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ABSTRACT

Dynamic Hedging Strategies Based on Changing the Pricing Parameters for Compound

Ratchets

Samia El Khoury

Equity-Indexed Annuity products (EIAs) are becoming increasingly popular as they

are tax-deferred accumulation vehicles that offer participation in the equity market growth

while keeping the initial capital protected. This thesis focuses in particular on a special

type of EIAs; the Compound Ratchet (CR). Sellers of this product, such as insurance

companies and banks, retain the right to change one of the pricing parameters on each

contract anniversary date, while promising not to cross a certain predetermined thresh-

old. Changing these parameters can sometimes have an impact on the value of the EIA,

which makes them interesting to study, especially when the issuer’s changing policy is not

clear. In order to reproduce the pattern of these changing parameters, a new approach of

dynamically hedging the CR EIA and simultaneously protecting the issuer from hedging

risk is proposed and tested.

Assuming the Black-Scholes financial framework and in the absence of mortality risk,

closed-form solutions for the price and value of the CR EIA at any time throughout

the contract term are obtained and then used to find the Greeks, which are in turn

used build the hedging strategies. In reality, trading can only be done in discrete time,

which produces hedging errors. A detailed numerical example shows that the Gamma-

hedging strategy outperforms the Delta-hedging strategy by reducing the magnitude of

these errors. However hedging risk still exists, therefore, the new approach is applied

to transfer the errors from the issuer to the buyer by dynamically changing the pricing

parameters. Additionally in the numerical example, the distribution of these parameters

is extracted and analyzed, as well as the resulting reduction in the hedging errors, which

represent the reduced cost for the issuer.
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Introduction

“If the stock market goes up, you win; if the stock market drops, you win even more

because you don’t lose.” says an insurance salesman while marketing an Equity-Indexed

Annuity (EIA) product. Known as segregated funds in Canada, EIA products are one

of the most popular financial derivatives that combine three important main features;

capital preservation, participation in the upturns of equity markets, and a tax-deferred

accumulation vehicle. They were first introduced in 1995 by Keyport Life Insurance Co.

Nowadays, the US’s top largest Indexed-Annuity seller is Allianz Life Insurance Co. of

North America. According to Todd Giesing, assistant research director at LIMRA Se-

cure Retirement Research, “sales of EIAs have experienced 8 consecutive years of positive

growth” to hit a record of 54.5 billion in 2015 (see LIMRA (2015)). In the light of the

growing importance of Equity Indexed Annuities, they have received great attention in

the academic literature, from product description, valuation, and hedging.

For instance, different classes and designs of EIAs are available in the marketplace,

offering an extensive variety of features and crediting methods that define their payoffs

structure. In particular, Annual Ratchet EIAs have accounted for slightly more than 94%

of EIA sales volume in the third quarter of year 2005, with the remaining 6% of sales com-

ing from the Point-to-Point EIA class products (see Marrion (2005)). So far, the Annual

Ratchet or Reset - also known as Cliquet in French - remains the most popular class of

EIA, mainly for its appealing yearly interest “lock-in” feature, along with the “reset” fea-

ture where the index level used to determine the index-linked gain is reset to its current

value at the beginning of each year (i.e. on the policy anniversary date). In addition,
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this reset feature also applies on the annual participation and cap rates, whichever are

included in the design. That is, issuers of nearly all Annual Ratchet products nowadays

retain the right to reset (or change) either of these rates on a yearly basis throughout the

term of the contract, yet with a promise of not going below a minimum rate agreed upon

at inception. Consequently, this thesis makes use of the this special Ratchet feature of

EIAs to protect issuers from hedging risk.

The two papers by Brennan and Schwartz (1976) and Boyle and Schwartz (1977)

have laid the foundation of the research work on equity-linked life insurance contracts,

by extending the Black-Scholes no-arbitrage pricing framework to the case of insurance

contracts, which led to the development of many extensions to price the different types

of Variable Annuities and other Equity-linked products.

Additionally, Boyle et al. (2001) make use of a particular type of lattice rules, known

as good lattice points, to price High-Watermark EIAs - also known as lookback designs -

and other financial derivatives. They show that their proposed method outperforms the

numerical efficiency of other suggested competitive methods for this type of EIA contracts.

Lin et al. (2009) study the pricing of Compound Ratchet and simple Point-to-Point

EIAs with and without mortality risk under a Markovian regime switching model, where

the dynamics of the underlying asset follow a Geometric Brownian Motion model with

regime switching. The use of a regime switching model implicitly implies that the market

is incomplete, thus they make use of the Esscher Transform method presented in Gerber

and Shiu (1994) to determine an equivalent martingale measure for fair option valuation in

incomplete markets. They also study the critical (or fair) guarantee charge embedded in

variable annuities with either or both the Guaranteed Minimum Death Benefit (GMDB)

and Guaranteed Minimum Maturity Benefit (GMMB) options to examine their costs.

Similarly, Lin (2010) make use of the Regime Switching Jump Model (RSJM) to model

the underlying asset’s return in pricing Compound Ratchet and Point-to-Point EIAs with
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Term-End design, where the dynamics of the stock price process follow the risk-neutral

Esscher measure. It is also noted that the Black-Scholes model can be derived from the

RSJM by setting some parameters equal to zero. One of the motivations behind choosing

the RSJM is that it reflects the leptokurtic feature and volatility smile of the stock price

process, as well as the phenomenon of volatility clustering, which is not captured by the

Black-Scholes model.

The effects of considering mortality risks in pricing EIA contracts is studied in several

papers. The most well renowned ones include but are not limited to: Boyle and Schwartz

(1977), Lin and Tan (2003), Gaillardetz and Lin (2006), Lin et al. (2009), Quian et al.

(2010), etc... In particular, Gaillardetz and Lin (2006) proposed a market consistent val-

uation technique for Point-to-Point contracts with Term-End Point and High-watermark

designs as well as Compound Resets with embedded annual yield spread. They start by

deriving age-dependent and mortality risk adjusted martingale probability measures that

reproduce the premiums of each of the three main insurance products: term-life insur-

ance, pure endowment insurance, and endowment insurance. They also assume that the

underlying index is governed by the modified Cox, Ross, and Rubenstein (1979) binomial

model. Then the dependency between the financial market and the insurance market is

reflected using different types of copulas.

Assuming the Black-Scholes framework, Tiong (2001) derives closed-form formulas for

the prices of Point-to-Point EIAs with Term-End and High Watermark designs as well

as Compound Ratchet EIAs using Esscher Transform. Nevertheless, in all three cases,

Tiong (2001) modifies the payoffs such that the participation rate is applied on the nat-

ural logarithm of the index-linked gain. However, Hardy (2004) argues that the pricing

results for Point-to-Point and Ratchet EIAs are somewhat similar to those derived using

the traditional risk-neutral expectations of the discounted payoff under the Q-measure in

the Black-Scholes framework.

Another variation on the crediting method of EIAs can be found in Lee (2003). With
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the purpose of increasing the participation rate α, he applies up-and-in barrier options

on Point-to-Point and Compound Ratchet EIAs, and price them using Esscher Trans-

forms under Black-Scholes framework. The up-and-in barrier feature makes the payoff

path-dependent by adding the condition that the stock price rises above a certain pre-

determined threshold. Additionally, he studies the pricing of partial-time look-back EIAs

with and without variable guarantees based on the method of Heynen and Kat (1994).

Another interesting paper that outlines a different aspect of the financial market is

Lin and Tan (2003). They assume that both the underlying index and interest rates are

stochastic and model them jointly by using the Vasicek model for the term structure of

interest rates. The reason why stochastic interest rates are crucial in pricing EIAs is be-

cause of the embedded guarantees associated with most contracts whose maturities range

up to ten years. Thus, they state that it is unreasonable to assume constant interest

rates for such a long duration. However, by incorporating mortality risk and stochastic

interest rates they lose the tractability of pricing and hedging Compound Ratchet EIAs,

and therefore resort to simulations. Similarly, Kijima and Wong (2007) assume that the

risk-free interest rate is stochastic and follows the extended Vasicek model, and they price

the Ratchet EIA under the arbitrage-free pricing principle. For a comprehensive discus-

sion and analysis of different stochastic models for the term structure of interest rates and

their importance in option valuation we refer the reader to Schulmerich (2010).

Hardy (2004) gives an explicit pricing formula for the Compound Ratchet EIA under

the Black-Scholes market assumptions using a risk-neutral valuation. She argues that the

sum of log-normal random variables in the complex design of the Simple Ratchet payoff

with the embedded floor and cap rates makes it impossible to find a closed-form solution

to price such contracts. Therefore, most researchers and practitioners refer to numerical

methods to solve this problem. The most common approach is using Monte Carlo sim-

ulations. This is done by first generating paths of the underlying stock price process St

under the risk-neutral measure Q. Then the price is estimated by taking the average of

4



each path’s payoff discounted back to time zero by the risk-free rate of return r. Several

other pricing methods are also presented in the literature. For instance, Hardy (2004)

proposes a non-recombining tri-nomial lattice method to value Simple Ratchet EIAs, and

shows that the valuation results are significantly better and the method more efficient

than standard Monte Carlo Simulations. However, Hsieh and Chiu (2007) under the

same market assumptions, derive a closed-form solution for pricing Simple Ratchet EIA

contracts, somewhat in the same manner as Hardy (2004) derived the Compound Ratchet

pricing formula.

Additionally, as explained by several works, including Hardy (2003) and Hsieh and

Chiu (2007), the minimum accumulated guarantee on the initial investment over the en-

tire term of the EIA contract (or global floor) is not analytically tractable, and thus no

closed-form solutions can be obtained to price such Ratchet EIA contract neither in the

case of the Compound Ratchet nor in the case of the Simple Ratchet EIA. With this

in mind, the most often used approach to price such contracts is through Monte Carlo

simulation. Variance reduction techniques are often used to improve the accuracy of the

point estimates. In particular, Hardy (2004) proposes using the payoff of the Compound

Ratchet as a control variate to price the same contract with the embedded minimum

term guarantee. Similarly, Hsieh and Chiu (2007) suggest using the payoff for the Sim-

ple Ratchet, after deriving the closed-form pricing formula, to price the contract with

the embedded minimum term guarantee. Moreover, Hardy (2004) shows that the added

price of the minimum term guarantee is small relative to that of the EIA in general

and is not sensitive to the type of the Ratchet, nor to the cap and participation rates.

Therefore, this minimum “life of contract guarantee” will not be considered in this thesis.

The recent economical crisis had shed light upon the importance of hedging. Be-

fore this massive event, many insurers used to mainly rely on re-insuring their future

liabilities. Facing the crisis, the major fall in equity prices also affected re-insurance com-

panies, which pushed insurers to put more efforts on developing self-hedging strategies

5



that would protect them from market downturns. It is estimated that companies that

adopted successful hedging strategies saved the industry around $40 billion by late 2008

(see McKinsey and Company (2009)).

Various hedging strategies are suggested in the literature. Some study the applica-

tion of dynamic risk measures on hedging Equity-Linked products. In particular, Hardy

and Wirch (2004) use the Iterated Conditional Tail Expectation risk measure (ICTE)

to hedge against the risk of additional capital by reducing the cash flow volatility. Simi-

larly, Moghtadai (2014) studies the application of the Iterated Conditional Value at Risk

(ICV aR) in minimizing the cost of the hedging portfolio with the constraint on the risk

measure being non-positive.

Dynamic hedging techniques using the replicating portfolio of stocks and money mar-

ket accounts are often used in the academic literature for hedging Equity-Linked products.

For instance, Moller (1998, 2001a) determine risk-minimization hedging strategies for

Equity-Linked life insurance products under a generalized Black-Scholes framework, where

the financial market consists of only stocks and money market accounts in a continuous-

time setting. Whereas Moller (2001b) presents a similar work in a discrete-time setting

under the Cox, Ross, and Rubinstein (1979) model. Other economic models are also

suggested, for example Jaimungal (2004) uses the Greeks: Delta, Gamma and Vega to

dynamically hedge Ratchet EIAs in a Variance-Gamma economy, and analyzes the results

by comparing them to those obtained in the Black-Scholes and Heston model such as the

work done in MacKay (2011).

In addition to the normal dynamic hedging techniques, Bernard and Boyle (2011) pro-

pose a complementary technique called natural hedge that protects issuers against market

volatility risk by building a portfolio of policies with different payoffs. In particular, they

study how the interactions of two different EIA designs: the simple Point-to-Point and the

6



Monthly Sum Cap1 EIA, with different exposure to volatility combined in one portfolio can

be useful in stabilizing the market value of their liabilities and thus reducing the volatility.

With all that being said, this thesis focuses on the Annual Compound Ratchet EIA

with Term-End Point design. By assuming that mortality risk can be easily diversified

through pooling, the valuation of such an insurance product becomes similar to any pure

financial derivative security. Following Hardy (2004), the valuation of this product is

carried out assuming the Black-Scholes model. Adopting this financial framework comes

with several implications. In complete markets, the payoff of any financial derivative

security can be perfectly replicated by creating a replicating portfolio of risky and non-

risky assets, that can be used to price and/or hedge this security. Most importantly,

the dynamics of the stock price process follow a Geometric Brownian Motion with drift.

Under this model, the discounted price process of any derivative security is a martingale

under the risk-neutral probability measure Q. Therefore, a closed-form expression of the

time-zero price of this EIA product is obtained, and another closed-form expression for its

value at any time t from inception until maturity of the contract is also obtained. These

expressions are then used to find the Greeks. Representing the sensitivities of the price

to certain parameters, the Greeks are used to construct the replicating portfolio, which is

in turn used to develop dynamic hedging strategies.

The only time the assumption of market completeness is violated is by applying the

continuous time strategies in a discrete time setting, which gives rise to hedging errors.

These hedging errors represent the cost incurred by the issuer of the contract from apply-

ing the hedging strategy. The main objective of this thesis is to propose an approach that

protects the issuer, as much as possible, from these dynamic hedging errors. With that

same purpose, Gaillardetz and Lakhmiri (2011) set up a replicating portfolio of shares and

money market accounts for equity-linked products, then they introduce a loaded contract

premium using a risk measure based on the distribution of the hedging errors by chang-

1A Simple Monthly Ratchet with a local cap rate.
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ing the participation rate α, either statically or dynamically. Inspired by their work, we

propose a new method, complementary to the dynamic hedging strategy, that reproduces

the pattern of the changing participation and cap rates, and at the same time that it

dynamically eliminates the hedging errors by transferring them to the buyer. This can

be done by changing the value of the EIA through resetting the pricing parameters at

anniversary dates, such that this new value incorporates the amounts of yearly hedging

errors. By following this method, the issuer is able to transfer nearly all the hedging

errors to the buyer, except for those during the last year, which will then make up the

new reduced cost of the dynamic hedging strategy.

This thesis is structured as follows: Chapter 1 presents an overview of Equity-Linked

products. It gives a detailed discussion on Variable Annuities with their different embed-

ded guarantees, and on Equity-Indexed Annuities with their various classes and designs.

Chapter 2 gives an overview of the Black-Scholes financial framework that will be

considered throughout this thesis. In particular, the Martingale Valuation Principle is

introduced, which will be later used to price the Compound Ratchet EIA. The model

assumptions and the dynamics of the stock price process are presented, as well as the

pricing of European Call options using to approaches; the martingale valuation principle

and the replicating portfolio method.

Chapter 3 introduces the notion of hedging and that of the Greeks, and shows how the

Greeks can be used to construct hedging strategies for any derivative security in general.

The formula for pricing European Call options, introduced in Chapter 2, is used as an

example to find the Greeks based on the Delta and the Gamma-hedging strategies. In

reality, hedging must be done in a discrete time setting, which leads to hedging errors.

Therefore, the concepts of discrete-time hedging and hedging errors are presented. Finally,

to complete the discrete-time model, the discretization scheme of the stock price process is

described, which will be later used to simulate stock price paths in the numerical analysis.

8



Chapter 4 introduces the closed-form expressions for the time-zero price and the time-t

value of the Annual Compound Ratchet EIA contract. This is done using the Martingale

Valuation Principle described in Chapter 2.

Finally, Chapter 5 uses the results of Chapter 4 to obtain closed-form expressions for

the Greeks (Delta and Gamma) of the Annual Compound Ratchet EIA, with the purpose

of applying the hedging strategies described in Chapter 3. At first, the Delta-hedging

strategy is implemented in discrete time. Delta-hedging errors are extracted and used to

assess the performance of this strategy. Then, with the purpose of improving the hedg-

ing strategy by reducing the magnitude of the errors, the Gamma-hedging strategy is

applied and its performance is assessed through analyzing the resulting Gamma-hedging

errors. Nevertheless, this improvement only reduces the magnitude of the cash flows but

does not totally eliminate the risk. Therefore the new proposed hedging approach of

transferring the gains and losses to the buyer by changing either the pricing parameter

is implemented. A detailed numerical analysis is conducted on an Annual Compound

Ratchet contract and the distribution of the pricing parameter is analyzed. Finally, the

cost of the hedging strategy is reduced to the total hedging errors of the last year of the

contract only, which are extracted and used to analyze the efficiency of this method.
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Chapter 1

Equity-Linked Products

1.1 Annuities

According to the IRI 2009 Annuity Fact Book, the first annuity was issued in year

1759 to Presbyterian ministers and their families by a Pennsylvania company. They were

then offered to the general public for the first time in 1912. However, the concept of

annuities goes back to the Roman times, when citizen used to buy themselves lifetime

yearly payments by making one single payment to a contract named annua.

Nowadays, annuities gained many variations and became a part of a wide number of

insurance and financial products. In their simplest forms, annuities are a contract between

two parties; the insurer and the insured, also called the annuitant. Besides pensions and

Social Securities, the main purpose of annuities is for retirement planning, for they are a

money accumulation vehicle that provides the annuitant with a guaranteed future income

stream. Therefore, annuities give the annuitant protection against outliving his own re-

sources. Thus longevity risk is transfered from the annuitant to the insurance company,

which manages it by risk pooling and diversification.

In general, annuities have two phases; the accumulation (or savings) phase, during

which the investment is growing, and the annuitization (or payout) phase, during which

the annuitant receives the income or the gain from his investment as a stream of pay-
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ments at regular intervals until a specified period has ended, or an event such as death

has occurred.

1.2 Fixed Annuities

The simplest form of annuities is the Fixed Annuity (FA). Similar to Guaranteed

Investment Certificates (GICs), these contracts are mostly bought by people who are

not fully participating in the work force to help them stabilize their income. The initial

amount of money invested in the FA is guaranteed to accumulate in a tax-deferred manner

at a fixed pre-determined interest rate during the accumulation phase. Hence, the regular

payments received by the annuitant during the annuitization period are fixed and known

in advance.

Besides the benefit of tax deferral, FAs offer the advantage of being the less risky of

investment options due to the guaranteed fixed return, which makes them attractive to

risk-averse investors. However, one of the disadvantages of FAs is that their fixed income

payments do not account for inflation over the long term, which decreases the value of

the annuity and its purchasing power.

Those who are seeking more investment flexibility and more opportunity for market

growth are usually more interested in another riskier type of annuities called the Variable

Annuity. It is a hybrid type of investment that mixes insurance and financial securities.

1.3 Variable Annuities

Variable Annuities (VA) are managed fund products that were first introduced in

the United States in the 1970’s. So far, the U.S. has been the largest VA market in the

world. Also sold in Canada and the United Kingdom, where VA contracts are known as

segregated funds and unit-linked insurance products, respectively. Sloane (1970) is one of
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the earliest papers that analyzed VAs from an actuarial perspective.

Generally, VAs are purchased with a single premium amount paid up-front. Then the

writer of the contract, typically insurance companies, invest this initial capital in separate

accounts similar to mutual funds, called sub-accounts. These sub-accounts fall into two

categories: variable and fixed. A wide range of investment options are offered, constitut-

ing a mixture of stocks, bonds, derivatives, commodities or other investments, and make

up the variable sub-accounts. In addition to that, a fixed rate of return is guaranteed on

the initial investment by the insurance company in the fixed sub-account. This interest

rate may be reset periodically by the insurer, but he will usually provide a guaranteed

minimum, (3% for example). Most VAs include participation in both fixed and variable

sub-accounts, however, some of them invest in only the variable one, like the Investment

Only Variable Annuities (IOVA) for example.

Unlike Fixed Annuities, the value of the portfolio will vary depending on the invest-

ment options chosen. The allocation of the initial amount or premium into the different

investment options is a choice for the investor. Hence, the buyer bears all the investment

risk for the amounts allocated to the variable sub-accounts. However, when applicable,

his initial investment remains protected by the guaranteed minimum interest rate, thus

limiting the downside risk. Usually, a variety of portfolios are pre-built and presented to

the investor by the insurance company, with different objectives and investment strategies.

Thus the investor’s choice relies mainly upon his risk appetite. Although the portfolio

compositions are build by the insurer, their management is done outside the insurance

company. In some cases, when the initial investment amount is relatively high, buyers

are given the option to design and build their own portfolios.

VA contracts gained much popularity by being long term investment vehicles for retire-

ment and pension plans with some tax advantages. During the accumulation phase of the

VA, investment gains accumulate on a tax-deferred basis. Furthermore, referring to the

12



fact that the payment of income taxes on interests and dividends earned is deferred until

the payout phase. In addition, VAs offer tax-free transfers among different investment

options. That is, the re-allocation of funds from one variable sub-account to another, or

even from and into the fixed sub-account, within that same annuity is also free of taxation.

1.3.1 Investment Guarantees

Typically, VA policies are sold with at least one optional guarantee, referred to as the

Guaranteed Minimum Benefit or GMxB. The “x” describes the nature of the guarantee

embedded in these products, also commonly known as the “rider”. These guarantees,

introduced in the 1990’s, fall into two main categories: the Guaranteed Minimum Death

Benefits GMDB, and the Guaranteed Minimum Life Benefits GMLB.

The embedded GMDB option was introduced in 1980. At the signing of the VA con-

tract, the policyholder assigns one or many beneficiaries, to whom the insurance company

(or the writer in general) promises to return a certain amount referred to as the Death

Benefit, should the policyholder die during the accumulation phase. Several methods for

determining this amount exist. The earliest and simplest one is the Return of Premium

Death Benefit, where the Death Benefit is the maximum of the initial amount invested by

the policyholder and the market value of the account at the time of his death. A second

form is the Annual Roll-Up Death Benefit, where the Death Benefit is the greater of the

initial amount invested accumulated at the pre-defined fixed roll-up rate and the current

account balance. Another variation is called the Annual Ratchet Death Benefit, where

the Death Benefit takes the form of the maximum of the highest “anniversary” account

balance and the current balance. The “anniversary” is typically every year, but it could

also be monthly or every 5 years. This feature is interesting because it “locks in” the

high returns at the anniversary date, and thus would be beneficial and rewarding if the

investment performs very badly thereafter. In any case, the Death Benefit is adjusted for

any withdrawals that might have been made. Also note that when the death benefit is
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earned by the named beneficiary, he gets taxed on it as ordinary income.

The GMLB products, in general, provide protection against investment risk or equity

market declines during the accumulation phase, as well as mortality risk. They comprise

three main categories, each with a different objective. The first two issued riders are the

Guaranteed Minimum Income Benefit (GMIB) and the Guaranteed Minimum Accumula-

tion Benefit (GMAB). The GMAB rider guarantees a minimum account value at maturity

of the contract, that could be annuitized or paid as a lump-sum. This minimum value

could be the initial investment or a roll-up benefit base which is the initial investment

compounded at the constant roll-up rate. Similarly for the GMIB rider, except that it

specifically requires the accumulated value to be annuitized, and thus guarantees a certain

income stream (typically for lifetime) during the payout phase, regardless of the perfor-

mance of the investment strategy used during the accumulation phase. In this case, the

fixed annuity payments and the annuitization rates are already specified at inception of

the contract.

Issued in 2002, the third type of living benefits rider is the Guaranteed Minimum

Withdrawal Benefit. It provides the policyholder the possibility to withdraw a certain

pre-specified amount periodically (usually each year) during the life of the contract, re-

gardless whether the account value has fallen below this amount and even if it reaches

zero. Commonly, this would happen under some limitations on the periodic amounts with-

drawn, along with the condition that the sum of the total withdrawals remains less than

or equal the initial capital invested. Thus, these withdrawals decrease the account value,

and any remaining fund is then returned to the policyholder at maturity of the contract.

Later in 2003, the U.S. market introduced a new type of riders; the Guaranteed Lifelong

Withdrawal Benefit (GLWB), also known as the Guaranteed Minimum Withdrawal Ben-

efit for Life. As its name suggests, this rider gives the annuitant the possibility to make

lifetime withdrawal from his VA account. In this case, there are no conditions that limit

the sum of the total withdrawals, only a maximum amount is set, since even if the account
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value drops to zero, the policyholder can still periodically withdraw the guaranteed and

pre-specified amount as long as he is still alive.

Many research papers can be found in the financial and actuarial literature on the

pricing and valuation of Variable Annuity products, with regards to the guaranteed em-

bedded options in them. As previously mentioned, Brennan and Schwartz (1976) and

Boyle and Schwartz (1977) have laid the foundation of pricing equity-linked life insurance

contracts assuming the Black-Scholes framework, and many extensions followed. For in-

stance, Milevsky and Posner (2001) use the risk neutral option pricing theory to value

various types of GMDB options in VAs by treating them as Titanic Options. Similarly,

Haberman and Piscopo (2008) use the Black-Scholes model to value the GMDB as a

weighted average price of a set of deterministic put options having stochastic maturity

dates, weighted by the probability of death. Krayzler et al. (2011) find explicit solutions

for the price of GMABs by using the Hull-White-Black-Scholes hybrid model with time-

dependent volatility and stochastic mortality. Marshall et al. (2010) price GMIBs under

stochastic interest rates. Papers dealing with the standard no-arbitrage pricing model for

GMWB and GLWB options include respectively; Chen et al. (2008) under the assump-

tion of optimal policyholder behavior, and Haberman and Piscopo (2011) focusing on the

impact of mortality risk. In general, Bauer et al. (2008) and Bacinello et al. (2011) set a

general unifying framework for consistently pricing any type of GMxB rider.

1.4 Equity-Indexed Annuities

The recent economical crisis has negatively affected the VA market. With the stock

market volatility highly increasing and the risk free interest rates reaching their lowest,

investors started drifting away from VAs, seeking safety and protection for their invest-

ments. Thus, a very special type of investment has dominated the annuity market; The

Equity-Indexed Annuity.

Also known as Fixed-Indexed Insurance Products, Equity-Indexed Annuities (EIAs)
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are a type of financial instruments that is classified in between fixed annuities and vari-

able annuities. Having their return linked to the performance of a specific stock or market

index (like the S&P 500 price index for example), EIAs offer full or partial participation

in the index-linked gain, even though assets are not directly invested in the underlying

equity index. Although an EIA contract resembles a VA contract with a GMxB option,

their difference lies in that the net initial capital of an EIA is essentially invested in risk-

free bonds. During the term of the contract, the EIA behaves closely like a FA, until the

index-linked gain is credited as interest at maturity.

The gain in the index to be credited to the annuity is set by a parameter called the

participation rate. This feature makes their return more variable than a fixed annuity, but

less variable than a variable annuity. Also, EIA buyers benefit from a guaranteed mini-

mum interest rate which provides a floor for the return on their investment, thus limiting

the downside risk of the equity market and protecting the initial capital. In addition to

these two features, most EIAs impose a cap or an upper limit on their credited return,

thus limiting the gain from the index as the stock price increases. As a result, these three

features combined make EIAs riskier but more profitable than fixed annuities, but less

profitable with less market risk than variable annuities, which captures the interest of a

big number of investors.

The typical term of an EIA contract ranges from 5 to 10 years. Seven years EIAs are

the most common on the market, which makes them short-term investments compared to

pure insurance contracts, but long compared to financial products, yet not as long as the

twenty to thirty years VAs. Most EIAs are based on the Standard & Poor 500 index, but

other indices are also used. Some EIAs even allow investors to select one or more indices

for their investment.

Since first introduced by Keyport Life Insurance Company in 1995, EIAs have gained

very much popularity. Their sales have consistently increased from $5.5 billion in year
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2000, to reach $23.1 billion in just four years (2004) and hit their high record of $33.9

billion in the fourth quarter of the year 2012 when VA sales decreased by 7% and that

of FAs by 11% compared to year 2011. According to Todd Giesing, assistant research

director at LIMRA Secure Retirement Research, the increase in the EIA sales was led by

the decrease of the VA market share. In 2015, FA sales increase to $74 billion and EIAs

continue to experience a remarkable growth and reach record-breaking levels of $38.4 bil-

lion YTD.

EIA products may seem very attractive when only seen as popular investment ve-

hicles offering participation in the equity market growth while keeping the initial capital

investment protected. However, this simple view is somewhat misleading as the complex-

ity of EIAs lies within the choice of the crediting method used. See Hardy (2003) for a

detailed and comprehensive explanation.

Two main classes of EIAs exist on the financial market: the Point-to-Point EIA and

the Ratchet EIA. Generally speaking, the difference between them lies in the crediting

method applied to define the payoff of the contract, which is the way used to calculate

the gain from the underlying index and adding it to the EIA contract’s return as interest.

Various crediting parameters could be seen in both classes, and they include:

• The Participation Rate - denoted by α - is the percentage of the gain from the

underlying index credited to the EIA as interest.

• The Cap Rate - denoted by c - is the maximum interest rate that can be credited

to the EIA, representing an upper bound for the partial (or credited) index gain.

• The Floor Rate - denoted by f - is the minimum interest rate that can be credited

to the EIA, representing a lower bound for the partial index gain.

• The Spread - denoted by s - also known as the Margin, is the percentage by which

the index’s gain is reduced before being credited to the contract as interest.
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• The Roll-Up Rate - denoted by g - is the guaranteed minimum interest rate on a

fraction β of the initial capital invested.

It is important to note that both the participation and cap rates can be either fixed or

annually reset by the writer of the EIA contract. This is an important feature that will

be used in the main work of the thesis. In addition to the spread, these three parameters

reduce the market risk of the EIA by limiting its return, and thus making its payoff less

variable.

1.4.1 Point-to-Point Class of EIA

The simplest class of EIAs is the Point-to-Point. It measures the index gain between

two discrete points in time from inception (0) until maturity (T ) of the contract. In

general, the payoff of such a contract with an embedded local cap rate c has the following

expression:

PTP (T ) = IC ×min
{
1 + α (Rt − 1) , (1 + c)T

}
, (1.4.1)

where IC is the initial capital invested, and Rt is the return on the index to be defined

depending on the design.

If the EIA offers the embedded GMAB option as protection against the loss from a

down market with g% global minimum annual interest rate guaranteed on the portion β

of the initial investment IC over the entire term of the contract, then the payoff in (1.4.1)

becomes:

PTPA(T ) = IC ×max
{
min

{
1 + α (Rt − 1) , (1 + c)T

}
, β(1 + g)T

}
. (1.4.2)

Also, if the EIA includes a spread that decreases the amount of index return credited to

the contract, the payoff in (1.4.1) becomes:

PTP s(T ) = IC ×min
{
1 + α (Rt − 1)− s, (1 + c)T

}
.
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Under the Point-to-Point class, there are three different designs commonly used in

practice; the Term-End point design, the Asian-End design, and the High-Watermark

design. They differ in the crediting method used to measure the index-linked “gain” Rt.

1.4.1.1 PTP with Term-End point design

Most commonly referred to as the Simple Point-to-Point, this design calculates the growth

of the index based on the difference between its value at inception and at maturity of the

contract. In this case we have with Rt =
S(T )
S(0)

, and the payoff in (1.4.1) becomes:

PTP TE(T ) = IC ×min

{
1 + α

(
S(T )

S(0)
− 1

)
, (1 + c)T

}
.

1.4.1.2 PTP with Asian-End design

Similarly to an Asian option, this design calculates the index-linked gain by averaging

the index values during the last year of the contract term. Assuming index values can be

measured m times a year, we have with Rt =
∑m

t=1 S(T−1+ t
m
)

mS(T−1) , and (1.4.1) becomes:

PTPAE(T ) = IC ×min

{
1 + α

(∑m
t=1 S(T − 1 + t

m
)

mS(T − 1)
− 1

)
, (1 + c)

}
.

1.4.1.3 PTP with High-Watermark design

This more exotic structure records the index value at different dates during the entire

term of the contract - typically at annual anniversaries -, then picks the highest value and

compares it to that at the beginning of the term to calculate the growth. Here we have

Rt = maxt=1,2,...,T
S(t)
S(0)

, and the payoff in (1.4.1) has the following expression:

PTPHW (T ) = IC ×min

{
1 + α

(
max

t=1,2,...,T

S(t)

S(0)
− 1

)
, (1 + c)t

}
.

A Point-to-Point EIA credits the index-linked interest to the investor at the end of

the term. As a result, if he wishes to surrender early or make any withdrawal before

maturity, he will lose the gain from the index accordingly. One weakness of the Point-to-

Point EIA with Term-End design is that it does not account for any gain in the index (if
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any) should the index value rise between times 0 and T and drop dramatically right before

maturity T . Similarly for the Asian-End design that doesn’t account for any index-linked

gain that could have happened during the first T − 1 years of the term of the contract.

However, this could be offset by the possibility of having high cap and participation rates

and low spreads to allow for more “gain”to be credited. Whereas Point-to-Point EIAs

with High-Watermark design are typically offered with lower cap and participation rates

and higher spreads, since its clear that this design is more likely to credit more interest

than the other two.

1.4.2 Ratchet Class of EIA

The more popular and complex class of EIAs is the Ratchet type. By definition, the

word “ratchet” refers to a process that is changing steadily in an irreversible manner. A

“ratchet” is also a tool that allows motion in one direction only.

A Ratchet EIA measures and earns the index return period by period over the entire

term of the contract. Once credited, the interest earned is “locked-in” each period and

the index value is “reset” at the end of the period, regardless of the future performance

of the index. As a result and by what its name implies, a poor performance resulting from

a sudden dramatic drop in the value of the index will not affect a good one preceding it

that was already earned.

Two versions of the Ratchet EIA exist; the Simple Ratchet where periodic growth

rates in the underlying index are added together to give the final index-linked return, and

the Compound Ratchet where periodic growth rates simply compound.

In particular, consider a T years Annual Ratchet EIA where index-linked gain is eval-

uated and credited each year. Its payoff under the Simple Ratchet case (SR) with the
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annual cap and floor rates bounding the yearly return is given by:

SR = IC ×
{
1 +

T∑
t=1

min
(
max

(
α(Rt − 1), f

)
, c
)}

. (1.4.3)

Similarly, the payoff under the Compound Ratchet case is:

CR = IC ×
{

T∏
t=1

1 +min
(
max

(
α(Rt − 1), f

)
, c
)}

. (1.4.4)

A GMAB option embedded in the Ratchet EIA, whether Simple or Compound, would

render the payoff in this form:

max
(
SR , IC × β(1 + g)T

)
, (1.4.5)

or max
(
CR , IC × β(1 + g)T

)
, (1.4.6)

respectively.

In both cases, the crediting method that determines the annual growth in the index

Rt differ depending on the design used.

1.4.2.1 Ratchet with Term-End point design

Under the Ratchet class of EIAs, Rt is commonly expressed using the Term-End point

design, that is by comparing the index level at the beginning and ending of each anniver-

sary year following the purchase date. Hence we have Rt =
S(t)

S(t−1) for t = 1, 2, ..., T , and

the payoffs in (1.4.3) and in (1.4.4) become:

SRTE = IC ×
{
1 +

T∑
t=1

min
(
max

(
α

(
S(t)

S(t− 1)
− 1

)
, f

)
, c
)}

,

and

CRTE = IC ×
{

T∏
t=1

1 +min
(
max

(
α

(
S(t)

S(t− 1)
− 1

)
, f

)
, c
)}

.
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1.4.2.2 Ratchet with High-Watermark design

Amore complex crediting method under the Ratchet class comes with the High-Watermark

design applied during each year (or more generally each period). That is, the yearly cred-

ited index gain is calculated by measuring the index value m times per year then picking

the highest value and comparing it to that at the beginning of the year. In this case we

have Rt = maxi=1,2...,m
S(t−1+ i

m
)

S(t−1) for t = 1, 2, ..., T , and the payoffs in (1.4.3) and in (1.4.4)

become:

SRHW = IC ×
{
1 +

T∑
t=1

min
(
max

(
α

(
max

i=1,2...,m

S(t− 1 + i
m
)

S(t− 1)
− 1

)
, f

)
, c
)}

,

and

CRHW = IC ×
{

T∏
t=1

1 +min
(
max

(
α

(
max

i=1,2...,m

S(t− 1 + i
m
)

S(t− 1)
− 1

)
, f

)
, c
)}

.

1.4.2.3 Index Averaging:

Another variation for calculating Rt is by averaging the index growth during each year,

such that

aR
(m)
t =

m∑
i=1

S(t− 1 + i
m
)

mS(t− 1)
,

in the case of arithmetic averaging, and

gR
(m)
t =

[
m∏
i=1

S(t− 1 + i
m
)

S(t− 1)

] 1
m

,

in the case of geometric averaging.

Index averaging can also be applied to the Point-to-Point class of EIAs. It is often

used to reduce the cost of the contract given that it lowers the index-linked interest earned

and offers partial immunization against the index market volatility.

The advantage of a Ratchet EIA is that, due to the “lock-in” feature, it ignores any

22



decline in the index levels during periods of poor index performance, and credits only

positive index-linked returns. It may also credit more interest than other designs when

the underlying index price makes a lot of wide fluctuations. Additionally, since interest is

earned periodically, the Ratchet design is more likely than others to give investors access

to their investment gains before the end of the term. However, it follows that this drives

writers of such contracts to offer lower cap and participation rates and higher spreads

than other types of EIAs as a way to limit their liabilities and reduce the cost of the

contracts.
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Chapter 2

The Black and Scholes Model

2.1 Introduction

The Black-Scholes model was first introduced in 1973 and presented an analytic model

that sets a fair market price for European-style options. The paper was written by Fischer

Black and Myron Scholes, entitled “The Pricing of Options and Corporate Liabilities ”,

and was published in the Journal of Political Economy. The model was further developed

by Robert Merton in “Theory of Rational Option Pricing”. Much later, in 1997, Scholes

and Merton were awarded the Nobel Prize in Economics for their revolutionary work in

the industry of quantitative finance.

Due to its simplicity, the Black-Scholes model is still extensively used in modeling

stock price fluctuations and valuing more complicated types of financial derivatives. We

shall refer to the Black-Scholes model not only as a pricing formula for the standard op-

tions, but rather a financial framework that outlines the economy in general.

In this chapter we present the pricing, under the Black and Scholes (1973) model, of

contingent claims who’s payoffs are random but fixed at a certain point in time. Zero

coupon bonds and European options are examples of such assets.
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2.2 The Black-Scholes Economy

A state contingent claim is a contract whose payoff is contingent - or dependent - on

future states of the market. The set of all possible outcomes is defined by the sample space

Ω. For example, the experiment of flipping a coin one time has a total of two possible

states: state one, in which the outcome is a head, and state two in which the outcome is

a tail. A state-contingent claim can be a bet on heads, and would have a payoff for each

possible future state, in this case, a payoff of $1 if state one occurs (the outcome of the

coin flip is a head), and a payoff of $− 1 if state two occurs (the outcome is a tail).

Note that in a complete market, it is always possible to replicate using a position

that would result in the same payoff regardless of the future state. The assumption of

complete markets implies that all claims are attainable. In other words, one could always

perfectly replicate the payoff, at any time t, of every state-contingent claim, hedging by a

self-financing trading strategy which satisfies an admissibility condition imposed in order

to rule out the possibility of arbitrage.

A self-financing trading strategy is defined as follows: Consider an investor with an

initial wealth of $X constructs a portfolio of derivative securities, that could be a combi-

nation of a number of shares bought and a number of options sold for example. The value

of the portfolio changes in time as a result of changes in the price and/or portion of the

risky and non-risky assets. In this case, the investor’s trading strategy is said to be self

financing if changes in the portion of these assets is done such that no funds are added

(or withdrawn) from the initial investment. That is, the cost of buying more units of a

security is fully financed by selling some units of another security from the same portfolio.

The mere existence of this strategy implies that the initial amount of money needed to

construct will equal the current price of the contingent claim (or derivative). Naturally,

one would ask himself the question: could a claim be attainable through a certain number

of different strategies, and thus leading to different prices? Or is there a unique hedging
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strategy generating each contingent claim, thus leading to a unique price? The answer to

that question will be found at the end of this section.

2.2.1 Continuous Stochastic Processes

A stochastic process is a collection of random variables indexed by time. In financial

models, trading strategies, securities prices, exchange rates, etc... are usually modeled as

stochastic processes.

A definition of a continuous stochastic process could be found in Nielsen (1999), and

is presented as follows:

Definition 2.1. Given the probability space (Ω,F , P ), where F is a σ-algebra on Ω,

then X = {X(t), t ≥ 0} is a continuous-time stochastic process, such that for each fixed

t ∈ [0 : ∞), the mapping X(t) : ω �→ X(ω, t) : Ω → R is measurable, and that for each

fixed ω ∈ Ω, the function t � X(ω, t) : [0, T ] → R is called a sample path of the process.

Example: let V (t) be a random variable representing the value at time t of a trad-

ing strategy or portfolio, whose payoff is V (T ) at maturity time T . Then the process

V = {V (t), 0 ≤ t ≤ T} is a continuous-time stochastic process.

A very famous example of a continuous-time stochastic process is Brownian motion,

which plays a fundamental role in stochastic calculus and financial mathematics, and will

be introduced later.

2.2.2 Martingales

Martingale processes are known to model the total wealth of a player in a fair game.

The game is fair in the sense that the player’s wealth tend to remain constant over time.

That is, the expected value of the total wealth at any future time t+ s, given the history

of the wealth process up to and including its current value at time t, will be equal to its

current wealth value at time t.
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Let Ft be the filtration which represents a collection of information that increases in

time, such that Fs ⊂ Ft for all s < t. This increasing sequence means that there is no

loss of information.

Consider any continuous-time stochastic process X. Then X is adapted to the filtra-

tion Ft, if, for every t, each random variable X(t) is Ft-measurable. That is the value

X(t) can be determined by - and depends only on - the filtration Ft that represents all

the information given up to time t. In other words, an adapted stochastic process cannot

“ see into the future ”.

Then we can say the following.

Definition 2.2. The adapted process X is a martingale if:

Ft is an increasing family of sigma-algebras.

E[X(t)|Fs] = X(s) for all 0 ≤ s < t .

Each X(t) is Ft measurable and E[|X(t)|] < ∞ for all t ∈ [0,∞] .

(2.2.1)

Or equivalently, E[X(t) − X(s)|Fs] = 0. Also, the process X is said to be a sub-

martingale (respectively super-martingale) if the equality is replaced by ≥ (respectively

≤). The condition of the finite mean is important to guarantee the existence of the

conditional expectations.

Note that a process that is both a sub-martingale and super-martingale is a martingale.

Remark: It is important to note that, by definition, a martingale process has a constant

expectation over time. For instance, let s = 0 in (2.2.1), then

E[X(t)|F0] = X(0) for all 0 ≤ t ≤ T ,

where X(0) is the value of the process at time 0.
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2.2.3 The Martingale Valuation Principle

First of all, when dealing with expectation, it is crucial to determine the measure

under which the expectation is taken. Denote by P the physical measure which gives the

actual probability of occurrence of various states of the world. Denote by Q the risk-

neutral measure, also known as the equivalent martingale measure. Q is a probability

measure such that future outcome probabilities are adjusted to incorporate all investors’

risk premiums, and where the expected rate of return of all derivative securities is the

same, and is equal to the risk free rate, therefore they do not incorporate any risk pre-

mium. Thus an investor is indifferent towards the choice of any risky asset.

The risk-neutral probability measure Q is said to be equivalent to the probability

measure P, if both measures are defined on the same measurable space (Ω,F), and

P(ω) > 0 ⇔ Q(ω) > 0 for all ω ∈ Ω.

In other words, although the probability values of individual events ω may not be same

within both measures, (P(ω) �= Q(ω) for all ω ∈ Ω), but equivalent measures must

always agree on which events are possible (assigned strictly positive probabilities), and

which events are impossible (assigned zero probabilities), as stated in Kwok (2008).

According to the Fundamental Theorem of Asset Pricing, the condition of no-arbitrage

is equivalent to the existence of the risk-neutral probability measure Q.

An arbitrage opportunity relies in a self-financing trading strategy that requires an

initial investment V (0) = $0, has a zero probability of losing money, and some positive

probability of making money. Thus having V (t) ≥ 0 and E[V (t)] > 0 for all t. The

strictly positive expectation implies that there exists at least one positive payoff.

Theorem 2.1. In complete markets, arbitrage opportunities do not exist if and only if

there is a probability measure Q, equivalent to the real measure P, such that under Q, the
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discounted price process of risky assets is a martingale.

Proof. See Harrison and Pliska (1981)

Based on this important theorem, we can write,

EQ[V (t)v(0, t)|Fs] = V (s)v(0, s) for all 0 ≤ s < t ≤ T , (2.2.2)

where v(0, t) is a discounting factor from time t to 0, and V (t)v(0, t) is the discounted

price process. Thus, the unique price V (0) of any derivative security is calculated by

discounting the expected value of its future payoff V (T ) under the unique risk-neutral

probability measure Q.

Let s = 0, t = T , and take the expectation of the discounted price process V under Q

in (2.2.2), you get

EQ[V (N)v(0, N)|F0] = V (0) ,

where V (0) is the value at time 0 of the trading strategy having payoff V (N) at expiration

N .

Since the discounted price process is a martingale, it has a constant expectation equal

to its price. In addition, since in complete markets all claims can be replicated by a self-

financing trading strategy with an initial investment equal to the price of the claim, then

it is impossible to start with an initial wealth of $0 and end up having a strictly positive

payoff with positive probability, unless there is also a positive probability of having a

strictly negative payoff, in order to keep the expectation 0 at all times, and thus rules out

the possibility of arbitrage opportunities.

In fact, in arbitrage-free markets, the Law of One Price applies for all derivatives secu-

rities - that is, securities with the same payoff have the same price, and the same security

has the same price in all markets -, or else, an investor would benefit from the difference

in price of the same derivative security in different markets, A and B for example, to

make immediate risk-free profit by buying low from one market, say A, and selling high
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in another market, B. Thus, this profit from price discrepancy is considered as doing an

arbitrage.

Finally, the unique price V (0) implies the uniqueness of the self-financing trading

strategy of every contingent claim, under the unique risk-neutral measure Q.

2.3 The Model’s Assumptions

While valuing derivative securities whose payoff is dependent on the stock price,

Black and Scholes (1973) impose some ideal conditions on both the financial market and

the stock.

(a) Dividends are not paid. The first assumption states that stocks pay no dividends

or any other distributions during the life of the contract, or in other words, stock’s

dividends are not distributed. Since most companies pay dividends to their share-

holders, this assumption could be easily relaxed by subtracting the discounted value

of future dividends from the stock price.

(b) All fractions of the price of any security can be borrowed, bought or held at the short

term interest rate r.

(c) Short term interest rates are known and remain constant through time. Let r be the

continuously compounded yearly interest rate, then the discount factor v(0, t) can

be written this way:

v(0, t) = e−
∫ t
0 r(t)dt

= e−tr .

Note that this same interest rate r is used for both lending and borrowing.

In contrast to the deterministic interest rate r, and for more details on stochastic

interest rate models and bond pricing, refer to Brigo and Mercurio (2007).
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(d) There are no restrictions or penalties on short selling. The seller, not owning the

security, settles with the buyer by agreeing on paying him an amount equal to the

price of the security, set by the buyer, at some future time.

(e) The market is efficient. The efficient market hypothesis is a strong assumption that

leads to other subsequent ones. Fama (1969) states the following three sufficient,

but not necessary, conditions for capital market efficiency:

(a) The market is frictionless; that is, the bid and ask spread of trading securities

is zero, i.e. transactions do not incur any fees or costs.

(b) All investors have free access to all available information in the market, making

it a fair game for everyone.

(c) All investors agree on the implication of current information for the current

price and distributions of each security’s future prices.

Efficient financial markets are frictionless markets in which investors have access to

all available information which is reflected through the price of assets and securities.

In fact, the main importance of the assumption of efficient markets is that they rule

out the possibility of arbitrage. The fast spread of new information makes the prices

change quickly to settle around the equilibrium price, which fully incorporates the

launching of new information, making it a fair and unique market price. This im-

plies that the study of past stock prices will not be relevant in the prediction of

future movements of stock prices. More generally, technical stock analysis, as well

as fundamental analysis, which is the measurement of a security’s intrinsic value, fail

to provide investors or analysts with (1) an effective pattern that indicates future

stock performance, nor (2) useful insights on the status of the current stock price

(that is whether its undervalued or overvalued), as explained by Malkiel (2003). As

a result, successive price changes, or more generally, successive periodic returns are

independent.
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This assumption is mathematically equivalent to the Markovian property. Let R =

{R(t), t ≥ 0} be the return on the stock price process for t in [0,∞). Then R is a

Markov process such that

P{R(t) = x|R(u), 0 ≤ u ≤ s} = P{R(t) = x|R(s)}

for any 0 ≤ s < t.

Additionally, it is assumed that these consecutive price changes, or returns, are also

identically distributed, hence the last assumption:

(f) The stock price process S follows a Geometric Brownian Motion with drift (Random

Walk in continuous time).

2.4 The Stock Price Process

2.4.1 Standard Brownian Motion Process

Consider a continuous-time stochastic process B = {B(t), t > 0} with the following

properties:

• B(0) = 0 with probability one.

• For 0 ≤ t0 < t1 < ... < tn−1 < tn < ∞, the random variablesB(t1)−B(t0), ..., B(tn)−
B(tn−1) are independent, and we say that this process has independent increments.

• For 0 ≤ s ≤ t < ∞, the increment B(t) − B(s) is normally distributed with mean

0 and variance t− s. B(t)− B(s) ∼ N(0, t− s).

Then this particular process is called a one-dimensional standard Brownian motion

process, also known as a Wiener process.
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According to Nielsen (1999), this process represents the basic building block of 98%

of all finance theory in continuous times. It is also of fundamental importance in both

the theory and applications of probability. The mathematical existence of such a process

is verified by the mathematician Norbert Wiener in 1923, see Wiener (1923).

One can deduce the following characteristics of this process from its previously men-

tioned properties:

• For each t ∈ [0,∞), the distribution of the random variable B(t) is normal with

mean 0 and variance t. B(t) ∼ N(0, t). It follows that the unconditional mean of

the value of the process at each point in time t, given the filtration F0, is zero.

• For 0 ≤ s < t < ∞, the distribution of the random variable B(t)−B(s) is the same

as the distribution of the random variable B(t − s). Thus, the distribution of the

increments B(t)−B(s), for all 0 ≤ s < t < ∞, depends only on the time difference

t− s between s and t, and not on the actual times (s, t). We say that this process

is time-homogeneous, or has stationary increments.

• Any two increments over non-overlapping time intervals are independent.

• cov(B(s), B(t)) = min(s, t).

Figure 2.1 represents an approximation of three sample paths of one-dimensional stan-

dard Brownian motion process, along with the standard deviation curves that delineate

a range of plus or minus one standard deviation around the mean, 0 ± √
t. Values on

the horizontal axis represent the time t, and the vertical axis measures the values of the

Brownian motion.

These sample paths are generated as follows: first, 180 independent standard normal

random variables are randomly generated and multiplied by
√

1
30

in order to change their

variance from 1 to 1
30
. Each number represents the increment of the Brownian motion

over the time interval [t, t+ 1
30
]. Therefore, the cumulative sum of these random variables
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Figure 2.1: Three samples paths of standard Brownian motion processes.

gives the values of the standard Brownian motion process, sampled at discrete points in

time that are 1
30

units apart. Finally, these values are then joined by a straight line to

give an approximation of one sample path.

To wrap up, the standard Brownian motion is a continuous-time stochastic process

that starts at 0, its increments are independent and not correlated with each other and

have means of zero and variances of 1 per unit of time. Intuitively, stock prices cannot

be modeled by this process alone since they do not start from a null value, and normally

their increments have positive means and will probably be correlated.

The standard Brownian motion process is a special case of a more general and flexi-

ble continuous stochastic process: the Generalized Brownian Motion process, where the

process may start with a value different than zero, and where its increments have means,

variances and covariances that are still constants, but not necessarily zero, one and zero,

respectively.
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2.4.2 Generalized Brownian Motion Process

The mathematical theory of Brownian motion was first introduced by the French

mathematician Bachelier (1900) in a thesis about option pricing submitted to the Academy

of Paris, five years before Einstein’s classic 1905 paper.

Let G = {G(t), t > 0} be a Generalized Brownian Motion. Then G is a continuous-

time stochastic process having the following properties:

• G(0) is deterministic.

• For 0 ≤ t0 < t1 < ... < tn−1 < tn < ∞, all increments G(t1) − G(t0), ..., G(tn) −
G(tn−1) are independent.

• For 0 ≤ s ≤ t < ∞, the increment G(t) − G(s) is normally distributed with mean

(t− s)μ and variance (t− s)σ2.

Then G(t)−G(s) ∼ N
(
(t− s)μ, (t− s)σ2

)
.

It follows that a generalized Brownian motion process can be constructed by rescaling

a standard Brownian motion by a constant σ and adding an initial value G(0) and a linear

increment μ. This relationship is summarized by the following equation:

G(t) = G(0) + μt+ σB(t) ,

where E[G(t)] = G(0) + μt, V[G(t)] = σ2t and G(t) ∼ N
(
G(0) + μt, σ2t

)
.

Now since G(t) is normal random variable, it can take negative values with positive

probability whereas stock prices can never be negative due to their limited liability, they

are not well described either by a generalized Brownian motion process. In addition, this

process has additive increments - hence the term arithmetic -, in contrast to the stock

prices’ increments that ought to be multiplicative. In that same sense, Samuelson (1965)

explains in his paper how Bachelier’s arithmetic Brownian motion is not suitable to price
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derivative securities, and introduces a better hypothesis for an economic model, which is

the Geometric or Relative Economic Brownian motion.

2.4.3 The Stock Price as a Geometric Brownian Motion Process

Let S(t) represent the stock price at time t, and S = {S(t) > 0, 0 ≤ t ≤ T} be

the stock price process between times 0 and T . Then the appropriate model that should

be used to describe the random evolution of the stock price process S is the Geometric

Brownian motion of the form S(t) = S(0)eG(t), where S(t) satisfies the following stochastic

differential equation:

dS(t) = μS(t)dt+ σS(t)dB(t) , (2.4.1)

where μ and σ are both constants representing the mean rate of return (or drift) and

volatility of the stock prices, respectively.

The solution to this equation can be found using Itô calculus, and is given by

S(t) = S(0) exp
[
(μ− σ2/2)t+ σB(t)

]
. (2.4.2)

Then to get the distribution of S(t) we can write: ln S(t) = ln S(0) + (μ − σ2/2)t +

σB(t), which is a generalized Brownian motion process with initial value ln S(0) > 0,

and the conditional distribution of ln S(T ) given S(t) is normal with mean ln S(t)+ (μ−
σ2/2)(T − t) and variance σ2(T − t). That is,

ln S(T )|S(t) ∼ N
(
ln S(t) + (μ− σ2/2)(T − t), σ2(T − t)

)
.

It follows that S(T )|S(t) is a log-normal random variable with the same parameters:

S(T )|S(t) ∼ LN
(
ln S(t) + (μ− σ2/2)(T − t), σ2(T − t)

)
,
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and

E [S(T )|F0] = exp
(
ln S(0) + (μ− σ2/2)T + σ2T/2

)
= S(0)eμT .

Recall that, according to the Fundamental Theorem of Asset Pricing, the discounted

price process of a stock is a martingale under the risk-neutral measure Q, and a martingale

process has a constant expectation over time equal to its value at time zero. Under P we

have EP
[
e−rTS(T )|F0

]
= S(0)e(μ−r)T . Therefore, under the Q measure, the discounted

stock price process e−rTST is a martingale relative to F such that EQ
[
e−rTS(T )|F0

]
=

S(0) if and only if μ = r, that is, the drift μ of the stock price process S is the risk-free

interest r, and S(t) is the solution to the stochastic differential equation

dS(t) = rS(t)dt+ σS(t)dB(t) , whose solution is

S(t) = S(0) exp
[
(r − σ2/2)t+ σB(t)

]
, and

S(T )|S(t) ∼ LN
(
ln S(t) + (r − σ2/2)(T − t), σ2(T − t)

)
.

(2.4.3)

2.4.4 The Money Market Account

Under the Black-Scholes option pricing model, there are two main assets: the risky

one which is the stock whose dynamics are presented in (2.4.2), and a risk-less asset which

is the money market account.

The money market account is comprised of short term risk-less securities, earning the

continuously compounded risk-free interest rate r. Examples of such very liquid instru-

ments are T-Bills and short-term Bonds.
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Let M = {M(t), 0 ≤ t < ∞} be the continuous price process of a unit of the money

market account. Then

M(t) = M(0)ert,

with a constant initial value M(0) > 0. Observe that M(t) satisfies dM(t) = rM(t)dt,

and the process M is a deterministic, degenerate, generalized Brownian motion process.

2.5 Pricing European Call Options in BS

A Call (/ Put) option with T years until maturity is a financial derivative security,

or simply a contract, that gives its buyer the right but not the obligation to buy (/ sell)

an asset for a predetermined strike price K within the period of T years. Should the

buyer decide to exercise his right, the seller of the Call would be obliged to sell (/ buy)

the underlying asset for $K, the amount agreed upon at the inception of the contract,

regardless of the underlying’s current price. The period of time during which the buyer

is allowed to exercise the option depends on the style of that option. European-style

options gives the buyer the right to exercise only at maturity of the contract T . However,

American-style options may be exercised at any time before expiration of the contract.

Consider a rational investor who buys one unit of a Call option on one share of the

stock S. Naturally, the investor will exercise the option at maturity T by buying the stock

for $K if and only if the underlying price at maturity S(T ) is higher than or equal to K,

S(T ) ≥ K. Having done that, the investor would go and sell that same share of stock at

the market price S(T ), thus making a profit of S(T ) − K (> 0). Or else, should S(T )

drop below $K, the option will expire worthless.
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Let ΛC be the payoff of a Call option, then

ΛC = max{S(T )−K, 0}

=

⎧⎪⎪⎨
⎪⎪⎩
S(T )−K if S(T ) ≥ K

0 otherwise.

(2.5.1)

To price the Call option is equivalent to ask how much the investor is willing to pay at

time 0 to acquire the contract. Given that the option’s payoff depends on the price S(T )

which is a random quantity at time 0, then the investor purchasing the option should bear

the risk associated with the stock. Therefore, his valuation of the option clearly depends

on his attitude towards risk-bearing, and different investors with different risk appetite

would be willing to pay different amounts to acquire such a contract. However, recall

that, operating under the Black-Scholes framework, there exists a unique rational price

for the Call option, regardless of one’s risk attitude.

2.5.1 Pricing Under the Martingale Valuation Principal

One way to obtain this price is through taking the expected value, under the risk-

neutral measure Q, of the payoff discounted back to time zero by the risk-free interest

rate r, as presented by Harrison and Pliska (1981).

Let V C
t be the value of a Call option at time t whose payoff is ΛC on the underlying

S(t) modeled as in (2.4.3). Then

V C
t = EQ

[
e−r(T−t)ΛC |Ft

]
.

Let fS(T ) be the density function of the log-normal random variable S(T ), then we have:
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EQ
[
e−r(T−t)ΛC |Ft

]
= e−r(T−t)

∫ ∞

K

(x−K)fS(T )(x)dx

= e−r(T−t)
∫ ∞

K

xfS(T )(x)dx−Ke−r(T−t)
∫ ∞

K

fS(T )(x)dx

= e−r(T−t)
∫ ∞

K

1√
2πσ

√
T − t

exp

⎧⎪⎨
⎪⎩
−
(
ln x

S(t)
− (r − σ2/2)(T − t)

)2

2σ2(T − t)

⎫⎪⎬
⎪⎭ dx

−Ke−r(T−t)PLN (S(T ) > K) .

Applying the change of variable y = ln x
S(t)

in the first term, we get:

V C
t = S(t)Φ

(
lnS(t)

K
+ (r + σ2/2)(T − t)

σ
√
T − t

)

−Ke−r(T−t)Φ

(
lnS(t)

K
+ (r − σ2/2)(T − t)

σ
√
T − t

)

V C
t = S(t)Φ(d1,t)−Ke−r(T−t)Φ(d2,t) , (2.5.2)

where Φ is the cumulative distribution function of a standard normal random variable,

and d1,t and d2,t are given as follows:

d1,t =
lnS(t)

K
+ (r + σ2/2)(T − t)

σ
√
T − t

, (2.5.3)

and

d2,t =
lnS(t)

K
+ (r − σ2/2)(T − t)

σ
√
T − t

= d1,t − σ
√
T − t .

(2.5.4)

Then the unique rational price at time 0 of the Call option can be found by setting

t = 0 in the equations of V C
t , d1,t and d2,t to get the famous Black-Scholes pricing formula:

V C
0 = S(0)Φ(d1,0)−Ke−rTΦ(d2,0) . (2.5.5)
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2.5.2 Pricing Under the Replicating Portfolio Method

A similar approach to price the Call option is through finding the initial value re-

quired to construct a trading strategy ψ that yields the same payoff and has the same

cash flow as that of the Call option at any time t between 0 and T . Thus the portfolio

consisting of such a duplicating strategy is known as the replicating portfolio.

Assuming the Black-Scholes framework, this replicating portfolio consists only of

stocks and money market accounts. Then we shall refer to this strategy as ψ = {ψS, ψM},
where ψS is the total number of shares of stock held in the portfolio, and ψM is the total

number of risk-less securities held in the money market account.

Let V ψ
t be the market value of the replicating portfolio at time t, then

V ψ
t = ψS(t)S(t) + ψM(t)M(t) .

Observe that to always have V ψ
t = V C

t from (2.5.2), then the following must hold for all

0 ≤ t ≤ T

ψS(t) = Φ(d1,t) , and

ψM(t)M(t) = −Ke−r(T−t)Φ(d2,t)

= V C
t − ψS(t)S(t) ,

where the last equation defining the amount invested in the risk-free asset implies that

the condition of the self-financing trading strategy is satisfied by ψ.

Remark: Notice that the portion of money invested in the risky asset, ψS(t), at any

time t, is nothing but the first derivative of the Call option price with respect to the

current price of the underlying stock S(t). The idea behind this relationship will be

presented in the following chapter.
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Chapter 3

The Hedging Strategy

3.1 Introduction

Hedging in finance is the act of strategically trading financial instruments with the

objective of offsetting, or eliminating as much as possible, the exposure to risks associ-

ated with an investor’s initial position in assets or financial instruments already owned.

Consider for example an investor having a long position in an option on the S&P 500

index, and at the same time a short position in some shares of the S&P 500 stocks. The

possibility that the S&P 500 stock price decreases, leading to a decrease in the value of

the option, will result in a loss from the investor’s long position in that option. However,

this potential loss will be offset by a gain resulting from the investor’s short position in the

value of the S&P 500 index shares. In this way, we can say that the investor has hedged his

long position in the option by an opposite - short - position in the underlying asset shares.

Why to hedge? In this example, the option’s value at any time t from inception of

the contract until maturity depended on the price of its underlying asset at maturity. In

general, the price of derivative securities can depend on a certain number of varying pa-

rameters that fluctuates randomly through time, then the derivative’s value and its payoff

will also be random and change accordingly. As a result, this randomness represent a risk

for the issuers, therefore they usually take action by hedging.
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A hedging strategy that totally eliminates the risk in a position is said to be perfect.

Otherwise, in the case when there is still a portion of the risk borne by the issuer, then it

is said to be partial. Different hedging methods exist and they depend on the status of the

market, whether its complete or not, as well as on whether our model is a continuous-time

or a discrete-time model. In complete market conditions, one can achieve a perfect hedge

by perfectly replicating the initial position. Whereas in incomplete markets, the hedge

can only be partial and thus aims at only minimizing the exposure to risk rather than

completely removing it.

Broadly speaking, a hedge can be either static or dynamic. A static hedge is when the

hedging portfolio is constructed at time zero such that the number of securities in it remain

fixed. Whereas a dynamic hedge is when the hedging portfolio is rebalanced through time.

In particular, dynamic hedging can be split into two main categories; local and global

hedging. Dynamic local hedging techniques such as the moving-based local hedging (in

particular the Delta-hedging method), the time-based local hedging (used in Ederington

(1979)), and the local risk minimization (developed by Follmer and Schweizer (1988)), tar-

get the risk in each small time period independently. In contrast, dynamic global hedging

techniques such as global quadratic hedging (developed by Schweizer (1995)), global risk

minimization (see Xu (2006) and Godin et al. (2014)), and super-replication (see Karoui

and Quenez (1995)), consider the aggregate risk jointly from one period to another.

So far in this thesis, we have only described the conditions of complete markets in

which we can perfectly hedge our initial position by replicating the derivative, hence the

importance of the arbitrage-free self-financing replicating strategy ψ. Thus this replicat-

ing strategy does not only allow us to price, but also to hedge any financial security whose

payoff is dependent on certain parameters (or assets), in particular the stock price St by

using the Delta-hedging method. However, in Section 3.2.2, we will show an improvement

(by incorporating the Gamma-Hedging) that accounts for the incompleteness of our mar-

ket resulting from the application of a continuous time model to discrete time.
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How to hedge? Recall that by definition, the value V ψ
t of the portfolio replicating

any particular derivative always equals the value Vt of that derivative. Hence, to hedge

your position in any derivative, you must simultaneously take an “opposite position” in

the corresponding replicating portfolio. Consequently, should you incur any loss resulting

from a movement in the derivative’s price by holding the initial position, this loss will be

simultaneously offset by a gain of the same amount from holding the opposite position in

the replicating portfolio at any time t from inception till maturity of the contract. More

specifically, our arbitrage-free model implies that the derivative’s price at time zero is

equal to the cost of setting up the replicating portfolio. Hence after defining our pricing

framework, we are able to set the initial capital available for constructing the hedging

portfolio equal the price of the derivative. Thus the issuer of the derivative’s contract will

use the proceedings to set up his hedging portfolio, and no injection of additional capital

would be required.

For the purpose of our thesis, we resort to a moving base dynamic local hedging

technique, where the replicating strategy ψ of the hedging portfolio will be constructed

by using the Greeks. The idea behind this is the following: our goal is to find a way for

constructing a replicating portfolio whose value V ψ
t moves in the same direction and by

the same proportion as that of Vt, at any time t between 0 and T , as the time-varying

parameters change. This could be done by continuously re-balancing the portfolio in

order to match the sensitivities of Vt and V ψ
t with respect to these parameters. Doing this

helps determine the appropriate positions in each risky asset of the portfolio (stocks or

options or combinations of both). Then with these positions being fixed, their holdings

are financed through lending or borrowing, as necessary; The difference between the value

of the short derivative and the risky part of the hedge is the amount to be invested in

the money market account. When negative, it represents a loan taken by investors, and

when positive, it represents a surplus re-invested in the money market account at the

continuously compounded risk-free rate of return r. Additionally, the initial holdings of
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the money market account are adjusted such that the trading strategy has the desired

initial amount, equal to the price of the derivative to be hedged. Hence, this ensures that

ψ remains arbitrage-free and self-financing.

3.2 The Greeks

The Greeks are mathematical quantities used to measure the sensitivities of the

price of derivatives to changes in the underlying parameters on which the value of the

derivative security is dependent. The word “ Greeks ” stems from the fact that most

of these measures are denoted by Greek letters. Being vital tools in risk management,

the Greeks are also known as hedge parameters, or risk sensitivities. Depending on the

hedge parameter used, each component of risk can be treated independently, making it

easy for the investor to manipulate and achieve a desired risk exposure by re-balancing

his portfolio accordingly. The Greek measures are split into two main classes: First order

Greeks, such as Delta, and second order Greeks, such as Gamma. For more details on the

rest and how they can be used to hedge, see Wilmott (2007).

3.2.1 Delta-Hedging

The Delta-hedging strategy was first described by Thorp and Kassouf (1967). The

Greek letter Δ represents a first order risk measure that indicates how exposed, or how

sensitive, a derivative is to changes in the underlying stock price, while all other variables

remain unchanged.

Definition 3.1. The Delta Δ is computed as the first derivative of the instrument’s value,

V , with respect to the price of its underlying asset S,

Δt =
∂Vt

∂St

.

With this in mind, we define the Delta-hedging strategy as a way to eliminate the risk
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by exploiting the correlation between the derivative security and its underlying.

Let ψΔ = {ψΔ
S , ψ

Δ
M} be the Delta-hedging strategy for the derivative security in ques-

tion, and denote by V Δ
t the value of the Delta-hedging replicating portfolio consisting of

the strategy ψΔ. Then this portfolio is composed of ψΔ
S,t shares of the underlying S, and

ψΔ
M,t units in the money market account M at any time t, and we can write:

V Δ
t = ψΔ

S,tSt + ψΔ
M,tMt . (3.2.1)

Then for V Δ
t to have the same sensitivity to changes in the stock price as that of Vt, we

need to match their Deltas, such that

ΔΔ
t = Δt , (3.2.2)

where ΔΔ
t is the Delta of the Delta-hedging portfolio, and can be given by Definition 3.1

as

ΔΔ
t =

∂V Δ
t

∂St

=
∂

∂St

(
ψΔ
S,tSt + ψΔ

M,tMt

)
= ψΔ

S,t .

(3.2.3)

The second term goes to zero since it represents the amount invested in the money market

account which is insensitive to changes in the stock price.

By combining (3.2.2) and (3.2.3), we obtain the Delta-hedging strategy by fixing the

number of shares bought to the Delta of the derivative to be hedged: ψΔ
S,t = Δt, and

fixing the amount to be invested in the money market account as the difference between

Vt and the amounts invested in the risky assets, ψΔ
M,tMt = Vt −ΔtSt .
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Finally, by replacing these values in (3.2.1) we get:

V Δ
t = ΔtSt + (Vt −ΔtSt)

= Vt ,

which proves that the values of both position are always the same for all 0 ≤ t ≤ T , and

thus taking a long position for example in the hedging portfolio will always offset the risks

of the short position in the derivative security.

3.2.1.1 Example 1. Delta of a European Call option:

Under the Black-Scholes model, the Delta of the European Call option at 0 ≤ t ≤ T with

payoff ΛC as in (2.5.1) is the rate of change of its value V C
t in (2.5.2) with respect to its

underlying stock price St, and can be derived as follows:

From Definition 3.1 and using the valuation formula of the Call option in (2.5.2), we

have:

ΔC
t =

∂

∂St

V C
t

= Φ(d1,t) + St
∂

∂St

Φ(d1,t)−Ke−r(T−t)
∂

∂St

Φ(d2,t) .

Note that, for k = 1, 2

∂

∂St

Φ(dk) = Φ′(dk)
∂

∂St

dk

=
φ(dk)

Stσ
√
T − t

=
1√
2π

e−
d2k
2

1

Stσ
√
T − t

.

(3.2.4)
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Applying this to the equation of ΔC
t we get

ΔC
t = Φ(d1,t) + St

1√
2π

e−
d21,t
2

1

Stσ
√
T − t

−Ke−r(T−t)
1√
2π

e−
d22,t
2

1

Stσ
√
T − t

= Φ(d1,t) +
e−

d21,t
2√

2πσ
√
T − t

[
1− K

St

e−r(T−t)e−
1
2(σ2(T−t)−2d1,tσ

√
T−t)

]
.

By replacing the formula for d1,t from (2.5.3), the last term becomes 0, and we get the

Delta of a European Call option as:

ΔC
t = Φ(d1,t) . (3.2.5)

By simply looking at the payoff function ΛC of the Call, we can observe that the

greater the price of the underlying asset at maturity ST , the greater the payoff. So

the option’s value V C
t will increase as the price of the underlying asset rises, and will

decrease as St falls. This is an example of a positive correlation between these two

financial instruments: the Call option and its underlying. (Note that in the case of a Put

option, this correlation is negative). Hence, this correlation is exploited to remove the

risk associated with the randomness of the stock price, and thus create the Delta-hedging

replicating portfolio ψΔ, with ΔC
t = Φ(d1,t) number of shares held in the portfolio, and

V C
t −ΔC

t St = −Ke−r(T−t)Φ(d2,t) units in the money market account. Then the value of

ψΔ
t for all 0 ≤ t ≤ T is:

V Δ
t = ψΔ

S,tSt + ψΔ
M,tMt

= Φ(d1,t)St −Ke−r(T−t)Φ(d2,t)

= V C
t .

(3.2.6)

Most importantly, at expiration T , the value of the Delta-hedging portfolio is, V Δ
T =

ST − K, equal to the payoff of the Call option ΛC . Thus when the option expires, the
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investor’s funds generated by liquidating this portfolio will be sufficient to pay the buyer

of the option, in case he exercised his right.

Given this positive correlation between the Call option and its underlying, an option’s

Delta is impacted by a couple of different factors; its strike price K relative to the share

price St, also known as the “moneyness” of the option, and the time until expiration

T − t. Therefore, the Delta of a Call option is positive, and ranges from 0 to 1, whereas

the Delta of a Put option is negative and ranges from −1 to 0. Additionally, the Delta

of an at-the-money option is around 0.5, and as the option gets further in-the-money, its

Delta approaches the value 1 for Calls (and −1 for Puts). Which makes sense because,

the deeper in-the-money an option is, the less time value there is on the option, and thus

the more it is supposed to behave like the underlying stock.

Also note that, the Deltas of options are additive. Meaning that suppose you hold a

portfolio of quantity wi of option i, where all options depend on the same asset S, then

the overall Delta of your whole portfolio is simply the sum over all i of the ith individual

option’s Delta multiplied by the corresponding quantity wi; ΔPortfolio =
∑

i Δiwi.

Furthermore, a portfolio is said to be Delta-neutral when it is composed of the right

amount of options and/or stocks such that the sum of all the individual Deltas, thus the

overall portfolio Delta, is equal to zero.

3.2.2 Gamma-Hedging

Delta-hedging is used to reduce the risk of a portfolio inherent to take a position

in a financial derivative due to small changes in the underlying stock price. When the

volatility of the stock price process is relatively high, the price is more susceptible to have

wider variations from the mean. More importantly, we will see in the following section

that we are required to apply our hedging strategy in discrete time. It follows that we will

be recording the stock’s price at discrete points in time. The bigger the interval of time
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between each two subsequent price records, the more it becomes possible to have wider

price changes. For this main reason, a more effective risk management technique requires

adding a second order hedging to reduce the exposure to risks due to bigger changes in

the underlying price.

The Greek letter Γ represents a second order hedge parameter that measures the

sensitivity of Δ with respect to changes in the underlying stock price, while all other

variables remain unchanged.

Definition 3.2. Mathematically speaking, Γ is computed as the second-order derivative

of the value of the position (or instrument) to be hedged, V , with respect to the price of

its underlying asset S

Γt =
∂2Vt

∂S2
t

=
∂Δt

∂St

. (3.2.7)

Let ψΓ be the Gamma-hedging strategy for the derivative security in question, and

denote by V Γ
t the value of the Gamma-hedging replicating portfolio consisting of that

same strategy ψΓ.

Then for V Γ
t to have the same sensitivity to small and bigger changes in the stock

price as that of Vt, we must match both their Deltas and Gammas simultaneously, such

that:

ΔΓ
t = Δt , and

ΓΓ
t = Γt , (3.2.8)

where ΔΓ
t and ΓΓ

t are the Delta and Gamma of the Gamma-hedging portfolio respectively,

and Δt and Γt are the Delta and Gamma of the security to be hedged, respectively at any

time t.

Note that since Γ is a second order derivative, the Gamma of a portfolio consisting of
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only shares of stock and money market accounts is always zero, given that the value of this

portfolio is a linear function of St and the second derivative of a linear function is zero.

Therefore, the Gamma-hedging strategy requires adding a third asset to the replicating

portfolio, whose second derivative with respect to St exists and is different than zero.

Without loss of generality, we assume in this thesis that this third asset is a European

Call option that is always available on the financial market.

The value of a European Call option V C
t for example as given in (2.5.2) is a non-linear

function in its underlying stock price St, and hence has a non-zero Gamma.

3.2.2.1 Example 2. Gamma of a European Call option

Under the Black-Scholes model, the Gamma of a European Call option at 0 ≤ t ≤ T is

the rate of change of its Delta represented in (3.2.5) with respect to the underlying St,

and can be derived as follows:

By combining Definition 3.2.7 and (3.2.5) we have:

ΓC
t =

∂

∂St

ΔC
t

=
∂

∂St

Φ(d1,t) .

Then from (3.2.4) we get the Gamma of a European Call option as:

ΓC
t =

φ(d1,t)

Stσ
√
T − t

, (3.2.9)

for 0 ≤ t ≤ T , where φ is the standard normal density function, and d1,t is as given in

(2.5.3).

In general, Γ is the lowest for deep in-the-money and out-of-the-money options, and
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highest as the option gets near the money. For long options, Γ takes a positive value, and

for short options it takes a negative value.

As a result, the replicating portfolio is now composed of ψΓ
S,t shares of the underlying

S, ψΓ
C,t Call options on the same underlying stock S, and ψΓ

M,t units in the money market

account M at each time t.

Thus we can write:

ψΓ = {ψΓ
S , ψ

Γ
C , ψ

Γ
M} ,

and

V Γ
t = ψΓ

S,tSt + ψΓ
C,tV

C
t + ψΓ

M,tMt . (3.2.10)

Then the Δ and Γ of the Gamma-hedging portfolio are given as follows:

ΔΓ
t =

∂

∂St

V Γ
t

= ψΓ
S,t + ψΓ

C,tΔ
C
t

= ψΓ
S,t + ψΓ

C,tΦ(d1,t) ,

(3.2.11)

and

ΓΓ
t =

∂

∂St

ΔΓ
t

= ψΓ
C,tΓ

C
t

= ψΓ
C,t

φ(d1,t)

Stσ
√
T − t

.

(3.2.12)

Now to get the proportions of the hedging portfolio ψΓ
t at any time 0 ≤ t ≤ T we

start by matching the Gammas, ΓΓ
t and Γt, and combining (3.2.8) and (3.2.12) to get
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ψΓ
C,tΓ

C
t = Γt. Thus the number of Calls in the Gamma-hedging portfolio is given by:

ψΓ
C,t =

Γt

ΓC
t

.

By adding ψΓ
C,t number of Calls to the hedging portfolio, its Delta changes since it is

affected by the Deltas of the Call options ΔC
t . Therefore, we need to match the Deltas,

ΔΓ
t and Δt, by combining (3.2.8) and (3.2.11) to get ψΓ

S,t+ψΓ
C,tΔ

C
t = Δt. Thus after fixing

the number of Calls ψΓ
C,t at each time 0 ≤ t ≤ T , the number of shares in the replicating

portfolio is given by:

ψΓ
S,t = Δt − ψΓ

C,tΔ
C
t .

Finally, the difference between the value of the derivative to be hedged Vt and the

amounts of money invested in the stocks and Calls gives the amount to be invested in the

money market account;

ψΓ
M,tMt = Vt −

(
Δt − ψΓ

C,tΔ
C
t

)
St −

(
Γt

ΓC
t

)
V C
t ,

thus keeping the value of the replicating portfolio always equal to that of the derivative

to be hedged.

Assume that we take a short position in the derivative security Vt and hedge it by

taking a long position in the replicating portfolio ψΓ constructed using the Greeks.

By the arbitrage-free risk neutral pricing principle, our overall position ΠΓ
t = V Γ

t − Vt is

risk-free and earns the risk-free rate of return r. Moreover, given that this replicating

portfolio is constructed by matching both Deltas and Gammas, the Delta and Gamma

of our overall position are both zero, and we say the the overall portfolio Π is Delta and

Gamma neutral.
∂ΠΓ

t

∂St

= ΔΠ
t = ΔΓ

t −Δt = 0 ,

∂2ΠΓ
t

∂S2
t

= ΓΠ
t = ΓΓ

t − Γt = 0 .

The risks inherent to create Delta-Gamma neutral portfolios arise when the price of
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the underlying moves strongly either up or down, in one direction only. In other words,

when the stock price does not fluctuate around its mean.

3.3 Hedging in Discrete Time

It is important to note that both ΔΠ
t and ΓΠ

t are functions of time t and vary con-

stantly as the price of the underlying St changes. Therefore, with the passage of time, to

maintain Delta and Gamma neutrality of Π an investor must constantly adjust his posi-

tions by trading the stocks and options during the lifetime of the derivative instrument.

This is known as dynamic hedging.

Recall that a perfect hedging strategy totally eliminates the risk in the initial position,

otherwise, it is said to be partial. In theory, hedging must be done in a continuous manner

to obtain a perfect hedge. However in reality hedging must be done in discrete time. Then

how many times, per a given period, an investor has to re-balance his hedging strategy?

3.3.1 Hedging Frequency

To address this question, it seems logical to point out that an investor must study the

impact of the re-balancing frequency. On the one hand, it is clear that the more we hedge,

that is the more frequent the re-balancing is done, the closer we are to the perfect com-

plete hedging conditions. On the other hand, we must criticize the assumption of efficient

markets where we considered that the market is frictionless and very liquid, by admitting

that transaction costs indeed exist, and represent an expense to the issuer. The existence

of the bid and ask spread on almost all transactions renders the dynamic business of Delta

- and even more that of Gamma - hedging somewhat expensive, and forces the investor to

reduce the frequency of his re-balancing. Therefore, the lower the transaction costs in the

market for the underlying, the more frequent the re-balancing could be done (or afforded).

Different approaches had been proposed to account for the presence of proportional
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and fixed transaction costs in pricing and hedging financial derivatives. The most com-

mon ones available in the literature include Clewlow and Hodges (1997), Monoyios (2004),

Zakamouline (2006), Lai and Lim (2009), and many more, where they present a variety

of optimal hedging strategies, such that the maximization of expected utility of terminal

wealth, or minimum cost super-replication strategies, etc... Since most of these strategies

are path dependent and require computationally expensive dynamic programming algo-

rithms, we will not be looking into the existence of transactions costs in our thesis.

Apart from the impact of - or the limitation set by - the transaction costs, the re-

balancing frequency could also be somehow determined by looking at the portfolio’s Delta

and Gamma values. Since Gamma measures the speed of change of Delta, when Gamma

is small, Delta changes slowly when the asset price changes. Consequently, this portfolio

could be re-balanced infrequently. Whereas if Gamma is relatively big, then Delta changes

quickly when the asset price changes, and it follows that this portfolio would require more

frequent re-balancing.

3.3.2 Hedging Errors

In this thesis, we stick with the assumption of frictionless markets to eliminate the

effect of transaction costs on portfolio re-balancing in a discrete manner, and the only

time we break the assumption of complete markets is through discrete hedging. How-

ever, apart from that, the process of applying a discrete-time trading strategy based on

a continuous-time model also brings in another deviation from the theory to the applica-

tion. In reality, basis risk always exists. Basis risk refers to the risk that a position in

a derivative and its hedging portfolio do not move in opposite directions as desired. In

fact, the word basis refers to the discrepancy, and can be measured by what we call the

Hedging Errors. Hedging errors represent costs arising from the basis risk of the actual

discrete versus the theoretical continuous hedge.

In practice, re-balancing could be done monthly, weekly, or even daily for example.
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However, no matter how frequent it is, hedging errors would still occur and are inevitable.

Since re-balancing has to be done periodically, the hedging strategy using the Greeks ap-

plied in a discrete manner only allows the investor to keep the value of his replicating

portfolio V ψ
t close - but not equal - to the price of the derivative being hedged during

each adjustment period. Therefore, these periodic adjustments force the value of the

replicating portfolio to deviate from that of the derivative. We assume that re-balancing

is done m times per year at predefined (non-random) and equally spaced discrete times

ti, i = 0, 1, ...,m, where ti − ti−1 = 1
m
. Thus hedging errors arise as the investor changes

the proportions of his portfolio to keep the Greeks matched at discrete time intervals

t1, t2, ... , tm.

By definition, hedging errors are the difference between the actual accumulated value

of the replicating portfolio and the price of the derivative security being hedged, at the

end of each of the discrete hedging intervals, right before re-balancing occurs.

Define HEt to be the value of the hedging error at time t, and let V ψ
t− be the accumulated

portfolio value at time t right before re-balancing, then the following holds:

HEt = V ψ
t− − Vt . (3.3.1)

Based of this formula, the hedging error can be interpreted as what we own (the port-

folio accumulated value) less what we owe (the security sold short). Therefore, when

negative it represents a cost incurred, or an amount by which we are forced to re-invest in

the replicating portfolio, and when positive, it represents a surplus that can be withdrawn

from the portfolio.

In general, the present value of the Total Hedging Errors is the sum of all periodic

errors discounted back to time 0,

THE0 =
T−1∑
t=0

m∑
i=1

e−(t+
i
m
)rHEt+ i

m
. (3.3.2)
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THE0 can be thought of as the added cost of the hedging strategy at time 0 due to

discretization, and thus can be used to assess its effectiveness and compare its performance

relative to other hedging strategies. Intuitively, a better hedging strategy will incur less

hedging errors, as well as a more frequent re-balancing.

3.3.3 Discretization of the Stock Price Process

Later in this thesis we introduce a numerical example for the hedging of a special

derivative security, the Annual Compound Rathet Equity-Indexed Annuity. This requires

generating sample paths of stock prices under the Black-Scholes model. Therefore we

shall first introduce a model that discretizes the continuous-time model of the stock price

process presented in Section 2.4, particularly in (2.4.2).

When simulating stock price paths, it is more common and useful to generate their

periodic returns instead. The dynamics of the stock price process can be expressed in

terms of the distribution of their log-returns. In fact, (2.4.1) can be written in this way:

dS(t)

S(t)
= μdt+ σdB(t) ,

where dS(t)
S(t)

in this equation represents the relative or percentage increment in the stock

price S(t), or equivalently, the instantaneous rate of return on the stock, during an instant

of time dt. The constant μ represents the expected instantaneous rate of return, and σ

represents the standard deviation of the instantaneous rate of return.

A simple manipulation of (2.4.2) by letting t = ti, and ti−1 gives:

S(ti) = S(0) exp
[
(μ− σ2/2)(ti) + σB(ti)

]
,

and

S(ti−1) = S(0) exp
[
(μ− σ2/2)(ti−1) + σB(ti−1)

]
.
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Dividing the former by the latter we get:

S(ti)

S(ti−1)
= exp

[
(μ− σ2/2)(ti − ti−1) + σ(B(ti)− B(ti−1))

]
.

By taking the natural logarithm of the accumulation factor and replacing ti − ti−1 by 1
m

we get:

ln
S(ti)

S(ti−1)
= (μ− σ2/2)

(
1

m

)
+ σ(B(ti)− B(ti−1)) .

Recall from Section 2.4.1 that for ti−1 < ti < ti+1, B(ti+1) − B(ti) ∼ N (0, ti+1 − ti) ≡
N (0, 1

m
) is independent of B(ti)− B(ti−1) ∼ N (0, 1

m
). Then we have

ln
S(ti)

S(ti−1)
= (μ− σ2/2)

(
1

m

)
+ σ

√
1

m
N(0, 1) .

It follows that the natural logarithm of periodic accumulation factors have a normal

distribution with mean (μ− σ2/2)( 1
m
) and variance σ2

m
, that is

ln
S(ti)

S(ti−1)
∼ N

(
(μ− σ2/2)

(
1

m

)
,
σ2

m

)
.

Equivalently, successive (non-overlapping) periodic accumulation factors can be sampled

directly from the log-normal distribution with the same parameters, assuming that stock

prices are observed at the beginning of each period;

S(ti)

S(ti−1)
∼ LN

((
μ− σ2/2

)( 1

m

)
,
σ2

m

)
. (3.3.3)
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Chapter 4

Pricing Equity-Indexed Annuities

This chapter presents the pricing at time zero of one the most popular type of EIAs

presented in Section 1.4; the Annual Compound Ratchet EIA contract, and derives a

closed-form expression for the value of this contract at any fractional time 0 ≤ t ≤ T

from inception till maturity. The purpose of this valuation formula is to be able to hedge

this contract using the Greeks presented in Chapter 3.

4.1 Time-0 Price of Annual Compound Ratchet EIA

To begin with, recall that EIA contracts do not invest the initial capital directly in

the underlying equity, therefore buyers of such contracts will not be receiving any divi-

dends earned on the index. This permits us to exclude the dividends from our model.

Without loss of generality, we assume throughout this thesis that the initial capital

invested (denoted by IC in Section 1.4) is one monetary unit in order to simplify our

expressions. Therefore, it suffices to multiply them by the appropriate initial investment

to get the desired results.

We begin by pricing the Annual Compound Ratchet EIA under the Black-Scholes

model assumptions presented in Chapter 2. The payoff structure ΛCR at maturity of the
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contract T is given by:

ΛCR =
T∏
t=1

1 +min
(
max

(
α(Rt − 1), f

)
, c
)
, (4.1.1)

where f is the local floor rate, c is the local cap rate, α participation rate in the index

return with 0 ≤ f, c, α ≤ 1. Rt is the yearly return credited from the underlying index

during year t, 1 ≤ t ≤ T under the Term-End Point design, and used without averaging,

such that

Rt =
S(t)

S(t− 1)
. (4.1.2)

By ignoring mortality risk, the valuation of an EIA contract simplifies to the valu-

ation of a pure financial security. Therefore, using the risk-neutral valuation under the

martingale measure Q, we can obtain a closed-form solution for the price at time zero of

the Annual Compound Ratchet EIA.

Proposition 4.1. Under the Black-Scholes framework, the price at time zero V CR
0 of a

T -year Compound Annual Ratchet EIA contract with payoff ΛCR given in (4.1.1) has the

following expression:

V CR
0 = e−Tr [(1 + f)Φ(−l2) + (1− α)(Φ(l2)− Φ(l4)) + αer(Φ(l1)− Φ(l3)) + (1 + c)Φ(l4)]

T ,

(4.1.3)

where l1 =
−ln(1+ f

α)+r+σ2

2

σ
, l2 = l1 − σ = − ln(1+ f

α)−
(
r−σ2

2

)

σ
, l3 =

−ln(1+ c
α)+r+σ2

2

σ
,

and l4 = l3 − σ = − ln(1+ c
α)−

(
r−σ2

2

)

σ
.

Proof. The price at time zero V CR
0 of the Annual Compound Ratchet EIA is given by the

expectation under the risk-neutral measure Q, denoted by EQ[.], of its payoff ΛCR at time
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T , discounted back to time 0 at the constant risk-free rate of return r, that is

V CR
0 = EQ

[
e−TrΛCR

]
= e−TrEQ

[
T∏
t=1

1 +min
(
max

(
α(Rt − 1), f

)
, c
)]

.
(4.1.4)

Under the Black-Scholes model, the return on the stock price process is Markovian, then

the yearly index returns Rt are independent and identically distributed. Therefore, (4.1.4)

becomes:

e−Tr

T∏
t=1

EQ
[
1 +min

(
max

(
α(Rt − 1), f

)
, c
)]

=e−Tr
{
EQ

[
1 +min

(
max

(
α(Rt − 1), f

)
, c
)]}T

=e−Tr
{
EQ [Rt]

}T
.

Consequently, finding the time-0 price V CR
0 simplifies to solving a single risk neutral

expectation, EQ[Rt], where Rt denotes the yearly credited return,

Rt = 1 +min
(
max

(
α(Rt − 1), f

)
, c
)
. (4.1.5)

Depending on the performance of the underlying stock index reflected by Rt, the actual

credited return Rt during each year can take one of three possible values:

Rt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + f when Rt < K1

1− α + αRt when K1 < Rt ≤ K2

1 + c when Rt > K2

(4.1.6)

Where K1 = 1 + f
α
and K2 = 1 + c

α
.
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Recall from (3.3.3) that successive non-overlapping periodic accumulation factors S(ti)
S(ti−1)

are independent and identically log-normally distributed with parameters (μ− σ2/2)
(

1
m

)
and σ2

m
. Then under the risk-neutral distribution, the yearly returns Rt =

S(t)
S(t−1) are in-

dependent and identically log-normally distributed with parameters r−σ2/2 and σ2, (with

m = 1 period per year), with probability density function fRt(x) =
1

x
√
2πσ

exp

{
−

[
lnx−

(
r−σ2

2

)]2

2σ2

}
,

and cumulative distribution function FRt(x) = Φ

(
lnx−

(
r−σ2

2

)

σ

)
.

It follows that taking the risk neutral expectation of Rt we get:

EQ [Rt] =

∫ K1

0

(1 + f)fRt(x)dx+

∫ K2

K1

(1− α + αx)fRt(x)dx+

∫ ∞

K2

(1 + c)fRt(x)dx .

(4.1.7)

Focusing on the first integral of the right hand side of (4.1.7), we have:

∫ K1

0

(1 + f)fRt(x)dx = (1 + f) FRt(K1)

= (1 + f) Φ

(
lnK1 − (r − σ2

2
)

σ

)

= (1 + f) Φ(−l2) .

(4.1.8)

where l2 is given in Proposition 4.1.

The second integral of the right hand side of (4.1.7) gives:
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∫ K2

K1

(1− α + αx)fRt(x)dx

=

∫ K2

K1

(1− α)fRt(x)dx+

∫ K2

K1

(αx)fRt(x)dx

= (1− α) [FRt(K2)− FRt(K1)] + α

∫ K2

K1

x
1

x
√
2πσ

exp

⎧⎪⎨
⎪⎩−

[
lnx− (r − σ2

2
)
]2

2σ2

⎫⎪⎬
⎪⎭ dx

= (1− α)

[
Φ

(
lnK2 − (r − σ2

2
)

σ

)
− Φ

(
lnK1 − (r − σ2

2
)

σ

)]

+ α

∫ K2

K1

1√
2πσ

exp

⎧⎪⎨
⎪⎩−

[
lnx− (r − σ2

2
)
]2

2σ2

⎫⎪⎬
⎪⎭ dx .

By applying the identity Φ(A) − Φ(B) = Φ(−B) − Φ(−A) on the first term, and the

change of variable y = lnx with dx = eydy on the second term, we get:

∫ K2

K1

(1− α + αx)fRt(x)dx

= (1− α)

[
Φ

(
− lnK1 − (r − σ2

2
)

σ

)
− Φ

(
− lnK2 − (r − σ2

2
)

σ

)]

+ α

∫ lnK2

lnK1

1√
2πσ

exp

⎧⎪⎨
⎪⎩−

[
y − (r − σ2

2
)
]2

2σ2

⎫⎪⎬
⎪⎭ exp{y}dy
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= (1− α) [Φ (l2)− Φ (l4)]

+ α

∫ lnK2

lnK1

1√
2πσ

exp

⎧⎪⎨
⎪⎩−

[
y −

(
r + σ2

2

)]2
2σ2

⎫⎪⎬
⎪⎭ exp

⎧⎪⎨
⎪⎩
[
r + σ2

2

]2
−
[
r − σ2

2

]2
2σ2

⎫⎪⎬
⎪⎭ dy

= (1− α) [Φ (l2)− Φ (l4)]

+ αer
∫ lnK2

lnK1

1√
2πσ

exp

⎧⎪⎨
⎪⎩−

[
y −

(
r + σ2

2

)]2
2σ2

⎫⎪⎬
⎪⎭ dy

= (1− α) [Φ (l2)− Φ (l4)]

+ αer

⎡
⎣Φ

⎛
⎝ lnK2 −

(
r + σ2

2

)
σ

⎞
⎠− Φ

⎛
⎝ lnK1 −

(
r + σ2

2

)
σ

⎞
⎠
⎤
⎦

= (1− α) [Φ (l2)− Φ (l4)]

+ αer

⎡
⎣Φ

⎛
⎝−

lnK1 −
(
r + σ2

2

)
σ

⎞
⎠− Φ

⎛
⎝−

lnK2 −
(
r + σ2

2

)
σ

⎞
⎠
⎤
⎦

= (1− α) [Φ (l2)− Φ (l4)]

+ αer

⎡
⎣Φ

⎛
⎝−lnK1 +

(
r + σ2

2

)
σ

⎞
⎠− Φ

⎛
⎝−lnK2 +

(
r + σ2

2

)
σ

⎞
⎠
⎤
⎦

= (1− α) [Φ (l2)− Φ (l4)] + αer [Φ (l1)− Φ (l3)] ,

(4.1.9)

where l1, l2, l3, and l4 are given in Proposition 4.1.
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Then the third integral of the right hand side of (4.1.7) gives:

∫ ∞

K2

(1 + c)fRt(x)dx = (1 + c) [1− FRt(K2)]

= (1 + c)

⎡
⎣1− Φ

⎛
⎝ lnK2 −

(
r − σ2

2

)
σ

⎞
⎠
⎤
⎦

= (1 + c)Φ

⎛
⎝−

lnK2 −
(
r − σ2

2

)
σ

⎞
⎠

= (1 + c)Φ(l4) ,

(4.1.10)

where l4 is given in Proposition 4.1.

Consequently by combining the results of the integrals from (4.1.8), (4.1.9) and (4.1.10),

then (4.1.7) becomes:

EQ[Rt] = (1 + f)Φ(−l2) + (1− α) [Φ (l2)− Φ (l4)] + αer [Φ (l1)− Φ (l3)] + (1 + c)Φ(l4) ,

(4.1.11)

and we finally get the time-0 price in the form

V CR
0 = e−Tr

{
EQ [Rt]

}T

= e−Tr {(1 + f)Φ(−l2) + (1− α) [Φ (l2)− Φ (l4)] + αer [Φ (l1)− Φ (l3)] + (1 + c)Φ(l4)}T ,

where we have proved Proposition 4.1.
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4.2 Time-t Price of Annual Compound Ratchet EIA

The analytic solution for the price at inception of an EIA contract is important suf-

ficient when hedging the contract statistically. However, for the purpose of applying the

hedging strategy dynamically, we have to find also a closed-form formula for the value

of the Annual Compound Ratchet EIA at any fractional time t between inception and

maturity. Denote by V CR
t the price of this contract at time t, for 0 ≤ t ≤ T , with payoff

ΛCR. V CR
t will be conditional on the information known up to time t, summarized by the

filtration Ft.

Proposition 4.2. Under the Black-Scholes framework, V CR
t is given by:

V CR
t = e−(T−t)r

t∗∏
i=1

Ri ×
[
(1 + f)Φ(−h2) + (1− α)[Φ(h2)− Φ(h4)]

+ α
St

St∗
e(t

∗+1−t)r[Φ(h1)− Φ(h3)] + (1 + c)Φ(h4)
]

×
[
(1 + f)Φ(−l2) + (1− α)[Φ(l2)− Φ(l4)] + αer[Φ(l1)− Φ(l3)]

+ (1 + c)Φ(l4)
]T−t∗−1

,

(4.2.1)

where Ri is given by (4.1.5), l1, l2, l3 and l3 are given by Proposition 4.1, t∗ = �t� is the

greatest integer smaller than t, and h1, h2, h3 and h4 are given by h1 =
−ln

(
St∗
St
(1+ f

α)
)
+(t∗+1−t)

(
r+σ2

2

)

σ
√
t∗+1−t ,

h2 = − ln
(

St∗
St
(1+ f

α)
)
−(t∗+1−t)

(
r−σ2

2

)

σ
√
t∗+1−t , h3 =

−ln
(

St∗
St
(1+ c

α)
)
+(t∗+1−t)

(
r+σ2

2

)

σ
√
t∗+1−t , and

h4 = − ln
(

St∗
St
(1+ c

α)
)
−(t∗+1−t)

(
r−σ2

2

)

σ
√
t∗+1−t , with h2 = h1 − σ

√
t∗ + 1− t and

h4 = h3 − σ
√
t∗ + 1− t.

Proof. Given that we stand at a certain time t, where t∗ ≤ t < t∗+1, the payoff structure

of the Annual Compound Ratchet can be seen as the accumulation of each year’s credited
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return from time zero until maturity T ;

ΛCR =
T∏
t=1

1 +min
(
max

(
α(Rt − 1), f

)
, c
)

=
T∏
t=1

Rt

= R1 × ... ×Rt∗−1 ×Rt∗ ×Rt∗+1 × ... ×RT .

(4.2.2)

The filtration Ft contains all the information on the price process S of the underlying

index from time 0 to t, and thus the past realized yearly index returns Rt up to time t∗ ;

R1, R2, ..., Rt∗ , as well as the stock price St, are known. Consequently, the actual credited

and accumulated returns Rt - after accounting for α, f, and c - are also known for all the

past years. Thus, the unknown terms in (4.2.2) are the current year’s credited return,

Rt∗+1, and that of the future years left until maturity Rt∗+2, ...,RT .

It follows that the price V CR
t of the EIA contract at time t given the filtration Ft, is

given by:

V CR
t = EQ

[
e−(T−t)rΛCR |Ft

]
= EQ

[
e−(T−t)r

T∏
i=1

Ri |Ft

]

= e−(T−t)rEQ [R1 × ... ×Rt∗ ×Rt∗+1 ×Rt∗+2 × ... ×RT |Ft] .

By taking outside what is known and using the fact that yearly index returns are inde-

pendent and identically distributed we get:

V CR
t = e−(T−t)r (R1 × ... ×Rt∗)E

Q [Rt∗+1 ×Rt∗+2 × ... ×RT |Ft]

= e−(T−t)r (R1 × ... ×Rt∗)E
Q [Rt∗+1 |Ft]E

Q [Rt∗+2 × ... ×RT |Ft]

= e−(T−t)r
t∗∏
i=1

(Ri) EQ [Rt∗+1 |Ft]
T∏

i=t∗+2

EQ [Ri |Ft]

= e−(T−t)r
t∗∏
i=1

(Ri)× EQ [Rt∗+1 |Ft]×
(
EQ [Ri]

)T−t∗−1
.

(4.2.3)
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Given the stock’s path, the first term is given by (4.1.6). The third term will be replaced by

(4.1.11) raised to the power T−t∗−1. The unknown part is the middle term EQ [Rt∗+1 |Ft];

the risk neutral expectation of the current year’s credited return. The reason behind

isolating it is because we have partial information about that year’s index return by

knowing the current stock price St. So from (4.1.2) we are able to split Rt∗+1 into known

and unknown parts:

Rt∗+1 =
St∗+1

St∗

=
St

St∗
× St∗+1

St

=
St

St∗
×R∗ ,

and we have

Rt∗+1 = 1 +min
(
max

(
α(Rt∗+1 − 1), f

)
, c
)

= 1 +min

(
max

(
α

(
St

St∗
R∗ − 1

)
, f

)
, c

)
,

where St

St∗
is known from the filtration Ft, and R∗ = St∗+1

St
is log-normally distributed with

parameters (t∗ + 1− t)
(
r − σ2

2

)
and (t∗ + 1− t)σ2.

Let fR∗(x) =
1

x
√
2πσ

√
t∗+1−t exp

{
−

[
lnx−(t∗+1−t)

(
r−σ2

2

)]2

2(t∗+1−t)σ2

}
and FR∗(x) = Φ

(
lnx−(t∗+1−t)

(
r−σ2

2

)

σ
√
t∗+1−t

)
be the probability density and cumulative distribution functions of the random variable

R∗, respectively.

Depending on St

St∗
, the current year’s actual credited return Rt∗+1 can take one the fol-

lowing three possible values:

Rt∗+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + f when R∗ < Q1

1− α + α St

St∗
R∗ when Q1 < R∗ ≤ Q2

1 + c when R∗ > Q2

(4.2.4)
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for St

St∗
> 0, where Q1 =

St∗
St

(
1 + f

α

)
and Q2 =

St∗
St

(
1 + c

α

)
.

Taking the risk neutral expectation of Rt∗+1 we get:

EQ [Rt∗+1 |Ft] =

∫ Q1

0

(1 + f)fR∗(x)dx+

∫ Q2

Q1

(
1− α + α

St

St∗
x

)
fR∗(x)dx

+

∫ ∞

Q2

(1 + c)fR∗(x)dx .

(4.2.5)

It is clear that the integration in (4.2.5) is very similar to the one in (4.1.7), since we have

the same log-normal distribution but with different parameters. Therefore we will omit

some of the details. Similarly to (4.1.8), the first integral on the right-hand side of (4.2.5)

is

∫ Q1

0

(1 + f)fR∗(x)dx = (1 + f)FR∗(Q1)

= (1 + f)Φ(−h2) .

(4.2.6)

Also, similarly to the steps of integration done in (4.1.9), the second term on the right-

hand side of (4.2.5) resolves to:

∫ Q2

Q1

(
1− α + α

St

St∗
x

)
fR∗(x)dx

= (1− α)

⎡
⎣Φ

⎛
⎝ lnQ2 − (t∗ + 1− t)

(
r − σ2

2

)
σ
√
t∗ + 1− t

⎞
⎠− Φ

⎛
⎝ lnQ1 − (t∗ + 1− t)

(
r − σ2

2

)
σ
√
t∗ + 1− t

⎞
⎠
⎤
⎦

+ α
St

St∗

∫ Q2

Q1

1√
2πσ

√
t∗ + 1− t

exp

⎧⎪⎨
⎪⎩−

[
lnx− (t∗ + 1− t)

(
r − σ2

2

)]2
2(t∗ + 1− t)σ2

⎫⎪⎬
⎪⎭ dx .

By applying the identity Φ(A) − Φ(B) = Φ(−B) − Φ(−A), and the change of variable
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y = lnx with dx = eydy on the second term we get:

(1− α) [Φ (h2)− Φ (h4)]

+ α
St

St∗

∫ lnQ2

lnQ1

1√
2πσ

√
t∗ + 1− t

exp

⎧⎪⎨
⎪⎩−

[
y − (t∗ + 1− t)

(
r + σ2

2

)]2
2(t∗ + 1− t)σ2

+ (t∗ + 1− t)r

⎫⎪⎬
⎪⎭ dy

= (1− α) [Φ (h2)− Φ (h4)] + α
St

St∗
e(t

∗+1−t)r [Φ (h1)− Φ (h3)] ,

(4.2.7)

and the third integral on the right-hand side of (4.2.5) is

∫ ∞

Q2

(1 + c)fR∗(x)dx = (1 + c) [1− FR∗(Q2)]

= (1 + c) Φ (h4) ,

(4.2.8)

where h1, h2, h3 and h4 are given in Proposition 4.2.

Consequently, by combining the results of the integrals from (4.2.6), (4.2.7) and (4.2.8),

(4.2.5) becomes:

EQ [Rt∗+1 |Ft] = (1 + f)Φ(−h2) + (1− α) [Φ (h2)− Φ (h4)]

+ α
St

St∗
e(t

∗+1−t)r [Φ (h1)− Φ (h3)] + (1 + c)Φ (h4) .
(4.2.9)

Finally, we prove Proposition 4.2 by replacing the results of (4.2.9), (4.1.6) and (4.1.11)

with their corresponding terms in (4.2.3).

Notice that the formula for the time-t price V CR
t is true for all 0 ≤ t∗ ≤ t < t∗+1 ≤ T .

Especially in the case where we stand at any anniversary date of the contract, that is

when t is an integer such that t = t∗, we get hs = ls for all s = 1, 2, 3, 4. It follows that

EQ [Rt∗+1|Ft] in (4.2.9) becomes equal to EQ [Rt] in (4.1.11), therefore we can directly
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conclude the following:

Corollary 4.1. Under the Black-Scholes framework, the price of an Annual Compound

Ratchet EIA at any integer time t = t∗ has the following expression:

V CR
t∗ = e−(T−t

∗)r
t∗∏
i=1

Ri ×
[
(1 + f)Φ(−l2) + (1− α)[Φ(l2)− Φ(l4)]+

αer[Φ(l1)− Φ(l3)] + (1 + c)Φ(l4)
]T−t∗

,

(4.2.10)

where Ri is given by (4.1.5), and l1, l2, l3, l4 are given by Proposition 4.1.
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Chapter 5

Hedging Equity-Indexed Annuities

This chapter presents how to apply the hedging strategies derived from the Greeks

to the Annual Compound Ratchet EIA contract. Firstly, the Delta-hedging strategy is

implemented. Then due to discretization, the hedge is not perfect since basis risk still

has to be dealt with. Therefore, hedging errors arise and the Gamma-hedging strategy is

incorporated to improve the Delta-hedging strategy by reducing the magnitude of these

errors. Yet, in reality basis risk always exists and hedging errors represent a supplemental

cost of the hedging portfolio for the issuer. With the purpose of protecting the issuer

from this additional cost, and by trying to reproduce the pattern of the changing rates

based on what is observed in practice, a new approach is proposed and implemented to

eliminate the risk born by the issuer from applying the hedging strategies.

5.1 Hedging of Compound Annual Ratchet EIA

A Compound Ratchet EIA’s payoff is convex with respect to the stock price S and

thus it is considered a non-linear derivative security in its underlying. Therefore it needs

to be hedged using a dynamic hedging strategy, such as the one presented in detail in

Chapter 3.
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5.1.1 Delta-hedging strategy

First, the Delta-hedging strategy previously derived is implemented from the perspec-

tive of issuers of annual CR EIA contracts with T years until maturity. The replicating

portfolio is set such that it reproduces the payoff of the EIA contract at any time t;

0 ≤ t ≤ T . The issuer of this contract hedges his initial position by building a replicating

portfolio, which is also referred to as a hedging portfolio. Recall that the objective of this

strategy is to eliminate the risk inherent to the small variations in the underlying stock

price, and thus neutralizing the sensitivity of the overall position in the EIA contract and

the replicating portfolio to changes in the underlying.

Under the Delta-hedging strategy, as explained in Section 3.2.1, the replicating port-

folio is composed of only stocks and money market accounts; ψΔ
t = {ψΔ

S,t, ψ
Δ
M,t}, such that

the portion of shares bought ψΔ
S,t is determined by the Delta of CR EIA contract, with

the remaining being the portion ψΔ
M,t invested in the money market account. Thus the

value of the Delta-hedging portfolio is given by:

V Δ
t = ψΔ

S,tSt + ψΔ
M,tMt

= ΔCR
t St +

(
V CR
t −ΔCR

t St

) (5.1.1)

for all t, where ΔCR
t is the Delta of the CR EIA to be determined next, and V CR

t is the

value of the CR EIA given by (4.2.1).

Proposition 5.1. Under the Black-Scholes framework, where the time-t value of an An-

nual Compound Ratchet EIA contract is given by Proposition 4.2, a closed-form expression
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of the Delta of the CR EIA contract is given as follows:

ΔCR
t = e−(T−t)r

t∗∏
i=1

Ri

×
[
(1 + f)

−1

Stσ
√
t∗ + 1− t

φ(−h2) + (1− α)
1

Stσ
√
t∗ + 1− t

[φ(h2)− φ(h4)]

+
α

St∗
e(t

∗+1−t)r [Φ (h1)− Φ (h3)] +
α

St∗
e(t

∗+1−t)r 1

σ
√
t∗ + 1− t

[φ(h1)− φ(h3)]

+ (1 + c)
1

Stσ
√
t∗ + 1− t

φ(h4)
]

×
(
EQ[Ri]

)T−t∗−1
,

(5.1.2)

for all 0 < t ≤ T , and

ΔCR
0 = 0 , (5.1.3)

where h1, h2, h3 and h4 are given in Proposition 4.2. Ri and EQ[Ri] are given by (4.1.5)

and (4.1.11), respectively. Also, φ() is the standard normal density function.

Proof. From (3.1) and (4.2.1) we have:

ΔCR
t =

∂

∂St

V CR
t

= e−(T−t)r
t∗∏
i=1

Ri ×
(
EQ[Ri]

)T−t∗−1
× ∂

∂St

EQ [Rt∗+1|Ft] ,

(5.1.4)

where, by (4.2.9) we have:

∂

∂St

EQ [Rt∗+1|Ft] =
∂

∂St

[
(1 + f)Φ(−h2) + (1− α) [Φ (h2)− Φ (h4)]

+ α
St

St∗
e(t

∗+1−t)r [Φ (h1)− Φ (h3)] + (1 + c)Φ (h4)

]
.

(5.1.5)

Now since h1 =
−ln

(
St∗
St
(1+ f

α)
)
+(t∗+1−t)

(
r+σ2

2

)

σ
√
t∗+1−t with h2 = h1 − σ

√
t∗ + 1− t we have that

∂
∂St

(h1) =
∂

∂St
(h2) =

1
Stσ

√
t∗+1−t .
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Similarly for h3 and h4, in general we have

∂

∂St

(hs) =
1

Stσ
√
t∗ + 1− t

,

for any s = 1, 2, 3, 4 . It follows that by the Chain rule we have:

∂

∂St

(Φ(hs)) =
1

Stσ
√
t∗ + 1− t

φ(hs) . (5.1.6)

Thus (5.1.5) becomes:

(1 + f)
−1

Stσ
√
t∗ + 1− t

φ(−h2) + (1− α)

[
1

Stσ
√
t∗ + 1− t

φ(h2)− 1

Stσ
√
t∗ + 1− t

φ(h4)

]

+ α
1

St∗
e(t

∗+1−t)r [Φ (h1)− Φ (h3)] + α
St

St∗
e(t

∗+1−t)r
[

1

Stσ
√
t∗ + 1− t

φ(h1)− 1

Stσ
√
t∗ + 1− t

φ(h3)

]

+ (1 + c)
1

Stσ
√
t∗ + 1− t

φ(h4)

= (1 + f)
−1

Stσ
√
t∗ + 1− t

φ(−h2) + (1− α)
1

Stσ
√
t∗ + 1− t

[φ(h2)− φ(h4)]

+
α

St∗
e(t

∗+1−t)r [Φ (h1)− Φ (h3)] +
α

St∗
e(t

∗+1−t)r 1

σ
√
t∗ + 1− t

[φ(h1)− φ(h3)]

+ (1 + c)
1

Stσ
√
t∗ + 1− t

φ(h4) .

(5.1.7)

Therefore, by replacing (5.1.7) into (5.1.4) we prove (5.1.2).

Additionally, from Definition 3.1 we know that ΔCR
0 = ∂

∂St
V CR
0 , where the expression of

V CR
0 in (4.1.3) does not depend on St, therefore we have that ∂

∂St
V CR
0 = 0. By that we

have proved (5.1.3).
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5.1.2 Delta-hedging Errors

The Delta-hedging strategy applied continuously leads to a perfect hedge. This can

be clearly concluded from (5.1.1), since the value of the Delta-hedging portfolio always

equals that of the CR EIA contract, V Δ
t = V CR

t for all 0 ≤ t ≤ T , especially at maturity

to cover the outstanding liability where V Δ
T = ΛCR, with ΛCR being the payoff of the CR

EIA given in (4.1.1).

However, as explained thoroughly in Section 3.3, the hedge can only be partial in

reality, and the discretization of the continuous-time model leads to Delta-hedging errors.

Assuming that we have m number of trading dates per year, we can divide our time hori-

zon into mT equally distant periods such that t = 0, 1
m
, 2
m
, ... , T + m−1

m
, T .

At t = 0, the writer of the CR EIA sells the contract for its time-zero price V CR
0 . No

investment in the stocks is done initially since ΔCR
0 = 0, therefore all the proceedings

are invested in the money market account earning the risk free rate r, and we have

V Δ
0 = V CR

0 . Then, at each trading trade t ∈ { 1
m
, 2
m
, ... , T + m−1

m
, T}, the writer re-

balances his replicating portfolio such that the proportion invested in St is set to the

Delta of the CR EIA, ΔCR
t . It follows that the value of the Delta-hedging portfolio right

before each periodic re-balancing is:

V Δ
t− = ΔCR

t− 1
m
St +

(
V CR
t− 1

m
−ΔCR

t− 1
m
St− 1

m

)
e

r
m ,

and its value after each periodic re-balancing becomes:

V Δ
t = ΔCR

t St +
(
V CR
t −ΔCR

t St

)
= V CR

t .
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As a result, the periodic Delta-hedging errors can be obtained from (3.3.1) with V ψ
t− =

V Δ
t− and Vt = V CR

t to get:

PHEΔ
t = V Δ

t− − V CR
t

= ΔCR
t− 1

m
St +

(
V CR
t− 1

m
−ΔCR

t− 1
m
St− 1

m

)
e

r
m − V CR

t .
(5.1.8)

Note that the discrepancy that leads to these periodic Delta-hedging errors only arises

from the discretization process, since if we let m go to infinity in (5.1.8), that is making

the discrete time periods infinitesimally small, we get back the continuous-time model

and the Delta-hedging errors go to zero as expected.

In fact, the mean of the present value at time-zero of each periodic Delta-hedging error

is zero under the risk neutral measure, since

EQ
[
e−rtPHEΔ

t |F0

]
= ΔCR

t− 1
m
EQ

[
e−rtSt|F0

]
+ EQ

[
e−r(t−

1
m
)V CR

t− 1
m
|F0

]
−ΔCR

t− 1
m
EQ

[
e−r(t−

1
m
)St− 1

m
|F0

]
− EQ

[
e−rtV CR

t |F0

]
= ΔCR

t− 1
m
S0 + V CR

0 −ΔCR
t− 1

m
S0 − V CR

0 = 0 .

(5.1.9)

It also follows that the present value of the Total Delta-hedging Errors, denoted by

THEΔ
0 is a martingale under the Black-Scholes model with a mean of zero. Therefore, to

assess the performance of the Delta-hedging strategy we analyze the distribution of the

present value at time-zero of the sum of all the periodic Delta-hedging errors, which from

(3.3.2) has the following expression:

THEΔ
0 =

T−1∑
t=0

m∑
i=1

e−(t+
i
m
)rPHEΔ

t+ i
m

=
T−1∑
t=0

m∑
i=1

e−(t+
i
m
)r
[
ΔCR

t+ i−1
m
St+ i

m
+
(
V CR
t+ i−1

m
−ΔCR

t+ i−1
m
St+ i−1

m

)
e

r
m − V CR

t+ i
m

]
.
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Our numerical analyses considers by default a 7-year Annual Compound Ratchet EIA

contract (T = 7) bounded by a local floor rate of 0% (f = 0) and a local cap rate of 100%

(c = 1), where the dynamics of the returns on the index are governed by a Log-Normal

distribution with parameters μ = 8% and σ = 20%. We assume a 4% risk free rate of

return (r = 4%) and weekly portfolio re-balancing (m = 52). Additionally, we choose

the participation rate α such that the time-zero price of the contract V CR
0 is 1 monetary

unit, to get α = 39.5%. Under these assumptions, we simulate 25, 000 sample paths of the

stock index returns under the discretization model presented in Section 3.3.3, and apply

the Delta-hedging strategy by performing Monte Carlo simulations.

Mean -0.15%
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1% Qu. -5.33%
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Figure 5.1: Present value of Delta-hedging errors.
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The empirical distribution of the present value of Delta-hedging errors is illustrated

in Figure 5.1. Recall that these hedging errors represent an added cost to build up the

replicating portfolio. The empirical distribution of THEΔ
0 is centered around the mean

(−0.15%) which is very close to zero. This shows that the average cost of the hedging

portfolio is almost zero, and thus on average the hedging strategy is a fair game. Addi-

tionally, the empirical distribution has a relatively low standard deviation (2.1%), which

means that the cost of the hedging strategy is somehow predictable and thus does not

vary too much. Moreover, by (5.1.8), negative hedging errors represent a loss for the is-

suer resulting from the application of the hedging strategy. Naturally, it is expected that

issuers seek to minimize this loss, hence the heaviness of the left tail is to be examined.

Table 5.1 lists different quantile values of the distribution of THEΔ
0 . These values can

be used to set a maximum tolerable loss for the issuers depending on their risk appetite.

For example, the Delta-hedging strategy will cost the issuer more than 5.33% of the EIA

with 1% probability.

Quantiles 1% 2% 5% 25% 50% 75% 95% 99%

THEΔ
0 (in %) -5.33 -4.65 -3.69 -1.5 -0.08 1.28 3.19 5.06

Table 5.1: Quantiles of the distribution of THEΔ
0 , in percentages.

To summarize, it can be said that the Delta-hedging strategy works well under the

Black-Scholes framework. However, one can resort to the Gamma-hedging strategy as a

way to reduce the effect of discretization and thus improve the performance of the hedge.

5.1.3 Gamma-hedging Strategy

As explained in Section 3.2.2, the Gamma-hedging strategy incorporates a third asset

to the hedging portfolio, a European Call option, which will help reduce the exposure to

risk due to wide variations in the stock price resulting from the discretization process.
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It is first assumed that European Call options has maturity 1
m
(in years) and strike price

St, and is always available on the financial market at any time t ∈ { 1
m
, 2
m
, ... , T+m−1

m
, T},

and the replicating portfolio ψΓ
t has the following composition ψΓ

t = {ψΓ
S,t, ψ

Γ
C,t, ψ

Γ
M,t}.

Then to construct this replicating portfolio under the Gamma-hedging strategy, both the

Delta and Gamma of the portfolio are matched to those of the CR EIA respectively, as

seen in (3.2.8), dynamically at the beginning of each period such that:

ΓCR
t = ψΓ

C,t Γ
C
t ,

ΔCR
t = ψΓ

S,t + ψΓ
C,t Δ

C
t .

(5.1.10)

It follows that by rearranging (5.1.10) one can solve for the portions invested in stocks,

options, and money market account to get:

ψΓ
C,t =

ΓCR
t

ΓC
t

,

ψΓ
S,t = ΔCR

t −
(
ΓCR
t

ΓC
t

)
ΔC

t ,

ψΓ
M,t =

(
V CR
t − ψΓ

S,t St − ψΓ
C,t V

C
t

) 1

Mt

,

(5.1.11)

where V C
t , ΔC

t and ΓC
t are the time-t value, Delta and Gamma of the European Call

option given in (2.5.2), (3.2.5) and (3.2.9), respectively. V CR
t is the time-t value of the

CR EIA contract given in Proposition 4.2, ΔCR
t is the Delta of the CR EIA given in

Proposition 5.1, and ΓCR
t is the Gamma of the CR EIA given in the following proposition.

Proposition 5.2. Under the Black-Scholes framework the Gamma of a Compound Ratchet

EIA contract has the following expression:
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ΓCR
t = e−(T−t)r

t∗∏
i=1

Ri

×
[
(1 + f)

1

St
2
√
t∗ + 1− tσ

φ(−h2)

(
1 +

h2√
t∗ + 1− tσ

)

+ (1− α)
1

St
2
√
t∗ + 1− tσ

[
φ(h4)

(
1 +

h4√
t∗ + 1− tσ

)
− φ(h2)

(
1 +

h2√
t∗ + 1− tσ

)]

+ e(t
∗+1−t)r α

St∗St

√
t∗ + 1− tσ

[
φ(h1)− φ(h3)

]
+ e(t

∗+1−t)r α

St∗St(t∗ + 1− t)σ2

[
h3φ(h3)− h1φ(h1)

]

+ (1 + c)
−1

St
2
√
t∗ + 1− tσ

φ(h4)

(
1 +

h4√
t∗ + 1− tσ

)]

×
(
EQ[Ri]

)T−t∗−1
,

(5.1.12)

for all 0 < t ≤ T , and

ΓCR
0 = 0 , (5.1.13)

where h1, h2, h3 and h4 are given in Proposition 4.2. Ri and EQ[Ri] are given by (4.1.5)

and (4.1.11), respectively.

Proof. From Definition 3.2.7 and Proposition 5.1 we have:

ΓCR
t =

∂

∂St

ΔCR
t

= e−(T−t)r
t∗∏
i=1

Ri ×
(
EQ[Ri]

)T−t∗−1
× ∂2

∂(St)2
EQ [Rt∗+1|Ft] .

(5.1.14)

Now by the chain rule, we have in general for any s = 1, 2, 3, 4:

∂

∂St

(φ(hs)) =
1

Stσ
√
t∗ + 1− t

(−hs)φ(hs) . (5.1.15)
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Then by using (4.2.9), (5.1.15) and (5.1.6) to derive (5.1.14), we prove (5.1.12). The

details of integration are omitted because they are somewhat similar to those done in the

proof of Proposition 5.1.

Additionally, from Definition 3.2.7 and (5.1.3) we have ΓCR
0 = ∂

∂St
ΔCR

0 = 0, and by

that we have proved (5.1.13).

5.1.4 Gamma-hedging Errors

The Gamma-hedging strategy also produces a partial hedge due to the discretiza-

tion, which leads to Gamma-hedging errors. Following the same discrete time setting as

in Section 5.1.2, this strategy can be summarized as follows.

At t = 0, the issuer of the annual CR EIA sells the contract for its time-zero price

V CR
0 . No investment in the stocks nor options is made initially since, from (5.1.3) and

(5.1.13) we have ΔCR
0 = 0 and ΓCR

0 = 0. Therefore, all the proceedings are invested in

the money market account earning the risk-free rate, such that

V Γ
0 = V CR

0 . (5.1.16)

Then, at each trading date t ∈ { 1
m
, 2
m
, ... , T+m−1

m
, T}, the writer re-balances his hedge

by re-adjusting the proportions of the replicating portfolio such that both the Delta and

Gamma of this portfolio remain equal to those of the CR EIA. It follows that the value

of the Gamma-hedging portfolio right before each periodic re-balancing is:

V Γ
t− =

[
ΔCR

t− 1
m
−
(
ΓCR
t− 1

m

ΓC
t− 1

m

)
ΔC

t− 1
m

]
× St +

[
ΓCR
t− 1

m

ΓC
t− 1

m

]
× V C

t

+

[
V CR
t− 1

m
−
(
ΔCR

t− 1
m
−
(
ΓCR
t− 1

m

ΓC
t− 1

m

)
ΔC

t− 1
m

)
× St− 1

m
−
(
ΓCR
t− 1

m

ΓC
t− 1

m

)
× V C

t− 1
m

]
× e

r
m ,
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and its value after each periodic re-balancing becomes:

V Γ
t =

[
ΔCR

t −
(
ΓCR
t

ΓC
t

)
ΔC

t

]
× St +

[
ΓCR
t

ΓC
t

]
× V C

t

+ V CR
t −

(
ΔCR

t −
(
ΓCR
t

ΓC
t

)
ΔC

t

)
× St −

(
ΓCR
t

ΓC
t

)
× V C

t

= V CR
t .

It follows that the periodic Gamma-hedging errors can be obtained from (3.3.1) with

V ψ
t− = V Γ

t− and Vt = V CR
t to get:

PHEΓ
t = V Γ

t− − V CR
t , (5.1.17)

and from (5.1.16), we have PHEΓ
0 = 0.

Similarly to (5.1.9), under the risk neutral measure Q, the mean of the present value at

time-zero of each periodic Gamma-hedging error is zero, that is EQ
[
e−rtPHEΓ

t |F0

]
= 0.

It follows that the present value of the sum of all periodic Gamma-hedging errors is a

martingale under the Black-Scholes model with a mean of zero, and has the following

expression:

THEΓ
0 =

T−1∑
t=0

m∑
i=1

e−(t+
i
m
)rPHEΓ

t+ i
m

=
T−1∑
t=0

m∑
i=1

e−(t+
i
m
)r

(
V Γ
(t+ i

m
)− − V CR

t+ i
m

)
.

(5.1.18)

To assess the performance of the Gamma-hedging strategy, the empirical distribution

of THEΓ
0 is to be analyzed. Therefore, 25,000 Monte Carlo simulations of the Gamma-

hedging strategy are done on the 7-year Annual Compound Ratchet EIA with the default

parameter set considered in Section 5.1.2, and the resulting Gamma-hedging errors of

(5.1.18) are extracted.

83



Mean -0.13%
St. Dev. 1.93%
1% Qu. -4.98%

Gamma Hedging with Periodic Calls

T=7, flr=0, cap=1, mu=0.07, sigma=0.2, r=0.04, m=52
P.V. Delta-Gamma-hedging Errors

Fr
eq

ue
nc

y

-0.05 0.00 0.05

0
10

00
20

00
30

00
40

00
50

00
                        Gamma Hedging                        

   

Figure 5.2: Present value of Gamma-hedging errors.

Figure 5.2 represents the empirical distribution of the present value of Gamma-hedging

errors. In-the-money Call options with periodic maturities are used. The analysis of

THEΓ
o shows that this hedge is also on average is fair since the mean is very close to zero

(−0.13%). Additionally, we can notice an improvement over the Delta-hedging strategy

given that the standard deviation is also lower to 1.93%, leading to a somehow predictable

cost. Moreover, another improvement can be noted as the cost incurred by the issuer to

use this Gamma-hedging strategy will decrease by 0.352%, to 4.98% per unit of invest-
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ment in the EIA, considering 1% worst loss.

As a result, the application of the Gamma-hedging strategy reduces the risk born by

the issuer of the EIA, and as anticipated, improves the performance of the Delta-hedging

strategy by reducing the magnitude of the errors, and thus lowering the cost of the hedge.

Both strategies hedge the risk against changes in the stock price, one can also hedge

against changes in volatility using the Greek letter Vega, denoted by ν. However, Hardy

(2003) shows that the sensitivity of different EIA contract types to volatility is similar,

except for the Annual Compound Ratchet case with the embedded floor and cap rates,

where it is less sensitive since the volatility of the index is limited by the floor and cap

rates. Moreover, the Black-Scholes model assumes a constant volatility, so it there will be

no changes in volatility throughout the contract term. For this reason, we do not extend

the hedging strategy to the Vega in this thesis.

5.2 Dynamic Risk Management Strategy

By improving the hedging strategies we only manage to reduce the cost, but not

totally eliminate the risk. In this section, we shall propose a new approach that further

reduces the risk of hedging and thus protects the issuer as much as possible from the

hedging errors.

This new approach is inspired from what we actually see in practice. Observe for

example the product “Allianz 222 Annuity ”sold by Allianz Life Insurance Company of

North America. Different allocation options are offered, including the Annual Point-to-

point with either a spread or a cap, and different index options like the S&P 500 Index,

Nasdaq-100 Index, Russel-2000 Index, and many more. For this specific product, the

participation rate is set to 100% and guaranteed for the life of the contract. In particular,

for the option where a cap rate is applied, the insurance company is retaining the right
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of changing the cap rate on each contract anniversary, yet with a promise of not going

below a predetermined minimum throughout the term of the contract as a guarantee for

the buyer. Similarly for the option where a spread is deducted, the issuer changes the

spread rate, say yearly, however a maximum yearly spread rate is specified at inception.

Other products also include the option of changing the participation rate instead on each

anniversary date.

As a result, a new strategy that aims at reducing the hedging errors by incorporating

the changing rates’ pattern is proposed. As previously mentioned, whenever the periodic

hedging errors are negative, the issuer is obliged to inject money into the hedging portfo-

lio. The series of inflows represent a loss incurred by the issuer since he must use external

resources to maintain the hedge until the end of the contract. To cover up for his loss, the

issuer could, for example, initially increase the cost of the EIA by the estimated present

value of all periodic cash flows, or decrease the final payoff by the future value of the

net periodic injections, which in both ways, will not be appealing to investors, and thus

makes it hard to compete with other issuers. In all cases, issuers have to make sure that

they retain their customers. An important reference on this matter is presented by Gail-

lardetz and Lakhmiri (2011). They propose a new premium principle for equity-linked

products by loading the premium through finding a loaded participation rate based on the

hedging errors. In a similar fashion, a subtle method is proposed here to transfer the loss

from the issuer to the buyer throughout the whole term of the contract. In other words,

instead of resorting to external resources for injecting money into the hedging portfolio

whenever needed, we propose transferring the required amount from the policyholder to

the issuer (whenever the periodic error is negative, i.e. cash inflow) and from the issuer

to the policyholder (whenever the periodic error is positive, i.e. cash outflow) through

the pricing parameter. This requires changing the value of the EIA contract dynamically,

say at anniversary dates.

In general, the parameters that the writer of an EIA can control and that change the
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value of the contract are the participation rate α, the local cap rate c, and the local spread

rate s. Let θt = {αt, ct, st} be the vector of parameters indicating the value of these rates

at any time t. That is, αt = {α0, α1, ..., αt}, and similarly for ct and st. The value of

the EIA contract will be dependent on this vector θt. In fact, the most common EIA

contracts sold on the market are offering one varying parameter, while the two others,

whenever applicable, remain fixed.

More specifically, this dynamic risk management method coupled with any of the

previously proposed hedging strategies will be applied as follows: Assume at t = 0 the

issuer sells the Annual Compound Ratchet EIA, and use the proceedings to hedge his long

position in the contract. The chosen changing rate in θ0 is initially determined such that

V CR
0 (θ0) = 1 . (5.2.1)

Then at each trading date, whether the Delta or Gamma-hedging strategy is used,

the proportions of the replicating portfolio are re-balanced accordingly and the amount of

periodic error incurred is recorded. These periodic errors are accumulate and aggregated

until the end of the year to get the future value of the total amount of error incurred

during that year, denoted by Y HEψ
t and given by

Y HEψ
t =

m∑
i=1

e(1−
i
m
)rPHEψ

t−1+ i
m

, (5.2.2)

for any t = 1, 2, ..., T − 1.

Then a new rate in θt is determined for the following year such that the value of the

EIA equals the accumulated value of the hedging portfolio plus the total amount of error

incurred during that year. That is

V CR
t (θt) = V ψ

t−(θt−1) + Y HEψ
t . (5.2.3)
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The new rate in θt will be the rate considered constant for all the subsequent years while

pricing, and then the same steps are repeated each year. For example, consider a yearly

CR EIA with a fixed participation rate α0, no spread, and a changing cap, that is, αt = α0

and st = 0 for all t. First θ0 = {α0, c0, 0} is set such that c0 satisfies (5.2.1). Then by the

end of the first year, a new cap rate c1 is determined such that V CR
1 (θ1) = V ψ

1−(θ0)+Y HEψ
1 ,

where θ0 = {α0, c0, 0} and θ1 = {α1, c1, 0}, with c1 = {c0, c1}, and α1 = {α0, α0}. When

the value at time 1, V CR
1 (θ1), is calculated, c0 is the cap rate applied for year 1 only, and

the new rate c1 is the cap rate assumed constant for the remaining years until maturity.

Following this method insures that the error is reset to zero at the beginning of each

year, because the value of the EIA is changed - which is the amount owed by the issuer -

by exactly how much it costs him to hedge his position during each year. In other words,

the issuer transfers the cost of hedging each year to the buyer by limiting his credited

index-linked gain. Thus he protects himself against the additional cost incurred from the

hedging strategy and maintains a “self-financing” over-all portfolio.

5.2.1 Numerical Analysis

It is logical to consider that issuers of such contracts will be, as much as buyers, in-

terested in knowing the pattern of changes in these rates. Therefore, a detailed numerical

analysis is conducted to replicate this pattern with the purpose of trying to eliminating

the hedging errors.

A 7-year Annual Compound Ratchet EIA with the same set of default parameters in-

troduced in Section 5.1.2 is analyzed. That is T = 7, f loor = 0, μ = 0.08, σ = 0.2, r =

0.04, and m = 52 unless otherwise indicated. Assume a full participation rate in the in-

dex value guaranteed for the life of the contract, no spread, and a varying cap rate. Then

the vector of parameters becomes θt = {αt, ct, st}, where αt = 100% and st = 0 for all t.

It follows that the value of the contract hereafter will only be written as a function of the
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variable vector ct. Even though the issuer retains the right to change the cap rate yearly,

an initial rate c0 has to be set at inception of the contract. This rate c0 is calculated such

that it is considered to remain constant until maturity.
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Figure 5.3: Time-0 value of an Annual Compound Ratchet EIA as a function of c0.

Figure 5.3 traces the time-zero value of this CR EIA as a function of the cap rate

initially considered constant for the whole term of the contract. The value increases

monotonically as the local cap rate c increases, while all other parameters are held con-

stant. We assume that one can find a critical rate c such that the time-0 value of the EIA

is exactly equal to that of the index. In other words, all parameters are chosen such that

there exists a critical rate that satisfies the following equation:

V CR
0 (c0) = 1 (5.2.4)
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Therefore, the initial cap rate c0 = 9% is obtained numerically such that (5.2.4) is

satisfied. Then the dynamic hedging strategy is applied and the hedging errors are ex-

tracted and recorded at the end of each period. Based on this information, at the end

of each year t = {1, 2, ..., T − 1}, the value of the yearly hedging error Y HEψ
t is calcu-

lated from (5.2.2). A new cap rate ct, assumed constant for the remaining years until

maturity, is obtained such that V CR
t (ct−1, ct) = V ψ

t−(ct−1) + Y HEψ
t is satisfied. This new

cap rate resets the issuer’s yearly cost to zero by limiting the gain from the index return

credited to the buyer. This algorithm is then repeated to get 25, 000 simulations of the

vector cT−1 = {c0, c1, ..., cT−1}, denoted by c, and whose empirical distribution is to be

analyzed as some of the parameters change.
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Figure 5.4: Histogram of c at the default parameter set.
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Figure 5.4 represents the histogram of all yearly cap rates resulting from 25, 000 sim-

ulations of the vector c, at the default parameter set and under the Gamma-hedging

strategy. The blue curve represents the relative normal distribution curve. A quick anal-

ysis of this distribution shows a mean of 10.91% which is far from the critical rate c0 by

almost 1.9%, and a significant standard deviation of 12.10%. These figures show that

this method can be indeed used to reproduce the changing cap rate over the term of the

contract with a significant variation from the initial cap rate c0.

Quantiles 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

c 0.01 0.01 0.01 0.59 1.36 2.00 2.53 3.02 3.42 3.77

Table 5.2: Quantiles of the distribution of c, in percentages.

Additionally, it is possible to determine a minimum cap rate by examining the left tail

of the empirical distribution of c. Table 5.2 lists some values for the lower quantiles of c.

It is a difficult choice since, on the one hand, one can say 0.01% could be seen too low by

the policyholder to be considered a minimum cap, on the other hand, a 3.7% minimum

could be risky for the issuer and thus makes the contract too expensive. Therefore, we

will consider the 5% quantile as a fair minimum cap rate for now, and use it to compare

the results. For instance, the 5% quantile of the distribution is at 1.36%, meaning that

if this is the minimum value of local cap rates promised at inception, then there is a

probability of 5% that a contract will over-estimate the pricing parameter, causing an

un-covered loss for the issuer. Nevertheless, the impact of this choice on the hedging cost

will be discussed in the last section.

m 6 12 24 52 360

St. Dev. 13.81 13.13 12.52 12.10 11.91
Median 8.76 8.87 8.95 8.98 9.01

5% Quantile 0.37 0.83 1.19 1.36 1.49

Table 5.3: Effects of changing the number of trading dates m (in percentages).
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Figure 5.5: Effects of changing the number of trading dates m.

Another interesting thing to look at is what happens to the minimum cap rate as the

issuer increases his hedging frequency. Theoretically, increasing the number the times the

hedging portfolio is re-balanced per year - referred to by the number of trading dates m, -

reduces the impact of the model discretization. It follows that hedging errors are expected

to be reduced, and thus yearly cap rates must not move far away from the critical rate

c0. This is exactly what can be concluded from Figure 5.5 with the corresponding values

in Table 5.3. In fact, observe that as m increases, the standard deviation is decreasing

from 13.81% to 11.91%. As a consequence of the less dispersion; the median converges

to the critical rate to become exactly equal to c0 = 9.01% when trading daily, and the

5% quantile increases significantly from 0.37% to 1.49%. That is, the more the issuer can

re-balance his hedging portfolio, the more accurate his hedging is and the less hedging

errors are incurred. Therefore, by bearing less risk, the issuer is able to promise the buyer

higher minimum cap rate.
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However, even though it is converging, the 5% quantile of the hedging errors does not

vanish, since even by increasing the trading frequency to daily, the 5% quantile of the

empirical distribution is still far from c0. That is, we can still observe a significant change

in the cap rates from one year to another, and thus this new proposed hedging method will

still be effective. However, as previously explained in Section 3.3.1, a trade-off between

the hedging frequency and transaction costs must always be considered.
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Figure 5.6: Effects of changing the contract term T .

T 5 7 10 15

St. Dev. 13.72 12.10 10.42 8.81
5% Quantile 0.43 1.36 2.39 3.36

Table 5.4: Effects of changing the contract term T (in percentages).

One could also be interested in the effects of changing the term of the EIA contract

on the cost of the hedging strategy and the pattern of the yearly cap rate, especially on
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the minimum promised or critical value. Figure 5.6 and Table 5.4 show a similar behavior

to the one seen when changing the number of trading dates. The standard deviation

decreases significantly from 13.72% to 8.81% followed by another significant increase in

the 5% quantile of the distribution from 0.43% to 3.36%. These results may seem sur-

prising since one could logically think that increasing the contract term presents more

uncertainty and thus more risk for the issuer of the EIA. Therefore it is expected that he

should be more conservative in terms of lowering the minimum promised cap rate. How-

ever, the intuition is different. The increase in the minimum cap rate can be explained by

the fact that the longer the term of the contract is, the less volatile the issuer’s periodic

cash flows are, and the more time he has to adjust for his losses. For that reason, he can

tolerate allowing for higher index returns to be credited to the buyer by increasing the

minimum cap rate as the contract term increases. This is a very interesting result since it

will help the issuer retain his policyholders for longer periods by promising higher returns.

f 0% 0.25% 0.5% 1%

c0 9.01 8.70 8.39 7.77
5% Quantile 1.36 1.12 0.92 0.45

Table 5.5: Effects of changing the floor rate f (in percentages).

Table 5.5 shows the impact of changing the floor rate f on the cap rate. As the cap

rate imposes a ceiling on the credited returns, the floor rate provides a protection for the

buyer by promising a minimum return to be credited. Therefore, both rates if increased

will increase the value of the EIA. This explain their impact on each other. That is, the

increase in f from 0 to 0.5% is offset by a decrease in c0 from 9.01% to 8.39%. Which also

results in decreasing the minimum cap rate from 1.36% to 0.92%. The latter behavior

can be explained by the fact that the higher minimum credited return is promised, the

more risk the issuer has to bear to meet his liabilities in case the index performs badly,

therefore, the more conservative he should be by lowering the ceiling on the returns. That

is, in a bull market, he benefits from the additional gain that is not credited to the buyer

to offset the loss from crediting high returns in a bear market. Yet, observe that in the
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case where the floor rate is set to 1%, the minimum cap goes as low as 0.45%, even lower

than the floor. This says that a floor of 1% is too high to promise, given that the issuer

wishes to be protected 95% of the time. In this case, a quantile higher than the 5% should

be considered in order to offer a reasonable minimum cap rate.
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Figure 5.7: Effects of changing the participation rate α.

Figure 5.7 shows the effect of changing the participation rate α on the critical cap rate

c0 and the minimum cap rate represented by the 5% quantile of the empirical distribu-

tion. As the figure shows, increasing the participation rate from 50% to 100% leads to a

decrease in the critical cap rate from 12.67% to 9.01%. Similarly, the minimum cap rate

decreases from 5.88% to 1.36%. This result is expected since these two parameters have

an opposite impact on the price of the EIA contract. That is, increasing the participation

rate allows for more gain to be credited to the buyer, whereas increasing the cap rate

limits the amount of gain from the index to be credited as return.
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α 50% 60% 70% 80% 90% 100%

c0 12.67 10.89 10.06 9.57 9.24 9.01
dc0 - -1.77 -0.83 -0.49 -0.33 -0.23

5% Quantile 5.88 4.65 3.74 2.89 2.09 1.36
dQu. - -1.23 -0.91 -0.84 -0.80 -0.73

Table 5.6: Effects of changing the participation rate α (in percentages).

Furthermore, Table 5.6 shows the changes in the values of c0, denoted by dc0 , as well

as the changes in the values of the 5% quantiles, denoted by dQu., for some increasing

values of α. For example, the first value in dc0 represents the magnitude of decrement in

c0 as α goes from 50% to 60%. These results show that, as α increases steadily by 10%,

dc0 and dQu. decrease at a faster rate. That is, as α increases by 10% from 50% to 60%,

the magnitude of the decrement in c0 is 1.77%, whereas for another 10% increase in α

from 90% to 100%, the magnitude of the decrement in c0 decreases to 0.23%. This means

that the value of the contract is more sensitive to changes in the cap rates than changes

in the participation rates, additionally, it becomes more sensitive to smaller changes in

the cap rates for higher values of α, ( α ≥ 80%).

5% Qu. α 40% 50% 60% 70%

r1 = 3% 4.59 3.37 2.40 1.60
σ1 = 20%

r2 = 4% 9.43 5.88 4.65 3.74

r1 = 3% 2.56 1.27 0.11 0.01
σ2 = 30%

r2 = 4% 4.98 3.54 2.31 1.19

Table 5.7: Values of the 5% quantile (in percentages) for two values of σ and r as α
increases.

Table 5.7 shows the values of the 5% quantile of the distribution of c as α increases

steadily by 10%, for each of the four cases; a low volatility market σ1 = 20% or a high

volatility market σ2 = 30% with either r1 = 3% or r2 = 4%. From this table, Tables 5.8,

5.9 and 5.10 are created to analyze different scenarios separately.

On the one hand, Table 5.7 shows that increasing the risk-free rate of return r leads to
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α 40% 50% 60% 70%

σ1 = 20% 4.85 2.51 2.24 2.13
σ2 = 30%

r2 − r1 2.42 2.27 2.19 1.18

Table 5.8: Magnitude of increment in the 5% quantile of c as r increases from 3% to 4%.

higher minimum cap rates, which makes sense since higher risk-free returns decrease the

value of EIA therefore, the issuer has to increase the value by raising the ceiling. How-

ever, observe from Table 5.8 that this increment is less significant as sigma is increased.

This means that in high volatile markets, the minimum cap rates become less sensitive

to changes in r.

α 40% 50% 60% 70%

r1 = 3% -2.03 -2.09 -2.29 -1.60
r2 = 4%

σ2 − σ1 -4.46 -2.34 -2.34 -2.55

Table 5.9: Magnitude of decrement in the 5% quantile of c as σ increases from 20% to
30%.

On the other hand, Table 5.7 shows that increasing the market volatility leads to lower

minimum cap rates, regardless of the value of α or r. Which also makes sense since the

more risk the issuer has to bear the more conservative he should be and therefore lowering

the ceiling on the credited returns. Nevertheless, this decrement is more significant as the

risk-free rate of return r also increases form 3% to 4%. This can be explained by the fact

that the impact of the volatility on the cap rates is higher than that of r, its counter-effect

on c diminishes even more as σ increases.

α = 40% α = 50% magnitude of
decrement

α = 60% α = 70% magnitude of
decrement

σ = 20% 9.43 5.88 3.55 4.65 3.74 0.91

σ = 30% 4.98 3.54 1.44 2.31 1.19 1.12

Table 5.10: Values of the 5% quantile (in percentages) showing the effect of α in low and
high volatility markets.
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Additionally, as expected, the minimum cap rate decreases as α increases, in any of the

four cases. Observe from Table 5.10 that the magnitude of decrement in high volatility

markets (1.44) is less than the magnitude of decrement in low volatility markets (3.55)

as α goes from 40% to 50%, however it is more (1.12 in high vol and 0.91 in low vol) as

α goes from 60% to 70%. This can be explained by the fact that increasing α boosts the

effect of the volatility. Therefore the decrease in the minimum cap rate becomes more

significant in high volatile markets than in low volatile markets for high ranges of α.
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Figure 5.8: Time-0 value of an Annual Compound Ratchet EIA as a function of α0.

A similar analysis can be done with the participation rate α being the changing

pricing parameter and the rest assumed constant over the contract term. In this case we

have ct = c0 and st = s0 for all t, and αT−1 = {α0, α1, ..., αT−1}. Figure 5.8 traces the

time-0 value of this CR EIA with as a function of the participation rate initially consid-

ered constant for the whole term of the contract. Similarly to Figure 5.3, the time-0 price

increases monotonically as the participation rate increases, while all other parameters are

held constant, and a critical rate α0 = 39.51% is solved numerically such that the price

of the EIA is exactly equal to that of the underlying index by satisfying V CR
0 (α0) = 1.

Then the Gamma-hedging strategy along with the proposed method are applied to get

25, 000 of the vector αT−1.

The analyses of α is very similar to that of c. For example, Figure 5.9 represents the

empirical distribution of the yearly participation rates resulting from 25, 000 simulations

of the vector α, under the Gamma-hedging strategy. Observe that the median converges
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to α0, the standard deviation decreases by 4.83% and the 5% quantile of the empirical

distribution increases, all to conclude again that the issuer is able to promise the buyer a

higher minimum participation rate as he re-balances his hedging portfolio more frequently,

with only 5% chance of over-estimating the participation rate.

Quantiles 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

α 25.97 28.63 30.23 31.29 32.10 32.80 33.36 33.85 34.25 34.60

Table 5.11: Quantiles of the distribution of α, in percentages.

Additionally, Table 5.11 lists the lower quantiles of the empirical distribution of α at

the default parameter set.

5.2.2 Hedging Errors After Applying the Proposed Strategy

Recall from (5.2.2) that the last yearly hedging error that could be reset to zero is

Y HET−1, since the last new rate θT−1 to be applied during year T , is found such that

(5.2.3) at t = T − 1 is satisfied.

Therefore, following this strategy, the issuer would be able to transfer almost all yearly

hedging errors to the buyer by resetting the chosen pricing parameter each year, except

for the hedging error during the last year Y HET which he has to bear, and would then

be considered the cost of his hedge. That is,

Y HEψ
T =

m∑
i=1

e(1−
i
m)rPHEψ

T−1+ i
m

, (5.2.5)

where PHEψ
t is given by

PHEψ
t = V ψ

t− − V CR
t . (5.2.6)

Then the cost of hedge would be the present value at time-zero of last year’s hedging
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errors;

CoHψ = e−Tr Y HEψ
T . (5.2.7)

Additionally, the issuer has to promise the buyer a minimum pricing parameter, pre-

determined at inception. Then, as the new pricing parameter is calculated every year,

whenever is it found to be less than the minimum, the actual credited parameter during

that year will be the minimum. In this case, the value of the CR EIA will be higher than

that of the issuer’s hedging portfolio, and thus, the issuer has to bear the risk of allowing

for more return to credited than what his hedging strategy allows him to. Therefore, a

hedging error will arise during that year and will be carried on to the following year. If

the second year’s new pricing parameter does not correct it, it will keep on being carried

on until it is added to the last year’s error, to constitute the total hedging errors, which

is then discounted back to time zero to make up the final cost.

Figure 5.10 shows the hedging cost after applying the proposed method with a Gamma-

hedging strategy, if the 5% quantile of the empirical distribution is considered to be the

minimum rate for the chosen pricing parameter α. The hedging cost is significantly re-

duced, with the mean decreasing from −0.13% to −0.021%, the standard deviation from

1.93% to 0.769%, as well as the 1% quantile from −4.98% to −2.058%, compared to the

hedging cost using only the Gamma-hedging strategy as shown in Figure 5.2.

Minimum α Mean St. Dev. 1% Quantile

1% Quantile = 25.97% -0.018 0.764 -2.041
5% Quantile = 32.10% -0.021 0.769 -2.058
10% Quantile = 34.60% -0.021 0.788 -2.091

Table 5.12: Mean, standard deviation, and 1% quantile of the final hedging cost for
different choices of minimum rates.

Table 5.12 compares the values of the mean, standard deviation, and 1% quantile of

the hedging cost after applying the proposed method with a Gamma-hedging strategy for

each of the 1%, 5%, and 10% quantiles considered as the minimum participation rate.
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Figure 5.10: Cost of hedge after applying the proposed method, if the 5% quantile is
considered as the minimum rate.

Observe that, as the minimum participation rate decreases, the reductions in the values

are very small. For example, the standard deviation of errors is only reduced by 0.019%

and 0.005% as the minimum rate decreases from the 10% to the 5% then to the 1%

quantile. It follows that, if the issuer find these differences to be insignificant, then being

more conservative is not a good idea, instead, he will probably be better off promising

higher returns by increasing the minimum and thus attracting more buyers.

103



Conclusion

It is expected that EIAs will continue to experience a prolonged period of rapid

growth, as they offer participation in the equity market upturns while keeping the policy-

holder protected from the downside risk. The main purpose of this thesis was to propose

and test a new approach to hedge CR EIAs and simultaneously protect the issuer, as

much as possible, from hedging risk based on changing the pricing parameters.

After finding closed-form solutions for the value of a CR EIA at any time through-

out the contract term, dynamic hedging strategies using the Greeks are presented and

implemented in a numerical example. Their efficiency is analyzed through extracting the

hedging errors resulting from the discretization process. The numerical analysis shows

that the Gamma-hedging strategy improves the performance of the Delta-hedging strat-

egy by reducing the magnitude of the hedging errors, and thus lowering the cost of the

hedge for the issuer.

The performance of the Gamma-hedging strategy is further improved by applying the

proposed approach of transferring the errors from the issuer to the policyholder (and

vice-versa) through changing the pricing parameter. A detailed numerical analysis is

implemented to extract the distribution of the pricing parameters. A minimum rate is

chosen at the 5% quantile of the empirical distribution with the purpose of examining

its behavior as some of the initial parameters change. For instance, by increasing the

hedging frequency, the issuer is able to promise the policyholder a higher minimum cap

rate. Nevertheless, an interesting result is that no matter how much the trading frequency
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is increased, the minimum rate does not vanish, which shows that our method is effective.

However, a trade-off between the hedging frequency and transaction costs must always be

considered. Another interesting result is seen when increasing the contract term results

in an increase in the minimum rate, which implies that issuers are able to retain their

policyholders for longer periods by promising higher returns.

Finally, since the issuer has to promise a minimum pricing parameter at inception,

there would still be a portion of hedging errors uncovered and retained by the issuer, in

addition to the last year’s errors only. These make up the new hedging cost for the issuer

which is shown to be significantly reduced, as compared to the cost from using only the

Gamma-hedging strategy. Moreover, the choice of using the minimum rate is revisited by

comparing the final hedging cost with the 10% quantile to the cost with the 5% and to

that with the 1% quantile. Interestingly, one can conclude that the reduction in the cost

from being much more conservative is not very significant, instead, the issuer is probably

better off promising higher returns by increasing the minimum rate and by that attracting

more policyholders.

Future research could repeat the same work with other, more complicated, financial

models. The reason behind choosing Black-Scholes was because it yields closed-form

solutions for the valuation of CR EIAs, thus reducing the need for estimations, and

providing a clear way to introduce this new idea and test that it is working successfully. To

extend this work, it could be interesting to include transaction costs as well as stochastic

volatilities and interest rates. Moreover, the addition of mortality and surrender risk

should be explored.
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