
IDENTIFICATION OF JAVASCRIPT FUNCTION

CONSTRUCTORS USING STATIC SOURCE CODE ANALYSIS

Shahriar Rostami Dovom

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

August 2016

c© Shahriar Rostami Dovom, 2016

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Shahriar Rostami Dovom

Entitled: Identification of JavaScript Function Constructors Using Static

Source Code Analysis

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Lata Narayanan Chair

Joey Paquet Examiner

Weiyi Shang Examiner

Nikolaos Tsantalis Supervisor

Approved
Chair of Department or Graduate Program Director

20

Amir Asif, PhD, PEng, Dean

Faculty of Engineering and Computer Science

Abstract

Identification of JavaScript Function Constructors Using Static Source Code

Analysis

Shahriar Rostami Dovom

Software maintenance and comprehension constitute a considerable portion of the required effort for

software development, and thus, myriad number of studies have proposed approaches for improving

maintainability of software systems. However, the majority of these studies have examined software

systems written in traditional programming languages, such as Java and C++. While the ubiquity

of web has resulted to JavaScript to be extensively adopted by developers, studies that investigate

maintainability issues in JavaScript are scarce.

Prior to the recent updates on the JavaScript language specifications, developers had to use cus-

tom solutions to emulate classes, modules, and namespaces in JavaScript programs; consequently,

detecting classes in JavaScript programs is non-trivial due to the flexibility of JavaScripts syntax.

To improve the maintenance and comprehension of JavaScript programs, we design and implement

JSDeodorant , an automatic approach for detecting Function Constructors (i.e., the emulation of

Object-Oriented classes) in JavaScript programs. These function constructors can be declared lo-

cally, under a namespace, or in other modules. The comparison with the state-of-the-art tool,

JSClassFinder, shows that, while the precision of the tools are very similar (97% and 98%, respec-

tively for JSDeodorant and JSClassFinder), the recall of JSDeodorant (98%) is much higher than

JSClassFinder (61%).

Finally, we conduct an empirical study to compare the extent to which JavaScript programs in

different domains (websites, server-side programs written in NodeJS, and libraries) adopt Object-

Oriented classes. Our study shows that classes are more frequent in websites than NodeJS programs.

Also, NodeJS projects have fewer classes compared to libraries.

iii

Acknowledgments

First I want to express my sincere gratitude to my advisor Dr. Nikolaos Tsantalis for his guidance

all the way through the research. His patience, profound knowledge and motivation make me able

to improve my skills, to tackle difficult obstacles and empower my willing to get this research done.

Besides my advisor, I would like to thank my thesis examiners, Dr. Joe Paquet and Dr. Weiyi

Shang for their valuable time to read my thesis and for their invaluable comments. Other faculty

members of the Department of Computer Science and Software Engieering, specially Dr. Emad

Shihab and Dr. Peter C. Rigby, for providing the necessary guidance.

I would like to thank Dr. Laleh M. Eshkevari for her valuable contribution in my thesis project.

My special thank to my lab-mate and colleague Davood Mazinanian, for his continuous help in

my research and his great contribution for an Eclipse plugin written to help developers easily use

JSDeodorant analysis engine.

I would like to thank FQRNT, the Faculty of Engineering and Computer Science and Financial

Aid and Award office at Concordia University for their generous financial support of this project. I

want to express my thankfulness to the staff members of our university for keeping our environment

clean, safe and engaging.

Last but not least, I am very thankful to my parents, for their love, sacrifices and their generous

financial helps during my studies.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Software Maintenance and Comprehension . 2

1.2 Object Oriented Programming in JavaScript . 2

1.3 Motivation . 4

1.4 Contributions . 5

2 Background 7

2.1 Emulating Classes . 7

2.2 JavaScript Namespace Emulation . 11

2.3 JavaScript Module Pattern . 15

3 Literature Review 19

3.1 Does JavaScript Software Embrace Classes? [SRV+15] 19

3.2 Normalizing Object-Oriented Class Styles in JavaScript [GACD12a] 20

v

3.3 JSNOSE: Detecting JavaScript Code Smells [FM13] 21

3.4 An Analysis of the Dynamic Behavior of JavaScript Programs [RLBV10] 23

3.5 Dont Call Us, Well Call You: Characterizing Callbacks in JavaScript [GMB15] . . . 25

3.6 Detecting Inconsistencies in JavaScript MVC Applications [OPM15] 26

3.7 Development Nature Matters: An Empirical Study of Code Clones in JavaScript

Applications [CRK16] . 27

3.8 JavaScript Errors in the Wild: An Empirical Study [JPZ11] 28

3.9 JavaScript: The Used Parts [GHWB14] . 30

4 Approach 31

4.1 Step 1: Parsing JavaScript Files and Building Model 31

4.1.1 Hierarchical Model . 32

4.2 Step 2: Post-processing . 35

4.3 Step 3: Binding Object Creations . 36

4.3.1 Simple Name Identifier: . 36

4.3.2 Composite Name Identifier: . 37

4.4 Step 4: Inferring Function Constructors . 37

5 Evaluation of Accuracy 39

5.1 Oracle . 39

5.2 Precision and Recall . 40

5.3 Comparison with the state-of-the-art tool . 42

5.4 Threats to Validity . 44

6 Empirical Study 46

vi

6.1 Study Setup and Results . 46

6.2 Discussion . 47

6.3 Threats to Validity . 49

7 Tool Demonstration 53

7.1 CLI Mode . 53

7.2 Eclipse Plugin . 56

8 Conclusion and Future Work 60

Bibliography 62

vii

List of Figures

1 Function Constructor . 9

2 Function Constructor with Prototype . 9

3 Object Literal . 10

4 Global Variables . 11

5 Similar Name . 12

6 Referring to JavaScript Files From HTML . 12

7 Nested Object Literals . 13

8 Immediately Invoked Function Expression . 14

9 Immediately Invoked Function Expression With a Return Statement 14

10 Immediately Invoked Function Expression With a Parameter 15

11 An example illustrating the export and import in CommonJS style. 16

12 An Example Illustrating the Export and Import in AMD Style. 17

13 An Example Illustrating the Export and Import Using Closure Library Style. 18

14 Overview of the Proposed Approach . 32

15 Composite Design Pattern . 33

16 An Overview of JSDeodorant Architecture . 34

viii

17 Example of a Function Constructor JSDeodorant Failed to Identify 42

18 Example of a Function in the Test Code That Was Not Annotated, but Added to

the Oracle as a Function Constructor. 44

19 Analysis Result in The Console . 56

20 Run Eclipse Plugin . 57

21 Modules View Window . 58

22 JSDeodorant Module Visualization . 58

23 An Example of Aliasing . 61

ix

List of Tables

1 Characteristics of the Analyzed Programs. 40

2 JSDeodorant Precision and Recall. 41

3 JSClassFinder Results of Detection. 43

4 Accuracy Measures for Both Tools . 43

5 Number of Function Constructors in JavaScript NodeJS Program. 50

6 Number of Function Constructors in JavaScript Websites. 51

7 Number of Function Constructors in JavaScript Libraries. 52

x

Chapter 1

Introduction

JavaScript is the language of the web browsers [Cro08]. The language evolved from being in just

client-side to make HTML elements more interactive. Nowadays, JavaScript is used for server-side

programming [AMP16a], and also is adopted by emerging environments, across a wide range of

Cloud Computing to Internet of Things [Pat]. It is the most used language on Github for three

consecutive years since 2013 [Aly].

JavaScript is built on some good and bad ideas [Cro08]. The language created in ten days by

Brendan Eich in May 1995. The language was designed under conflicting forces of managers at

NetScape to make the language like Java, to keep it simple for beginners and to have control on

everything in Netscape browser [Her12]. One of the issues with JavaScript is its global variable

programming model. Everything in JavaScript is global, unless some actions are taken in order

to reduce global footprints. The more global variable a program has, the more chances of bad

interactions (collisions) with other applications or libraries [Cro08].

Crockford suggests using single global variable, which can be used by other variables or ob-

jects as a container while other practitioners suggest different techniques to leverage modularity in

JavaScript such as closures.

This chapter introduces the concept of object-orientation in JavaScript and motivation of this

thesis as well as the contribution and approach.

1

1.1 Software Maintenance and Comprehension

Maintenance is an important part of a software life cycle. Following software release, there is a

need for improvements such as performance boost, fixing new defects or changes for adaptability

to a changed environment. Preserving software integrity while making changes to software is the

objective of maintenance [SBF14]. McKee [McK84] claims two thirds of a programmer activity at-

tributed for maintenance of existing parts. An estimation of 50% of total life cycle cost is associated

with the maintenance part [vV08].

Various techniques have been introduced to be used in software maintenance, including program

comprehension, re-engineering, reverse engineering, migration and retirement [SBF14]. Different

comprehension tools address different levels of a problem. Program slicers, static analyzers, dynamic

analyzers and dependency analyzers are among the well known tools used by practitioners.

Spending considerable time on program comprehension (including reading source code and doc-

umentation) to be able to apply changes by programmers, makes tool makers and researchers to

design code browsers and code visualizers to alleviate the difficulties of understanding source code.

There are still lots of gaps that should be addressed and with JSDeodorant , we are trying to help

developers better understand JavaScript programs to overcome barriers of comprehension in the

language.

We designed and implemented a developer aided tool, JSDeodorant , which presents a state of

the art static source code analysis which aim at identifying class-like structures in JavaScript that

developers use to improve re-usability and utilizing object oriented practices adapted from known

programming languages such as Java and C++.

1.2 Object Oriented Programming in JavaScript

In early nineties, object-oriented programming found its way to industry. It was a combination of

different ideas which were previously conceived and accepted by the software community. However

this time it was in the form of books, courses and programming languages which were built on top

of this phenomena. Many developers think of object-oriented as the key to most of the problems,

and if a system does not obey accepted principles in object orientation, it would be considered

inferior [Hav14].

2

Object oriented programming is a paradigm which an object as the main entity, is a representa-

tive of data and behavior known as attributes and methods, respectively [KK11]. Mozilla Developer

Network [Moza] defines OOP as a mean of abstraction over the real world. Modularity, polymor-

phism and encapsulation are predecessor which all of them can be found in OOP. Objects can

send and receive messages to each other and process different data by themselves. OOP promotes

understandability and maintainability if it is used properly. Class-based programming is one of the

most known styles of object-oriented programming.

JavaScript, on the other hand, is a prototype based language, but to overcome the complexity

of implementation in different scenarios and to increase the reusability of different components,

developers rely on non-standard JavaScript’s class abstraction [SRV+15].

Following object oriented definitions quoted from Mozilla Developer Network [Moza] and we

will use these terms throughout this thesis:

• Namespace:

A container which lets developers bundle all functionality under a unique, application-specific

name.

• Class:

Defines the object’s characteristics. A class is a template definition of an object’s properties

and methods.

• Object:

An instance of a class.

• Property:

An object characteristic, such as color.

• Method:

An object capability, such as walk. It is a subroutine or function associated with a class.

• Constructor:

A method called at the moment when an object is instantiated. It usually has the same name

as the class containing constructor.

3

• Inheritance:

A class can inherit characteristics from another class.

• Encapsulation:

A method of bundling the data and methods that use the data.

• Abstraction:

A technique in computer science to hide the complexity of a given component using methods,

attributes, inheritance and etc.

• Polymorphism:

Poly means “many” and morphism means “forms”. Different classes might define the same

method or property (implementing an interface), but leaving the implementation details to

concrete types. Knowing that which of the implementations will be called is deferred to the

runtime.

There are different ways that programmers leverage modularity in the source code. One of

the fine-grained and well understood techniques for achieving modularity is using object oriented

classes. Besides classes, another type of OOP could be of prototype-based programming. Prototype

style does not used classes, however it is using existing prototype objects to achieve the desired

behavior by decorating them for reusability purpose.

Every JavaScript object has a prototype, which again is an object. Properties and methods of

an object will be inherited by children objects. Despite the fact that JavaScript is a prototype-based

language, it has indirect support for classes (No syntactical support for class, but there are different

emulation techniques for classes). However, lacking of a syntactical support for declaring a class or

defining a module in JavaScript prior to the recent update on the language specification1 [Ecm15],

makes developers employ different strategies to emulate classes and modules.

1.3 Motivation

There is an imminent growth to JavaScript popularity [AMP16b]. This growth makes JavaScript

a programming language that can implement a sophisticated business application or to be used

1ECMA-262 Edition 6, approved on June 17, 2015 officially adds support for JavaScript class and module.

4

for creating an interactive user interface. Further development and maintenance of such programs

require good tool support for assisting developers better understand source code [vMVH97].

Silva et. al. [SRV+15] developed a tool, JSClassFinder, to identify class-like structures in

JavaScript. Based on their findings they divided JavaScript programs into four types of programs

regarding class-like structures: class-free (systems with no class at all), class-aware (programs that

use classes marginally), class-friendly (programs with relevant usage of classes) and class-oriented

(systems with major usage of classes). However they did not evaluate JSClassFinder accuracy in

terms of precision and recall. Thus we extend this work by addressing its current limitations and

build an oracle to enable the evaluation of accuracy for their tool against ours. The most important

limitations of their work are as following:

• The do not support finding classes that are in nested hierarchies such as namespace

• Without instantiation, their tool is not capable of finding function constructors, it means

JSClassFinder cannot infer classes.

Another aspect of software comprehension, is providing a good tool support in IDE to assist

programmers. There is a great possibility to improve existing tool support in IDEs. Limited

support by Eclipse and its JavaScript source code analysis tool (JSDT) for navigation and outlining

JavaScript programs, makes JSDeodorant plugin a valuable asset for JavaScript developers.

A tool with a known accuracy can be employed to facilitate the automatic migration of existing

JavaScript code to the new version of ECMAScript with explicit support for class declaration. This

thesis aims at automating the process of source code analysis with integrating it to Eclipse by giving

the user a power of navigating between different modules and also depicting UML class diagrams.

1.4 Contributions

This thesis introduces JSDeodorant , an Eclipse plugin that combines and extends the previous

techniques to detect functions emulating class behavior in JavaScript. JSDeodorant is also able to

identify module dependencies and supports code navigation from the object instantiations to their

class declaration. The main contributions of this work are:

• A technique for identifying class emulations at different levels of granularity: within files,

namespaces, and modules.

5

• An automatically-generated (and thus, unbiased) oracle that enables replication by other

tools, and tool comparison. We also did a quantitative and qualitative evaluation of the

results to identify our current limitations and opportunities for future improvements.

• A comparison of our technique with the state-of-the-art tool JSClassFinder [SRV+15].

6

Chapter 2

Background

Traditional programming languages use constructs (e.g., classes, modules) for improving code

reusability and encapsulation. Code reuse decreases redundancy in the code (known as clones),

and encapsulation reduces the risk of exposing implementation details. JavaScript developers tend

to use different techniques to achieve code modularity.

As mentioned, lack of syntactical support for declaring classes, modules, and namespaces in

JavaScript prior to the recent updates on the language specification, forces developers to employ

different strategies to emulate them. In the following sub-sections, we briefly discuss some of the

strategies introduced and promoted in the JavaScript community [Osm12, Cro08, Stab, Tru]. It

should be noted that due to the inherent flexibility of JavaScript language, developers are able to

follow different strategies for emulating the mentioned constructs, which makes the maintenance of

JavaScript programs a non-trivial task.

2.1 Emulating Classes

In JavaScript, functions are first-class entities of type Object 1, i.e., a function can be passed as

an argument to other functions, returned by other functions, or stored as a value in a variable.

Moreover, functions can have methods and properties themselves [Mozb].

JavaScript developers use functions to emulate the behavior of object-oriented classes. In this

1In JavaScript, all values, except primitive values are inherited from Object.

7

case, JavaScript functions are used as constructors and methods of classes. Thus, we differentiate

between three types of roles in which a function can serve in JavaScript, following Gama et al.

[GACD12b]:

• Function constructors: In JavaScript, it is possible to define functions and variables that

belong to another function. Such a function is called a function constructor, and corresponds

to the constructor of an object-oriented class. Accordingly, functions and variables defined

for this function constructor are the methods and attributes of that class, respectively. As we

will see, there are alternative ways to define functions and variables that belong to a function

constructor. In this thesis, the terms class and function constructor are used interchangeably.

• Methods: We refer to a function that belongs to a function constructor as a method. A

method can be declared within the body of a function constructor or added to the prototype

of the function constructor.

• Functions: Finally, all other routines (i.e., normal functions) are considered as functions.

Thus the concept of class provided by major object oriented languages can be achieved by func-

tions in JavaScript. Use of object literals in JavaScript is another way to provide a semi-class like

behavior when developers require singleton classes. Definition 1 and 2 bellow explain the function

and singleton based constructs respectively.

Definition 1 (Non-singleton classes: Function Constructor)

A simple function declaration can be a function constructor if it is preceded by new keyword in the

call site. Then a new empty object of type function will be created and the this keyword inside the

function bounds to the new object being constructed [Ecm11] [Mozc]. Two common approaches for

declaring function constructors are listed in Figure 1.A and 1.B.

For declaring properties and methods, developers use the this keyword or use function construc-

tor’s prototype (prototype is usually used for defining methods). As shown in Figure 1, property

foo and method bar are defined in the class body. Unlike conventional object oriented languages

which provides implicit this scope, a JavaScript class must refer to its own properties and methods

using this keyword explicitly. JavaScript does not provide access modifier for class members, so

everything is always public and accessible in global scope, unless some actions are taken to make

8

function TheClass() {
 this.foo = 0;
 this.bar = function() {
 console.log(this.foo);
 }
}

var TheClass = function() {
 this.foo = 0;
 this.bar = function() {
 console.log(this.foo);
 }
}

var theInstance = new TheClass();
theInstance.foo = 2;
theInstance.bar(); // 2

A B

C

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3

Figure 1: Function constructor can be a function declaration (A) or an anonymous function expres-
sion assigned to a variable (B), the instantiation remains same for both cases (C)

them private using some namespacing techniques, which we will explore in Section 2.2 where we

are discussing about immediately invoked function expressions (IIFE).

Figure 2 shows an equivalent example of a JavaScript class where the method assigns to the

prototype of class, instead of beings assigned to this within in the body of function constructor.

function TheClass() {
 this.foo = 0;
}
TheClass.prototype.bar = function() {
 console.log(this.foo);
}

var TheClass = function() {
 this.foo = 0;
}
TheClass.prototype.bar = function() {
 console.log(this.foo);
}

var theInstance = new TheClass();
theInstance.foo = 2;
theInstance.bar(); // 2

A B

C

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3

Figure 2: Function constructor where the method is assigned to prototype rather than this keyword
within the class body

It is very important to note that function bar is still accessing fields and other methods of a

class i.e.,foo using the keyword this, despite the fact that the definition of methods is not located

within the function constructor’s body. In Section 6 we will show how important it is to support

such a style of definition, because developers are using this style in many cases.

Noteworthy, declaring methods outside the function constructor’s has many benefits including

but not limited to [Staa]:

9

• Ease of modification method behavior Changing the method behavior in the run-time

is just as simple as changing it once – that means the developer is not obligated to change

multiple places to have unified behavior among instances of class.

• Performance Putting a method inside the the constructor leads to poorer performance (i.e.,

Figure 1). So, a method needs to be created whenever an instance of a class is created, but if

the method has been created on top of the prototype chain (i.e., Figure 2), it will be inherited

by each instance rather than being created multiple times.

Definition 2 (Singleton classes)

There are various techniques to emulate singleton classes. We will explore two different, yet popular

ways of declaring singleton classes. The first style uses built-in JavaScript object literals to define

a class. Figure 3.A shows how a singleton class can be defined by object literal.

In JavaScript, the object literal is a list of key-value pairs where each value can be of any data

type such as object literal, function, or array literal. It is denoted by an open and a close curly

bracket, where the functions and variables defined inside them are essentially the methods and

attributes of that object, respectively. One of the major differences between object literal and

function declaration style (i.e., 3.B) is, the new keyword is not required for creating an instance of

the object literal. In contrast, we can pass arguments to a function constructor while object literal

style does not provide this functionality.

var singletonClass ={
 foo: 0,
 printIt: function(){
 console.log(this.foo);
 }
}

singletonClass.foo = 5;
singletonClass.printIt(); // 5

A

1
2
3
4
5
6 B

C

var singletonClass = new function(){
 this.foo = 0;
 this.printIt = function(){
 console.log(this.foo);
 };
}

v

1
2
3
4
5
6

1
2

Figure 3: An instance will be created immediately without the need of new keyword.

Another way of having a singleton class is using a combination of new and function keywords.

If the new keyword precedes an anonymous function expression, the function constructor is formed

10

with a specific behavior: new keyword is going to be invoked once (singleton), to create an empty

object. Figure 3.B shows an implementation example of this technique.

Taking the fact into account that these variations may be combined with many other techniques

(namespacing) to achieve better encapsulation makes the identification of these structures a non-

trivial source code analysis task. Different namespacing techniques suggested by practitioners in

industry and above-mentioned emulation patterns may affect the precision of a static source code

analysis tool for finding classes in JavaScript codes. In Section 2.2, we explore various namespacing

techniques posed to developers for achieving a higher level of modularity.

2.2 JavaScript Namespace Emulation

Most of the traditional programming languages provide mechanisms for grouping semantically-

related concepts (e.g., classes and files). Examples are packages and namespaces, that provide a

better organization for the code and also help in avoiding name collisions. In JavaScript, mimicking

the behavior of a namespace can be done in different ways [Osm12].

An example of a JavaScript program containing a variable and a function declared in global

namespace shown in Figure 4.

// global scope
var myGlobalVariable = 1;

function sayHello(){
 console.log(myGlobalVariable);
}
sayHello();

1
2

3
4
5
6

Figure 4: variable myGlobalVar declared in the global scope.

Both variable myGlobalVariable and function sayHello are in the global scope of such a program.

Having that said, now let us assume we have two different files, i.e., Sales.js and Orders.js with

different functionalities. These two files provide a method (in the global scope) to return a list of

sales and orders respectively. Figure 5 shows these two files containing a function with an identical

name.

11

A B

// Sales.js
var getList = function() {
// do something here

}

// Orders.js
var getList = function() {
// do something here

}

1
2
3
4

1
2
3
4

Figure 5: function with name getList exists in both files which returns appropriate result for
corresponding file.

In the production code, when the two files Sales.js and Orders.js are included in the HTML file

(Figure 6), invocation to getList() will lead to a name collision. Interpreter fails to understand by

getList() which one of the definitions should be resolved. Hence name collision occurs.

<!DOCTYPE html>
<html>
<body>

<script src="Sales.js"></script>
<script src="Orders.js"></script>

</body>
</html>

1
2
3
4
5
6
7
8
9

Figure 6: adding external JavaScript files into a single HTML file in production code

There is also a best practice in client-side code deployment, which recommends concatenation

of all JavaScript source files into a single one, to make it more suitable for the browser to reduce

the number of HTTP requests over network (Round-trip). In those cases, JavaScript is more error

prone in terms of variable or generally, identifier collisions.

Previous releases (prior to version 1.6) of JavaScript do not provide direct (syntactical) support

for namespacing, and thus to avoid conflicts developers combine different language constructs to

achieve namespace emulation.

In the following two sub-sections we briefly describe two common approaches used to avoid name

conflicts.

Approach 1- Nested object literals:

The first and easiest way is to use nested object literals. Figure 7 shows how to form a nested

object literal with a class declaration in its deepest level. To create an instance of a class, the call

12

site should provide a full path to the function declaration (function constructor).

var namespace = {
 module: {
 subModule: {
 TheClass: function() {
 this.foo = 0;
 this.printIt = function() {
 console.log(this.foo);
 }
 },
 AnotherClass: function() {
 // Body of another class
 }
 }
 }
};

var theInstance = new namespace.module.subModule.TheClass();
theInstance.foo = 7;
theInstance.printIt();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 7: Nested object literals form a namespace for enclosing class, TheClass.

A composite identifier follows the new keyword to access TheClass for instantiation and prevents

it to be exposed to the global scope. Now, only namespace is a global object and other nested objects

including module, subModule, TheClass, and AnotherClass are wrapped in namespace. This is one

of the simplest ways to define namespace and is widely used in open-source JavaScript programs.

Approach 2- Immediately-invoked Function Expressions (IIFE): IIFE refers to a function

that is invoked right after it is declared. The self-invoked function only runs once and all variables

and functions declared within the body of such namespace are by default private unless some actions

are taken to expose them outside [Osm12], which we will explain in details. An example of IIFE

is shown in Figure 8. The first pair of parentheses (function() { ... }) transforms the code into

an expression, and the second pair of parentheses (function() { ... }) () calls the function that

results from that expression [Stac].

As shown in Figure 8, the function foo is not exposed to the outside of IIFE. The only differences

between the following techniques is how to expose members within IIFE to the outside.

13

(function(){
 // all your code here
 var foo = function() {};
 window.onload = foo;
 // ...
})();
// foo is unreachable here (it’s undefined)

1
2
3
4
5
6
7

Figure 8: Immediately Invoked Function Expression

Expose members using return statement: To expose private members of an IIFE, devel-

opers use the return statement to return an object containing variables and functions. In Figure

 var theClassInstance = new namespace.PublicClass(); // I am a class

A B

C

var namespace = (function() {
 var template = {};
 template.myProperty = 0;
 template.PublicClass = function() {
 console.log('I am a class');
 }
 return template;
})();

var namespace = (function() {
 var classDeclaration = function() {
 console.log('I am a class');
 }
 return {
 myProperty : 0,
 PublicClass : classDeclaration
 };
})();

1
2
3
4
5
6
7
8

{

1
2
3
4
5
6
7
8
9

1

Figure 9: Immediately Invoked Function Expression With a Return Statement

9.A, the function constructor PublicClass is assigned as a property of an empty object with name

template and then that object is returned by the return statement. As a result of the evaluation of

this IIFE, the rvalue of the return statement (i.e., return foo; where foo is the rvalue) within the

function will be stored into the variable with name namespace which is in a global scope.

To create an instance of PublicClass, one should provide the qualified name as namespace.PublicClass

like the instantiation in Figure 9.C.

If the namespace object is already exist in the global scope, there should be a work-around to

check and use existing object rather than creating a new object. Expressions such as

var namespace = namespace ‖ {}; would be a help to prevent overriding existing objects.

In case developer needs to verify if an object exists or not (above-mentioned expression), it

14

should be convenient for a developer to be able to augment an existing object, rather than creating

new object for namespace.

For such scenarios, it is suitable to pass the namespace object to IIFE and assign methods and

properties directly to that object. This way neither return statement nor creation of an empty

object is required. Figure 10.A shows a case where a parameter can be passed to IIFE, and used

as a container for methods and properties.

 var theClassInstance = new namespace.PublicClass(); // I am a class

A B

C

var namespace = {};
(function(ns) {
 ns.myProperty = 0;
 ns.PublicClass = function() {
 console.log('I am a class');
 }
})(namespace);

var namespace = {};
(function() {
 this.myProperty = 0;
 this.PublicClass = function() {
 console.log('I am a class');
 }
}).apply(namespace);

v

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1

Figure 10: Immediately invoked function expression add methods and properties to a parameter
(A) and to keyword this (B) which is equivalent

Another approach instead of using ns within the body of the IIFE in Figure 10.A, would be the

use of built-in function apply to assign the this keyword to the passed argument. In JavaScript,

calling apply() on an object that references a function, results to invoking that function, and the

this object belonging to the called function is bound to the apply()’s first argument. Consequently,

in Figure 10.B, the this object in the anonymous function is bound to namespace, and therefore,

PublicClass will belong to namespace. The instantiation remains same for both cases A and B as

shown in Figure 10.C.

2.3 JavaScript Module Pattern

JavaScript used to lack a mechanism for importing classes and functions from other JavaScript

files. However, JavaScript community has proposed different approaches for defining JavaScript

modules (i.e., files that can be imported to other files). The two most popular module systems are

15

CommonJS [Com] and AMD 2 [AMD]. The former is designed to be more suitable for server-side

JavaScript, while the latter is used mostly client-side JavaScript. There is also a more domain

specific style developed by Google Closure Library [Clob] team, which has been used widely in their

library.

CommonJS:

In CommonJS, a JavaScript module can expose all or parts of its behavior as an API, by setting

the exports property.

A

// csv.js
var Writer.=.function(filename) {
// create csv file ...
}
Writer.prototype.write.=.function(content).{
// write the content to file
}
module.exports.Writer = Writer;

1
2
3
4
5
6
7
8 B

// usage.js
var csvModule.=.require('./csv');

var csvWriter.=
 new.csvModule.Writer('test.csv');

csvWriter.write('hello, world!');

1
2

3

4

Figure 11: An example illustrating the export and import in CommonJS style.

In Figure 11-A, the module csv.js exports the variable Writer at line eight, referencing a

function constructor.

Likewise, a JavaScript module can access other modules’ APIs by invoking a call to the require

function. The function accepts a module identifier as its argument, and returns the exported

APIs of the imported module. The module identifier can be specified by the module’s name, or

the path/URL to the JavaScript file where the module is defined in, or a path/URL of a folder

containing a set of modules (i.e., a package). In Figure 11-B, usage.js imports features that

are exposed in the module csv.js (line two). At line three, an instance of Writer is created by

accessing the csvModule’s exposed function constructor.

Asynchronous Module Definition (AMD):

Module pattern proposes a module pattern that supports asynchronous loading for both the

module and its dependencies [Stae]. Like CommonJS which has module.exports and require, the

two most important idea for AMD style is define method for exposing module definitions and

require method for handling dependencies. Figure 12 shows the syntax of define and require which

is slightly different from CommonJS style but signifies similar semantic.

2Asynchronous Module Definition

16

A

// package/lib is a dependency we require
define(["package/lib"], function (lib) {
 // behavior for our module
 function foo() {
 lib.log("hello world!");
 }
 // export (expose) foo to other
 // modules as foobar
 return {
 foobar: foo
 }
});

1
2
3
4
5
6
7
8
9
10
11
12 B

// Somewhere else the module can be
// used with:
require(["package/myModule"],
 function(myModule) {
 myModule.foobar();
});

1
2

3
4
5

Figure 12: An Example Illustrating the Export and Import in AMD Style.

As illustrated in the code comments, in Figure 12.A we have the definition of module, which

itself, requires another module with name lib which is located in relative path package folder. In

line 4, we have the definition of function foo but it is not yet exposed to the outside. Line 9 shows

how developer can export private members within the define function by using the return statement

which in this example is function foo.

In Figure 12.B another module tries to import above-mentioned module with the use of require

function. A parameter of the require function will be injected by the interpreter with the corre-

sponding definition (i.e., object containing foo). It should be noted that the imported object is not

the function foo, it is rather an object containing foo which is wrapped by the created object literal

in Figure 12.A following return statement in line 9.

Closure Library Modules:

Similarly, for exposing behavior or part of the module, a function call to goog.provide is necessary.

The argument to this module should be identical with another or other module’s import (to be

specific: goog.require) argument. In Figure 13 line 1, it is specified that this file is exposing a

module with name goog.async.run and in line 3 and 4 it is dictated that this module requires two

different modules with names goog.async.WorkQueue and goog.async.nextTick.

In line 6, it should be noted the module assigns the corresponding function declaration to a

similarly named identifier, which previously (line 1) specified as the provide’s argument. When a

module manifests it requires this module, the function declared in line 6 is exposed to call-site and

is responsible for execution in the run-time.

17

goog.provide('goog.async.run');

goog.require('goog.async.WorkQueue');
goog.require('goog.async.nextTick');

goog.async.run = function(callback, opt_context) {
 // ...
};

1
2
3
4
5
6
7
8

Figure 13: An Example Illustrating the Export and Import Using Closure Library Style.

18

Chapter 3

Literature Review

Despite the fact that JavaScript is used widely both for client-side and server-side programming,

there seems to be remarkably little other work related to JavaScript source code analysis. The

following nine papers give us information about how they analyze source code.

3.1 Does JavaScript Software Embrace Classes? [SRV+15]

Silva proposed an automatic approach, JSClassFinder, that identifies class definitions by analyz-

ing the instance creation statements (statements using the new operator). They define function

constructor as a function where the invocation consists of an instantiation and they conduct an em-

pirical study on 50 popular JavaScript applications obtained from Github with the aim at answering

whether JavaScript developers use classes or not and to see if they are using inheritance.

To the best of our knowledge, their research is the most relevant to ours but one of the limitation

of JSClassFinder is the lack of support for classes defined in nested namespaces (composite names).

Moreover, classes are matched by their names regardless of the file dependencies, leading to incorrect

matches when different files contain classes with the same name, and finally their approach fails to

identify classes that are not instantiated.

JSClassFinder follows static source code analysis technique, which is applied through a search

for matching names between the operand of new expression and function declarations (known as

function constructors). They extract Github projects that ranked with at least 1000 stars and have

19

at least more than 150 commits. Then they remove all minified1 files, copyright and documentation

files with .js extensions.

They found class declarations in 37 out of 50 systems (74%). For the systems containing classes,

34% of them have more attributes than methods (those classes are more like data classes), and they

speculate it is more likely JavaScript developers are placing less importance on encapsulation (i.e.,

getters and setters are rare in JavaScript)

It is concluded that there are four types of systems in JavaScript. class-free systems that do not

make any usage of classes, class-aware systems that make rare use of classes, class-friendly systems

were use classes relevantly, and finally class-oriented systems that have vast majority of uses in

terms of class like structures. They also concluded that there is no significant co-relation between

size of the corpus and class usage. They hypothesize that developers’ background and experience

impacts the usage of classes rather than the project’s size.

3.2 Normalizing Object-Oriented Class Styles in JavaScript

[GACD12a]

The intention of this work is to increase stylistic consistency and improve maintainability of object

oriented JavaScript applications by normalizing the representation of classes into a single model.

Authors discuss that JavaScript is a prototype-based language and lacking of an explicit class

declaration to define fields and methods has led to a plethora of different class representation

techniques.

They list three of the different styles that developers may use to mimic class declaration in

JavaScript despite the fact that they are almost identical semantically and this difference can

lead to stylistic inconsistency issues. The first style is closest to the conventional object oriented

languages. The function Class acts as both class definition and the constructor.

The second style uses the function prototype object which, prototype of constructor function is

an anonymous that is stored in the variable Class. The initialization moved to the code following

constructor call.

The third one is similar to the above mentioned samples as it uses Class variable and anonymous

function but assigned the method m to the prototype of the object. This way all objects created

1The process of removing unnecessary characters from code with preserving semantic is called minification

20

using the Class constructor function will share the m across the program.

They use the TXL Programming Language developed to support source transformation with

an existing grammar for parsing JavaScript to pattern match source code. They merge each and

every JavaScript file into one file with snippet of automatic comments to identify the original file

boundaries. They recognize various object class styles and mark them for transformation to a

preferred style. According to the survey on several tutorials, books and a large set of over 70

production JavaScript applications, Prototype Lambda is selected as the preferred style. After they

have identified all of the classes and method functions in source codes, normalization transformation

is carried out by another TXL program for changing them to the Prototype Lambda style.

They found real world applications are using different styles of those described in books and

tutorials, that are more elegant and robust.

They found some applications were already using the target pattern, prototype lambda, thus

transformation would not apply on them. Interestingly the other applications has four different

patterns, that makes the project hard to maintain and inconsistent in style.

From this study it was found out that there are many different styles for class declaration that

has been used interchangeably in real world applications. It can also concluded that developers

are adopting some object oriented principles in this language like classes, encapsulation and inher-

itance(using prototypes) despite the fact that there is no direct language support for them. We

adopt their technique to infer classes in JavaScript without the need for instantiation.

3.3 JSNOSE: Detecting JavaScript Code Smells [FM13]

JSNOSE tool combines static and dynamic analysis on JavaScript to gather adequate information

to detect code smells. Authors define code smells as indication of potential comprehension and

maintenance issues in JavaScript. Detecting code smells manually is tediously time consuming and

error-prone. Lacking of a sophisticated smell detection tool for JavaScript, authors provide a tool

to overcome the highly dynamic nature of the language.

Smell detection process of many object oriented languages is dependent on identifying objects,

classes and functions inside the code and unlike languages such as Java or C++, identification of

such language elements is not straightforward in JavaScript. Besides theoretical contributions they

made in this paper, one of the valuable impacts of their work is the implementation of research into

21

an open source tool, which aims to find code smells. The tool is evaluated through an empirical

study over 11 real JavaScript web applications. The contributions of this tool results in decreasing

longterm development cost and increasing the chance of project success by helping developers

improve maintainability of the code.

Among different code smells mentioned in both object oriented languages and JavaScript re-

sources, they choose 13 specific code smells: 7 of them are existing prevalent object oriented smells

adapted to JavaScript and the rest of them are specific JavaScript smells. They use a metric based

approach, which is generic in almost all object oriented languages.

Consequently the threshold values are selected based on studies performed in other object-

oriented languages. By performing static analysis and traversing abstract syntax tree (AST) they

gather information about objects, properties, inheritance relations, functions, and code blocks.

Their approach for using static analysis is very useful specifically for local objects and variables

within functions, because they are not available in the global object during execution. Dynamic

analysis is used in order to monitor object creations or updates at runtime and also to find un-

used/dead code for measurement purpose by code instrumentation.

The result indicates that lazy object, long method/function, closure smells, coupling between

JavaScript and HTML and excessive global variables are the most prevalent code smells.

Their work indicates that source code analysis on JavaScript is not as easy as major object

oriented languages. It provides some key features of other programming languages, but the way

it behaves diverged from well-known object oriented languages. An example of this difference is

prototype chains which somehow resembles inheritance in other languages with an exception that in

JavaScript, programmer can create and modify existing object prototype at runtime. That means

redecoration of object hierarchy during execution.

Unlike their approach, we can only rely on information gathered based on static analysis. We

think it is possible to augment JavaScript weakly-typed system to infer unknown types without the

need for code instrumentation and other types of analysis such as dynamic and symbolic execution.

The limitation of their work is that they need to gather information during execution which cannot

help programmers to find code smells during development phase.

22

3.4 An Analysis of the Dynamic Behavior of JavaScript Pro-

grams [RLBV10]

In this paper they did an empirical study on a large corpus of widely-used JavaScript programs

to measure how and why the dynamic features of the language are used by programmers. They

also measure the degree of dynamism in such programs. Moreover they made a good comparison

with assumptions that are generally made within JavaScript communities in both industry and

academia.

Due the magnitude of growth of using JavaScript in the real world web applications and also

gradual increase in using JavaScript as a general purpose language for developing tools and libraries

(running on server-side such as Node.js) it has taken academic attention. They characterized and

produce behavioral data of JavaScript program by code instrumentation to obtain run-time traces

of 103 web sites.

The main motivation behind their work is to assess feasibility of the static type system to apply

type checking on existing JavaScript programs. They argue that existing techniques generally rely

on minor simplifications, for instance one approach make the following assumption: “Usually, no

further properties are defined after the initialization and the type of them rarely change” or Google’s

V8 engines is reported to optimistically associate classes to objects on the assumption that their

shape will not change too much.

Their instrumentation tool integrates with Safari, browser from Apple, to capture traces con-

sisting of DOM, AJax and purely JavaScript code that is stored in a database for following steps.

Traces were compressed and store on disk without noticeable impact on live interactions in pro-

grams. Traces were stored in a database for further several static analyses using Mozilla Rhino

JavaScript parser. The good point in their research is that they handle eval function calls as it is

similar to load new source file.

Results of their study classified into two major branches. Firstly, static analysis is done to find

following metrics:

• Corpus size

• Instruction Mix

• Prototype Chains

23

• Object Kinds

And the second part lay down in measuring program dynamism for the following metrics:

• Call site dynamism

• Function Variability

• Uses of eval

• Object protocol dynamism

• Constructor polymorphism

• Constructor prototype modification

• Changes to the prototype chains

• Object lifetimes

• The effects of JavaScript libraries

Based on the results, they evaluate assumptions that are made in the JavaScript community

and argue that most of them are not true in real-world projects.

What we can infer from the results to make sure about our approach regarding static analysis

is as following: the prototype hierarchy is invariant. Moreover, properties are added at object

initialization and also they are rarely deleted. In most languages, variadic functions are rare, and

based on this study nearly 10% of functions are variadic in JavaScript. It means that declared

function signatures are indicative of types. Call-site dynamism is low which means that the level of

polymorphic call sites are only 19% and monomorphic call sites are dominant in almost all projects.

With respect to the results of this study we can eliminate dynamic analysis and just improve

statically analyzed precision of our research. With comparison with A. M. Fard and A. Mesbah’s

[FM13] approach, we can find out that there is no explicit need to have dynamic analysis for

monitoring all object creations and modifications during runtime because they are not that much

prevalent in real world applications.

24

3.5 Dont Call Us, Well Call You: Characterizing Callbacks

in JavaScript [GMB15]

Authors of this paper try to understand callback usage in real-world JavaScript programs. Call-

backs are one of the core successful features of this language and this feature owes its existence in

JavaScript to the way that it defines functions. Functions are first-class objects which make it able

to be saved in a variable, to be passed as an argument to other functions and so on. They studied

138 corpus of JavaScript programs dividing into two major category: 1) Server-side codes known

as Node.js projects and 2) Client-side code which runs in the browser. The result of this research

helps to show the language designers on how developers are using callbacks and tool builders to

find good solutions to be able to get rid of excessive and nested callbacks known as callback hell.

JavaScript callback is very important because it is playing an important role. For example it is

used to service multiple concurrent client requests on server-side. On the client-side, responsiveness

of user interface controls are feasible because event-model system can be implemented using callback

mechanism. Usage of callbacks is important because JavaScript comprehension and maintainability

is correlated to the usage of callbacks. They study how often are callbacks used and in what extent

callbacks are prevalent in client or server-side codes.

They design and implement a static analysis tool to identify different styles of callback patterns

used by JavaScript developers. They built a tool on top of existing tools to generate AST, walk

through it and a type inference engine to find parameter types to distinguish simple parameters

from parameters that accept a function. Out of 138 open source projects, 86 of them were NPM

Node’s packages, 16 web applications, 16 game engines, 8 client-side framework and 6 visualization

libraries.

For over 5 million lines of code in total, they found out of 10 functions, one of them accept

a function as a parameter. Over 43% of callbacks were anonymous and majority of callbacks are

nested to other callbacks. Most of the nested callbacks appear in client-side code with 72% than

server-side with 55%. Error-first protocol was among the most popular techniques to overcome

difficulties related to callbacks. The other two major solutions are Async.js and Promises.

They found that over half of all callbacks are named (not anonymous). They concluded that all

JavaScript program that handle and response to events are using callbacks. These programs suffer

from excessive callbacks which reduce the comprehensibility and maintainability of source code.

25

3.6 Detecting Inconsistencies in JavaScript MVC Applica-

tions [OPM15]

Maintaining consistency among emerging MVC 2 frameworks in JavaScript platform makes authors

of this paper to design and implement a tool, named AUREBESH that automatically detects

inconsistencies between Model, View and Controller of such applications. In their previous work

[OBPM13] they found majority of JavaScript bugs are DOM-related 3 ones. DOM related bugs are

related to the interaction between HTML, CSS and JavaScript. Bugs that MVC frameworks are

claiming that this pattern would help developers reduce the complexity of working with DOM in

different scenarios, and such bugs are more often result from developer’s incomplete understanding

of the relationship between JavaScript and DOM.

Despite the fact that MVC frameworks are created to solve such problems, they are still vul-

nerable to DOM-JavaScript interaction bugs. They further explain that these frameworks rely on

use of identifiers to connect model objects, controller methods and view’s field accesses to model.

The main problem arises because JavaScript is loosely typed. When developer change the name of

a method or generally an identifier, consistencies will not throw mismatch or undefined compiled-

timed exceptions. To tackle such a problem they create a static analysis tool to identify variables

and methods in these different components (model, view and controller) and then they try to infer

the type of those identifiers to find inconsistencies.

They opt for static analysis in this work. And throughout their work, they have a working

example inspired by one of these popular MVC frameworks (AngularJS), however they claim that

their technique can be extended to all MVC frameworks. They extract model variables and con-

troller functions and then they apply type inference techniques to find the type assigned to a model

variable in the model or controller by inspecting the right-hand side of assignment expressions. So

their tool is capable of identifying both identifier(name) and type inconsistencies.

They did an empirical study on 11 JavaScript applications and in total their tool found a total

of 15 error messages. Of these 15 errors, 13 of them were identifier inconsistencies and 2 type

inconsistencies. They categories following patterns for faults:

• Identifier defined elsewhere (found in 7 cases)

2Model, view and controller
3Document object model

26

• Incorrect identifier (found in 5 cases)

• Boolean assigned a string (found in 2 cases)

• Identifier name not updated (found in 1 case)

They only found one false positive due to a misleading (corner case) alias in one of the appli-

cations. Their tool indicates their approach is very accurate in finding inconsistency in JavaScript

MVC framework applications. They reach to an overall 96.1% recall and a precision of 100%. The

tool is useful in detecting bugs, which help researchers of this work to find 15 real-world bugs in

application built on top of AngularJS, which is a popular JavaScript MVC framework.

3.7 Development Nature Matters: An Empirical Study of

Code Clones in JavaScript Applications [CRK16]

The authors mainly investigate:

• Clone properties in different languages (Java and JavaScript) and application domains (JavaScript

stand-alone projects(JSproj) and JavaScript web applications(JSweb)).

• Correlation between clone properties and software metrics and comparing this relation in

different languages and application domains.

• Identifying development practices in Java, JSweb, and JSproj.

One of the active research areas in software is code clones [TMK15]. Researchers have been

studied this subject for almost two decades. While clones are investigated from different perspectives

the authors addressed new limitations in code clone studies. Firstly, almost all clone studies have

been done on statically typed languages. Since the nature of statically and dynamically languages

are different, developers might clone code differently. Secondly, there is no study that compares

the relationship existing between clone properties and software metrics in different languages or

application domains.

Thirdly, a limited number of studies on web applications have included qualitative analysis along

with quantitative once. Fourthly, few studies compared clone between statically and dynamically

27

typed languages. Lastly, clone coding studies in dynamic languages do not consider different ap-

plication domains and in spite of the popularity of Java script, studies on JavaScript clones are

limited.

They developed a clone detector specifically for JavaScript. This tool is inspired by Deckard

[DEC], so they can use the same configuration for both Java and JavaScript. Then, they used the

following code metrics to compare clones in different languages and domains:

• Cloning locality

• Average and maximum lines of cloned code

• Clone coverage

• Files associated with clones

• Function-level clones

The results show that different features offered by programming languages affect code duplica-

tion patterns. For example, as JavaScript has no support for method overloading, the number of

method level clone for JavaScript is smaller in comparison to Java. It also reveals that a consid-

erable amount of JSweb projects have clones and web developers duplicate code intentionally. In

addition, clone properties in the same language might not be the same for different domains.

3.8 JavaScript Errors in the Wild: An Empirical Study [JPZ11]

The authors of this paper intended to study JavaScript errors in web applications and understanding

the source of these errors. They also plan to find design guidelines for developing process.

Specifically, they want to investigate:

• Errors in JavaScript applications and find common characteristics of these errors among web

applications.

• The correlation between the speed of interaction between the user and the rate of JavaScript

errors.

• Non-deterministic errors in JavaScript web applications.

28

• Correlation between using JavaScript static and dynamic features and the number of errors.

• Correlation between frameworks in developing JavaScript code for web applications and a

number of errors.

JavaScript is the most popular language for developing web application client-side functionali-

ties. More than 95 percent of today’s websites contains thousands of lines of JavaScript codes. In

spite of Javascript popularity, there is no study on characterizing errors related to JavaScript in web

applications. Web applications might undergo serious malfunctioning due to errors in JavaScript

codes.

In order to investigate the errors in web applications, the authors create test cases. Each test

case contains fifteen test cases based on interaction with web applications. The cases run with

different speed and multiple times on fifty web applications from Alexa 4 Top 100.

The results of this empirical study show that:

• Almost all JavaScript web applications face with error.

• They found these errors mainly fall into four categories: Null Exception, Permission Denied,

Syntax Error, and Undefined Symbol.

• The speed of interaction affects the number of errors.

• Most of JavaScript web applications errors are non-deterministic.

• Correlation between frameworks in developing JavaScript code for web applications and a

number of errors.

• There is a correlation between some of the dynamic and static features of the languages.

• Increasing the number of frameworks increases the number of errors in web applications.

This study showed that errors occur in almost all websites with JavaScript client-side code.

JavaScript developers need to consider the static and dynamic features that they use in their code

and to avoid the error-prone features. Since some errors happen by changing the speed of the

interaction with the websites, this application should be tested in different interaction speed.

4http://www.alexa.com

29

3.9 JavaScript: The Used Parts [GHWB14]

The authors of the paper believe that JavaScript language designers change the language features

without knowing how developers apply these features. So, finding the most used part of the language

to help language designers, tool builders, browser vendors, and researchers is the main concern of

this paper. This paper also investigates the reason of choosing some features of the language by

the developers. Finally, it shows that how developers adopt new added features and problem prone

features.

Websites ranked on the Alexa are popular but they cannot be a comprehensive representation

of all JavaScript codes in all web applications. So in this paper, they gather a diverse corpus of

source codes to include different developers code from different applications and backgrounds. They

collect more than a million unique scripts that fall into five categories: Node.js applications, Firefox

add-ons, Alexa pages, browsed pages(by using Win Web Crawler), and JS libraries.

They used a combination of static and dynamic analysis to collect information from the scripts.

They instrumented Spider Monkey and it is used for both static and dynamic analysis of browsed

and Alexa pages and JS libraries. Node.js applications were analyzed with a instrumented V8

engine. Firefox add-ons were the only ones that is analyzed manually.

The presented results show that:

• Developers tend to apply some problematic features of the language like for ... in and block

level declarations (readability of the code is one of the reason that some developers tend to

do that).

• There are some misunderstanding and browser support that prevents developers to use some

of the new language features. For example, the strict mode is only used one percent in the

corpus.

• Node.js developers try to benefit from object-oriented features of JavaScript while functional

programming is more popular in web applications.

30

Chapter 4

Approach

The process of analyzing JavaScript source code and extracting sophisticated structures (i.e., class

emulations, namespaces, and module patterns) requires more than just a source code parser or an

Abstract Syntax Tree (AST) visitor.

JSDeodorant is a tool developed at Concordia University to analyze JavaScript source code

and it employs the best practices learned by a former tool JDeodorant developed and designed in

Concordia Software Refactoring Lab as Java Refactoring recommendation tool [FTC07] [TCC08].

JSDeodorant involves a multi-step analysis to create its own abstraction, which makes it much

easier to perform different software analysis techniques (e.g., control and data flow analysis).

The overall view of our approach for detecting function constructors in JavaScript is illustrated

in Figure 14.

In the following, each of the steps is discussed in detail.

4.1 Step 1: Parsing JavaScript Files and Building Model

In the first step, JSDeodorant uses the Google Closure Compiler [cloa] to parse and extract ASTs

of JavaScript files of the given project. We use the Closure Compiler tool as it is a well established

project on GitHub with a large community of developers to maintain and support it (179 contrib-

utors, 61 releases since 2009). As it is shown in Figure 14, the input is a set of JavaScript files (at

least one JavaScript file), which are parsed to obtain their ASTs.

31

Post-processing
2Enhanced Model

Source Element JSModule

AbstractStatement

SimpleStatement CompositeStatement

Source Element JSModule

AbstractStatement

SimpleStatement CompositeStatement

Source Element JSModule

AbstractStatement

SimpleStatement CompositeStatement

Object Creation
Binding

3

Source Element JSModule

AbstractStatement

SimpleStatement CompositeStatement

Hierarchical Model

4
Inferencing

JavaScript Files

Parsing

1

Building Model

ASTs
/**
 * Read a quoted field from input.
 * @return {string} The field, as a string.
 */
function readQuotedField() {
 // We've already consumed the first quote by the time we get here.
 var start = index;
 var end = null;

 for (var token = nextToken(); token != EOF; token = nextToken()) {
 if (token == '"') {
 end = index - 1;
 token = nextToken();

 // Two double quotes in a row. Keep scanning.
 if (token == '"') {
 end = null;
 continue;
 }

Unresolved
constructor invocations

Resolved
constructor invocations

Never-invoked
function constructors

Figure 14: Overview of the Proposed Approach

JSDeodorant then traverses the generated ASTs to build a hierarchical abstract model, which

provides a higher level abstraction than AST, by capturing the nesting structure of code at the

statement level.

4.1.1 Hierarchical Model

We are using the Composite design pattern to eliminate the complexity of distinguishing between

a leaf node and predicate node (if, for, while, etc.). The benefits of the composite model is that,

it can treat complex and primitive objects uniformly, and thus it is possible to manipulate a single

instance of the object in the same way as it is to manipulate a group of them. The structure of a

simple composite is shown in Figure 15.

JSDeodorant has a hierarchical data structure keeping elements including statements that are

important components of the source code’s semantics, where changing those statements would likely

result in different execution behaviors. This means that we are not specifically interested in trivial

statements such as a = a + b, however we keep them in a hierarchical model and then we can

retrieve them when it is necessary for our source code analysis purpose.

A list of important elements that we are keeping in our hierarchical model is as follows:

32

Figure 15: Composite Design Pattern

• Creations (i.e.,new foo())

• Function invocations (i.e.,bar())

• Function declarations (i.e.,function baz() { ... })

• Object literals (i.e.,var obj = myVar :20, myFunction : function() { ... })

• Assignment statements (i.e.,a = b;)

• Variable declarations (i.e., var a = b;)

Capturing above expressions and statements is achieved by our abstraction model and is only im-

plemented in AbstractFunctionFragment class which is an abstract class where AbstractExpression

and AbstractStatement are inherited from.

When we are creating an instance of AbstractExpression or AbstractStatement, in the constructor

of these two classes there are various method invocations (these methods belong to parent class,

which is AbstractFunctionFragment) to test, extract and store necessary information (detailed list

of elements listed above).

During the construction of our model, we create a Program object to represent the program

(at file level) which we are going to analyze. A Program holds a list of SourceElement objects

33

that can be either AbstractStatement or FunctionDeclaration. Class Program implements the

SourceContainer interface, which is the representation of a container. Other classes that imple-

ments SourceContainer are CompositeStatement, FunctionDeclarationExpression and ObjectLit-

eralExpression since they can contain expressions or statements.

Figure 16: An Overview of JSDeodorant Architecture

AbstractStatement and AbstractExpression classes are representing AST nodes that can be

children of a composite structure.

Figure 16 shows the relationships between Program, CompositeStatement and AbstractStatement

classes. It should be noted that at one higher level of abstraction, there is a class named “module”

which contains a program and a list of other modules as dependencies. For example if the code

contains a require statement, to include another JavaScript file, then the analyzed version of that

module (means the parsed and abstracted model of that file) will be added as a dependency.

JavaScript programs can have statements and function declarations in the root. This is different

from object-oriented programming languages, in which programs have to start with a Class as the

root element of source code.

For this reason we modeled the program which ought to have two kinds of source elements.

The first one is function declarations, the most common way to achieve modularity in JavaScript

programs.

34

The other source element that can be in the root of program is an AbstractStatement. A list

of these source elements is kept in Program class in our model for future analysis.

We have a utility class to extract expressions or statements from a source container at any

nesting level. To be able to extract the desired information we need a visitor to check every element

type of the AST. Class FunctionDeclaration represents the structure of a function node in the

AST. The hierarchy of composite statements is also shown in Figure 16. A composite statement

can be a TryStatement, a FunctionDeclarationStatement or a LabelledStatement.

For example, for a for block (i.e., a composite statement that contains other composite or

simple statements), the model includes only high-level information about the for loop statement

(but JSDeodorant does not have corresponding For class in our model, because it is not important

for our analysis purpose) and the nested statements, which is necessary for detecting patterns we

are looking for.

4.2 Step 2: Post-processing

Once the model is built, JSDeodorant performs a post-processing with the objective of identifying

file dependencies, which results in an enhanced model with these dependencies resolved.

The reason for post-processing is that we have to query the existing model for expressions that

are specific to the import/export mechanism depending on the chosen module system. Otherwise,

we have to deal with low-level AST nodes (i.e., visit all expressions containing binary operator

where the right operand is require function call, and the left operand is a variable declaration and

the operator is equal operator).

Due to our abstract model, we can query all assignment expressions in the post-processing phase

where the assignment’s right operand is a function call with the identifier require. This is much

more convenient than dealing directly with AST nodes.

Moreover, when we find a require function call, we have to resolve its argument as a path to

another module, and in that module, we have to find the appropriate exports or module.exports to

be able to match these two modules mutually.

Our model is built upon the CommonJS module system, as it is one of the most popular APIs

used by developers. The Closure Library Modules is also supported.

However, our approach to identify file dependencies is generic enough that it can be easily

35

extended to capture other dependency patterns, such as AMD.

For dependencies that cannot be resolved with the require/exports pattern, JSDeodorant tries

to resolve them by reading the package.json file which is specified by the CommonJS standard,

and contains information about module’s main file, and dependencies to other modules. This way,

JSDeodorant tries all the possible approaches to make sure that the dependencies between files are

resolved in a proper way.

In terms of design and implementation, it requires for each module system, a class is being

created and make it to inherit from PackageExporter and PackageImporter interfaces for extracting

export and import statements correspondingly.

4.3 Step 3: Binding Object Creations

Next, JSDeodorant performs a lightweight data-flow analysis on the enhanced model, produced in

the previous step. The objective of this step is to bind each class instance creation to a function

constructor, which results into two disjoint sets of resolved and unresolved function constructor

invocations. JSDeodorant traverses the model, and in each JavaScript module, it analyzes the

identifier name in the instance creation expressions (i.e., expressions using the new operator). Each

identifier name can be either a simple or composite name.

4.3.1 Simple Name Identifier:

For simple identifier names (e.g., MockWindow in new MockWindow()), JSDeodorant first searches

the current block to find the function declaration, where the function name matches the constructor

invocation name. If no such declaration is found, it recursively searches the parent blocks until it

finds a matching declaration, and marks the corresponding constructor invocation as resolved. If

we reach the root of the JavaScript module and we are unable to identify a declaration, we search

a list of predefined JavaScript functions for a match [javb].

The reason for consulting the predefined list after our internal search is that, it is possible to

redefine JavaScript native objects, although it’s a risky practice [Stad] [per] [java].

36

4.3.2 Composite Name Identifier:

Resolving composite identifiers addresses the cases where the function constructor is defined within

a nested namespace or an object literal, internally or externally. That is, the declaration of the func-

tion constructor may be within the same file or elsewhere. Examples of composite names are given in

Figures 9 and 10 where the function constructor is defined in a namespace (namespace.PublicClass),

and Figure 11-A (line 2) where the class is defined in another module (Writer.write).

JSDeodorant first splits the identifier name into its tokens (e.g., <namespace, PublicClass>

for namespace.PublicClass) and then searches the current block for the leftmost token (i.e.,

namespace). Statements of interest are variable assignments and property names in object liter-

als. If JSDeodorant finds a match (line 1 in Figure 9-A), it tries to match the next token (i.e.,

PublicClass) within the already matched context (e.g., lines 1-7 in Figure 9-A) and this process

continues until all tokens are matched.

4.4 Step 4: Inferring Function Constructors

If a constructor invocation cannot be resolved to a function constructor in the previous step, JS-

Deodorant attempts to resolve it by using an inference mechanism.

JSDeodorant analyzes the body and prototype objects of functions; if a function defines prop-

erties or methods (either directly or through the prototype object), it is considered as a function

constructor.

Some of these identified function constructors can be matched with the unresolved constructor

invocations from the previous step. The rest essentially corresponds to the function constructors

that are nowhere invoked (instantiated) in the code.

This technique is useful for those JavaScript projects that are designed and built for specific

purposes which they do not have instantiation of the code along with the definition such as libraries

or frameworks.

The detailed algorithm of our technique is written in a pseudo code style in Algorithm 1.

37

Algorithm 1 Function constructor detection algorithm

1: cont list=loadListofConstrucotrs()
2: for fd in functionDeclarations do
3: if ! (fd in cont list) then
4: if HASPROPERTY(fd) OR HASMETHOD(fd) then

cont list.add(fd)
5: end if
6: end if
7: end for

8: procedure hasProperty(fd)
9: assignments=fd.getAllAssignment()
10: for a in assignments do
11: if a.getLHS() instanceof FieldAccess AND !(a.getRHS() instanceof FunctionDeclaration) then

return TRUE
12: end if
13: end for
14: end procedure

15: procedure hasMethod(fd)
16: assignments=fd.getAllAssignment()
17: parent= fd.getParent()
18: for a in assignments do
19: if a.getLHS() instanceof FieldAccess AND a.getRHS() instanceof FunctionDeclaration then

return TRUE
20: end if
21: end for
22: parent assignments=parent.getAllAssignment()
23: for pa in parent assignments do
24: if Prototypeof(fd).contains(pa.getLHS()) AND pa.getLHS() instanceof FunctionDeclaration then

return TRUE
25: end if
26: end for
27: end procedure

38

Chapter 5

Evaluation of Accuracy

We designed an empirical study, with the goal of answering the following research questions:

• Precision and Recall: What is the performance of JSDeodorant in detecting function

constructors? The goal is to assess how accurate and complete is the sample of detected

function constructors. We measure precision and recall to answer this research question.

• Comparison with the state-of-the-art tool: Does JSDeodorant outperform the state-of-

the-art tool in terms of precision and recall? The goal is to compare the efficacy of JSDeodorant

and JSClassFinder in terms of precision and recall on the same dataset.

5.1 Oracle

To measure the precision and recall of JSDeodorant and JSClassFinder, we need an oracle of

function constructor declarations. We used three open-source JavaScript projects to automatically

build the oracle (i.e., to avoid any bias). There are two ways to achieve this:

Using JSDoc annotations: JavaScript developers can annotate function constructors using JS-

Doc’s @constructor annotation [JSDb]. In this case, function constructors can be automati-

cally found by simply parsing JSDoc comments. We used closure-library (a large library used

in Google products, such as Gmail and Maps), as it is JSDoc-annotated project. Unfortu-

nately, JSClassFinder threw Out of Memory error for closure-library, so we had to manually

39

execute it folder-by-folder.

Using transpiled code: TypeScript [typ] and CoffeeScript [cof] are supersets of JavaScript that

add the missing features (e.g., syntax for class declaration) to JavaScript. The code written in

their syntax is transpiled to vanilla JavaScript. By parsing and extracting class declarations in

TypeScript/CoffeeScript programs, class declarations can be found. The corresponding func-

tion constructors, resulting from transpiling TypeScript/CoffeeScript code, are then added to

the oracle. We selected two GitHub-trending projects, doppio and atom, respectively written

in TypeScript and CoffeeScript.

These projects are medium-sized, to prevent JSClassFinder from crashing.

In Table 1, we have reported the main characteristics of the programs used to build the oracle.

Table 1: Characteristics of the Analyzed Programs.
Project Version Size (KLOC) #JS Files #Functions

closure-library 20160315 605 1,502 23535
doppio rev:7229e7d 17.7 47 1977
atom v1.7.0-beta5 34 116 3175

This section reports the results of our quantitative and qualitative analysis of the three programs

with respect to the two research questions formulated above.

5.2 Precision and Recall

To find out about the efficacy of these two tools, we calculated the precision and recall using the

following formulas. TP stands for True Positive: is a function that is detected by the tool as function

constructor and is in the oracle too. FP stands for False Positive: is a function that is detected

by the tool as function constructor, but it is not in the oracle. FN stands for False Negative: is a

function that is NOT detected by the tool as function constructor, but it is in the oracle) :

Precision =
|TP |

|TP |+ |FP | and Recall =
|TP |

|TP |+ |FN |

Table 2 illustrates the results of JSDeodorant .

As it is observed, JSDeodorant can achieve a high precision and recall, for all three analyzed

projects.

40

Table 2: JSDeodorant Precision and Recall.

Program
Identified

TP FP FN Precision Recall
function constructors

closure-library 1008 907 101 39 90% 96%
doppio 154 153 1 1 99% 99%
atom 106 101 5 1 95% 99%

We further qualitatively analyzed false positives and false negatives. For closure-library, 18 of

the false positives are functions that are annotated with @interface. JSDeodorant identified these

as function constructors, since methods (with empty body) were added to their prototype.

Other false positives in closure-library (83 cases) included functions defined in test files, without

any JSDoc annotation. We manually inspected these functions and marked them as true positive

(TP) or false positive (FP). The decision to label the detected functions as TP or FP was based on

the use and definition of the functions.

That is, if the function was invoked as a constructor (with the new operator), or at least one

property or method (non-empty body) was defined in its body (or added to its prototype), it was

labeled as TP. The final label was decided by unanimous voting, and the third vote was sought in

case of conflict. Out of 83 cases, 82 were labeled as TP, leaving only one case as FP.

As explained in Section 4, JSDeodorant identifies functions that have at least one property, or

method as function constructors. Moreover, those constructor invocations that JSDeodorant binds

to a valid declaration are also identified as function constructors. The false negatives were those

cases where the body of the function did not match our definition of function constructor, and they

were not instantiated.

Our investigation showed that our approach is unable to identify function constructors that are

not invoked, and at the same time, do not contain any property or method (i.e., false negatives).

Here we briefly discuss ways to improve our technique.

Analyzing function’s use: JSDeodorant fails to identify two sets of non-invoked function

constructors: 1) empty function constructors, and 2) function constructors with no method or

property. We plan to analyze the use of these functions to improve our detection technique. For

example, if a function is an operand of instanceof, or an argument of Object.create() func-

tion, it is most probably a function constructor. Another way is to infer inheritance relationships

between objects. For example, Figure 17 shows an example in closure-library where the function

41

goog.net.WebChannel.MessageEvent = function() {
 goog.net.WebChannel.MessageEvent.base(
 this, 'constructor', goog.net.WebChannel.EventType.MESSAGE);
};
goog.inherits(goog.net.WebChannel.MessageEvent, goog.events.Event);

179
180
181
182
183

Figure 17: Example of a Function Constructor JSDeodorant Failed to Identify

constructor is not invoked in the program and it is not possible to infer from its body that the

goog.net.WebChannel.MessageEvent is a function constructor. However, we could infer from the

statement at line 183 that the function is involved in an extends relation with another class and

thus it is a function constructor.

Distinguishing classes from interfaces: JSDeodorant fails to differentiate classes and inter-

faces. This can be mitigated by checking whether a class contains methods with an empty body,

and it is not a superclass of other classes. In such a case, the detected class can be labeled as an

interface.

�
�

�
�

Overall, we found that JSDeodorant achieves high precision (95%) and

recall (98%) on the selected dataset.

5.3 Comparison with the state-of-the-art tool

We run JSClassFinder on the same dataset we used for our first research question, summa-

rizing the results in Table 3. JSClassFinder crashed on two sub-directories of closure-library

(/closure/goog/crypt and /closure/goog/i18n), due to invalid input format and out of memory

exceptions, respectively. Thus, we excluded the function constructors (27 cases) in those two sub-

directories, to calculate precision and recall in a fair manner. A manual analysis of false positives

was done similarly to Section 5.2, and out of 42 cases, 41 were labeled as TP. By manually checking

all false negatives were cases where function constructors were not invoked, which is one of the

major limitations of JSClassFinder.

To compare the performance of the tools, we enhanced our automatically-built oracle by adding

those cases labeled as TP during our qualitative analysis. Moreover, to do a fair comparison, we

removed function constructors belonging to sub-directories in which JSClassFinder crashed from

the oracle and the results of JSDeodorant .

42

Table 3: JSClassFinder Results of Detection.

Project Oracle
Identified

TP FP FN Precision Recall
function constructors

closure-library 919† 769 727 42 192 94% 79%
doppio 154 23 22 1 131 96% 14%
atom 102 95 95 0 7 100% 93%

† Function constructors in two sub-directories of closure-library are removed from the oracle.

In Table 4, the accuracy measures for both tools are reported. As it is observed, JSClassFinder

performed well on both accuracy measures for atom. This is because all function constructors were

invoked in atom, and thus, JSClassFinder identified them all.

However in the other two projects, it fails to identify function constructors that are not invoked.

Table 4: Accuracy Measures for Both Tools

Project
JSClassFinder JSDeodorant

Precision Recall Precision Recall
closure-library 99% 76% 98% 96%

doppio 96% 14% 99% 99%
atom 100% 93% 95% 99%

Average 98% 61% 97% 98%

Here we want to report the main problems we faced when working with JSClassFinder:

• Running JSClassFinder on JavaScript programs is not straightforward. This tool requires to

first manually extract ASTs from JavaScript files using a third-party JavaScript parser and

store it in JSON 1 format. The JSON files are then used as an input to JSClassFinder. This

extra step makes JSClassFinder less usable and difficult to integrate in Integrated Develop-

ment Environments (IDEs).

• JSClassFinder is matching new expressions with function names “blindly”. Even if you have

two independent files that are not connected using CommonsJS or AMD import/export state-

ments, the tool will still search for a matching between these two files. We think the process

of finding function constructor should be more sophisticated than a simple name or AST node

matching and that’s why we choose to implement CommonJS and ClosureLibrary styles for

connecting files that are linked to each other.

1JavaScript Object Notation

43

function ArrayIterator(array) {
 this.array_ = array;
 this.current_ = 0;
}
goog.inherits(ArrayIterator, goog.iter.Iterator);

1
2
3
4
5

Figure 18: Example of a Function in the Test Code That Was Not Annotated, but Added to the
Oracle as a Function Constructor.

�

�

�

	
Overall, we found that both tools have very high precision on average,

while JSDeodorant greatly outperforms JSClassFinder with respect to

recall on the selected dataset.

5.4 Threats to Validity

Construct validity: We only addressed module dependencies that comply with CommonJS and

Closure-Library style; thus, we need to replicate this study with JavaScript projects that use other

module systems, e.g., AMD. The post-processing step can be easily extended to support other

module systems. Since the core of the approach does not depend on any module system, we are

confident that JSDeodorant will perform similarly well.

In addition, our lightweight data-flow analysis only supports simple name aliasing, and thus,

more complex cases of name aliasing (e.g., variable name in a return of a function call) is left as

future work.

In the manual investigation phase for augmenting the oracle the independent evaluators might

both misinterpreted the intention of the developer who wrote the code. For example, in Closure

Library project, we found a function located in closure-library-v20160315closuregoogiter iter test.js

line 23, which does not contain any @Constructor annotation. Figure 18 shows the piece of code

that is considered as a class based on the votes of two independent investigators. It might be

possible that the developer’s intention is not to use this function as a function constructor, but

taking into account the inherits call that follows, it seems that ArrayIterator extends Iterator by

adding to additional fields.

44

External validity:

While these preliminary results of analyzing three projects from different domains show that

JSDeodorant detects function constructors with a high accuracy compare to JSClassFinder tool,

and the result of analysis on three JavaScript projects confirms existence of classes in different

JavaScript projects, we acknowledge the need for examining a wider range of JavaScript projects.

To enable the reproduction of our study, the oracle along with the detected classes for both

tools are available on-line [jsda].

45

Chapter 6

Empirical Study

In Chapter 5 we evaluated the efficacy of JSDeodorant in detecting function constructors in JavaScript

programs. JSDeodorant achieves relatively high precision and recall. To gain a better understand-

ing how JavaScript developers adopt classes in their programs, we conduct and empirical study

by running JSDeodorant against a dataset of JavaScript projects from different categories. This

chapter presents the targeted JavaScript programs, the study setup and the results of the study.

6.1 Study Setup and Results

We collect a dataset consisting of three major categories: NodeJS projects, websites and libraries.

We think breaking down JavaScript projects into these three categories shows the difference of

the adoption of class usage among three major domain that JavaScript is used. Moreover other

researchers also propose this categorization based on the domain of programs in previous works

[GMB15] [CRK16].

For NodeJS projects, our selection was based on the NPMJS website 1 which ranks Node

packages by the number of downloads. For the JavaScript files on the Websites, we ran Crawljax

[MvDL12], a headless crawling engine, to collect JavaScript files. Crawljax emulates the behaviour

of users by firing user events, e.g., clicking on elements in web pages, while capturing JavaScript

files in different stages. Finally, for libraries, we collected seven popular JavaScript libraries, based

1www.npmjs.com/

46

on the number of stars of the corresponding repositories on GitHub.

Note that, for libraries and NodeJS projects, we excluded all the minified files (i.e., files that

were minified using specific programs that decrease file size by removing whitespace characters,

renaming variables, etc.), to avoid the detection of duplicated classes in the original and minified

version. We also choose to run JSDeodorant against Silva et.al [SRV+15] dataset. All the projects

they collected are considered as libraries, thus we put them in the libraries category.

Table 5, 6 and 7 shows the characteristics of the projects under analysis, including their project

name, analyzed version, size (in KLOC), number of files, number of functions along with the number

of identified function constructors in different JavaScript programs. The last two columns shows the

number how many number of methods defined within the body (Method Inside - MI) of function

constructor and the number of methods assigned to the prototype object (Method Outside - MO).

6.2 Discussion

As it is shown in Table 5, there are 25 programs with no classes which forms 52% of all node

projects. It is shown that less.js has a relatively high number of classes compared to other projects

with total of 77 classes. Looking further, the number of methods assigned to the prototype object

(MO) for less.js is 55 compared to 22 methods defined inside the body of function constructors.

We think less.js adopts a good level of OOP and also it follows best practices promoted by the

community such as defining methods to the prototype [PRO].

In Table 6 it is shown that only 10% of the websites do not have any usage of classes.. There is

one website (facebook.com) with a relatively high number of classes (312).

Interestingly Table 7 shows that 10% of all examined libraries have no usage of classes..

As it can be observed, from an eyeball analysis of the results there is a difference between the

number of classes for projects within different categories. We observe that NodeJS projects have

fewer number of classes compared to websites.

To statistically confirm this observation, we first normalize the number of classes with the

number of files for each of the projects, in order to conduct a fair comparison among the categories.

As we need to select an appropriate statistical test for the comparison, we first used the Shapiro-

Walk test to assess whether the distribution of the data for these normalized values is normal or

47

not. The results of the test rejected the null hypothesis that the data is normally distributed (p-

value <2.179e-10 , 1.88e-08 and 7.973e-12 respectively for NodeJS projects, websites and libraries).

Thus, we use the Wilcoxon rank sum test (also called the MannWhitney U test), a non-parametric

statistical hypothesis test for which the data under test does not need to be normally distributed,

to find out if there is any statistically significant difference between the number of classes in these

categories. The results show that NodeJS projects have fewer classes compared to website projects

(p-value <6.78e-07). We cannot conclude if there is a difference between libraries and websites,

since the p-value is 0.5034. Moreover, we confirm that NodeJS projects have less number of classes

compared to libraries (p-value <1.963e-07).

�

�

When comparing the number of classes between the categories, we ob-

served NodeJS projects have fewer classes compared to websites and

libraries but we cannot compare the level of class adoption between com-

paring libraries and websites.

We conjecture that NodeJS projects have adopted classes to a lesser extent, because developers

dominantly follow a different reuse approach when developing NodeJS applications. These appli-

cations are mainly constructed by importing and connecting small pieces of code from external

packages, which are mostly written by other developers. In this case, as the code base is rather

small, and the imported code is already organized using some packaging system (and therefore,

only exposing what is required by the clients), the probability of name collisions would be low,

making the use of classes an overkill for the maintainability. Moreover, the asynchronous (i.e.,

non-blocking) nature and event-driven architecture of NodeJS make it a great runtime environment

for specific types of software which, instinctively, might not need classes for encapsulating data and

behaviour.

On the other hand, we observe that websites are using more classes, and this can bear various

reasons. One possible reason is that name collision is more probable in websites JavaScript files.

This is because web pages usually need to import several JavaScript files. These files can be

imported, in the required order, using the <script>tag in the HTML code. Alternatively, the

developer might want to minify all these files and combine them to a single JavaScript file, with

the goal of improving the speed of loading the web pages (i.e., by minimizing the download time,

48

and also the number of HTTP requests). In both cases, there is a high chance that identifier

collision happens in these JavaScript files. Furthermore, in contrast to NodeJS projects, the size of

JavaScript files in websites can be relatively high, and it calls for better organization of code.

Like other programming languages, JavaScript libraries can serve multiple goals, including but

not limited to: promoting re-usability, saving developers effort by preventing wheel re-invention, or

providing a higher abstraction level by hiding low-level details that are difficult for developers to

deal with (for example, a JavaScript library that provides the necessary functionality for working

with network streams). Object-Oriented classes can definitely facilitate reaching all these goals,

e.g., by encapsulating the functionality and exposing re-usable interfaces to the clients.

6.3 Threats to Validity

External validity: In this study we selected a diverse set of projects from different application

domains, varying in size and development nature, including server-side, client-side and library

JavaScript projects. Though we cannot generalize our findings, to mitigate the threat to external

validity (generalizability) we selected programs with different size and nature.

As mentioned, we used Crawljax to collect JavaScript files from the websites in the dataset.

However, Crawlajx may miss to find all JavaScript files from websites. This is mainly because

Crawljax performs dynamic analysis, and like any other dynamic analysis approach, it needs to be

fed with proper input and execution scenarios to achieve acceptable results. This means that, one

needs to adequately configure Crawljax for each of the websites under analysis, so that it can explore

all possible DOM states of the website to collect all the JavaScript files referenced in different DOM

states; a task which is cumbersome and impractical in general.

49

Table 5: Number of Function Constructors in JavaScript NodeJS Program.
Project Version Size (KLOC) #Files #Functions #Classes #MI #MO
express v5.0.0-alpha.2 16.7 150 2224 8 2 6
forever v0.9.2 2.6 21 138 0 0 0
less.js v2.5.3 25.06 162 871 77 22 55

node-browserify v9.0.8 5.96 378 688 2 1 1
npm v3.3.6 34.14 360 2917 35 27 8
pm2 v0.5.7 22.29 224 2117 11 2 9
statsd v0.7.2 4.19 31 434 11 5 6
yo v1.4.8 1.54 21 142 0 0 0

abbrev v1.0.9 1 2 4 0 0 0
argparse v1.0.7 4 32 158 5 1 4
async v2.1.0 0.69 2 104 1 1 0

balanced-match v0.4.2 1 3 3 0 0 0
brace-expansion v1.1.6 1 2 12 0 0 0

colors v1.1.2 0.5 5 29 0 0 0
contact-map v0.0.1 0.5 3 5 0 0 0

console-browserify v1.1.0 0.2 3 21 0 0 0
core-util-is v1.0.2 0.1 2 15 0 0 0
date-now v1.0.1 0.04 3 7 0 0 0
dateformat v1.0.12 0.16 2 0 0 0 0

debug v2.2.0 0.28 3 17 1 1 0
domelementtype v1.3.0 0.01 15 1 0 0 0
domhandler v2.3.0 0.35 4 18 1 0 1
domutils v1.5.1 0.69 12 85 0 0 0
entities v1.1.1 0.32 5 53 0 0 0

eventemitter2 v2.1.0 0.57 2 0 0 0 0
exit v0.1.2 0.25 5 28 0 0 0

faye-websocket v0.11.0 1.7 19 195 10 4 6
findup-sync v0.4.2 1.7 19 7 0 0 0

gaze v0.1.1 0.5 2 42 1 0 1
getobject v0.1.0 0.15 3 9 0 0 0

glob v7.0.5 1.3 12 118 1 0 1
globule v1.0.0 0.76 5 45 0 0 0

graceful-fs v4.1.5 0.64 3 78 4 4 0
grunt v1.0.1 2.21 13 136 1 0 1
hooker v0.2.3 0.94 6 61 6 6 0

htmlparser2 v3.9.1 1.83 16 137 7 0 7
iconv-lite v0.4.13 1.2 15 43 0 0 0
js-yaml v3.6.1 3.5 33 99 8 6 2
lru-cache v4.0.1 1.1 5 89 3 2 1
minimatch v3.0.2 1.78 6 54 4 2 2

nopt v3.0.6 0.6 3 17 0 0 0
noptify v0.0.3 0.57 10 50 0 1 0

qs v6.2.1 15.3 9 632 25 14 11
readable-stream v2.1.4 1.7 10 99 9 5 4

rimraf v2.5.4 0.28 4 22 0 0 0
shelljs v0.7.3 2.26 30 84 0 0 0
sigmund v1.0.1 0.34 3 28 0 0 0
tiny-lr v0.0.5 1.76 8 164 10 1 9

Column MI stands for number of Methods defined Inside the body of function constructor.
Column MO stands for number of Methods defined Outside of the body of function constructor (to prototype object).

50

Table 6: Number of Function Constructors in JavaScript Websites.
Project Version Size (KLOC) #Files #Functions #Classes #MI #MO

google.com May 16, 2016 0.26 10 723 128 78 50
facebook.com May 16, 2016 2.37 61 9696 312 168 144
baidu.com May 16, 2016 0.69 30 2302 54 44 10
yahoo.com May 16, 2016 0.08 8 190 15 7 8
amazon.com May 16, 2016 4.42 171 5677 124 116 8
twitter.com May 16, 2016 5.05 20 3802 147 127 20
vimeo.com May 16, 2016 0.29 14 9 0 0 0
tumblr.com May 16, 2016 1.48 81 3,100 124 105 19
slideshare.net May 16, 2016 0.14 13 113 11 5 6
snapdeal.com May 16, 2016 0.78 13 1039 33 27 6

soundcloud.com May 16, 2016 0.26 10 70 4 4 0
paypal.com May 16, 2016 7.5 23 454 30 20 10

microsoft.com May 16, 2016 1.24 24 163 9 9 0
linkedin.com May 16, 2016 1.24 8 1289 66 46 20
indeed.com May 16, 2016 0.6 22 1160 144 82 62
imgur.com May 16, 2016 0.85 53 198 12 10 2
hp.com May 16, 2016 5.56 45 2732 106 76 30

groupon.com May 16, 2016 0.3 35 111 8 8 0
github.io May 16, 2016 0.27 5 89 7 4 3
icloud.com May 16, 2016 0.15 13 22 0 0 0
imdb.com May 16, 2016 0.92 182 244 10 2 8
livedoor.jp May 16, 2016 0.42 18 103 4 4 0
foxnews.com May 16, 2016 2.08 52 882 58 34 24
instagram.com May 16, 2016 0.39 20 942 58 39 19

ifeng.com May 16, 2016 7.12 237 1045 28 28 0
hulu.com May 16, 2016 1.43 19 1263 27 7 0
paytm.com May 16, 2016 1.06 80 214 11 10 1
pixiv.net May 16, 2016 0.63 54 1516 16 16 0
orange.fr May 16, 2016 3.46 31 429 19 18 1

putlocker.is May 16, 2016 0.21 8 849 20 19 1
taboola.com May 16, 2016 3.1 26 436 16 16 0
wikihow.com May 16, 2016 0.35 26 491 12 8 4

wix.com May 16, 2016 2.02 18 168 8 8 0
wordpress.org May 16, 2016 0.11 9 91 0 0 0
walmart.com May 16, 2016 3.06 84 551 62 28 34
wikia.com May 16, 2016 3.22 120 857 20 19 1
yelp.com May 16, 2016 1.03 24 70 0 0 0

zendesk.com May 16, 2016 1.47 29 622 19 13 6
zillow.com May 16, 2016 1.83 55 458 18 18 0

51

Table 7: Number of Function Constructors in JavaScript Libraries.
Project Version Size (KLOC) #Files #Functions #Classes #MI #MO

ace v1.1.3 8.22 50 544 5 5 0
angular v1.5.7 287.6 1091 9896 109 75 34
backbone v1.3.0 26.47 21 1344 18 15 3
ember v2.7.0-beta.2 97.57 680 4542 32 27 5
jquery 3.0.0-rc1 59.29 166 3334 45 41 4
pdf v1.5.188 81.01 166 3717 306 277 29

underscore 1.8.3 10.41 15 799 25 21 4
masonry 3.1.5 197 1 10 4 2 2

randomColor 0.1.1 361 1 17 0 0 0
respond 1.4.2 460 3 15 2 2 0

clumsy-bird 0.1.0 628 7 1 0 0 0
deck.js 1.1.0 732 1 22 26 5 21

impress.js 0.5.3 769 1 23 0 0 0
async 0.9.0 1.1 1 75 4 2 2
turn.js 3.0.0 1.9 1 18 0 0 0
zepto 1.1.3 2.4 17 149 19 18 1
jade 1.0.2 4 28 41 3 2 1

select2 3.4.8 4.1 45 44 0 0 0
jQueryFileUp 9.5.7 4.4 15 49 4 1 3
semantic-UI 0.18.0 11.9 19 25 46 42 4
wysihtml5 0.3.0 5.9 69 107 119 86 33
paper.js 0.9.18 25.8 67 143 28 24 4
intro.js 0.9.0 1 1 24 2 2 0

timelineJS 2.25.0 18.2 89 213 25 25 0
jasmine 2.0.0 2.9 48 239 66 44 22
reveal.js 2.6.2 3.3 1 105 14 10 4
flora.js 1.0.0 3.3 26 104 247 27 220

number.js 0.4.0 2.4 10 119 7 6 1
typehead.js 0.10.2 2.4 19 95 15 15 0
video.js 4.6.1 7.9 38 432 6 5 1
sails 0.10.0 13 98 154 10 5 5
ionic 1.0.0 14 90 283 257 207 50

chart.js 0.2.0 1.4 1 34 32 31 1
grunt 0.4.5 1.9 11 94 1 0 1
ghost 0.4.2 15 122 205 27 14 13
skrollr 0.6.25 1.7 1 44 12 10 2
leaflet 0.7.0 8.3 71 63 8 6 2
gulp 3.7.0 2 4 9 1 0 1

three.js 0.0.67 37 164 609 750 439 311
bower 1.3.5 8.1 53 306 37 19 18

algorithm.js 0.2.0 1.5 29 82 12 2 10
mustache.js 0.8.2 5 1 27 3 0 3
parallax 2.1.3 1 3 57 12 8 4
2048 - 8 10 66 7 1 6
pixiJS 1.5.3 13.8 72 361 185 125 60
isomer 0.2.4 7 71 47 8 1 7
slick 1.3.6 1.6 1 64 1 0 1

fastclick 1.0.2 7 1 22 1 0 1
socket.io 1.0.4 1.2 4 49 4 0 4

52

Chapter 7

Tool Demonstration

To be able to run JSDeodorant , the machine is required to have at least JDK 7 installed on the

machine with an Eclipse instance that has Gradle plugin installed on it or Gradle installed on the

machine accessible through terminal. So it is possible to resolve dependencies with gradle build

command to install JAR dependencies without the need for Gradle plugin on Eclipse.

This tool also comes with an Eclipse plugin, which itself is able to analyze JavaScript projects.

In the first part, we will explore command-line mode to see how to generate CSV files as the outputs

and console logs for experimental purpose. In the second part, we will show how to use the Eclipse

plugin to analyze JavaScript files.

7.1 CLI Mode

To be able to use JSDeodorant in CLI mode (without Eclipse), you should run gradle assembly in

the core folder of JSDeodorant to build the appropriate JAR file in the target folder. Then, you

can run the tool with the following command:

java -jar target/jsdeodorant-0.0-SNAPSHOT-jar-with-dependencies.jar -help

to show the switches that you can pass to the tool.

Here is the list of switches you can pass to the command-line runner:

53

• -class analysis : Advanced static analysis to match function definitions with function calls

(call-site)

• -function-analysis : Advanced function analysis to match class definitions with initializa-

tion (call-site)

• -calculate-cyclomatic : Enable calculation of cyclomatic complexity

• -js : The JavaScript filenames separated by space

• -directory-path : Directory path for JavaScript project

• -analyze-lbClasses : Analyze libraries to find class usage in them

• -builtin-libraries : List of libraries located somewhere on the system such as Node’s

built-in libraries i.e. Error or Util

• -disable-log : Enable logging mechanism

• -externs : List of externs files to use in the compilation

• -libraries : List of libraries to distinguish between production/test codes.

• -module-analysis : Enable module analysis for CommonJS or Closure Library style pack-

aging

• -package-system : Select the package system including CommonJS and Closure Library

• -output-csv : Generate a CSV file containing analysis info

• -output-db : Put analysis info into a Postgres DB

• -name : Project name

• -version : Project version

• -psqlServer : Postgres server name

• -psqlPort : Postgres port

• -psqlDbName : Postgres database name

54

• -psqlUser : Postgres username

• -psqlPassword : Postgres password

An example of a working set of switches for project Closure Library is:

java -jar target/jsdeodorant-0.0-SNAPSHOT-jar-with-dependencies.jar -output-csv -class-analysis

-module-analysis -package-system ‘‘ClosureLibrary’’ -analyze-lbClasses -directory-path

‘‘/Users/Shahriar/Documents/workspace/era/dataset/closure-library-v20160315’’

-name ‘‘closure-library’’

After running this command, log/classes and log/functions folders should contain output CSV

files generated during the analysis.

For instance, log/classes/class-declarations.csv file contains rows corresponding to the number

of class declarations on the system that we ran the analysis.

• Class name

• File path where class declared

• Is Predefined JavaScript class?

• Class offset

• Has new expression

• Has inferred? {yes/no}

• Constructor lines of codes

• Total class lines of codes (If methods are assigned to the prototype, then number of lines of

codes should contain method body)

• Constructor lines of codes

• Has namespace? {yes/no}

• Number of methods

• Number of attributes

55

Figure 19: Analysis Result in The Console

• Is declaration in library?

• Is aliased?

• Number of instantiation

If the user prefer to inspect results of analysis in the Eclipse or terminal, there is a short and

minimal information presented in console (standard output stream). Figure 19 shows few lines of

results in Eclipse console window.

There is a more general overview of the analyzed projects which is located under log/aggregate/modules.csv.

This file contains information about a JavaScript files, number of dependencies and number of ex-

port statements.

7.2 Eclipse Plugin

To be able to import Eclipse Plugin into the workspace, you have to navigate to plugin root folder

and run gradle buildAndCopyLibs. This way gradle would build JSDeodorant ’s core component and

the main JAR file and its dependencies will be copied to plugin target folder to resolve plugin’s

dependencies.

Then run the Eclipse plugin as an Eclipse Application through the Run as menu in Eclipse.

Figure 20 depicts the steps to run the plugin.

In the new Eclipse instance that is started, user has to create a JavaScript project to be able

to import a folder containing JavaScript files. Then by selecting on the desired folder from Project

Explorer and pressing the i button in the Modules View, a tree consisting of modules, classes,

56

Figure 20: Run Eclipse Plugin

57

Figure 21: Modules View Window

Figure 22: JSDeodorant Module Visualization

methods and attributes will be shown. Figure 21 illustrates the tree generated by JSDeodorant

analysis.

To view the dependencies of a module, user can right-click on one of the modules in the Modules

View and click on the Show module dependencies to get an overview of the dependencies. A module

visualization will be depicted containing the module’s dependencies and a class diagram of each

module that this module is dependent on. Figure 22 shows an example of JSDeodorant module

visualization.

In Figure 22 we can observe that there is a usage module which is dependent to many other

modules (firstModule, secondModule, util, index and custom name). This dependency is achieved

58

by requiring these modules by usage module. The diagram shows the export statements that each

module has as well as method names.

59

Chapter 8

Conclusion and Future Work

This work paves the way for an ultimate research goal, that seeks to improve software comprehension

and improve tooling for software maintenance for JavaScript programs. JSDeodorant implements

key elements of a comprehensive infrastructure for applying static source code analysis on JavaScript

source code. With this infrastructure, we were able to implement an approach for detecting Function

Constructors, i.e., functions that are used for emulating Object-Oriented classes in JavaScript

programs.

With an oracle comprising of three medium-size JavaScript projects, we measured the precision

and recall of JSDeodorant in detecting function constructors, and compared it with JSClassFinder,

the state-of-the-art tool that has been introduced for the same purpose. We found out that JS-

Deodorant reaches up to 97% precision and 98% recall on average, outperforming JSClassFinder,

which can reach 98% precision and only 61% recall.

Nonetheless, we think there is still room for improving the accuracy of this tool by reducing

false negatives and false positives.

• Eliminating false negatives

– Using data-flow analysis can help us to find aliased function constructors. For example,

in Figure 23, we have shown a function constructor, namely Foo, declared in line thee

nested in a namespace. In line thirteen, we have called a function anotherFunction with

passing the namespace. And in line ten, we are creating an instance of class through the

60

parameter. But to find what param.foo is referring to, we need a more in-depth data-

flow analysis. In this example, param.Foo is an alias of namespace.innerNamespace.

 var namespace={
 innerNamespace : {
 Foo: function() {
 console.log('object literal way');
 }
}
};

var anotherFunction = function(param){
var newInstance = new param.Foo();
}

anotherFunction(namespace.innerNamespace);

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 23: Aliasing

– Implementing a better approach for detecting namespaces or nested hierarchical scopes.

• Eliminating false positives

– Avoid finding functions that are not actually function constructors. For instance, we

believe that it is possible to improve our inference mechanism, by adding a constraint

to differentiate an interface emulation from a class emulation, when interface has all its

methods with empty body. With this improvement, we can eliminate 18 false positive

cases we found for Closure Library.

Detecting and studying function constructors is only one of the possible studies that was fa-

cilitated through the infrastructure that JSDeodorant provides, and there are countless number

of other conceivable studies that the research community can conduct. As an example, with the

existing API of JSDeodorant , we can easily mine large JavaScript repositories to capture the extent

of adoption of JavaScript design patterns. To the best of our knowledge, JSDeodorant already

supports all the major emulation patterns for class-like structures, known namespace patterns, and

one of the major module patterns, namely CommonJS. This definitely enables studies that require

fine-grained static analysis requiring information for the mentioned constructs.

We are also planning to conduct an empirical study to have a better understanding of the

evolution of JavaScript projects. To do so, we have collected a corpus of JavaScript projects from

61

different domains. In that study we will explore the usage of namespace, class, module patterns,

object literals, and inheritance over the life-time of the projects. From this perspective we may

investigate the hypothesis that whether, over time, the use of object-oriented practices is improving

in JavaScript projects.

Moreover, we can use JSDeodorant in order to find code smells in JavaScript programs. These

code smells can be related to the usage of classes in JavaScript (e.g., God Class, Data Class and

Feature Envy). One of the features that will be added in the next release of JSDeodorant is the

support for inheritance. Consequently, detecting inheritance-related code smells (such as Refused

Bequest) becomes viable using JSDeodorant .

The current version of JSDeodorant supports illustrating UML class diagrams from existing

JavaScript programs; however, by supporting inheritance in the tool, JSDeodorant might become

very helpful for reverse engineering purposes. JavaScript developers can feed JSDeodorant with

the source code and reverse engineer it to draw an overall view of the system with UML diagrams,

leading to saving the enormous amount of time that might be wasted, e.g., when a new developer

tries to grasp the architecture of an existing JavaScript project.

Finally, being able to transform existing JavaScript code to a better form is the ultimate goal

of this research. Refactoring code smells (e.g., duplicated code) would be very useful, because

JavaScript community is extensively suffering from lacking good tooling in this area.

62

Bibliography

[Aly] Alyson La. Language trends on github. https://github.com/blog/

2047-language-trends-on-github. Online; Accessed: 2016-03-04.

[AMD] Asynchronous module definition. https://github.com/amdjs/amdjs-api/blob/

master/AMD.md. Online; Accessed: 2016-02-24.

[AMP16a] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Understanding asynchronous

interactions in full-stack JavaScript. In Proceedings of the ACM/IEEE International

Conference on Software Engineering (ICSE), page 11 pages. ACM, 2016.

[AMP16b] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Understanding asynchronous

interactions in full-stack JavaScript. In Proceedings of the ACM/IEEE International

Conference on Software Engineering (ICSE), page 11 pages. ACM, 2016.

[cloa] Closure Compiler. https://developers.google.com/closure/compiler/. Online;

Accessed: 2016-02-24.

[Clob] Closure Library Namespace. https://developers.google.com/closure/library/

docs/introduction. Online; Accessed: 2016-02-24.

[cof] CoffeeScript. http://coffeescript.org/. Online; Accessed: 2016-07-02.

[Com] CommonJS. http://www.CommonJS.org/. Online; Accessed: 2016-02-24.

[CRK16] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. Development nature matters:

An empirical study of code clones in javascript applications. volume 21, pages 517–564,

Hingham, MA, USA, April 2016. Kluwer Academic Publishers.

63

[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, 1st edition, 5 2008.

[DEC]

[Ecm11] Ecma International. ECMAScript 2011 Language Specification, 6 2011.

[Ecm15] Ecma International. ECMAScript 2015 Language Specification, 6 2015.

[FM13] AM. Fard and A Mesbah. Jsnose: Detecting javascript code smells. In Source Code

Analysis and Manipulation (SCAM), 2013 IEEE 13th International Working Confer-

ence on, pages 116–125, Sept 2013.

[FTC07] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. Jdeodorant: Identification and re-

moval of feature envy bad smells. In Proceedings of the 23rd IEEE International

Conference on Software Maintenance, pages 519–520, 2007.

[GACD12a] W. Gama, M.H. Alalfi, J.R. Cordy, and T.R. Dean. Normalizing object-oriented class

styles in javascript. In Web Systems Evolution (WSE), 2012 14th IEEE International

Symposium on, pages 79–83, Sept 2012.

[GACD12b] Widd Gama, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Normalizing

object-oriented class styles in JavaScript. In 14th IEEE International Symposium on

Web Systems Evolution, WSE, 2012.

[GHWB14] S. Gude, M. Hafiz, and A. Wirfs-Brock. Javascript: The used parts. In Computer

Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual, pages

466–475, July 2014.

[GMB15] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. Don’t call us, we’ll call you:

Characterizing callbacks in JavaScript. In Proceedings of the ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM), pages 247–

256. IEEE Computer Society, 2015.

[Hav14] Marijn Haverbeke. Eloquent JavaScript: A Modern Introduction to Programming. No

Starch Press, 2 edition, 12 2014.

64

[Her12] David Herman. Effective JavaScript: 68 Specific Ways to Harness the Power of

JavaScript (Effective Software Development Series). Addison-Wesley Professional, 1

edition, 12 2012.

[java] Extending JavaScript Natives. https://javascriptweblog.wordpress.com/2011/

12/05/extending-javascript-natives/. Online; Accessed: 2016-02-24.

[javb] JavaScript Built-in Functions. http://www.tutorialspoint.com/javascript/

javascript_builtin_functions.htm. Online; Accessed: 2016-02-24.

[JPZ11] F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn. Javascript errors in the wild: An

empirical study. In 2011 IEEE 22nd International Symposium on Software Reliability

Engineering, pages 100–109, Nov 2011.

[jsda] JSDeodorant. https://github.com/sshishe/jsdeodorant. Online; Accessed: 2016-

07-02.

[JSDb] JSDOC. http://usejsdoc.org/. Online; Accessed: 2016-07-02.

[KK11] Eugene Kindler and Ivan Krivy. Object-oriented simulation of systems with sophisti-

cated control. International Journal of General Systems, 40(3):313–343, 2011.

[McK84] James R. McKee. Maintenance as a function of design. In Proceedings of the July 9-12,

1984, National Computer Conference and Exposition, AFIPS ’84, pages 187–193, New

York, NY, USA, 1984. ACM.

[Moza] Mozilla Developer Network. Introduction to object-oriented javascript.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_

to_Object-Oriented_JavaScript. Online; Accessed: 2016-03-15.

[Mozb] Mozilla Developer Network. Javascript functions. https://developer.mozilla.org/

en-US/docs/Web/JavaScript/Reference/Functions. Online; Accessed: 2016-02-24.

[Mozc] Mozilla Developer Network. Javascript this keyword. https://developer.

mozilla.org/en/docs/Web/JavaScript/Reference/Operators/this. Online; Ac-

cessed: 2016-02-26.

65

[MvDL12] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-based web appli-

cations through dynamic analysis of user interface state changes. ACM Transactions

on the Web (TWEB), 6(1):3:1–3:30, 2012.

[OBPM13] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. An empirical study of client-

side javascript bugs. In 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, pages 55–64, Oct 2013.

[OPM15] Frolin Ocariza, Karthik Pattabiraman, and Ali Mesbah. Detecting inconsistencies in

JavaScript MVC applications. In Proceedings of the ACM/IEEE International Con-

ference on Software Engineering (ICSE), pages 325–335. ACM, 2015.

[Osm12] Addy Osmani. Learning JavaScript Design Patterns - a JavaScript and jQuery De-

veloper’s Guide. O’Reilly Media, 2012.

[Pat] Patrick Catanzariti. Why javascript and the internet of things? http://www.

sitepoint.com/javascript-internet-things/. Online; Accessed: 2016-03-04.

[per] Extending builtin natives. Evil or not? http://perfectionkills.com/

extending-native-builtins. Online; Accessed: 2016-02-24.

[PRO] Use of ’prototype’ vs. ’this’ in javascript? http://stackoverflow.com/questions/

310870/use-of-prototype-vs-this-in-javascript. Online; Accessed: 2016-08-06.

[RLBV10] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the

dynamic behavior of javascript programs. SIGPLAN Not., 45(6):1–12, June 2010.

[SBF14] IEEE Computer Society, Pierre Bourque, and Richard E. Fairley. Guide to the Software

Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society

Press, Los Alamitos, CA, USA, 3rd edition, 2014.

[SRV+15] Leonardo Silva, Miguel Ramos, Marco Tulio Valente, Nicolas Anquetil, and Alexandre

Bergel. Does Javascript software embrace classes? In 22nd International Conference

on Software Analysis, Evolution and Reengineering (SANER), pages 73–82, 2015.

[Staa] Stackoverflow. Advantages of using prototype, vs defining methods straight in

the constructor? https://developer.mozilla.org/en/docs/Web/JavaScript/

Reference/Operators/this. Online; Accessed: 2016-06-02.

66

[Stab] Stackoverflow. How do I declare a namespace in JavaScript? http://stackoverflow.

com/questions/881515/how-do-i-declare-a-namespace-in-javascript. Online;

Accessed: 2016-02-24.

[Stac] Stackoverflow. What is the (function())() construct in

javascript? http://stackoverflow.com/questions/8228281/

what-is-the-function-construct-in-javascript. Online; Accessed: 2016-

06-04.

[Stad] Stackoverflow. Why is extending native objects a bad prac-

tice? http://stackoverflow.com/questions/14034180/

why-is-extending-native-objects-a-bad-practice. Online; Accessed: 2016-02-

24.

[Stae] Stackoverflow. Writing modular JS. https://addyosmani.com/

writing-modular-js/. Online; Accessed: 2016-07-02.

[TCC08] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. Jdeodorant:

Identification and removal of type-checking bad smells. In Proceedings of the 12th

European Conference on Software Maintenance and Reengineering, pages 329–331,

Washington, DC, USA, 2008. IEEE Computer Society.

[TMK15] Nikolaos Tsantalis, Davood Mazinanian, and Giri P. Krishnan. Assessing the refactora-

bility of software clones. IEEE Transactions on Software Engineering, 41(11):1055–

1090, Nov 2015.

[Tru] Javascript Namespaces and Modules. https://www.kenneth-truyers.net/2013/04/

27/javascript-namespaces-and-modules/. Online; Accessed: 2016-02-24.

[typ] TypeScript. https://www.typescriptlang.org/. Online; Accessed: 2016-07-02.

[vMVH97] Anneliese von Mayrhauser, A. Marie Vans, and Adele E. Howe. Program under-

standing behaviour during enhancement of large-scale software. Journal of Software

Maintenance: Research and Practice, 9(5):299–327, 1997.

[vV08] Hans van Vliet. Software Engineering: Principles and Practice. Wiley, 3 edition, 6

2008.

67

