in this 

field. Meanwhile, unexpected situations must still be accommodated in this very different health 

care environment. 

 

1.2 Scope and Approach 

 This research is concerned with reducing service costs in home health care. It focuses on 

situations in which a home health care agency contracts with a group of independent health care 

practitioners to provide health care services to its clients. The home care agency can be a 

representative of a health care insurer or a government agency. The main tasks of the agency 
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include collecting visit requests from clients and scheduling practitioners to complete the visits at 

the client’s home. In practice, the fast changing environment and the desire to provide high 

quality service makes it difficult to follow a set schedule. Unexpected events occur, such as new 

service requests, cancellations, or urgent cases. Visiting requests need to be collected 

dynamically over the course of the schedule. To health care practitioners, the home health care 

agency is the customer who pays for these home visits. The practitioners each have different skill 

sets, time constraints, client preferences, and payment requirements. On the other hand, the 

patients have their own medical requirements, language preferences, etc. While accommodating 

the preferences of both parties, the home health care agency is also obligated to schedule 

practitioners according to incoming visit requests either before the start of a new schedule period 

or during the schedule period, while at the same time seeking to reduce costs as much as 

possible. 

 In a highly decentralized environment, service providers have sufficient autonomy to control 

their own schedules. Their relationship with the health care agency is a contractual one; they are 

not employees of the health care agency. Practitioners each have different costs of covering a 

schedule (a bundle of visits) based on their work time, travel costs, and even client preferences. 

A particular schedule might not be feasible to a practitioner in a given day due to scheduling 

conflicts or negative utilities. Health care agencies need to schedule home visits in a way that 

practitioners’ time constraints are satisfied and all home visits are covered by the right 

practitioners, while at the same time the overall cost are minimized.  

 Before the schedule takes effect, an initial plan for each practitioner is generated. Schedules 

may be revised due to various changes, e.g., new visit requests, cancellations, or changes in the 

timing of visits. We model the scheduling problem in a multi-agent setting, consisting of a health 

care agency and multiple practitioner agents. The practitioners are modeled as self-interested 

agents, and the cost of covering a schedule is their private information, not known to the health 

care agency. A practitioner’s primary objective is to maximize their payoff, which is the 

difference between the payment received and the costs incurred in covering a schedule. On the 

other hand, the objective of the health care agency is to minimize overall payments to 

practitioners for covering all visiting requests, given that the cost to practitioners are not known 

to the agency. Unexpected situations are modeled as discrete time events, which reflect new visit 

requests, cancellations, or visit time updates. Cancellations from patients are non-negotiable, 
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while visit time updates are considered a two-step procedure, consisting of both a cancellation 

and a new visit request. During the schedule period, the main concern is to accommodate new 

visit requests according to practitioner schedules. The conflict of interest between the health care 

agency and the practitioners calls for game theoretic modeling and solutions to the recourse-

scheduling problem in home health care. In addition, simulation modeling is needed due to the 

dynamic behaviors involved in the problem. 

 This thesis develops an agent-based scheduling system to support cost reduction in home 

health care by assigning cost effective schedules to practitioners. It also develops a simulation 

model for accommodating the dynamic situations. Our first contribution is the design of a 

decentralized scheduling algorithm, implemented by a bidding mechanism. This also serves as 

the negotiation protocol of an agent-based system, enabling both the agency and the practitioner 

to construct efficient home visit schedules through an automated multilateral negotiation. We 

also present decision-making tools for both agencies and practitioners in the system. Our other 

contribution is to enhance the algorithm to further accommodate dynamic scheduling events. We 

implement the enhanced algorithm in a simulation model, which simulates the scheduling 

process in a dynamic environment. In this model, the schedule performance process is also 

simulated as part of the decision-making activity of practitioners.  

 

1.3 Outline of the Thesis 

 The remainder of this thesis is organized as follows. Chapter 2 reviews resource allocation 

problems in the home health care field, analyzing the characteristics of the scheduling problem in 

particular, followed by a review of models developed to deal with such issues. The reviewed 

solutions include centralized, decentralized, and dynamic approaches. Other resource allocation 

problems are also briefly reviewed. Chapter 3 describes the Home Visit Scheduling problem, and 

formulates a centralized model to deal with it, while also discussing the decentralized and 

dynamic challenges of the problem. Chapter 4 presents an agent-based system and the scheduling 

approach. An iterated negotiation protocol is designed, combined with a bidding framework to 

facilitate cooperation between agents. The bidding mechanism is proposed as the solution for 

decentralized scheduling. In chapter 5 we enhance the approach to further accommodate 
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dynamic situations and events affecting scheduling. A simulation model is developed to 

demonstrate the dynamic scheduling process. Chapter 6 concludes the thesis and discusses future 

research directions. 
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Chapter 2 Literature Review 

  

 This chapter briefly reviews relevant work in the home health care field. The first section 

introduces the home health care resource allocation problem and its characteristics. Following 

this, various scheduling approaches are reviewed from a more general perspective in section 2. 

The other resource allocation problems of home health care are briefly reviewed in section 3. 

Finally, we summarize these approaches and point out the distinct direction of our study. 

 

2.1 Home Health Care Resource Allocation 

The terms ‘home health care’ and ‘home care’ are not always clearly distinguished in the 

literature. In some cases, they are used interchangeably, e.g. in [3] and [4]. In the field of home 

health care operations management, the main issues are classified according to three levels, which 

are districting, assigning, and scheduling. Districting problems occur when an agency must group 

operators and patients into clusters, named districts, according to relevant criteria. Assigning 

problems involve assigning each district to practitioners in an impartial way. Resource scheduling 

problems are perhaps the most important issue, and as such have attracted more research attention 

than the other two. Such problems aim to assign practitioners to visit under a set of constraints. 

The dimensioning problem of home health care is considered a higher-level issue, requiring 

researchers to determine the number of practitioners necessary to satisfy care demands as a whole 

[3]. Our review focuses on resource scheduling problems, with other problems only briefly 

reviewed at the end of this chapter.  

In home health care operations management literature, considerable efforts have been devoted 

to resource scheduling. The general home care resource-scheduling problem has the nature of both 

a rostering problem and a routing problem. In [5], Castillo-Salazar et al. treated the problems of 
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workforce rostering and routing separately. Other literature built the model combining the 

rostering aspect with routing [6]. From the rostering perspective, the problem is to assign 

practitioners to visits with a set of hard and soft constrains. A similar problem that has been 

extensively studied is the ‘nurse rostering problem’ (NRP), alternatively called the ‘nurse-

scheduling problem’. Solutions to the NRP aim to generate a functional roster for nurses while 

satisfying the constraints of both nurses and the hospital. A comprehensive survey of NRP 

solutions can be found in [7]. Additionally, this problem also has the nature of a routing problem, 

seeking to traverse the assigned visits [8]. Much of the early literature considers home health care 

resource scheduling problems as extensions of the Traveling Salesman Problem (TSP) or the 

Vehicle Routing Problem with Time Window (VRPTW), e.g., [9] [10] and [11], to name just a 

few.  

TSP is one of the most intensively studied optimization problems in the literature. It requires 

us to determine the optimal route for a salesman to visit a given number of cities exactly once from 

a depot and then return back to the depot when finished, minimizing travelling costs. The VRP 

requires us to find the optimal routes for a set of vehicles to deliver goods to a set of customers, 

starting and ending at a single depot. VRPTW is a variant of the more general Vehicle Routing 

Problem (VRP), with several other variants also being studied in the literature. Fig. 1 illustrates 

the relationship among TSP, VRP, and its variants [12], though further review is unfortunately 

beyond the scope of this paper. Other problems share similar characteristics to the home health 

care resource-scheduling problem, such as scheduling technicians performing repairs or security 

guards performing rounds [5]. The common characteristic of such problems is a scenario where 

personnel must travel to different locations and complete tasks without concern for time or in 

different time windows. Some other research focuses specifically on different schedule terms 

(short term, mid-term and long term) [13, 14]. 

Models proposed for home health care resource scheduling in the literature usually try to 

achieve one or more objectives under certain constraints. These objectives are normally setup to 

minimize service costs, minimize travel time or distance, or balance workloads among 

practitioners, depending on specific requirements. The cost is considered as one of the most 

important objectives in this problem, e.g., in [8] and [15]. A typical cost function includes service 

costs, travel costs, and normally also involves penalty costs that occur when there are some 
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preference violations. Practitioner and patient preferences are mostly linked to service levels 

and/or quality, both of which are considered in the constraints. The most common constraints 

involved in such problems include time, transportation modality, skills/qualifications, start and 

end locations, connected activities, shift types, and visit types. Most models categorize these as 

either hard or soft constraints, and almost all studies took the time constraint into account. 

Examples of time constraints in home health care include travelling times or waiting times between 

visits, service times, visit appointment times, and preferred working times of practitioners. Some 

of these are considered hard constraints, which cannot be violated, while others are treated as soft 

constraints, where violation is allowed with a violation penalty. For example, the start time of a 

visit is a hard constraint, while the waiting before the start of a visit is considered a soft constraint 

and as such is allowed [8]. Transportation costs are typically different for each practitioner, with 

transportation modality referring to the practitioner’s particular mode of transport, e.g., car, bicycle, 

walking or public transportation, which in some extent reflects different travel costs.  

We recognize two types of models based on the characteristics of the home health care 

scheduling problem and the features of the model used in the literature analyzed above. One type 

of model is based on VRP or TSP (a comprehensive review can be found in [12]). A few examples 

are listed as follows. Based on the generalization of VRPTW, Mutingi designed several 

methodologies from either a variant of existing algorithms or from novel ones to improve the 

solution efficiency under different assumptions [9, 16]. Akjiratikarl et al. proposed heuristic 

 

Figure 1 Relationship between the TSP, VRP and variants 
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approaches based on VRPTW as well [17]. Another example is a model generalized from multi-

depot VRPTW with multiple objectives [18].  

Eveborn et al. [19] developed another typical model, formulating the home care problem as a 

set-partitioning model, minimizing costs and solving the problem through repeated matching 

algorithms. There are two constraints in their basic model: 1) each person selects exactly one 

schedule, and 2) each visit must be included in a chosen schedule. A decision support system called 

the Laps Care system was developed for Swedish health care organizations based on their model. 

In their study, schedules are generated a few days in advance. Given the service type and duration, 

the health provider allocates qualified staff to each visit. The health provider is divided into 

different areas where they provide services, such that the size of scheduling is decreased to a 

practical level. The preferences of patients are also considered in their research, while manual 

scheduling is employed to handle dynamic events. A typical hybrid model, reflecting both 

rostering and routing aspects, is presented as a core optimization model in some research [8]. The 

objective here is to minimize travel costs and maximize the satisfaction of both patients and nurses. 

The constraints in their model include covering all jobs exactly once, job start time constraints, 

taking the service time and travel time into consideration, the upper and lower bounds of working 

time, respecting nurses’ individual schedules, and qualification requirements. 

Despite the previously mentioned model type dimensions, most approaches in the literature opt 

to build centralized models, and propose either exact, heuristic or hybrid methods for their 

solutions. The centralized model helps in recognizing the essential features of the problem. 

However, the home health care resource-scheduling problem has decidedly decentralized and 

dynamic characteristics that are rarely touched on in the literature. As we described in the previous 

chapter, practitioners decide their own feasible schedules based on constraints and costs, which 

are only known to themselves. Practitioners are self-interested agents with no control over others. 

The approaches proposed by researchers cannot be directly used as solutions to the scheduling 

problem raised in a decentralized environment. Furthermore, their models cannot be used for any 

prolonged period of time due to the regular occurrence of unexpected situations in practice. 

Changes inevitably occur during the course of a schedule period, and such changes must be 

accommodated by health care agencies in order to provide high quality service. A proper 

rescheduling method is therefore needed to improve the service quality in a dynamic environment.  
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2.2 Centralized, Decentralized and Dynamic Approaches 

In order to develop a decent solution for the problem, we review the approaches from 

centralized, decentralized and dynamic perspective separately in this section. We found that most 

of the literature focuses only on centralized approaches to home health care scheduling, though we 

also review decentralized approaches in related literature. We also review dynamic approaches for 

outpatient scheduling, appointment scheduling, and dynamic scheduling in manufacturing fields. 

 

2.2.1 Centralized Approaches 

Begur et al. presented a spatial decision support system used by home health care providers in 

the US [10]. The system combines stand-alone GIS software with a scheduling algorithm, as well 

as a user-friendly interface. They also introduced a heuristic approach consisting of several steps 

to generate and enhance routes. Such a system saved travel costs and improved workload balance 

for the health care organization.  

Cheng et al. proposed a heuristic algorithm to solve a mixed-integer programming (MIP) model 

to minimize work time [11]. In their model, full-time workers who are paid for both shift work and 

overtime are distinguished from part-timers who are paid by the hour. The qualification 

requirement is simplified to a binary value, which indicates whether a practitioner is qualified or 

not. The algorithm has two phases, creating routes by way of a random greedy algorithm in the 

first phase, and improving the solution in the second phase. The objective is to minimize the 

working hours and overtime of full-time nurses and the working hours of part-time nurses. 

Hiermann et al. gave special consideration to the modality of routes, and proposed a two-stage 

approach to solve real world multimodal home-healthcare scheduling problems [20]. The objective 

here is to minimize both travel time and constraint violations. In the first stage of the approach, 

initial solutions were generated using either constraint programming techniques or a random 

procedure. In the second stage, the initial solutions were iteratively improved by applying 

metaheuristic algorithms. They tested the performance of different algorithms in the second phase, 

such as variable neighborhood search, memetic algorithm, scatter search, and simulated annealing 

hyper-heuristic. 
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Mutingi and Mbohwa described a simulated evolution algorithm based on fuzzy set theory [21], 

which they used to minimize the time window violation and maximize the workload balance, at 

the same time maximizing the clustering efficiency of the schedule [22]. They also presented a 

simulated metamorphosis algorithm that considers the problem in both a fuzzy environment [23] 

and group genetic algorithms, with the objective of minimizing travel costs and time window 

violation penalty costs [9]. The genetic algorithms in the latter research are designed based on an 

extension of VRPTW. Thomsen solves the home care problem using a tabu search algorithm to 

minimize travel time and maximize the number of visits in his Master’s thesis [24]. Bertels and 

Fahle presented an optimization model to minimize the travel cost and maximize the satisfaction 

of both patients and nurses [8]. The model is abstracted from the optimization module in an 

industrial prototype. The proposed approach combines linear programming, constraint 

programming, and heuristics to find the optimal solution.  

Eveborn et al. formulated the home health care problem as a set partitioning model, providing 

flexible architecture, and solved this problem through repeated matching algorithms [19]. Some 

other methods based on the set partitioning model have also been used to solve the home health 

care scheduling problem, such as the visit clustering methods presented in [18] and [25], particle 

swarm optimization methods presented in [16] and [17], and neighborhood search methods 

presented in [15, 26-28].  

In addition to heuristic methods, exact methods are also studied in the literature. Kergosien et 

al. modeled the home health care scheduling problem as an extension of multiple traveling 

salesmen with time window constraints, solving it exactly with a CPLEX solver [29]. Redjem et 

al. suggested an MIP for the home health care scheduling problem, with both precedence and 

coordination constraints [30]. They compared the complexity of different temporal dependencies 

and the number of care activities per caregiver ratio between the two models based on the Traveling 

Salesman and Resources Constrained Project Scheduling Problems. 

Yalcindag et al. reviewed those studies, which consider the home health care resource-

scheduling problem as a TSP or VRP in the home health care context [6]. They analyzed the 

relationship among the variants of these problems and differentiated them according to two 

dimensions, each of which has two categories. The first dimension is static or dynamic, while the 

second one is deterministic or probabilistic/stochastic. They reviewed studies based on four 
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categories, which are general characteristics, modeling characteristics, network characteristics, 

and data characteristics, pointing out that the solutions to problems in the first dimension are the 

same, while they are all applicable to dynamic case. The challenge is that the time dimension 

increases the complexity of dynamic scheduling. Mutingi and Mbohwa also did a comprehensive 

review of home health care staff scheduling [31]. They described commonly used models, different 

objective functions, and classified constraints (time-based, demand-based, and preference-based) 

in home health care scheduling. 

 

2.2.2 Decentralized Approaches 

In our setting, practitioners are independent from the health care agency, and as such they make 

decisions according to their availabilities, preferences and the payoffs of taking a particular 

schedule. It should therefore be considered a decentralized scheduling problem in a multi-agent 

system, which calls for economic-based solution models. An auction and bidding mechanism is an 

effective economic-based model of procuring products and services in a market setting. There are 

several types of auction used in the resource-scheduling field. Single item auctions are useful when 

there is only a single bidding item at any given time. Generalized Vickrey Auction (GVA) is used 

in small size scheduling problems due to its computational complexities. Iterative bundle auctions 

are one of the implementations of GVA that does not require the complete and exact valuation 

information of agents, also offering the potential to support dynamic scheduling. 

The application of auctions and bidding mechanisms to the domain of home health care 

scheduling is a relatively new research direction. While a few previous studies in home health care 

used agent-based approaches, they rarely involved economic models. Bajo et al. built large open 

multi-agent systems expanded from FIPA architecture, which consisted of Service Facilitator, 

Organization Management System and Platform Kernel [32]. Such architecture is applied to the 

home care area in supervising and monitoring the patients at home. There are four kinds of roles 

interacting in home health care implementation: patient, doctor, family, and provider. In this model, 

entities in different roles communicated with each other based on complicated automatic reasoning 

and planning mechanisms. Because home health care operations require effective communication 

within a distributed environment, Baho et al. believe that agent-oriented methodologies provide 
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better mechanisms for modeling distributed, inter-operable, and secure systems by taking social 

and organizational considerations into account. However, the proposed solution focuses on 

improving the intelligence system rather than resource scheduling. 

However, auction mechanisms have also been applied to many general resource-scheduling 

problems. In the hospital context, Grano et al. proposed a two-stage approach consisting of a sealed 

bid auction and schedule completion to solve the NRP problem [33]. The first stage in their auction 

includes a bidding round and a winner determination considering both nurse preferences and 

hospital constraints, with unassigned shifts handled in the second phase. In their approach, nurses 

are given a fixed number of points as their “budget”, and submit a bid package consisting of shifts 

with pre-allocated points. The winners are then awarded shifts and the remaining shifts are 

assigned to those nurses whose schedule is not fully allocated through an additional optimization 

model. The researchers used real-world data to conduct their experiments, producing a better 

solution when compared with those generated by manually self-scheduling.  

An earlier example is the combinatorial auction mechanism proposed in [34]. Four versions of 

this mechanism are applied to the job shop-scheduling problem. A typical application is the model 

developed for grid resource allocation [35]. Moreover, Lau et al. designed a combinatorial auction 

mechanism for distributed resource allocation and applied such a mechanism to solving a 

scheduling problem in a container terminal [36]. Dargahi et al. proposed an iterative bidding 

framework to schedule service requests in a software service domain [37]. A customer’s value on 

a schedule reflects the preference of completion time, which is private information. The customers 

are considered to be self-interested, motivated to maximize their own payoff. The computing 

capacity is allocated to service requests, such that the profitability of the service provider is 

maximized. The experimental results show that this framework achieves a higher efficiency 

compared with a first-come-first-served scheduling policy. It was also observed that a larger 

epsilon requires more information revelation but less computing time.  

In the mass customization field, Wang and Dargahi proposed a combinatorial iterative bidding 

framework to solve the problem of service customization under capacity constraints in service 

customization settings [38]. The objective is to maximize the overall customer value, which 

reflects their social welfare, under the given service capacity. In their research, the proposed 

framework is applied to travel package customization, in which it serves as a multilateral 
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negotiation protocol between agents. The agents follow a myopic best-response bidding strategy, 

and the incentives of both seller and customer is studied form game theory perspective. The 

experiment is then compared with a first-come-first-serve allocation policy, which shows the 

former policy has a higher performance. Mehrizi and Wang also applied iterative combinatorial 

auction to carrier collaboration [39]. In logistic service areas, the carriers work collaboratively to 

take orders. The authors proposed a descending bidding framework with the objective of 

minimizing carriers’ overall costs. The experiment’s results show a high level of performance 

compared to optimal solutions, and the increasing competition leads to decreasing procurement 

costs. The researchers also conducted an application of reverse iterative combinatorial auction to 

optimize the resource utilization rate of peer-to-peer communication [40]. 

In a decentralized environment, a negotiation protocol is needed to let different parties 

communicate with each other following some predefined criteria. Contract Net Protocol is 

commonly used in decentralized scheduling. It was first proposed by Smith [41], and then 

included in the Foundation for Intelligent Physical Agents (FIPA) standards. The basic Contract 

Net is a decent protocol for distributing one task among participants. One initiator and multiple 

participants are involved in such a protocol. Knable et al. extended this to Contract Net with 

Confirmation Protocol (CNCP), in order to deal with concurrent multiple tasks in a setting that 

involved multiple initiators [42]. The proposed protocol tackles the issue that early commitment 

can lead to suboptimal solutions when basic Contract Net protocol is used. The idea of their 

solution is to postpone the participant’s commitment time by adding an iterative process of 

asking and answering one-by-one until one participant agrees to take the task from the initiator. 

FIPA Iterated Contract Net Interaction Protocol is extended from the basic FIPA Contract Net, 

allowing multiple rounds of iterative bidding [43]. As illustrated in Fig. 2, the initiator may issue 

a revised call for proposal to iterate the process. With such a protocol, the receivers of the 

revised call for proposal are limited to the accepted participants. The termination conditions of 

the iteration are either 1) the initiator refuses all proposals and does not call for a proposal, or 2) 
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one or more bids are accepted, or 3) no participants are willing to bid. One application of the 

Iterated Contract Net protocol is a health monitoring system designed for NASA, in which the 

agents negotiate to determine the task allocation and call in a workflow engine to actually 

perform the tasks [44]. We obtained ideas from this work when developing our own simulation 

model. 

 

2.2.3 Dynamic Approaches 

While dynamic home health care scheduling is mentioned in some works, few researchers focus 

on such a problem. However, some related home care research has studied rescheduling from a 

human-computer interaction perspective. Lanzarone et al. considered the scheduling problem as 

 

Figure 2 FIPA Iterated Contract Net Interaction Protocol 
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one of synchronous collaboration activities conducted by a group of planners in a realistic 

environment [45]. A weekly plan was generated in advance, with planners rescheduling 

collaboratively on a daily basis through the designed interaction system (a tangible, multi-touch 

table), by which the issues involved are more understandable for planners. In [46], a novel data 

representation method was proposed as a visualization framework to enhance collaboration 

between planners. In situations where automatic optimization algorithms are unable to generate 

desired solutions or respond effectively to dynamic events, the proposed method supports human 

analysis in a way that enhances perception, cognition, and information exchange.  

Few researchers specifically study rescheduling problems in health care contexts. Some 

complementary tools of traditional methodologies have therefore been introduced to support 

human decision-making in rescheduling. Godin and Wang proposed an agent-based, dynamic 

distributed scheduling approach, which allocates available diagnostic service timeslots to 

outpatients through an iterative bidding procedure [47]. There are three agents included in the 

model, representing clinic schedulers, directory facilitators (DF), and patients in multi-agent 

systems architecture. Contract Net protocol is used for coordination between the Diagnostic 

Services (DS) agent and the patient agent. The DS agent sends out a call for proposal to patient 

agents registered with a DF agent based on a set of available timeslots, with patient agents then 

sending bids on a set of timeslot bundles back to the DS agent. The DS agent then computes and 

assigns the timeslots, updates the existing schedule, and starts over with another call for proposals. 

This procedure continues until no timeslots are available or no patient agents are willing to take 

on new timeslots. The DS agent and patient agent each have their own decision-making model to 

decide the allocation or bids in each round, respectively. 

Appointment scheduling is an important research topic within the health care field. Gupta and 

Denton discuss the challenges and complexity of such a topic, reviewing appointment 

management systems identified in the literature [48]. The ability to respond in real-time is 

another important factor affecting the performance of the system. In light of this, Nan Liu et al. 

introduced a method for dynamic patient appointment scheduling. They developed a framework 

and heuristic dynamic polices that explicitly consider patient no-shows and cancellations, with 

the objective of assigning a proper date to each patient depending on the clinic’s schedule at the 

time of request. They based their approach on an assumed positive relationship between 
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appointment delay (defined as the gap between request date and actual appointment date) and 

cancellation/no-show rates. The proposed method can even take into account patient preferences, 

and uses simulation studies to show its effectiveness and efficiency, though it can only handle 

one request at a time. In the research of Ming et al., a simulation framework was developed for 

outpatient appointment issues, implemented as a decision support tool tackling real world 

problems [49]. The framework consists of four components: external demand for appointments, 

supply of provider time-slots, patient flow logic, and a scheduling algorithm. 

Considerable effort has been put into rescheduling issues in manufacturing systems. 

According to the research of Vieira et al., rescheduling is not merely a collection of techniques, 

but also a control strategy, which has important impacts on system performance [50]. The 

authors performed a comprehensive review of manufacturing rescheduling procedures, and 

proposed a framework consisting of rescheduling strategies, policies and methods. They studied 

three rescheduling policies of predictive-reactive scheduling, namely periodic, event-driven, and 

hybrid. The periodic method is commonly used in situations where no online information is 

available during the current schedule period, and the dispatcher has to actively collect the 

information periodically. This approach yields schedule stability in dynamic manufacturing 

environments, but it is difficult to determine the optimal rescheduling period. Event-driven 

approaches are triggered by a single event, or when a number of events reach a certain threshold. 

Single event-driven methods require excessive computational resources when the event occurs 

rapidly, also requiring rapid data collection and processing capabilities. Various hybrid methods 

can be customized according to different specific requirements.  

In [51], Weyns et al. introduced a DynCNET protocol, designed as an extension of a standard 

contract net, to dynamically assign tasks. It allows agents to dynamically change provisionally 

allocated tasks. The proposed protocol involves multiple participants who execute the tasks as 

well as multiple initiators who offer tasks. Interest area is introduced as a variable to initiate the 

scope of both participant and initiator agents. Both parties search for matches in their own 

particular area. The participant is allowed to switch to a new opportunity before the allocated 

task starts to execute. Similarly, the initiator is allowed to assign an allocated task to a new 

available participant before the task execution starts. A perception model is used to monitor both 

opportunities and availabilities. Protocol areas of interest are designed to reduce convergence 
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risk, and the synchronization issue is handled by confirmation messages. The performance of 

DynCNET is evaluated by applying it to a transportation system.  

Weiming and Norrie proposed a Mediator architecture, based on mediation mechanisms, as an 

agent-based solution for dynamic manufacturing scheduling and rescheduling [52]. It combines a 

Contract Net protocol with a bidding mechanism. The adapted protocol treats the un-awarded 

participants as alternative candidates for unforeseen situations in order to reduce rescheduling 

time. The alternatives are contacted directly when the awarded participant cannot perform the 

allocated tasks. Multiple mediators are involved hierarchically in the architecture, and the 

bidding, mediation and scheduling optimization are structured accordingly along different levels. 

The authors introduced several mechanisms to respond to different unexpected future events. 

The designed architecture is implemented on the MetaMorph II project they were currently 

working on. 

Traditional negotiation protocols are based on full commitment contracts, in which the 

contracted parties must fulfill their contractual obligations. Correspondingly, Sandholm and 

Lesser designed a leveled-commitment contracting protocol as a backtracking instrument for 

multi-agent systems [53]. Differing from full-commitment contracts in traditional negotiation 

systems, leveled-commitment contracts are not bound to the same obligations; instead, they set 

de-committing penalties to allow agents to free themselves from the contract by paying the 

specified penalty to other contracted parties. According to their research, including de-

commitment provisions in contracting can increase the expected payoff for all contracted parties. 

In many cases, de-committing a previous contract could represent a better option for practitioners 

in cases where there are no specific regulations or business processes that prohibit the breaking 

of the contract. 

 

2.3 Other Resource Allocation Problems in Home Health Care 

As previously mentioned, home health care scheduling is one important research direction of 

health care resource allocation problems. Other resource allocation problems in home health care 

settings, such as districting problems [4, 54, 55] and assignment problems [3, 56, 57], are also 

worth a brief review. Benzarli et al. focused their research on the districting problem concerning 
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care delivery efficiency [4]. They built two mixed-integer programming models to balance the 

care workload. Based on some typical home health care cases in Europe, Lanzarone et al 

separated resource assignment aspects from rostering, routing and districting problems [3]. They 

built two models, based on deterministic patient demand and stochastic demand, respectively. 

The models share the same objective that balances practitioner workloads. Their study focused 

specially on the care continuity as well as consideration of skill and location constraints. 

Similarly, Errarhout et al. [58] developed a model based on generalized assignment problems, 

but which considered a greater number of constraints (e.g., caregiver qualifications and 

capacities) to better reflect real cases. In another work [6], assignment problems and routing 

problems were sequenced as a two-stage approach where the output of each assignment problem 

is incorporated as an input of the routing problem, with the authors focusing on the interaction 

between these two steps. Human dimensioning problems are another issue studied in home care 

operations management [59], [60], however any further discussion of such research is beyond the 

scope of this paper. 

 

2.4 Summary 

This chapter reviewed home health care resource scheduling problem models as well as 

existing solution approaches. We explained the rostering and routing characteristics of the model 

and categorized the solutions along centralized, decentralized, and dynamic perspectives. Among 

these three types of approaches, centralized approaches employ either exact, heuristic, or hybrid 

methods to solve scheduling problems, without considering the privacy of practitioners. 

Decentralized scheduling problems call for economic-based solutions where auction is the 

commonly used mechanism. Many research efforts have concentrated on traditional health care 

domains, while home health care scheduling problems are rarely studied, and even fewer concern 

themselves with agent intelligence with no effective scheduling algorithm. Other related 

decentralized scheduling problems employ contract net protocol as the interaction protocol for 

agents. In addition to traditional contracting protocols, leveled commitment contracting can be 

used when de-committing is allowed. Dynamic scheduling has been intensively studied in the 

manufacturing field, producing numerous quality solutions. Among the reviewed literature in the 

health care area, outpatient scheduling and appointment scheduling problems meet the 
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requirement of handling unexpected events that demand a specific rescheduling approach. The 

selection of periodical, event-driven, and hybrid rescheduling are investigated from the trigger 

time dimension. Regeneration and repair of initial schedules need to be determined in the 

methodology dimension. Finally, the last part of this chapter briefly reviewed other home health 

care resource allocation problems. 

The aim of this thesis is to develop a dynamic, decentralized scheduling approach to the home 

health care scheduling problem. In our chosen setting, the practitioners are self-interested in the 

economic setting, where their private information is unknown to others. As mentioned 

previously, auction is the commonly used mechanism in problems of market setting, and iterative 

auction based approaches do not require the agents to submit exact information about their 

private valuation. This approach also has the potential to support dynamic scheduling, which is 

the most important characteristic of our research topic. We expect that a dynamic, decentralized 

scheduling approach can be developed based on the careful investigation of the unique features 

of the home health care resource-scheduling problem. 
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Chapter 3 Home Visit Scheduling Problem 

 

As previously mentioned, health care agencies are expected to dynamically allocate 

practitioners to home visits within the current operating schedule. In our setting, Home Visit 

Scheduling (HVS) is a decentralized problem, in the sense that the real cost of a practitioner on a 

home visit is private information, unknown to the health care agency. In addition, the dynamic 

nature of the home care environment means that schedulers cannot possibly know all the 

necessary information for generating a schedule until after that schedule takes effect, requiring 

updates to accommodate unexpected situations or changes. However, apart from the 

decentralized nature of the problem, we can safely assume that all required information is known 

at the moment of scheduling so long as we consider the problem as occurring in a short period of 

time and in a centralized environment. Thereafter, the problem becomes relatively static, with the 

number and availability of practitioners remaining unchanged and all home visits established at 

the time of scheduling. In this chapter, we first focus on the combinatorial optimization nature of 

this problem through a mathematical model. Following this, we discuss the decentralized and 

dynamic challenges represented by this problem. 

 

3.1 Mathematical Model 

Our primary goal is to find the optimal schedule from a set of feasible schedules. From the 

literature review we know that the conventional solution to the centralized scheduling problem is 

solving an optimization model through either exact, heuristic, or hybrid methods. This section 

focuses on the combinatorial optimization nature of this problem in a centralized environment. 

Future events are not our concern in a static environment, and all information regarding both 

visits and practitioners are known to the health care agency. The combinatorial optimization 

nature can be clearly demonstrated under such an environment in which we assume the agency 
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knows the practitioners’ costs. Based on this assumption, we can conveniently model the 

problem as a mixed integer program.  

Consider an HVS problem consisting of a set of 𝑛 practitioners, a set of 𝑚 home visits, and a 

single health care agency. For a home visit 𝑖 (𝑖 = 1, … , 𝑚), there is a standard payment 𝑠𝑝𝑖, 

which is the upper limit that the agency would pay to cover the visit. It is assumed that the cost 

of covering visit 𝑖 is less than 𝑠𝑝𝑖 for all practitioners. A home visit schedule defines a schedule 

of patient homes visited by practitioner. A practitioner 𝑗 (𝑗 = 1, … , 𝑛) can configure his or her 

home visit schedule by selecting a bundle of visits. Let 𝐸𝑗 be the set of home visit schedules 

which are feasible to practitioner 𝑗 and 𝐸 be the union of the sets of feasible schedules from all 

practitioners, 𝐸 = ⋃𝑗=1…𝑛𝐸𝑗. Let 𝑐𝑜𝑠𝑡𝑗(𝐵) be the cost to practitioner 𝑗 required to complete the 

home visit schedule 𝐵 ∈ 𝐸. 𝑐𝑜𝑠𝑡𝑗(𝐵) < ∑ 𝑠𝑝𝑖𝑖∈𝐵  for all 𝐵 ∈ 𝐸𝑗; 𝑐𝑜𝑠𝑡𝑗(𝐵) = ∞ for 𝐵 ∉ 𝐸𝑗. Let 

𝑥𝑗(𝐵) = 1 if the schedule 𝐵 ∈ 𝐸 is allocated to practitioner 𝑗 and zero otherwise. The HVS 

problem is about the selection of a set of home visit schedules for practitioners that covers all the 

planned home visits, while at the same time minimizing the sum of practitioner costs. The 

problem can be expressed using the following integer programming: 

 

Symbol Meaning 

Ω A set of visits 

Π A set of practitioners 

Χ A set of possible bundles of visit. Here the possible bundle is defined as the visit bundle with no 

interval overlap. 

T[Ω][Ω] T[i][j] expresses the travel time between visit i to visit j. Here we suppose the travel time from 

visit i to visit j equals the travel time from visit j to visit i. 

V An element in Ω 

sp Standard payment of a visit 

x The number of element in  

m The number of elements in Ω 

n The number of elements in  

B A bundle of visit   

𝐸 The union of the sets of feasible schedules from all practitioners 

𝐸𝑗  The set of feasible schedules of practitioner j 

Υ Υ[𝑖]  is an information set of practitioner 

Υ[0] : The prefer departure time 

Υ[1] : The prefer back time 

Υ[2] : The hourly rate of work time  

Υ[3] : The mileage cost per hour 

Υ[4] : The preference violation cost of visit type 1 

Υ[5] : The preference violation cost of visit type 2 

Υ[6] : The preference violation cost of visit type 3 

Υ[7. . (7 + m)] : The travel time between home and visit[ i-6] 

P[Π][Υ] The personal information of each practitioner 

Table 1 Symbols used in this thesis 
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𝑚𝑖𝑛 ∑ ∑ 𝑥𝑗(𝐵)𝑐𝑜𝑠𝑡𝑗(𝐵)𝐵∈𝐸
𝑛
𝑗=1        

subject to 

∑ 𝑥𝑗(𝐵) ≤ 1𝐵∈𝐸 ,      𝑗 = 1, … , 𝑛        (1) 

∑ ∑ 𝑥𝑗(𝐵) = 1𝑛
𝑗=1𝐵∋𝑖 ,        𝑖 = 1 … 𝑚                (2) 

∑ 𝑥𝑗(𝐵)𝐵∈𝐸 = ∑ 𝑥𝑗(𝐵)𝐵∈𝐸𝑗
,   𝑗 = 1, … , 𝑛       (3) 

𝑥𝑗(𝐵) = {0,1},   𝐵 ∈ 𝐸,    𝑗 = 1, … , 𝑛        (4)  

Constraint (1) ensures that a practitioner can only obtain one home visit schedule during the 

time window. Constraint (2) ensures that every planned visit is covered by a home visit schedule 

that has been allocated to a practitioner. The set of constraints (3) ensures that if a schedule is 

assigned to a practitioner then it must belong to the whole set of feasible schedules of the 

practitioner. Together, these constraints prevent the agency from assigning practitioners schedules 

that they are unable to take. Constraint (4) is a set of integer constraints. The HVS problem is NP-

hard, as stated in the following theorem.  

Theorem 1: The problem of Home Visit Scheduling (HVS) is NP-hard.  

Proof: To show that HVS is NP-hard, consider a special case in which 𝐸𝑗 = 𝐸 for all 𝑗 = 1, … 𝑛. 

In this case, Constraints (3) always hold. The relaxed model is a set covering problem, which is 

NP-complete. It follows that, as a general case, HVS problem is NP-hard.  

Constraints (2) ensure that every planned visit is covered by a home visit schedule which has 

been allocated to a practitioner. To obtain a feasible solution to the centralized model, constraints 

(3) must hold. To ensure that constraints (3) always hold, we assume that there exists a subset of 

practitioners, call them backup practitioners, for each of them, their feasible schedule set only 

contains one schedule and that schedule only covers one visit. We also assume that together the 

group of backup practitioners will cover all planned visits.  
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3.2 The Challenge of Decentralized Environments 

This model has been built without considering the distributed characteristics of the HVS 

problem. However, the practitioners in our setting are independent health care service providers, 

not employees of the health care agency, and as such their relationship with the agency is a type 

of contractual relationship. In such a setting, scheduling-related information is distributed across 

all involved parties. The health care agency lacks a global view of the problem, as does any one 

of the practitioners, since information like the cost of each individual practitioner’s visits are 

known only by the practitioners themselves. It is therefore necessary to construct a decentralized 

environment, in which the practitioners are assumed as intelligent, rational, and self-interested 

agents with sufficient autonomy to control their own schedules independently. Similarly, the 

health care agency is the other agent in the model, making its decisions in the same way.  

In the centralized model, we can easily find the optimal solution, since all information is 

known. Following the same line of thought, the agency in the described environment is also able 

to find the optimal solution by centralizing all the needed information from the practitioners. 

However, the optimality of the schedule depends on the accountability of the reported 

information. In our thesis, practitioners are treated as self-interested agents in the sense that they 

maximize their own payoff without considering others’ interests, with no control for the 

practitioners to report true information. Thus, we need a mechanism capable of motivating the 

practitioners to report truthful information, by which their objectives are maximized only 

through reporting truthful information.  

In the HVS problem of such an environment, the agents take action to maximize their own 

objectives, having neither control over each other’s actions nor any interest in the other agents’ 

objectives. However, they are allowed to cooperate in order to achieve their respective goals in 

case the cooperation benefits them. A negotiation mechanism that allows coordination, while at 

the same time creating incentives for the practitioner to tell the truth would satisfy our 

requirements. From our review we found that economic-based models address such incentive 

issues, while auctions, as an application of the economic mechanism, are useful in solving 

decentralized scheduling problems. Based on insights into the combinatorial nature of HVS, it is 

natural to employ combinatorial auctions to solve the problem. In an HVS auction, the 

practitioners compete to obtain a bundle of visits from the health care agency, reversing the roles 
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of buyer and seller. The next chapter describes how we embed the designed reverse 

combinatorial bidding framework in an agent-based scheduling system for home health care. 

 

3.3 The Challenge of Dynamic Environments 

The dynamic characteristics of the home health care landscape further increase the complexity 

of HVS. It is highly possible for there to be a new visit request, cancellation, or changes in 

practitioner availability during the time horizon of the practitioners’ schedules. The HVS 

problem requires us to accommodate such unexpected events during the schedule’s operation and 

to continually revise schedules in a cost-effective manner.  

The most common scheduling changes in home health care are new incoming visits, 

cancellations, visit time changes, and practitioner availability changes. We can group these 

situations into two categories, based on whether they release a practitioner from an assigned visit 

or assign a practitioner to a previously unassigned visit. While the first and second events 

mentioned above are straightforward, it is helpful to provide examples to better explain the event 

handling process in the other cases. The first scenario involves a patient calling to change their 

visit time. Such an event can be separated into two steps: cancelling an allocated visit, and 

assigning a practitioner to an incoming visit with an updated visit time. Another scenario is that 

the practitioner’s availability changes during the current schedule. In some cases this makes the 

visit impossible and requires a cancellation. The cancelled visit is taken as an incoming visit, 

which should then be allocated to another practitioner. In other cases cancellations may result in 

a practitioner having a newly available timeslot that can then be allocated to a new visit request. 

The third example is that the service start time is considered as a hard constraint that cannot be 

violated. Under such an assumption, the visit delay leads to a visit cancellation. This thesis 

chooses to focus on the most challenging situation, that of accommodating the incoming visit 

requests. As we described previously, the HVS problem is considered as a set of static 

scheduling problems, while the input is the current state of the system. Solving such a static 

problem requires us to reschedule the plans every time there is a change, based on the latest 

information, which should be collected at the moment of rescheduling. As such, when we collect 

information and conduct rescheduling is the first question that needs to be answered.  
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In terms of this question, periodic rescheduling and event-driven rescheduling are studied in 

the literature. Periodic rescheduling means the plan is supposed to be rescheduled after a 

predefined time interval. The second approach means that the system conducts rescheduling each 

time a schedule-related event occurs. The hybrid method, which combines periodic and event-

driven rescheduling, is yet another method where the rescheduling is triggered when an event 

occurs and at the end of a time interval.  

For a periodic rescheduling strategy, the rescheduling interval needs to be investigated 

depending on specific problems. The incoming visit has to be handled in a given amount of time 

before the visit commences in order to prepare the necessary paperwork. However, such events 

occur stochastically in the HVS problem, and the time between the patient calling and the newly 

scheduled visit is uncertain. It is therefore difficult to determine the proper rescheduling interval 

for such situations. Normally, the home health care agency does not handle urgent medical 

demands in the real world. Last minute changes or urgent cases are considered exceptions within 

the HVS problem, as we suppose that patients typically make appointments with health care 

agencies for home visits. There are two reasons we did not select a pure event-driven method for 

the HVS problem. Firstly, it consumes unnecessary computing resources in cases where the 

changes occur rapidly, while the health care agency does not necessarily need to handle the event 

immediately. The goal of our system is searching for an optimal or near-optimal solution rather 

than merely responding quickly. Secondly, better solutions become possible only if the health 

care agency considers multiple events together. Contrastingly, in cases where the event needs to 

be handled immediately, the primary goal of the system is to make the necessary changes 

promptly, rather than taking the additional time required to find the most optimal solution. As 

such, we can safely conclude that hybrid rescheduling is a better choice for solving the HVS 

problem. 

The other question that needs to be answered is how to conduct the rescheduling. In general, 

there are two main rescheduling strategies: regeneration and repair. The first strategy is to 

completely regenerate the schedule for all remaining visits. While this is a feasible method in 

principle, changing practitioners’ schedules without their permission is likely to lower their 

satisfaction and produce a more chaotic work environment. Another practical issue is that there 

is typically paperwork that must be completed at least one day prior to such changes. Sometimes 
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this involves coordinating with an agency, collecting medial materials, or going through an 

approval process. As such, the repair strategy appears to be a more appropriate method for the 

HVS problem. We employ a repair-based approach to allocate incoming visit requests, at the 

same time keeping the already allocated visits unchanged. In this way, we minimize the changes 

to the original schedule for practitioners. 

In summary, HVS is expected to maintain a dynamic schedule for practitioners through its 

handling of unexpected events. We focus on accommodating incoming visits in particular. In this 

system, existing visits in practitioners’ schedules remain unchanged, while new visit requests are 

allocated. Schedule repair can be performed in either a flexible time interval or triggered by 

events depending on specific situations. 
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Chapter 4 Decentralized Scheduling for HVS 

  

 The objective of home health care resource scheduling is to reduce the cost of providing care 

through effective, efficient practitioner allocation. Since the problem must be solved in a 

decentralized environment, an agent-based scheduling system is expected to best construct 

schedules while solving the problem. In this chapter, we first introduce the design of the multi-

agent system, followed by the local decision-making process for each agent. An iterative bidding 

mechanism is proposed as the negotiation protocol for the scheduling system. Following this, a 

worked example is presented to demonstrate exactly how the system works. Finally, we conduct 

a computational study in order to evaluate the proposed solution’s performance.  

 

4.1 Multi-Agent System Design 

 The design of a multi-agent system for decentralized home visit scheduling consists of the 

architecture, the negotiation protocol, and the system initialization. Two types of agents are 

recognized, and it is assumed that they work collaboratively to achieve their goals. The proposed 

protocol is used in the coordination process between agents. An initialization process before the 

start of negotiation is described as well. 

 

4.1.1 System Architecture 

 As shown in Fig. 3, there are two distinct types of agents in this architecture: Practitioner 

Agents and the Health Care Agency. The Practitioner Agent functions as a personal assistant to 

practitioners, maintaining their schedules, while the Health Care Agency (HC Agency) 

represents the home visit scheduler. Based on the architecture, the HC Agency collects home 
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visit requests and facilitates negotiation between agents to construct the practitioners’ schedules. 

During the negotiation process, both Practitioner Agents and the HC Agency make their 

decisions based on their individual objectives, as well as other agents’ responses.  

   

4.1.2 Negotiation Protocol 

 The scheduling process can be seen as a coordination procedure between the HC Agent and a 

group of Practitioner Agents, during which a negotiation protocol is used to allocate incoming 

visit requests to practitioners. In this system, we propose an iterative bidding mechanism as the 

negotiation protocol. This is a price mechanism, in which the health care agency coordinates the 

procurement of medical services from independent practitioners by adjusting the prices of home 

visit schedules. The negotiation protocol contains the following four steps: 

 

Figure 3 System Architecture 
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Negotiation Protocol

PractitionerHealth Care Agency

Start

Incoming visits
Feasible schedule 

computing

Participate?

Price updating

Bid creatingSolving

Terminate?

End

Call for proposal

Call for proposal

Yes

Bid

Yes

No

 

Figure 4  Negotiation Protocol 

1) The HC Agency recognizes the time of scheduling. The HC Agency firstly collects 

information on the set of visits waiting for allocation. It then solicits bids by sending a 

call for proposal message containing the visit information to registered Practitioner 

Agents. 

2) Next, each Practitioner Agent decides for his or herself whether or not to participate. 

Willing agents send a bid back to the HC Agency, including the schedule, charge, and the 

Practitioner Agent’s identification.  

3) Upon receiving bids from all Practitioner Agents, the HC Agent computes the visit 

allocation, taking all the bids as input and decides whether to accept or refuse each bid. 

After the decision is made, the HC Agency notifies all participating Practitioner Agents 

with the results.  
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4) The negotiation iteratively goes through the above two steps, for which a reverse 

combinatorial bidding framework is implemented in the designed system. The 

Practitioner Agents update prices and bid again depending on the results of the previous 

bidding round. Upon receiving bids, the HC Agency decides the final round if the 

termination condition is satisfied and sends the final results to the Practitioner Agents. 

Alternatively the HC Agency may decide to continue the process by sending another call 

for proposals to all participating Practitioner Agents.  

 

4.1.3 System Initialization 

 Some information used throughout the negotiation process will be initialized at the 

beginning, such as the set of visit requests, the payment of each visit, and the feasible packages 

of each Practitioner Agent. In this stage, the practitioners first calculate the potential payoffs of 

their feasible schedules and then bid on the schedule with the highest payoff (breaking ties 

randomly). The details of the initialization process are described as follows.   

 At the beginning, the health care agency sends a call for proposal message to the practitioners 

with details on the set of planned visits and the upper-limits of the service charges that they can 

pay for each of the visits, which is referred to as the standard price for the visit. Practitioners 

compute their respective sets of feasible schedules 𝐸𝑗. For each schedule 𝐸𝑗, the practitioner 

computes their cost of serving it. The standard price of a schedule is the summation of the 

standard prices of visits covered by the schedule. The initial bidding price for a schedule is set to 

be equal to its standard price. With known costs and initial bidding prices of schedules in 

their 𝐸𝑗, a practitioner computes the payoff of taking each schedule. Considering the private 

value model mentioned above, a practitioner’s payoff for a schedule is the remainder of the 

payment after deducting their costs from the bidding price at each round of bidding. The 

practitioner must be compensated by their cost of servicing the schedule to keep a positive 

payoff. After initialization, the system goes through an iterative bidding process. 
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4.2 Practitioner Agent’s Local Decision Making 

 After receiving the call for proposal from the HC Agent, Practitioner Agents compute their 

feasible packages, calculate the payoffs, and create bids for the highest utility package (breaking 

ties randomly) at each round. We use a schedule-charge pair 〈schedule, charge〉 to represent the 

practitioner’s bid, where schedule is the set of visits that the practitioner wants and charge is the 

compensation that the practitioner requires for providing the services, which is bidding price in 

this framework. The service charge structure is practitioner-dependent and non-anonymous, 

meaning there is no common service charge for a schedule. This structure allows the 

practitioners to price the same schedule differently according to their own cost structure and time 

preferences.  

 At each round 𝑡 (𝑡 > 1), practitioners start by updating their bidding prices for the schedule 

submitted at round 𝑡 − 1. There are three different scenarios for practitioners to act out at round t, 

depending on the provisional allocation status determined in round 𝑡 − 1: (1) if a practitioner’s 

bid was not awarded in the provisional allocation at round 𝑡 − 1, he/she can decrease the bidding 

prices by 𝜀 on the schedule bid for in round 𝑡 − 1 or rounds before 𝑡 − 1, where 𝜀 is the minimum 

price decrement imposed by the health care agency. Since practitioners are assumed to be 

rational profit maximizers, they generally do not bid with a decrement more than 𝜀; (2) another 

choice for practitioners who are not assigned a schedule in round 𝑡 − 1 is keeping the same 

bidding prices (add back the 𝜀 amount). However, if a practitioner adds this 𝜀 back to the bidding 

price, they will be considered to have entered their final bid status and they are not allowed to 

decrease the bidding prices on any of their schedules in future rounds. It may happen when the 

payoffs of every other schedule become negative; and (3) the practitioner can also withdraw 

from bidding. If a practitioner is provisionally assigned a schedule in round t-1, they may want to 

keep their bidding price unchanged in the next round, which means they are allowed to repeat the 

same bids in round t. However, practitioners are not prevented from entering a lower bid in 

future rounds in this scenario.  

 After updating the bidding prices, a practitioner needs to compute the payoff of each schedule 

again based on the updated bidding prices to determine the maximum payoff schedule. In 

computing such a schedule or schedules, a practitioner j solves a maximization problem 
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𝑚𝑎𝑥 𝐵∈𝐸𝑗
[𝑝𝑗

𝑡(𝐵) − 𝑐𝑜𝑠𝑡𝑗(𝐵)] and obtains a set of schedules with an equally maximized payoff, 

where 𝑝𝑗
𝑡(𝐵) represent the bidding price of schedule 𝐵 at round 𝑡. That is, for any two schedules 

𝐵 and 𝐵′ in the payoff maximizing set, 𝑝𝑗
𝑡(𝐵) − 𝑐𝑜𝑠𝑡𝑗(𝐵)=𝑝𝑗

𝑡(𝐵′) − 𝑐𝑜𝑠𝑡𝑗(𝐵′). After this, the 

practitioner randomly chooses one from the set of schedules with a maximum payoff, and bids 

for that schedule with the updated bidding price. In situations where a practitioner has entered 

into final bid status, he/she is no longer allowed to decrease the bidding price. However, the 

practitioner can repeat their final bid in future rounds until termination. We set up this final bid 

repeating arrangement to allow the temporarily excluded bids to come back to the game to 

further reduce the health care agency’s overall costs. In the iterative bidding process, some bids 

can be temporarily “excluded” from the provisional allocation because there is a particular 

combination of allocation constraints and resource requirements with lower overall service 

charge in each specific round. Along with ongoing bidding, this particular situation may have 

changed to allow the previously excluded bids back into the bidding process. However, those 

bids will not be submitted again without this setting if their costs have been reached during the 

“excluded” periods, which means the practitioner will not choose to bid them, even though some 

visits in them become available in subsequent provisional allocations. 

 

4.3 Health Care Agency Local Decision Making 

 In the HC Agency’s decision-making process, we assume there are always backup 

practitioners willing to take visits at a standard price, meaning the HC agency can assign a 

backup practitioner to the visit at any time as needed. At the local level, the HC Agent solves a 

winner determination problem to allocate practitioners to visits. It first screens out the invalid 

bids from all bids received from practitioners. Those bids will not enter into the winner 

determination procedure. There are two types of invalid bids: (1) any bids with bidding prices 

above the lowest one for that same schedule received in previous rounds, (2) bids with decreased 

prices from practitioners who have already declared their final bidding status previously.  

 The health care agency then checks the termination condition against the valid bids. The 

bidding will terminate at the round with no price updates for all valid bids, which means all 

practitioners participating in bidding in this round have repeated their bids. After the bidding 
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terminates, the health care agency allocates schedules to practitioners according to the final 

allocation at their bidding prices. If the termination condition is not satisfied and the procedure 

continues, the winner determination model will take the set of valid bids as input and solve the 

problem. The auction goes back to price updates and bidding after the winner determination.  

The winner determination will compute the provisional allocation each time there is new input 

from the last stage, which means the termination checking fails in this round. In order to cover 

all visits in the provisional allocation, while at the same time minimizing the overall price, the 

winner determination is modeled to select a subset of the bids submitted by practitioners which 

satisfy the covering and minimizing constrains.  Let 𝑁𝑡 be the set of practitioners submitting 

their bids at round 𝑡 and 𝑝(𝐵𝑗
𝑡) be the bidding price of 𝐵𝑗

𝑡, where 𝐵𝑗
𝑡 is the schedule submitted by 

practitioner 𝑗 at round 𝑡, 𝑗 ∈ 𝑁𝑡. Let 𝑍𝑗 = 1 if practitioner 𝑗 wins and 𝑍𝑗 = 0 otherwise. The 

winner determination can be modeled to an integer programming as following. 

𝑚𝑖𝑛 ∑ 𝑍𝑗𝑝(𝐵𝑗
𝑡) 𝑗∈𝑁𝑡           

subject to 

∑ 𝑍𝑗 = 1,
𝑗∈𝑁𝑡 𝐵𝑗

𝑡∋𝑖 
𝑖 = 1 … 𝑚        (5) 

𝑍𝑗 = {0,1},    𝑗 ∈ 𝑁𝑡         (6) 

Constraints (5) ensure that the bids awarded in a provisional allocation will cover all the planned 

visit requests. Constraint (6) is a set of integer constraints. 

 

4.4 A Worked Example 

 In this section, a worked example is presented to demonstrate the designed system. Suppose a 

health care agency allows its contractual practitioners to customize their schedules. The visit 

information is available for both the health care agency and practitioners. Given the visits, each 

practitioner will assemble their feasible schedules by calculating both utility and time constraints 

for a specific time window. A feasible schedule generation method is introduced as following. 
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 Feasible Schedule Generation 

 Within the proposed iterative bidding framework, practitioners are expected to make multiple 

decisions during the bidding process. They need to find feasible schedules, calculate the utility 

for each, and update their bid price in each round. The utility calculation and price updating rules 

have already been introduced in the previous section. In this section, we demonstrate a method to 

partially aid practitioners in generating feasible schedules. The feasible schedule of a specific 

practitioner is defined as a schedule that: 1) satisfies all hard and soft constraints; 2) has no time 

conflicts between the feasible schedule and the current schedule; and 3) should have positive 

utility for the practitioner it belongs to.  

 To model this problem, we first introduce a schedule cost structure. The cost of a given 

schedule in the proposed problem consists of three parts: time, transportation, and preferences. 

The time a schedule practitioner spends on each visit includes visit time, travel time, idle time 

between each visit in the schedule, and paperwork time. The paperwork time will not be 

explicitly addressed because it is considered an irrelevant constant that will not affect the 

effectiveness of the calculation. Besides this, practitioners will have transportation costs incurred 

as they travel from one visit to another. The self-interest of the practitioners leads us to assume 

they prefer some visits to others. This means there will be a preference violation cost reflecting 

the level of the preference violation to the practitioner. The feasible schedule generation process 

contains two steps: 1) find out all possible schedules, and 2) estimate the cost of each and 

determine feasible schedules. 

 Suppose the feasible schedule generation consists of a given set of 𝑚 medical visits 𝑉, and 

each visit has a standard price 𝑠𝑝𝑖, a service start time 𝑠𝑖, and a service end time 𝑒𝑖. We assume 

the travel time from visit A to visit B is same as that from visit B to visit A. The modality of 

transportation is not concerned. In order to find the feasible schedules 𝐸𝑗  for a practitioner 𝑗, we 

firstly find all subsets of 𝑉 and remove the subsets with visit time overlap. We then sequence the 

visits in each schedule by start time 𝑠𝑖 and then by end time 𝑒𝑖. After that, we add the travel time 

from 𝑣𝑖   to  𝑣𝑖+1 to the end time of 𝑣𝑖  , denoted by 𝑒′𝑖 . The schedules with visit time overlap 

considering travel time need to be removed from the subsets. As a consequence, we have a 

possible schedule set for all practitioners, denoted by 𝑋. For a specific practitioner, a feasible 

schedule would be that which accommodates their individual schedule and at the same time has 
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positive utility. We assume that practitioners depart from their homes and end their day once 

they return home. The practitioners’ own schedule concerns the departure time of the first visit 

and the end time of the last visit once they have finished the whole schedule. Given the travel 

time between visits and the time value between the practitioner’s home 𝑗 and the visits, we know 

the travel time of the schedule 𝐵𝑚  ∈ 𝐸𝑗 . The transportation cost 𝑀𝑗𝑚 is calculated by the travel 

time of 𝐵𝑚 multiplied by a mileage rate of practitioner 𝑗. The work time is the duration from the 

practitioner’s departure to their return back home, including visit time, travel time, and idle time. 

Thereafter, the work-time cost 𝑇𝑗𝑚 spent on a schedule 𝐵𝑚 for practitioner 𝑗 will be the work 

time multiplied by the hourly rate of work. Additionally, the practitioner can setup a preference 

violation cost for each type of visit contained in a schedule, which sum to a total preference 

violation cost 𝑂𝑗𝑚. It is essentially a subjective money value adopted by an agent for each type of 

visit. For example, a practitioner would rather get $10 less payment for a re-visit over a new 

admission, because the practitioner is familiar with the re-visit patient and such a visit is much 

Visit ID Start Time End Time Type Standard Price 

1 12:00 13:00 1 $90 

2 13:00 14:00 1 $90 

3 14:00 15:00 2 $30 

4 15:00 16:00 2 $30 

5 16:00 17:00 2 $30 

6 17:00 18:00 2 $30 

7 11:00 12:00 2 $30 

8 12:00 13:00 2 $30 

9 13:00 14:00 2 $30 

10 14:00 15:00 2 $30 

11 15:00 16:00 2 $30 

12 16:00 17:00 2 $30 

13 13:00 14:00 3 $60 

14 14:00 15:00 3 $60 

15 15:00 16:00 3 $60 

Table 2 Summary of Visits 
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easier. The cost of schedule 𝐵𝑚  ∈ 𝐸𝑗  for practitioner 𝑗 would be the sum of those three 

costs: 𝑇𝑗𝑚 +  𝑀𝑗𝑚 + 𝑂𝑗𝑚. 

  

0 0.27 0.38 0.43 0.52 0.33 0.45 0.67 0.68 0.65 0.32 0.57 0.5 0.48 0.62 

0.27 0 0.7 0.3 0.6 0.3 0.6 0.55 0.67 0.65 0.25 0.35 0.58 0.65 0.3 

0.38 0.7 0 0.55 0.25 0.48 0.73 0.45 0.63 0.47 0.47 0.55 0.53 0.7 0.65 

0.43 0.3 0.55 0 0.4 0.68 0.55 0.4 0.73 0.62 0.5 0.37 0.7 0.32 0.3 

0.52 0.6 0.25 0.4 0 0.27 0.27 0.4 0.6 0.48 0.38 0.73 0.37 0.55 0.42 

0.33 0.3 0.48 0.68 0.27 0 0.65 0.62 0.67 0.47 0.58 0.47 0.33 0.42 0.32 

0.45 0.6 0.73 0.55 0.27 0.65 0 0.63 0.5 0.58 0.67 0.27 0.72 0.38 0.43 

0.67 0.55 0.45 0.4 0.4 0.62 0.63 0 0.47 0.5 0.72 0.6 0.4 0.42 0.68 

0.68 0.67 0.63 0.73 0.6 0.67 0.5 0.47 0 0.37 0.55 0.5 0.38 0.53 0.48 

0.65 0.65 0.47 0.62 0.48 0.47 0.58 0.5 0.37 0 0.72 0.27 0.42 0.32 0.45 

0.32 0.25 0.47 0.5 0.38 0.58 0.67 0.72 0.55 0.72 0 0.28 0.5 0.57 0.43 

0.57 0.35 0.55 0.37 0.73 0.47 0.27 0.6 0.5 0.27 0.28 0 0.53 0.72 0.47 

0.5 0.58 0.53 0.7 0.37 0.33 0.72 0.4 0.38 0.42 0.5 0.53 0 0.73 0.28 

0.48 0.65 0.7 0.32 0.55 0.42 0.38 0.42 0.53 0.32 0.57 0.72 0.73 0 0.67 

0.62 0.3 0.65 0.3 0.42 0.32 0.43 0.68 0.48 0.45 0.43 0.47 0.28 0.67 0 

Table 3 Travel Time between Visits (hours) 

 



  

38 
 

  

 

 

 

Practitioner Feasible Schedules Cost Payment 

P1 B(1,1): <7,2,4> $149.82 $150.00 

     

 B(1,2): <1,14,5> $169.35 $180.00 

 B(1,3): <1,14,12> $169.17 $180.00 

 B(1,4): <2,15,6> $167.16 $180.00 

 B(1,5): <7,2,15> $157.87 $180.00 

P2 B(2,1): <1,14,5> $176.12 $180.00 

 B(2,2): <2,15,6> $178.83 $180.00 

  B(2,3): <7,2,15> $177.21 $180.00 

P3 B(3,1): <7,2,4> $125.83 $150.00 

 B(3,2): <7,2,5> $138.43 $150.00 

 B(3,3): <7,2,11> $124.90 $150.00 

 B(3,4): <7,2,12> $143.29 $150.00 

 B(3,5): <7,2,15> $128.08 $180.00 

 B(3,6): <13,15,6> $147.42 $150.00 

 B(3,7): <7,13,15> $137.11 $150.00 

P4 B(4,1): <1,3,5> $123.90 $150.00 

 B(4,2): <1,10,5> $124.10 $150.00 

 B(4,3): <1,3,12> $129.12 $150.00 

 B(4,4): <1,14,5> $129.06 $180.00 

  B(4,5): <1,14,12> $134.23 $180.00 

P5 B(5,1): <1,3,12> $148.97 $150.00 

 B(5,2): <1,10,12> $148.96 $150.00 

 B(5,3): <1,14,5> $155.97 $180.00 

 B(5,5): <1,14,12> $154.13 $180.00 

  B(5,6): <7,2,15> $149.41 $180.00 

Table 4 Practitioners’ Feasible Packages and Corresponding Cost and Payment 
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 Worked Example 

 The visit information consists of two parts. The properties of an individual visit include start 

time, end time, type of visit, and the standard price (Table 2), as well as the travel time between 

visits, which in this example is randomly generated in hours (Table 3). On the other hand, the 

practitioners have their own preferences with respect to work time and the type of visit (Table 4). 

The travel time between practitioners’ homes to each visit are also randomly generated. We 

intentionally keep the example oversimplified for the purpose of clearly illustrating the steps of 

the bidding process. The feasible schedules and their costs for practitioners are generated using 

the method described in the section “Feasible Schedule Generation”. Table 5 lists each 

practitioner and his/her feasible schedules, the costs involved, and the payment. B (a, b) 

represents the feasible schedule b from practitioner a. As defined previously, there are backup 

practitioners B6 to B20 with each having only one feasible schedule containing one of the 15 

visits respectively. These schedules are represented by B(6,1) to B(20,1), none of which are 

shown in the table. The backup practitioner will bid for the schedule at the standard payment at 

each round of bidding. To limit the number of rounds of bidding, the price decrement ε is set to 

$15. Submitted bids, provisional allocation, agency’s payment and practitioner’s cost at each 

round of bidding are summarized in Table 6.  

 The auction terminates at round 11 with an overall solution cost of $557.14. Compared with 

the optimal overall cost of $557.14, computed using the centralized model, the auction reaches 

100% efficiency in this example. The sum of the payments paid by the agency is $615, which is 

close to the overall solution cost. The provisional allocations along the bidding process manifests 

the heuristic search path guided by the bidding mechanism. 
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Property P1 P2 P3 P4 P5 

Departure time 9:00 8:00 8:00 11:00 10:00 

Back time 18:00 20:00 18:00 18:00 18:00 

Hourly rate $25 $28 $18 $20 $21 

Mileage cost $0.4 $0.3 $0.3 $0.4 $0.6 

PVC of typ1 $1 $1 $4 $1 $3 

PVC of typ2 $5 $5 $8 $5 $8 

PVC of typ3 $10 $10 $13 $10 $13 

Time to visit1 0.47 0.42 3.72 0.27 0.6 

Time to visit2 0.45 0.28 0.53 0.72 0.23 

Time to visit3 0.58 0.42 0.6 0.55 0.57 

Time to visit4 0.3 0.73 0.55 0.73 0.68 

Time to visit5 0.63 0.28 0.25 0.35 0.62 

Time to visit6 0.57 0.52 0.55 0.47 0.32 

Time to visit7 0.23 0.37 0.3 0.43 0.5 

Time to visit8 0.7 0.25 0.58 0.7 0.27 

Time to visit9 0.45 0.58 0.27 0.58 0.48 

Time to visit10 0.33 0.25 0.43 0.4 0.6 

Time to visit11 0.58 0.25 0.5 0.42 0.72 

Time to visit12 0.62 0.58 0.52 0.6 0.53 

Time to visit13 0.55 0.73 0.72 0.37 0.58 

Time to visit14 0.47 0.45 0.53 0.45 0.65 

Time to visit15 0.42 0.37 0.4 0.38 0.42 

Table 5 Practitioner Information 
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Table 6 Submitted Bids, Provisional Allocation, Payment and Cost at Each Round of Bidding 
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4.5 Computational Study 

 In this section, we evaluate the performance of the bidding framework by comparing it with a 

VCG auction through a computational study. According to the experiment results, this 

framework reduces the computation required of the health care agency and partially reveals the 

private information of practitioner agents. However, these benefits are generally obtained with a 

cost to efficiency. 

 

4.5.1 Design of Testing Data 

 In the design of the testing data, the standard payment for a schedule is the sum of the 

standard payments of visits included in the schedule. Practitioners will initially bid from the 

standard payment to maximize their payoffs. The data needed for cost estimation, such as the 

start and end time of visits, the basic information of each practitioner, and the travel time 

information, are all generated randomly in different ranges. Practitioners’ costs for a particular 

schedule are calculated according to the description of “feasible package generation”. We 

assume the health care agency plans the schedule in a relatively small time window, and we keep 

the number of planned visits in proportion to the number of practitioners in each problem 

instance. Ten instances are randomly generated, with 15 visits and 5 practitioners. In large scale 

data testing, the maximum number of visits included in one schedule should be considered, 

since, given a time window, a practitioner can only take on a certain number of visits. For 

example, the maximum number of visits taken by one practitioner is limited to eight, assuming a 

one-day time window. Backup practitioners can only take on a single visit in the experiment. The 

following two algorithms describe the process of feasible schedule generation. 

 Schedule Generation 

Algorithm 1 generateSchedule 

Input: Ω, T 

Output: Χ 
  𝑚1 ← 𝑚 ← |Ω| 
  Step1: Generate a list ‘Ω, where ‘Ω[i] ← V.vid (0 ≤ 𝑖 ≤ 𝑚 − 1)  (𝑉 ∈ Ω) 
  Step2: Generate the non-empty power set of ‘Ω and transfer into a list Ω’  

  𝑚2 ← 𝑚3 ← |Ω’[m1]| (0 < 𝑚1 ≤ 2𝑚 − 1) 
  Step3: Generate the list of visit bundles Χ 

  for 0 < 𝑚1 ≤ 2𝑚 − 1do 
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    Step4: Generate the visit bundle Χ from the power set of ‘Ω 

    Step5: Sort Χ by Χ[𝑚1][𝑚2]. 𝑠 and Χ[𝑚1][𝑚2]. 𝑒 
    Χ[𝑚1][𝑚2]. 𝑒′ ← T[𝑚2][𝑚2 + 1] + V[𝑚2]. 𝑒 
    Step6: if Χ[𝑚1][𝑚2]. 𝑒′ >  Χ[𝑚1][𝑚2 + 1]. 𝑠 do 

             remove Χ[𝑚1] from Χ 
           end if 

  end for 

Table 7 Schedule Generation Algorithm 

  

This algorithm generates feasible schedules for each practitioner. The first input Ω is a set of 

visit V<vid, s, e, t, sp, a>, where 𝑣𝑖𝑑 is the identification of the visit. The identifications are 

consecutive integer numbers starting from 1; s: the start time of the visit; e: the end time of the 

visit; t: the type of the visit, 𝑡 ∈ {1,2,3} sp: the payment for the individual visit; and 𝑎 indicates 

whether the visit is assigned or not in each round of bidding. The second input T is a 𝑚 × 𝑚 

matrix. 𝑇[𝑖][𝑗] is the travel time between visit 𝑖 to visit j. Here we suppose the travel time from 

visit 𝑖 to visit j equals the travel time from visit j to visit 𝑖. The output: Χ is a list of bundles, 

which represent all the possible schedules with no time overlap considering the travel time.  

 Cost Estimation 

Algorithm 2 estimateCost 

Input: generateSchedule(), P  

Output: 𝐸𝑗   

for 0 < 𝑗 ≤ n do 
  scheduleID ← 1 

  for 0 < 𝑗 ≤ x do 
    Worktime ← null 

    Traveltime ← null 

    PVC ← null 

    f ← the index of the first visit of X[i] in P[j] 

    l ← the index of the last visit of X[i] in P[j] 

    q ← the index of preference violation cost of visit V in P[j] 

    RequiredDepartureTime  ← First(X[i]).s-P[j][f] 

    RequiredBackTime  ← Last(X[i]).e+P[j][l] 

    Step3: Generate feasible schedule 

    if P[j][0] ≤ RequiredDepartureTime and P[j][1] ≥ RequiredBackTime do 

 Step3.1: Calculate the payment of schedule 

 Step3.2: Estimate the cost of the schedule 

 NetWorkTime ← Last(X[i]).e-First(X[i]).s 

 HomeToWork ← P[j][f]+P[j][l] 

 WorkTime ← NetWorkTime + HomeToWork 

 TravelTime ← HomeToWork + BetweenCities (0 if only one visit); 
 for all V in X[i] do 

         PVC += P[j][q] 
 end for 

 CostOfSchedule[j][i] = WorkTime * P[j][2] + TravelTime * P[j][3] + PVC 

 Step3.3: Generate the feasible schedule 𝐸𝑗 

 scheduleID ++; 
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     end if 

  end for 

end for 

 

Table 8 Cost Estimation Algorithm 

The input P is a 𝑛 × 𝑏 matrix. P[j][k] is the value of the 𝑘𝑡ℎ property in Υ for practitioner j. The 

output 𝐸𝑗 is a set of feasible schedules <fid, D, c, p, z> for practitioner j, where fid is the 

identification of the schedule. The identifications are consecutive integer numbers starting from 

1; D is a list of visit IDs representing the visits contained in the referred feasible schedule of 

practitioner j; c is the cost of the schedule; p is the payment of the schedule; and z indicates 

whether the practitioner bid this schedule or not in each round of bidding. P[j][0] and P[j][1] are  

the preferred departure and return time of practitioner j, respectively. 

 

4.5.2 Experimental Results 

 The efficiency of the iterative bidding framework is evaluated in terms of the difference 

between the overall cost of the solution generated by the proposed framework and the optimal 

solution cost computed from the centralized model. For a problem instance, the optimal solution 

cost is computed by solving the centralized integer-programming model. The model is coded in 

ILOG OPL Optimization Programming Languages, (http://www-

01.ibm.com/software/commerce/optimization/modeling/) and solved using ILOG CPLEX. 

 Comparison of the solutions computed by the iterative bidding model and the optimal ones 

computed by ILOG CPLEX is illustrated in Table 9. The fourth column and the fifth column 

show the optimal solution costs and the costs computed by the iterative bidding across all ten 

instances. All customers are assumed to adopt final-bid-repeating and ε is $15 for all groups. It is 

observed that the cost of solutions generated by the iterative bidding framework is on average 

4% higher than the optimal cost across the ten groups of problem instances. If we consider the 

optimal cost as 100% efficiency, the proposed iterative bidding framework achieves 98% of the 

efficiency of the optimal solution. It is also observed that the agency pays the practitioners on 

average 11% over their costs of taking a visit. 
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4.5.3 Implementation Consideration 

 Since the practitioners depart and return to different places and are moving around the city 

when performing the schedule, online auctions, which break down the physical limitations, allow 

practitioners to enter and place bids at any time and any place before the auction ends. To spare 

practitioners the trouble of continuously monitoring the bidding process and repeatedly placing 

their bids, online auctions also allow practitioners to directly provide their necessary personal 

information to an automated bidding agency (called a proxy agency) which bids on their behalf. 

In the proposed iterative auction for HVS, the proxy agency will be used to generate and manage 

a set of feasible practitioner schedules and decide which schedule to submit, at which round, and 

at what price. Thus, the practitioner should provide the basic information, such as availability, 

location, preferences, and other needed information. In the meantime, the agency is supposed to 

collect and organize visit requests. Besides this, the agency should also be equipped with the 

algorithm to update bidding prices and select the payoff maximization schedule during the 

bidding process. If a practitioner prefers, the agency can also inform them regarding their 

bidding status and allow the practitioner to update their bids before the auction ends. For easy 

access, practitioners may install the proxy agency on a personal computer, a smart phone, or 

      Epsilon = 15 Visit Number = 15 Practitioner Number = 5 

Group Optimal solution cost Bidding solution cost Bidding solution Payment Initial bidding price 

1 $708.738 $723.049 $750 $900 

2 $671.121 $677.864 $780 $930 

3 $764.919 $788.43 $825 $990 

4 $882.902 $888.859 $975 $1050 

5 $571.574 $589.81 $720 $870 

6 $630 $631.13 $720 $840 

7 $648.802 $671.809 $780 $930 

8 $686.979 $704.017 $795 $930 

9 $777.588 $790.688 $825 $870 

10 $902.793 $920.964 $1005 $1110 

Table 9 Practitioner’s Cost and Health Care Agency’s Payment at Different Group 
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other mobile devices. Many online auctions provide a “buy it now” option to accommodate those 

buyers who cannot wait until the auction ends. A buyer can purchase the item immediately by 

paying the buy-it-now price. However, the buy-it-now price is usually a regular retail price, 

which can be much higher than the final auction price. Rigorously, we will not consider buy-it-

now as part of the auction design. 

 

4.6 Summary 

 This chapter describes a multi-agent scheduling system used to solve the HVS problem in a 

decentralized environment. The solution facilitates multilateral negotiation between practitioners 

to reduce health care agency costs. The proposed iterative bidding mechanism promises reduced 

computation by the HC Agency, while at the same time the experimental result shows the 

framework achieves a high efficiency of optimal solutions. 

 The designed system focuses on incoming visit request allocation, while it can handle the 

cancellation by adding a complementary functionality. The complete solution is expanded based 

on this system, in which the dynamic characteristic is partially reflected in the design. In the next 

chapter, we develop a simulation model that evaluates the scheduling system in a dynamic 

environment. The model simulates the operation of practitioners and the scheduling process of 

accommodating unexpected situations during practitioners’ performance of their schedules.  
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Chapter 5 Dynamic Scheduling for HVS 

  

 Having previously solved scheduling problems in a decentralized environment, this chapter 

proposes a dynamic approach to further accommodate dynamic changes. In practice, there are 

always unexpected situations occurring in home care delivery, such as new visit requests or 

cancellations, causing the initial schedule to quickly become obsolete. At some point in the 

active scheduled period, rescheduling will inevitably be needed to accommodate these 

unexpected changes. In this chapter, we enhance the designed decentralized scheduling 

algorithm to be able to deal with dynamic events. A simulation model is designed to support the 

decision making of the health care agency. The dynamic scheduling algorithm is implemented in 

this model to evaluate its effectiveness in a dynamic environment. 

 

5.1 Dynamic Scheduling through Periodic Repair  

 In this section, we introduce a dynamic algorithm and select an appropriate modeling 

methodology. The proposed static scheduling algorithm is treated as a meta-algorithm in the 

dynamic setting that is called on repeatedly over the course of the operative schedule. The 

dynamic scheduling algorithm takes all scheduling-related information known at the moment of 

calling as its input, which is a different approach from that of the static algorithm. 

 We propose a periodic repair algorithm as the dynamic scheduling approach. This approach 

consists of two stages, which together generate an initial schedule in the first stage and then 

repair the schedule as needed in the second stage. In the first stage, the initial practitioner 

schedules are created by the agent-based scheduling system. The launch time of the first stage 

will be postponed as close as possible to the schedule’s commencement for two reasons. Taking 

a weekly plan, for example, more scheduling-related information will be revealed as the start 
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date of the new schedule draws closer, enabling the optimization to produce more efficient 

results due to the increased number of bidding objectives. Secondly, the contractual relationship 

between the practitioner and the required home visit also cannot be broken unilaterally from the 

practitioner’s side in the second stage. Changes in the initial plan due to rescheduling will 

therefore be minimized through shortening the rescheduling time horizon.  

 In the second stage, the initial schedule will be repaired periodically as needed. Rescheduling 

repeatedly uses the decentralized algorithm as a meta-algorithm. Compared to static algorithms, 

which take the given information as their input, dynamic scheduling takes current scheduling 

related information as input and uses it to compute feasible packages. Each time it does so the 

system collects the incoming visit requests, the availability of practitioners, and the current 

practitioner schedules at the moment of rescheduling. As shown in Fig. 5, a practitioner’s initial 

schedule is first created, followed by periodically repaired schedules generated from calling on 

the dynamic scheduling algorithm within the time horizon, allowing for a flexible period of 

repair. Theoretically, a large rescheduling interval brings better solutions, since, as mentioned 

above, the greater information regarding new visit requests allows for a more optimal solution 

compared to solutions with less information. However, the settled schedule also has to be 

delivered within a certain time before it starts to leave sufficient routing time. The interval 

setting has to take such scenarios into consideration. Due to the fact that visit requests arrive 

stochastically in practice, it’s hard to decide in an analytical way what the interval should be. In 

 

Figure 5 Dynamic Scheduling Flowchart 
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light of this, a simulation model is developed in this chapter to aid the health care agency in 

making such decisions. 

Fig.6 illustrates the workflows of both health care agency and practitioners when calling on 

the dynamic scheduling algorithm. When the algorithm is called, the registered practitioners 

compute their feasible packages based on their current availability derived from a real time 

schedule. The practitioners participate in the bidding if there are feasible packages for them. All 

registered practitioners report such information to the health care agency. Then the algorithm 

goes through the proposed bidding process, in which the health care agency plays the role of 

mediator to coordinate negotiations between practitioners. Finally, the awarded practitioners 

update their own schedules (Table 10). 

 

 

Figure 6  Dynamic Scheduling Workflow 
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Algorithm 3 dynamicScheduling 

Input: registered practitioners RPS, current schedules CSS, incoming visits IVS 

Output: revised schedules RSS 

  while IVS ≠  ∅ do 
for all RPS do 

if feasible packages ≠  ∅ then 

  PRPS ← RPS who participates bidding 
    end if 

    bidding start 
while bidding is not terminated do 

  for all PRPS do 

    create bid 

    send bid 
  end for 

  health care agency checks termination condition 

  health care agency computes and announces result 
end while 

health care agency announces final allocations 

for all PRPS do 

  if the practitioner is awarded then 

    RSS ← update its schedule 
  end if 

end for 

return RSS 

  end while 

Table 10 Dynamic Scheduling Algorithm 

5.2 Evaluating the Dynamic Scheduling Algorithm through Simulation 

Abstracting a model from real word problems is a common way to evaluate alternative 

solutions, especially for huge and complex problems. The advance of computational power and 

software tools has made modeling and computer simulation much easier, with lower risks and 

costs. Analytical modeling, typically based on formulas and static dependencies, is used in 

various areas. In terms of the HVS problem, we have designed an agent-based system based on 

an analytical model in a static environment. However, a large number of problems either do not 

have any analytic solution or have very difficult solutions due to the influence of dynamic 

behaviors and events, such as the unexpected incoming visits, cancellations, or practitioner 

availability changes, all of which are typical of the HVS problem. In such scenarios, simulation 

modeling is a useful method to try when other modeling methods fail. Simulation predicts the 

performance of the model through observing the outcomes from uncertain inputs. 

 To date, there are three simulation methods to select from based on the abstraction level, 

namely system dynamics, discrete event modeling, and agent-based modeling. The critical 

decision to be made is choosing the proper abstraction level before modeling. Periodic 

reconsideration of the abstraction level during the development process is also typically needed. 
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Depending on the simulation project’s goals and the nature of the problem, different problems 

may call for different methods or their combinations, a process called the multi-method model.  

 System dynamics is a method used to study dynamic systems in which time and geometrical 

dependencies are important. Discrete event modeling is a method based on a process, i.e., a 

sequence of operations being performed across entities. Agent-based modeling is a more recent 

method, which is normally triggered by a scenario in which a concrete process flow is not easily 

captured as a whole, even though the behaviors of individual entities are in fact known. It can be 

used at any level of abstraction. 

 Agent-based scheduling systems are based on a predesigned mechanism consisting of 

predefined operations and interactions between entities. Unexpected situations derived from the 

HVS problem are easily modeled as discrete time events in our model. Moreover, the agent-

based scheduling system intuitively calls for agent-based modeling. Practitioners and health care 

agencies can be modeled as agents. Practitioner agents are considered as self-interested agents 

who make their own decisions independently. A decision-making process can be programmed 

into each practitioner entity. The Health Care Agency can be treated as another agent in this 

system, playing the role of a dispatcher who collects visit requests and performs dispatching. 

These two agents are put into a dynamic environment where discrete events are generated along 

with their particular time intervals, such that dynamic scheduling can be simulated. In the next 

section, we describe the design of the simulation model and how we implement the scheduling 

algorithm. 

 

5.3 Simulation Model Design  

 We used Anylogic as the tool to implement our simulation model, as it is the only tool that 

brings together three different simulation methods within one modeling language 

(http://www.anylogic.com/). Anylogic is used extensively in the supply chain, logistics, 

manufacturing, business processes, health care, and marketing fields.  A related example is that 

of Merkuryeva and Bolshakovs, who developed a simulation model of the Vehicle Routing 

Problem with Time Windows (VRPTW) in an Anylogic simulation environment [61]. The 

http://www.anylogic.com/
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developed model, serves as an aid to analysts’ decision-making, simulating goods deliveries 

from distribution centers to a set of shops. 

 

 

Figure 7 Class Diagram of Simulation Model 
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5.3.1 Model Structure  

We used both a class diagram and a sequence diagram to describe the model structure and the 

message passing between the agents.  

 Class Diagram 

 The class diagram illustrates the structure of the conceptual simulation model based on an 

Anylogic development environment by listing the essential classes, their attributes, methods, and 

the relationships among the objects.  

 Anylogic provides object interfaces to facilitate the modeling process. The Agent interface is 

the main component, which allows for the implementation of not only an agent but also their 

state or behavior. The agents can communicate with each other through calling functions. The 

simulation model contains two agents (active objects) and several classes. The Main object is the 

simulation model itself, which constructs the foundation and operational environment, in which 

both the HC Agency and Practitioner Agents are aggregated. The classes Bid, FeasiblePackage, 

VisitBundle, and Visit encapsulate their own properties and are used by all agents. Details about 

each active object are introduced in the following sections. 

 

Figure 8 Sequence Diagram of Simulation Model 
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 Sequence Diagram 

 The sequence diagram shows essential communications between agents. The Main object 

serves as a facilitator and accepts the register/unregister of Practitioner Agents. The HC Agency 

sends call for proposal messages to the Practitioner Agent group whenever necessary. The 

Practitioner Agents then respond to the message by sending back bids. The bidding process 

iterates until the termination condition is satisfied. After the process, the bidding result is sent 

back to each Practitioner Agent who updates their schedules accordingly. 

 

5.3.2 Running Environment 

Our study focuses on resource allocation, which reflects the rostering characteristics of the 

HVS problem, while the simulation model also involves the routing aspect. In the Main object, 

we collect map information from a GIS map downloaded from an online map service provider 

(https://www.mapquest.com/). We employ the Anylogic routing server to generate routes for 

practitioners, the main purpose of which is to ascertain the distance and travel time for each visit 

at a predefined travel speed. Using this component of Anylogic, the simulation model comes 

very close to the real world problem by taking the real map and routing data as inputs. There are 

 

Figure 9 Running Environment of Simulation Model 
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a few alternative routing methods, such as the fastest or shortest. And multiple road types are 

available, including car, rail, bike and foot. We selected the fastest routing method and chose car 

as the transportation tool, while the details about the beneath routing algorithm are not our 

concern in this thesis. 

 The above figure shows the practitioner’s locations and existing home visits on a map of the 

Montreal area. The truck symbol represents the Practitioner Agent and the red points indicate 

home visit requests. Practitioners travel through the visits according to their own schedule, 

following the routes navigated by the routing server. The schedules are dynamically updated 

according to the embedded scheduling algorithm as the simulation engine generates discrete time 

events. The new incoming visit locations will be displayed on the map as well. 

 The discrete time event generator is setup in Main object. The event trigger type could be 

timeout, rate, or condition. Rate triggered events are frequently used to model independent event 

arrivals. Such events are triggered periodically, with time intervals distributed exponentially 

within the parameter, i.e., if the rate is set to 1, the event will occur on average 1 time per time 

unit. Timeout trigger type is used to generate events after a certain time unit. And condition type 

 

Figure 10 Practitioner Agent State Chart 
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allows users to configure the trigger conditions of the events. Rate event trigger type is used in 

this model, and a random number of visits are created each time the event is triggered. 

 The profile of practitioners and the corresponding planned schedules are initialized with the 

simulation startup. The planned schedule could be empty or could contain some existing visits. 

The Health Care Agent’s decision-making requires an optimization solver to find the optimal 

allocation, in which the integer-programming model is programmed 

(http://www.opttek.com/OptQuest).  

 

5.3.3 State Chart of Practitioner Agent 

 The Practitioner Agent is another active object in this model. These agents go through the 

visits, participate in the bidding and maintain their own schedules. The parameters are initialized 

as the preference information of practitioners at the beginning of the simulation. Some essential 

variables are declared in order to store dynamical values during the simulation, including a list of 

dynamic schedules, a list of final schedules, a list of feasible packages, and a variable for the bids 

from the previous round of the bidding process. The dynamic schedule contains only the 

upcoming visits at the moment. Completed and cancelled visits are removed from this list and 

new allocated visits are added dynamically. Another schedule contains all the actually performed 

visits. The feasible package will be stored in advance each time a call for proposal is received, 

and will be cleaned after the bidding is terminated. The last variable, the previous bidding item, 

is used to calculate utility in next round in the auction. 

Object Practitioner simulates both the schedule performing process and the bidding process, 

which are described by the state chart in Fig. 12. It also defines the states and transitions between 

these two processes. The Practitioner Agent’s states include a composite state named available 

which consists of atHome, standby, waiting, moving and working. An initial state and a final 

state are used for variable initialization and statistical calculation. The states and trigger 

conditions are described in detail as follows: 

1) The initial state is for the Practitioner Agent registering on a specific day. Registered 

practitioners are available to take visits, while they could either have pre-allocated visits 

or an empty schedule. The profile of a practitioner, including the name, availability and 

http://www.opttek.com/OptQuest
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home location, is initialized in this step. Visits are loaded into their schedule if there are 

any. In addition, the availability of practitioners has to be loaded in advance to guarantee 

the correctness of calculations depending on it. The trigger condition of initial state is a 

minimum double value in this state chart to allow for initiation. 

2) An entry action is setup on the atHome state to initiate the location and move the 

Practitioner Agents to their departure and return locations. The states are fired to Standby 

when it’s the time to start working. 

3) The Standby state is supposed to interact with multiple states, including atHome, waiting, 

working and the final state. Entering the standby state from atHome means the agent is 

available from now on until their off-work time. A transition to the waiting state will be 

triggered if there are any remaining visits in their schedule, but the Practitioner Agent 

goes to the final state if they reach off-work time. The agent is unregistered at the time 

the latter transition is triggered and moves back to their home location. Besides the 

atHome state, there are another three incoming transitions: an Initial State Pointer, the 

waiting state and the working state. An Initial State Pointer is setup as the default entry 

of the available composite state to which the control is passed. The state will return from 

the waiting state to the standby state whenever there is a visit cancellation before the 

agent starts travelling towards that visit, while the visit is not allowed to be cancelled 

when the agent is on the way. Another incoming transition is from working state, which 

indicates the visit is finished. 

4) Each time the control is passed to the waiting state, the system obtainss the current 

location and the earliest visit in its schedule, and calculates the travel time. Besides the 

transition directs to standby, another one directed to the moving state is triggered at the 

moment the agent has to depart to reach the next visit on time. Such a visit is removed 

from its dynamic schedule and added to the final schedule when such a transition is 

triggered. 

5) The Practitioner Agent is moving to the upcoming scheduled visit when the system enters 

the Moving state. This state is triggered to the working state when they reach their 

destination. 

6) After the pre-defined serving time of the specific visit, the system triggers the state back 

from working to standby. 
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7) The final state indicates the end of the available time of the Practitioner Agent, otherwise 

the agent stays in the standby state even if there are no upcoming visits in their dynamic 

schedule. The statistical calculation is conducted in this transition. 

 As the Practitioner Agent is performing their schedule, the call for proposal message will 

trigger the state out to a bidding process from whatever state the agent is in. After the HC 

Agency determines the allocation, the state of participating Practitioner Agents will return to the 

moment it was called out. The bidding process includes two states, creatingBid and 

waitingResult. 

1) After receiving the call for proposal message from the HC Agency, the Practitioner Agent 

calculates the utility and generates feasible bundles (doFeasibleBundles()). If the agent 

does not have any feasible bundles, it returns to its state immediately. Otherwise, the 

agent participates in the bidding and enters the creatingBid state (createBid()). At this 

time, the agent will send an “UPDATE” message to the HC Agent. After the agent sends 

their bid to the HC Agency, they enter the waitingResult state. 

2) After receiving the bidding result, the agent updates their schedule accordingly and 

returns to the state where it was triggered if this is the final bidding round. Otherwise, it 

continues to the next round and the state is transited back to creatingBid. 

 

5.3.4 State Chart of Health Care Agency 

 The object HC Agent plays the role of dispatcher in the model. The HC agent is an 

autonomous agent who calls for proposal messages, solves the optimization problem, and sends 

the bidding result back to Practitioner Agents. A bidirectional connection is setup between 

Practitioner Agents and the HC Agency for message passing. The solicited bids sent from 

Practitioner Agents are stored into a variable bids, which is one of the two inputs of the 

optimization model. Two other variables, numberOfBids and numberofSends, are setup to count 

the number of received bids and the times at which the result is sent back to the Practitioner 

Agents, respectively. The HC Agency monitors the number of received bids to decide when the 

winner determination problem should be solved. Similarly, the HC Agency goes back to the 

waitingBids state after all results are sent. 
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The HC Agency utilizes a state chart to control its behaviors (Fig. 13). Three states are 

defined in this chart: initial, waitingBids and calculating. 

1) The initial state will be triggered at the same time as the initial state of the Practitioner 

Agent, which leaves time for parameter initiation. Thereafter, the HC Agency moves to 

the waitingBids state, at the same time as the Practitioner Agents start to register. The 

trigger condition of initial state is a minimum double value. 

2) In the waitingBids state, a transition directed to itself will be triggered by the message 

“UPDATE” from a Practitioner Agent. Each time a bid is sent, the practitioner sends an 

update message to the HC Agency to update the state chart-related data. The reason we 

setup such a mechanism is that the values pertaining to the state chart (e.g., the 

numberOfBids) will not otherwise be updated automatically. The other outgoing 

transition will be triggered to the calculating state by the appropriate condition, which is 

when the number of received bids equals the number of registered practitioners, at the 

same time as the number of received bids is NON-zero. This transition solves the 

allocation problem, which means it starts the bidding process we have proposed. As we 

described previously, the backup practitioners will always participate in the bidding with 

the standard price and no price decreases. Thus, the bids of such practitioners are known, 

as soon as the new home visit information is decided. The HC Agency adds those bids to 

 

Figure 11 Health Care Agency State Chart 
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its collection in one step in this action. The HC Agency solves the winner determination 

problem by passing the set of bids and the set of incoming visits to the optimization 

model, and obtains the results from the solver. According to the result, the HC Agency 

checks the termination condition, then either sends a modified call for proposal message 

in the event that the bidding is not supposed to be terminated, or notifies the Practitioner 

Agents of the final allocation. After the bidding process is complete, the bids will be 

cleaned. The number of results sent to Practitioner Agents will be setup to zero when this 

transition is triggered. 

3) After the bidding results are sent to all participated Practitioner Agents, the system 

triggers the transition that directs it from calculating to waitingBids. At the same time, 

the number of received bids will be set to zero. 

 

5.4 Simulation Model Implementation 

 This section summarizes the algorithms of the essential functions, all of which are 

implemented in Java. 

 

5.4.1 Feasibility Checking 

Algorithm 3 checkFeasibility 

Input: Visit visit 

Output: Boolean 

  Boolean feasible 

  currentVisit 

  if service time inteval ∉ feasible time then 

    feasible ← false 
  else 

    if schedule = ∅ then 

      if finalSchedule ≠ ∅ then 

        currentVisit ← last visit in finalSchedule 

 else 

   currentVisit ← home 
 end if 

     if time(currentVisit,visit)<= start time of visit then  

   feasible ← true 

 else 

   feasible ← false 

 end if 

     else 

 if start time of visit < start time of first visit in schedule then 
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        if finalSchedule ≠ ∅ then 

          currentVisit ← last visit in finalSchedule 
   else 

     currentVisit ← home 
   end if 

   if time(currentVisit,v)<= start time of visit and time(v,first visit in 

schedule)<= start time of first visit in schedule then 

     feasible ← true 
   else 

     feasible ← false 
   end if 

      else if start time of visit >= end time of last visit in schedule then 

   if time(last visit in schedule,visit)<= start time of visit then 

        feasible = true 

     else 

        feasible = false 

     end if 

 else  

   if time(previous visit in schedule, visit)<=start time of visit and  

     time(visit, next visit in schedule)<=start time of next visit then 

     feasible ← true 

   else 

     feasible ← false 

   end if 

 end if 

     end if 

   end if 

return feasible 

Table 11 Feasibility Checking Algorithm 

 There are several different important issues to consider when checking the feasibility of a 

visit: 1) whether the service time is in the feasible time range of a practitioner or not; 2) whether 

there are upcoming visits in a practitioner’s dynamic schedule; 3) whether the incoming visit 

would be first in the practitioner’s dynamic schedule should they accept it; 4) whether the 

incoming visit would be last in their dynamic schedule; and 5) whether the visit time of the 

incoming visit is feasible between already scheduled visits. We apply the same checking rule for 

the above-mentioned scenarios, which is that all the time constraints should be satisfied, 

including the visit start time, as well as the availability of the practitioner. The travel time is 

calculated based on the route given by the routing server and the predefined travel speed. 

 

5.4.2 Distance Calculation 

Algorithm 4 calculateDistance 

Input: List<Visit> schedule 

Output: totalDistance 

  totalDistance ← 0 

  if schedule ≠  ∅ then 

    if finalSchedule ≠ ∅ then 

      previous ← last visit in finalSchedule 
    else 
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      previous ← home 

end if 

departDistance ← distance(previous,the first visit in schedule) 

returnDistance  ← distance(the last visit in schedule, home) 

for Each Visit in schedule do 
  scheduleDistance ← scheduleDistance + distance(𝜐𝑖 , 𝜐𝑖+1)   
end for 
totoalDistance ← scheduleDistance + departDistance + returnDistance 

  end if 
  return totalDistance 
 

Table 12 Distance Calculation Algorithm 

 This algorithm is used for calculating the overall travel distance of a schedule. The input is 

the dynamic schedule at the moment such a method is invoked. The overall distance is defined as 

the total distance for the practitioner departing from their current location, finishing all the visits 

on their schedule, and finally, returning home.  

 

5.4.3 Feasible Package Generation 

Algorithm 5 doFeasibleBundles 

Input: schedule, objectives 

Output: List<FeasiblePackage> 

  Boolean breakIndicator 

  currentDistance ← calculateDistance(schedule) 
  for Each VisitBundle vb in objectives do 

breakIndicator ← false 

for Each Visit visit in vb do 

  if checkFeasibility(visit) = true then  

    continue 

  else 

    breakIndicator ← true 
    break 

  end if 

end for 

    if breakIndicator = true then 

  continue 

    end if 

newSchedule ← add vb to schedule 

afterDistance ← calculateDistance(newSchedule) 

baseCost ← (afterDistance – currentDistance) * millage rate 

priceTotal ← size of vb * standard price 
if priceTotal – baseCost > 0 do 

  create a FeasiblePackage fp 

  add fp to fPs 
end if 

end for 

return fPs 

Table 13 Feasible Package Generation Algorithm 

     doFeasibleBundles creates the feasible bundles for each practitioner. The feasible bundle is 

that which has passed feasibility checking and has a positive utility for the practitioner. The 
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travel cost is scaled to a money value through multiplying a mileage rate by the travel distance. 

The overall price of a bundle is the sum of a standard price per visit. VisitBundle is an object that 

contains one or more Visit objects. FeasiblePackage is an object that contains a VisitBundle 

object and the bundle’s baseCost and priceTotal.  

 

5.4.4 Bid Creation 

Algorithm 6 createBid 

Input: epsilon 

Output: Bid 

  if oldFP ≠  ∅ then 
for Each FeasiblePackage fp in fPs do 

  if oldFP = fp then 

    price of fp ← price of fp – epsilon 

    oldFP ← fp 
  end if 

end for 

  end if 

  maxUtility  ← 0 

  FeasiblePackage maxUtilityFP 
  for Each FeasiblePackage fp in fPs do 

utility ← price – cost 
if utilty > maxUtility then 

  maxUtilityFP  ← fp 

  maxUtility  ← utility 
end if 

  end for 

  if maxUtility ≠ 0 then 
numberOfBids ++ 

oldFP  ← maxUtilityFP 

isInFinalState  ← false 
  else 

isInFinalState  ← true 
for Each FeasiblePackage fp in fPs do 

  if oldFP = fp then    

    price of fp ← price of fp + epsilon 

    maxUtilityFP ← fp 
  end if 

end for 

oldFP ← maxUtilityFP 
  end if 

  create new bid with maxUtilityFP and isInFinalState 

  Attach other needed information to bid 

  return bid 

Table 14 Bid Creation Algorithm 

     

      Only in the case where there are feasible packages for the practitioner, who is also able to 

participate in the bidding, is the createBid method invoked. oldFP is a FeasiblePackage object 

which is initialized outside the method as null. In the first round of bidding, the bidding price is 
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the standard price of such a VisitBundle. The bidding price decreases by the epsilon starting from 

the second round. Thereafter, the feasible package with maximum utility will be selected as the 

bidding objective. The final state is determined through checking the value of maxUtility. 

Finally, the bid is created based on such objectives and the bidding price. The practitioner’s 

identification and other required information should be attached to the bid, such as the indicator 

of the final state, final round, and awarded. 

 

5.4.5 Termination Checking 

Algorithm 7 terminationChecking 

Input: bids 

Output: Boolean 

  terminate ← true 
  if numberOfBids = 1 then 

return terminate 
  else 

for Each Bid bid in bids do 

  if bid is not in final state then 

    terminate ← false 
    break 

  end if 

end for 

return terminate 

  end if 

Table 15 Termination Checking Algorithm 

 At each bidding round, the auctioneer will check whether the bidding process needs to be 

terminated. In cases where there is only one bid, the bidding is terminated by simply awarding 

the visit to that bid. Otherwise, the bidding is terminated only when every bid is in its final state. 

The final state indicator in each bid is assigned as either true or false in createBid().  

  

5.4.6 Iterative Bidding 

 

Algorithm 8 iterativeRun 

Input: serviceRequests, bids 

Output: Void 

  for Each Visit visit in serviceRequests do 

create bid for visit with standard price 

add bid to bids 
  end for 

  call solver 

  if terminationChecking() = false then 
call for proposal 

  else 
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for Each Bid bid in bids do 

  set bid to final round 

  send bidding result 

  numberOfSends ++ 
end for 

  end if 

 

Table 16 Iterative Bidding Algorithm 

 Based on the assumption that there are always backup practitioners willing to take a single 

visit at standard price, the model creates bids for those practitioners and adds them to the 

collection of bids in each round of bidding. The optimization solver in which the model is 

programmed is called upon when the model input is ready, and the awarded indicator in the bid 

is set to true depending on the computing result. Thereafter, additional calls for proposal are sent 

whenever termination-checking fails; otherwise the final round indicator is set to true and 

bidding is terminated. 

 

5.4.7 Optimization Model for Winner Determination Problem  

 The optimization model is programmed with the OptQuest optimization solver embedded in 

Anylogic. The mathematical model can be found in section 4.2.1.4, while the code itself is 

shown in Fig. 17.  

try { 
        // Create Engine 
        Engine engine = createEngine();     
        // Set stop time, initialize random number generator: 
        engine.setStopTime(50); 
        engine.setDefaultRandomGenerator(new Random());         
        // Create optimization engine 
        final COptQuestOptimization opt = ExperimentOptimization.createOptimization(engine); 
        // Set optimization variable 
        ArrayList<COptQuestVariable> v = new ArrayList<COptQuestVariable>(); 
        for (int i=0; i<dispatcher.bids.size(); i++) { 
         final COptQuestVariable x = new COptQuestBinaryVariable();        
         v.add(x); 
        } 
        for (int i=0; i<dispatcher.bids.size(); i++) { 
         opt.AddVariable(v.get(i)); 
        } 
         
        // Create objective 
        final COptQuestObjectiveFunction obj = new COptQuestObjectiveFunction(); 
        obj.SetMinimize();       
   for (int i=0; i<dispatcher.bids.size(); i++) { 
         obj.AddVariable(v.get(i),dispatcher.bids.get(i).getFp().getPriceTotal()); 
        } 
        opt.AddObjective(obj); 
        // Create constraint 
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        for (Visit visit : main.serviceRequests) { 
    final COptQuestEQConstraint constraint = new COptQuestEQConstraint(); 

     for (int i=0; i<dispatcher.bids.size(); i++) { 
        if 
(dispatcher.bids.get(i).getFp().getVisitBundle().getVisits().contains(visit) == true) { 
    constraint.AddVariable(v.get(i),1);    
  } 
      } 
         constraint.SetRHS(1); 
         opt.AddConstraint(constraint); 
        }  
        // Set the number of iterations to run 
        opt.SetMaximumIterations(50); 
   
        // Perform optimization 
        opt.Optimize(); 
  
        // Output results 
        COptQuestSolution bestSolution = opt.GetBestSolution(); 
 
 for (int i=0; i<dispatcher.bids.size(); i++) { 
         dispatcher.bids.get(i).setAwarded(bestSolution.GetVariableValue(v.get(i))); 
 }  
    
 } catch (COptQuestException e) { 
        traceln(e.Description()); 
        
 } 

 

 

Figure 12 Optimization Model for Winner Determination in Simulation 

 

5.5 Simulation Scenarios and Results 

 The model simulates the dynamic scheduling process as well as practitioners’ daily routines. 

The preferences of practitioners are loaded into the model before the simulation starts. 

Meanwhile, a set of planned visits for the specific day and their service start times, locations and 

the name of each assigned practitioner are imported into each practitioner’s initial schedule. A 

group of practitioners can become available, along with the time going, according to the 

particular time they each start working. They depart from their individual homes, visit their 

patients, and end their day once they return. Home visit requests will occur randomly over the 

course of their working day. The health care agency assigns practitioner to incoming visits 

following the rules of the designed scheduling mechanism. The model time unit is set up to hours 

and the simulation starts from time zero. This section contains four scenarios that describe 

possible cases during dynamic scheduling. 
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 Scenario 1 

 In this scenario, a simple example can be used to illustrate the dynamic scheduling process. 

Since the performance of the scheduling mechanism has already been evaluated in the last 

chapter, we keep the example here simple enough to present the dynamic characteristic of the 

problem. Table 17 lists the scheduled visit information and the value of their attributes. For 

example, visit #101 is located at the listed coordinates and practitioner Lily is supposed to visit 

there at time 2 and finish service at time 2.5. Lily will reach this location exactly at time 2 from 

either her home or from a previous visit, depending on her schedule. Practitioner profiles are 

listed in Table 18, including their names, availabilities, and the location coordinates each 

practitioner. For example, Mayo is available from time 2 to time 10, and is expected to depart 

from and return to the location of the corresponding coordinates. The simulation model loads this 

information and constructs the initial schedules of each practitioner. The initial schedules are 

listed in Table 19. Each time a dynamic event is triggered, one or more new visits with initialized 

attributes are created as the bidding objectives. In this example, the standard price of a single 

visit is set to $30, the epsilon is set to 10 and the mileage cost is set to $2. We suppose the 

patients have to make the appointment at least 2 hours in advance. The trigger rate of the discrete 

events is set to an average once every two hours. 

Three events are triggered and a total of four visits are generated in this simulation run. The 

allocation results and taking prices are listed in Table 20. The last three columns in the table are 

the payment from the proposed solution, the payment of First-Come-First-Serve, and the 

practitioner’s cost of taking the visit. Compared to the manual scheduling method, which follows 

FCFS, we can observe that the overall payment is reduced by 50%. Incoming visits are assigned 

and the corresponding schedules are updated, as shown in the final schedule (Table 21). 

visitID homeX homeY startTime endTime Practitioner 

101 45.5011 -73.6015 2 2.5 Lily 

102 45.4888 -73.6777 4 4.5 Lily 

103 45.5111 -73.58 6.5 7 Jenny 

104 45.5011 -73.6777 3 3.5 Mayo 

105 45.5111 -73.58 5 5.5 Mayo 

106 45.5111 -73.65 3 3.5 Ciara 

Table 17 Planned Visits in Run 1 
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Name startTime endTime homeX homeY 

Jenny 6.00 10.00 45.51223 -73.67496 

Lily 1.00 8.00 45.52 -73.62 

Mayo 2.00 10.00 45.4888 -73.61539 

Ciara 2.00 10.00 45.4887 -73.67 

Emily 1.00 10.00 45.48 -73.66 

Table 18 Profile of Practitioners 

Practitioner Schedule 

Lily {Visit#101, startTime:2.0} {Visit#102, startTime:4.0}  

Mayo {Visit#104, startTime:3.0} {Visit#105, startTime:5.0}  

Emily  

Jenny {Visit#103, startTime:6.5}  

Ciara {Visit#106, startTime:3.0} 

Table 19 Initial Schedules 

Event Time visitID startTime endTime Practitioner Payment FCFS Cost 

3.143 1 5.93 6.43 Lily 10 30 2.01 

4.088 2 8.92 9.42 Jenny 10 30 8.75 

6.898 3 8.96 4.88 Emily 20 30 19.31 

6.898 4 9.0 5.27 Mayo 20 30 19.7 

Table 20 Dynamic Scheduling Result in Run 1 

Practitioner Schedule 

Lily {Visit#101, startTime:2.0} {Visit#102, startTime:4.0} {Visit#1, startTime:5.933} 

Mayo {Visit#104, startTime:3.0} {Visit#105, startTime:5.0} {Visit#4, startTime:8.998} 

Emily {Visit#3, startTime:8.965} 

Jenny {Visit#103, startTime:6.5} {Visit#2, startTime:8.924} 

Ciara {Visit#106, startTime:3.0} 

Table 21 Final Schedules in Run 1 

The event occur rate, practitioner number, and epsilon of bidding can all be adjusted as 

needed in order to evaluate the model’s performance in different scenarios. We set up another 

three scenarios that may reflect the business development process.  

 Scenario 2 

The second scenario assumes that the home visit requests are increased in both the initial 

schedules and later on. In this run, three more planned visits are added into the initial schedules, 

and a total of nine incoming visits occur during the performing time (the discrete time event rate 
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is 0.6). As illustrated in Table 24, while most visits are assigned to practitioners, there are some 

special cases: 

1) Visit#9 cannot be taken because its finish time falls outside the working time for all 

nurses. Visit#11 needs to be handled manually because no working practitioner is able to 

take this visit due to its lack of feasibility.  

2) Visit #8 and visit#10 did not reach the lowest possible price, as there is only one 

practitioner who is able to take those visits, meaning there were no competitors in their 

bidding. These visits are assigned to the practitioner directly. 

visitID homeX homeY startTime endTime Practitioner 

107 45.503 -73.66 7 7.5 Ciara 

108 45.499 -73.599 5 5.5 Emily 

109 45.505 -73.62 8 8.5 Emily 

Table 22 New Planned Visits in Run 2 

Practitioner Schedule 

Lily {Visit#101, startTime:2.0} {Visit#102, startTime:4.0} 

Mayo {Visit#104, startTime:3.0} {Visit#105, startTime:5.0} {Visit#6, startTime:8.956} 

Emily 
{Visit#108, startTime:5.0} {Visit#1, startTime:7.005}  

{Visit#109, startTime:8.0} {Visit#7, startTime:8.938} 

Jenny 
{Visit#103, startTime:6.5} {Visit#2, startTime:7.35}  

{Visit#5, startTime:8.142} {Visit#8, startTime:9.191} 

Ciara 
{Visit#106, startTime:3.0} {Visit#107, startTime:7.0} {Visit#3, startTime:7.799}  

{Visit#4, startTime:8.523} {Visit#10, startTime:9.322} 

Table 23 Final Schedules in Run 2 

Event 

Time 
visitID startTime endTime Practitioner Price FCFS 

Travel 

Cost 

2.619 1 7 7.5 Jenny 10 30 7.65 

2.619 2 7.35 7.85 Emily 20 30 14.97 

5.434 3 7.8 8.3 Ciara 20 30 12.75 

5.629 4 8.52 9.02 Ciara 30 30 21.15 

5.629 5 8.14 8.64 Jenny 20 30 17.5 

6.911 6 8.96 9.46 Mayo 20 30 18.86 

6.911 7 8.94 9.44 Emily 10 30 4.58 

7.465 8 9.19 9.69 Jenny 30 30 15.58 

7.859 9 9.67 10.17 N/A N/A N/A N/A 

7.888 10 9.32 9.82 Ciara 30 30 8.76 

7.888 11 9.7 10.2 Manual 30 30 30 

Table 24 Dynamic Scheduling Result in Run 2 
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 Scenario 3 

In this scenario, three more visits are added to the initial plan, and a total of 13 new visits are 

entered into the system (discrete event rate = 1). We analyze some special cases in this scenario 

as follows: 

1. Visit #3 and visit #4 were awarded to Ciara as a package. This is one of the feasible 

packages for the practitioner, and the visits in this package will be added to Ciara’s 

dynamic schedule once the bidding terminates. 

2. More visits need to be handled manually by the health care agency compared with the 

last experiment run. In case the resources are static, the number of such cases would 

increase as the number of visit requests grows. The health care agency may make the 

decision to involve more practitioners according to the simulation results due to its own 

business requirements. 

visitID homeX homeY startTime endTime Practitioner 

110 45.5111 -73.6 8 8.5 Jenny 

111 45.503 -73.62 2 2.5 Emily 

112 45.49 -73.58 7 7.5 Mayo 

Table 25 New Planned Visits in Run 3 

Practitioner Schedule 

Lily {Visit#101, startTime:2.0} {Visit#102, startTime:4.0} 

Mayo 
{Visit#104, startTime:3.0} {Visit#105, startTime:5.0} 

{Visit#112, startTime:7.0} {Visit#9, startTime:8.69} 

Emily 
{Visit#111, startTime:2.0} {Visit#108, startTime:5.0} {Visit#5, startTime:7.291} 

{Visit#109, startTime:8.0} {Visit#12, startTime:8.894} 

Jenny 
{Visit#103, startTime:6.5} {Visit#8, startTime:7.295} 

{Visit#110, startTime:8.0} {Visit#7, startTime:8.744} 

Ciara 

{Visit#106, startTime:3.0} {Visit#3, startTime:5.123} {Visit#1, startTime:6.187} {Visit#107, 

startTime:7.0} {Visit#6, startTime:7.595} {Visit#4, startTime:8.454} {Visit#13, 

startTime:9.263} 

Table 26 Final Schedules in Run 3 

Event 

Time 
visitID startTime endTime Practitioner Price FCFS 

Travel 

Cost 

1.572 1 6.19 6.69 Ciara 20 30 18.1 

1.572 2 4.68 5.18 Manual 30 30 30 

2.044 3 5.12 5.62 
Ciara 30 

30 
28.2 

2.044 4 8.45 8.95 30 

2.044 5 7.29 7.79 Emily 30 30 21.33 
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4.166 6 7.59 8.09 Ciara 10 30 7.8 

4.166 7 8.74 9.24 Jenny 10 30 9.83 

4.844 8 7.3 7.8 Jenny 30 30 14.55 

6.6 9 8.69 9.19 Mayo 10 30 6.38 

6.617 10 8.86 9.36 Manual 30 30 30 

6.617 11 8.7 9.2 Manual 30 30 30 

6.617 12 8.89 9.39 Emily 30 30 14.46 

7.292 13 9.26 9.76 Ciara 30 30 10.61 

Table 27 Dynamic Scheduling Result in Run 3 

 Scenario 4 

Since the visit requests increased with the business development of the health care agency, it 

may want to add more resources in order to maintain its visit acceptance rate and service quality. 

In this scenario, two more practitioners are added, as listed in Table 29, while we keep all other 

parameters unchanged. The simulation result of this run shows the percentage of visits that need 

to be handled manually decreases as the available resources are increased. 

Name startTime endTime homeX homeY 

Anne 1.00 10.00 45.47 -73.66 

Key 1.00 10.00 45.52 -73.62 

Table 28 New added Practitioners in Run 4 

 

Event 

Time 
visitID startTime endTime Practitioner Price FCFS 

Travel 

Cost 

1.048 1 4.11 4.61 Mayo 20 30 19.94 

1.458 2 8.39 8.89 Ciara 30 30 13.14 

3.632 3 7.33 7.83 Lily 10 30 3.73 

3.633 4 7.08 7.58 
Emily 20 

30 
18.3 

3.633 5 8.87 9.37 30 

4.675 6 7.15 7.65 Key 20 30 10.03 

4.675 7 7.2 7.7 Jenny 20 30 19.44 

4.687 8 6.71 7.21 Lily 20 30 13.13 

4.687 9 8.72 9.22 Jenny 10 30 7.56 

4.918 10 8.63 9.13 
Anne 30 

30 
27.42 

4.918 11 7.92 8.42 30 

6.454 12 8.61 9.11 Mayo 30 30 19.28 

6.79 13 8.95 9.45 Manual 30 30 30 

6.79 14 8.85 9.35 Key 30 30 19.47 

Table 29 Dynamic Allocation Result in Run 4 
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Practitioner Schedule 

Lily 

{Visit#101, startTime:2.0} {Visit#102, startTime:4.0}  

{Visit#8, startTime:6.707} {Visit#3, startTime:7.33} 

Mayo 

{Visit#104, startTime:3.0} {Visit#1, startTime:4.108} 

 {Visit#105, startTime:5.0} {Visit#112, startTime:7.0} {Visit#12, startTime:8.607} 

Emily 

{Visit#111, startTime:2.0} {Visit#108, startTime:5.0}  

{Visit#4, startTime:7.077} {Visit#109, startTime:8.0} {Visit#5, startTime:8.873} 

Jenny 

{Visit#103, startTime:6.5} {Visit#7, startTime:7.198} 

 {Visit#110, startTime:8.0} {Visit#9, startTime:8.723} 

Ciara {Visit#106, startTime:3.0} {Visit#107, startTime:7.0} {Visit#2, startTime:8.39} 

Anne {Visit#11, startTime:7.921} {Visit#10, startTime:8.633} 

Key {Visit#6, startTime:7.151} {Visit#14, startTime:8.847} 

Table 30 Final Schedules in Run 4 

5.6 Summary 

The designed AnyLogic-based simulation model aids health care agencies in analyzing their 

scheduling strategies through a low-cost simulation of the business process. The model simulates 

scheduling procedures following the proposed scheduling strategy, as well as practitioners’ 

visiting processes. The preferences of both practitioner and patient can be imported into the 

model, including initial schedules, practitioner availability, and other preferences. The statistical 

simulation results are summarized in Table 32. The first five columns list configurations of 

different runs. The last three columns present the overall cost to practitioners, the payment by 

health care agencies, and the payment of using FCFS. It is observed that the payment of solutions 

generated in dynamic environments is reduced by an average of 38% compared to those 

generated by the FCFS algorithm across the eight groups of problem instances. It is also 

observed that the agency pays the practitioners on average 25% over the costs of taking a visit. 

Group Agent # Visit # Epsilon Rate New Visit # Taken Visit # Overall Cost Payment FCFS 

Run #1 5 6 5 0.5 4 4 $50 $55 $120 

Run #2 5 6 10 0.5 4 4 $50 $60 $120 

Run #3 5 9 5 0.6 11 10 $152 $200 $300 

Run #4 5 9 10 0.6 11 10 $152 $220 $300 

Run #5 5 12 5 1 9 9 $151 $175 $270 

Run #6 5 12 10 1 9 9 $151 $180 $270 

Run #7 7 12 5 1.5 14 14 $201 $225 $420 

Run #8 7 12 10 1.5 14 14 $201 $270 $420 

Table 31 Summary of Simulation Results 
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Chapter 6 Conclusions and Future Work 

 

This thesis investigates modeling and computational issues in developing solutions to 

dynamic decentralized scheduling problems in home health care. The issue of how to 

dynamically allocate practitioners to visits to ensure service quality while keeping costs to a 

minimum is an important one for policymakers. Compared to the classic centralized scheduling 

problem, one of the challenges of home health care resource scheduling is the lack of complete 

information in the distributed environment, in which the valuation information of each 

practitioner is unknown to anyone else. Another challenge is that the time dimension increases 

the complexity of the problem. Unexpected situations need to be accommodated within the time 

frame of an already active schedule. Based on our analysis of the problem, our main efforts 

address these issues in the design of the agent-based system and the dynamic scheduling 

simulation model. 

In the agent-based system, a combined negotiation protocol and reverse combinatorial 

bidding framework is proposed as the communication method between agents. The Health Care 

Agency is set up to play the role of mediator in charge of organizing the negotiation process. The 

Practitioner Agents are self-interested agents and make decisions according to their own 

strategies. The decision-making process is implemented to help practitioners with the bidding 

process. The bidding mechanism facilitates multilateral negotiation between practitioners, with 

the objective of reducing home care service costs. The uniqueness of the proposed approach is 

that it uses an iterative bidding framework to integrate the exploration of best visiting schedules 

for the practitioners with the requirement of covering all planned visits, coordinating the 

behaviors of all self-interested parties in a highly decentralized resource allocation environment. 

The solution achieves a high efficiency of the optimal solution and the objective of cost 

containment in home health care, while still leaving a reasonable profit room for practitioners. 
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To deal with the dynamic challenge, we proposed a solution framework with an algorithm 

that repeatedly invoked a meta-algorithm, the bidding mechanism, according to a pre-defined 

scheduling strategy. The AnyLogic-based simulation model is developed to simulate the 

dynamic scheduling procedure as well as the business operations. The model takes initial 

schedules as input and simulates the accommodation of unexpected situations. The model was 

designed with an agent-based method combined with discrete time events, and the agents’ local 

decision-making processes are reflected in the design of state chart. The parameters can be easily 

adjusted according to different scheduling strategies without touching the overall model 

structure. Different scenarios are described in order to illustrate the dynamic scheduling process, 

and the goals are achieved according to the computational results. Moreover, the model provides 

a decision-making support tool for health care agencies and serves as a test bed for different 

scheduling strategies. 

One of our intended future research directions is to enhance the rescheduling algorithm to 

further reduce overall costs. Current rescheduling policies do not allow the practitioner to 

decommit to a previous contract. Assuming that decommitment is not an issue, such a policy can 

be adapted based on leveled-decommitment contracting [53], such that the practitioner is actively 

allowed to decommit to a previous contract by paying a penalty to other parties. The penalty 

designed in the mechanism is intended to provide a certain level of control to the system, rather 

than encouraging the contract parties to conduct their obligations and to prevent the contract 

parties from decommiting. 

Designing a bidding language specifically for agent-based home health care scheduling is an 

interesting and potentially useful research direction. Based on the structure of requirement-based 

bidding language, a simple and sufficiently expressive bidding language could be designed for 

home health care scheduling, leveraging the domain specific scheduling problem structure. In 

addition, while the current solution is adequate for relatively small-scale scheduling problems, it 

does not provide the required responsiveness with large scale data. Given that the richness of the 

language allows users to express complementarities over their preferences, implementable 

approximation mechanisms could be able to trade off solution quality for a polynomial time 

guarantee. 
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