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Abstract 

The biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the 

interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of 

chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by 

prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This 

work reports the first characterization of both the trifunctional PD-CM-PDT from the smallest 

hyperthermophilc archaeon (Nanoarchaeum equitans) and the bifunctional CM-PD from its 

host (the crenarchaeon Ignicoccus hospitalis). Hexa histidine-tagged proteins were expressed 

in Escherichia coli and purified by chromatography on Ni-NTA affinity resin. Both enzymes 

were highly thermally stable and exhibited maximal activity at 90°C. CM, PD and PDT activities 

were detected at temperatures consistent with enzymes from extreme thermophiles. Kinetic 

analysis revealed that unlike most PDs, the two archaeal enzymes were insensitive to 

regulation by L-Tyr and preferred NADP+ to NAD+ as a cofactor in the dehydrogenase reaction. 

N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion 

consistent with L-Phe’s combination at a site separate from that of prephenate. Gel filtration 

and analytical ultracentrifugation analysis of bifunctional CM-PD from I. hospitalis suggested 

that the enzyme is a native dimer. Limited proteolysis studies revealed that the enzyme is 

highly resistant to proteolysis but could be cleaved to yield a stable C-terminal PD domain. 

Mass spectrometry and mutagenesis studies confirmed that the PD domain of bifunctional 

 I. hospitalis CM-PD could be independently isolated and expressed. Biochemical and 

biophysical characterization of this active truncated variant was performed and the results of 

solution studies were compared to those of the full-length protein and to information 

available from other PD enzymes. Guided by amino acid sequence alignment predictions and 
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by models based on the available crystal structures of bacterial homologues, eight variants 

containing site-specific replacements were generated in I. hospitalis CM-PD as attempts to 

alter cofactor selectivity and substrate and end-product binding. Those variant proteins were 

kinetically characterized in order to help define the role of active site residues in substrate/ 

inhibitor interactions. These are the first studies exploring the aromatic amino acid 

biosynthetic pathway from the two archaeal organisms, which provide efficient and stable 

catalysts as excellent candidates for applications in biotechnology.
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1.0 Aromatic amino acid biosynthesis 

The aromatic amino acids, L-tyrosine (L-Tyr), L-tryptophan (L-Trp) and L-phenylalanine 

(L-Phe) are required for the growth and survival of all living organisms. Not only do these amino 

acids serve as the building blocks of proteins but they are also precursors in the synthesis of 

essential aromatic metabolites such as flavonoids(1), quinones(2), cyanogenic glycosides(3) and 

alkaloids(4). In archae, bacteria, plants, fungi  and apicomplexan parasites the biosynthesis of 

these aromatic amino acids is a multistep enzymatic process which involves the “shikimate 

pathway” and the “common pathway”; in contrast mammals obtain these amino acids from 

their diet(5). Thus, enzymes that are involved in these pathways are attractive targets for the 

design of inhibitors which potentially can serve as antifungal and antibacterial agents, and as 

herbicides(6-8). Moreover, these enzymes are of great interest in protein engineering since the 

aromatic amino acids are precursors for commercially valuable products such as food 

supplements, melanin, biodegradable polymers, and the anti-Parkinson drug L-Dopa and its 

derivatives (9-14). Accordingly, a thorough understanding of the mechanism of action and mode of 

regulation of these enzymes is essential for the design of effective inhibitors as well as for the 

overproduction of the aromatic amino acids through metabolic engineering.    

 

1.1 Shikimate pathway 

The shikimate pathway links carbohydrate metabolism to the biosynthesis of aromatic 

compounds (Fig 1.1) (15). It consists of seven metabolic steps that convert derivatives of six-

carbon sugars such as glucose into chorismate(16). The pathway commences with the 

condensation of erythrose-4-phosphate and phosphoenol-pyruvate to yield a seven-carbon 

compound 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP). The reaction is catalyzed by 

the highly regulated DAHP synthase, whose isoforms are feedback inhibited by either L-Phe, L-
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Tyr or L-Trp(16).  In the following steps, DAHP is cyclized to yield shikimate which is then 

phosphorylated to shikimate 3-phosphate and converted to 5-enolpyruvylshikimate-3-

phosphate (EPSP). In the last step of the shikimate pathway, EPSP is converted to chorismate by 

chorismate synthase (Fig 1.1). The shikimate pathway was lost in eukaryotes through evolution 

and therefore is absent from humans. As such, considerable efforts have been made to design 

herbicides that are not toxic to humans and to develop drugs against diseases such as malaria 

and tuberculosis by targeting enzymes in the pathway(6). One of the best known effective 

herbicides is glyphosate (Roundup®), which inhibits 5-enolpyruvylshikimate 3-phosphate 

synthase(17, 18). 

 

1.2 Common pathway 

Chorismate is a key branch-point intermediate that serves as a common precursor for the 

synthesis of the three aromatic amino acids L-Phe, L-Tyr and L-Trp as well as for a number of 

aromatic compounds such as vitamins, quinones or folates (Fig 1.2) (19, 20). In the common 

pathway chorismate undergoes a Claisen rearrangement to prephenate, the common 

intermediate for the biosynthesis of L-Tyr and L-Phe.  This reaction is catalyzed by chorismate 

mutase (CM) and is considered unique since it is the only known example of an enzyme-

catalyzed Claisen rearrangement in nature. The remaining biosynthetic steps leading to the 

formation L-Tyr and L-Phe can occur by two possible routes: the hydroxyphenylpyruvate/ 

phenylpyruvate (HPP/PP) route or the arogenate route (Fig 1.2). The biosynthesis of the third 

amino acid, L-Trp, also originates from chorismate and contains six steps from a separate 

pathway. The four reactions of this pathway are catalyzed by enzyme complexes, namely the 

anthranilate synthase-phosphoribosyl transferase complex and the tryptophan synthase 
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complex. The L-Trp biosynthetic pathway has gained industrial interest and has been exploited 

through metabolic engineering for the production of aromatic compounds such as  

bio-indigo(21-23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 5 

 

 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 1.1: The shikimate pathway. The pathway consists 
of seven enzyme-catalyzed steps: 1. DHAP synthase, 2. DHQ synthase,  
3. DHQ dehydratase, 4. SH dehydrogenase, 5. SK kinase, 6. EPSP synthase 
 and 7. CHO synthase 
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Figure 1.2: Biosynthesis of L-tyrosine and L-phenylalanine. Biosynthesis of the aromatic amino acids can 
occur by the phenylpyruvate/4-hydroxyphenylpyruvate (PP/HPP) pathway and the arogenate pathway. 
Enzymes involved in the biosynthesis: CM - chorismate mutase, PD – prephenate dehydrogenase, PDT – 
pephenate dehydratase, AT – aminotransferase, AD- arogenate dehydrogenase, ADT – arogenate 
dehydratase. 
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Figure 1.3: L-Tryptophan biosynthesis. The pathway consists of six enzyme-catalyzed steps: 1, 
anthranilate synthase, 2, anthranilate phosphoribosyltransferase, 3, phosphoribosylanthranilate 
isomerase, 4, indole-3-glycerol-phosphate synthase, 5-6, tryptophan synthase enzyme complex. 
PRPP: 5-phosphoribosyl-Δ-pyrophosphate (Adapted from J. Bonvin (24)). 
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1.3 The hydroxyphenylpyruvate and phenylpyruvate pathways 

In bacteria, the production of L-Tyr and L-Phe generally occurs through the HPP/PP 

route where prephenate, the product of the chorismate mutase (CM) reaction, is a branch point 

intermediate. Prephenate can either undergo NAD(P)+- dependent oxidative decarboxylation by 

prephenate dehydrogenase (PD) to form p-hydroxyphenylpyruvate (HPP) and carbon dioxide, or 

dehydration and decarboxylation by prephenate dehydratase (PDT) to yield phenylpyruvate (PP) 

(Fig 1.2). HPP or PP are then transaminated by an aminotransferase to form L-Tyr or L-Phe, 

respectively(25). In many organisms the HPP pathway is regulated by the end product L-Tyr which 

inhibits the action of PD and to a lesser extent CM(26). Similarly, the PP route is also regulated by 

its end product, L-Phe, which allosterically inhibits PDT. L-Phe is also reported to inhibit mutase 

activity but the dehydratase enzyme is significantly more affected than the mutase(27). 

 

1.4  The arogenate pathway 

Most plants and some cyanobacteria produce L-Tyr and L-Phe using the arogenate 

pathway(28, 29). In this pathway prephenate is first transaminated into L-arogenate by prephenate 

aminotransferase (PAT) using either L-glutamate or L-aspartate as amino donors (Fig 1.2). L-

arogenate (formerly denoted as pretyrosine) is then either oxidatively decarboxylated by 

arogenate dehydrogenase (AD) in the presence of NAD+ or NADP+ to form L-Tyr and carbon 

dioxide, or dehydrated by arogenate dehydratase (ADT) to form L-Phe. AD has been isolated 

from various species and was shown in plants to be very sensitive to feedback inhibition by 

Tyr(30, 31). In contrast, ADT also was reported to be feedback regulated by L-Phe in species such as 

rice, tobacco and spinach (32, 33) and stimulated by L-Tyr(34). 

While most organisms possess either the HPP/PP or the arogenate pathway for L-Tyr 

and L-Phe production, in some microorganisms such as Zymomonas mobilis, Pseudomonas 
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aeruginosa and Synechocystis both pathways co-exist (35-41). In these organisms L-arogenate is 

used for L-Tyr synthesis while L-Phe is synthesized via the PP route. In these cases L-arogenate is 

not at the branch-point and therefore AD is not feedback inhibited by the end product L-Tyr.  

 Biosynthetic routes to produce L-Tyr and L-Phe are of great interest in bioengineering 

since these amino acids and their derivatives have commercial value in the food, pharmaceutical 

and agricultural industries (42, 43). An excellent example of commercial success in the food 

industry is the sweetener aspartame, also known as NutraSweet® which consist of L-Phe (and L-

aspartate)(44, 45). Traditionally, L-amino acids have been supplied mainly by extraction from 

protein hydrolysates(46). However, to suit the demands for large scale production of the L-α-keto 

acids and intermediates, strategies to manipulate their biosynthetic pathways are now being 

explored (12, 47, 48). Accordingly, characterization of the key enzymes in these pathways has been 

performed in a number of organisms.  In this thesis, enzymes responsible for L-Tyr and L-Phe 

production namely CM, PD and PDT are examined to provide insights regarding their structure, 

activity, and the relationship between the enzymes which carry out the consecutive reactions. 

 

1.5 TyrA protein family 

The TyrA protein family is dedicated to L-Tyr biosynthesis and consists of homologous 

cofactor-dependent dehydrogenases that are classified into three categories depending on their 

substrate specificities: prephenate dehydrogenases (PD) are specific to prephenate, arogenate 

dehydrogenases (AD) to L-arogenate, and cyclohexadienyl dehydrogenases that can accept both 

substrates. In addition to specificity for the cyclohexadienyl substrate, TyrA enzymes have a 

requirement for either NAD+ or NADP+, while some may use both cofactors(29). Generally, 

prephenate dehydrogenases are specific to NAD+, for example E. coli and Aquifex aeolicus PDs, 

while arogenate dehydrogenases prefer NADP+, for example  Synechocystis sp. PCC 6803 AD (41). 
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It has been proposed that broad cofactor specificity is the ancestral state prior to the divergence 

of the NAD+ and NADP+-specific descendants which evolved in response to the mechanisms that 

enhanced the cellular abundance of each of the cofactors (29, 49). Examples for the TyrA proteins 

that can accept both cofactors include prephenate-specific enzymes from the Gram-negative 

bacterium Gluconobacter oxydans and from the archaeon Methanohalophilus mahii (29, 50). All 

TyrA proteins catalyze the irreversible oxidative step in L-Tyr biosynthesis, regardless of the 

organism in which they are found. They share a core catalytic domain of about 30 kDa and 

maintain the same frame of fundamental reaction chemistry (51). The TyrA family consists of 

prephenate dehydrogenases that are monofunctional, such as PD from the hyperthermophilic 

bacterium Aquifex aeolicus(52), those that are bifunctional with chorismate mutase activity  

associated with the N-terminal portion of the protein, for example E. coli and Haemophilus 

influenzae CM-PD(26), or bifunctional with phosphoshikimate carboxyvinyltransferases activity at 

the proteins’ C-terminal region, such as PDs from Pseudomonas stutzeri and Pseudomonas 

aeruginosa(51). Trifunctional PD proteins have now been identified in the genomes of 

Archaeoglobus fulgidus, Nanoarchaeum equitans and in the brown algae Ectocarpus siliculosus 

(46, 53-55). In these organisms PD, CM and PDT domains are predicted to reside on the same 

polypeptide chain. Some TyrA proteins, for example PD from Bacillus subtilis, also possess a 

carboxy-terminal ACT fusion domain named after the enzymes where the domain was 

discovered (Aspartate kinase-Chorismate mutase-TyrA). The ACT domain is reported to be 

responsible for allosteric regulation of the catalytic activities (56). 

Many enzymes within the TyrA family have been extensively studied in terms of their 

phylogeny and have been classified by substrate specificity and mode of regulation through 

bioinformatics analysis (29).  However, relatively few Tyr proteins have been purified and 

characterized.  The most well-characterized TyrA enzyme to date is the bifunctional CM-PD from 
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E. coli, which has been extensively studied in solution using kinetic, biochemical and biophysical 

tools and serves as a model for the study of other TyrA proteins(26, 57-60). However, no crystal 

structure is available for E. coli CM-PD. Other characterized TyrA proteins include the 

monofunctional PD from A. aeolicus (52), ADs from Synechocystis sp. PCC6803(49) and Arabidopsis 

thaliana(31) and cyclohexadienyl dehydrogenases from Zymomonas mobilis(40). 

 

1.6 Chorismate mutase mechanism 

CM catalyzes the pericyclic Claisen rearrangement reaction of chorismate to 

prephenate(61). The reaction can occur in the absence of the enzyme although the process is 

accelerated by over a million-fold in the presence of CM (62, 63). Chorismate is found in two forms 

in aqueous solution: the more abundant diequatorial and the less stable diaxial form57. Both the 

non-enzymatic(64, 65) and enzyme catalyzed rearrangements(62, 66, 67) are believed to proceed via a 

chair-like transition state following the selection of chorismate‘s less stable diaxial form. It’s 

enolpyruvyl group is stabilized by hydrogen bonding to water molecules, which leads to bond 

breakage between C-5 and the oxygen of chorismate (Fig 1.4).  

In order to identify features that are required for enzymatic catalysis, several 

chorismate analogues had been synthesized and characterized (68, 69). These studies have 

suggested that the allyl vinyl ether and the two carboxylate groups are required for binding of 

chorismate to the mutase active site while neither the 5,6-olefinic ring nor the 4-hydroxyl group 

are necessary(69). An endo-oxabicyclic diacid inhibitor (70) possessing a bridged ether oxygen and 

an endo conformation of the bridged carboxylate (Fig 1.4) was shown to mimic the bicyclic 

structure of the transition state. As revealed from studies on E. coli CM-PD, this transition state 

analogue appeared to bind about 300-fold more tightly to the enzyme than chorismate(26). 
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Additionally, kinetic studies on E. coli CM-PD have revealed that the reaction proceeds through 

enzymic acids and bases(57, 71). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Rearrangement of chorismate through a transition-state complex. Proton NMR 
studies indicate that 10 to 20% of chorismate is found in the diaxial conformer in equilibrium 
with the more stable diequatorial form. The endo-oxabicyclic CM inhibitor is believed to mimic 
the structure of the transition state. Adapted from Christendat et al(57). 
 

 

 

Several CM enzymes such as those from Bacillus subtilis(64),  Saccharomyces cervisiae(72), 

Thermus thermophilus(73), Mycobacterium tuberculosis(74) and the independently expressed  

CM domain of E. coli CM-PDT(75) (also called the “mini-mutase”) have been crystallized. The 

studies have revealed two structurally distinct classes of CM:  AroH and AroQ (Fig 1.5).  AroH 

is less abundant and possesses a trimeric α/β-barrel structure (20). The monofunctional CM 

from B. subtilis which was the first to be crystallized is of the AroH type. In contrast, AroQ is 
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a dimeric helix-bundle, which in some organisms is fused to a PD or PDT domain. The E. coli 

mini-mutase is AroQ type. Other AroQ examples include the CM from S. cerevisiae and the 

CM from M. tuberculosis. Interestingly, there are two types of AroQ proteins. Those from 

Pseudomonas aeroginusa and Salmonella thepidum, for example, contain a cytoplasmic 

fusion of CM-PD or CM-PDT as well as a periplasmic monofunctional CM(76).   Although 

alignment of the amino acid sequences of the CM enzymes mentioned above shows little 

similarity and the proteins adopt different folds, the electronic environment and the 

geometry of the active site appears to be well conserved.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5: Ribbon diagram representations of the AroQ and AroH folds. The AroQ class (left) is 
completely helical and includes CM proteins from E. coli and S. cerevisiae. The AroH class (right) 

is organized as a trimeric /-barrel fold and includes CM proteins from B. subtilis and M. 
tuberculosis(61, 77).  
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Crystallography studies on the CMs have provided insights as to the active site structure 

required for substrate binding and catalysis (64, 72, 73, 75, 78, 79). These findings have served as a basis 

for the design of complementary site-directed mutagenesis experiments and for directed 

evolution studies (80, 81). The structure of the “mini-mutase” complexed with a mutase transition-

state analogue(75), along with extensive mutagenesis studies(76, 77) have identified the importance 

of Lys39 and Gln88 in coordinating the ether oxygen (O7) of the endo-oxabicyclic diacid (Fig 1.6). 

The studies also have shown that Lys39 (Lys37 in E. coli CM-PD) along with Arg11 from the 

adjacent monomer are important in positioning the substrate’s C-11 carboxylate group in the 

highly charged region of the active site (Fig 1.6). Kinetic studies on E. coli CM-PD have revealed 

that the activity of the mutase is pH dependent indicating the participation of three groups (two 

protonated and one deprotonated) in substrate binding and/or catalysis; Lys37 may be one of 

these residues, poised to protonate the ether oxygen of chorismate in the transition state of the 

reaction(71). Additionally, pH-dependent activity profiles of the variant Gln88Glu of the “mini-

mutase” and of wild-type CM from yeast (which contains Glu at position 246) have revealed the 

importance of a protonated side chain at this position. CM’s reactivity has been recently 

explored through computational studies to complement the findings obtained from functional 

analysis of variant proteins(82-84). Although a number of mechanisms have been proposed for the 

CM-catalyzed reaction which include acid/base catalysis, a nucleophile-assisted dissociative 

mechanism(65) and transition state stabilization, the precise catalytic mechanism is not yet 

completely understood and remains under active investigation. 
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1.6: The active site of E. coli chorismate mutase. Scheme of the active site of the independently 
expressed mutase domain (“mini-mutase”) of E. coli CM-PDT with endo-oxabicyclic diacid. 
Residue Arg11’ is from the adjacent monomer. Adapted from Lee and colleagues(61).  
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1.7 Prephenate dehydrogenase mechanism and its inhibition by tyrosine 

Prephenate dehydrogenase catalyzes the NAD(P)+-dependent oxidative decarboxylation 

of prephenate to HPP. The reaction is irreversible, driven by the formation of the aromatic 

product, HPP. In the absence of the enzyme, but only under acidic conditions, prephenate can 

rapidly undergo decarboxylation to yield phenylpyruvate (PP) (85). The acid-induced 

decarboxylation follows a stepwise mechanism where protonation of the hydroxyl group of 

prephenate leads to the formation of a resonance-stabilized carbonium ion prior to 

decarboxylation. In contrast, the PD-catalyzed reaction proceeds through concerted hydride 

transfer and decarboxylation steps. This mechanism was postulated by Hermes and colleagues 

through the use of isotope effect studies performed with prephenate and its analogues (85). 

These studies reported an isotope effect for the hydride transfer to NAD+ when using the 

substrate analogue deoxoprephenate, deuterated at C-4. Using the natural abundance of 13C in 

the substrate, they observed a carbon isotope effect for the cleavage of C-C bond between the 

cyclohexadiene ring and the ring carboxylate in the decarboxylation step. Most importantly 

however, the 13C isotope effect was smaller when studies were conducted in the presence of the 

deuterated versus non deuterated substrate suggesting that hydride transfer and 

decarboxylation occurred in the same transition state. These results supported the idea of a 

concerted mechanism in catalysis. 

Studies on E. coli CM-PD, which included the analyses of initial velocity, product and 

dead-end inhibition patterns, and isotope trapping experiments, were used to elucidate the 

kinetic mechanism of the dehydrogenase reaction. These studies revealed that PD conforms to a 

rapid equilibrium random kinetic mechanism with catalysis as the rate-determining step in the 

reaction(86). A similar reaction mechanism has been reported for CM-PD from A. aerogenes(87). In 
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addition, pH rate studies on E. coli CM-PD have been performed to determine the pKa values of 

residues involved in the dehydrogenase reaction(59, 85, 88) . The pH dependence of the log V of the 

PD-catalyzed reaction identified a single ionizing group with a pKa 6.5 that had to be 

deprotonated for maximum activity and was involved in catalysis and/or product release(59). In 

contrast, the log(V/K)prephenate pH profile displayed, in addition to the deprotonated group, a 

second ionizing group  (pKa value of about 8.4), which must be protonated for maximum activity 

and was important for binding prephenate to the enzyme-NAD+ complex. Additionally, studies 

on the effects of temperature and solvent on the acidic pKa limb of the pH profile suggested that 

the catalytic group was likely a histidine(85) . 

Studies performed by Christendat and Turnbull which include site-directed mutagenesis 

and the analysis of pH-rate profiles have identified residues involved in substrate binding and 

catalysis (Fig 1.7). His197 was shown to play a key role in catalysis of the PD reaction likely  by 

polarizing the p-hydroxyl group of prephenate, lowering the activation barrier to assist in 

hydride transfer and concominant decarboxylation; the activity of the His197Asn variant was 

reduced by five orders of magnitude relatively to the wild-type enzyme and retained full CM 

activity(57). In contrast, Arg294 was shown to be important solely in prephenate binding as the 

KM for prephenate of the Arg294Gln variant was increased over 100-fold without affecting 

turnover of the PD-catalyzed reaction or the CM reaction (58). Inhibition studies using substrate 

analogues modified at the C-1 position of prephenate, suggested that Arg294 interacts 

electrostatically with the ring carboxylate of prephenate (Fig 1.7). Multiple sequence alignment 

with a number of PD proteins shows these residues are conserved (Fig 1.8). Interestingly, 

mutagenesis studies so far have failed to identify the residue (pKa of 8.4) titrating in the pH rate 

profiles that is believed to assist in prephenate binding. 
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Figure 1.7: Proposed mechanism for the prephenate dehydrogenase-catalyzed reaction. A 
deprotonated group, His197 in E. coli CM-PD, is proposed to polarize the 4-hydroxy group of 
prephenate while Arg294 is involved in prephenate binding. 
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Figure 1.8: Multiple sequence alignment of TyrA proteins. Multiple sequence allignment of selected 
prephenate dehydrogenases and PD domains of TyrA proteins. Shown are sequences from 
monofunctional PDs:  Aquifex aeolicus NP_214202, Corynebacterium glutamicum  NP_599479.1 and 
Sinorizobium meliloti  WP_010970109.1; monofunctional AD: Synechocystis P73906_SYNY3; 
bifunctional CM-PDs: Ignicoccus  hospitalis YP_00143548, Escherichia coli  NP_289153 and 
Haemophilus influenzae YP_005829274; and trifunctional PD-CM-PDTs:  Nanoarchaeum equitans 
NP_963486.1and Archaeoglobus fulgidus NP_069065. Conserved residues highlighted in black 
correspond to the glycine residues from the GXGXXG motif characteristic of the NAD(P)+ binding 
domain, the catalytic histidine and the arginine residue proposed to be important for prephenate 
binding. Shown in bold are aspartate and arginine residues that are important for NAD(P)+ specificity, 
plus substituted residues at those two positions. 
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Crystallographic data for TyrA proteins have surfaced only in the last decade. The first 

structure was that of a monofunctional PD (the N-terminally truncated variant, Δ19PD) from the 

hyperthermophilic bacterium A. aeolicus in complex with NAD+ that was solved by 

Christendat,Turnbull and coworkers(89). This was followed by studies on the same enzyme in the 

presence of NAD+ and a series of prephenate analogs including L-Tyr(90). Published structures are 

now avalible for NAD+-bound PD from S. mutants(91), NADP+-bound AD from Synechocystis sp. 

PCC 6803 (41) and for the N-terminally truncated variant (∆80) of CM-PD from H. influenzae in 

complex with NAD+ and L-Tyr(92). Unpublished crystal structures include those of NADP+ -bound 

TyrA from Sinorhizobium meliloti (pdb-4wji) and unliganded PDs from Streptococcus 

thermophilus (pdb-3dzb) and Corynebacterium glutamicum (pdb-3ktd). These studies reveal that 

the dehydrogenases from all organisms mentioned above retain the same higher order 

structures. The enzyme is dimeric and contains within each monomer a highly α-helical C-

terminal dimerization domain and an N-terminal nucleotide binding domain containing a β-α-β 

repeating structure that is associated with the Rossman fold (93). The active site (one for each 

monomer) is at the interface of the two domains and encompasses amino acid residues from 

both monomers (See Fig 1.9 A).  

The structures of A. aeolicus Δ19PD and that of the independently expressed PD domain 

of H. influenzae CM-PD (the latter shares 60% amino acid sequence identity with E. coli PD) have 

been instrumental in helping to assign the role of residues in the catalytic mechanism of the 

dehydrogenase. In fact, H. influenzae Δ80CM-PD in complex with NAD+ and L-Tyr has served as a 

template to generate the  liganded model of E. coli PD (94). This template indicated that the 

cationic guanidine group of residue Arg297, which is equivalent to Arg294 in E. coli CM-PD, is 

within hydrogen bonding distance of the side chain carboxyl group of L-Tyr (Fig 1.9). Site-

directed mutagenesis studies on the Δ80CM-PD from H. influenzae have revealed that the KM of 
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the variant Arg297Gln was increased 1000-fold relative to the wild-type enzyme, denoting the 

importance of the arginine in prephenate binding(95).  The liganded model of E. coli PD also 

showed that the p-hydroxyl group of L-Tyr is located near His197 which further supports 

histidine’s role as a catalytic residue in the PD reaction.   

Crystallographic studies on A. aeolicus Δ19PD(89, 90) revealed that residue His147, which 

is equivalent to His197 in E. coli CM-PD, is located adjacent to the cofactor’s nicotinamide ring 

and the C-4 position of HPP thus implicating this residue in hydride transfer from prephenate to 

NAD+ (Fig 1.10). Additionally, the residue Arg250 (Arg294 in E. coli CM-PD), appears to be 

located in a highly polar environment and in close proximity to the pyruvyl side chain of HPP, 

implying its importance in prephenate binding through the side chain carboxylate. Site-directed 

mutagenesis and kinetic studies, however, revealed that Arg250 is not critical for prephenate 

binding in A. aeolicus Δ19PD(96); the variant Arg250Gln displayed only a 10-fold increase in the 

KM for prephenate without a significant change in kcat. These studies identified another active 

site residue, Lys246’ from the adjacent monomer, which in combination with Arg250, may play 

an important role in binding prephenate. 
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Figure 1.9: Model of E. coli PD domain. (A) Model of dimeric PD domain of E. coli CM-PD in complex 
with NAD+ and L-Tyr. Based on H. influenzae 3D Structure: PDB-2pv7 (92, 94). (B) Active site of liganded 
dimeric PD domain of E. coli CM-PD overlayed on the structure of H. influenzae PD(94). E. coli PD 
residues are colored in red while those of H. influenzae PD are in white. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Active site of A. aeolicus Δ19PD. The protein is bound in (A) with HPP and NADH 
and in (B) with NAD+ and L-Tyr. Adapted from N. Hotz (96).  
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L-Tyr biosynthesis is mainly regulated through feedback inhibition of TyrA proteins by 

the end products; however the exact regulatory mechanism is still not well understood. Kinetic 

studies on E. coli CM-PD by Christopherson and colleagues showed that L-Tyr and HPP act as 

competitive inhibitors(97) suggesting that the product and the end product inhibitor combine at 

the same site. In contrast, Turnbull and coworkers, through fitting models of inhibition, 

postulated the presence of a distinct allosteric site for the binding of L-Tyr(71).  The E. coli enzyme 

showed concave upwards double reciprocal plots of velocity at varying prephenate 

concentrations, and fixed, increasing concentrations of L-Tyr suggesting positive cooperativity 

between subunits in the binding of the end product (60). Biophysical studies support a model for 

this allosteric transition, which involves conversion from an active dimer to an inactive tetramer 

upon binding L-Tyr in the presence of NAD+ (98). Studies on A. aeolicus PD and H. influenzae CM-

PD have also displayed kinetics suggesting cooperative binding of L-Tyr, however, this did not 

appear to correlate with a  quaternary structure change (52, 95). Interestingly, despite the 

evidence in support of an allosteric binding site for L-Tyr (71, 96), the crystal structures of H. 

influenzae Δ80CM-PD and A. aeolicus Δ19PD clearly show L-Tyr bound at the active site (Fig 1.9-

1.10 and references(90, 92). The structure of H. influenzae Δ80CM-PD and the modeled PD domain 

of E. coli CM-PD  as well as site-directed mutagenesis studies of E. coli CM-PD have identified 

active site residues Tyr285’ and Tyr303 (each from the adjacent monomer), and Gln298 as key 

players in the enzyme’s interactions with the amine and carboxylate side chain of L-Tyr, 

respectively (94). A. aeolicus Δ19PD, in contrast, does not contain the coordinating enzymic 

tyrosine residues implying an alternative mechanism for L-Tyr binding (Fig 1.10). The structure 

of A. aeolicus Δ19PD showed L-Tyr’s amine interacting with His217 via a water molecule and the 

backbone of Thr152 (Fig 1.10)(90). Mutagenesis studies have also shown that His217 and Ser254 

are important for inhibition by L-Tyr. Additionally, the variants Thr152Pro and 
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Glu153Ala/Asp247Ala are partially L-Tyr insensitive and yield kinetics consistent with allosteric 

inhibition by L-Tyr(96). 

Additionally, bioinformatics analysis and phylogenetic studies by Song et al (99) have 

revealed that some bacterial PD proteins, such as the monofunctional PD from B. subtilis 

possess a C-terminal ACT fusion domain that is important for allosteric regulation of catalytic 

activity by L-Tyr and L-Phe(100). This domain is not present in the TyrA proteins of E. coli, H. 

influenzae and A. aeolicus. Together the results of many studies imply that different 

mechanisms of inhibition by L-Tyr exist for PD proteins from different bacterial sources.                                                                         

 

1.8 Prephenate dehydratases 

Prephenate dehydratase (PDT) belongs to the PheA family of proteins that catalyze 

decarboxylation and dehydration of prephenate to yield phenylpyruvate (Fig 1.2). This PDT-

catalyzed conversion is the committed step in the biosynthesis of L-phenylalanine in the 

shikimate pathway (25, 101). In the absence of enzyme, the acid-catalyzed reaction proceeds in two 

steps via a carbocation intermediate (Fig 1.11) (85). Kinetic studies, however, reveal that PDT 

accelerates this reaction by a factor of >106 (62, 102). Although a number of PDT enzymes have 

been characterized biochemically (103-107), their catalytic mechanism remains poorly understood. 

In different organisms PDTs exist as either monofunctional or multifunctional enzymes, 

usually as a fusion protein with CM. The E. coli PheA, for example, is a bifunctional enzyme that 

has a PDT domain fused to the N-terminus of CM (CM-PDT) (102). PDT proteins contain a C-

terminal regulatory ACT domain which binds L-Phe or other amino acids (107). Binding of L-Phe 

generally has an inhibitory effect, whereas tyrosine often activates the enzyme. Regulation of 

PDT activity by tryptophan, methionine and leucine has also been reported(108, 109). To elucidate 

important structural and functional features required for catalysis and allosteric regulation, 
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bioinformatics studies were conducted by Jensen and colleagues which identified nine highly 

conserved amino acids(110). Of these, site-directed mutagenesis studies on PDTs from E. coli and 

Corynebacterium glutamicum have identified a conserved TRF motif (Thr, Arg, Phe) that is 

essential for dehydratase activity(103, 111). The structural and functional importance of this motif 

was revealed through crystal structures of PDT from Chlostridium tepidum in complex with L-

Phe and unliganded PDT from Staphylococcus aureus(112). These studies revealed that PDT was a 

tetramer formed from a dimer of dimers with the active site located in a cleft between two 

dimeric subunits (Fig 1.12). Within this cleft the side chains of Thr171 and Phe173 (C. tepidum 

numbering) were pointing toward the active site. From isotope effect studies on PDT from 

Methanocaldococcus jannaschii, Hilvert and coworkers proposed that in the PDT reaction 

(illustrated in Fig 1.11) Thr acts as a general acid  by protonating the leaving hydroxyl group of 

prephenate, while Phe forms part of a hydrophobic pocket to help anchor prephenate in the 

active site (113). 

The crystal structure of PDT from C. tepidum showed L-Phe bound at the dimer interface 

of the ACT domains of the protein(112), confirming the allosteric regulation of PDT. These studies 

showed Phe242, which appears to be the critical residue for L-Phe binding, interacting with the 

benzene ring of L-Phe105. 
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         Figure 1.11:  PDT-catalyzed reaction. Adapted from Van Vleet and coworkers(113) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.12: (A) Crystal structure of dimeric Chlostridium tepidum PDT in complex with L-Phe.  
The structure is from PDB-2qmx.The active site is located in the PDT domain in a cleft between 
the two subunits(112).  
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1.9 Arogenate dehydrogenases and dehydratases 

In most plants, cyanobacteria, algae and several other microorganisms, both L-Tyr and L-

Phe are synthesized from a common precursor L-arogenate via the arogenate pathway. This 

pathway was discovered by Stenmark et al(28) who named the precursor pretyrosine since they 

observed that this compound was used for L-Tyr biosynthesis. Later it was shown that 

pretyrosine could also be used in L-Phe biosynthesis and therefore was renamed L-

arogenate(114). As mentioned in section 1.4, prephenate aminotransferase (PAT) first converts 

prephenate to L-arogenate. Next, arogenate dehydrogenase (AD) catalyzes the cofactor-

dependent oxidative decarboxylation of L-arogenate to yield L-Tyr, while arogenate dehydratase 

(ADT) catalyzes decarboxylation and dehydration to produce L-Phe. In contrast to PD proteins, 

ADs often have a strict requirement for NADP+ but in some cases, such as the AD from 

Synechococcus sp. ATCC 29404, is reported to use both as cofactors(29). Amino acid sequence 

alignments of AD and PD proteins by Bonner and colleagues have revealed insight into cofactor 

specificity(29). The presence of an Asp or Glu residue approximately 15-20 residues downstream 

of the GXGXXG consensus motif is an indicator for NAD+ specificity since NADP+ is repelled by 

the negative charge of Asp.  The absence of Asp or Glu at the corresponding position in the AD 

protein and the presence of a positively charged Arg at the following position indicates NADP+ 

specificity(29). 

Many studies on AD (30, 31, 38, 39, 99, 115-117) have focused on the identification of this activity 

in different organisms through bioinformatics analysis combined with functional studies; only a 

few studies have been conducted on purified protein. The most recent work is focused on 

feedback regulation of AD in plants(118). In addition, studies on ADT proteins, which are much 

less common than PDTs have shown feedback regulation by L-Phe(32, 33) and stimulation by L-
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Tyr(34). As with PDT, the regulation of ADT is thought to be allosterically controlled through the 

ACT domain.  

The only available AD crystal structure is from Synechocystis sp. PCC 6803 AD in complex 

with its cofactor NADP+ and with the substrate, L-arogenate, modeled in the active site. It was 

published in 2006 by Legrand and coworkers(41). Examination of the crystal structure revealed 

that Synechocystis sp. PCC 6803 AD is similar to the PD proteins with regard to its higher order 

structure and the active site configuration. Analysis of the AD active site identified the 

conserved residue His112 (His197 in E. coli CM-PD and His147 in A. aeolicus ∆19PD), presumed 

to be the reaction’s catalytic hydrogen bond acceptor, in close proximity to the modeled L-

arogenate (2.6 Å) (41) implying a similar catalytic mechanism to that of PD (Fig 1.13). However, 

the conserved residue Arg217 in AD from Synechocystis sp. PCC 6803 (homologous to Arg294 

and Arg250 in E. coli CM-PD and   A. aeolicus Δ19PD, respectively), which was shown to be 

important  for prephenate binding in   E. coli and H. influenzae CM-PDs(58, 95), appeared too far 

away from the active site to interact with L-arogenate implying that this cationic residue was not 

important for substrate binding (41). To date, there are no published crystal structures of any ADT 

proteins. More studies, thus, are required to provide insights into the structure-function 

relationship of ADs and ADT proteins. 
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Figure 1.13: AD reaction mechanism. The concerted reaction mechanism as proposed by 
Hermes and coworkers (85). His112 (Synechocystis sp. PCC 6803 AD numbering) is proposed to be 
a key catalytic H-bond acceptor in the dehydrogenase reaction. Adapted from Legrand and 
coworkers(41). 

 

 

1.10 TyrA enzymes from hyperthermophilic archaea Nanoarchaeum equitans and 

Ignicoccus hospitalis 

N. equitans is the smallest of the hyperthermophilic archaea characterized to date and 

possesses a highly reduced genome. The organism thrives through a unique obligatory symbiotic 

relationship with the larger archaeon I. hospitalis and grows optimally at 90°C (119, 120). The 

crenarchaeon I. hospitalis is a hydrogen-oxidizing, chemoautotroph that couples CO2 fixation 

with sulfur respiration. Uniquely among archaea, I. hospitalis cells are surrounded by two 

membranes separated by a periplasmic space within which vesicular transport occurs (121). The 

potential involvement of this transport in the relationship with N. equitans is unknown. The 
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complete genomic sequences of N. equitans and I. hospitalis were reported in 2002 and 2008, 

respectively, isolated from a co-culture of N. equitans and I. hospitalis or from a pure culture of 

I. hospitalis, which were initially derived from samples found in Icelandic thermal vents(53, 121). 

Genome analysis revealed that N. equitans  has an A-T rich genome (69%) and lacks most of the 

genes for the biosynthesis of amino acids, nucleotides, lipids and cofactors as well as the 

pathways for carbon assimilation such as glycolysis, gluconeogenesis and the pentose phosphate 

pathway(119). Accordingly, N. equitans must transport most cellular metabolites from its host 

organism I. hospitalis. Interestingly, N. equitans retains a trifunctional PD-CM-PDT gene 

(NEQ192) required for aromatic amino acid biosynthesis (119). While most of the known TyrA 

enzymes are either monofunctional or a fusion of CM-PD domains, the N. equitans TyrA is 

predicted to possess all three enzymatic activities on one polypeptide chain. The unusual three 

domain assembly is evident in only two other organisms: the hyperthermophilic archaeon 

Archaeoglobus fulgidus which is reported to possess an NAD+-specific, tyrosine-sensitive 

trifunctional PD (55) and the brown algae Ectocarpus siliculosus whose genome is predicted to 

encode a CM-PDT-PD fusion protein (54). Genome analysis of I. hospitalis has identified a tyrA 

gene (gene locus Igni_0892) that is predicted to encode a 348- residue bifunctional CM-PD. PDT 

activity, in contrast, is believed to be encoded by a separate gene. 

Amino acid sequence alignment of the CM and PD domains of I. hospitalis and  

N. equitans TyrA proteins has revealed only 36% and 24%, sequence identity, respectively. 

Additionally, the archaeal PD domains have only ~25% amino acid sequence identity with their 

homologues from E. coli and A. aeolicus. Thus, functional studies on the archaeal TyrA proteins 

would provide additional insights in the catalytic mechanism and mode of regulation of PD 

proteins. For example, while most PD proteins use NAD+ as a cofactor in the dehydrogenase 

reaction(29), amino acid sequence analysis of a number of TyrA proteins predicts that both 
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symbiotic archaea possess tyrA genes that may give rise to NADP+-specific PD activities (Fig 1.8). 

Moreover, some residues that are important in the coordination of L-Tyr in PD proteins from E. 

coli and H. influenzae, do not appear to be conserved in I. hospitalis and N. equitans TyrA. Thus, 

PDs from both symbiotic archaea may be unregulated by L-Tyr; this is unusual since most PD 

proteins are strictly feedback inhibited by the end product. The enzymes from both archaeal 

symbionts may represent a distinct class of TyrA proteins.  

To date, all efforts to obtain a three-dimensional structure of multifunctional TyrA 

proteins have not been successful. However, several monofunctional CM and PD proteins have 

been crystallized and their structures have been solved (64, 73, 78, 89, 91, 92, 122, 123). The physical 

properties of hyperthermophilic enzymes, such as a highly charged surface(124-126) and increased 

packing density(126, 127), are known to render them better candidates for crystallization studies. 

Accordingly, multifunctional TyrA proteins from the hyperthermophilic archaeal symbionts could 

be interesting candidates for crystallography studies. 

The rare PD/CM/PDT fusion of the trifunctional protein, the apparent unusual cofactor 

specificity and possible L-Tyr deregulation of the hyperthermophilic TyrAs from both symbionts 

make these proteins good model systems for comparative structural and functional studies.  

 

1.11 Scope and organization of thesis 

Chapter two describes the recombinant expression, purification and characterization of 

I. hospitalis CM-PD and N. equitans PD-CM-PDT.  I. hospitalis and N. equitans tyrA genes were 

cloned into pET-15b, expressed in E. coli and chromatographed on Ni-NTA resin. While the 

strategy was successful for obtaining satisfactory yields of I. hospitalis TyrA, the expression of N. 

equitans TyrA was poor and that which was expressed was mainly insoluble and copurified with 
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chaperone proteins that assist in proper protein folding, and proteins with affinity to nickel. We 

attempted to increase the yield of soluble recombinant N. equitans TyrA by exploring other  

E. coli expression systems, and additional chromatography steps during its purification. The tyrA 

gene of N. equitans was synthesized and the sequence was modified to improve the 

recombinant expression of the trifunctional enzyme. The levels of expression and purification of 

both archaeal TyrA proteins were analyzed by SDS-PAGE, 2D-PAGE and Western Blot analysis as 

well as by intact and tandem MS analysis. The ESI-MS detected the monomeric masses of the 

archaeal TyrA proteins while their native oligomeric state was evaluated using analytical size 

exclusion chromatography (SEC-FPLC) and/or analytical ultracentrifugation. 

In chapter three, the effect of temperature on the activity and structure of N. equitans 

and I. hospitalis TyrA proteins was assessed using far-UV circular dichroism spectrometry and 

kinetic assays. We confirmed the presence of enzymatic activities predicted for both TyrA 

proteins, and assessed the effect of pH and salt on enzyme function. The kinetic parameters for 

the reactions were determined as well as regulation by the end products L-Phe and L-Tyr. The 

stability of I. hospitalis was further explored. Using limited proteolysis, intact and tandem MS 

analysis we identified a 30 kDa stable domain which we attributed to a degradation product 

comprising the C-terminal portion of the protein. 

In chapter four, the characterization of selected I. hospitalis CM-PD variants was 

described as efforts to probe domain structure and specificity towards the binding of substrates 

and the end product L-Tyr. The stable domain identified in Chapters 2 and 3 that copurified with 

the wild-type enzyme was expressed in E. coli as a Δ80CM-PD variant (deletion of the first 80 

amino acids from the protein). Met81Leu was also expressed to assess whether this 30 kDa 

fragment might be a result of an alternative start site leading to a shorter form of the enzyme. 

This variant instead provided information regarding spatial relationship between the CM and PD 
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domains. Variants Δ80CMPD and Met81Leu were purified via Ni-NTA chromatography and their 

kinetic and biophysical properties were determined. 

Amino acid sequence alignment of PD proteins with the PD domain of I. hospitalis 

predicts NADP+- dependent dehydrogenase activity for I. hospitalis TyrA (Fig 1.8 and Jensen et al 

(29)). To examine cofactor specificity, variants Gly126Asp, Arg127Leu/Ala and Asn128Ala/Asp 

were characterized.  The amino acid sequence alignment (Fig 1.8) also revealed a conserved 

residue Arg308 which corresponds to Arg294 of E. coli CM-PD. The importance of Arg308 in 

binding prephenate was explored by characterizing Arg308/Lys/Ala/Gln variants. Additionally, it 

has been shown that Tyr285’ and Tyr303 coordinate the amine of L-Tyr and are important for 

end product binding in E.coli CM-PD(94).  Accordingly, amino acid replacements Phe299Tyr and 

Ile316Tyr were introduced in I. hospitalis CM-PD as efforts to regain sensitivity to L-Tyr. All 

variants discussed in this chapter were expressed in E. coli, purified via Ni-NTA chromatography 

and their kinetic properties were determined. 
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Chapter 2 

 

Production and Molecular Weight Determination of TyrA Proteins from  

Nanoarchaeum equitans and Ignicoccus hospitalis 
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2.0 Introduction 

In this chapter we report the first heterologous expression and purification of putative 

TyrA proteins from the hyperthermophilic archaea N. equitans and I. hospitalis.  N. equitans is 

the smallest hyperthermophilic archaeon characterized to date and thrives through a unique 

symbiotic relationship with the larger archaeon I. hospitalis from which it obtains most of the 

biomolecules (such as lipids, nucleotides and amino acids) required for life. The complete 

genomic sequences of N. equitans and I. hospitalis were reported in 2002 and 2008, 

respectively, isolated from a co-culture of N. equitans and I. hospitalis or from a pure culture of 

I. hospitalis, which were initially derived from samples found in Icelandic hydrothermal vents (53, 

121). The genome of N. equitans is compact and A-T rich and it is predicted to encode an unusual 

trifunctional TyrA protein (NeTyrA) with PD-CM-PDT assembly where all three enzymatic 

activities are found on one polypeptide chain(119). In contrast, the tyrA gene from its host I. 

hospitalis (gene locus Igni 0892) is predicted to encode a 348-residue bifunctional CM-PD 

(IhTyrA).   

Bioinformatic analysis revealed that the N-terminal part of the NeTyrA protein (residues 

1-236) likely comprises the PD domain and is followed by a CM domain (residues 237-327) that 

is followed by the PDT domain (Fig 2.1). The PDT portion contains a putative ACT (aspartokinase-

chorismate-mutase-TyrA) regulatory domain that is involved in allosteric regulation by L-Phe(29, 

56).  Sequence analysis of IhTyrA revealed that the N-terminal part of the protein (residues 1-89) 

likely comprises the CM domain, which is followed by the PD domain (residues 90-348). 

In this chapter we present the cloning, expression and the partial purification strategy 

for both archaeal TyrA proteins. The tyrA genes from N. equitans and I. hospitalis were cloned 

into a pET-15b vector, which permits the addition of a removable N-terminal hexa-His tag, 

expressed in E. coli and chromatographed on Ni-NTA resin.  Their purification was assessed by 
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SDS-PAGE and mass spectrometry and by PD activity assays. While the affinity purification of 

IhTyrA was effective, the yield of NeTyrA was low and its expression and purification were 

accompanied by contaminating E. coli proteins. The gene for NeTyrA was synthesized, which 

resulted in an improvement in the yield of active enzyme. We confirmed the presence of all 

catalytic domains (CM, PD, PDT) associated with each protein by activity measurements at an 

elevated temperature. In this chapter mass spectrometry was extensively used to characterize 

the purification and properties of IhTyrA and NeTyrA enzymes, and to identify a stable protein 

fragment of the bifunctional IhTyrA protein generated during its expression and/or purification. 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Predicted domain organization of (A) NeTyrA and (B) IhTyrA.  
 
 
 
2.1 Experimental procedures 

2.1.1 Materials  

Prephenate (barium or sodium salt) and chorismate (free acid), were prepared as 

previously described (128, 129), while NAD+ and NADP+ (free acid) were obtained from Roche. 

Concentrations of stock substrate solutions were determined using published extinction 

coefficients (130) and/or enzymatic end-point analysis. All acids and organic solvents for mass 

A 

B 
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spectrometry were HPLC grade. Trifluoroacetic acid (TFA) was obtained from Sigma. Trypsin 

powder, for in-solution tryptic digestion (sequencing grade modified) and cOmplete®, EDTA-free 

protease inhibitor cocktail tablets were purchased from Roche. Ampicillin (sodium salt), 

kanamycin sulphate and chloramphenicol, Isopropyl β-D-1-thiogalactopyranoside (IPTG) and 

phenyl-methyl-sulfonyl fluoride (PMSF) were obtained from BioShop and stock solutions were 

prepared and stored as outlined previously(131). Benzonase nuclease was purchased from 

Novagen. Thrombin was obtained from Sigma. Ni-NTA Superflow® chromatography resin was 

supplied by Qiagen. Dialysis membrane (12-14 kDa cut-off) was from Spectrapor and 

ultrafiltration units (30 or 10 kDa cutoff) were obtained from Amicon and were prepared 

according to manufacturers’ instructions. Restriction enzymes, recombinant PfuTurbo® DNA 

polymerase (2.5 U/µL) and the deoxy-NTP (dNTP) mixture (5 mM of each dNTP, stored at -20°C in 

small aliquots) were purchased from MBI Fermentas. Phusion® High-Fidelity DNA Polymerase (2.0 

U/µL) was purchased from New England Biolabs Inc. Oligonucleotides were obtained from 

Integrated DNA Technologies at standard purity. Rabbit anti-His antibodies were from Santa Cruz 

Biotechnology Inc while alkaline phosphatase- conjugated secondary antibodies and the color 

development substrates 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) and nitro blue tetrazolium 

(NBT) were from Sigma. All other chemical reagents were obtained commercially and were of the 

highest quality available. 

 

2.1.2 Strains and plasmids  

The E. coli strain XL10-Gold ultracompetent (Stratagene) TetrΔ(mcrA)183 Δ(marCB-

hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F’proAB lacIqZΔM15 Tn10 

(Tetr) Amy Camr] was used for plasmid production while BL21(DE3) (Stratagene) [F- dcm+ Hte 

ompT hsdS(rB
- mB

-) gal λ (DE3) endA Tetr] and Rosetta™2(DE3) (Novagen) [F- ompT hsdSB(rB
- mB

-) 
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gal dcm (DE3) pRARE2 (CamR)] were used for protein expression. The cells were either 

purchased commercially ready-to-use or when required, laboratory stocks of these cells were 

made chemically competent using calcium chloride (131). The helper plasmid, pMgK, was kindly 

donated by Dr. D. Christendat from the University of Toronto, Canada while I. hospitalis and 

 N. equitans genomic DNA mixture (KIN4I/M) was generously provided by Drs. Robert Huber and 

Karl O. Stetter from the University of Regensburg, Germany. The expression vector pET-15b was 

kindly provided by Dr. P. Pawelek. Recombinant E. coli CM-PD was expressed and purified as 

described elsewhere(58) . 

 

2.1.3 Cloning of tyrA genes into pET-15b  

DNA manipulations were performed according to standard methods (131) or as suggested 

by manufacturers’ protocols. N. equitans tyrA was amplified by PCR from a KIN4 genomic DNA 

mixture of I. hospitalis and N. equitans using the forward (P1) and reverse (P2) primers  

P1:  5’AATTCATATGATGGTTATGATATTAATTATT3’ (Tm = 47°C) and  

P2:  5’GCGCGGATCCTTAATCTAGAATCTTAGGGAA3’ (Tm = 52°C) while I. hospitalis tyrA was 

amplified from the KIN4 genomic DNA mixture using primers: 

 P1: 5’AATTCATATGAGCGAGAACCCGCTCGAGT3’(Tm = 71°C) and 

 P2: 5’TTAAGGATCCTTAACGGCCTTTCCTCCACCT3’(Tm = 67°C).  PCR conditions used for the tyrA 

gene amplification are listed in Table 2.1. 
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Table 2.1:  Parameters used for PCR-mediated amplification of tyrA genes. An annealing 

temperature of 42°C was used to amplify the N. equitans tyrA gene while 53°C was used to 

amplify the I. hospitalis tyrA gene. 

 

Forward primer, P1, carried the NdeI cleavage site (underlined). Reverse primers are 

denoted by P2 and carried the BamHI cleavage site (underlined). Oligonucleotides were 

resuspended in MilliQ water to a final concentration of 100 µM. Their melting temperatures (Tm 

values) were calculated using New England Biolabs web site http://tmcalculator.neb.com/#!/. 

Reaction mixes of 50 µL consisted of 5 ng genomic template, 2.5 µM of each primer, 2 µL of 5 

mM dNTPs, ddH20 and 5 x Pfu reaction buffer supplemented with MgSO4. Pfu DNA polymerase 

(0.5 µL/1.25 U) was added immediately before the first cycle to start the reaction. Annealing 

temperatures were chosen 5°C below the lowest melting temperature calculated for the 

oligonucleotides to allow sufficient annealing. PCR products were resolved on 1% agarose gels 

and purified using QIAEX II Gel Extraction Kit (Qiagen).  The clean PCR products and plasmid DNA 

(pET-15b empty vector) were individually digested with NdeI and BamHI (double digestion) 

using supplier-provided protocols. Linearized pET-15b was dephosphorylated by reaction with 

Calf Intestine Alkaline Phosphatase using the manufacturer-supplied protocol. Digested and 

Number of Cycles Temperature (°C) Time 

1 Denaturation 95 2 min 

35 

Denaturation 95 30 sec 

Annealing 42 / 53 40 sec 

Extension 72 4 min 

1 Extension 72 10 min 

 Cooling 4 overnight 

http://tmcalculator.neb.com/#!/
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dephosphorylated pET-15b and the digested PCR products were then resolved on 1% agarose 

gels and purified using QIAEX II Gel Extraction Kit (Qiagen). Each purified digest of insert (tyrA 

gene) and dephosphorylated pET-15b were mixed together in a 4:1 ratio of insert to vector and 

incubated overnight at 16°C with T4 DNA ligase. The ligase was heat-inactivated at 65 ⁰C as per 

manufacturer’s instructions and the cloned DNA (tyrA-containing plasmids) was then 

transformed into E. coli strain XL10-Gold competent cells. Briefly, this transformation involved 

incubating 50 µL of XL 10-Gold competent cells with 5 µL of cloned DNA on ice for 10 min. The 

cells were then incubated at 42°C for 45 s (heat-shock) and returned to the ice for another 10 

min. Growth of the transformed cells was selected on Luria-Bertani (LB) agar plates containing 

100 µg/mL ampicillin. Single colony transformants were propagated in 10 mL of LB/Amp and the 

recombinant plasmid DNA extracted using a GeneJETTM Plasmid Miniprep Kit. The extracted 

recombinant plasmids  were sequenced at Genome Québec Innovative Center at McGill 

University and the resulting sequences were verified using the BLAST tool in NCBI 

(http://www.ncbi.nlm.nih. gov/blast) to ensure that no unwanted mutations had been 

introduced during the PCR reaction.   

 

2.1.4 The tyrA gene synthesis 

 N. equitans tyrA (NEQ192) gene was synthesized by GeneArt® Life Technologies using a 

codon bias to optimize protein expression in E. coli. Additionally, nucleotide changes were 

incorporated to disrupt a hydrophobic stretch of residues at the protein’s N-terminus: amino 

acids at the second and third position in the primary sequence (valine and methionine) were 

replaced by four residues (isoleucine, serine, valine and lysine) found in tyrA from A. fulgidus. The 

modification of N-terminus is underlined:  MGSSHHHHHHSSGLVPRGSHMISVKILIIGFGRLGQYFY… 
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The optimized tyrA gene was cloned into pET-15b and the sequence confirmed by DNA sequence 

analysis. 

 

2.1.5 Expression of recombinant NeTyrA and IhTyrA   

 Cloned NeTyrA was overexpressed in E. coli Rosetta2(DE3) cells while the TyrA from the 

synthesized gene was overexpressed  in E. coli strain BL21(DE3). Recombinant IhTyrA was 

expressed in E. coli BL21(DE3) cells harboring plasmid pMgK. The E. coli cells were transformed 

with plasmid containing the tyrA gene and cultured in LB agar plates supplemented with either 

100 µg/mL ampicillin (when using BL21(DE3 cells) or 100 µg/mL ampicillin and 30 µg/mL 

chloramphenicol  (when using Rosetta2(DE3) cells) or  100 µg/mL ampicillin and 50 µg/mL 

kanamycin (when using pMgK harboring BL21(DE3) cells). After overnight growth at 37°C, a 

colony from each plate was transferred to 50 mL of LB medium supplemented with appropriate 

antibiotics and grown at 37°C for 16 h with shaking.  Bacterial cultures of ten mL were then 

diluted into 1 L of the same medium and were grown at 37°C to an OD600 of 0.6. Gene expression 

was then induced by the addition of 0.2 or 0.4 mM IPTG and cells were incubated overnight with 

shaking at 18°C and harvested by centrifugation. 

 

2.1.6 Preparation of cell lysate  

IhTyrA and NeTyrA proteins were chromatographed on Ni-NTA affinity resin although in 

the case of NeTyrA additional purification methods were evaluated. For large scale cultures 

frozen cell pellets were thawed and resuspended in ice cold purification buffer (50 mM Tris, 500 

mM NaCl, 5% glycerol at pH 8, in the case of NeTyrA the buffer also contained 10 mM                               

β-mercaptoethanol) supplemented with cOmplete® protease inhibitor cocktail (Roche, one 

tablet per 50 mL suspension), 0.5 mM phenylmethyl sulfonyl fluoride (PMSF) and benzonase 



 
 

 42 

nuclease. The cells were resuspended by ten up-and-down strokes of a Dounce Homogenizer 

and cell walls disrupted by two passages through a French Press (Thermo Spectronic) at 18 000 

psi. The membrane fraction was removed by centrifugation at 45 000 x g for 45 min at 4°C.  For 

smaller scale expression and purification studies, cell walls were disrupted by sonication 

(Biologics Inc) using microtip at 10 bursts X 10 sec (power settings of 40%)  with 1 min interval 

on ice between bursts. The cell lysate was then centrifuged in an Eppendorf Microfuge (highest 

speed). Protein levels in the crude extract, cell-free extract and pellet were evaluated by SDS-

PAGE analysis. 

 

2.1.7 Chromatography of NeTyrA and IhTyrA using Ni-NTA affinity resin 

Cell-free extract was applied to Superflow Ni-NTA resin (Qiagen, column bed volume 10 

mL) equilibrated with purification buffer containing 5 mM imidazole. Cleared lysate was cycled 

through the resin overnight at 4°C. The resin was extensively washed with purification buffer 

supplemented with 30 mM imidazole and bound protein was eluted with a 100-300 mM 

imidazole stepwise gradient. For the stepwise elution, the column was washed with purification 

buffer containing 30, 100, 150, 200, 250 mM and 300 mM imidazole (2 column volumes each) 

and 5 mL fractions were collected. Active NeTyrA protein eluted at 100-200 mM imidazole while 

IhTyrA eluted at 150-300 mM imidazole. For chromatography of cloned NeTyrA, the elution of 

bound protein was performed with buffer containing 400 mM imidazole and fractions of 1 mL 

were collected. Elution fractions were supplemented with 1 mM EDTA and in the case of NeTyrA 

with 1 mM dithiothreitol (DTT). All chromatography steps were performed at 4°C. Fractions 

were analyzed by SDS-PAGE (12% polyacrylamide) and PD activity measurements. Appropriate 

fractions, selected by SDS-PAGE and PD activity, were pooled and dialyzed overnight in storage 

buffer (50 mM Tris, 300 mM NaCl, 1 mM EDTA 5% glycerol, pH 8) at 4°C. In the case of NeTyrA, 
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the buffer was supplemented with 1 mM dithiothreitol (DTT).  If required, proteins were 

concentrated (Amicon Ultra-15, 30 kDa cut-off), and all preparations were stored at -80°C in 

storage buffer supplemented with 20% glycerol (NeTyrA solutions also contained 10 mM DTT). 

To remove the hexa-His tag, thrombin (GE Healthcare) was added to purified TyrA at a ratio of 

protein:thrombin of 100:1 (w/w). Samples were dialyzed overnight at room temperature in 

storage buffer containing 2.5 mM CaCl2 and then reapplied onto the Ni-NTA column. Unbound 

protein was collected, concentrated and stored as described above.  

 

2.1.8 Evaluation of heat treatment step for purification of NeTyrA 

A cell-free extract from a small culture of NeTyrA was prepared in purification buffer 

containing 1 M NaCl. Samples were heated at 80°C for 20 min, transferred to ice and centrifuged 

(30 000 x g, 10 min, 4°C) to remove precipitated matter. Proteins in the supernatant were 

resolved by SDS-PAGE on a 12% polyacrylamide gel.  

 

2.1.9 Additional column chromatography of NeTyrA  

Ni-NTA affinity purified NeTyrA (from 12 L culture) was further chromatographed in 

parallel on cation exchange, anion exchange and phenyl sepharose resin on a small scale (5 mg 

protein sample) following procedures used for E. coli CM-PD and/or resin manufactor-supplied 

protocols. Additionally, 10 mg of protein was also chromatographed on Red Agarose 120 

NAD(P)+  affinity resin (25 mL) according to the method of Legrand et al that was reported for 

the purification of Synechocystis sp. PCC 6803 AD (41).  Protein from another large culture (6 L) 

was chromatographed on Q- Sepharose anion exchange resin (50 mL, equilibrated with 50 mM 

Tris-HCl, 1 mM DTT at pH 7.5) using a 0-2 M NaCl gradient.  After dialysis overnight, the protein 

was rechromatographed on Ni-NTA affinity resin as indicated in 2.1.7. None of these trials were 



 
 

 44 

particularly effective and are not discussed in detail in this thesis. The exception was the protein 

obtained from anion exchange followed by Ni-NTA chromatography, which was analyzed as 

discussed in the text. 

 

2.1.10 SDS-polyacrylamide gel electrophoresis and 2D gel analysis 

Denaturing SDS-PAGE was performed with either a 12% or 15% polyacrylamide gel 

following the method of Laemmli(132). Protein samples were diluted 5:1 (v/v) into 5 X SDS sample 

loading buffer (1.5 M Tris-HCl, 4% SDS, 20% glycerol, (v/v), 5% β-mercaptoethanol, 0.002% 

Bromophenol Blue, pH 6.8) and boiled with loading buffer for 10 min, centrifuged and cooled on 

ice 2 min prior to loading on a gel. The sample was electrophoresed at 120 to 200 V. 

Electrophoresis continued until the Bromophenol Blue tracking dye migrated off the resolving 

gel. Bio-Rad broad range molecular weight proteins standards were used to estimate the 

molecular weight of proteins in the samples. Protein was visualized by Coomassie Brilliant Blue 

R-250 staining or by using the Pierce™ silver stain kit. 

2D gel electrophoresis is a method that resolves proteins according to their isoelectric 

point via isoelectric focusing (IEF) followed by separation according to mass via SDS-PAGE. 2D 

gel electrophoresis was performed according to BioRad protocol for 2D gel analysis (catalog 

number 163-2105). Briefly, protein samples that were concentrated previously by acetone 

precipitation as outlined by Crowell and coworkers (133) and stored at -20°C, were resuspended 

in sample/rehydration buffer (BioRad) and then a 125 µL aliquot was loaded into the Isoelectric 

focusing (IEF) tray. The 7 cm immobilized pH gradient (IPG) strips (pH 3-10) were placed face -

down on the protein sample, covered and were actively rehydrated overnight (50 V). The 

following day IEF was performed with the rehydrated IPG strips using the program setup as 

shown: (1) 150 V, 30 min, (2) 300 V, 30 min, (3) 600 V, 30 min, (4) 5000 V, 2.5 h, (5) 8000 V, 
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35000 Vh, (150 V, 24 h). The next day the IPG strips were washed for 20 min with equilibration 

buffer 1 (6 M Urea, 2% SDS, 0.375 M Tris-HCl pH 8.8, 20% glycerol and 2 % DTT) followed by a 

wash with equilibration buffer 2 (6 M Urea, 2% SDS, 0.375 M Tris-HCl pH 8.8, 20% glycerol and 

2% iodoacetamide) to ensure reduction and alkylation of cysteine residues. The washed IPG 

strips were then washed briefly with SDS running buffer and placed on the resolving SDS-

polyacrylamide gel, overlaid with agarose and electrophoresed by SDS-PAGE as described above. 

The resulting gel was visualized by Coomassie Brilliant Blue R-250 staining. 

  

2.1.11 Western blot analysis of His-tagged proteins 

Expression of soluble His-tagged protein was confirmed by Western blotting with Anti-

His antibodies (Santa Cruz Biotechnology) using an alkaline phosphatase-conjugated secondary 

antibody (Sigma). Briefly, protein samples were resolved by SDS-PAGE as described in 2.1.10 and 

wet transferred onto nitrocellulose membranes (prewashed with transfer buffer of 25 mM Tris, 

195 mM glycine, 20% methanol, pH 8.3) at 10 V for 1 h. As a control, separate gels were also 

stained with Coomassie Blue to visualize protein bands. After blocking for 1 h with 1 % bovine 

serum albumin (BSA) in TBS (150 mM NaCl, 50 mM Tris, pH 7.5), membranes were incubated 

with a primary antibody (Anti-His Ab diluted 1:3000 dilution) for 1 h, washed 3 x 5 min with TTBS 

(20 mM Tris, 500 mM NaCl, Tween-20 pH 7.5) and incubated with alkaline phosphatase- 

conjugated secondary antibody (1:3000 dilution) for 45 min. For color development, the 

secondary antibody was removed, and membranes were washed 3 x 5 min with TTBS, 5 min 

with alkaline phosphatase (AP) buffer (100 mM Tris, 100 mM NaCl, 5 mM MgCl2, pH 9.5) and 

BCIP/NBT color development solution was added. The BCIP/NBT color development solution 

was prepared by adding 60 µl of 50 mg/mL BCIP in 100% dimethylformamide (DMF) and 120 µl 
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of 50 mg/mL NBT in 70% DMF to 20 mL of AP buffer. When the desired color development was 

achieved, the reaction was stopped by several changes of distilled water. 

2.1.12 Determination of protein concentration 

Protein concentration was quantified using the Bradford method with the Bio-Rad 

protein assay kit(134) (Bio-Rad Laboratory) with bovine serum albumin (BSA, Sigma) as a standard. 

BSA was prepared in 10 mM Tris-HCl, pH 7.4 and filtered using 0.2 µm filters. Its concentration 

was determined by OD280 readings using an extinction coefficient of 0.667 mL/mg/cm. 

   

2.1.13 Determination of enzyme activity  

Prephenate dehydrogenase activity was recorded by continuously monitoring the 

formation of NADH (or NADPH) in the presence of NAD+ (or NADP+) and prephenate at 340 nm, 

while the conversion of chorismate to prephenate catalyzed by chorismate mutase was 

determined by following the decrease of chorismate at 274 nm as described in Turnbull et al(26). 

Both CM and PD reactions were monitored continuously using a Varian Cary 50 

spectrophotometer equipped with a thermostatically regulated cuvette holder. CM and PD 

activities were routinely assayed at 80°C in reaction buffer containing 50 mM HEPES, 200 mM 

NaCl (pH 8 when titrated at ambient temperature). The PD reaction was measured in 1 mL quartz 

cuvettes (path length 1 cm) while the CM reaction was measured in a 0.5 mL quartz cuvettes 

(path length 0.5 cm).  Since both chorismate and prephenate are heat labile (130), the degree of 

thermal decomposition over the course of the assay was determined and if required, the kinetic 

values were corrected. Reaction buffer was preincubated for 2 min at the appropriate 

temperature, and then substrates (at room temperature) were added. After 15 s, the reaction 

was initiated by the addition of enzyme. Initial velocities were calculated from the linear portion 

of the progress curves from which non-enzymatic rates were subtracted. These calculations were 
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performed using the Cary WinUV kinetics software. For calculations of initial velocities an 

extinction coefficient of  6400 M-1cm-1 was used for the PD reaction (which takes into account the 

contribution of 4-hydroxyphenylpyruvate at 340 nm) and a value of 2630 M-1cm-1 was used  for 

the CM reaction(87). A unit of enzyme was defined as the amount of enzyme required to produce 1 

µmol of product per min at the specified temperature.  

Prephenate dehydratase activity was determined with a stopped time 

spectrophotometric assay following the appearance of phenylpyruvate at 320 nm (104). Assays 

were conducted at 80°C as described above. The reaction was quenched by the addition of 1 M 

NaOH. Samples were then chilled and absorbance readings were recorded at room temperature. 

Reaction times were adjusted such that less than 20% of substrate was converted to product and 

non-enzymatic rates were subtracted from these values. Units of activity and specific activity 

were calculated as outlined below: 

Calculation of mutase activity in units (µmol/min/mL): 

Units (µmol/min/mL) = 
ΔOD273/min  

x 
106 µmol 

X 
1L 

 x dilution factor 

0.5 cm x 2630 M-1 cm-1 Mol 103 mL 
 

Calculation of dehydrogenase activity in units (µmol/min/mL): 

Units (µmol/min/mL) = 
ΔOD340/min 

x 
106 µmol 

x 
1L 

 x dilution factor 
1 cm x 6400 M-1 cm-1 Mol 103 mL 

 

Calculation of dehydratase activity in units (µmol/min/mL): 

Units (µmol/min/mL) = 
ΔOD320/min     

x 
106 µmol 

x 
1L 

 x dilution factor 
1 cm x 17600 M-1 cm-1 Mol 103 mL 

 

Specific activity (µmol/min/mg) = 
Units 

mg/mL protein 
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2.1.14 Mass spectrometry  

2.1.14.1 Determination of subunit molecular weights by ESI-MS 

Subunit molecular weight was determined by electrospray ionizing mass spectrometry 

(ESI-MS).  Analysis was carried out on a Waters Micromass Q-ToF-2 mass spectrometer 

operating in positive ion mode and interfaced with an Agilent HP 1200 HPLC. Ten µL of protein 

sample in 0.1% formic acid were injected onto a GRACE Vydac 214 MS C4 column (2.1 x100 mm) 

that was pre-equilibrated with 10 % acetonitrile and 0.1% formic acid. Protein was eluted from 

the column into the mass spectrometer using a gradient of 10-90% acetonitrile at a rate of 0.25 

mL/min and the elution profile was monitored by UV detection at 280 nm. Mass spectrometer 

parameters were as follows: source block temperature 80°C; desolvation temperature 350°C; 

capillary voltage, 3.5 kV; cone voltage 80 V; RF lens 50 V; ToF, 9.1 kV. Data analysis and 

deconvolution were performed using MassLynx 4.0 software (Waters Micromass). Calibration of 

the instrument was performed with bovine serum albumin. Mass shifts of ± 3 mass units for 

TyrA are within the expected experimental error.  

 

2.1.14.2 Tandem mass spectrometry analysis of tryptic-generated peptides from NeTyrA and 

IhTyrA 

In-gel tryptic digestion 

Tryptic peptides were obtained by resolving TyrA preparations by SDS-PAGE, excising 

appropriate regions from the gel and then performing trypsin proteolysis on each sample using 

the procedure outlined in Shevchenko et al (135). Briefly, protein sample was resolved by SDS-

PAGE (12% polyacrylamide) and visualized by Coomassie Blue or silver staining as indicated in 

section 2.1.10. The bands representing protein product were excised from the gel, cut to smaller 

pieces (<1 mm2) and each piece was placed in an individual Eppendorf tube. The gel pieces were 
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then destained, reduced with dithiothretiol, alkylated with iodoacetomide, and digested with 

trypsin (ratio (w/w) of trypsin:protein of 1:20) overnight at 37 °C.  The resulting peptides were 

extracted from the gel using aqueous and organic extraction steps (MilliQ water and 50% 

acetonitrile), dried completely in a SpeedVac and resuspended in 15-50 μL of solubilization 

solution containing 2% acetonitrile (ACN) and 1% of formic acid (FA) analyzed by LC-MS/MS. 

 

Liquid chromatography-tandem MS 

Liquid chromatography-tandem MS (LC-MS/MS) analysis was performed on tryptic 

peptides of TyrA samples using a Thermo EASY nLC II LC system coupled to a Thermo LTQ Orbitrap 

Velos mass spectrometer equipped with a nanospray ion source. Samples with peptides obtained 

from in-gel tryptic digestion as outlined above were processed by LC-MS/MS as described in 

Kathiresan et al (136). Briefly, two μL of each sample was injected onto a 10 cm × 75 μm column 

packed in-house with Phenomenex Jupiter C18 stationary phase (3 μm particle diameter and 100 

Å pore size) that was equilibrated with 5% ACN and 0.1% FA. Peptides were eluted into the ESI 

source using a 38-min 5-90% ACN gradient at a flow rate of 400 nL/min with mobile phase A (5% 

ACN and 0.1% FA) and B (97% ACN and 0.1% FA). A full MS spectrum (m/z 400-1400) was acquired 

in the Orbitrap at a resolution of 60000, and the ten most abundant multiple charged ions were 

selected for MS/MS sequencing in the linear trap with the option of dynamic exclusion. Peptide 

fragmentation was performed using a collision-induced dissociation at a normalized collision 

energy of 35% with an activation time of 10 ms. 

MS/MS fragments were analyzed using Thermo Proteome Discoverer software (v1.3) with 

the SEQUEST search engine with mass filters for oxidation of methionine (+15.995 Da) and for 

alkylation of cysteine (+57.021 Da). The database was searched against a FASTA file containing the 

amino acid sequence of  either His-tagged NeTyrA or IhTyrA (FASTA files of the untagged putative 
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proteins were from  the NCBI website http://www.ncbi.nlm.nih.gov) and the complete proteome 

of E. coli strain K12 (Uniprot, UP000000625). The enzyme selected for the database search was 

trypsin with a maximum of three missed cleavage sites. Mass tolerances of the precursor ion and 

fragment ion were set at 10 ppm and 0.7 Da, respectively. Only peptides with high confidence 

(false discovery rate less than 1%) and proteins with at least three identified unique peptides 

were reported. 

 

2.1.15 Analytical size exclusion chromatography 

   The apparent molecular weight of native TyrA proteins was determined at ambient 

temperature by analytical size exclusion chromatography (SEC) using a BioRad DuoFlow FPLC 

system fitted with a Superdex GE-200 column (HR 10/30, Pharmacia). Chromatography was 

carried out with mobile phases containing 50 mM potassium phosphate, 150 mM NaCl (pH 7.5) in 

the presence and absence of ligands at a flow rate of 0.75 mL/min and injection volume of 500 µL. 

Protein elution was monitored at 280 nm and fractions (0.5 mL) were assayed for PD activity. 

BioRad gel filtration protein standards included equine myoglobin (17 kDa), chicken ovalbumin 

(44 kDa), bovine γ-globulin (158 kDa), and thyroglobulin (670 kDa). Void volume and total bed 

volume were evaluated with Blue Dextran (2000 kDa) and vitamin B12 (1.35 kDa), respectively. 

 

2.1.16 Analytical ultracentrifugation 

Native molecular weight and shape of IhTyrA was also determined by sedimentation 

velocity experiments performed in a Beckman XL-I analytical ultracentrifuge and an An60Ti rotor 

using absorbance detection (280 nm). Purified IhTyrA  protein samples were dialyzed at 4°C into a 

buffer containing 50 mM Tris, 200 mM NaCl and 1 mM EDTA (pH 8), diluted in the same buffer to 

give a final OD280 of  1 or 0.1 and loaded into 1.2 cm path-length doublesector charcoal-filled epon 

http://www.ncbi.nlm.nih.gov/
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centerpieces. Samples were centrifuged at 35 000 rpm and 20°C for 14 h. Values for the 

sedimentation coefficient (s) and an average molar mass were calculated from the velocity and 

shape of the sedimenting boundary using the program Sedfit 

(http://www.analyticalultracentrifugation.com/default.htm). The program Sednterp(137)  was used 

to calculate partial specific volume of the protein, and buffer density and viscosity and to convert 

to S20,w. 

 

2.2 Results 

2.2.1 Cloning of tyrA gene in pET-15b and expression strategy 

N. equitans and I. hospitalis tyrA genes were successfully amplified individually from a 

genomic KIN4 DNA mixture of I. hospitalis and N. equitans by polymerase chain reaction (PCR) 

using the conditions outlined in section 2.1.4. Cloning of these genes into pET-15b allowed 

heterologous expression of TyrA proteins in E. coli cells. Proteins derived from this construct 

contained an N-terminal hexa-His tag (to aid with protein purification by Ni-NTA affinity 

chromatography), and a thrombin recognition sequence (to allow removal of the His tag by 

cleavage with the protease, after purification) (see Fig 2.2).  To boost expression levels of 

NeTyrA in E. coli, the Rosetta™2 strain was used. This E. coli strain harbors plasmid pRARE2  that 

encodes tRNAs recognizing for seven codons: (AGA(Arg), AGG(Arg), AUA(Ile), CUA(lue), GGA(Gly), CCC(Pro) 

and CGG(Arg)) that are frequently used by archaea and eukaryotes but are rare in E. coli. This 

strategy was successfully used to express proteins such as glutamate/aspartate-prephenate 

aminotransfarase from Arabidopsis thaliana(138) and archaeal ribonucleoproteins(139). To boost 

the expression levels of IhTyrA, BL21(DE3) cells were co-transformed with the helper plasmid 

pMgK which encodes tRNAs recognizing rare codons in E. coli: AUA(Ile), AGA(Arg) and AGG(Arg). This 

http://www.analyticalultracentrifugation.com/default.htm
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strategy was successfully used to express the monofunctional PD from the hyperthermophilic 

bacterium A. aeolicus(89). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2:  Novagen pET-15b expression vector. The tyrA gene encoding either N. equitans PD-
CM-PDT or I. hospitalis CM-PD was cloned in-frame into the multi-cloning site between the NdeI 
and BamHI restriction sites. This cloning allows inducible expression of the recombinant proteins 
with a thrombin-cleavable N-terminal hexa-histidine tag which facilitates purification via 
immobilized metal affinity. The primary sequence of hexa-His and thrombin recognition sites at 
the N-terminus of PD is shown.  The two arrows identify the initiating Met of the open reading 
frame and site of thrombin cleavage. pET-15b diagram was adapted from  
(http://www.aidsreagent.org/pdfs/pet15b.pdf). 
 

 

 

The expression level of TyrA proteins was first evaluated from a 10 mL LB medium 

culture supplemented with appropriate antibiotics. Protein expression was induced by the 

addition of IPTG, allowing accumulation for either 3.5 h at 37°C or overnight at 18°C. Cells were 

disrupted by sonication in the presence of protease inhibitors and the protein samples were 

analyzed by SDS-PAGE. As illustrated in Figure 2.3, a prominent band corresponding to ~71 kDa 

was obtained, which corresponds to the predicted mass for full-length NeTyrA. However, only a 

http://www.aidsreagent.org/pdfs/pet15b.pdf
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small fraction of the overexpressed protein of interest appeared to be soluble.  Overnight 

induction at 18°C revealed slightly better expression of a soluble protein than the induction at 

37°C. Similarly to NeTyrA, the overexpression of IhTyrA was achieved as deduced by a 

prominent band at ~ 42 kDa (the predicted mass of full-length IhTyrA), although most of the 

overexpressed protein was insoluble (data not shown, see large scale expression analysis in 

2.2.2). Induction with 0.2 mM IPTG for a longer time (72 h) at a lower temperature (18°C) did 

not appear to improve the expression. Thus, large scale protein expressions were conducted at 

18°C using 0.4 mM IPTG, which was followed by Ni-NTA chromatography of the soluble protein. 
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0.4 mM IPTG 

37°C 3.5 h 

0.4 mM IPTG 

18°C o/n 

        

 

 

 

 

 

 

 

  

 

Figure 2.3:  SDS-PAGE analysis of NeTyrA expression. Lane 1: Pellet of insoluble cellular debris 
solubilized in 4% SDS, Lane 2: Protein Molecular Weight Marker Lane 3: Heat step at 80°C, Lane 
4: Cell-free extract, Lane 5: Cell-lysate, Lane 6: Heat step at 80°C, Lane 7: Cell-free extract, Lane 
8: Cell-lysate, Lane 9: Molecular Weight Marker, Lane 10: Pellet of insoluble cellular debris 
solubilized in 4% SDS. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4: Western blot analysis of NeTyrA and IhTyrA expression. SDS-PAGE-resolved protein 
samples were: A. transferred onto membrane and stained with anti-His antibodies or B. stained 
with Coomassie Blue. Lane 1: Cell-free extract with IhTyrA, Lane 2:  Cell-free extract with 
NeTyrA, Lane 3: Kaleidoscope Protein Molecular Weight Marker. Western blot analysis was 
performed as described in section 2.1.11. NeTyrA sample was from expression for 72 h at 18°C 
with 0.2 mM IPTG. 
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The expression of soluble His-tagged TyrA protein was also assessed by Western blotting 

with Anti-His antibodies. The immunoblot staining of cell-free extract from E. coli cells 

expressing the archaeal TyrA proteins revealed that the expression levels of soluble NeTyrA 

were much smaller than those of IhTyrA (Fig 2.4). 

In parallel with these experiments other expression systems were evaluated in our 

efforts to improve the yield of soluble NeTyrA in E. coli. This included the use of: (1) pTRC99a, 

which is under the trc promoter and yields a non tagged protein used by Aitken et al(140).  We 

subcloned tyrA into pTRC99a, however no expression was observed; (2) pGEX , which is under 

the tac promoter and adds a removable glutathione-S transferase (GST) tag to facilitate 

purification by elution with glutathione as used by Leibovitch et al (141) TyrA was subcloned into 

the pGEX vector from pTRC99a, however no expression was observed. 

 

2.2.2 Heat treatment to assist protein purification 

Heat treatment is an effective method often used to purify thermostable proteins from 

E. coli cell-free extract(52, 55).  A cell-free extract of an E. coli harbouring plasmid containing  

N. equitans tyrA was heated in the presence of 1 M NaCl at 80°C as outlined in section 2.1.8, 

centrifuged and analysed by SDS-PAGE. As shown in Fig 2.3, lanes 3 and 6, many contaminating 

E. coli proteins were removed by this heat step including proteins which migrated at a molecular 

weight of ~ 71 kDa on the denaturing gel. Under these conditions we assumed that heating the 

sample may have removed NeTyrA along with the E. coli proteins.  

 

2.2.3 Protein purification by Ni-NTA affinity chromatography 

In order to obtain sufficient amount of soluble protein, large scale expression was 

conducted using a 2 L bacterial culture for IhTyrA and 12 L for NeTyrA expression. The His-
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tagged proteins were chromatographed on Ni-NTA affinity resin as outlined in section 2.1.7 and 

summaries of the purification of TyrA from N. equitans and I. hospitalis are presented in Tables 

2.2 and 2.3, respectively. SDS-PAGE analyses of fractions collected at various stages of the 

purification are shown in Figures 2.5 and 2.6, respectively. 

 

 

 

 

 

 

Table 2.2: Purification table of NeTyrA. Protein was expressed and purified from a 12 L cell 
culture. Protein production induced with 0.4 mM IPTG followed by 16 h growth at 18°C. 
Prephenate dehydrogenase activity was determined at 80°C in the presence of 0.5 mM 
prephenate and 2 mM NAD+ (non-enzymatic rate subtracted). CM and PDT activities were also 
detected with 0.5 mM substrate and were 0.4 and 1.34 U/mg, respectively. 
 

 

 

 

 

 

 

 

 

 

Figure 2.5:  SDS-PAGE analysis of NeTyrA purification by Ni-NTA chromatography. Lane 1: Cell-
lysate, Lane 2: Pellet of insoluble cellular debris solubilized in 4% SDS, Lane 3: Cell-free extract, 
Lane 4: Ni-NTA column flow through, Lane 5: 30 mM imidazole wash, Lane 6: Pooled protein, 
Lane 7: Dialyzed and stored protein, Lane 8: Molecular Weight Marker. 
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Table 2.3: Purification table of IhTyrA. Protein was expressed and purified from a 2 L cell 
culture. Protein expression and prephenate dehydrogenase activity determination was 
performed as described in Table 2.2. CM activity was also detected and value of 9.1 U/mg was 
obtained with 0.5 mM chorismate. 
 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.6:  SDS-PAGE analysis of IhTyrA purification by Ni-NTA chromatography Lane 1: Pellet 
of insoluble cellular debris solubilized in 4% SDS, Lane 2: Cell-lysate, Lane 3: Cell-free extract, 
Lane 4: Ni-NTA column flow through, Lane 5: Protein Molecular Weight Marker, Lane 6: 30 mM 
imidazole wash, Lane 7: Pooled protein, Lane 8: Concentrated and stored protein. 
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SDS-PAGE analysis confirmed overexpression of protein corresponding to molecular 

weights of  ~ 71 kDa and  ~ 42 kDa, which is in agreement to subunit molecular weights of 

NeTyrA (Fig 2.5, lane 1) and IhTyrA (Fig 2.6, lane 2), respectively. Although much of the 

overexpressed protein was insoluble (Fig 2.5, lanes 2-3 and Fig 2.6, Lanes 1-3), nevertheless, 

soluble active TyrA was detected by assaying for PD specific activity (Tables 2.2 and 2.3). SDS-

PAGE analysis of the IhTyrA  protein showed  a minor contaminant at ~ 30 kDa (Fig 2.6, lane 7) 

that was identified later as a degradation product comprising the C-terminal portion of the 

protein  (see section 2.2.7). We attempted to eliminate this contaminant by washing the protein 

bound to Ni-NTA resin with buffer containing 1.5 M guanidine HCl. This was not effective 

however. 

The preparation of NeTyrA contained many protein contaminants including those that 

appeared to migrate at a similar monomeric size to TyrA (doublet observed at ~ 71 kDa, (Fig 2.5 

lanes 6 and 7) in the purified fraction. Interestingly, proteins eluting in the flow-through and 

washes of imidazole during the chromatography of both IhTyrA and NeTyrA possessed 

detectable specific activities despite their heterogeneity on SDS-PAGE, suggesting that these 

fractions contained different forms of PD that were catalytically active. The final yield of PD 

activity was 12% for NeTyrA was approximately 11% (Table 2.2) and 26% for IhTyrA. As an 

attempt to purify the NeTyrA further, the protein sample was treated with thrombin to cleave 

the hexa-His tag and then the thrombin-treated protein sample was applied the Ni-NTA resin. 

This strategy was not effective, however, and resulted in a very low yield of the trifunctional 

enzyme with reduced activity. 
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2.2.4 Additional purification strategies and evaluation by 2D gel electrophoresis 

In an effort to purify NeTyrA from protein contaminants, we tested the utility of other 

conventional chromatography methods. The isoelectric point (pI) of NeTyrA predicted from its 

primary sequence at ~ 8.8 is quite high and distinct from many proteins including other TyrAs. 

Additionally, PD activity of the archaeal TyrA protein was shown to be cofactor dependent, a 

characteristic exploited during the purification of other TyrA proteins(41). TyrA’s overall 

hydrophobicity was also explored(55). In our hands, however, High-S support cation exchange 

(BioRad), Phenylsepharose, or Reactive Red agarose NAD(P)+ affinity resins were not particularly 

effective.  A preparation of NeTyrA that appeared more homogeneous was obtained by anion 

exchange followed by Ni-NTA chromatography and eluted in a wash with high imidazole after 

the removal of the tag and reapplication onto the Ni-NTA column. 

In order to assess the level of heterogeneity in the sample purified by anion exchange 

and Ni-NTA chromatography we used 2 dimensional (2D) gel analysis which separates proteins 

by isoelctric point (isoelctric focusing - IEF) and by monomer mass (SDS-PAGE).The results are 

shown in Appendix 1B. Although 1D SDS-PAGE appeared encouraging, the 2D gel analysis 

revealed that the sample was very heterogeneous as multiple spots (each corresponds to a 

different protein) were observed on the gel. Moreover, most of the protein resolved at ~ 71 kDa 

which corresponds to the monomer molecular weight of NeTyrA appeared as a smear between 

pH 4-6. The MS analysis (data not shown) of a tryptic digested sample derived from that region 

of the gel (Appendix 1B, green box) identified a high content of E. coli chaperone proteins (DnaK 

(pI 5.9) and Hsp90 (pI 5.2)) as well as proteins with affinity to Ni-NTA resin (ArnA (pI 6.9) and 

GlmS (pI 5.9)).  Analysis of the vertical smear observed at pH 8-9 at various protein sizes 

(Appendix 1B, red box) identified NeTyrA as the primary protein (81% sequence coverage) but 
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other proteins were detected including ArnA and GlmS. As revealed from the 2D gel analysis, the 

purified sample contained many E. coli proteins and only a small amount of NeTyrA. 

 

2.2.5 Expression of NeTyrA from the synthesized gene and chromatography on Ni-NTA resin 

In an effort to improve the expression of NeTyrA in E. coli, the tyrA gene was optimized 

for E. coli expression and synthesized. Gene synthesis is reported to eliminate factors that can 

interfere with successful recombinant expression in E. coli: A-T richness and AT repeats(142), 

codons  that are rarely used in E. coli (although we used a Rosetta2 strain to optimize to 

optimize codon usage), RNA instability motifs(143), repeat sequences that yield secondary 

structures(144),  and  a long hydrophobic N-terminal region within the protein(145). To address the 

last factor, nucleotide changes were also incorporated to disrupt a hydrophobic stretch of 

eleven residues at the protein’s N-terminus such that amino acids at the second and third 

position in the primary sequence (valine and methionine) were replaced by four residues 

(isoleucine, serine, valine and lysine) found in tyrA from A. fulgidus, the only other trifunctional 

TyrA characterized to date(55). 

The synthesized tyrA gene was cloned into pET-15b, expressed in E. coli and 

chromatographed on Ni-NTA resin using a step-wise imidazole gradient as described in 2.1.5-

2.1.7. A summary of the purification of NeTyrA is presented in Table 2.4 and SDS-PAGE analysis 

of fractions collected at various stages of the purification are shown in Figure 2.8. SDS-PAGE 

analysis revealed the presence of a prominent protein band corresponding to ~71 kDa (the 

predicted mass of monomeric NeTyrA) in the cell lysate, cell-free extract and after Ni-NTA 

chromatography (Fig 2.7). Additionally, the sample appeared to contain a smaller amount of 

contaminating proteins compared to NeTyrA derived from the originally cloned gene (Fig 2.5). 

Similar to our previous observation with the purification of protein from the originally cloned 
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tyrA gene, protein samples eluting in the flow-through fraction from Ni-NTA chromatography 

possessed high specific activities suggesting that they contained different forms of catalytically 

active PD (Table 2.4). The final yield of PD activity units for Ni-NTA purified NeTyrA from a 2 L 

culture was the same as that obtained previously from a 12 L culture, representing a marked 

improvement (Table 2.4). Additionally, the protein showed a fivefold increase in specific activity 

compared to our previous preparations. 

 

 

 

 
 
Table 2.4: Purification table of NeTyrA.  Protein expressed from a 2 L cell culture derived from 
the synthesized gene. Protein expression was carried out overnight at 18°C after induction with 
0.4 mM IPTG. Prephenate dehydrogenase activity determined at 80°C: 0.5 mM prephenate, 2 
mM NAD+, 50 mM Hepes, 200 mM NaCl, pH 8. Non enzymatic rate subtracted. CM and PDT 
activities were also determined with 0.5 mM substrate, yielding 2.7 and 6.8 U/mg, respectively.  
 

 

 

 

 

 

 

 

 

 
Figure 2.7: SDS-PAGE analysis of NeTyrA purification by Ni-NTA chromatography. Proteins 
were expressed from the synthesized gene.  Lane 1: Molecular Weight Marker, Lane 2: Cell-
lysate, Lane 3: Cell-free extract, Lane 4: Pooled protein from Ni-NTA chromatography, Lane 5: 
Thrombin-treated and reapplied on Ni-NTA resin (untagged).
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2.2.6 Mass spectrometry analysis of NeTyrA and IhTyrA 

   2.2.6.1 Intact protein mass determination using ESI-MS 

The presence of full-length archaeal TyrA proteins in preparations following Ni-NTA 

chromatography were confirmed using mass spectrometry. We tried several methods of sample 

preparation: a method developed by Kaback et al(146) for the analysis of membrane proteins, 

which had been successfully used in our lab for intact mass analysis of E. coli and A. aeolicus 

TyrAs(24); the zip-tip purification method that was successfully employed for MS analysis of 

H. influenzae TyrA(95); and by HPLC-MS outlined in section 2.1.15. Regrettably, we were not able 

to detect the intact mass of NeTyrA that was expressed from the cloned genomic tyrA by any of 

the methods outlined above. However, we succeeded in obtaining the intact mass of NeTyrA 

that was expressed from the synthesized gene as well as that of IhTyrA using the HPLC-MS 

method. 

 ESI-MS analysis (Fig 2.8) revealed that both His-tagged NeTyrA and IhTyrA proteins were 

present as the major species but at a mass smaller than predicted. The spectrum of NeTyrA (Fig 

2.8 A) showed one major peak at [M+H+] of 71 353 Da which is 128 Da lower than the expected 

mass of 71 481 Da. Similarly, the spectrum of His-tagged IhTyrA (Figure 2.8, B) showed one 

major peak at 42 330 Da which is 134 Da lower than the expected mass of 42 364 Da. We 

attributed the mass difference to a post-translational removal of first methionine at the tag’s N-

terminus. Additional peaks of 35 675 Da and 23 785 Da in the mass spectrum of NeTyrA 

correspond to doubly and triply charged species, respectively of the same protein. ESI-MS also 

detected a lower abundance peak in the NeTyrA sample with [M+H+] of 71 532 corresponding 

to a mass addition of 179 Da relative to the major species (Figure 2.8, A), and lower abundance 

peaks in the IhTyrA sample with [M+H+] of 42 409 and 42 487, which represent mass additions 
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of 179 Da and 257 Da, respectively (Figure 2.8, B). We attribute these species to post-

translational α-N-gluconoylation α-N-6 phosphogluconoylation of the hexa-His tag as explained 

by Geoghegan et al (147). These adducts on IhTyrA were removed by reapplication of the 

thrombin-treated sample to Ni-NTA resin and generated untagged protein of 40 612 Da (40 613 

Da expected) (Fig 2.8 C). A similar strategy to remove the affinity tag from NeTyrA, however, 

resulted in a very low yield of the trifunctional enzyme with reduced activity, which prevented 

determination of its intact mass. ESI-MS analysis (Fig 2.8 B and C) also detected a lower 

abundance, smaller molecular weight species (~ 30 kDa) in His-tagged and untagged samples of 

IhTyrA, which was also observed by SDS-PAGE analysis (Fig 2.6, lane 7 and 8). Identification of 

this degradation product is further discussed in 2.2.6.2 and in Chapters 3 and 4. 
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Figure 2.8: ESI-MS analysis of NeTyrA and IhTyrA. (A) His-tagged NeTyrA, (B) His-tagged IhTyrA 
and (C) IhTyrA, tag removed. Samples were analyzed by LC-MS as described in Section 2.1.15. 
Mass additions correlated with α-N-gluconoylation and α-N-6-phosphogluconoylation of the His 
tag are highlighted in parentheses. In (A) singly, doubly and triply charged species and depicted 
as +1, +2 and +3, respectively. Peaks assigned in (B) and (C) represent singly charged species. 
The Y-axis represent % of abundance relative to the major species. 
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   2.2.6.2 Tandem mass spectrometry analysis  

In order to further evaluate the homogeneity of the NeTyrA protein sample, we 

performed in-gel tryptic digestion of the ~ 71 kDa band from the denaturing gel of purified 

NeTyrA followed by tandem MS analysis. The analysis detected peptides from all three domains 

(PD, CM and PDT), which yielded a total protein sequence coverage of 76%. The results are 

summarized in Table 2.5 and in Appendix 2A (Appendix 2A tabulates the calculated masses of 

the peptides from in-silico tryptic digestion of NeTyrA along with the peptides in Table 2.5 

observed by tandem MS analysis). The Mascot score (a “confidence score”) is used in MS 

analysis to rank proteins according to the total amount of evidence supporting the identification 

of each protein.  NeTyrA was ranked with the highest Mascot score, along with a variety of 

lower ranking E. coli proteins (Table 2.5). Among the proteins which co-purified with NeTyrA are 

chaperones DnaK and Hsp90 which assist in proper enzyme folding, as well as ArnA and GlmS 

proteins which are reported to possess affinity to nickel (Table 2.5) (148). Given the sensitivity of 

mass spectrometry it is surprising that ESI-MS did not detect any of these E. coli contaminants in 

the NeTyrA sample. These E. coli proteins were detected by tandem MS analysis in all 

preparations of NeTyrA expressed from the cloned genomic DNA (see representative analysis in 

Appendix 1A), although in much higher abundance relative to TyrA.  
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gene 
Protein name 
 (~ 71 kDa band) 

UniProtKB  
Accession No. 

Mascot 
score 

unique 
peptides 

Sequence 
coverage (%) 

MW 
(kDa)  

NEQ192 of             
N. equitans PD-CM-PDT  Q74NC4 

 
1456 

 
55 

 
76 

 
71.35 

glmS 

L-gln-D-fru-6-p 

aminotransferase 

P17169 

568 
29 64 67 

dnaK Chaperone DnaK P0A6Y8 301 24 48 69 

ppiD 
Peptidyl-prolyl cis-
trans isomerase D  P0ADY1 88 

13 28 68 

htpG Chaperone Hsp90 P0A6Z3 46 7 16 71.42 

arnA 

Polymyxin resistance 

protein P77398 42 
7 24 75 

rpsA 
30S ribosomal 
protein  P0AG67 38 

6 16 61 

sdhA 

Succinate 

dehydrogenase P0AC41 29 
5 10 64 

 

Table 2.5: Orbitrap Velos MS analysis of a tryptic digestion of the 71 kDa band sample from Ni-
NTA purified NeTyrA. Listed are parameters for NeTyrA and E. coli proteins whose peptides 
were detected by MS. 
 

2D gel analysis was performed on the NeTyrA sample that was analyzed by SDS-PAGE 

(Fig 2.7) and by tandem MS (Table 2.5). The results shown in Fig 2.9 revealed a number of 

protein bands highlighting the heterogeneity of the sample. Tandem MS analysis of tryptic 

peptides derived from the most prominent bands on the gel (green boxes) identified chaperone 

proteins DnaK, Hsp90 and GroEL (boxes 3 and 4), SlyD (box 5), and proteins with affinity to Ni-

NTA, ArnA, GlmS (boxes 3 and 4)  and the lower molecular weight (~ 16 kDa) Nur- ferric uptake 

regulator (box 6).  Tandem MS analysis of the bands in the pH range of 8-9 (red boxes 1, 2) 

(predicted pI 8.8 of NeTyrA), successfully identified the trifunctional enzyme with the highest 

Mascot score although E. coli proteins such as chaperones PpiD and GroEL were also identified. 

Additionally, peptides from NeTyrA were detected in the band with molecular weight of ~ 18 

kDa (box 7) suggesting the presence of either a degradation product or a truncated version of 

TyrA. Overall, the 2D gel profiles of the NeTyrA sample derived from the synthesized gene and 
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from the cloned genomic DNA (Appendix 2A) are comparable in their interpretations. In both 

samples the majority of the proteins were of E. coli origin (chaperones and proteins with affinity 

to nickel) with only a modest amount was NeTyrA. Moreover, both samples contained smaller 

sized fragments of NeTyrA suggesting possible degradation products due to the instability of the 

enzyme when separated from chaperones. We attempted to further purify NeTyrA by cleaving 

the His tag with thrombin and reapplying the sample onto Ni-NTA resin (see SDS-PAGE analysis 

in Fig 2.7, Lane 5 (untagged) and Lane 4 (His tagged protein prior to thrombin treatment)). As 

mentioned previously, this strategy was not particularly successful since it resulted in a very low 

yield of the trifunctional enzyme.  Moreover, as revealed by tandem MS analysis, the untagged 

NeTyrA sample was purified only from contaminating E. coli proteins with affinity to Ni-NTA 

affinity resin but retained the chaperone proteins (data not shown). 

Although not homogeneous, the His-tagged NeTyrA protein sample exhibited significant 

enzyme activity. Accordingly, we performed the kinetic analysis and some biophysical 

characterization with the His-tagged NeTyrA sample.  
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Figure 2.9:  2D gel analysis of NeTyrA expressed from the synthesized gene and purified by Ni-
NTA chromatography. Protein sample (170 µg) was analyzed. Green and red boxes highlight 
samples which were subjected to in-gel tryptic digestion followed by tandem MS analysis.  Red 
boxes: analysis ranked NeTyrA with the highest Mascot score. Green boxes: analysis ranked E. 
coli proteins with the highest Mascot score.  
 

 

Tandem mass spectrometry was applied to further characterize IhTyrA, in particular to 

identify the ~ 30 kDa species observed by SDS-PAGE (Fig 2.6) and by ESI-MS analysis of His-

tagged and untagged TyrA samples (Fig 2.8, B and C). We performed in-gel tryptic digestion of 

the ~ 30 kDa fragment and the ~ 41 kDa band (corresponding to a full-length, untagged TyrA 

protein) from the denaturing gel of IhTyrA sample followed by tandem MS analysis. Appendix B2 

summarizes the calculated masses of the peptides from in-silico digestion of I. hospitalis TyrA 

along with the peptides observed by Orbitrap Velos MS analysis from tryptic digestions of both 

protein bands. While the tandem MS analysis of the ~ 41 kDa band detected peptides from both 

71 kDa 

20 kDa 

17 kDa 
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CM and PD domains (sequence coverage 61%) , only peptides from the C-terminal portion of 

IhTyrA were detected in the ~ 30 kDa fragment (See Fig 2.10 for sequence coverage of the ~ 30 

kDa fragment). Peptides from the N-terminal portion of the protein that comprised the first 80 

amino acids were not observed by tandem MS analysis of the ~ 30 kDa fragment. Thus, we 

attribute this species to a degradation product comprising the C-terminal portion of the protein. 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 2.10: SDS-PAGE analysis and sequence coverage by tandem MS analysis of IhTyrA  
30 kDa fragment. Lane 1: IhTyrA purified by Ni-NTA chromatography, tag removed (7 µg), Lane 
2: Concentrated IhTyrA  (64 µg), Lane 3: Molecular Weight Marker, Lane 4:  80-fold dilution of 
sample in Lane 2, bands from this sample (highlighted in boxes were subjected to in-gel tryptic 
digestion and analyzed by tandem MS. Red box highlights band corresponding to ~ 30 kDa 
fragment while black boxes highlight the band corresponding to full-length IhTyrA and the 
region of the gel that used for the blank sample. IhTyrA sequence highlighted in gray represents 
the region from which the peptides were identified by MS in sample that contained tryptic 
digestions of IhTyrA ~ 30 kDa band. 
 

 

2.2.7 Native molecular weight determination of NeTyrA and IhTyrA  

Analysis of IhTyrA by size exclusion FPLC showed that the majority of the protein eluted 

at a molecular weight of 69 kDa with a lower abundance species at 151 kDa (Fig 2.11). This is 

consistent with the resolution of dimeric and tetrameric forms of the enzyme.  The dimeric fold 

is in agreement with the quaternary structures of other known TyrA proteins (40, 51, 52, 91, 92, 149). 
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Interestingly, both of these fractions contained protein that was catalytically active with PD 

activity. A small amount of protein eluted at ~7 KDa but this did not possess PD activity. IhTyrA 

was analyzed further by analytical ultracentrifugation sedimentation velocity experiments at 

high and low protein concentrations. The results were in agreement with those obtained from 

SEC-FPLC showing mainly a dimeric species (85 kDa) in the presence of a lower MW abundance 

tetramer species (170 kDa) (Fig 2.12). A value of 85 kDa obtained from these sedimentation 

velocity experiments more closely agreed with the calculated dimer mass of 84.5 kDa. Analysis 

also revealed the presence of a protein in low abundance with a sedimentation coefficient >11 

consistent with a large aggregate. Additionally, one or more species with a sedimentation 

coefficient <3 corresponding to molecular weight of ~ 20 kDa or less were also seen. We 

attempted to determine if the dimeric and tetrameric species were in dynamic equilibrium at 

ambient temperature. Dimeric E. coli CM-PD was previously reported to convert partially to a 

tetramer upon binding NAD+ or more fully with NAD+ and L-Tyr as a form of end product 

regulation (98). However, size exclusion chromatography performed in the presence of 2 mM 

NAD+ (the enzyme was not inhibited by L-Tyr as discussed in Chapter 3) did not appear to shift 

the relative abundance of these two forms of IhTyrA from the dimer towards the tetramer (data 

not shown). Additionally, the molecular weight of the major species was not altered with a 

tenfold increase in protein concentration as illustrated by sedimentation velocity experiments 

(Fig 2.12) although the proportion of the tetramer appeared to increase at the expense of the 

species exhibiting the lowest sedimentation coefficient.   

Size exclusion chromatography of a sample of Ni-NTA-purified NeTyrA yielded variable 

results depending on the preparation, most certainly due to the heterogeneity of the sample. 

The sample was therefore heat-treated (1 h, 95°C) after chromatography on the Ni-NTA resin. 

Heat treatment removed many of the E. coli proteins although the fraction did retain PD activity. 
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As expected, the low yield of protein produced a weak and rather complex absorbance 

spectrum at 280 nm. Nevertheless, size exclusion chromatography of this sample showed that 

PD activity could be detected only in a fraction with an elution volume of 12 mL (Fig 2.11). This 

volume corresponded to a native molecular weight of ~ 533 000 Da. Given a monomer 

molecular weigth of 71 kDa, this large size could be attributed to either an octamer or a 

heteromeric complex with E. coli chaperone proteins. The chromatography was repeated in the 

presence of 1 mM of L-Phe since this ligand is reported to induce the formation of higher order 

species in PDT enzymes(102). However, no significant shift in molecular weight was observed. 
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Figure 2.11: Size exclusion-FPLC analysis of purified TyrA proteins.  (A) IhTyrA and  
(B) NeTyrA. Arrows show the elution pattern of each of the indicated molecular weight 
standards (BioRad). (A) IhTyrA showing PD activity eluted in fractions between 13-17.5 mL. The 
major peak is at 15.9 mL with a calculated molecular weight of 69 kDa, while a second active 
peak at 13.9 mL corresponds to 161 kDa.(B) NeTyrA was heat-treated (1 h, 95°C) prior to 
analysis by SEC-FPLC.  The active TyrA protein eluted in a fraction at 12 mL, and corresponded to 
a calculated molecular weight of 533 kDa. Two other peaks associated with protein (but not 
exhibiting PD activity) gave calculated molecular weights of 58 kDa and 7 kDa. 

2000 670 158     44 17         1.35 kDa 
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Figure 2.13: Analytical ultracentrifugation analysis of IhTyrA. Protein samples were at 
monomer concentrations of 21 µM (solid line) and 2.1 µM (dotted line), corresponding to 
absorbance 280 nm reading of 1 and 0.1, respectively. Values for S20,W and molecular weight 
were determined as described in materials and methods. S20,W values obtained for 2.1 µM I. 
hospitalis CM-PD are indicated in parentheses. As a control, E. coli CM-PD (0.15 mg/mL) was 
analyzed by a sedimentation velocity experiment and the observed peak corresponded to a 
molecular weight of 72 kDa (data not shown). 
 

 

2.3 Discussion 

This chapter presents the first report of the expression, partial purification and 

functional analysis of recombinantly expressed TyrA proteins from the symbiotic archaea            

N. equitans and I. hospitalis. We also present our efforts to characterize the protein 

preparations by mass spectrometry analysis and to determine the protein’s native molecular 
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weight. Our findings on the characterization of the archaeal TyrAs, which are presented in this 

Chapter and in Chapter 3, are now published in Extremophiles(150). 

The tyrA genes from the only known archaeal parasite N. equitans and that of its host  

I. hospitalis are of particular interest; the former is predicted to encode an unusual protein 

encompassing three activities PD-CM-PDT, while the latter, a bifunctional CM-PD. In most 

microorganisms, TyrA enzymes exist as monofunctional or bifunctional fusions of two activities, 

CM-PD. To date, the three domain assembly is evident in TyrA proteins from only two other 

organisms: PD-CM-PDT of the archaeon A. fulgidus and the putative CM-PDT-PD of the algae  

E. siliculosus(54, 55). 

 

Heterologous expression and purification by Ni-NTA chromatography yields active but not 

homogeneous TyrA enzymes 

 The tyrA genes from N. equitans and I. hospitalis were cloned into a pET-15b vector, the 

proteins were heterologously expressed in E. coli with a 20-residue N-terminal extension that 

included a hexa-His tag to facilitate purification by Ni-NTA affinity chromatography and a 

thrombin recognition site to allow removal of the tag.  Affinity purification of IhTyrA was 

reasonably effective as judged by SDS-PAGE analysis (Fig 2.6, Lane 7). The final yield of PD 

activity was approximately 26% for IhTyrA, which is comparable to that of the hyperthermophilic 

monofunctional PD from A. aeolicus(52). Western blot and SDS-PAGE analyses that monitored the 

NeTyrA protein during its expression and purification, however, revealed only a modest yield of 

soluble protein (Fig 2.3-2.5). Moreover tandem MS and 2D gel analysis revealed that the purified 

NeTyrA sample was contaminated with multiple E. coli proteins, such as chaperones to assist in 

the folding of newly synthesized proteins, and proteins with affinity to nickel (Fig 2.9 and Table 

2.5). Nevertheless, we performed kinetic studies on the archaeal TyrA enzymes obtained after 
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Ni-NTA affinity chromatography and confirmed the presence of all predicted enzymatic activities 

CM, PD and PDT for the trifunctional enzyme and CM and PD for the bifunctional TyrA and at 

assay temperature (80°C) close to the temperature optimum for the growth of I. hospitalis and 

N. equitans. 

We attempted to improve the expression and purification of NeTyrA in order to achieve 

higher yields of soluble, homogeneous protein. This included cloning the gene into other 

expression vectors, altering expression conditions (reducing the induction temperature and 

concentration of IPTG) and adding extra chromatography steps (based on ion exchange, 

hydrophobic interactions, size exclusion or NADP+ - affinity). However, none of these 

modifications were particularly effective in increasing the yield of soluble enzyme with 

significantly higher specific activity. Synthesis of the tyrA gene, however, yielded more 

encouraging results. 

 While there are many factors that can interfere with heterologous protein expression in 

E. coli and are routinely eliminated by gene synthesis we thought to reduce the A-T content of 

tyrA gene (from 68% to 55%) and to reduce the hydrophobicity at the NeTyrA’s immediate N-

terminus by replacing it with a less hydrophobic sequence found in tyrA from the archaeon A. 

fulgidus which encodes a PD-CM-PDT(55). The final yield of NeTyrA PD activity was approximately 

12%, which is similar to that  obtained for the trifunctional TyrA enzyme from A. fulgidus(55) and 

represents a sixfold increase in the active enzyme per L of culture over that NeTyrA  previously 

obtained from the cloned NeTyrA gene. 

 

Mass spectrometry confirms the presence of the archaeal TyrA proteins 

Purification of NeTyrA expressed from the synthesized gene (but not from the cloned 

gene) allowed intact ESI-MS analysis of the protein. ESI-MS analysis (Fig 2.8) confirmed the 
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presence of NeTyrA and IhTyrA although both His-tagged proteins lacked the first methionine at 

the tag’s N-terminus.  Observed masses of 71 353 Da (NeTyrA) and 42 230 Da (IhTyrA) are in good 

agreement with the expected values of 71 350 and 42 233 Da.  Post-translational modification 

where the N-terminal Met is hydrolyzed, is frequently reported in many proteins including 

recombinant E. coli CM-PD(94). ESI-MS also detected lower abundance species with mass additions 

of 178 Da and 258 Da, which are likely due to post translational α-N-gluconoylation and α-N-6 

phosphogluconoylation of the hexa-His tag. α-N-gluconolacton and α-N-6 phosphogluconolacton 

are intermediates in the pentose phosphate pathway.  High level expression of recombinant 

proteins in E. coli BL21(DE3) can interfere with this pathway resulting in accumulation of these 

gluconolactones which are potent agents for covalent modification of proteins, notably those that 

are His-tagged(147). Covalent glycation of His tagged proteins expressed in BL21(DE3) is reported to 

reduce activity or to interfere with crystallization. These gluconolacton adducts were readily 

removed by reapplication of the thrombin-treated sample to Ni-NTA resin and generated an 

untagged IhTyrA (Fig 2.8, C). A similar strategy to remove the affinity tag from NeTyrA, however, 

resulted in a very low yield of the trifunctional enzyme with reduced activity, which prevented 

determination of its intact mass.  

ESI-MS and SDS-PAGE analysis (Fig 2.6 and Fig 2.8, B and C) also detected a lower 

abundance, smaller molecular weight species (~ 30 kDa) in both His-tagged and thrombin-treated 

samples of IhTyrA. As one of our longer term goals is to crystallize this bifunctional TyrA, we 

sought to understand the origin of this fragment. Interestingly, Western Blotting with Anti-His 

antibodies of the cell-free extract (Fig 2.4) and the retention of the fragment on Ni-NTA affinity 

resin suggested that this fragment belonged to the N-terminal portion of the protein. However, 

tandem MS analysis of tryptic digestions of protein originated from the ~ 30 kDa band showed 

unequivocally that the IhTyrA fragment was made of residues within the C-terminal portion of the 
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protein, which constitutes the PD domain. The 80 amino acids from the N-terminal portion of the 

protein comprising the mutase domain were absent in this fragment. It is likely that the 30 kDa 

fragment is due to cleavage between Lys80 and Met81 at the C-terminal end of the mutase 

domain catalyzed by non-specific serine proteases in the E. coli cell(151). N-terminal degradation of 

TyrA was previously reported during the heterologous expression and purification of a 

monofunctional PD from the hyperthermophilic bacterium  A. aeolicus(89). In the case of               A. 

aeolicus PD, proteins could be obtained that were missing 19 and up to 23 residues from PD’s N-

terminus. Moreover, the presence of the two species in  the protein sample interfered with its 

crystallization and only the independently expressed Δ19PD TyrA yielded diffraction quality 

crystals(89). 

Although SDS-PAGE and ESI-MS analysis of trifunctional NeTyrA revealed a relatively 

homogeneous preparation (Fig 2.7 and 2.8, A), tandem mass spectrometry of purified NeTyrA 

identified a number of co-eluting E. coli proteins, some with a similar monomer size to the target 

enzyme (~ 71 kDa). Among the co-purified proteins were chaperones DnaK and Hsp90 which 

assist in proper enzyme folding, as well as ArnA and GlmS proteins with affinity to nickel (Table 

2.5 )(148). Moreover, the 2D gel analysis (Fig 2.9) revealed that NeTyrA comprised only a very 

modest fraction of the total protein purified by Ni-NTA chromatography. Heat treatment at 95°C 

of the Ni-NTA purified sample was helpful in eliminating many E. coli proteins and hence would be 

a useful step in our purification strategy. We show in Chapter 3, however, that this heat 

treatment was not effective in the removal of chaperone proteins. 

According to Mehlin et al(142) a variety of factors that could make the heterologous 

expression of soluble protein in E. coli very challenging  may apply to NeTyrA. Some of these 

factors cannot be overcome by tyrA gene synthesis. Among these are a large monomer 

molecular weight (>65 kDa), basic pI, greater protein disorder and a low hypothetical annotation 
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to E. coli proteins. Indeed, NeTyrA meets some of these criteria with its large monomer 

molecular weight (~ 71 kDa), pI of 8.8 and low sequence similarity to E. coli CM-PD or CM-PDT. 

Moreover, bioinformatics programs ProteinPredict and PSIPRED reveal that NeTyrA is predicted 

to retain a stretch of 17 disordered residues between positions 240-257 (at the beginning of the 

CM domain of the protein). Thus, all of these factors likely contributed to the poor expression of 

soluble NeTyrA. 

 

Native molecular weight determination establishes higher order structure of archaeal TyrA 

proteins 

Both size exclusion FPLC and analytical ultracentrifugation sedimentation velocity 

revealed a native molecular weight of IhTyrA (~ 70-85 kDa) suggesting a dimeric structure (Figs 

2.11 and 2.12). The dimeric fold is in agreement with the quaternary structures established for 

most purified TyrA proteins characterized to date including bifunctional CM-PD from E. coli and H. 

influenzae, monofunctional PD from A. aeolicus and monofunctional cyclohexadienyl 

dehydrogenase from Z. mobilis(40, 51, 52, 91, 92, 149).  Moreover, despite the poor primary sequence 

identity, the available crystal structures of PD from A. aeolicus, S. mutans and H. influenzae as 

well as AD from Synechocystis sp. PCC 6803 revealed a common architecture:  an N-terminal 

nucleotide binding domain, C-terminal dimerization domain and an active site, located at the 

interface between the two domains comprised of residues that are shared between adjacent 

monomers (Chapter 1, Fig 1.9 and 1.10) (41, 90-92). It seems that the global dimeric fold of I. 

hospitalis PD is similar to that established by the available crystal structures. A model of I. 

hospitalis PD based on crystal structures of A. aeolicus and H. influenzae PDs is shown in Appendix 

7B, which supports dimerization of the monomers at the C-terminal domain. 
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Size exclusion FPLC and sedimentation velocity analysis of IhTyrA revealed an additional 

lower abundance, catalytically active species corresponding to molecular weights  (160 -170 kDa) 

(Fig 2.11 and 2.12), which we attributed to a tetrameric form of the enzyme. However, these 

forms do not appear interconvertible at ambient temperatures. It was previously reported by 

Hudson et al(98) and later by Bonvin et al(52) that dimeric E. coli CM-PD converts partially to a 

tetramer upon binding of NAD+ or more fully with NAD+ and L-Tyr as a form of end product 

regulation. However, dimeric IhTyrA did not appear to undergo this interconversion when size 

exclusion chromatography was performed in the presence of 2 mM NAD+. It has been reported 

that proteins in vitro may undergo concentration-dependent oligomerization. For example, 

dimeric enzyme EntA, from the enterobactin biosynthetic pathway of E. coli, is reported to form a 

tetramer at high protein concentrations (152). However sedimentation velocity analysis of IhTyrA 

revealed that the molecular weight of the major species (which is correlated to a dimer) was not 

altered with a 10-fold increase in protein concentration (Fig 2.12).  Additionally, it may be that at 

ambient temperatures, well below the optimum of the enzyme’s function, TyrA proteins from 

hyperthermophilic organisms do not possess the correct conformation to undergo a quaternary 

structural change.   

In contrast with bifunctional IhTyrA that appeared to adopt a dimeric native fold, size 

exclusion chromatography of a heat-treated NeTyrA sample revealed a catalytically active 

oligomer with a relatively high apparent molecular weight of ~ 533 kDa. We attribute this 

unusually large size to either an octamer or a heteromeric complex with E. coli chaperone 

proteins. Interestingly, the only other known archaeal trifunctional PD, from A. fulgidus, is also 

reported to possess an atypically large native assembly by FPLC analysis, in that case a 

 hexamer (55). Higher oligomerization states of cytoplasmic enzymes observed in 

hyperthermophilic prokaryotes are thought to contribute to their heat stability (153). For 
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example, the octameric acetyl-CoA synthetases from the hyperthermophilic I. hospitalis and 

Pyrobaculum aerophilum are unique in their stoichiometry and significantly distinct in their 

oligomeric state from those of  mesophilic organisms that are usually monomeric or dimeric(154). 

Thus, it is likely that both trifunctional TyrA proteins from the hyperthermophilic N. equitans and 

A. fulgidus may have acquired the high oligomeric fold through the process of evolutionary 

adaptation to the extremely hot temperature of their exogeneous environment. 

As a form of allosteric control, PDTs are reported to undergo an L-Phe-induced 

formation of higher order species (102). For example monofunctional PDT from B. subtilis(155) and 

the bifunctional CM-PDT from Salmonella typhymurium(156) are reported to dimerize upon the 

binding of L-Phe, while dimeric E. coli CM-PDT is reported to form a tetramer in the presence of 

its feedback inhibitor(102). However, no significant shift in molecular weight of NeTyrA (the 

trifunctional PDT) was observed in the presence of 1 mM L-Phe (inhibition studies by L-Phe are 

discussed in Chapter 3). It has been proposed by Zhang and colleagues (102) that the N-terminal 

CM domain induces the oligomerization of E. coli CM-PDT since the individually expressed PD 

domain did not yield a tetramer in the presence of L-Phe. It is possible that L-Phe-induced 

change in NeTyrA’s molecular weight was not observed due to the heterogeneity of the sample, 

that is, the NeTyrA preparation contained chaperones that might interact with the CM domain 

and prevent any ligand-induced changes in shape. Alternatively, it may be that NeTyrA is similar 

to the PDT from Methanocaldococcus jannaschi, whose L-Phe induced conformational change is 

not accompanied with protein oligomerization(107). 

 

2.4 Summary 

TyrA proteins from hyperthermophilic archaeal symbionts N. equitans and I. hospitalis 

were expressed as His-tagged proteins in E. coli and were chromatographed on Ni-NTA resin. 
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This approach yielded substantial levels of active IhTyrA suitable for all kinetic and biophysical 

studies. The expression of soluble N. equitans TyrA was relatively poor, however, but this could 

be improved by producing the protein from a synthesized gene. We demonstrated for the first 

time activity of the archaeal TyrA proteins which correlates with the function of the predicted 

domains. ESI-MS analysis confirmed the masses of the proteins and identified a small abundance 

species of ~ 30 kDa in I. hospitalis TyrA sample which we attribute to a degradation product 

from the C-terminal portion of the protein. Tandem mass spectrometry analysis confirmed the 

presence of all enzymatic domains of the purified TyrA proteins and identified E. coli proteins in 

preparations of NeTyrA sample including chaperones, which co-express with the archaeal 

protein to assist in its proper folding.  We also evaluated the native molecular weight of the 

archaeal TyrA proteins using analytical size-exclusion chromatography and sedimentation 

velocity analyses. The native MW of IhTyrA appeared to be dimeric, similarly to other 

characterized TyrA proteins. Interestingly, the trifunctional PD-CM-PDT from N. equitans 

presented an unusally large assembly suggesting an octamer. The oligomeric assembly of IhTyrA 

and NeTyrA was not changed in presence of NAD+ and L-Phe, respectively, although, these 

ligands were reported to induce a shift in the oligomeric states of PD and PDT, respectively, 

from other prokaryotes. We are the first to characterize these archaeal TyrA proteins that likely 

represent uncommon members of the TyrA protein family. 

In the next chapter, the effects of temperature, salt and pH on enzyme function are 

explored as well as the effect of temperature on structure. We also determine the kinetic 

parameters for all enzymatic reactions catalyzed by the TyrA proteins and determine the effects 

of the end products L-Tyr and L-Phe on enzyme activity. The stability of IhTyrA towards 

proteolytic cleavage is also evaluated and we show how this leads to the identification of a 

stable dehydrogenase fragment.  
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Chapter 3 

Protein Stability and Kinetic Properties of TyrA Proteins from 

N. equitans and I. hospitalis 
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3.0 Introduction 

TyrA family dehydrogenases exhibit varied specificity to their substrates prephenate and 

L-arogenate, and to the pyridine nucleotide cofactors NAD+ and NADP+ (29). It is commonly 

observed, that prephenate dehydrogenases are NAD+ -dependent, while arogenate 

dehydrogenases generally use NADP+. TyrA enzymes studied by Turnbull and colleagues have 

centered mainly on NAD+-dependent prephenate dehydrogenases such as from the mesophilic 

organisms E. coli (CM-PD) and H. influenzae (CM-PD) and from the thermophile A. aeolicus 

(PD)(24, 57, 95). Interestingly, we have discovered through amino acid sequence alignment of a 

number of TyrA proteins with PD domains of I. hospitalis and N. equitans that both symbiotic 

archaea possess tyrA genes that may give rise to NADP+-specific PD activity (Fig 1.8). Moreover, 

while most PDs, including those studied by Turnbull and colleagues, are feedback inhibited by L-

Tyr, alignment of the dehydrogenases from the archaeal symbionts predict that they may be 

insensitive to the end product.  Kinetic studies on these archaeal TyrA proteins would provide 

further insight into the reactions catalyzed by this protein family. Studies by Turnbull and 

colleagues on A. aeolicus TyrA have also shown that this bacterial protein is thermally stable and 

resistant to proteolytic degradation, a feature that can be explored in TyrA proteins from other 

thermophilic organisms. 

In this chapter we report the first kinetic characterization of TyrA proteins from 

hyperthermophilic archaea N. equitans and I. hospitalis. Predictions based on the amino acid 

sequence alignment are assessed by functional studies and confirm a preference for NADP+ in 

the PD reaction as well as insensitivity to the end product L-Tyr.  The kinetic parameters for each 

of the reactions were determined at a salt concentration, pH and temperature that we assessed 

as near optimal for the PD enzyme. We also show that N. equitans PDT is highly sensitive to 

regulation by the end product L-Phe, and have fit the inhibition data to a model that best 
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describes L-Phe’s interaction with the enzyme. The thermal stability of both archaeal proteins is 

evaluated by circular dichroism spectroscopy and activity measurments, and is shown to be 

extraordinary. We also show that IhTyrA is resistant to proteolysis and can be degraded to yield 

a stable PD domain. 

 

3.1 Experimental procedures 

3.1.1 Materials 

Prephenate and chorismate were obtained as outlined in 2.1.1. L-tyrosine L-

phenylalanine and m-fluoro-D, L-tyrosine were obtained from Sigma. Crude L-arogenate (purity 

~ 13%) used in specific activity measurements was a kind gift from Carol Bonner. Its 

concentration was determined enzymatically using the NADP+-specific AD from Synechocystis sp.  

PCC 6803. E. coli NAD+-dependent CM-PD was used to check for the presence of prephenate in 

the arogenate sample.  NAD+ and NADP+ (free acid) were obtained from Roche. Concentrations 

of stock substrate solutions were determined using published extinction coefficients (130) and/or 

enzymatic end-point analysis. All other chemical reagents were obtained commercially and were 

of the highest quality available. Most experiments were performed on the His-tagged NeTyrA or 

IhTyrA preparation unless stated otherwise. Recombinant E. coli CM-PD was produced as 

described previously (58). 

 

3.1.2 Determination of enzyme activity  

CM, PD and PDT activities were determined spectrophotometrically using procedures 

outlined in 2.1.13. Standard reaction conditions were at pH 8.0 and 80°C in a reaction buffer of 

50 mM HEPES with 200 mM NaCl unless otherwise indicated. E. coli CM-PD activity was assayed 

as described previously (26). Steady-state kinetic parameters were obtained by fitting initial 
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velocity data to the Michaelis-Menten equation and other appropriate rate equations using 

Grafit 7.0 Software (Erathicus) or GraphPad Prism (version 5.01).   

To investigate the effect of temperature on TyrA enzyme stability, the enzyme was 

incubated  at 95°C in capped tubes (30 µL enzyme sample per tube) in storage buffer (see 2.1.7). 

At different time intervals during the incubation, samples were removed, centrifuged for 5 min 

at 4°C and residual dehydrogenase activity was determined at 80°C with 1 mM prephenate and 

1 mM NADP+. Protein concentration was determined after centrifugation to calculate specific 

activities. Protein concentration was determined as described in 2.1.12.  

 

3.1.3 Effect of temperature on PD activity  

         To determine the effect of temperature on PD activity, assays were performed in the 

reaction mixture using TyrA (1 μg/mL of NeTyrA, or 3 μg/mL of IhTyrA) with 0.25 mM 

prephenate and 2 mM NAD+, and reaction rates were recorded from 30°C to 95°C. From the 

data, Arrhenius plots were obtained; activation energy (Ea) values were calculated from the 

slope using the following equation: 

 

K = A * exp (-Ea/RT)                                                             

 

where k is the rate constant, Ea is the activation energy (kJ.mol-1), R is the universal gas constant 

(8.314 x 10-3 kJ mol-1 K-1) and T is the temperature in degrees Kelvin. The reactions were also 

performed in the absence of enzyme and the non-enzymatic rates were subtracted from initial 

rates of all reactions. 
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3.1.4 Effects of pH and NaCl on PD activity 

The effect of NaCl on the PD activity was monitored using solutions of 50 mM HEPES 

buffer containing increasing concentrations of salt (0-1 M). The pH of each buffer was checked 

and adjusted to pH 7.5 at ambient temperature with NaOH as necessary. Reactions were 

performed at 80°C as described in 2.1.13, but with both substrates added at fixed 

concentrations of 2 mM NAD+ and 0.25 mM prephenate. The reaction was initiated with 

enzyme.  

The pH optima for N. equitans and I. hospitalis PD activities were determined at 80°C by 

measuring specific activity between pH 5 and 10.5. Assays were performed in a buffer system 

that contained each of 25 mM MES (pH 5-6.7), Bis-Tris (pH 5.8-7.2), Tris (pH 7-9) and CAPSO (pH 

8.9-10.5) supplemented with 200 mM NaCl. PD activity was measured with 0.25 mM 

prephenate and 2 mM NAD+ at 80°C as described in 2.1.13 

 

3.1.5 Effect of L-Tyr and L-Phe on TyrA enzyme activity  

The effect of L-Phe, L-Tyr or m-fluoro-D, L-tyrosine on the CM, PD and PDT activities of 

NeTyrA and the CM and PD activities of IhTyrA was measured at 80˚C.  

 Stock solutions of 2.4 mM L-Tyr and 10 mM L-Phe were prepared in standard assay buffer 

(50 mM HEPES, 200 mM) and the pHs were adjusted to pH 8 at ambient temperature with the 

careful addition of HCl or NaOH, if required. Assays were performed with different concentrations 

of L-Tyr and L-Phe by adding the appropriate volume to the reaction buffer to achieve the desired 

concentration of ligand in solution. The mix was then incubated at 80˚C for 2 min, fixed 

concentrations of the appropriate substrate(s) were added and after 15 s, the reaction was 

initiated by the addition of enzyme. Reaction rates were calculated as described above. The effect 

of L-Tyr (or m-fluoro-D, L-Tyr) on CM activity was measured at 290 nm (due to the high 
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absorbance of L-Tyr at 274 nm) in the presence of either NAD+ or NADP+. NAD+ was reported to 

help L-Tyr bind to E. coli TyrA (60). Assays in the presence of m-fluoro-D, L-Tyr were performed as 

described above. A stock solution of m-fluoro-D, L-Tyr in 0.5 M HCl was prepared and stored 

according to the manufacture’s instructions.  All stock solutions were stored at 4˚C covered with 

aluminium foil. When required, a less concentrated stock solution of m-fluoro-D, L-Tyr (10 mM) 

was freshly prepared in assay buffer by dilution and the pH was adjusted to pH 8.  

The effect of L-Phe on the velocity of the reaction was obtained by varying prephenate 

or chorismate. Assays were conducted as described above using concentrations of prephenate, 

chorismate and L-Phe listed in the Results. Data were plotted using GraphPad Prism (version 

5.01) in double reciprocal form and then fitted to the equation describing linear mixed 

inhibition(157): 

 

v/Vmax = S/[Ks(1 +  I/Ki)+ S(1 + I/αKi)] 

 

where v is the initial velocity of the reaction, Vmax is the maximum velocity, [S] represents the 

concentration of prephenate, Ks is the dissociation constant for prephenate from enzyme (E), [I] 

is the L-Phe concentration, Ki is the dissociation constant for L-Phe, and the αKi is the 

dissociation constant of I from the ESI complex. 

E. coli CM-PD activity in the presence of L-Tyr and m-fluoro-D, L-Tyr was assayed as 

described previously(26, 60).  

 

3.1.6 Far-UV circular dichroism spectroscopy 

Far-UV circular dichroism (CD) studies were performed on TyrA proteins using a Jasco-

815 CD spectropolarimeter equipped with a thermostatically regulated cuvette holder. Protein 
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samples (0.1–0.3 mg/mL) were exchanged into 50 mM potassium phosphate buffer (pH 7.4) and 

far-UV CD spectra were recorded from 200-260 nm at 25°C in a 0.2 cm path length cell by 

averaging 5 wavelength scans from 200-260 nm (1 nm bandwidth) using a response time of 0.25 

s, a data pitch of 0.2 nm, a sensitivity of 100 mdeg and a scanning speed of 20 nm/min(52). All 

spectra were corrected for contributions by the buffer and smoothed using JASCO software set 

at the default settings. For variable temperature experiments, changes in ellipticity at 222 nm (1 

nm band width) were recorded from 25°C to 95°C with a ΔT of 20°C/h. Spectral scans (200-260 

nm) were also recorded at the end of the temperature ramping experiment as described above. 

 

3.1.7 Limited proteolysis with trypsin 

Limited proteolysis was conducted on IhTyrA (His tag removed) and E. coli CM-PD using 

trypsin (Roche, sequencing grade, 1.6 μg/8 uL aliquots stored at -80°C). The TyrA protein (1 

mg/ml and 0.2 mg/mL, respectively, previously buffer exchanged into 50 mM ammonium 

bicarbonate pH 8) was incubated with trypsin at a ratio of 50:1 or 250:1 (w/w) at 37°C in the 

ammonium bicarbonate buffer. At different time intervals during the incubation, the reaction 

was stopped by adding SDS-PAGE loading buffer, and then boiled for 10 min. The partially 

digested protein was resolved by 12% SDS-PAGE and stained by Coomassie Blue. The bands 

representing protein product were excised from the gel, and each band was destained, reduced 

with dithiothretiol, alkylated with iodoacetomide, digested with trypsin and the peptides were 

extracted from a gel and analyzed by LC-MS/MS as described in 2.1.14. The partially digested 

protein was also analyzed by ESI-MS to detect the mass of the stable domains. In that case, at 

different time intervals during the incubation of TyrA protein with trypsin, sample was collected 

and immediately subjected to HPLC-MS analysis.  
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3.2 Results 

3.2.1 Effect of pH and NaCl on PD activity  

The effects of pH, salt and temperature on the PD activities of both archaeal TyrA 

enzymes were examined. 

The effect of NaCl on the PD activity was monitored using reaction buffer solutions 

containing increasing concentrations of salt (0-1 M). Reactions were performed at 80°C as 

described in 2.1.13. The reaction was initiated with either NeTyrA or IhTyrA. IhTyrA 

demonstrated high activity within a wide range of salt concentrations while NeTyrA was most 

active at 200 mM NaCl (Fig 3.1A). This salt concentration is similar to the optimal salt 

concentration determined for the growth of the archaeal organism N. equitans (~ 240 mM 

NaCl)(120).  In the absence of salt, NeTyrA exhibited 57% activity, while the activity of IhTyrA 

remained close to its maximum. At 1 M NaCl, a decrease in activity was observed for both 

archaeal TyrAs as NeTyrA and IhTyrA exhibited 46% and 66% of maximal activity, respectively.  

The profile is comparable to that obtained for A. aeolicus PD, which exhibited a maximum 

activity between 100-250 mM NaCl(52). 

The pH optima for N. equitans and I. hospitalis PD activities were determined at 80°C by 

measuring PD activity as described in 3.1.4. The optimal pH for IhTyrA was 8, which is similar to 

the pH optimum obtained for other PD enzymes such as the monofunctional PD from B. subtilis 

and A. aeolicus as well as the bifunctional CM-PD from E. coli(52, 100, 158). The PD activity of 

NeTyrA, however, increased with pH when tested between pH 5 and 10.5 (Fig 3.1B). This was 

unexpected and could be related to heterogeneity of the protein sample and/or the effects of 

the buffer. 
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Nevertheless, all kinetic assays for both enzymes were performed at pH 8 and 200 mM NaCl. 

These pH values are much higher than pH optimum for growth of N. equitans and I. hospitalis 

(pH 5.5). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The effects of (A) salt and (B) pH on PD activity. PD activity of IhTyrA and NeTyrA 
was measured with 0.25 mM prephenate and 2 mM NAD+ at 80°C as described in 3.1.4. For pH 
dependency studies, PD activity was measured in a buffer system that contained 25 mM MES, 
Bis-Tris, Tris, CAPSO supplemented with 200 mM NaCl.  
 

 

3.2.2 Effect of temperature on PD activity  

The PD activity of both IhTyrA and NeTyrA PD was low at temperatures below 40°C , but 

exponentially increased reaching  a maximum at 90°C, which is the physiological optimum growth 

temperature of the symbiotic archaea (120). At 95°C the NeTyrA activity decreased by 20% while 

IhTyrA activity remained near its maximum. Arrhenius plots were linear from 40° to 85°C for 

 N. equitans PD and up to 90°C for I. hospitalis PD (Fig 3.2, inset) yielding  approximate activation 

energies of 43 kJ/mol and 46 kJ/mol, respectively.  These values are comparable to those 

obtained for other hyperthermophilic proteins, including the trifunctional TyrA from  

A. fulgidus (52, 55). 
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Figure 3.2: Effect of temperature on PD activity. PD activity of NeTyrA and IhTyrA was 
measured with 0.25 mM prephenate and 2 mM NAD+ as described in 2.1.13. Activity at 90°C 
corresponded to 22 U/mg and 16 U/mg for NeTyrA and IhTyrA, respectively. The Arrhenius plot 
(inset) was generated from measurements over the range of 40 to 85°C for NeTyrA and 40 to 
90°C for IhTyrA.   

 

 

3.2.3 Determination of kinetic parameters for the reactions catalyzed by NeTyrA and IhTyrA 

Enzyme assays of the archaeal TyrA proteins confirmed the presence of all predicted 

catalytic domains: CM and PD activities were detected in the case of IhTyrA while CM, PD and PDT 

activities were detected with NeTyrA. All enzymatic activities followed Michaelis-Menten kinetics 

and did not exhibit substrate inhibition. The kinetic parameters obtained from substrate 

saturation curves of enzymatic reactions performed at 80°C are summarized in Table 3.1. Little or 

no activity was detected with assays conducted at 30°C. In the case of the PD reaction the fixed 

substrate in each reaction was maintained at or near a saturating level while varying the 

N. equitans 

I. hospitalis 
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concentration of the other substrate. No significant difference in kinetic parameters was observed 

between His tagged and tag cleaved IhTyrA (Table 3.1) implying that the N-terminal affinity tag 

has no effect on this enzyme’s function.  In the case of NeTyrA, values obtained for the KM of the 

substrates with enzyme expressed from the synthesized gene agree with those obtained 

previously with NeTyrA from the initially cloned gene (Appendix 3A). However, the specific 

activity (Vapp) for all the reactions was at least fourfold higher implying a greater TyrA content in 

the protein obtained from the synthesized gene. 

Amino acid sequence alignment with a number of TyrA proteins (Figure 1.8) predicted 

that both archaeal enzymes would utilize NADP+ in the PD-catalyzed reaction. Both TyrA PD 

proteins, however, were very active in the presence of either NADP+ or NAD+ although the 

relative catalytic efficiency (V/KM app) for cofactor was approximately fivefold higher with NADP+ 

(Fig 3.3 and Table 3.1). This increase in reaction rate was due to a tenfold lower apparent KM for 

NADP+ versus NAD+ (Table 3.1). The apparent KM for prephenate was similar for the two PD 

enzymes. Preliminary studies indicated that NeTyrA did not utilize L-arogenate with either NAD+ 

or NADP+ as a cosubstrate while IhTyrA could use L-arogenate with NADP+ but very poorly 

(specific activity with L-arogenate was ~ 200-fold lower than with prephenate). The broad 

cofactor specificity is very unusual for prephenate dehydrogenases that generally use NAD+. CM 

and PDT (V/KM app) activities calculated for both IhTyrA and NeTyrA were within tenfold of the PD 

activity with NADP+ as the cofactor, although CM activity from IhTyrA was fivefold higher than 

for NeTyrA (Table 3.1).  
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Table 3.1: Steady-state kinetic parameters for the reactions catalyzed by NeTyrA and IhTyrA. Assays were performed as indicated in 2.1.13 and 
3.1.2. Values were calculated from the initial rates using at least 6 substrate concentrations. CM reaction - chorismate was varied from 0.025 - 1.5 
mM. PD reaction – prephenate was varied from 0.02 - 4 mM (0.025 - 8 mM with PD-CM-PDT) at a fixed concentration of 2 mM NAD+ (40 mM used 
with PD-CM-PDT) or 0.5 mM NADP+ (2 mM used with PD-CM-PDT). When varying the cofactor concentration of NADP+ (0.01 - 4 mM) or NAD+ (0.01 - 
10 mM), prephenate was fixed at 2.5 mM. PDT reaction – prephenate was varied from 0.1 - 3.3 mM. Values in parentheses were obtained from 
assays performed with NAD+. ND- not determined. Kinetic values (± S.E.) are an average of at least two different experiments each done in 
duplicate.
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Figure 3.3 Cofactor specificity of the PD reaction catalyzed by IhTyrA and NeTyrA. Values for the 
kinetic parameters (V/KM app for cofactor) were obtained as specified in Table 3.1.  
 

 

3.2.4 Effect of L-Tyr and L-Phe on the activities of NeTyrA and IhTyrA  

The enzymatic activities of NeTyrA and IhTyrA were examined in the presence of end 

products L-Tyr and L-Phe and the results are shown in Figure 3.4. The figure shows that the CM 

and PD activities of TyrA proteins from both archaeal species were not affected by 1 mM L-Tyr. 

This insensitivity to L-Tyr is unusual and contrasts most PD proteins characterized to date. 

Therefore, we also tested a fluorinated L-Tyr analog, m-fluoro-D, L-tyrosine (DL-FTyr) which is 

reported to be a more potent inhibitor of PD activity than L-Tyr (159). Nevertheless, no inhibition 

was observed of CM or PD activities in the presence of 1 mM DL-FTyr (Figure 3.4).  The lack of 

feedback inhibition is contrary to tyrosine-sensitive E. coli TyrA that was markedly inhibited both 

by L-Tyr and its analog (Figure3.4). The CM and PD activities were also not affected by 1 mM L-

Phe.  
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While L-Tyr and DL-FTyr did not influence N. equitans PDT activity at concentrations up 

to 1 mM, PDT was markedly inhibited by L-Phe (Fig 3.4). PDT lost ~ 90% of its activity in the 

presence of 5 µM L-Phe. L-Phe inhibiton was further examined with prephenate as a variable 

substrate. Double reciprocal plots for all reactions in the presence of L-Phe were linear (Fig 3.5). 

Thus, PDT showed no cooperative effects in its interactions with prephenate in the presence of 

L-Phe under our experimental conditions. Initial velocity data were fit to the equations 

describing competitive inhibition, uncompetitive and non-competitive inhibition. However, the 

best fit was obtained to a model describing a mixed type of non-competitive inhibition. This is 

consistent with the formation of an enzyme-prephenate-L-Phe complex in addition to an 

enzyme-prephenate complex. The model also predicts an αKi term (an interaction term). The 

PDT- L-Phe complex displayed a fivefold lower affinity for prephenate than did the free PDT 

while the PDT-prephenate complex showed a fivefold lower affinity for L-Phe than the free 

enzyme (Ki = 0.8 µM, αKi = 4.4 µM).  
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Figure 3.4: Profile of the inhibition of TyrA enzymes by end products and an end product 
analog. Enzyme activities were determined for (A) N. equitans PD-CM-PDT (gray) and E. coli CM-
PD (black) and (B) I. hospitalis CM-PD. For the chorismate mutase reaction 1 mM chorismate 
was used in the presence or absence of cofactor (2 mM NAD+ or NADP+ for N. equitans enzyme). 
For the prephenate dehydrogenase reaction, prephenate (0.5 mM) was used with either 10 mM 
NAD+ or 2 mM NADP+. For the PDT reaction 0.5 mM prephenate was used. E. coli CM-PD served 
as a control to represent sensitivity to L-tyrosine. E. coli CM-PD was assayed as described in 
Turnbull and Morrison (60), except that fluoro tyrosine (DL-FTyr) was used, while data for the E. 
coli CM-PD inhibition by L-Tyr were obtained previously(60). Error bars represent standard error 
of the mean of at least two separate determinations. 
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Figure 3.5: Double reciprocal plots for the inhibition of PDT activity of NeTyrA by L-Phe. Data 
were analyzed using curve fitting options provided by GraphPad Prism (V5.01). Initial velocity 
data varying prephenate in the presence of L-Phe were fit to the equation described by mixed-
type inhibition. The following values were obtained from the analysis: Ki = 0.8 ± 0.2 µM, Ks = 193 
± 36 µM, Vmax = 31 ± 1.3 U/mg and α = 5.5. 

 

3.2.4 Thermal stability of TyrA proteins 

The hyperthermophilic archaea N. equitans and I. hospitalis thrive at high temperatures 

and therefore are predicted to possess thermally stable proteins including the TyrA enzyme. 

Accordingly, variable temperature far UV-CD spectroscopy was used to investigate the 

thermostability of the archaeal TyrA proteins. The far-UV CD spectra of untagged NeTyrA 

(thrombin treated, reapplied on Ni-NTA) and His-tagged IhTyrA recorded at 25°C showed two 

minima at 208 nm and 222 nm indicating that the proteins within these preparations possessed a 

significant content of α-helical structure (Fig 3.6). These data agree with helical contents 

calculated from the primary sequence of the archaeal TyrAs using secondary structure prediction 
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programs (SCRATCH (http://www.igb.uci.edu/servers/psss.html) (160) and Phyre 2 

(www.sbg.bio.ic.ac.uk/phyre2/) 
(161) that were between 50% and 60%. The unfolding of TyrA 

proteins by thermal denaturation was followed by measuring changes in ellipticity at 222 nm 

when samples were gradually heated from 25°C to 95°C (Figure 3.6). Little change was observed 

and suggested that the midpoint of the unfolding (Tm) occurs at temperatures higher than 95°C. 

Additionally, scans performed at the end of the variable temperature experiment showed that the 

proteins had retained their helical character, although the change in ellipticity for the NeTyrA 

sample was consistent with the temperature-induced denaturation of some E. coli proteins. These 

results are as expected for highly thermostable proteins. By comparison, the unfolding of 

mesophilic E. coli CM-PD generated a sigmoidal curve with a well-defined Tm value of 63°C. 

In some cases, hyperthermophilic proteins can be resistant to chemical denaturants such 

as guanidine hydrochloride (Gdn-HCl).  To test if IhTyrA is stable to chemical denaturation we 

performed preliminary studies which showed that when assayed in the presence of 3 M Gdn-HCl 

at ambient temperature, the enzyme retained full dehydrogenase activity after incubation for 30 

min in the reaction buffer and retained 20% of activity after 24 h of incubation (data not shown).  
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Figure 3.6:  Far-UV CD spectra of TyrA proteins. CD spectra of protein samples (0.1-0.3 mg/mL) 
containing IhTyrA (A) and NeTyrA (B) in 50 mM potassium phosphate buffer (pH 7.4) were 
recorded at 25°C (solid line and after thermal unfolding at 95°C (dotted line). In (C) thermal 
denaturation experiments with IhTyrA (solid line) NeTyrA (dotted line) and E. coli CM-PD 
(dashed) were carried out by following the ellipticity at 222 nm from 25-95°C. E. coli CM-PD was 
used as a positive control for thermal unfolding. 
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 To investigate further the thermal stability of the TyrA proteins, the enzymes were 

incubated at 95°C while monitoring dehydrogenase activity at 80°C and the soluble protein 

content at various time intervals (Fig 3.7).  The same samples were also analyzed by SDS-PAGE 

(Fig 3.8 A and B). The specific activity of N. equitans PD increased twofold after 1 h of incubation 

while denaturing gel electrophoresis revealed that the amount of soluble protein at the 

molecular weight of NeTyrA (~ 71 kDa) diminished significantly (Fig 3.8 A). These data suggest 

that much of the protein in the sample at that size was E. coli contaminants, which precipitated 

at high temperature. Interestingly, the activity of I. hospitalis PD also increased about twofold 

during the first 1-3 h of incubation (Fig 3.7), but without a significant change in the amount of 

soluble protein. This is also reflected in the denaturing gel (Fig 3.8 B), which shows most protein 

bands are retained even after 50 h of incubation. 

Both NeTyrA and IhTyrA appeared to be extraordinary thermostable retaining full 

dehydrogenase activity after 50 h incubation at 80°C (data not shown) and greater than 50% of 

PD specific activity after 50 h at 95°C (Fig 3.7). IhTyrA appeared more thermally stable than 

NeTyrA, however, and retained 92% of initial PD activity after 50 h at 95°C.   

 Additionally, SDS-PAGE analysis of NeTyrA revealed the presence of another thermally 

stable species at ~ 20 kDa whose amount gradually decreased with incubation time at 95°C.  In 

order to identify proteins in this fraction, along with protein migrating at ~ 71 kDa, tandem MS 

of tryptic digestions of the appropriate gel band (Fig 3.8 A) was performed (Appendix 3B). 

Analysis of a 3 h heat-treated sample identified chaperone SlyD (predicted mass-24 kDa) with 

the highest confidence. A portion of the PD domain of NeTyrA in the ~ 20 kDa band was also 

detected. In the ~ 71 kDa band peptides from NeTyrA were identified with the highest 

confidence but tandem MS also detected a significant presence of chaperone DnaK. These data 
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reveal that prolonged heating greatly assists in the purification of N. equitans TyrA from E. coli 

proteins but is not effective in eliminating heat-stable chaperones DnaK and SlyD. 

 

 

 

 

 

 

 

 

Figure 3.7:  Thermal stability profile of NeTyrA and IhTyA. Residual prephenate dehydrogenase 
activity was measured at 80°C with 1 mM prephenate and 1 mM NADP+ after incubation at 95°C 
for increased length of time. Values of S.A. for IhTyrA are not shown although they follow the 
same pattern as ΔAU/min. 
 

 

 

 

 

 

 

 
Figure 3.8: SDS-PAGE analysis of heat-treated NeTyrA and IhTyrA. Samples (1 mL) of NeTyrA (A) 
and IhTyrA (B) were incubated at 95°C at various times, centrifuged and the soluble fractions 
were analyzed by SDS-PAGE and PD activity measurements. For the analysis of NeTyrA, circled 
regions in the gel were subjected to in-gel tryptic digestion and tandem MS analysis. 
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3.2.5 Proteolytic susceptibility of IhTyrA protein 

A time-dependent limited proteolysis experiment was conducted to assess the 

sensitivity of IhTyrA to proteolytic digestion and to identify protease-resistant fragments. 

Protein was incubated in the presence of trypsin from 0-96 h and the samples were analyzed by 

SDS-PAGE. As shown in Fig 3.9, I. hospitalis CM-PD was very resistant to proteolysis by trypsin. In 

contrast to E. coli CM-PD, which was completely digested by 24 h (Lanes 7 and 8),  IhTyrA 

retained most of its intact structure after 24 h in the presence of trypsin (Lane 3), even when the 

amount of trypsin was increased fivefold (Lanes 3 and 6). Additionally, formation of a stable 

domain at ~ 30 kDa size was noted. ESI-MS analysis of samples subjected to limited proteolysis 

established the domain’s mass of 29 613 Da and showed that its relative abundance increased 

with incubation time (Fig 3.10). From the the exact mass and in-silico tryptic digestion 

information of IhTyrA (Appendix 2B), it was calculated that this fragment likely corresponds to a 

C-terminal PD domain, which is missing the first 88 amino acids of the protein’s CM domain. The 

cleavage site lies between Lys88 and Ile89 in the primary sequence of IhTyrA and is consistent 

with trypsin’s specificity for cleaving at the carboxy end of amino acids Arg and Lys. With time, 

additional fragments appeared as a result of proteolysis at the protein’s C-terminus (Fig 3.10, C). 

In summary, the highly thermostable IhTyrA seems to be also highly resistant to proteolysis with 

its PD domain much less sensitive to tryptic digestion than the CM domain. 
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Figure 3.9: SDS-PAGE analysis of IhTyrA and E. coli TyrA after limited tryptic digestion. Lanes 1-
5 show the digestion pattern of IhTyrA in the absence or presence of 1:50 w/w trypsin to TyrA. 
Lane 1:  in absence of trypsin,  Lane 2: after 2 h incubation, Lane 3: after 24 h incubation, Lane 4: 
after 48 h incubation,  Lane 5: after 96 h incubation. Lanes 6-8 show digestion pattern of TyrAs 
in the presence of 1:250 (w/w) trypsin to TyrA. Lane 6: IhTyrA after 24 h incubation, Lane 7: E. 
coli TyrA after 30 s incubation, Lane 8: E. coli TyrA after 24 h incubation. 

 

 

 

 

 

  

  

 

Figure 3.10: ESI-MS analysis of IhTyrA after limited tryptic digestion. A-C shows the digestion 
pattern of IhTyrA in the absence or presence of 1:50 (w/w) trypsin to TyrA (A) in absence of 
trypsin (B) after 24 h of incubation and (C) after 96 h incubation. Mass of 29 611 is correlated 
with protein fragment after trypsin cleavage between Lys88 and Ile89, masses of 29 270 and 28 
927 are correlated with additional cleavage at position Arg345 and Arg343. The intact protein is 
shown at mass of 40 612 (40 614). 
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3.3 Discussion 

 The archaeal TyrA proteins show high thermal stability 

Hyperthermophilic bacteria and archaea thrive at the high temperatures of their 

exogenous environment. As such, they possess highly thermally stable proteins. The TyrA 

enzymes from the archaeal symbionts provide a good example of this adaptation.   

As deduced by far-UV CD spectroscopy, the melting temperatures (Tm) of NeTyrA and 

IhTyrA were greater than 95°C (Fig 3.6). This is not surprising since the physiological optimum 

growth temperature of their symbiotic archaeal N. equitans and I. hospitalis is near 90°C(120). 

Similarly, a high Tm value (>100°C) was reported for monofunctional PD from the 

hyperthermophilic bacterium A. aeolicus(52). For comparison, mesophilic E. coli CM-PD exhibited 

much lower Tm of 63°C (Fig 3.6). Far-UV CD analysis, which provides valuable information 

regarding the global secondary structure of proteins, indicated that at 25°C both archaeal TyrA 

protein samples possessed a high abundance of α-helical structure (Fig 3.6). For NeTyrA, however, 

the spectrum also represents the contribution of coeluting helical E. coli proteins including DnaK 

chaperone. Nonetheless, the high α-helical content is typical for many CM, PD, and PDT proteins 

from other mesophilic and hyperthermophilic organisms (75, 89, 92, 107, 112). Models derived of 

IhTyrA’s CM domain (Appendix7A) and PD domain (Appendix 7B) show that both portions of the 

protein contribute to its helical structure and support the finding from the far-UV CD 

measurements. 

The thermal stability of NeTyrA and IhTyrA was further explored by measuring time-

dependent changes in PD activity during incubation of the enzyme at 95°C. Both NeTyrA and 

IhTyrA were remarkably thermally stable; the enzymes retained greater than 50% of PD activity 

after 50 h at 95°C although IhTyrA appeared more thermally stable than NeTyrA, retaining 92% of 

initial PD activity after 50 h incubation (Fig 3.7). In addition, PD activities increased about twofold 
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during the first 1 to 3 hours of incubation at high temperature implying at least for IhTyrA that 

there is a temperature-induced conformational change that is beneficial for the efficient 

processing of the heat labile substrates. A time-dependent increase in activity was not observed 

at high temperatures with hyperthermophilic A. aeolicus PD implying different mechanisms 

adopted by the bacterium for substrate processing. The high degree of thermostability observed 

for the archael TyrAs contrasts the findings for TyrA proteins from other organisms. The PD from  

A. aeolicus, for example, lost 50% of its activity after only 2 h of incubation at 95°C (52) while only 

modest half-lives at 40°C have been found for mesophilic E. coli CM-PD(52) and for other TyrA 

proteins(29, 51, 162). In fact, the archaeal enzymes are the most thermally stable TyrA proteins 

reported to date. Our findings are in agreement with those reported for other proteins isolated 

from hyperthermophilic archaea such as the alanine dehydrogenase from  A. fulgidus (T1/2 90°C = 

50 h in the presence of 1.5 M KCl (163)), protease from Pyrococcus furiosus  (T1/2 98°C = 33 h in the 

presence of SDS) (164), ferredoxin from Thermococcus litoralis (T1/2 95°C > 24 h) or 

amylopullulanase from Thermoproteus Tenax (T1/2 98°C = 20 h) (165, 166) .  

What is the basis for the differences in thermal stability of archaeal TyrAs from                   

I. hospitalis and N. equitans and the bacterial enzyme from A. aeolicus? The difference in the 

degree of thermostability could be attributed to the diverse mechanisms evolved in archaeal and 

bacterial proteins to resist heat (167, 168).  Evolutionary studies and analysis of structures and 

sequences of hyperthermostable archaeal and bacterial proteins revealed that proteins from 

hyperthermophilic archaea that originated in an extreme environment employ a “structure-

based” mechanism for thermostabilization; they are significantly more compact and hydrophobic 

than their mesophilic homologs (126). In contrast, proteins from hyperthermophilic bacteria, that 

are thought to have originated in moderate temperatures and later recolonized a hot 

environment by acquiring genes for thermostability through lateral gene transfer from the 
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archaea, use a “sequence-based” mechanism (126). While the bacterial hyperthermophilic proteins 

do not show significant structural differences from mesophilic homologues, they show a small 

number of strong interactions, such as ion-pair or H-bonding networks. The lateral gene transfer 

is evident in A. aeolicus since 16% of its genes encode proteins that are more similar to archaeal 

than to bacterial proteins(168).  

Our limited biophysical data to date for the archaeal TyrA proteins only partially support a 

“structure-based” mechanism. Limited tryptic digestion clearly showed that IhTyrA is very 

resistant to proteolysis (Fig 3.9) compared to E. coli CM-PD, likely through a more compact 

structure (see discussion below). However the sedimentation velocity experiments yield average 

molecular weights that are in close agreement with the protein’s size based on its primary 

sequence (Fig 2.12). Additionally, the aliphatic indices(169) of NeTyrA and IhTyrA (112 and 98, 

respectively) are not markedly different from the values for the mesophilic bifunctional  CM-PDs 

from E. coli and H. influenzae and from A. aeolicus PD (a range 96-103). 

Additional factors thought to contribute to such increased thermostability were 

elucidated through an extensive analysis of proteins from hyperthermophilic and mesophilic 

organisms. These studies highlighted the increase in proline residues(170, 171) that restrict the 

conformational freedom of a protein, a number of leucine to isoleucine substitutions, as noted for 

M. jannaschii CM(172), as well as the increase in  the proportion of charged versus polar 

(uncharged) amino acids, especially in the proportion of solvent accessible charged residues at 

the protein surface as noted in many proteins from hyperthermophilic organisms(125, 170, 171).  

Sequence analysis of both archaeal TyrA proteins did not reveal any increase in the proline 

residues or change in leucine:isoleucine ratio when comparing with the sequence of A. aeolicus 

PD or even with E. coli CM-PD. However, a higher proportion of glutamate and lysine residues was 

observed in the archaeal TyrAs. The proportion of glutamate residues in IhTyrA and NeTyrA, for 
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example is 11.9% and 9.8%, respectively, which is higher than in A. aeolicus PD (8%) and is 

significantly higher than in E. coli CM-PD (3.7%). The crystal structure of A. aeolicus Δ19PD 

complexed with NAD+ revealed a large ionic network formed by Glu275, Glu278 and Lys285 from 

one subunit and the same residues from the other subunit, a structural feature which is thought 

to contribute to the thermostability of the enzyme(89). Solving the crystal structure of IhTyrA 

proteins from the archaeal symbionts will provide insights into the structural basis for such an 

exceptional thermostability of these proteins.  

In some cases, factors responsible for the thermal stability of hyperthermophilic proteins 

also confer resistance to other denaturants such as guanidine hydrochloride (Gdn-HCl), SDS, 

organic solvents, and to proteolysis (164, 173-175). For example, the unfolding of ribonuclease from 

the hyperthermophilic archaeon Sulfolobus tokadii  in the presence of 7 M of Gdn-HCl reached 

equilibrium only after 8 h (175). Preliminary chemical denaturation studies of IhTyrA revealed that 

in the presence of 3 M Gdn-HCl at ambient temperature the enzyme retained full dehydrogenase 

activity during the first 30 min and retained 20% of activity after 24 h incubation. Interestingly, 

this archaeal TyrA is much more stable than the bacterial PD from hyperthermophilic A. aeolicus 

which lost most of its activity in the presence of 3 M Gdn-HCl (52). A thorough effect of chemical 

denaturant (s) on the unfolding of IhTyrA is yet to be investigated. 

 

I. hospitalis TyrA shows high resistance to proteolysis 

 Limited tryptic digestion of purified IhTyrA revealed that this protein is resistant to 

proteolysis, retaining significant intact mass even after a prolonged incubation with trypsin, in 

marked contrast to mesophilic E. coli CM-PD. This implies that most of the trypsin recognition 

sites (9 in the CM domain and 22 in the PD domain, Appendix 2B) are not easily accessible as 
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would be the case in a more tightly folded protein. Interestingly, SDS-PAGE analysis identified a 

stable ~ 30 kDa fragment from partial digestion with trypsin.  Mass spectrometry analysis 

indicated that the stable fragment belongs to the C-terminal PD domain of the protein, which is 

missing the first 88 residues. The site cleavage (between Lys88 and Ile89) is likely at a more 

accessible junction between the CM and PD domains. As no additional fragments (~ 10 kDa) were 

observed during tryptic digestion, this implies that the remaining CM domain is significantly less 

stable than the PD portion. Interestingly, limited tryptic proteolysis of the thermostable 

monofunctional PD from A. aeolicus has also yielded a stable C-terminal domain, which was active 

and yielded diffraction quality crystals(89). Additionally, the only reported crystallizable form of the 

bifunctional H. influenzae CM-PD is one in which the first 80 residues comprising the CM domain 

are deleted(92). Thus, it is possible that this stable truncated IhTyrA could be active and may be a 

good candidate for crystallization trials. These questions are addressed in Chapter 4. 

 

Kinetic properties of arhaeal TyrA enzymes 

Archaeal TyrA proteins overexpressed and purified as described in Chapter 2, possessed 

enzymatic activities confirming the presence of all predicted catalytic domains: IhTyrA showed 

CM and PD activities while CM, PD and PDT activities were detected with NeTyrA. Kinetic 

analysis provided further evidence that the archaeal TyrA retain functional properties predicted 

for hyperthermophilic proteins. While little or no activity was detected with assays conducted at 

30°C, both IhTyrA and NeTyrA PD activities were at a maximum at 90°C, which is the 

physiological optimum growth temperature of the symbiotic archaea (120). This behaviour is 

typical to hyperthermophilic enzymes that normally exhibit much lower activity at ambient 

temperatures and higher activity at elevated temperatures(176). At 95°C the NeTyrA activity 

decreased by 20% while IhTyrA activity remained near its maximum. These values are 



 
 

 109 

comparable to those obtained for other hypertherthermophilic TyrA proteins such as the 

monofunctional PD from A. aeolicus and the trifunctional PD-CM-PDT from A. fulgidus (52, 55).  

The Arrhenius plots for both archaeal TyrAs were linear over the temperature ranges selected 

under our assay conditions (Fig 3.2, inset), which is similar to those reported for A. aeolicus and 

A. fulgidus PDs, indicating a single rate-limiting step in the dehydrogenase reaction for all the 

four hyperthermophilic enzymes. Studies on E. coli CM-PD  have established catalysis as a single 

rate-limiting step in the PD-catalyzed reaction(26) . In contrast, studies on A. aeolicus PD revealed 

a 10-fold difference between the binding constant (Kd) and KM for NAD+ suggesting that a step 

other than catalysis may be rate limiting(52). Whether catalysis is the rate-limiting step in 

reactions catalyzed by archaeal N. equitans or I. hospitalis PDs is yet to be investigated. 

The kinetic parameters determined for enzymatic reactions (Table 3.1) showed that 

both IhTyrA and NeTyrA were comparably efficient catalysts; they exhibited similar efficiency in 

the mutase and dehydrogenase reactions and the efficiency of NeTyrA dehydratase reaction 

was within the range of its other activities. Additionally, kinetic parameters for the three 

enzyme-catalyzed reactions were, for the most part, within the range of those reported for PD, 

CM and PDT enzymes from other organisms(52, 57, 102). Interestingly, N. equitans which is thought 

to be a parasite of I. hospitalis with regard to other metabolic pathways seems to be an efficient, 

autonomous producer of L-Phe and L-Tyr. The only other trifunctional TyrA characterized to 

date is from the archaeon A. fulgidus (55), which also displays the same putative domain 

assembly as NeTyrA and is of a similar monomer size. While the CM and PD were similar 

between both trifunctional enzymes, NeTyrA PDT activity appeared to be over two orders of 

magnitude higher than the V/KM app value calculated from the parameters reported for the 

trifunctional TyrA from A. fulgidus. The main feature, however, distinguishing the PD of NeTyrA 
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from most other prephenate dehydrogenases characterized to date, including TyrA from            

A. fulgidus, is its cofactor specificity. 

Bioinformatic studies by Jensen and colleagues on TyrA enzymes have pinpointed the 

residues important for cofactor specificity in the dehydrogenase-catalyzed reaction(29). 

According to these studies, the key residues are found at the cofactor discriminator region 

located on the variable loop downstream to the GxGxxG consensus motif in the Wierrenga 

fingerprint (Appendix 3C) (29, 93). According to Jensen et al(29), the two key residues that dictate 

the cofactor selectivity in TyrA proteins are the negatively charged aspartate or glutamate that 

dictate the specificity to NAD+, and the positively charged Arg at the adjacent position in the 

sequence that is important for NADP+ selectivity. Based on these studies and the amino acid 

sequence alignment with a number of TyrA proteins (Fig 1.8) it was predicted that the archaeal 

TyrA enzymes would utilize NADP+ in the PD-catalyzed reaction; at the cofactor discriminator 

region IhTyrA and NeTyrA possess key arginine residues at positions 127 and 32, respectively, 

and lack the negatively charged group at the preceding position (Fig 1.8) (29). Both TyrA PD 

proteins, however, displayed high activity in the presence of either NADP+ or NAD+, although 

with a preference for NADP+; the catalytic efficiency was approximately fivefold higher with 

NADP+ although the apparent KM for NADP+ was tenfold lower than for NAD+ (Table 3.1 and Fig 

3.3). This broad cofactor specificity is unusual for prephenate dehydrogenases that generally use 

NAD+ and will be discussed further in Chapter 4. To date, the monofunctional PD from the 

halophilic archaea M. mahii is the only reported archaeal PD which also prefers NADP+ as a 

cosubstrate (this was evaluated in crude cell extracts)(50). Interestingly, characterization of a 

single-stranded DNA binding protein from N. equitans also revealed broad substrate specificity 

(in that case, the ability to bind all types of nucleic acids) suggesting a common primitive 

strategy for catalytic versatility in this smallest archaeon (177). Why do the archaeal TyrA proteins 
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exhibit broad nucleotide cofactor specificity? It has been proposed that broad cofactor 

specificity is the ancestral state prior to the divergence of the NAD+ and NADP+ specific 

descendants which evolved in response to the mechanisms that enhanced abundance of each of 

the cofactors in cells (29, 49).  In accordance, the phylogeny studies place the hyperthermophillic 

archaeal symbionts close to the ancestral root indicating a slow rate of evolution(178). Thus, the 

TyrA proteins from the archaeal symbionts appear to represent a distinct type of prephenate 

dehydrogenases which exhibit a primitive strategy of substrate processing.  

Regulation of activity by end products 

The end products of the shikimate pathway, L-phenylalanine and L-tyrosine, play an 

important role in the feedback regulation of CM, PD and PDT in microorganisms. Accordingly, we 

examined the effects of L-Phe and L-Tyr on IhTyrA and NeTyrA activities. Our studies, however, 

show that the CM and PD activities of TyrAs from both archaeal species were not affected by L-Tyr 

or by its fluorinated analog m-fluoro-D, L-Tyrosine which is considered a more potent inhibitor 

(Fig 3.4) (159).   This insensitivity to L-Tyr is unusual and contrasts most PD proteins characterized to 

date. This includes the E. coli CM-PD (Fig 3.4) and more recent examples from hyperthermophiles 

such as the PD activity of A. fulgidus and A. aeolicus which are inhibited by L-Tyr (52, 55, 90). The CM 

and PD activities of both archaeal TyrA proteins were also not regulated by L-Phe (Fig 3.4). This is 

similar to other bifunctional CM-PD enzymes (97, 179), and for several monofunctional enzymes (51, 99, 

180, 181), but is contrary to PD from B. subtilis whose activity was strongly inhibited by L-Phe(100).  

The lack of regulation of CM and PD activities by L-Phe or L-Tyr has also been observed in Z. 

mobilis, as well as in the legumes Glycine max and Medicago truncatula (40, 118).  The insensitivity of 

PD to L-Tyr in these organisms could be explained by the existence of an additional biosynthetic 

pathway for L-Tyr via arogenate dehydrogenase (AD), therefore, PD may be not at the branch 

point leading to the production of L-Tyr or L-Phe. However, our preliminary studies with crude 
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arogenate preparation revealed that although IhTyrA could utilize arogenate in the 

dehydrogenase reaction, it did so very poorly relative to prephenate (1/200th the rate). No such 

ability was detected for NeTyrA.  Those TyrA proteins that efficiently utilize both L-arogenate and 

prephenate, such as from P. stutzeri(51), Z. mobilis(182) and P. aeruginosa(162), do so with values of 

kcat/KM values for L-arogenate and prephenate that are within tenfold of each other. More 

thorough studies are needed in order to determine the presence of any alternative routes for L-

Tyr or L-Phe biosynthesis in I. hospitalis and N. equitans. 

As revealed from comparative genomic analysis, NeTyrA is predicted to retain a C-

terminal ACT domain associated with allosteric regulation by end products. As expected, NeTyrA 

PDT was markedly inhibited by L-Phe and displayed a mixed type of non-competitive inhibition 

(Fig 3.5) which is indeed consistent with L-Phe binding to a site distinct from that of prephenate. 

This binding likely occurs at the ACT domain since neither CM nor PD activities were inhibited by 

L-Phe. The binding of L-Phe to the ACT domain of the enzyme caused a fivefold decrease in 

affinity of the enzyme for prephenate (Ki = 0.8 µM, αKi = 4.4 µM). A similar inhibition profile has 

also been observed with the independently expressed PDT enzyme from E. coli CM-PDT (102). The 

NeTyrA PDT showed no cooperative effects in its interactions with prephenate in the presence of 

L-Phe under our experimental conditions, which is contrary to the E. coli CM-PDT whose PDT 

activity exhibited concave upwards kinetics (183), but is similar to the engineered monofunctional 

PDT from E. coli (102).  It has been proposed for E. coli CM-PDT that the CM domain is responsible 

for the cooperative effects and for higher order L-Phe-induced oligomer formation(102).  It may be 

that cooperative effects were not observed for NeTyrA due to heterogeneity of the sample (see 

also discussion in Chapter 2). 

We also noted that L-Tyr did not affect NeTyrA PDT activity at concentrations up to  
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1 mM. Our findings differ from those reported for the trifunctional enzyme from A. fulgidus 

whose PDT activity was activated by L-Tyr and competitively inhibited by L-Phe (55). Both 

trifunctional enzymes are from extreme thermophiles yet they appear to adopt distinct 

mechanisms for efficient processing of the labile substrates. Our studies suggest that the NeTyrA 

is regulated solely by dehydratase activity. It may be that in the absence of L-Phe, heat-labile 

prephenate is preferentially channeled from the CM domain to PDT while the potent feedback 

inhibition of PDT by L-Phe facilitates structural changes such that prephenate is shuttled to the PD 

domain to yield L-Tyr. In addition, we found that IhTyrA CM and PD are not directly regulated by 

end products. Therefore, we speculate that in I. hospitalis the regulation of chorismate flux to 

L-Tyr occurs indirectly via PDT. Our speculation agrees with genome analysis of I. hospitalis that 

has identified gene locus Ign_0307 which is predicted to encode a distinct putative 

monofunctional PDT with a C-terminal ACT domain, implying allosteric regulation by L-Phe (121).  
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3.4 Summary 

Characterization of TyrA enzymes from the symbiotic archaeal pair N. equitans and 

I. hospitalis has revealed very stable, comparably efficient enzymes with patterns of broad 

cofactor specificity, although with a preference for NADP+, and a lack of sensitivity to L-Tyr. 

Additionally, NeTyrA was shown to be sensitive to regulation by L-Phe presenting a mixed type of 

non-competitive inhibition. The characterization confirmed that TyrA proteins from the symbiotic 

archaea represent uncommon members of the TyrA family. In addition to its high thermal 

stability, IhTyrA appeared to be remarkably stable to proteolysis and yielded a stable PD domain. 

The rare PD/CM/PDT organization of the trifunctional protein, the unusual cofactor specificity and 

L-Tyr deregulation, as well as the extreme stabilty of TyrAs from both symbionts makes these 

proteins attractive starting points for more detailed structural and functional investigations. 
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Chapter 4 

 Characterization of Selected Variants of I. hospitalis TyrA 
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4.0 Introduction 

Expression and purification of IhTyrA, described in Chapter 2, was accompanied with a 

lower abundance species at a smaller molecular weight. ESI-MS and tandem MS of this ~ 30 kDa 

band resolved by SDS-PAGE identified a C-terminal portion of the protein for which the first 80 

amino acids were missing. Additionally, limited proteolysis of IhTyrA with trypsin, described in 

Chapter 3, identified a stable ~ 30 kDa protein fragment;  MS analysis suggested that the stable 

fragment belongs to the C-terminal PD domain commencing with residue 81 in the primary 

sequence. Sample heterogeneity from protein degradation was also reported during the 

expression and purification of A. aeolicus PD(89). This impeded protein crystallography. Limited 

proteolysis combined with mass spectrometry, however, identified the stable C-terminal domain 

which was later expressed (Δ19PD) leading to the first crystal structure of a PD enzyme(89). 

Interestingly, H. influenzae TyrA is a bifunctional CM-PD, yet the only reported crystal structure is 

of its engineered PD component that lacks the first 80 amino acid residues(92). In this study we 

aimed to independently express the monofunctional I. hospitalis PD variant (Δ80CM-PD) 

generated by deleting the first 80 amino acids.  Additionally, a conservative amino acid 

replacement at position 81 in IhTyrA at the junction of the mutase and dehydrogenase domains 

might alter the structure and/or function of either domain or the protease-sensitive region 

thereby reducing smaller molecular weight protein contaminants generated under our 

expression/purification conditions. Coincidentally, the nucleotide sequence encoding Met88 is 

down stream of a Shine Dalgarno sequence, which in theory allows the translation of the shorter 

form of the enzyme. Accordingly, the variant Met81Leu was also constructed. In this chapter we 

present the expression, purification and characterization of Δ80CM-PD and Met81Leu. Biophysical 

and biochemical characteristics of these variants are compared to the wild-type IhTyrA. 
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Kinetic analysis presented in Chapter 3, showed that the PD component of both NeTyrA 

and IhTyrA exhibited broad cofactor specificity, although with a preference for NADP+, which is 

unregulated by L-Tyr. These characteristics are unusual as most prephenate dehydrogenases are 

NAD+-specific and L-Tyr sensitive. In this Chapter we sought to identify residues that are 

important for cofactor specificity, for binding of prephenate and for sensitivity to L-Tyr in IhTyrA.  

Bioinformatic studies by Jensen and colleagues(29) demonstrated important residues that are 

found within the cofactor descriminator region downstream of the GxGxxG consensus motif (see 

Appendix 3B and Fig 1.8). According to these studies the presence of the negatively charged 

aspartate or glutamate is essential for NAD+ specificity; it hydrogen bonds to the ribose near the 

adenine of the cofactor and repels the negatively charged phosphate of NADP+
. NADP+-specific 

enzymes, however, deploy glycine, serine, threonine or alanine in place of a negatively charged 

aspartate or glutamate, followed by a positively charged arginine. According to Jensen et al (29) 

this reverse-in-charge allows binding of the specific cofactor. Indeed, sequence alignment (Fig 1.8) 

shows that NAD+- specific  dehydrogenases such as PDs from H. influenzae, E. coli  and  A. aeolicus  

possess aspartate or glutamate at the corresponding position (position 129 in E. coli CM-PD amino 

acid sequence) while I. hospitalis and the NADP+-specific Synechocystis sp. PCC 6803 (41) have 

Gly126 and Ser30, respectively, followed by an arginine.  In an effort to identify the residues that 

are critical for the cofactor specificity in I. hospitalis TyrA, site-specific variants were 

characterized: Gly126Asp, Arg127Ala/ Leu and Asn128Ala/Asp (Jensen and colleagues(29) indicated 

that aspargine is often present in species with broad cofactor specificity).  

Site-directed mutagenesis studies on E. coli CM-PD identified Arg294 as a key residue for 

prephenate binding; the Arg294Gln variant had a greater than 100-fold increase in KM for 

prephenate without affecting turnover of the PD-catalyzed reaction (58). Additionally, 

crystallography studies of the engineered PD domain from H. influenzae in complex with NAD+ 
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and L-Tyr(92) indicated that the cationic guanidine group of Arg297 (equivalent to Arg294 in E. coli 

CM-PD) is hydrogen bonding with the side chain carboxyl group of L-Tyr (Fig 4.1) and thus may 

interact with the carboxyl group of prephenate. Additionally, site-directed mutagenesis studies on 

the PD of bifunctional CM-PD from H. influenzae revealed that the variant Arg297Gln,  yielded an 

increase in KM for prephenate of 1000-fold(95).  The arginine residue is conserved among TyrA 

proteins including the IhTyrA (Fig 4.1). Thus, to examine the importance of I. hospitalis Arg308 

(equivalent to Arg294 in E. coli CM-PD) in prephenate binding, the variants Arg308Leu/Gln/Ala 

were characterized.  

The crystal structure of the engineered H. influenzae PD identified residues Tyr288’ and 

Tyr306 (each from adjacent monomer) that are within hydrogen bonding distance of the amine of 

L-Tyr (Fig 4.1) (92).  Guided by the crystal structure as well as a model of the PD domain of E. coli 

CM-PD that was based on that structure, site-directed mutagenesis studies with  E. coli CM-PD 

confirmed the importance of the residues Tyr285’ and Tyr303 (equivalent to Tyr288’ and Tyr306 

in H. influenzae CM-PD) in binding of L-Tyr(94). In contrast to L-Tyr sensitive CM-PDs from 

 H. influenzae and E. coli, I. hospitalis CM-PD appeared to be insensitive to L-Tyr, and the 

equivalent tyrosine residues that are proposed to interact with the end product are not conserved 

in the enzyme. In order to understand whether it is possible to introduce sensitivity to L-Tyr into                  

IhTyrA, site-directed mutagenesis studies were employed  to substitute two tyrosine residues at 

positions Phe299 and Ile316 (equivalent to positions Tyr288’ and Tyr306 in  H. influenzae TyrA). 
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Figure 4.1: (A) Crystal structure of the active site of liganded dimeric H. influenzae PD, and (B) the 
amino acid sequence alignment of the appropriate regions of the TyrA proteins. (A) PDB-2pv7(92). 
The ligand L-Tyr is highlighted in light blue. Arginine 308 (in red) is the equivalent position in IhTyrA. 
(B) Conserved arginines (Arg308 in IhTyrA) are highlighted in red while tyrosines that are thought to 
be (or in case of E. coli CM-PD were shown to be) important are highlighted in yellow. 
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4.1 Experimental procedures 

4.1.1 Materials 

Substrates (prephenate and chorismate) were obtained as previously described by 

Dudzinski and Morrison(184). L-tyrosine and m-fluoro-D, L-tyrosine were obtained from Sigma 

while NAD+ and NADP+ (Grade I) were from Roche. Concentrations of stock substrate solutions 

were determined using published extinction coefficients (130) and/or enzymatic end-point 

analysis. Oligonucleotides of standard purity were ordered from Integrated DNA Technologies. 

Restriction enzymes DpnI, NdeI, BamHI and Phusion® High-Fidelity DNA Polymerase (2.0 U/µL) 

were purchased from New England Biolabs Inc. The deoxy-NTP (dNTP) mixture (5 mM of each 

dNTP, stored at -20°C in small aliquots) was purchased from MBI Fermentas. All other chemical 

reagents were obtained commercially and were of the highest quality available. Purified CM-PD 

enzymes from H. influenzae and E. coli were prepared as described elsewhere(94, 95). 

 

4.1.2 Source of recombinant variants of IhTyrA and wild-type enzyme 

DNA mutants Met81Leu, Δ80CM-PD, Arg127Leu, Arg127Ala, Asn128Asp, Asn128Ala, 

Arg308Leu, Arg308Ala, Arg308Gln, Phe299Tyr and Iln316Tyr were constructed by TOP Gene 

Technologies.  The expression plasmid pET-15b harbouring the I. hospitalis tyrA gene served as 

template DNA for the mutations. All mutants were verified by DNA sequencing. 

Recombinant IhTyrA was obtained as described in Chapter 2. Recombinant E. coli CM-PD 

was expressed and purified as described previously(58) while N-terminal his-tagged H. influenzae 

CM-PD was obtained as described elsewhere(95). 
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4.1.3 Site-directed mutagenesis of Gly126Asp  

Oligonucleotides encoding the G126D replacment (IDT Technologies): 

P1 5’GTGGTGGTCACCGATAGGAACTTGGAG3’ (Tm = 71 °C) and  

P2  5’CTCCAAGTTCCTATCGGTGACCACCAC3’ (Tm = 71 °C) were resuspended in milliQ water 

to a final concentration of 100 µM. Plasmid DNA of the I.hospitalis tyrA gene cloned into         

pET-15b served as template DNA for mutagenesis and was isolated from 10 mL cultures using 

the GeneJETTM Plasmid Miniprep Kit and their concentrations were determined 

spectrophotometrically at 260 nm. Site-directed mutagenesis was conducted according to the 

instructions supplied in the Phusion® site-directed mutagenesis Kit (New England Biolabs). The 

reaction mixtures were prepared with 15 ng of double stranded (ds) DNA template, 150 ng of 

each oligonucleotide primer (forward and reverse), 0.5 µL of Phusion® High-Fidelity DNA 

polymerase (2 U/µL), 10 µL of 5x Phusion® HF buffer, 2 µL of a 5 mM dNTP solution and 1 µL 

DMSO in a final volume of 50 µL. DNA polymerase was added just prior to the first denaturation 

cycle. PCR amplification was carried out using a GeneAmp PCR system 9700 (Applied 

Biosystems). The PCR conditions are listed bellow in Table 4.1 

Table 4.1: PCR-mediated site-directed mutagenesis parameters 

Number of Cycles Temperature (°C) Time 

1 Denaturation 98 45 sec 

35 

Denaturation 98 30 sec 

Annealing 60 40 sec 

Extension 72 4 min 

1 Extension 72 10 min 

 Cooling 4 overnight 
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Upon completion of the temperature cycling, the presence of amplified DNA was 

confirmed by electrophoresis on a 1 % agarose gel. The methylated and hemi-methylated 

parental DNA was digested by incubating the PCR mixture with 10 U of DpnI at 37°C overnight. 

DpnI-treated products (5-10 µL) were transformed into E. coli XL10-Gold competent cells (50 

µL). Briefly, purified DpnI-treated PCR products were mixed with 50 µL of XL10-Gold competent 

cells and incubated on ice for 10 min. The cells were then incubated at 42°C for 45 s (heat-

shock) and placed back on on ice for 10 min. The transformed cells were then plated on LB/agar 

containing 100 µg/mL ampicillin and grown overnight at 37°C. Single colony transformants were 

propagated in 10 mL of LB/Amp overnight at 37°C with shaking at 225 rpm and the recombinant 

plasmid DNA was extracted using the GeneJETTM Plasmid Miniprep Kit. The concentration of 

plasmid DNA was determined by measuring the OD260. The purified plasmid DNA samples were 

analyzed by sequencing at Genome Québec Innovation Center at McGill University. The resulting 

sequences were verified using the BLAST tool in NCBI (http://www.ncbi.nlm.nih. gov/blast) to 

ensure that the desired mutation was present and that no other mutations had been introduced 

during the PCR reaction.   

 
4.1.4 Expression and purification of IhTyrA variants  

All variants were expressed in E. coli BL21(DE3) cells that were harbouring plasmid 

pMgK and purified by Ni-NTA chromatography as described in 2.1.7. The variant Gly126Asp was 

derived from a 2 L cell culture, while Met81Leu and Δ80CM-PD were derived from 1 L cell 

cultures. 

Variants Arg127Leu, Arg127Ala, Asn128Asp, Asn128Ala, Arg308Leu, Arg308Ala, 

Arg308Gln, Phe299Tyr and Ile316Tyr were purified after expression from 50 mL of cell culture 

using a “batch” Ni-NTA chromatography method. Briefly, the frozen cell pellets were 

resuspended in 5 mL ice cold purification buffer (50 mM Tris, 500 mM NaCl, 5% glycerol pH 8) 
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supplemented with 5 mM imidazole and 0.5 mM phenylmethyl sulfonyl fluoride and sonicated 

by 10 bursts of 10 sec each with 1 min interval on ice between each burst. Following 

centrifugation, each cell-free extract (about 4 mL) was then gently mixed overnight at 4°C with 

500 µL of agarose Ni-NTA resin  (Qiagen), and equilibrated with purification buffer (with 5 mM 

imidazole). The protein-resin slurry was applied onto empty bio-spin columns (Biorad). The resin 

was washed twice with purification buffer containing 50 mM imidazole and the bound protein 

was eluted with 1 mL of the same buffer but with 300 mM imidazole and stored at 4°C. The 

purified CM-PD variants were analyzed for protein concentration, PD activity and by SDS-PAGE 

as described in Chapter 2. 

 

4.1.5 Determination of enzyme activity and inhibition by end product 

PD and CM activities were determined as outlined in 2.1.13 at 80°C and pH 8 under 

standard reaction conditions unless otherwise stated. For the mesophilic E. coli and                      

H. influenzae CM-PDs, assays were performed at 30°C using a 3-component buffer system of 0.1 

M MES, 0.1 M 4-ethylmorpholine, 51 mM diethanolamine, at pH 7.2 supplemented with 1 mM 

EDTA and 1 mM DTT as described previously (26, 95) and the kinetic parameters for cofactors were 

determined by keeping prephenate at 0.5 mM and varying NAD+ (0.025-1 mM) or NADP+ (0.25-

10 mM). Variants Phe299Tyr and Ile316Tyr were screened for inhibition by 1 mM m-fluoro-D,L-

tyrosine at 80°C using a concentration of 0.5 mM prephenate with either of 2 mM NAD+ or 0.5 

mM NADP+ as outlined in 3.1.5. Kinetic parameters for all reactions were calculated as described 

in 2.1.13 using substrate concentrations listed in the text. 
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4.1.6 Mass spectrometry 

Subunit molecular weight of IhTyrA variants was determined by ESI-MS as outlined in 

2.1.14. Protein samples were subjected to HPLC prior to ESI-MS analysis. Tandem MS 

experiments were carried out on tryptic digestions of SDS-PAGE resolved variant protein 

samples as outlined in 2.1.14. 

 

4.1.7 Far-UV circular dichroism spectroscopy 

Far-UV circular dichroism (CD) studies were performed on IhTyrA variants using a Jasco-

815 CD spectropolarimeter as outlined in 3.1.6. Spectra were recorded from 200-260 nm at 25°C 

in a 0.2 cm path length cell (52). For variable temperature experiments, changes in ellipticity at 

222 nm (1 nm band width) were recorded from 25°C to 95°C with a ΔT of 20°C/h as described in 

3.1.6. 

 

4.1.8 Fluorescence spectroscopy 

Intrinsic fluorescence of proteins (~ 5 μM monomer) was measured in 50 mM potassium 

phosphate buffer (pH 7.5), at ambient temperature, using the Varian Cary Eclipse Fluorescence 

Spectrophotometer with a 1 cm path length cell. Upon excitation at either 280 or 295 nm, 

emission spectra were recorded from 300–400 nm with a scan rate of 10 nm/s, excitation and 

emission bandwidths of 5 nm and voltage of 600 V. Emission spectra were averaged over 10 

scans with a 1.0 nm data sampling interval. All spectra were baseline-corrected and the data 

obtained were smoothed using average smoothing function (Varian).  
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4.1.9 Determination of native molecular weight  

4.1.9.1 Analytical size exclusion chromatography 

The native molecular weights of I. hospitalis Δ80CM-PD and Met81Leu variants were 

determined at ambient temperature by using a BioRad DuoFlow FPLC system fitted with a 

Superdex GE-200 column (HR 10/30, Pharmacia) as outlined in 2.1.15. Protein elution was 

monitored at 280 nm and fractions (0.5 mL) were assayed for PD activity. 

 

4.1.9.2 Analytical ultracentrifugation 

Native molecular weight of Δ80CM-PD variant of I. hospitalis was investigated by 

sedimentation velocity experiments. Samples preparations, sedimentation data acquisition and 

calculation of sedimentation coefficient (s) and an average molar mass were conducted as 

outlined in 2.1.16. 

 

4.1.10 Modeling of I. hospitalis CM and PD domains  

MODELLER (V 9.11) (http://salilab.org/modeller/) was used to model the I. hospitalis PD 

monomer against the available structure of A.aeolicus Δ19PD (PDB-3ggg), H. influenzae  

Δ80CM-PD (PDB-2pv7), and S. meliloti PD (PDB-4wji). Similarly, the structure of CM from T. 

thermophilus (PDB-2d8d) was used to generate a model of the I. hospitalis CM domain. Protein 

modelling was kindly performed by Drs. D. Christendat, Francis MacManus and M. Leibovitch. 

Protein visualization was performed using PyMOL(185).  

 

 

 

 

http://salilab.org/modeller/
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4.2 Results 

4.2.1 Expression, purification and mass spectrometry analysis of IhTyrA variants Δ80CM-PD 

and Met81Leu  

 In order to determine whether the PD domain of I. hospitalis could yield an 

independently folded and functional PD enzyme as well as to provide further insight regarding 

the 30 kDa fragment retained in preparations of the full-length protein, the variants Δ80CM-PD 

and Met81Leu were expressed and purified via Ni-NTA chromatography as outlined in 4.1.4. A 

summary of the purification of these variants is presented in Table 4.2 and Figure 4.2.  

 SDS-PAGE analysis confirmed overexpression of the variants: a substantial band 

corresponding to the monomer size of Δ80CM-PD (~ 30 kDa) was observed in the cell lysate (Fig 

4.2, lane 3). As observed for the wild-type enzyme, however, the majority of the overexpressed 

protein was insoluble (Fig 4.2 lanes 1-4 and Fig 2.6 lanes 1-3). A similar patern of expression was 

observed for the Met81Leu variant (data not shown). Nevertheless, soluble, active enzymes 

were detected by assaying for PD specific activity (Table 4.2) and the variants were successfully 

purified by Ni-NTA chromatography. Purified  Δ80CM-PD appeared homogeneous showing only 

a ~ 30 kDa PD fragment (Fig 4.2 Lane 7) while that of of Met81Leu yielded the expected  ~ 42 

kDa species accompanied by a low abundance (5-10% total protein amount) of the ~ 30 kDa 

fragment (Fig 4.2 Lane 8). The amount of ~ 30 kDa species in the purified Met81Leu sample, 

however, was significantly lower than in the wild-type CM-PD sample (Fig 4.2 Lane 9). The 

amount of purified protein obtained from a 1 L cell culture was 3 and 4 mg for Δ80CM-PD and 

Met81Leu, respectively. Regrettably, concentrations of both variants above 3 mg/mL under our 

buffer conditions resulted in protein precipitation. The final yield of PD activity was 

approximately 20% (Table 4.2), comparable to that of the wild-type enzyme.  
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 ESI-MS analysis confirmed the identity of the desired variants. Table 4.3 summarizes the 

expected and calculated masses for Δ80CM-PD and Met81Leu, as well as other variants 

expressed in this study. The analysis revealed that similar to the wild-type enzyme, the His-

tagged variants lacked the first methionine at the tag’s N-terminus. Interestingly, in the case of 

the Met81Leu variant, a degradation product at ~ 30 kDa fragment was not detected by ESI-MS 

(data not shown). However, tandem MS analysis of tryptic digestions of the ~ 30 kDa band from 

the denaturing gel of Met81Leu identified peptides from the C-terminal PD domain of the 

protein (data not shown). 
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Figure 4.2:  SDS-PAGE analysis of the purification of IhTyrA variant Δ80CM-PD and of the 
purified Met81Leu variant. Lane 1: Pellet of insoluble cellular debris solubilized in 4% SDS (from 
Δ80CM-PD expression), Lane 2: Protein Molecular Weight Marker, Lane 3: Cell-lysate of Δ80CM-
PD expression, Lane 4: Cell-free extract of Δ80CM-PD expression Lane 5: Ni-NTA column flow 
through, Lane 6: Pooled Δ80CM-PD protein, Lane 7: Concentrated and stored Δ80CM-PD 
protein, Lane 8: Met81Leu variant purified by Ni-NTA chromatography (His-tagged), Lane 9: WT 
CM-PD purified by Ni-NTA (His-tagged), Lane 10: Protein Molecular Weight Marker. 
 

 

 

 

 

Table 4.2: Summary of yields and specific activities of purified IhTyrA variants Δ80CM-PD and 
Met81Leu.  Prephenate dehydrogenase activity determined at 80°C, pH 8, 0.5 mM prephenate, 
2 mM NAD+ as described in 4.1.5. *PD specific activity of purified wild-type IhTyrA fluctuated 
from 5-11 U/mg within similar protein purification preparations. 
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Table 4.3: Summary of molecular weights of purified IhTyrA and variants. Protein molecular 
weights were determined by LC-MS method described in 2.1.14. ND-not detected. Expected 
protein mass was calculated using EXPASY PeptideMass program 
http://web.expasy.org/peptide_mass/  
 
 
 
4.2.2 Native molecular weight determinationof IhTyrA variants Δ80CM-PD and Met81Leu 

The analysis of Met81Leu and Δ80CM-PD variants by size exclusion FPLC gave native 

molecular weights of 69 kDa and 63 kDa, respectively, suggesting a dimeric structure (Fig  4.3), 

similarly to the wild-type enzyme (see Fig 2.12). The value for the native molecular weight 

obtained for Δ80CM-PD variant is in good agreement with the calculated dimer mass of 65 kDa 

and also with the value of 57 kDa obtained from analytical ultracentrifugation sedimentation 

velocity experiments (Fig 4.4). Size exclusion FPLC and sedimentation velocity analysis revealed 

an additional lower abundance species in the Δ80CM-PD sample corresponding to molecular 

http://web.expasy.org/peptide_mass/
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weights of 111 kDa or 130 kDa respectively (Fig 4.3 and Fig 4.4).  A lower abundance species 

corresponding to a molecular weight of 171 kDa was also observed in the Met81Leu preparation 

(Fig 4.3). The higher molecular weight, lower abundance species was also observed in the 

sample of wild-type CM-PD (see Fig 2.11 and 2.12) and we attributed this higher molecular 

weight species to a tetrameric form of the enzyme. Thus, analysis by size exclusion and 

ultracentrifugation showed that the proteins were not homogeneous. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Size exclusion-FPLC analyses of purified IhTyrA variants Δ80CM-PD and Met81Leu. 
Elution profile of Δ80CM-PD is shown in black while Met81Leu shown in red. Arrows show the 
elution pattern of each of the indicated molecular weight standards (BioRad). SEC-FPLC was 
berformed as outlined in 2.1.15. Values for the wild-type enzyme were determined previously 
(2.2.7). 
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Figure 4.4: Analytical ultracentrifugation analysis of IhTyrA Δ80CM-PD variant. Protein sample 
at a monomer concentration of 3.1 µM, corresponded to absorbance 280 nm reading of 0.1. 
Values for S20,W and molecular weight were determined as described in 2.1.16. 

 

 

4.2.3 Far-UV circular dichroism and fluorescence spectroscopy of wild-type IhTyrA and Δ80CM-

PD variant  

Far-UV CD spectra were recorded to determine if truncation of the mutase domain had 

altered the global secondary structure of the enzyme. As reported for the wild-type enzyme, the 

far-UV CD spectra of the Δ80CM-PD variant recorded at 25°C showed two minima at 208 nm and 

222 nm indicating that both proteins possessed a significant content of α-helical structure and 

that truncation did not perturbed the global secondary structure (Fig 4.5).  

To determine the effect of the mutase domain on the thermal stability of the bifunctional 

enzyme, the full-length and ∆80CM-PD proteins were analyzed by monitoring the changes in 

ellipticity at 222 nm when heated from 25°C to 95°C (Fig 4.6).  Little change was observed with 

∆80CM-PD implying that as with the full-length protein the variant was very resistant to thermal 
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unfolding and the Tm  > 95°C under our experimental conditions. The variant retained its α- helical 

structure at 95°C with no formation of β-aggregates as detected by far-UV CD. 

  As a complementary technique to far-UV CD measurements, fluorescence emission 

spectroscopy was used to determine if deletion of the CM domain causes changes in tertiary 

structure as probed by the environment of the protein’s aromatic chromophores. Emission 

spectra of protein samples (full-length and Δ80CM-PD variant) were recorded from 300 to 400 nm 

at excitation wavelengths (λex) of 280 nm and of 290 nm. At an excitation wavelength (λex) of 280 

nm, tryptophan and tyrosine residues contribute to the proteins intrinsic fluorescence emission, 

while at λex of 295 nm, the contribution is almost exclusively from tryptophan residues(186). 

Accordingly, higher fluorescence intensities are expected at λex of 280 than at λex of 295. IhTyrA 

possesses 13 Tyr per and 5 Trp per monomer. In contrast, ∆80CM-PD possesses one less Tyr and 

Trp per monomer contributing to its λ280 nm and λ295 nm emission spectra. Fig 4.7 shows a maximal 

emission intensity of 337 nm at both λex of 295 nm and 280 nm for the full-length protein and the 

∆80CM-PD variant. This maximum is considerably blue shifted relative to a value of ~ 355 nm 

expected for full solvent exposed tryptophan residues(187), therefore suggesting that globally, the 

tryptophan residues are partially buried. As expected, higher emission intensities are observed at 

λex of 280 compared to those at λex of 295 for both the wild-type protein and the variant (Fig 4.7). 

Interestingly, the ∆80CM-PD exhibited a threefold decrease in fluorescence emission intensitiy at 

λex of 280. However, the decrease in fluorescence emission intensity at λex of 295 of the ∆80CM-PD 

variant was less pronounced. The λem max of the variant was also blue shifted but only ~ 2 nm, 

indicating that Trp residues are slightly more buried than in the full-length protein. 
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Figure 4.5:  Far-UV CD spectra of wild-type IhTyrA and Δ80CM-PD variant.  CD spectra of wild-
type (red solid line) and Δ80CM-PD variant (blue dashed line) were recorded at 25 °C. CD spectra 
of the Δ80CM-PD variant were also recorded after thermal unfolding at 95°C (dotted line). The 
amount of protein used was approximately 0.1-0.3 mg/mL protein. The CD signal was not 
converted to molar ellipticity due to uncertainty in the exact concentration of protein following 
equilibration. Spectra are normalized to ~ 5 µM monomer. 
 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.6:  Thermal unfolding monitored by CD spectroscopy. Thermal denaturations with       
wild-type IhTyrA (red solid line) and Δ80CM-PD variant (dotted blue line) were carried out by 
following the ellipticity at 222 nm as described in 3.1.6.  
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Figure 4.7: Fluorescence emission spectra of wild-type IhTyrA and Δ80CM-PD variant.  
Fluorescence spectroscopy analysis was performed with ~ 5 µM monomer of either wild-type 
CM-PD (red) or Δ80CM-PD (blue) in a buffer containing 50 mM potassium phosphate (pH 7.5) as 
described in 4.1.8.The excitation wavelength was set at 280 nm (solid line) or 295 nm (dotted 
line).  
 

4.2.4 Kinetic characterization of IhTyrA variants Δ80CM-PD and Met81Leu  

Enzyme assays with purified Δ80CM-PD and Met81Leu proteins confirmed that the 

variants were efficient prephenate dehydrogenases and Met81Leu appeared to be also an 

efficient mutase. Table 4.4 summarizes the kinetic parameters obtained for the variants and the 

wild-type enzyme. Kinetic characterization of Met81Leu revealed that values of kcat, KM and 

kcat/KM for the mutase reaction were similar to those of wild-type CM-PD. As expected, the 

Δ80CM-PD variant possessed no mutase activity consistent with the deletion of the enzyme’s N-

terminal domain. Values of kcat obtained for the dehydrogenase reaction using prephenate and 
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NAD+ or NADP+ as substrates were similar among the variants and the wild-type enzyme. 

However, Δ80CM-PD exhibited a significantly higher affinity for prephenate; six- and fourfold 

reductions in KM value for prephenate were observed for Δ80CM-PD in the presence of NADP+ or 

NAD+, respectively, when compared to the wild-type enzyme. This decrease in KM yielded 

proportional increases in overall PD catalytic efficiency (kcat/KM values) of Δ80 CM-PD. There was 

a smaller but significant decrease in KM values for both cofactors for Δ80CM-PD. In the case of 

Met81Leu, the KM for prephenate was similar to the wild-type enzyme; however, the leucine 

substitution caused a pronounced reduction in the KM value for cofactors (~ tenfold decrease in 

KM for NAD+ and >4 fold reduction in KM for NADP+). Thus, the Met81Leu replacement appeared 

to enhance cofactor binding without affecting the enzyme’s affinity to bind other substrates or 

the turnover of substrates in either the CM or PD reactions. 

Thermal stability studies at 95°C were performed as described in 3.1.3, and revealed 

that as with the wild-type enzyme, the Δ80 CM-PD variant is highly resistant to heat. As 

illustrated in Fig 4.8, PD specific activity of the Δ80 CM-PD variant increased about threefold 

during the first 1-3 h of incubation. The specific activity of wild-type PD also increased during 

this period although only twofold. The increase in specific activity observed for both enzymes 

was not due to the decrease in protein content. Although the variant appeared to be more 

active during the first 3 h of incubation at 95°C, it appeared less thermostable with prolonged 

incubation; Δ80CM-PD  lost ~ 70% of its PD activity by 50 h of incubation while wild-type 

enzyme retained over 90% of activity within that time period. The temperature dependency of 

PD activity of Δ80CM-PD showed an exponential increase in reaction rate with temperature, 

reaching a maximum at ~ 85°C (Fig 4.9), which is below the temperature optimum of 90°C 

observed for the wild-type enzyme (Fig 3.2). At 90°C, the activity of Δ80CM-PD decreased by 
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25%. Nonetheless, the PD activity of the variant from 30° - 85°C yielded an activation energy of             

47 kJ/mol which is very similar to that determined for the wild-type enzyme (Fig 4.9, inset). 

 

 

 



 
 

 137 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Table 4.4: Steady-state kinetics parameters for the reactions catalyzed by wild-type IhTyrA and variants Met81Leu and Δ80CM-PD. 
 Assays were performed as indicated in 2.1.13 and 4.1.5. Values were calculated from the initial rates using at least 6 substrate concentrations. 
CM reaction - chorismate was varied from 0.025 - 1.5 mM. PD reaction – prephenate was varied from 0.02 - 4 mM at a fixed concentration of 2 
mM NAD+ or 0.5 mM NADP+. When varying the cofactor concentration: NADP+ (0.015 - 4 mM) or NAD+ (0.015 - 4 mM), prephenate was fixed at 
2.5 mM. Values in parentheses are the results of assays performed with NAD+. ND is activity not detected. For kcat calculations the exact mass 
values used were 42, 233 (WT CM-PD), 42, 215 (Met81Leu) and 32, 602 (Δ80CM-PD).* Met81Leu - not possible to determine initial rate of PD 
reaction at <12 µM NADP+. 
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Figure 4.8:  Thermal stability profile of wild-type IhTyrA and Δ80CM-PD variant. Wild-type 
(filled circles) and Δ80CM-PD (empty circles). Residual prephenate dehydrogenase activity was 
measured after incubation at 95 °C. At different time intervals during the incubation, samples 
were removed, centrifuged for 5 min at 4°C and residual dehydrogenase activity was 
determined at 80°C with 1 mM prephenate and 1 mM NADP+. Protein concentration was 
determined after centrifugation to calculate specific activities. 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.9: Effect of temperature on PD activity of IhTyrA Δ80CM-PD variant. PD activity was 
measured as described in 2.1.13. Activity at 85°C corresponds to 28 U/mg. The Arrhenius plot 
(inset) was generated from measurements over the range of 30° – 85°C.  
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4.2.5 Kinetic screening of site-specific variants to identify residues important for cofactor 

specificity, substrate binding and L-Tyr inhibition 

Variants Arg127Ala, Arg127Leu, Asn128Ala, Asn128Asp, Arg308Leu, Arg308Gln, 

Arg308Ala, Phe299Tyr and Ile316Tyr along with the wild-type enzyme were expressed and 

purified on a small scale with Ni-NTA affinity resin while the Gly126Asp variant was expressed 

from a 2 L cell culture and purified by Ni-NTA chromatography as described in 4.1.4. All variants 

were reasonably well expressed as judged by SDS-PAGE and purified to a similar level of 

homogeneity as the wild-type protein (Fig 4.10). Approximately 100 - 250 µg of each variant was 

obtained from a 50 mL cell culture except for Arg308Leu and Arg127Leu whose amounts were 

lower (~30-50 µg).  Purification of the Gly126Asp variant protein by Ni-NTA chromatography 

from a 2 L cell culture yielded 24 mg of protein. ESI-MS was used to confirm the presence of the 

correct amino acid substitution. As illustrated in Table 4.3, the theoretical and observed mass 

values of each variant protein were in good agreement. The exception was the Arg308Leu 

variant whose deconvoluted spectrum did not reveal any major peaks at the expected range 

between 20 000 and 50 000 Da (data not shown). This is likely due to the low amount of protein 

that was obtained through purification; the SDS-PAGE analysis, however, detected the 

appropriate band at ~ 42 kDa that corresponded to the expected monomer mass of the variant 

(Fig 4.10, A, Lane 11).                                                                                                   

In order to investigate the importance of selected active site residues of IhTyrA for PD 

enzyme function, kinetic assays were performed on the wild-type and variant proteins. The 

analysis revealed that all variants were active in the presence of both cofactors (Tables 4.5 and 

4.6). Variants Arg127Ala, Arg127Leu, Asn128Ala, Asn128Asp and Gly126Asp that were 

generated to assess the importance of the replaced residue in the cofactor specificity, exhibited 

similar specific activities with NAD+ or NADP+ implying that the replaced residues were not 
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critical for cofactor specificity. Moreover, kinetic analysis of Gly126Asp revealed a 13-fold 

increase in KM values for both cofactors without altering cofactor preference (Table 4.6). This 

implied that the Gly126 is likely important in binding the cofactors rather than for specificity. To 

verify that the amino acid substitution of glycine to aspartate did not significantly perturb the 

overall protein structure we performed far-UV CD and fluorescence emission measurements on 

the Gly126Asp variant and the wild-type enzyme. The CD and fluorescence spectra obtained for 

the two proteins were nearly superimposable indicating that the amino acid replacement did 

not perturb the global secondary and tertiary structure of the protein (data no shown).  

The importance of the conserved Arg308 in prephenate binding was evaluated by 

substituting the amino acid with alanine, glutamine or leucine. As indicated in Table 4.5, variants 

Arg308Ala and Arg308Gln exhibited a two to threefold decrease in PD activity in the presence of 

either of the cofactors when compared to the wild-type enzyme. The Arg308Leu exhibited a 

fourfold and a sixfold decrease in PD activity in presence of NAD+ or NADP+, respectively. This 

modest decrease in activity of the variants suggests that Arg308 is not of critical importance for 

prephenate binding. These findings are contrary to that observed for the CM-PD enzymes from 

E. coli and  H. influenzae  in which replacements by glutamine at the homologous positions 

(Arg194 and Arg197, respectively) resulted in 100-fold and 1000-fold decreases in PD     

activity(58, 95), respectively.  

Variants Phe299Tyr and Ile316Tyr were generated to determine the possibility of 

introducing sensitivity to L-Tyr into IhTyrA; coordinating tyrosines are present in the 

corresponding positions of L-tyrosine sensitive PDs such as CM-PD from E. coli and H. influenzae. 

However, both variants were not inhibited by 1 mM of the fluorinated L-Tyr analog indicating 

that the Phe299Tyr and Ile316Tyr replacements did not introduce sensitivity to the end product 

(Table 4.5). 



 
 

 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: SDS-PAGE analysis of purified IhTyrA variants.                

A. Small scale purified variants.  Lane 1: WT, Lane 2: Arg127Ala, Lane 3: Asn128Ala, Lane 4: 
Arg308Ala, Lane 5: Molecular Weight Marker, Lane 6: Arg308Gln, Lane 7: Phe299Tyr, Lane 8: 
Ile316Tyr, Lane 9: Asn128Asp, Lane 10: Arg127Leu (modified picture), Lane 11: Arg308Leu 
(modified picture). Denaturing gel was silver stained to visualize proteins. Approximately         
0.5-2 μg of protein was applied in each lane.                                             

B. Purification steps of Arg308Gln.  This is a representative gel for the ”batch” purification 
method. Lane 1: Pellet of insoluble cellular debris solubilized in 4% SDS, Lane 2: Cell-lysate,  Lane 
3: Cell-free extract, Lane 4: Ni-NTA flow-through, , Lane 5: 30 mM imidazole wash, Lane 6: 
Pooled protein from Ni-NTA purification, Lane 7: Molecular Weight Marker.                  

C. Large scale purified Gly126Asp variant and wild-type protein.  Approximately 60 μg of 
protein was applied in each lane. 
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Table 4.5: Summary of specific activities for wild-type IhTyrA and variants. PD specific activity 
was determined at 80°C with NAD+ (2 mM NAD+, 0.5 mM prephenate) and with NADP+ (0.5 mM 
NADP+, 0.5 mM prephenate). Specific activity ± 1 mM DL-FTyr was determined with 0.5 mM 
NADP+ and 0.5 mM prephenate. 
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Table 4.6: Steady-state kinetics parameters for the reactions catalyzed by wild-type IhTyrA and Gly126Asp variant.  Assays were performed as 
indicated in 2.1.13 and 4.1.5. Values were calculated from the initial rates using at least 6 substrate concentrations. CM reaction - chorismate 
was varied from 0.025 - 1.5 mM. PD reaction – prephenate was varied from 0.02 - 4 mM at a fixed concentration of 2 mM and 40 mM  NAD+ for 
WT and Gly126Asp variant, respectively or 0.5 mM NADP+. When varying the cofactor concentration, NADP+ (0.015 - 4 mM) or NAD+ (0.015 - 10 
mM), prephenate was fixed at 2.5 mM. Values in parentheses are the results of assays performed with NAD+. ND is activity not detected. For kcat 
calculations the exact mass values used were 42, 233 (WT CM-PD) and 42, 291 (Gly126Asp).   
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4.3 Discussion 

This study reports the first heterologous expression and purification of TyrA variant 

proteins from I. hospitalis. We also provide the first functional studies on these proteins. 

Monofunctional PD variant Δ80CM-PD, engineered genetically by deletion of the first 80 amino 

acids from TyrA’s mutase domain, was characterized biochemically and biophysically and 

compared to the wild-type bifunctional CM-PD. This comparative analysis has provided valuable 

information regarding the structure and function of the dehydrogenase domain separately and 

within the bifunctional enzyme. The characterization of single-site variant, Met81Leu has 

provided further insight on the spatial relationship between the mutase enzyme and the 

cofactor binding site within the dehydrogenase domain.  Our studies also extended to single-site 

variants Gly126Asp, Arg127Ala, Arg127Leu, Asn128Ala and Asn128Asp, Arg308Leu, Arg308Gln, 

Arg308Ala, Phe299Tyr and Ile316Tyr which caused amino acid replacements at positions 

predicted to play a role in either cofactor specificity, substrate binding or sensitivity to L-Tyr. 

 

Deletion of the mutase domain yields a dimeric, active monofunctional dehydrogenase 

The Δ80CM-PD variant was expressed and purified to apparent homogeneity by Ni-NTA 

affinity chromatography to yield an intact domain devoid of small molecular weight fragments 

as determined by SDS-PAGE (Fig 4.2, lane 7) and ES-MS analysis (Table 4.3). As expected, the 

enzyme lacked mutase activity.  However, it retained full dehydrogenase activity showing a 

preference for the cofactor NADP+, similar to the wild-type enzyme.  The independently 

expressed PD domain also behaved as the full-length protein exhibiting maximum activity at 

high temperatures (Fig 4.9).     



 
 

 145 

Size exclusion chromatography and analytical ultracentrifugation analysis confirmed 

that Δ80CM-PD was dimeric in solution indicating that the mutase domain was not essential for 

the higher order structure of the bifunctional enzyme (Fig 4.3 and Fig 4.4). This is in accord with 

previous studies on the mesophilic H. influenzae CM-PD and its monofunctional Δ80CM-PD 

variant which also revealed an active dimeric enzyme(92, 95).  The average molecular weight of 

∆80 CM-PD determined from sedimentation velocity experiments was less than the value 

predicted from the primary sequence (Fig 4.4 and 3.10), indicating that the variant was 

somewhat more compactly folded than the full-length protein. This finding is also in accord with 

the results of the limited proteolysis experiments and the expression profile of a 30 kDa 

fragment during protein expression/purification (Fig 2.10, 3.9, and 3.10) which supports the idea 

of a more tightly folded independent PD domain. This is, however, in contrast with SEC-FPLC 

analysis, which suggests that the variant is less compact than the full-length protein (Fig 4.3). 

The examples of engineered monofunctional PDs provided by I. hospitalis Δ80CM-PD (in 

this study) and of Δ80CM-PD of H. influenza (92, 95) are more successful than that reported by 

Ganem and colleagues.  Their efforts to  generate competent CM and PD fragments of E. coli 

CM-PD by deletion of the first 93 or 96 residues of the bifunctional enzyme yielded constructs 

that were less active and much less stable than the full-length protein(188) . 

Far-UV CD spectroscopy revealed that as with the full-length protein, the Δ80CM-PD 

variant exhibited considerable α-helical content and its global secondary structure was retained 

even at high temperatures. Our studies agree with those on H. influenzae CM-PD and its Δ80CM-

PD variant which also exhibited similar helical structure at ambient temperature. The melting 

temperatures (Tm) for both full-length and Δ80CM-PD proteins exceeded 95°C, a behavior which 

is consistent with hyperthermophilic proteins. Similar profiles using far-UV CD spectroscopy 

were obtained for hyperthermophilic PD from A. aeolicus and its Δ19PD variant (52). 
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Structural differences between full-length CM-PD and Δ80CM-PD 

Changes in the shape and tertiary structure of the enzyme caused by the truncation 

might be reflected in the protein’s intrinsic fluorescence emission, which is sensitive to the 

environment of aromatic chromophores. Our data show that IhTyrA and the Δ80CM-PD variant 

demonstrated pronounced differences in fluorescence emission intensities implying that there 

were tertiary structural differences. A model of the I. hospitalis PD domain that was generated  

based on the crystal structure of H. influenzae Δ80CM-PD (~ 25% sequence identity), shows the 

side chains of three tryptophan residues (Trp143,  Trp235 and Trp344) per monomer are more 

exposed while that of Trp155 is partially buried (Fig 4.12). (Trp64 is located in the mutase 

domain and therefore is not found in the model). The emission maximum at λex of  295 nm 

(specific for Trp), was 337 nm reflecting that on average, the tryptophan residues are partially 

buried (187).  Thus the model is only in moderate agreement with the data. The overall 

fluorescence emission spectra of full-length CM-PD, after excitation at 280 nm (reflecting the 

contribution of Trp and Tyr), displayed a ~ threefold increase in quantum yield relative to 

∆80CM-PD (Fig 4.7). This is not surprising since the full-length protein has one additional 

tryptophan and an additional tyrosine residue in the mutase domain.  While the fluorescence 

emission for the full-length protein at λex of 280 nm was considerably higher than at λex of 295 

nm, for ∆80CM-PD, surprisingly the quantum yields upon excitation at these two wavelengths 

were almost superimposable.  The 3D model of the I. hospitalis PD domain revealed that Trp155 

is located in close proximity (~ 5 Å) to Tyr98, and Trp235 is ~ 5 Å from Tyr234. Thus, it may be 

that these tyrosine residues are more effectively quenched by the nearby tryptophan residues in 

the ∆80CM-PD protein. Additionally, the PD model showed that nine of the twelve tyrosine 

residues are surface exposed (Fig 4.11) and their fluorescence emission is likely quenched by 
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interactions with the HPO4
- ion in the phosphate buffer(186). Therefore, the marked differences in 

fluorescence intensities between the full-length and the ∆80 CM-PD proteins upon excitation at 

280 nm could also be explained by a change in the solvent exposure of some of the tyrosines 

with the deletion of the mutase domain.  

Worth noting in the model of the PD, Trp143 is within 5 Å of the cofactor docked in the 

active site (Fig 4.12). We are currently evaluating the accuracy of the model and if fluorescence 

quenching can be exploited to monitor cofactor binding in the wild-type enzyme and selected 

variants (for example Met81Leu, discussed below).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11: Surface accessibility of tryptophan and tyrosine residues in the model of dimeric 
PD domain of IhTyrA. Model of dimeric PD Domain of IhTyrA based on H. influenzae 3D 
structure: PDB-2pv7 (92, 94). Surface-exposed tryptophan residues are shown in green and 
surface-exposed tyrosine residues are shown in pink. There are 4 tryptophan and 12 tyrosine 
residues per monomer. The two monomers of the dimer are shown in blue and gray. Picture 
was generated using PyMol. 
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Figure 4.12: Proposed interaction of NAD+ with Trp143 in model of PD domain of IhTyrA. 
Model of I. hospitalis PD domain based on H. influenzae 3D Structure: PDB-2pv7 (92, 94). NAD+ is 

highlighted in red, tryptophan residues are highlighted in green. Three out of four trytophans 
are shown. Trp344 is located far from the active site and therefore is not shown in the picture. 
 

Truncation contributes to a catalytically more effective but less thermally stable domain 

Changes in tertiary structure of the protein, monitored by fluorescence emission at 

room temperature, are also likely reflected in functional changes in the protein. Kinetic analysis 

revealed that I. hospitalis Δ80 CM-PD was more catalytically efficient than the full-length 

protein, exhibiting six and threefold decreases in KM for prephenate and NADP+, respectively 

(Table 4.5).  Additionally, thermal stability studies showed that PD activities of both full-length 

and Δ80CM-PD were activated at high temperatures.  During the first 3 h of incubation at 95°C 

the monofunctional variant achieved maximum activity that was twice that of the bifunctional 

enzyme.  However, Δ80CM-PD lost most of its activity when incubated at this temperature for 

longer than 24 h, in contrast to the full-length protein which retained almost full activity (Fig 

4.8). Additionally, it was observed that the maximal PD activity achieved by I. hospitalis Δ80CM-

PD at 85°C was 5°C lower than the optimum obtained for full-length PD, indicating a reduced 

resistance to heat (Fig 4.9). Thus, deletion of the N-terminal domain of the protein appears to 

compromise the tertiary structure of the protein at high temperatures.   
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Although there are no structures available for bifunctional CM-PDs, it is likely that there 

is a close structural association between the mutase and dehydrogenase domains in such a way 

that would afford protection against thermally-induced unfolding and inactivation.  Thus, our 

data suggest that deletion of the CM domain favors PD activity while impacting protein stability 

at higher temperatures.   

Arnold et al through directed evolution studies on Cytochrome P450 enzymes, indicated 

that mutations in a protein’s active site to enhance function are often destabilizing since they 

alter functional features that are also essential for maintaining stable structures such as buried 

charges and cavities(189).  Accordingly, we hypothesize that deletion of the mutase domain in I. 

hospitalis CM-PD may have exposed internal charges and/or a cavity, likely at the interface of 

the CM and PD domains.  Examing fluorescence emission in the presence of external quenching 

agents may provide some additional information as has been performed for A. aeolicus 

Δ19PD(52) . 

 

Amino acid replacement in the mutase domain affects cofactor binding 

The Met81Leu variant was characterized to further probe the origin of the 30 kDa 

fragment observed during the protein expression and purification.  The amount of 30 kDa 

fragment co-purifying wih the Met81Leu variant was proportionally lower than observed in the 

wild-type enzyme but not eliminated (Fig 4.2).  Thus, the shorter form of the enzyme is unlikely 

the result of an additional protein translation site from that supplied by our E. coli expression 

vector, although this might be the case in the host organism. Met81Leu resides in the C-terminal 

region of the CM domain upstream of the consensus sequence for nucleotide binding. It is likely 

that the leucine replacement perturbs the structure of the protein in the region near the 

protease recognition site. Kinetic analysis of the variant shows that none of the kinetic 
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parameters of the CM and PD-catalyzed reactions are affected by the replacement except the 

KM for the cofactor, which is significantly reduced: tenfold for NAD+ and over fourfold for NADP+ 

(the later measurement limited by our spectrophotometric assay). A model of the CM domain of 

I. hospitalis (Appendix 7A) displays this methionine at the protein’s C-terminal helix directed 

away from the mutase active site.  It is therefore possible that this non-polar residue could be 

interacting with, and alter the hydrophobic packing of a region close to the NADP+ binding site 

within the PD domain. Suprisingly, there have been very few variant proteins characterized, 

which carry amino acid replacements only in the mutase portion of a bifunctional CM-PD 

TyrA(57). This is the first mutase variant characterized that shows an effect solely on cofactor 

binding.    

In summary, our studies are the first to provide insights on the spatial and functional 

relationship between the two catalytic activities in I. hospitalis CM-PD and reveal that PD activity 

can be contained within a stable monofunctional domain.  This independent expression 

contributes to the PD activity however compromises protein thermal stability.  

 

A survey of the importance of active site residues in ligand binding and selectivity in IhTyrA 

Our work on IhTyrA was expanded to identify amino acid residues that may be 

important for cofactor specificity, binding of prephenate and/or (in)sensitivity to L-Tyr. Towards 

this goal a total of ten single-site variant proteins were characterized, and thus represent the 

first site-directed mutagenesis studies on I. hospitalis CM-PD. Amino acid substitutions were 

designed according to 3D homology models based on the available crystal structures of bacterial 

PD, as well as amino acid sequence alignments with other TyrA proteins. All variants, purified by 

Ni-NTA chromatography exhibited yields and levels of purity comparable to the wild-type 

protein. 
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Driven by our kinetic studies in which IhTyrA exhibited a preference for NADP+ in the 

dehydrogenase reaction, we were intrigued by the possibility of changing the protein’s 

preference towards NAD+ by identifying and replacing the critical residues which may confer 

specificity. IhTyrA appeared to be very stable and unregulated by the end product L-Tyr, thus 

representing a potential candidate for applications in biotechnology through overproduction of 

L-Tyr;  changing cofactor specificity would be advantageous since NAD+ is more stable and much 

cheaper than NADP+ (190).  Bioinformatics studies on TyrA proteins by Jensen and colleagues (29)  

has pinpointed residues likely important for cofactor discrimination that are found downstream 

of the GxGxxG consensus motif (see Appendix 3B and Fig 1.8). According to these studies, as 

well as functional studies on other dehydrogenases(191, 192), specificity to NAD+ is thought to be 

conferred by a single, negatively charged residue, aspartate or glutamate since it repels the 

negatively charged phosphate group of NADP+. The crystal structure of the PD domain from H. 

influenzae revealed that the side chain of aspartate at position 131 is within hydrogen bonding 

distance of the diol of ribose near the adenine of NAD+ (Fig 4.13). The crystal structure of A. 

aeolicus Δ19PD also revealed a homologous aspartate at position 62 interacting with the 

cofactor(89). Accordingly, our functional studies had shown that both bacterial enzymes are 

NAD+-specific PDs (see Appendix 8A and (52, 95). Our efforts to introduce the negative charge at 

the equivalent position of I. hospitalis PD by substituting the corresponding Gly126 to aspartate, 

however, did not switch cofactor preference. Instead, the variant Gly126Asp exhibited a 13-fold 

decrease in apparent affinity for both cofactors suggesting the importance of Gly126 in 

facilitating the binding of either of the two cofactors. The model of I. hospitalis PD based on the 

crystal structure of H. influenzae PD showed that the backbone amine group of Gly126 is within 

hydrogen bonding distance of the hydroxyl side chain of Tyr104 (Appendix 5A). Thus, it may be 

that replacing Gly126 with the much larger and negatively charged aspartate perturbed the 
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cofactor binding site through steric repulsion. Our results contrast with studies on alcohol 

dehydrogenase from Lactobacillus brevis which demonstrated that a single substitution 

Gly37Asp shifted cofactor dependence from NADP+ to NAD+ (192) by a factor of 300. Generally, 

attempts to alter specificity from NADP+ to NAD+ are often not successful and more success had 

been achieved with the reverse change, from NAD+ to NADP+-specificity(190). In those cases, site-

specific substitutions were made such that the negatively charged aspartate or glutamate 

residue was removed and additionally, a positively charged arginine was introduced at the 

adjacent position, thus reversing the charge in the cofactor binding site(191, 193). Crystallography 

studies on NADP+-dependent AD from Synechocystis sp. PCC 6803 showed that the side chain of 

Arg31 was hydrogen bonding with a phosphate oxygen of NADP+ (Appendix 6A)(41). Common to 

NADP+-specific enzymes, the preceeding position is occupied by Ser30 instead of the negatively 

charged aspartate (or glutamate) which is typical of NAD+-dependent dehydrogenases such as 

the equivalent Asp131 in H. influenzae PD (see sequence alignment of PDs in Fig 1.8). In order to 

evaluate whether PD reaction could be abolished in the presence of NADP+, Arg127 (equivalent 

to Arg31 in Synechocystis sp. PCC 6803 AD) was substituted to alanine and leucine. However, 

both Arg127Leu and Arg127Ala variants exhibited PD activity comparable to the wild-type 

enzyme in the presence of either cofactor implying that the arginine does not play an important 

role in cofactor preference or binding in the archaeal enzyme. Furthermore, replacing Asn128 

(the following position in the primary sequence) to either alanine or to the anionic aspartate 

had little effect on the activity in the presence of either cofactor, implying that aspargine does 

not play a role in cofactor preference (asparagine was previously noted by Jensen et al(29) in the 

cofactor discriminator region of TyrA proteins  predicted to exhibit broad cofactor specificity). 

Our studies also disagree with the model of I. hospitalis PD based on the crystal structures of PD 

from S. meliloti. In this structure it has been demonstrated that Arg127 and Asn128 are within 
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hydrogen bonding distance of the phosphate oxygen of NADP+ (Fig 4.14). Amino acid sequence 

identity between the two enzymes is relatively low (~ 17%), however, which may have 

contributed to the inaccuracy of the model. Our studies reveal that residues Gly126, Arg127 and 

Asn128 are not critical for cofactor specificity as thought. We suggest that the cofactor 

specificity is likely conferred by a combination of residues rather than by a single amino acid in 

IhTyrA. 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.13: Interactions of NAD+ with Asp131 in the crystal structure of dimeric H. influenzae PD.  
PDB-2pv7 (92). NAD+ is highlighted in red. Asp131 and Arg132 are highlighted in purple and blue, 
respectively.  
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Figure 4.14: Model of the NADP+-binding site of I. hospitalis PD. Model of I. hopitalis PD complexed 
with NADP+ (red) based on the S. meliloti PD crystal structure (PDB-4wji). Gly126, Arg127 and Asn128 
are highlighted in gray, blue and pink, respectively.  

  

 

A similar conclusion can be drawn from our studies on single replacement variants of a 

conserved arginine residue, assigned to Arg308 in IhTyrA that plays a role in binding prephenate 

binding. In contrast with site-directed mutagenesis studies on E. coli and H. influenzae PDs (58, 95),  

in which the arginine at equivalent positions was deemed essential for prephenate binding, our 

studies revealed that Arg308 is not critical for prephenate binding in I. hospitalis PD. The 

replacement of cationic arginine with alanine or glutamine reduced PD activity in IhTyrA by only 

two to threefold compared to reductions in kcat/KM activity by 100 to 1000-fold by the glutamine 

substitutions in E. coli and H. influenzae CM-PD (95, 96). Currently, there are no crystal structures 
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of PD bound with prephenate, although there are published structures by Christendat, Turnbull 

and colleagues (90) of A. aeolicus Δ19PD in complex with HPP and NADH and L-Tyr and NAD+, and 

of the structure by Wilson et al (92) of H. influenzae Δ80CM-PDs with bound L-Tyr and NAD+. Both 

structures illustrate that the conserved arginine (Arg297 in H. influenzae PD or Arg250 in  A. 

aeolicus Δ19PD) is hydrogen bonding via its guanidinium group with the side chain carboxyl 

group of L-Tyr (see Fig 1.9 and 1.10).  Although, the model of I. hospitalis PD based on the crystal 

structure of H. influenzae PD clearly shows the corresponding Arg308 within hydrogen bond 

distance of the L-Tyr side chain carboxylate (Appendix 9A), the backbone residues of Arg308 are 

clashing with Phe299.  Interestingly, site-directed mutagenesis studies on Δ19PD from A. 

aeolicus suggest that Lys246‘ from an adjacent subunit rather than Arg250 plays a more 

significant role in binding prephenate and that the effect is additive with Arg250 

(Arg250Ala/Lys246Ala yields a 200-fold increase in KM for prephenate(96)).  Moreover Legrand 

and colleagues(41) have hypothesized that in the AD from Synechocystis sp. PCC 6803,  cationic 

residues near the active site play no direct role in prephenate binding but rather help to guide 

the substrate towards the active site.  Whether this is the case for I. hospitalis PD awaits further 

mutagenesis studies.   

Our efforts to introduce sensitivity to L-Tyr in I. hospitalis CM-PD revealed that single-

site replacements to tyrosine at positions Phe299 and Ile316 were not essential for the 

enzyme’s interactions with L-Tyr. This conclusion was drawn from kinetic data (Table 4.5) that 

showed that variants Phe299Tyr and Ile316Tyr exhibited PD activities that were similar in the 

presence or absence of the fluorinated L-Tyr analog.  This analog was shown to be a more 

potent inhibitor in tyrosine-sensitive PD proteins (159). Coordinating tyrosine residues are found 

at equivalent positions in the PD domains of  tyrosine-sensitive bifunctional CM-PD proteins 

including those from E. coli and H. influenzae, as well as in the tyrosine-sensitive archaeal 
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trifunctional TyrA from A. fulgidus (See sequence alignment in Fig 1.8)(92). Site-directed 

mutagenesis studies by Turnbull and colleagues on E. coli CM-PD (98) guided by a modeled 

structure of the active site revealed that these tyrosine residues (Tyr285’ and Tyr303), each 

from adjacent monomers, are essential for binding L-Tyr through its amine group. However, the 

coordinating tyrosines are not conserved in monofunctional TyrA proteins such as the L-Tyr-

sensitive PDs from A. aeolicus and S. mutans, as well as the Synechocystis sp. PCC 6803 enzyme 

which is unregulated by L-Tyr (See alignment in Fig 1.8). In these PD proteins as well as in the 

unregulated CM-PD from I. hospitalis, in the equivalent position to 285 in E. coli, tyrosine is 

replaced with phenylalanine while tyrosine in position 303 is replaced by a different residue in 

each PD. Moreover, structural studies on Δ19PD from A. aeolicus have demonstrated an 

alternate orientation of the bound L-Tyr with its amine group interacting directly with the 

backbone carbonyl of Thr152(90). It is not too surprizing that the introduction of tyrosines in 

IhTyrA, at positions equivalent to those coordinating L-Tyr in H. influenzae PD, did not confer 

sensitivity to the end product. Our studies, presented in Chapters 2 and 3 suggest that I. 

hospitalis CM-PD along with N. equitans PD-CM-PDT may encompass a distinct subfamily of 

dehydrogenases with regard to their deregulation by L-Tyr and co-substrate specificity. 

Complementary crystallography studies would be beneficial to validate the differences within 

the PDs from the symbiotic archaeal pair and with other characterized PD proteins in terms of 

their active site geometries. Such studies would help to identify residues that play a role in 

substrate and cofactor selectivity and in conferring resistance to L-Tyr.  
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Chapter 5 

 
Summary and Future Directions 
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5.0 Summary and future directions 

This work reports the first production and characterization of trifunctional PD-CM-PDT 

from the smallest characterized hyperthermophilc archaeon N. equitans and bifunctional CM-PD 

from its archaeal host, crenarchaeon I. hospitalis. Hexa-histidine tagged proteins were 

expressed in E. coli and purified by affinity chromatography. Characterization of the 

recombinant archaeal TyrA proteins demonstrated that both the proteins exhibited remarkable 

thermal stablility and the bifunctional enzyme from I. hospitalis appeared to be also highly 

stable to proteolysis. Kinetic studies showed that the archaeal enzymes were insensitive to 

regulation by the end product L-Tyr and possessed unusual broad cofactor specificity with 

preference to NADP+ in the PD reaction. Thus our studies provide evidence that PDs from the 

unique symbiotic archaeal pair encompass a distinct subfamily of dehydrogenases with regard 

to their regulation and cofactor specificity. We also showed through kinetic studies that the PDT 

component of the trifunctional enzyme was regulated by the end product L-Phe in a manner 

consistent with the combination at a site distinct from that of prephenate.  

Thermal stability studies showed that PD activities of both archaeal TyrA proteins 

increased about two-fold during the first 1-3 hours of incubation at 95°C. Therefore, it would be 

important to determine the kinetic parameters of the heat treated protein sample. Generating 

temperature conditions as similar as possible to the native environment of these 

hyperthermophilic enzymes will keep them in the optimal conformation for establishing their 

maximal efficiency. 

 Additionally, these studies revealed that heating the N. equitans TyrA sample at 

 95°C for 1 h assisted in removing many contaminating E. coli proteins but not the chaperones 

SlyD and DnaK.  Our studies also showed that chaperone SlyD can be separated from the NeTyrA 
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by size exclusion FPLC. Thus, if somebody would aim to purify further the trifunctional enzyme 

one could perform a heat-step on the cell-free extract at 95°C for one hour to remove most of 

the E. coli proteins, followed by Ni-NTA and by SEC-FPLC to remove the chaperone slyD. This 

would yield a NeTyrA sample which will still contain the chaperone DnaK (which is not separated 

from the archaeal protein by the methods mentioned above). It was shown elsewhere that DnaK 

contamination could be reduced by washing the fusion protein bound to the purification resin 

with a solution that contains 5 mM MgATP and soluble denatured E. coli proteins(194). Thus, it 

may be that using this solution in the washes during Ni-NTA chromatography would be 

beneficial in removal of DnaK from the NeTyrA sample. However, taking into account the poor 

expression of soluble NeTyrA in E. coli BL21(DE3) cells, as well as the purification steps proposed 

above in which significant amounts of the protein of interest are removed along with  

contaminants, one should process a large scale expression (> 20 L of cell culture). It is likely that 

the intrinsic properties of the gene/protein product such as high pI, large size, AT richness of the 

genome will not allow heterologous overexpression of the protein.  A pBAD vector could be 

utilized in which protein production is under very tight control. 

Our studies on the bifunctional TyrA from I. hospitalis provide the first insights on the 

spatial and functional relationship between CM and PD activities. Through mass spectrometry 

and mutagenesis studies (representing the first mutagenesis studies on the archaeal enzyme) 

we demonstrated that the PD domain can be independently isolated and expressed yielding a 

stable and active monofunctional enzyme. We found that isolation of the PD domain contributes 

to PD activity by increasing the apparent binding affinity for prephenate but lowers the protein 

stability.  

One of our goals was to perform crystallography studies on the homogeneous 

preparation of the archaeal protein. Of all our preparations the only nearly homogeneous 
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sample was of the independently expressed PD domain of I. hospitalis CM-PD (Δ80CM-PD). 

Thus, Δ80CM-PD is an interesting candidate for crystallography studies as an example of a 

distinct TyrA protein due to its broad cofactor specificity and deregulation by L-Tyr. As a future 

work, we propose to execute crystallography studies on Δ80CM-PD in the presence of its 

substrates: prephenate and NAD(P)+. Unfortunatelly, our studies revealed that the archaeal TyrA 

proteins precipitate at concentrations above 4 mg/mL. Considering that a common protein 

concentration for crystallography studies is   ̴10 mg/mL(195), crystallization of Δ80CM-PD would 

be challenging. Different buffer conditions should be screened to increase the soluble protein 

concentration.  Additionally, a Lys79Gln variant should be produced to increase the 

homogeneity of the full-length protein sample.  An additional protease cleavage site should also 

be examined (through MS and site-directed mutagenesis) which appears to yield a fragment of 

about 35 kDa on SDS-PAGE.  Modelling studies may help in determing the accessibility of that 

site. Additionally, modelling has suggested that intrinsic fluorescence emission will allow the 

development of a thermodynamic binding assay for substrates and that must be explored.   

Site-directed mutagenesis studies on selected residues in I. hospitalis CM-PD suggest 

that cofactor specificity, prephenate binding and sensitivity to L-Tyr, each are conferred by a 

combination of residues rather than by single amino acids in the PD domain. As future directions 

to identify those residues it may be worthwhile to try a directed evolution approach and/or a 

semi-rational approach.  

Our studies have suggested that the archaeal TyrAs are excellent candidates for 

applications in biotechnology through overproduction of L-Tyr because of their high stability and 

deregulation by L-Tyr. Moreover, TyrA proteins serve as an excellent model for comparative 

enzymology studies. Thus, our studies on the unusual archaeal TyrAs, which include the rare 

fusion of N. equitans PD-CM-PDT domains, provide a starting point to yield a wealth of 
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information on the structure and function of multifunctional proteins and the evolution of 

enzyme activity within this metabolic pathway. 
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Appendix 1A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gene 
Protein name 
 (~ 71 kDa band) 

UniProtKB  
Accession No. 

Mascot 
score 

unique 
peptides 

Sequence 
coverage (%) 

MW 
(kDa)  

NEQ192 of             

N. equitans PD-CM-PDT  Q74NC4 

 

148 

 

34 

 

50 

 

71.35 

glmS 

L-gln-D-fru-6-p 

aminotransferase 

 

P17169 770 

 

30 

 

67 

 

67 

dnaK Chaperone DnaK P0A6Y8 169 11 54 69 

groL chaperone P0A6F5 120 2 54 57 

htpG Chaperone Hsp90 P0A6Z3 71 18 35 71.42 

arnA 

Polymyxin resistance 

protein P77398 579 

 

2 

 

75 

 

75 

rpsA 
30S ribosomal 
protein  P0AG67 107 

 
22 

 
49 

 
61 

fusA Elongation factor G P0A6M8 57 11 25 78 
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Orbitrap Velos MS analysis of ~ 71 kDa band digested sample of NeTyrA expressed from 
cloned genomic DNA and purified by Q-sepharose and Ni-NTA chromatographies. Table lists N. 
equitans PD-CM-PDT and E. coli proteins whose peptides were detected by tandem MS analysis. 
 

 

 
 
 
 
 
 
 
 
 

 
Appendix 1B 

 

 

 

 

 

 

 

 

 

 

 

 

 

1D and 2D gel analysis of NeTyrA purification by Q-sepharose and Ni-NTA chromatographies.  
A protein sample of 62 µg was analyzed first by isoelectric focussing followed by SDS-PAGE. 
Green and red highlight samples which were subjected to in-gel tryptic digestion followed by 
tandem MS analysis. 

~ 71 kDa 

1D SDS-PAGE 
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Appendix 2A 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Orbitrap Velos MS analysis of NeTyrA proteolytic fragments generated by trypsin
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Appendix 2B 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Orbitrap Velos MS analysis of IhTyrA proteolytic fragments generated by trypsin. Shown are 
peptides with 0 missed cleavages and with a minimum peptide mass of 500 Da.  
*Peptides observed in blank (empty gel piece) were excluded from the table.  
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Appendix 2C 

 
 

gene 
Protein name 
 (~ 40 kDa band) 

UniProtKB  
Accession No. 

Mascot 
score 

unique 
peptides 

Sequence 
coverage (%) 

MW 
(kDa)  

Igni_0892 of             
I. hospitalis CM-PD A8AAX2 

 
1978 

 
25 

 
61 

 
41 

tufB Elongation factor 

 

P0CE48 77 

 

7 

 

21 

 

43 

gapA 

Glyceraldehyde-3-P 

dehydrogenase P0A9B2 64 

 

6 

 

26 

 

36 

ompF 
Outer membrane 
porin a1 A0A0G3I1B9 56 

3 10 39 

talB Transaldolase B P0A870 37 3 11 35 

mdh 

Malate 

dehydrogenase P61889 22 

 

3 

 

11 

 

32 
 
 
 
 

gene 
Protein name 
 (~ 30 kDa band) 

UniProtKB  
Accession No. 

Mascot 
score 

unique 
peptides 

Sequence 
coverage (%) 

MW 
(kDa)  

Igni_0892 of             
I. hospitalis CM-PD A8AAX2 

 
405 

 
18 

 
53 

 
41 

rplA 

50S ribosomal protein 

L1 

 

P0A7L0 67 

 

5 

 

29 

 

25 

gpmA phosphoglyceromutase P62707 52 

 

4 

 

17 

 

29 

       

       

       
Orbitrap Velos MS analysis of digested protein from ~ 40 kDa and ~ 30 kDa bands of IhTyrA    
purified by Ni-NTA chromatography and thrombin treated. Table lists I. hospitalis CM-PD and E. 
coli proteins whose peptides were detected by tandem MS analysis. SDS-PAGE analysis which 
separated the two bands is presented in Fig 2.11. 
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Appendix 3A 
 

 

 

 

Enzyme Activity 
Apparrent KM (mM) 

Specific Activity (U/mg) 
Cofactor Substrate 

CM 

 

0.7 ± 0.08 5 ± 0.3 

PD 

   NAD
+

 2.1 ± 0.19 0.5 ± 0.09 26 ± 0.9 

NADP
+

 0.1 ± 0.01 0.7 ± 0.14 12 ± 0.8 

PDT 
 

0.2 ± 0.05 6 ± 0.4 

 

 

Kinetic parameters of the reactions catalyzed by NeTyrA expressed from the cloned gene. 
Assays were performed as indicated in section 2.1.13. Values were calculated from the initial 
rates using at least 6 substrate concentrations. CM reaction - chorismate was varied from 0.025 
– 1.5 mM. PD reaction – prephenate was varied from 0.025 - 8 mM at a fixed concentration of 
40 mM NAD+ or 2 mM NADP+. When varying the cofactor concentration, NADP+/ NAD+ (0.05 - 8 
mM), prephenate was fixed at 2.5 mM. PDT reaction – prephenate was varied from 0.1 - 2 mM. 
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Appendix 3B 
 
 
 
 
 

gene 
Protein name 
 (~ 71 kDa band) 

UniProtKB  
Accession No. 

Mascot 
score 

unique 
peptides 

Sequence 
coverage (%) 

MW 
(kDa)  

NEQ192 of             
N. equitans PD-CM-PDT  Q74NC4 

 
432 

 
12 

 
25 

 
71.35 

dnaK Chaperone DnaK P0A6Y8 158 8 24 69 
 
 
 
 
 

gene 
Protein name 
 (~ 20 kDa band) 

UniProtKB  
Accession No. 

Mascot 
score 

unique 
peptides 

Sequence 
coverage (%) 

MW 
(kDa)  

NEQ192 of             
N. equitans PD-CM-PDT  Q74NC4 

 
211 

 
14 

 
27 

 
71.35 

slyD Chaperone  P0A9K9 1776 8 51 21 

rplB 

50S ribosomal 

protein L2 P60422 116 

 

5 

 

25 

 

30 

sspB ClpXP protease P0AFZ3 99 5 33 18 

       
 
 
 

Orbitrap Velos MS analysis of ~ 71 kDa and ~ 20 kDa bands digested sample of NeTyrA heated 
at 95°C for 3 h.Table lists N. equitans PD-CM-PDT and E. coli proteins whose peptides were 
detected by tandem MS analysis. SDS-PAGE analysis of the sample from which the appropriate 
bands were excised and prepared for MS analysis is shown in Fig 3.8 A 
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Appendix 3C 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic representation of the ADP-binding βαβ-fold of spiny dogfish M-lactate 
dehydrogenase. Adapted from (93). Glycines from the consensus motif GxGxxG are highlighted in 
yellow. Triangles represent basic or hydrophilic residues, while squares represent small and 
hydrophobic residues. 
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Appendix 4A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence map of His-tagged IhTyrA. Sequence of the 80 amino acids comprising the CM 
portion of the protein are highlighted in light gray. The Shine Dalgarno sequence of the 
ribosome binding site is highlighted in yellow. 

atgggcagcagccatcatcatcatcatcacagcagcggcctggtgccgcgcggcagccatatg 

 M  G  S  S  H  H  H  H  H  H  S  S  G  L  V  P  R  G  S  H  M    

 agcgagaacccgctcgagtcccttaaggttaagaggagagaactcgacaagctcgat 

  S  E  N  P  L  E  S  L  K  V  K  R  R  E  L  D  K  L  D  

aaagagatattaaggctgctcaagaggaggttcgaaatcgtcaaggagattacggacacc 

 K  E  I  L  R  L  L  K  R  R  F  E  I  V  K  E  I  T  D  T  

aagaagaacttggggcttccggtttacgacagagatagagaggaagaggtgatggtaact 

 K  K  N  L  G  L  P  V  Y  D  R  D  R  E  E  E  V  M  V  T  

aggacggtctggggcttggagctggggataccccaagagttcactaaggagatgttcaag 

 R  T  V  W  G  L  E  L  G  I  P  Q  E  F  T  K  E  M  F  K  

atgatactggaggagtccaagaagattcagctgtacacgccggagaaggtgtacgtcggg 

 M  I  L  E  E  S  K  K  I  Q  L  Y  T  P  E  K  V  Y  V  G  

atttacggctacgggggcatgggggagcaactggtgaaggtgttctccagggcgggacac 

 I  Y  G  Y  G  G  M  G  E  Q  L  V  K  V  F  S  R  A  G  H  

agggtggtggtcaccgggaggaacttggagaaggccgaggggttggcgaagaggttcaag 

 R  V  V  V  T  G  R  N  L  E  K  A  E  G  L  A  K  R  F  K  

gtcgagtggggggagccgaaggaggtggcgaaggaggtcgagtggctcatactggccgtc 

 V  E  W  G  E  P  K  E  V  A  K  E  V  E  W  L  I  L  A  V  

ccgcccaaggccgttcccgggctggtgaaggagttagcccccctcatgaggtccggagcg 

 P  P  K  A  V  P  G  L  V  K  E  L  A  P  L  M  R  S  G  A  

ctcttgagcgacatatcgtcagtaaagaagacgcttgtagaagaggtgctaaaggtcttg 

 L  L  S  D  I  S  S  V  K  K  T  L  V  E  E  V  L  K  V  L  

ccagagtacatagagtacatcagcctccacccgctgttcggccccgaagtggagccgctg 

 P  E  Y  I  E  Y  I  S  L  H  P  L  F  G  P  E  V  E  P  L  

ggtgagacggtagtggtcgtgccggtgaagagttacgactactgggtcaggctggtccag 

 G  E  T  V  V  V  V  P  V  K  S  Y  D  Y  W  V  R  L  V  Q  

aacatattcgtgtcgatggggtttgaagttatcacgagcaccccggaagagcacgacagg 

 N  I  F  V  S  M  G  F  E  V  I  T  S  T  P  E  E  H  D  R  

gctatggcagtcacccaagtcctccaccacttcgcactggtcagcttggacgaggctgct 

 A  M  A  V  T  Q  V  L  H  H  F  A  L  V  S  L  D  E  A  A  

aagaagctgtccaaagagtacggggttgactacatgaggtacgccaccaggtcgttcaag 

 K  K  L  S  K  E  Y  G  V  D  Y  M  R  Y  A  T  R  S  F  K  

aagacgctcgagactatacaaagattgaaggagttaagcgaggtcatagatgagatacaa 

 K  T  L  E  T  I  Q  R  L  K  E  L  S  E  V  I  D  E  I  Q  

gagatgaacgagtatgccgcgcacgcgagggaggagttcttgaaggtcgcgtcgcaaatg 

 E  M  N  E  Y  A  A  H  A  R  E  E  F  L  K  V  A  S  Q  M  

gacaagaggtggaggaaaggccgttaaggatccg 

 D  K  R   W  R  K  G  R  -   

Δ 80CM-PD 
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Appendix 5A 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAD(P)+ binding site in I. hospitalis PD model. Model of I. hospitalis PD complexed with NAD+ (red) 
based on H. influenzae PD crystal structure (PDB-2pv7). Gly126, Arg127 and Tyr104 are highlighted in 
white, pink and yellow, respectively.  
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Appendix 6A 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crystal structure shows interactions of NADP+ interactions with Arg31 in AD from Synechocystis sp. 
PCC 6803. NADP+ is highlighted in red. Ser30 and Arg31 are highlighted in gray and blue, respectively. 
(PDB-2f1k). 
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Appendix 7A 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Dimeric model of the CM domain of IhTyrA complexed with endo-oxabicyclic diacid. The model is 
based on the crystal structure of CM from T. thermophilus PDB-2d8d (~39% sequence identity). The 
transition state analog, endo-oxabicyclic diacid is highlighted in green. Met81 is highlighted in gray.  
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Appendix 7B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
Dimeric model of PD domain of IhTyrA complexed with NAD+ and L-Tyr. Based on crystal 
structure of PD from A. aeolicus PDB-3ggg, root-mean-square-deviation (rmsd) of 0.77. 

 
 
 
 
 
 

 

 

 

 

 

 
 Model of monomeric PD domain of IhTyrA with NAD+ and L-Tyr overlayed on the     
 crystal structure of PD from H. influenzae. The model is based on crystal structure of PD from 
H. influenzae (PDB-2pv7, rmsd-0.53) 
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Appendix 8A 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cofactor specificity of I. hospitalis, E. coli and H. influenzae prephenate dehydrogenases. 
Filled columns represent values for the efficiency constant kcat/KM , using NAD+(filled columns), 
and NADP+ (checkered columns) as a cofactor in the PD reaction. 
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Appendix 9A 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Active site of modeled dimeric PD domain of IhTyrA in complex with NAD+ and L-Tyr. The 
model is based on the crystal structure of PD from H. influenzae (PDB-2pv7, rmsd-0.53). The 
dotted lines indicate the distances between the nearest atoms. 
 
 
 
 
 
 

 


