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ABSTRACT 

Design, Microfabrication, and Characterization of Polar III-Nitride HFETs 

Alireza Loghmany, Ph.D.  

Concordia University, 2016 

With excellent performance in high-frequency power amplifiers, AlGaN/GaN heterojunction 

field-effect transistors (HFETs) as next generation power amplifiers have drawn a great deal of 

attention in the last decade. These HFETs, however, are still quite limited by their inherently 

depletion-mode (D-mode: negative pinch-off voltage) nature, relatively poor gate-leakage, and 

questionable long-terms reliability. In addition, since AlGaN/GaN HFETs operate at extremely 

high-power densities, performance of these devices has so far remained quite limited by self-

heating effects. 

While a number of techniques have already been developed for realization of enhancement-mode 

(E-mode: positive pinch-off voltage) AlGaN/GaN HFETs, these techniques in addition to having 

a number of difficulties in achieving enhancement-/depletion-mode pairs, fall short of satisfying  

requirements such as low leakage-current, drain-current stability, and pinch-off voltage stability 

at the high operating temperatures and at elevated electric-fields. Among these techniques, 

fluoride-based plasma treatment is the most widely accepted. As an alternative to this 

mainstream technique, polarization-engineering of AlGaN/GaN HFETs through exploring the 

impacts of the mesa geometry is studied as a possible avenue for selective transformation of the 

D-mode nature of AlGaN/GaN HFETs to an E-mode character. Whereas limited experimental 

studies on the pinch-off voltage of HFETs realized on different isolation-feature geometries have 

indicated the presence of a certain correlation between the two, such observations lack the 

required depth to accurately identify the true culprit. This technique is expected to be ultimately 

capable of producing enhancement-/depletion-mode pairs without adding any extra steps to the 

microfabrication process.  

In light of this requirement, microfabrication of AlGaN/GaN HFETs using a number of 

alternative isolation-feature geometries is explored in this study. In addition to developing an in-

house microfabrication process, transistors designed according to these novel isolation-feature 

geometries have been fabricated through the services offered by Canadian Microelectronics 
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Corporation (CMC). Investigation of the variation of pinch-off voltage among the devices 

fabricated through this latter means has conclusively indicated that the pinch-off voltage shift, 

rather than exclusively being caused by the surrounding-field effect, is also correlated to the 

perimeter-to-area ratio of the isolation-features.  

In addition, through characterization and thermal modeling of these groups of devices, in this 

study a new approach is unveiled for reducing self-heating in AlGaN/GaN HFETs. According to 

finite element analysis (FEA) and electrical measurement of average channel temperature, an 

improved heat-dissipation was observed in HFETs enjoying a more distributed nature of the two-

dimensional electron gas (2DEG) channel. This is observed to be the case especially for isolation 

features which offered the center of the channel a smaller distance to the side walls. Observations 

also indicate a more distinct gain in thermal management with reduction of the gate-length and 

also the surface area of the isolation pattern. Results suggest that self-heating in AlGaN/GaN 

HFETs can be substantially nullified by reducing the island-width below a certain threshold 

value, while maintaining the total width of the transistor constant.  

In addition to exploring these alternatives on AlGaN/GaN HFET structures, in-house 

microfabrication of AlN/GaN MISFETs is also studied. The results of DC characterization of 

these novel transistors are also presented. 
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Chapter 1 

 

 

Introduction 

 

1.1 Research background 

As the demand for high-frequency amplifiers offering higher power amplification is growing 

both in civilian and military applications, researchers are scrambling for new wide bandgap 

semiconductor technologies to satisfy these needs. Multitude of technologies (i.e., GaAs, AlAs, 

GaP, InP, SiC, GaN, etc.) are competing for this market [1]. 

Among the aforementioned technologies, nitrides of group III of periodic table (i.e., III-

nitrides: GaN, InN, AlN, and their alloys) due to their good transport properties, and ability to 

form high electron concentration polar heterostructures, are deemed most suitable to satisfy these 

market demands. Considering the room temperature bandgaps of 0.7 eV for InN [2], 3.4 eV for 

GaN, and 6.2 eV for AlN [3], III-nitride alloys can cover a very broad range of bandgaps. This 

widely tunable bandgap is an asset in realization of different forms of band bending. Such a 

property naturally yields the possibility of tuning the electron concentration at the 

heterostructures realized in the III-nitride system.  

Among III-nitrides, GaN is the most studied semiconductor as the channel of power 

amplifier field effect transistors (FETs). Transistors that take advantage of GaN as their channel 

offer five key characteristics: high breakdown field, high operating temperature, high current 

density, high-speed switching, and low on-resistance. In Figure 1.1, operating temperature, 
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breakdown filed, oscillation frequency, noise factor, and maximum current density of GaN-based 

heterostructure field-effect transistors (HFETs) are compared to those of transistors fabricated in 

two competing FET technologies [4]. Such a comparison clearly highlights the suitability of GaN 

channels, and generally speaking III-nitride heterostructures, for high-power, high-frequency, 

and high-temperature power amplification applications. To this list we can also add the radiation-

hardness of this material system, which makes it suitable for extra-terrestrial applications. The 

radiation hardness is an outcome of the large bond-strength in most of the members of III-nitride 

family. Such advantages are also extended to high-voltage switches operating in high-

temperature environments.  

These advantages are certainly accompanied by a number of challenges. The large bond-

strength and high melting-temperature of most III-nitrides impose tremendous challenges on 

both production of native substrates (for example GaN) and development of damage-less etching 

recipes for selective material removal. Although, on the etching front an ongoing research has so 

far resulted in a number of guidelines to minimize the damage of physical etch on the etched 

semiconductor surfaces, on the substrate production front, affordable native substrates of 

sufficiently large sizes are still to be found. Lack of affordable native substrates and lattice 

mismatch between GaN and the most suitable of presently available substrates (i.e., in the order 

of performance merit: SiC, Sapphire, and Si) has resulted in persistence of threading and screw 

dislocations throughout the heterostructures grown in the III-nitride material system. The 

resulting surface states have been observed to be especially damaging to the performance of the 

devices built on these structures.   

 
Figure 1.1 Comparison of breakdown field, maximum oscillation frequency, noise factor, maximum 

current density, and operating temperature of GaN-, GaAs-, and Si-based FETs [4]. 
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HFETs, which are transistors incorporating at least one junction between two materials 

with different bandgaps, are now widely used in civilian and military telecommunication 

applications. The existing band-bending at the heterointerface of these two materials provides the 

ability to achieve a high carrier-concentration channel with little or no overlap between the 

carrier wave-function and the dopants. A channel realized in this fashion enjoys a diminished 

ionized impurity scattering, and as a result an improved carrier mobility. Formation of an almost 

triangular quantum well and confinement of the carriers at the smaller bandgap side of the 

heterointerface gives a two dimensional character to channel electrons of these heterointerfaces. 

As a result, electron population of these channels is referred to as two-dimensional electron gas 

(2DEG). The heterostructures described here are referred to as type-I heterostructures. The wider 

bandgap semiconductor in such a heterostructure is known as the barrier-layer.  

In contrast to AlGaAs/GaAs HFETs where a doped AlGaAs layer (i.e., barrier) is needed 

to create the 2DEG, AlGaN/GaN HFETs enjoy a widely different source of channel electrons. In 

these devices existence of a strong polarization at the heterointerface is the root cause for the 

induction of the channel’s 2DEG.  Even in absence of intentional barrier doping, this mechanism 

yields an electron concentration which is about an order of magnitude higher than other 

heterointerfaces [5] - [6]. The first AlGaN/GaN HFET was demonstrated by Khan et al. in 1994 

[7]. Figure 1.2 shows a typical device structure of a two-finger AlGaN/GaN HFET. Several 

variations to this technology such as implementation of recessed gate [8], incorporation of zero 

strain AlInN barriers [9], implementation of InGaN and AlGaN back barriers [10] - [11], and use 

of ion implantation in Ohmic contact and device isolation [12] - [13] have been explored over the 

years to improve RF performance of GaN-channel HFETs. In addition to these studies, study of 

AlN/GaN MISFETs presents itself as attractive avenue for exploring high speed and high power 

limits of GaN-channel HFETs. The wider barrier bandgap of these structures and the larger 

piezoelectric and spontaneous polarizations are expected to yield even more interesting results in 

terms of tunability of pinch-off voltage, maximum drain-current density, breakdown voltage, 

gate-leakage current, and performance stability. 
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Figure 1.2 Typical device structure of a two-finger AlGaN/GaN HFET. Lg is the gate length and 2W is 

the gate width of the HFET.  

In spite of many enticing advantages, AlGaN/GaN HFET technology has been proven 

challenging towards realization of enhancement-mode transistors. Normally, these HFETs due to 

their vastly superior polarization-induced 2DEG concentrations manifest negative pinch-off 

voltages (i.e., depletion-mode), which is quite unyielding to the ordinary techniques of 

realization of enhancement-mode HFET employed in other HFET technologies. The depletion 

mode of operation, for a large number of both digital and analog applications presents an inferior 

operation compared to the enhancement-mode. While a number of techniques have already been 

developed for realization of enhancement-mode AlGaN/GaN HFETs, these techniques in 

addition to having a number of difficulties in achieving enhancement-/depletion-mode pairs, fall 

short of satisfying  requirements such as low leakage-current, drain-current stability, and pinch-

off voltage stability at the high operating temperature and electric-fields. Among these 

techniques, fluoride-based plasma treatment is the most widely accepted [14].  

1.2 Research motivation 

1.2.1 Motivations of the study of alternative isolation-feature 

geometries of polar AlGaN/GaN HFETs 

As an alternative to the mainstream techniques so far employed in realization of E-mode 

AlGaN/GaN HFETs, polarization-engineering of AlGaN/GaN HFETs through mesa geometry 
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has been studied as a possible avenue for selective transformation of the depletion-mode nature 

of AlGaN/GaN HFETs to an enhancement-mode character. This technique has positively 

demonstrated potential for realization of enhancement-/depletion-mode pairs without adding any 

extra steps to the microfabrication process.  

 Limited experimental studies on the pinch-off voltage of HFETs realized on different 

isolation-feature geometries have indicated the presence of a certain correlation between the 

geometry and the pinch-off voltage. A possible cause for these observations is deemed to be the 

evolution of peel-forces around the boundaries of isolation feature and the dependence of this 

evolution on the boundary’s curvature. Evolution of these forces at the boundaries is expected to 

yield an avenue towards engineering the strain (hence, piezoelectric polarization) and as a result 

pinch-off voltage of polar AlGaN/GaN HFETs. Nonetheless, due to presence of differences 

among the surrounding field-effects imposed on the 2DEG channel of the devices built on these 

isolation features, so far such observations have remained inconclusive. Whereas only a limited 

body of experimental and theoretical work exists on comparing these two causes of pinch-off 

voltage dependence on the isolation-feature size and geometry [15] - [17], a more detailed look 

on the matter is deemed necessary.  

Shedding light on the principle contributor to this phenomenon can potentially open a 

new avenue to microfabrication of polar HFETs (i.e., in III-nitride family as well as polar 

heterostructures realized on semiconductors such as ZnO). Such a fabrication opportunity is 

expected to yield the possibility to realize both E- and D-mode HFET side by side one another, 

which is essential to commercialization of the III-nitride technology.  

In order to distinguish between the impacts of peel-forces (developed around the 

boundaries of the isolation-feature) and the surrounding-field effect, in this study a number of 

mesa geometries among which the perimeter-to-area ratio of the isolation-features are different 

while the lateral proximity of the gate electrode to channel is kept intact, are proposed. Due to 

novelty of these technological variations, studying the stability in operation is deemed essential. 

 Another motivation in the study of isolation-feature geometries other than the usual cubic 

mesas is to assess the validity of this design avenue in improving the heat exchange and lowering 

the self-heating concerns of high power AlGaN/GaN HFETs. AlGaN/GaN HFETs normally 

operate at exceptionally high-power densities, therefore sizable self-heating negatively impacts 
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the reliability and power rating of these transistors. As a result, thermal management must be 

carefully considered to minimize the channel temperature and ensure reliable long-term device 

operation. In addition to the usual adoption of a more thermally conductive substrate such as SiC 

to remedy this problem, since power is predominantly dissipated in the very small region of the 

channel in the proximity of the drain-edge of the gate, thermal management via the surface of 

this hotspot is also deemed attractive. On the basis of this latter consideration (i.e., heat 

management at the surface instead of substrate), a seemingly promising heat-management 

strategy is based on the exploration of alternative geometries of isolation-features that offer 

improved surface areas for heat exchange.  

1.2.2 Motivation of the study and fabrication of polar AlN/GaN 

MISFETs 

After the demonstration of the first AlGaN/GaN HFET in 1994 [7], in addition to 

exploring AlGaN barriers with different thicknesses, and Al compositions, several alternative 

barrier designs, including AlN [18] - [21], lattice matched InAlN [22] - [24], and quaternary 

InAlGaN [25] - [26] have been employed to improve the performance and reliability of GaN-

channel HFETs. Among the aforementioned alternative barriers, AlN presents the largest 

bandgap and polarization discontinuity at the barrier to channel heterointerface. Assuming a 

thick enough barrier, these properties are invaluable towards securing unprecedented high 2DEG 

concentration, high drain-current density, high breakdown voltage, low gate leakage current, and 

diminished deterioration by the hot carrier effects under normal operating conditions. In spite of 

these advantages, AlN/GaN metal-insulator-semiconductor field-effect transistors (MISFETs) 

have been seldom studied [27] - [28]. 

In spite of the enticing anticipations, the large lattice mismatch between AlN and GaN 

(hence, the chance for forming cracks during the growth process of the epilayer), has so far 

limited the thickness of realizable barriers in these MISFETs. This limitation, from a device 

perspective, contributes to lower channel population, lower drain-current density, larger gate-

leakage, smaller breakdown voltage, less reliable resistance to hot-carriers, and inferior 

frequency response than anticipated.  
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In light of improvements in crystal growth capabilities, barrier thicknesses in the range of 

10 nm have been recently made possible (i.e., about twice as much as the values previously 

reported). An ongoing research is being pursued across the globe to develop and tune a proper 

recipe for microfabrication of AlN/GaN MISFETs of these larger barrier thicknesses, which 

constitutes one of main thrusts of the present work.   

1.3 Proposed research objectives and framework 

According to the discussions of section 1.2, the objectives of this PhD research are defined 

according to the present challenges of the cutting edge technology of III-nitride HFETs. The 

research objectives are categorized as follows, 

- To develop a conclusive assessment on the possibility of evolution of peel force around 

the boundaries of isolation-features etched into the epilayer, and evaluation of its likely 

contribution to modifying the pinch-off voltage of HFETs realized on these features. 

- To develop a conclusive assessment on the possibility of heat exchange at the boundaries 

of isolation-features etched into the epilayer, and evaluation of its likely contribution to 

modifying the self-heating of HFETs realized on these features.   

- To develop in-house recipes for realization of HFETs and MISFETs in III-nitride 

technology to be used in future explorations in this material system. 

To achieve the aforementioned objectives, the following research tasks were planned, 

Task 1: Exploring alternative isolation-feature geometries for polarization-engineering of 

polar AlGaN/GaN HFETs:  

1.1 Designing the mask layout for polar AlGaN/GaN HFETs of alternative 

isolation-feature geometries. These devices were fabricated through CMC. 

1.2 Experimental investigation of the DC characteristics of AlGaN/GaN HFETs of 

alternative isolation-feature geometries. 

1.3 Experimental investigation of performance stability (i.e., current collapse, gate 

leakage, stressed degradation) of HFETs of alternative isolation-feature 

geometries. 
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Task 2: Study of the dependence of self-heating on isolation-feature geometry among 

polar AlGaN/GaN HFETs designed under task 1:  

2.1 Studying the pulse-mode DC characteristics of AlGaN/GaN HFETs of 

alternative isolation-feature geometries and characterizing the channel 

temperature according to these measurements. 

2.2 Developing an ANSYS model for assessing the heat exchange among the 

experimentally explored devices under task 2.1 and on the basis of which 

project a guideline for effective elimination of self-heating in AlGaN/GaN 

HFETs.  

Task 3: Process recipe development for microfabrication of AlGaN/GaN HFETs:  

3.1 Microfabrication and process optimization of AlGaN/GaN HFETs (at McGill 

University’s microfabrication facilities). 

3.2 Experimental investigation of the DC characteristics and stability in 

performance of in-house microfabricated AlGaN/GaN HFETs. 

Task 4: Process recipe development for microfabrication of AlN/GaN MISFETs:  

4.1 Microfabrication and process optimization of AlN/GaN MISFETs (at McGill 

University’s microfabrication facilities). 

4.2 Experimental investigation of the DC characteristics and stability in 

performance of in-house microfabricated AlN/GaN MISFETs. 

1.4 Outline of this work 

This thesis is organized into seven chapters. Following the introduction (chapter 1), literature 

review related to III-nitride material system, AlGaN/GaN HFETs, AlN/GaN MISFETs, and 

reliability and degradation issues in AlGaN/GaN HFETs are presented in chapter 2. 

Chapter 3 presents the impact of isolation-feature geometry on self-heating of AlGaN/GaN 

HFETs.  
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Chapter 4 is dedicated to alternative isolation-feature geometries and polarization-engineering of 

polar AlGaN/GaN HFETs.  

Reliability studies of AlGaN/GaN HFETs of alternative isolation-feature geometries are 

presented in chapter 5.  

Chapter 6 presents microfabrication process of AlGaN/GaN HFETs and AlN/GaN MISFETs. 

Chapter 7 is devoted to concluding remarks, contributions of this thesis, and future work 

suggestions. 

1.5 List of publications 

The research work of this thesis has so far resulted in the following peer-reviewed journal 

publications, 

1. A. Loghmany, P. Valizadeh, and J. Record, “Impact of isolation-feature geometry on self-

heating of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 61, no.9, pp. 3152-

3158, Sept. 2014. 

 

2. A. Loghmany and P. Valizadeh, “Alternative isolation-feature geometries and pinch-off 

voltage variation in polar AlGaN/GaN HFETs,” J. Solid State Electron., vol. 103, pp. 162-

166, Jan. 2015. 
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Chapter 2 

 

 

Literature review 

 

2.1 III-nitride material system 

The III-nitride family of semiconductors consisting of InN, GaN, AlN and their ternary and 

quaternary alloys has found a wide range of electronic and optoelectronic device applications 

over the last two decades. Widely tunable direct bandgap, high thermal and mechanical stability, 

and excellent electro-optical properties of III-nitride semiconductors have enabled a number of 

devices in this technology which are not normally feasible otherwise.  

2.1.1 Crystal structures of III-nitrides 

There are three common crystal structures shared by the group III-nitrides: wurtzite hexagonal 

close packed (HCP), cubic zinc-blende, and rocksalt [29]. These crystal structures are shown in 

Figure 2.1. The equilibrium crystal structure of III-nitrides is that of wurtzite for bulk AlN and 

GaN [30]. The zinc-blende structure has a cubic unit cell, containing four group III and four 

nitrogen atoms. This structure can be stabilized via epitaxial growth of thin films on cubic 

substrates such as Si, MgO and GaAs [30]. In these cases, the intrinsic tendency to form the 

wurtzite structure is overcome by the topological compatibility. The rocksalt structure cannot be 

stabilized through the epitaxial growth and is only produced at extreme pressures [29].  
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Figure 2.1 Crystal structure of: (a) wurtzite, (b) zinc-blende, and (c) rocksalt. 

The wurtzite crystal has a hexagonal unit cell and thus is characterized by two lattice 

parameters a (i.e., edge length of basal hexagon) and c (i.e., height of the hexagonal prism) as 

well as by the u-value (where u=b/c and b is the bond length). The wurtzite structure consists of 

two interpenetrating hcp sublattices, offset along the c-axis by 
5

8

th
 of the cell height (i.e., 5c/8). 

Figure 2.2 demonstrates a GaN unit cell. 

 

 

Figure 2.2 GaN unit cell. 

2.1.2 Epitaxial growth of III-nitride semiconductors 

First synthesis of III-nitride semiconductors (i.e., AlN) was reported by Fichter in 1907 [31]. 

Following that, in 1938, synthesis of GaN was reported by passing ammonia over hot gallium by 

Juza and Hahn [32]. However, due to the challenges in III-nitrides synthesis, research focused on 

GaAs and silicon while for many decades no significant progress was made on III-nitrides 

(a) (b) (c) 
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growth. In 1969, growth of GaN thin films on sapphire with hydride vapor phase epitaxy 

(HVPE) was reported for the first time by Murusaka and Tietjen [33]. Shortly after, GaN growth 

was reported using metal organic chemical vapor deposition (MOCVD) and molecular beam 

epitaxy (MBE) in 1971 and 1976, respectively [34] - [35].  In the absence of good quality GaN 

substrates, investigation was led into several different substrates for epitaxial growth of GaN. 

Due to the large lattice mismatch, several methods have been adapted to optimize the nucleation 

and growth of GaN layers on these substrates [36] - [38]. Currently, the main technique for the 

growth of III-nitrides is metal organic vapor phase epitaxy (MOVPE) which is performed at 

temperatures around 1000 °C using a gas mixture of ammonia and hydrogen [39]. The growth at 

very high temperatures limits the available substrates to GaN single crystalline substrate, 

sapphire, SiC, and silicon [40]. GaN single crystalline substrate would be the ideal substrate as 

there would be no lattice mismatch and it would reduce the density of defects. Due to significant 

difference between the thermal expansion coefficient and the lattice constant between III-nitride 

epilayers and the substrates other than the native GaN, crystal defects in the form of threading 

dislocations are inevitable [41]. In 1986, the first growth of high-quality GaN layers was reported 

by Amano et al. by introduction of a low-temperature AlN nucleation layer [38]. However, even 

with nucleation layer, GaN on SiC and sapphire is plagued with a defect density in the range of 

10
8
 cm

-2
 to 10

10
 cm

-2
.  

Figure 2.3 presents two different atomic arrangements of GaN wurtzite structure. 

Depending on the growth technique and conditions, growth surface is terminated by either 

nitrogen atoms or gallium atoms. The gallium terminated surface is termed Ga-face and the 

nitrogen terminated surface is called the N-face. Ga-face and N-face correspond to planes normal 

to [0001] and [0001̅] directions, respectively. The most common growth direction for III-

nitrides is normal to {0001} plane (i.e., c-plane). GaN grown in MOCVD reactors on c-plane 

SiC or sapphire substrates results in crystals with Ga-face [42]. 
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Figure 2.3 A stick-and-ball diagram of Ga-face (a) and N-face (b) GaN crystal structure [43]. 

In terms of processing and manufacturing, scaling up the wafer size is necessary to 

reduce the cost per die. While high quality Si substrate is available up to 12” in diameter, 

sapphire, SiC, and GaN are commercially available only to a maximum diameter of 6”, 4”, and 

2”, respectively [44]. Properties of the available substrates for III-nitrides epitaxy are presented 

in Table 2.1 [40]. Among these, SiC offers the best thermal conductivity, which makes it suitable 

for high power electronics. Relatively low thermal expansion coefficient mismatch with GaN 

offer the SiC substrate another advantage against other non-native substrates. In spite of these 

advantages, based on the lure of integration with Si electronics, enticingly larger wafer, and good 

thermal conductivity, Si is increasingly studied as an attractive substrate for GaN electronics.  

 

Table 2.1 

Properties of available substrates for III-nitride epitaxy [40]. 

Substrate 
Thermal-Conductivity 

(W/m∙K) 

Electrical 

Resistivity 
Cost, Wafer size 

GaN 130 High Very expensive, 2” 

SiC 300-380 High Expensive, 4” 

Sapphire 50 High Moderate cost, 6” 

Silicon 100-150 Medium Low cost, 12” 

(b) (a) 
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2.1.3 Material properties of III-nitrides 

The large difference in electronegativity between nitrogen and group V elements results in very 

strong chemical bonds among III-nitrides. The strong chemical bonding of III-nitrides in turn 

results in radiation hardness, high melting temperature, and superb mechanical strength among 

these semiconductors. III-nitrides also enjoy high thermal conductivity. These properties make 

III-nitrides potential candidates for making of electronics intended for operation in harsh 

environment. Table 2.2 presents a short list of physical properties of GaN, AlN, InP, GaAs, and 

Si at room temperature [45]. 

Table 2.2 

Physical properties of GaN, AlN, InP, GaAs, and Si at room temperature [45]. 

 GaN AlN InP GaAs Si 

Bandgap energy (eV) 3.39 6.2 1.34 1.424 1.12 

Lattice constant, a(Å) 3.160 3.112 5.868 5.653 5.431 

Lattice constant, c(Å) 5.125 4.982 N/A N/A N/A 

Electron affinity (eV) 4.1 0.6 4.38 4.07 4.05 

Break down field (MV/cm) 5 1.8 0.45 0.4 0.3 

Refractive index 2.29 8.5 3.1 3.3 3.42 

Thermal conductivity (W/cm.K) 1.3 2.85 0.68 0.55 1.3 

Melting point (°C) 2500 3023 1333 1240 1412 

Relative dielectric constant, ɛr 8.9 9.14 12.4 12.5 11.7 

2.1.4 Polarization effect in III-nitrides 

The non-centro-symmetric nature of wurtzite structure in III-nitrides leads to the formation of a 

spontaneous polarization even in absence of external strain and/or electric-field. These crystals 

constitute of two hexagonal sublattices (i.e., cation and anion), the non-overlapping charge-

center of which is the cause for aforementioned spontaneous polarization. In III-nitrides, 

asymmetry of inversion is present only along the c-axis. Hence, spontaneous polarization is 

parallel to the c-axis. Therefore c-plane III-nitrides are often called polar III-nitride. The 

spontaneous polarization is defined by a vector pointing from a metal atom toward a nitrogen 

atom. Hence, the direction of the spontaneous polarization depends on the growth face [46].  

In addition to the spontaneous polarization, a sizable piezoelectric polarization exists 

among the heterojunctions realized in this material system. This is due to the induction of strain 

through pseudomorphic growth of two lattice-mismatched crystals and the large values of 

piezoelectric coefficients among III-nitrides [46]. The built up of stress energy through 
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increasing the thickness of the pseudomorphically overgrown layer eventually triggers the 

relaxation of this material to its native lattice constant. As a result of this relaxation the 

thickness of the overgrown layer, especially in the case of growth under tensile strain, is quite 

limited. Relaxation may occur in the form of delamination, generation of dislocations, cracking 

or a combination of these. When relaxation occurs, piezoelectric polarization becomes zero. 

2.1.5 Polarization-induced two dimensional carrier concentration 

Piezoelectric effect and the difference between spontaneous polarizations of the GaN channel- 

and the AlGaN barrier-layer, cause the formation of a sizable 2DEG at the AlGaN/GaN 

heterointerface. Figure 2.4 shows the spontaneous and piezoelectric polarization vectors in a Ga-

face wurtzite AlGaN/GaN heterostructure [47]. Due to the dominant presence of these 

polarization vectors, these heterostructures are known as polar heterostructures. In this figure, the 

spontaneous polarization in each material is shown by the vector Psp and the piezoelectric 

polarization in the tensile-strained AlGaN barrier is represented by the vector Ppz. Since the thick 

GaN is assumed to be relaxed to its freestanding lattice constant, only the spontaneous 

polarization is present within this layer. Among III-nitrides, the value of the spontaneous 

polarization increases from GaN to InN, and to AlN [3]. As suggested by the directions of the 

polarization vectors demonstrated in Figure 2.4, a net positive charge should be induced at the 

bottom of the AlGaN barrier-layer. For the charge neutrality to be satisfied, a layer of negative 

charges (i.e., electrons) needs to be induced at the top of the GaN surface. These electrons form 

the 2DEG.  

 

 

Figure 2.4 Spontaneous and piezoelectric polarization vectors in a metal-face wurtzite AlGaN/GaN 

heterostructure [47]. 
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2.2 AlGaN/GaN heterojunction field effect transistors 

HFETs as high frequency low noise amplifiers are now widely used as extremely low noise 

devices in telecommunications systems, space radio telescopes, active electronically scanned 

array radars, direct broadcasting satellite television (DBS) receivers, microwave and high power 

amplifiers, cellular phones, and car navigation receivers. These transistors take advantage of at 

least one type-I heterointerface formed between two materials of different bandgaps, where the 

wider bandgap material serves as the barrier against leaking of the almost two-dimensionally 

confined electrons accumulated on the small bandgap side of the heterointerface to the gate. 

Figure 2.5 presents a cross sectional view of a traditional AlGaAs/GaAs HFET. In this 

technology the carrier mobility of the 2DEG, formed at the vicinity of the heterointerface of the 

buffer- and the barrier-layer, is improved by resolving the ionized-impurity scattering problem 

through spatially separating the 2DEG from these scatterers. In these structures, ionized-impurity 

scattering can be further reduced through incorporation of a thin undoped spacer-layer between 

the barrier- and the buffer-layer at the cost of the reduction of gate-transconductance [48].  

 
Figure 2.5 Cross sectional view of a traditional AlGaAs/GaAs HFET device structure. 

Over the past two decades, AlGaN/GaN HFETs have demonstrated considerably larger 

output power and temperature tolerance compared to the AlGaAs/GaAs HFETs, which are 

among the primary candidates for high power applications. This is due to wider bandgap and the 

ability to achieve outstanding 2DEG densities on the polar AlGaN/GaN heterostructures without 

the need for intentional doping of the barrier-layer. The first AlGaN/GaN HFET with 0.25 μm 

gate length, current density of 60 mA/mm and maximum gate-transconductance of 27 mS/mm 

was demonstrated by Khan et al. in 1994 [7]. Material and processing improvements have now 
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yielded considerable improvements to these records. In terms of current density and maximum 

gate-transconductance values above 1 A/mm and 300 mS/mm, respectively, are readily available 

among devices of these dimensions. 

Figure 2.6 demonstrates the typical layer structure of an AlGaN/GaN HFET. Not unlike 

AlGaAs/GaAs HFETs, in this structure there exists a potential well at the GaN side of the 

AlGaN/GaN heterointerface. This is due to the differences among the bandgaps and electron-

affinities of the two materials forming the heterojunction. The presence of this quantum-well 

results in the formation of a 2DEG in the undoped GaN layer. Existence of strong polarization at 

the heterointerface of the AlGaN/GaN HFET causes an extra band-bending and reversal of the 

curvature of the barrier's conduction band-edge (i.e., in comparison to that of the AlGaAs), 

which leads to enhanced 2DEG concentration even when the AlGaN barrier-layer is undoped. 

Figure 2.7 offers a behavioral depiction of the conduction-band diagram of an AlGaN/GaN 

HFET. 

 
Figure 2.6 AlGaN/GaN HFET structure. 

 
Figure 2.7 Conduction-band diagram of AlGaN/GaN HFET. 

Figure 2.8 presents schematics of different GaN-based FETs including metal 

semiconductor field effect transistors (MESFETs), metal insulator semiconductor field effect 

transistors (MISFETs), AlGaN/GaN HFETs, and doped channel AlGaN/GaN HFETs (DC-

HFETs). 
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Figure 2.8 Schematic structure of different GaN-channel FETs: GaN MESFET (a), AlGaN/GaN MISFET 

(b), AlGaN/GaN HFET (c), and AlGaN/GaN DC-HFET (d). 

Ohmic contact resistance (i.e., Rc) of 0.129 Ω.mm, minimum specific contact resistance 

(i.e., ρc) of 3.22x10
-7

 Ω.cm
2
, drain current density of 1.6 A/mm, comprise some of major records 

established in AlGaN/GaN HFET technology [49]. Due to their high breakdown voltage, 

AlGaN/GaN HFETs can operate in range of biases that are not readily extendible to many other 

device technologies.  

2.3 AlN/GaN metal-insulator-semiconductor field effect 

transistors 

The growing demand for high power transistors capable of operating at higher frequencies has 

recently instigated an interest in AlN/GaN MISFETs realized on Ga-face wurtzite epilayers. 

Compared to AlGaN/GaN HFETs, these transistors are expected to yield higher breakdown 

voltage, higher drain current density, and better frequency response. These expectations are 

owing to a number of factors including the elimination of remote alloy scattering, very large 

bandgap of AlN, and the superior spontaneous polarization developed in this polar barrier. The 

superior polarization of these heterostructures is expected to yield a sizeable 2DEG concentration 

even when the barrier thickness is smaller than that of a traditional AlGaN/GaN HFET. This 

smaller barrier thickness is expected to allow a boost in gate-transconductance (and as a result in 

the frequency response). However, from the crystal growth perspective, sizeable lattice mismatch 

between AlN and GaN inhibits the realization of high-quality AlN layers on GaN, when the AlN 

thickness is beyond just a few nanometers. Despite the limited thickness of this barrier-layer, 

relative recent developments in the area of crystal growth (which has made the growth of about 

10 nm thick AlN layer a reality) have raised the expectation for achieving 2DEG densities over 

3×10
13

 cm
-2

. These channels have been observed to enjoy a room-temperature mobility 

exceeding 1000 cm
2
/V.s and low sheet resistance in the range of ~170 Ω/□ [28], [50]. 

(b) (a) (c) (d) 
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Although AlN/GaN MISFETs are expected to offer higher 2DEG densities and larger 

breakdown fields, compared to the AlGaN/GaN HFETs they have been shown to suffer from 

more surface sensitivity, higher gate-leakage current, and higher Ohmic contact resistance. 

Among other improvements, further developments in realization of Ohmic contacts across the 

wide bandgap AlN barrier-layer is required to fully achieve the promised advantages of 

AlN/GaN MISFETs. 

2.4 Reliability and degradation issues in AlGaN/GaN HFETs 

Although the RF performance of III-nitride HFETs has quickly improved over the past few 

years, commercialization of this technology has stayed limited by the device reliability [51]. 

Among other things, operation under high electric-fields has been observed to result in hot 

electron-induced degradation in the peak transconductance and the saturation drain current. At 

high power levels, long terms exposure to RF signal (i.e., under the so-called RF stress) has been 

observed to create new traps within the epilayer and to manifest degradations in DC and RF 

performance. Also, due to the high power density of these transistors, self-heating has been 

observed to take a dominant position towards producing a negative output conductance. 

Degradation of RF performance expressed in terms of factors such as power added efficiency 

(PAE) and RF gain has been the topic of a large number of studies [52]. 

2.4.1 Electrical manifestations of performance degradation 

Although remarkable progress has been made in recent years, AlGaN/GaN HFETs still suffer 

from problems such as drain current collapse, drain- and gate-lag, gate leakage, and leakage 

through substrate whose mechanisms are not well understood. 

2.4.1.1 Drain current collapse 

Observation of drain current collapse in AlGaN/GaN HFETs was first reported in 1994 [7]. 

Figure 2.9 demonstrates the current collapse phenomenon in AlGaN/GaN HFETs. Early reports 

indicated the correlation of these observations to the application of the RF signal to the gate 
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electrode. Under these test conditions the observed collapse in the dynamic value of the drain 

current and the output resistance have been shown to limit the RF output power of AlGaN/GaN 

HFETs to values much smaller than the predictions based on the DC characteristics [53]. In 

addition to these so-called transient observations, it has been shown that even under modest 

conditions of drain and gate bias the long term application of DC bias can semi-permanently 

increase the output resistance of an HFET (i.e., while its drain current drive undergoes a sizeable 

collapse compared to its value before stress) [54]. It has been speculated that the latter 

observations are due to injection of hot carriers from the channel either to the deep surface states 

in the high electric-field regions of the channel [54], deep trap levels within the AlGaN barrier-

layer [53], or those present in the GaN buffer-layer [55] - [56]. In addition to these descriptions 

in terms of a phenomenon related to pre-exiting traps, researchers have described the current 

collapse mechanism of AlGaN/GaN HFETs via a number of alternative explanations. These 

explanations include: current collapse due to evolution of a gate bias-induced non-uniform strain 

[57], collapse due to presence of piezo-related charge states [58], and current slump caused by 

electron trapping in hot carrier-generated new trap sites [59]. 

 Whereas until now the exact cause of current collapse among AlGaN/GaN HFETs is not 

known, upon improvements in the crystalline quality of the AlGaN/GaN epilayer and electrically 

passivating the surface traps a tangible reduction in both manifestations of current collapse and 

the resulting limitations of RF output power has been observed [60] - [61]. Some of these 

improvements are thanks to SiN surface passivation [62], incorporation of surface charge control 

cap layers [63], incorporation of field-plates [64], implementation of pre-passivation plasma 

treatment [65], and the implementation of deep recessed gate structures [66]. More recently, 

deposition of a polycrystalline AlN film as the passivation layer has been shown to be promising 

in eliminating the surface-related drain current collapse [67].  

 One of the manifestations of the transient performance degradation of AlGaN/GaN 

HFETs has been the dependence of the output resistance and gate-transconductance of these 

devices on the excitation frequency. Reduction in these metrics with the excitation frequency has 

been reported even when this frequency is in the range of a few megahertz. 
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Figure 2.9 Current collapse phenomenon in AlGaN/GaN HFETs. 

2.4.1.2 Drain- and gate-lag 

In AlGaN/GaN HFETs, a slow current transient is often observed if the gate-voltage (or, the 

drain-voltage) changes abruptly. The observations of a time lag in the drain current’s response to 

the abrupt variation of the drain and gate-voltage are often referred to as drain- and gate-lag, 

respectively. Gate-lag refers to the drain current transient in response to gate voltage pulses 

while drain-voltage is constant. Likewise, the drain-lag identifies with the drain current transient 

in response to a drain-voltage pulse when gate-voltage is constant.  

 It is commonly accepted that electron trapping in the shallow traps of the buffer is the 

cause of the drain lag [68], while trapping in the shallow states of the surface is accepted as the 

cause of the gate-lag [69]. In addition, there are some studies that suggest that shallow bulk 

defects in the GaN buffer may be also responsible for gate-lag [70]. Gate-lag due to electron 

trapping in the buffer is believed to be instigated by the hot electrons generated in the 2DEG 

[71]. Studies show a considerable reduction in the amount of gate-lag by post annealing of the 

gate and surface passivation [72].  

2.4.1.3 Gate leakage 

In spite of the promises of the wide bandgap of the barrier-layer of AlGaN/GaN HFETs for 

realization of a semi-insulated gate, the reported levels of gate leakage current among these 

devices are often quite disappointing.  
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 While still a vigorous research on the origins of this higher than expected leakage current 

is being pursued, a number of explanations have been so far presented. Among these are: barrier-

thinning caused by charged traps, trap- and defect-assisted tunneling, and hopping through 

dislocations [73] - [74]. According to these studies, existence of a distributed band of traps 

located within the AlGaN barrier acts as the facilitator in tunneling through the barrier [74]. 

Additionally, surface roughness has also been shown to have a major role in gate leakage [75]. 

Techniques such as surface passivation with Si3N4 [76], use of insulating SiO2 [76], adopting a 

GaN cap layer [77], and implementing post gate anneal [78] have been all shown to be effective 

in reducing the gate leakage current in AlGaN/GaN HFETs. 

2.4.1.4 Leakage through substrate 

Lattice mismatch and differences in thermal expansion coefficients of epitaxially-grown III-

nitride epilayers and the common substrates such as sapphire, Si, and SiC results in high defect 

densities within these epilayer. This is a limiting factor on the performance of AlGaN/GaN 

HFETs. The impacts of these imperfections are often observed in terms of unintentional doping 

of the buffer layer, which results in soft pinch-off and leakage through buffer. Transition metal 

doping is often used to change the conductive substrate into a semi-insulating substrate, which as 

a result yields a smaller leakage through the substrate [79]. 

2.4.2 Material origin 

Maturity and manufacturability of the starting structure is a major challenge to the 

commercialization of AlGaN/GaN HFETs. This section lists the main phenomena related to 

material origins in this technology.  

2.4.2.1 Uniformity 

The uniformity of the starting structure is a critical factor for high yield and tighter device 

specification. Around 1,000 ºC susceptor temperature is needed for high quality AlGaN/GaN 

structure growth. Small fluctuation of the temperature during the growth leads to a significant 
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change in growth rate and compositional ratio of AlGaN layer, which leads to huge variations in 

device performance of the AlGaN/GaN HFETs, especially for larger size substrates. 

Temperature gradient inside the substrates degrades the flatness of the wafer and increases 

bowing of the wafer, which leads to loss of temperature uniformity on the wafer surface during 

the growth [80]. Thus, in order to achieve high uniformity on the wafers in MOVPE reactors, 

controlling of the heater and susceptor balance is one of the most crucial steps in the growth 

process. To further improve the manufacturability of the AlGaN/GaN HFETs, also developments 

in MOCVD reactor geometry have been made to ensure more streamlined gas flow in the 

chamber. 

2.4.2.2 Crystalline defects 

Crystal defects of various types (such as: point, line, and planar) have been observed in 

epitaxially grown pseudomorphic III-nitride heterostructures. A large point-defect concentration 

in the order of 10
16

 cm
-3

 is often observed in GaN layers grown on SiC or sapphire [81]. These 

point defects can be categorized into three basic categories: atoms missing from lattice sites (i.e., 

vacancies), anions sitting on cation sites or vice versa (i.e., anti-sites), and additional atoms in 

between the lattice sites (i.e., interstitials). The line defects are mainly threading dislocations 

(TD). In addition to point-defects, GaN layers contain a very high density of TDs in the range of 

10
8
-10

10
 cm

-2
 [82]. 

2.4.3 Metallurgy 

Persistent performance degradation of electronic devices during operation, whether or not 

leading to device failure, constitutes a reliability concern. While some device degradations are 

only observable under RF measurement circumstances, the others persist even during DC 

evaluations. As a result, such degradations can have either a permanent or a transient nature. 

Among III-nitride HFETs such degradations include: pinch-off voltage walk-out, reduction in 

DC drain current, drooping RF gain/output power, and increasing gate leakage current. As the 

material quality and processing technology of AlGaN/GaN HFETs is improving, incorporation 

of a number of remedies to device design and microfabrication have already produced a tangible 
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improvement to some of the reliability concerns. One of these important remedies has been the 

incorporation of a passivation layer such as silicon-nitride on the exposed surfaces of the barrier-

layer [53]. In spite of these improvements, there are still several metallurgy related reliability 

issues and degradation mechanisms which require attention. These metallurgy-related 

degradation mechanisms can be divided into three main categories: contact degradation, hot-

electron effect, and inverse piezoelectric effect. 

2.4.3.1 Contact degradation 

Stable drain and source Ohmic contacts are important features in the operation of HFETs. Due to 

the high electric-fields generated in the vicinity of the gate, maintaining a thermally stable 

Schottky barrier is also a key concern in reliable device operation. Among AlGaN/GaN HFETs, 

both Ohmic and Schottky contacts have shown excellent stability below 290 °C. Degradation of 

the Ohmic contact has been observed under thermal storage after 2000 h at 290 °C and beyond. 

[83]. In this technology Ohmic contacts are often formed in the form of a stack of metal layers 

such as Ti/Al/Ti/Au, which through undergoing very high temperature rapid thermal annealing 

(RTA) produces an alloyed Ohmic contact to the 2DEG. The Schottky contacts are also formed 

in the form of a stack of metals such as Ni/Au.  

 Decrease of drain current and transconductance, increase of channel-on-resistance, and 

passivation cracking have been reported for thermal storage test stress at temperatures over 300 

°C. These are due to Ga out-diffusion from the epilayers, Au inter-diffusion among the layers of 

the Ohmic metal stack, and the growth of Au-rich grains that eventually lead to crack formation 

in the passivation layer [84].  

Among AlGaN/GaN HFETs an increase in the Schottky barrier height has been also 

observed for Schottky contacts exposed to DC stress at elevated junction temperatures [85]. This 

can be due to the consumption of Ni layer after the RTA, causing a positive shift in the Schottky 

barrier height and drain current degradation [86]. 
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2.4.3.2 Hot electron-induced traps 

It is widely known that hot electrons are one of the most important concerns for the reliable 

operation of FETs. Owing to the typical operation of AlGaN/GaN HFETs of sub-micrometer 

gates at very high drain voltages, these devices are often operating under extremely high electric-

fields prone to hot electron generation. So far, for reducing the peak value of the electric-field 

and hence the hot electron-induced reliability concerns a number of features such as field-plate 

and recessed-gate have been adopted to the III-nitride technology [87]. Figure 2.10 presents 

cross sectional view of a device taking advantage of these features. The presence of these 

features serves to lower the peak electric-field on the drain side of the gate.  

 

Figure 2.10 Cross sectional view of the AlGaN/GaN HFET taking advantage of source-connected 

field-plate and gate-recessed features. 

Hot electrons are not only capable of surmounting the potential barriers confining the 

2DEG (hence, contributing to the gate and the substrate current in addition to electron migration 

to the existing trap sites within the barrier), but are also capable of generating defects within the 

epilayer. Such defects can be formed at the interface between the passivation layer and the 

AlGaN barrier-layer, within the AlGaN barrier, or within the GaN buffer-layer. Electron trapping 

if the traps are of acceptor nature can induce a partial depletion of the 2DEG at their vicinity, and 

accordingly degradation in device characteristics such as output conductance and the drain-

current drive. The observed degradation is sometimes reversible and the original condition can 

be restored via UV lighting or with unbiased room temperature storage [88]. 
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2.4.3.3 Inverse piezoelectric effect 

Relatively recently defect formation induced by the inverse piezoelectric effect has been revealed 

to be one of the main mechanisms of degradation among AlGaN/GaN HFETs exposed to off-

state bias stress [88]
1
.  

 In an AlGaN/GaN HFET operating under large bias voltages, a large electric-field across 

the barrier-layer evolves at the drain edge of the gate. This electric-field can in turn induce a very 

large mechanical stress within this very small region. This mechanical stress has been observed 

to induce additional tensile strain across the AlGaN barrier-layer. Once the electric-field reaches 

a critical value, the AlGaN layer starts to relax through the formation of crystal defects (i.e., 

leading to performance degradation) [89]. In this case, removal of the bias does not allow the 

recovery of the device performance. Generation of deep traps in degraded devices has been 

confirmed by current-DLTS measurements [90]. Also, the formation of pit-shaped defects has 

been confirmed by TEM and AFM measurements. This type of degradation is characterized by a 

critical voltage, at which defect formation due to an increased electric-field occurs [91]. 

2.5 Conclusion 

This chapter discussed the properties of III-nitride material system such as crystal structures, 

epitaxial growth of III-nitride semiconductors, material properties, polarization effect, and 

polarization-induced two dimensional carrier concentration. Device structures and current 

challenges facing AlGaN/GaN HFETs and AlN/GaN MISFETs were also explored.  
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 VGS = VGD = -21 V 
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Chapter 3 

 

 

Impact of isolation-feature geometry on self-

heating of AlGaN/GaN HFETs
2
 

 

3.1 Introduction 

In this chapter, the correlation between the geometry of the isolation feature and average channel 

temperature of biased AlGaN/GaN HFETs is investigated. In response to the growing demand 

for high-frequency amplifiers, offering higher power amplification, both in civilian and military 

applications, over the past two decades AlGaN/GaN HFETs have drawn a great deal of attention. 

Since AlGaN/GaN HFETs operate at exceptionally high-power densities, a sizable amount of 

self-heating negatively impacts the reliability and power rating of these transistors [92]. This is 

due to the fact that the elevation in the channel temperature leads to degradation in electrical 

transport properties of the channel, reduction in the effective Schottky barrier height of the gate, 

and strain relaxation of the barrier-to-channel heterointerface [92]. 

As a result of these drawbacks, thermal management must be carefully considered to 

minimize the channel temperature and ensure reliable long-term device operation. Self-heating in 

AlGaN/GaN HFETs has been well documented in [93] - [95]. Based on these studies, several 

remedies for reducing the channel temperature have been explored [96] - [98]. Since the 

presence of a considerable thermal boundary resistance at the interface with the buffer layer 

                                                           
2
 Most of the material presented in this chapter has been previously published: A. Loghmany, P. Valizadeh, and J. 

Record, “Impact of isolation-feature geometry on self-heating of AlGaN/GaN HFETs,” IEEE Trans. Electron 

Devices, vol. 61, no. 9, pp. 3152-3158, Sept. 2014. 
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imposes a sizeable self-heating on the operation of AlGaN/GaN HFETs, these remedies are 

mostly based on incorporation of a high thermal-conductivity substrate [99]. However, since 

power is predominantly dissipated in the very small region of the channel in the proximity of the 

drain-edge of the gate, thermal management closer to this hotspot has also been targeted via 

incorporation of high thermal-conductivity passivation layers such as AlN to spread heat at the 

surface [67]. On the basis of this latter consideration (i.e., heat management at the surface instead 

of substrate), in this chapter, a promising heat-management strategy founded on exploring 

alternative geometries of isolation feature is presented.  

3.2 Device structure and characteristics 

The transistors used in the studies presented in this chapter were fabricated on an AlGaN/GaN 

HFET structure grown on a SiC substrate. The epitaxial structure was composed of a 20 nm 

Al0.3Ga0.7N barrier, 1 nm AlN spacer layer, 200 nm unintentionally doped GaN channel layer, 2 

μm GaN buffer layer, and 20 nm nucleation layer. The process followed a standard recipe for the 

fabrication of AlGaN/GaN HFETs. This recipe starts with the definition of isolation features of 

300 nm height, using a chlorine-based reactive ion etching process. Following this step, Ohmic 

and gate contacts are formed. The unexposed surfaces are passivated by SiN.  

According to this recipe, six categories of two-finger HFETs, with different isolation-

feature geometries, were fabricated side-by-side one another. Figure 3.1 presents micrographs of 

these six categories of devices. Although traditionally HFETs are fabricated on cubic mesa-

isolation features of lateral dimensions, the size of the gate-width, the six categories of devices 

reported here have alternative geometries resembling: 1) array of islands [which as shown in 

Figure 3.1(a) and (b) are simply small-size mesas]; 2) fins [which as shown in Figure 3.1(c) and 

(d) are simply narrow mesas]; 3) ladders [which as shown in Figure 3.1(e), the channel is formed 

on the steps of a ladder like structure]; or 4) combs [which as shown in Figure 3.1(f), the channel 

is formed on the teeth of a comb-like structure]. The difference between the two types of fin-

isolated HFETs is in terms of the orientation of the fin versus the gate (i.e., one in parallel and 

one normal to the gate-finger). The two types of island-isolated HFETs differ in the size of each 

island. 
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Details of the dimensions of the isolation features are indicated in Figure 3.1. The total 

width of the transistors from any of the six categories is 98 μm. Since the 2DEG channel is 

formed only in those parts of the epitaxial layer which remain unetched upon the definition step 

of the isolation feature, the transistor width is calculated through multiplying the width of the 

island, fin, comb-tooth, and ladder-step by the number of these features intersecting a gate-

finger. The minimum dimensions were limited by the foundry’s constraints. Devices with two 

different values of gate-length (i.e., 1 and 0.5 μm) were designed and fabricated in each category. 

All fabricated devices
3
 have a gate–drain spacing of 2 μm and gate–source spacing of 1.1 μm. 

                                                           
3
 All devices were fabricated by Canadian Microelectronics Corporation (CMC) with GaN500 process. 
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Figure 3.1 Micrographs of (a) seven-island island-isolated HFET, (b) 14-island island-isolated HFET, (c) 

fin-isolated HFET, (d) inverted-fin fin-isolated HFET, (e) ladder-isolated HFET, and (f) comb-isolated 

HFET. Gate-length, lengths of drain- and source-access regions are 1, 2, and 1.1 μm, respectively. Insets: 

3-D schematic diagram representing a minimum set of isolation features. Panels on the right present a 

magnified view of each device in the area approximately indicated by the oval. On these magnified 

images, the highlighted boundaries in black identify the etching patterns of some of the isolation-features. 

In panels (a), (b), and (d), this is done only for one out of many identical features. In (c), (e), and (f), the 

highlighted boundary indicates one out of two identical features. 
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Figure 3.2 Typically observed extrinsic gate-transconductance versus gate-source voltage characteristic, 

for the six categories of devices. Gate-length is 1 μm and drain-source voltage is 7 V. Inset: close-up 

around the pinch-off voltage. Arrow: growing order of the positive-shift along the named order of 

isolation feature categories. 

Keithley 4200-SCS semiconductor characterization system was used to obtain the DC 

characteristics of the devices. Despite different levels of self-heating, devices from all categories 

almost identically demonstrate proper drain-current saturation, effective channel pinch-off, and 

acceptable gate leakage. Maximum drain-current density and normalized extrinsic gate-

transconductance in the order of 0.7 A/mm and 200 mS/mm are observed, respectively. Figure 

3.2 presents the variation of the extrinsic gate-transconductance of these devices with the gate–

source voltage. 

3.3 Assessment of self-heating in transistors of alternative 

isolation-feature geometry 

On the basis of finite element analysis (FEA), temperature distribution for the six categories of 

devices in response to the heat generated within the channel of the biased HFETs was evaluated 

in ANSYS Mechanical. This evaluation was subjected to relevant boundary conditions in terms 

of the ambient and base temperature (i.e., 300 K), convection, and heat generation associated 

with self-heating. Isolation features of each of the six device categories were defined on a 1-

mm× 1-mm area of the epitaxial layer structure identified in section 3.2. The room-temperature 

values of the material properties relevant to this evaluation are presented in Table 3.1. The 

temperature dependence of these characteristics was also built into the model [100] - [101]. In 

defining the thermal properties of this epitaxial layer structure, the interface between the III-

nitride and SiC was assumed to be perfect with no interfacial thermal resistance. 
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In these simulations, self-heating was analyzed by creating a heat-generator element 

within the high electric-field region of the 2DEG channel. The heat-generator operated at a 

power level corresponding to the DC bias (i.e., ID × VDS). This was done because in 

AlGaN/GaN HFETs, like other FETs, most of the potential drop, and thereby self-heating, takes 

place in the vicinity of the drain-edge of the gate. In this study, the length of this high electric-

field region was approximately taken as the length of the channel operating under at least eighty 

percent of the maximum longitudinal electric-field. This length was evaluated on the basis of the 

model presented in [102]. The center of the improvised heat generator was defined at the drain-

edge of the gate, whereas its thickness was taken as 2 nm. For each gate-finger of the fin-isolated 

HFET, the heat was assumed to be uniformly dissipated along the width of a continuous channel. 

The corresponding heat generator for each gate-finger in the other five categories of devices 

shown in Figure 3.1 was defined in terms of an array of discrete uniform heat generators 

improvised in the high electric-field region of each isolation feature intersecting the gate-finger. 

At a given bias condition, due to similarity of the drain I–V characteristics among all of the 

devices shown in Figure 3.1 and their equivalent gate-width, the sum of the power delivered by 

these heat generators was identical among all devices. 

Table 3.1 

Material properties of GaN, AlGaN, and SiC at 300 K. 

Material 
Thermal-Conductivity 

(W/m∙K) 

Specific Heat Capacity 

(J/kg∙K) 

Density 

(kg/m
3
) 

GaN 130 490 6150 

AlGaN 176 379 5184 

SiC 490 690 3200 
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Figure 3.3  Channel-temperature distribution according to heat dissipation of 5 W/mm across the high 

electric-field region of the 2DEG for a representative set of patterns in (a) 7-island island-isolated HFET, 

(b) 14-island island-isolated HFET, (c) fin-isolated HFET, (d) inverted-fin fin-isolated HFET, (e) ladder-

isolated HFET, and (f) comb-isolated HFET based on ANSYS simulations. Gate-length is 1 μm. 
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Figure 3.3 presents the channel-temperature distribution across the 2DEG of all six 

categories of devices when a total power of ∼0.5 W is dissipated in each device (i.e., ∼5 W/mm 

corresponding to the 98 μm width of these devices). In this figure, due to much larger thickness 

of SiC substrate and GaN buffer layer compared with the 2DEG and the barrier, these thicker 

layers are not shown. In this thermal assessment, only one, and not both gates, of the HFETs of 

Figure 3.1 were biased. In addition, instead of defining all of the isolation features intersecting a 

gate in ANSYS, only a smaller set of these features was considered, whereas the dimensions and 

amount of power dissipated in each case corresponded to the devices shown in Figure 3.1, when 

biased identically. Considering the chance of heat exchange between neighboring features, the 

number of isolation features explored in this evaluation was observed to provide a minimal set 

for properly evaluating the channel temperature. 

According to the data presented in Figure 3.3, the maximum channel temperature 

demonstrates quite a wide range of variation among the six device categories. Among these, the 

14-island island-isolated HFET has the lowest maximum temperature developed in the vicinity 

of the heat generator, whereas the fin-isolated HFET has the overall highest temperature. The 

difference between the two cases is ∼125 K. In addition, in this figure different spatial gradients 

in the channel temperature of devices from the six categories are observed. On the basis of these 

data, the more relevant metric of average channel temperature, to transport properties of 2DEG 

channel, is obtained by calculating the average temperature among the involved nodes of the 

mesh defined in the active region of the devices. 

3.4 Assessment of dependence of self-heating on the size of the 

isolation feature among transistors built on simple cubic 

mesas 

Based on the results from section 3.3, it is speculated that reducing the dimensions and 

enhancing the distributed nature of the channel, especially in the form of the island-isolation, can 

further improve the self-heating metric of performance. In order to further investigate the extent 

of efficiency of this design technique towards eliminating the self-heating problem among 

AlGaN/GaN HFETs channel temperature distribution for island-isolated HFETs of different 

island-width were investigated in ANSYS Mechanical environment. The epilayer structure is 
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already identified in section 3.2. As previously indicated in the design of island-isolated devices, 

the devices studied in this ANSYS investigation are built into islands etched with a 300 nm 

height into the epilayers. While the gate-length and length of the drain and source access regions 

of the transistors are identified in section 3.2, with the change in the dimensions of the island the 

number of island incorporated in each device is changed accordingly to preserve the total width 

of the transistor at 98 μm. Table 3.2 provides different combinations for the island-width and the 

number of islands of simulated devices. The length of each island is similar to the value 

expressed in section 3.3. 

Following the description from section 3.3, average channel temperature for devices of 

different island sizes in response to the heat generated within the channel of the biased HFETs 

was evaluated.  

Table 3.2 Different combinations for the island-width and the number of islands in the simulated 

AlGaN/GaN HFETs. 

 

 

 

 

 

 

 

 

 

 

 

 

Among the devices identified in Table 3.2, channel temperature distribution according to 

heat dissipation of 5 W/mm across the high electric-field region of the 2DEG of AlGaN/GaN 

HFET is evaluated in ANSYS mechanical. As an example, for the case of islands of width 200 

nm, the distribution of channel-temperature for this level of heat dissipation is depicted in Figure 

3.4. Figure 3.5 presents the dependence of the simulated average channel temperature on the 

Island-width (nm)  Number of islands 

14000 7 

7000 14 

3500 28 

1750 56 

850 115 

425 230 

200 490 

100 980 

50 1960 

25 3920 

12.5 7840 
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island-width according to two different levels of heat dissipation (i.e. 5 W/mm and 7 W/mm). 

The gate-length of each of the transistor investigated in these graphs is 1 μm.  

Results indicate that island-width is a critical factor in thermal management 

considerations. Among all island-isolated devices, since the combined top-surface area of the 

isolation features and total dissipated power are identical, the volumetric density of the dissipated 

power is identical.  

Figure 3.5 indicates that beyond a threshold value of island-width, the average channel 

temperature at different power levels reaches the ambient temperature. This shows that for 

island-isolated devices with island-width smaller than this threshold value, self-heating effects 

has been totally eliminated. This is an effective approach to improve performance of 

AlGaN/GaN HFETs and a viable thermal management solution.  

 

 

Figure 3.4 Channel-temperature distribution according to heat dissipation of 5 W/mm across the high 

electric-field region of the 2DEG for island-isolated HFET, based on ANSYS simulations. Island-width 

and number of islands are 200 nm and 490, respectively. Gate-length is 1 μm. 

 

 

Figure 3.5 Simulated average channel temperature according to heat dissipation of 5 W/mm and 7 W/mm 

across the high electric-field region of the 2DEG as a function of the width of each island for gate-length 

of 1 μm. Lengths of drain- and source-access regions are 2 and 1.1 μm, respectively. 
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3.5 Discussion 

To check the validity of the FEA, average channel temperature measurements for devices from 

each of the six categories were carried out according to the electrical technique proposed in [103] 

(and later reformulated in [104]). In this technique, a calibration curve is constructed by 

externally raising the lattice temperature and measuring the variation of the drain-current as a 

function of this ambient temperature when self-heating is negligible. 

To be able to neglect self-heating in the channel, pulsed mode drain-current 

characteristics were obtained using drain voltage pulses of 175 ns on-time, pulse base-voltage of 

0 V, maximum drain-voltage of 10 V, and duty cycle of 0.01%. These measurements were 

carried out under vacuum at different ambient temperatures from 300 to 440 K using an MMR-

LTMP4 probe station. Figure 3.6 presents the variation of drain-current with ambient 

temperature, when self-heating is negligible. The linear fit slope (θ) in this figure is calculated as 

-0.15 mA/mm.K. Following this calibration step, DC and pulsed-mode measurements of drain-

current were performed under the same bias condition for a given ambient temperature (Tambient). 

Temporal information of pulses is as indicated above, whereas synchronous pulses of base-level 

of zero and different maximum values matched to DC bias condition are applied to the drain and 

gate. Based on the difference between DC and pulsed-mode values of the drain-current at the 

same bias, average channel temperature (Tchannel) can be determined as 

𝑇𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 +
(𝐼𝐷−𝑑𝑐 − 𝐼𝑑−𝑝𝑢𝑙𝑠𝑒𝑑)

|𝜃|
                                                                                       (3.1) 

where Id−pulsed is the pulsed-mode drain-current, and ID−dc is the drain-current under continuous 

DC condition. 

Figures 3.7 (a) and (b) present the measured and simulated average channel temperature 

as a function of dissipated power for the six categories of devices for gate-length of 1 and 0.5 

μm, respectively. In order to compare the results from the six categories of devices with devices 

fabricated on traditionally sized mesas, a mesa-isolated device with 1 μm gate-length and same 

source- and drain-access region lengths realized on a 70 × 100 μm
2
 mesa has been also 

investigated in this study. Gate-width of this transistor is 100 μm. In these measurements, 

identical to section 3.3, only one gate-finger was biased. The impressive agreement between 



38 
 

experimental and FEA results is a testimony to the proper assessment of temperature distribution 

in the model explained in section 3.3. As expected from the magnifying role of the reduction in 

the gate-length on the maximum longitudinal electric-field [105], Figures 3.7 (a) and (b) 

demonstrate that for each device category and at a given dissipated power level, self-heating 

worsens as the gate-length is reduced from 1 to 0.5 μm. 

As observed in Figure 3.7, while an almost identical trend in increasing average channel 

temperature with dissipated power is observed, in devices where the side-walls of the isolation 

feature are closer to the drain-edge of the gate, less pronounced self-heating is recorded. Among 

these devices, the 14-island island-isolated HFET indicates the least self-heating and, as a result, 

shows the least degradation in current under continuous bias. For 1 μm gate-length, the mesa-

isolated device shows the highest channel temperature due to farther distance between the side-

walls of the isolation feature and drain-edge of the gate. 

 

Figure 3.6 Drain-current versus ambient temperature when self-heating is negligible. In terms of the 

slope, this characteristic is equivalently observed among all device categories and both values of gate-

length. Gate-source voltage is 0 V. 

In assessing this situation, we must appreciate the distributed nature of the channel 

among all of the newly proposed device categories with the exception of the fin-isolated HFET 

(i.e., for a single gate only). Among the five other device categories, the share of the drain-

current in each discrete part of the channel is less than the total drain-current, therefore less heat 

is generated in the device hotspot at the drain-edge of the gate. Between the two island-isolated 

devices and fin-isolated device, since the combined top-surface area of the isolation features and 

total dissipated power are identical, the volumetric density of the dissipated power is identical. 

As shown in Figure 3.3, however, corresponding to the reduction in distance between the 

transverse side-walls (i.e., to the channel) of the isolation feature and channel hotspot of the 
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drain-edge of the gate, 14-island island-isolated HFET shows the lowest maximum temperature, 

whereas the fin-isolated HFET offers the least favorable self-heating performance. In addition, 

among these device categories, according to the temperature distribution of Figure 3.3, Figure 

3.7 illustrates an improvement in average channel temperature in the same order. 

Figures 3.3 and 3.7 also indicate a better self-heating performance in the inverted-fin fin-

isolated HFET compared with the fin-isolated HFET. This is again supported by our earlier 

observation on the link between the distance from the transverse side-walls of the isolation-

feature and its maximum temperature. However, in the case of the inverted-fin fin-isolated 

HFET, in spite of the smaller volumetric heat density compared with the 14-island island-

isolated HFET and identical distance between the transverse side-walls, the larger distance 

between the channel hotspot and other two side-walls gives the inverted-fin fin-isolated devices 

inferior performance compared with the seven-island island-isolated HFETs. 

Among the ladder-isolated and comb-isolated HFETs, whereas the distance between the 

channel hotspot and transverse side-walls of the isolation feature is the same, the presence of one 

closer side-wall parallel to the channel to this hotspot gives the comb-isolated HFET a boost in 

terms of reduced self-heating. Both of these device categories, although superior to the fin-

isolated HFETs, demonstrate an inferior self-heating performance compared with the inverted fin 

structure. This is since the isolation feature in both of these categories present a larger volume 

and as a result a larger thermal mass. 

The aforementioned differences in the self-heating characteristic of the devices from the 

six categories, as shown in Figure 3.7, is in addition observed to be further pronounced at smaller 

values of gate-length. 

In support of the observations made on Figure 3.7, Figure 3.8 presents the sweeping- and 

pulsed-mode drain-current–voltage characteristic of the best and worst performing devices with 

regards to self-heating (i.e., 14-island island-isolated and mesa-isolated HFETs, respectively) of 

1 μm gate length. Pulsed-mode measurements were carried out using drain-voltage pulses of 5 

ms on-time, with a base voltage of 0 V, and duty cycle of 10%. While for the 14-island island-

isolated transistor, the difference between the DC and pulsed-mode characteristics is minimal, 

Figure 3.8(b) demonstrates a considerable reduction in the drain-current of the mesa-isolated 



40 
 

HFET recorded using the sweeping-mode measurement. The observed linear reduction in the 

saturation drain-current with the increase in the drain-voltage represents self-heating. Supporting 

this observation, the extent of this reduction is much less under the pulsed-mode measurement, 

with the aforementioned pulses of short duration and small duty cycle. 

In spite of the indication of the requirement for reducing the dimensions of the isolation 

features to reduce self-heating, the selected set of isolation-feature geometries that are presented 

in this study indicate that a compromise between the expected damage from dry-etching of sub-

micrometer-size isolation features and improvement in self-heating can be made via exploring 

other isolation-feature geometries (i.e., geometries other than islands). While it has been reported 

that the closer proximity of the etched side-walls to the channel and interaction between the 

etching-generated defects and channel electron population of island-isolated devices can 

negatively impact the noise performance of these devices [106], the aforementioned compromise 

seems promising toward improving the self-heating at an acceptable cost to low-frequency noise 

performance of the transistor. 
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(a) 

 
(b) 

Figure 3.7 Measured and simulated average channel-temperature as a function of dissipated power for the 

six categories of devices. Gate-length is (a) 0.5 µm and (b) 1.0 µm. Only in (b) data on a 1 µm gate-length 

device fabricated on traditionally-sized mesa (i.e., 70 × 100 μm
2
) is provided. Measurements are shown 

by the curves. Markers show the simulation results, while the order of symbols ♦, ◊, ●, ○, ■, and □ are 

according to the order of devices in the inset from top to bottom. Symbol Δ represent the control mesa-

isolated HFET in (b). 
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(a) 

 
(b) 

Figure 3.8 Drain-current versus drain-source voltage for (a) a 14-island island-isolated HFET, (b) a mesa-

isolated HFET. Gate-length of both devices is 1 µm. VGS varies from −5 to 0 V, with a step of 1 V. 

Continuous characteristics represent the sweeping-mode measured data, while the dashed characteristic 

are obtained through pulsed-mode measurement.   

3.6 Conclusion 

A new approach for reducing self-heating in AlGaN/GaN HFETs was presented. According to 

FEA and electrical measurement of average channel temperature, an improved heat-dissipation 

was observed in HFETs enjoying a more distributed nature of the 2DEG channel, especially for 

isolation features which offered the center of the channel a smaller distance to the side walls. 

Observations indicate a more distinct gain in thermal management with reduction of the gate-

length and also the surface area of the isolation pattern. Results suggest that self-heating in 

island-isolated AlGaN/GaN HFETs can be completely ruled out by reducing the island-width 

beyond a threshold value.  
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Chapter 4 

 

 

Alternative isolation-feature geometries and 

polarization engineering of polar 

AlGaN/GaN HFETs
4
 

 

4.1 Introduction 

In this chapter, correlation between the isolation-feature geometry and the DC current-voltage 

characteristics of AlGaN/GaN HFETs is investigated. The large piezoelectric and spontaneous 

polarizations of the metallic-face Wurtzite AlGaN/GaN heterointerfaces have been the center of 

much attention over the past two decades [107]. Whereas these polarizations contribute to a 

substantially enhanced concentration of 2DEG, and a superior drain-current density, they also 

grant a D-mode character to AlGaN/GaN HFETs. Although in switching applications these 

transistors offer very appealing current sources, as switches they suffer from large amounts of 

stand-by power consumption. While in realization of switching circuits according to the direct-

connected transistor logic (DCTL) configuration, both D-mode (i.e., current-source) and E-mode 

(i.e., switch) transistors are required, AlGaN/GaN HFET technology has shown difficulties in 

yielding an E-mode character. 

The quest for realization of E-mode AlGaN/GaN HFETs on metallic-face wurtzite 

epilayers has so far resulted in a number of alternative approaches for transforming their 

                                                           
4
 Most of the material presented in this chapter has been previously published: A. Loghmany and P. Valizadeh, 

“Alternative isolation-feature geometries and pinch-off voltage variation in polar AlGaN/GaN HFETs,” J. Solid 

State Electron., vol. 103, pp. 162-166, Jan. 2015. 
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typically-negative pinch-off voltage to positive values. The most viable of these alternatives are 

based on barrier-thinning [108], fluoride-based plasma treatment [14], reduction of the size of 

the isolation mesa [15] - [16],[109] - [113], polarization-engineering through replacing the 

tensile strained AlGaN barrier with the compressively strained AlInGaN barrier [114], 

incorporation of InGaN back-barrier [10], and incorporation of a p-type gate contact [115].  

Among these techniques, the first three, without modifying the growth recipe of the 

epilayer, extend the possibility of producing D-mode and E-mode AlGaN/GaN HFETs side by 

side one another. Whereas such a possibility is vital in implementation of DCTL configuration, 

in the first two techniques this is accompanied by larger gate-leakage current and possibility of 

hysteresis in the gate characteristics of E-mode HFETs. These are due to the surface damage and 

ease of tunneling through the thinned-barrier in the first technique and movement of fluorine ions 

in the techniques based on fluoride plasma treatment [116].  

Technique of the reduction of the size of the isolation mesa, however, yields the 

possibility of parallel processing of D-mode and E-mode HFETs without adding any major step 

to the fabrication process, or additional damage to the top-surface of the mesa. Ohi et al. through 

realization of multi-mesa HFETs have successfully demonstrated the capabilities of this 

technique in transforming AlGaN/GaN HFETs to E-mode transistors [15], [109]. Although they 

have attributed the positive-shift in the pinch-off voltage to a triple-gate surrounding-field effect, 

reports on transformation of the pinch-off voltage even in absence of this triple-gate effect 

suggest that other factors such as development of peel forces around the boundaries of the 

smaller mesas, and a reduction in piezoelectric polarization, can also be contributing factors to 

this positive-shift [17]. 

Whereas realization of the multi-mesa channel HFETs reported by Ohi et al. has been 

made possible through formation of trenches between mesas of widths smaller than 100 nm, and 

as a result under stringent etching requirement, clarification of the origin of the observed shift on 

the pinch-off voltage might result in reducing the burden of this etching step. Towards that end, 

two alternative isolation-feature geometries (i.e., resembling the structures of ladder and comb) 

are studied for the first time. The DC characteristics of AlGaN/GaN HFETs fabricated on these 

alternative geometries of isolation-feature are compared to those of devices fabricated according 

to the two previously proposed isolation-feature geometries (i.e., island and fin) [17]. NextNano, 
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a 3D nano device simulator, was also used in order to simulate the 2-D carrier distribution of the 

channel among these devices. 

4.2 Device structure and characteristics 

Whereas this study uses the same devices as those experimentally explored in chapter 3, for the 

sake of completeness of this chapter’s discussion the description of the device types are repeated 

here. The transistors explored in this study were fabricated on an AlGaN/GaN HFET structure 

grown on insulating SiC substrate. The epitaxial structure was composed of a 20 nm Al0.3Ga0.7N 

barrier, a 1 nm AlN spacer layer, a 200 nm unintentionally doped GaN channel layer, a 2 µm 

GaN buffer layer, and a 20 nm nucleation layer. Process technology followed a standard recipe 

for the fabrication of AlGaN/GaN HFETs, with no modification in recipe in implementing 

devices having any of the aforementioned isolation-feature geometries. This recipe starts with 

the definition of isolation-features of 300 nm height, using a chlorine-based reactive ion etching 

process. Following this step, Ohmic and gate contacts are formed. The unexposed surfaces are 

then passivated by SiN and openings are created for electrical access to the drain-, source-, and 

gate-pads.  

According to this recipe, six categories of two-finger HFETs, with different isolation-

feature geometries, were fabricated side by side one another. Figure 4.1 presents micrographs 

and 3-D schematics of these six categories of devices. Although traditionally HFETs are 

fabricated on cubic mesa isolation-features of lateral dimensions the size of the gate-width, the 

six categories of the devices which are reported here have alternative geometries resembling: 

array of islands (which as shown in Figure 4.1(a)-(b) are simply small-size mesas),   fins (which 

as shown in Figure 4.1(c)-(d) are simply narrow mesas), ladders (in which as shown in Figure 

4.1(e) channel is formed on the steps of a ladder-like structure), or combs (in which as shown in 

Figure 4.1(f) channel is formed on the teeth of a comb-like structure). In this figure, whereas the 

difference between the two types of fin-isolated HFETs is in terms of the orientation of the fin 

versus the gate (i.e., one in parallel and one normal to the gate-finger), the two types of island-

isolated HFETs differ in the size of each island.  

Details of the dimensions of the isolation-features are found in Figure 4.1. The total width 

for one gate-finger of the transistors from any of the six categories is 98 µm. This is calculated 
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through multiplying the width of the island, fin, comb-tooth, and ladder-step by the number of 

these features intersecting a gate-finger. The minimum dimensions were limited by the foundry’s 

constraints. In each category, devices with two different values of gate-lengths (i.e., 1.0 and 0.5 

µm) were fabricated. All fabricated devices have a gate-source spacing of 1.1 μm, and gate-drain 

spacing of 2 μm.  

Figure 4.2 presents typically observed DC and pulsed-mode drain and gate current-

voltage (I–V) characteristics from a single finger of the devices from each of the six identified 

categories, with gate-length of 1 μm. The pulsed-mode characteristics were obtained using drain- 

 
Figure 4.1 Micrographs of (a) 7-island island-isolated HFET, (b) 14-island island-isolated HFET, (c) fin-

isolated HFET, (d) inverted-fin fin-isolated HFET, (e) ladder-isolated HFET, and (f) comb-isolated 

HFET. Gate-length, lengths of drain-, and source-access regions are 1 µm, 2 µm, and 1.1 µm, 

respectively. Insets on the left panels present a magnified view of each device in the area approximately 

indicated by the oval. On these magnified images, the highlighted boundaries in black identify the etching 

patterns of some of the isolation-features. In panels (a), (b), and (d) this is done only for one out of many 

identical features. In (c), (e), and (f) the highlighted boundary indicates one out of two identical features. 

Panels on the right present a 3-D schematic representing a minimum set of isolation-features. 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.2  Drain and gate current versus drain-source voltage for (a) a 7-island island-isolated HFET, (b) 

a 14-island island-isolated HFET, (c) a fin-isolated HFET, (d) an inverted fin fin-isolated HFET, (e) a 

ladder-isolated HFET, and (f) a comb-isolated HFET. Gate-length of all devices is 1 µm. VGS varies from 

−5 to 0 V, with a step of 1 V. Continuous drain-current characteristics represent the pulsed-mode 

measured data.   

voltage pulses of 5 ms on-time, with a base voltage of 0 V, and duty cycle of 10%. Devices from 

all categories demonstrate proper drain-current saturation, effective channel pinch-off, and 

acceptable gate-leakage. Maximum drain-current density and normalized extrinsic gate-

transconductance in the order of 0.7 A/mm and 200 mS/mm were observed, respectively. Figure 

4.3 presents the variation of the extrinsic gate-transconductance of these devices with the gate-

source voltage. This figure demonstrates a certain correlation between the pinch-off voltage and 

the isolation-feature geometry. 
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4.3 Discussion 

Investigations over a large number of devices from the six categories, identified in the previous 

section, indicate that a correlation similar to the one presented in Figure 4.3 exists between the 

pinch-off voltage and the isolation-feature geometry of all samples. The scatter-plot presented in 

Figure 4.4, summarizes these observations. Values of pinch-off voltage were extracted by 

intersecting the rising edge of the transconductance characteristics with the VGS axis.  As shown 

in Figure 4.4, since distinct clusters for the six categories of devices are identifiable in the 

scatter-plot, the observed variations of pinch-off voltage cannot be treated as random incidences. 

According to the data presented in this figure, pinch-off voltages of the devices from each 

sample demonstrate a growing positive-shift along the order of: fin-isolated, 7-island island-

isolated, ladder-isolated, comb-isolated, inverted-fin fin-isolated, and 14-island island-isolated 

devices. This trend is supportive of the previously reported observations on the correlation 

between the size of the isolation-feature and the positive-shift of the pinch-off voltage [17]. 

Whereas Ohi et al., also observed a correlation between the geometry of the isolation-

feature and the pinch-off voltage, they attributed this effect to the improved proximity of the gate 

electrode’s side-wall coverage of the isolation-feature to the center of the channel, and essential 

manifestation of a triple-gate effect [15], [109]. However, on the basis of the dimensions 

presented in Figure 4.1, this explanation is incapable of justifying the trend observed among the 

pinch-off voltages of 14-island island-isolated, comb-isolated, inverted-fin fin-isolated, and 

ladder-isolated HFETs in Figure 4.4. This is since among all of these device categories, identical 

distances between the side-wall coverage of the isolation-feature and the center of the channel, 

and as a result identical chance for manifesting triple-gate effects, exist. The cross-sectional 

schematic view of Figure 4.5 illustrates this situation. 
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  Although the trend observed in Figure 4.4, seems unjustifiable on the basis of a triple-

gate effect, as suggested in [17] the evolution of peel-forces around the perimeter and the convex 

corners of the isolation-feature, and the resulting degradation in the piezoelectric polarization 

across the heterointerface, seem to be capable of explaining this trend [117]. In terms of this 

explanation, Table 4.1 presents the calculated values of perimeter-to-area ratio among the six 

categories of devices. With the exception of comb-isolated HFETs, it is observed that a device 

with larger perimeter-to-area ratio demonstrates a slightly less negative pinch-off voltage. Since 

devices from the six categories are otherwise identical, the observed correlation suggests the 

presence of a link between the development of peel-forces around the perimeter and reduction in 

the piezoelectric polarization at the AlGaN/GaN heterointerface. Although the perimeter-to-area 

ratio of the isolation-feature of the comb-isolated HFETs is smaller than those values of 7-island 

island-isolated and ladder-isolated HFETs, the comb-isolated HFETs demonstrate a less negative 

pinch-off voltage than the other two device types. While the comb-isolated structure is the only 

asymmetric structure among the six reported in this study, it is speculated that in this case the 

uncompensated peel-forces at the convex corners of the comb tooth yield the possibility of 

reducing the piezoelectric polarization to the extent larger than the ladder-isolated HFET [117]. 

This is in spite of the fact that the dimensions of the gated HFET among these two isolation 

geometries (i.e., step of the ladder and tooth of the comb) closely match. Whereas Figures 4.3 

 
Figure 4.3 Typically observed extrinsic gate-transconductance versus gate-source voltage characteristic, 

for the six categories of devices. Gate-length is 1.0 µm and drain-source voltage is 7 V. A close-up around 

the pinch-off voltage is provided in the inset. Arrow shows the growing order of the positive-shift along 

the named order of isolation-feature categories. 
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and 4.4 present devices with a 1.0 μm gate-length, same trends are also observed among devices 

with 0.5 μm gate-length.  

Although the variations among the pinch-off voltages presented in Figure 4.4 are not very 

substantial, it is anticipated that intensified presence of peel-forces in isolation-features of much 

smaller dimensions, with larger perimeter-to-area ratio, and a more pronounced presence of 

convex corner effects, can yield a substantial positive-shift in pinch-off voltage in the orders 

reported by Ohi et al. [15], [109]. Due to limitations imposed by the foundry, however, devices 

presented in this work had relatively large dimensions. 

 Although the increase in the in-plane strain relaxation, and hence reduction in the 

contribution of piezoelectric polarization to the 2DEG concentration, with reduction of the width 

of the mesa to values in the order of a few hundreds of nanometers have been already reported 

through experimental [10] and theoretical means [16], the present observations suggest that even 

in larger scales of isolation-feature geometry this strain-relaxation can have a tangible impact on 

the pinch-off voltage. Whereas the previous reports on this issue have focused on the correlation 

between the amount of shift in the pinch-off voltage and the width of isolation-features (i.e., of 

island- or fin-types), the observation made in this work in terms of relevance of presence of 

concave and convex corners, in case of ladder- and comb-shaped isolation-features, to the 

amount of observed shift are unique to this study. In addition, the relatively broad range of 

isolation-feature geometries explored here has helped to highlight the relevance of strain-

relaxation to the observed shift in pinch-off voltage, while the dimensions among many of the 

 
Figure 4.4 Scatter-plot of the variation of the pinch-off voltage among the six device categories. Gate-

length is 1 µm. For each category, several devices were measured. 
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explored alternatives suggest an equal presence of the other probable culprit to this shift (i.e., 

triple-gate effect). 

Table 4.1 

Perimeter-to-area ratio for the six categories of devices with 1 µm gate length. 

Isolation-type Perimeter-to-area ratio (μm
-1

) 

Fin-isolated 0.14 

Comb-isolated 0.22  

7-island island-isolated 0.25 

Ladder-isolated 

Inverted-fin fin-isolated 

14-island island-isolated 

0.30 

0.32 

0.40 

 

In order to better understand the effect of the body width, development of peel forces 

around the boundaries of the smaller mesas, reduction in piezoelectric polarization, and sidewall 

gate effect on the average 2DEG concentration, a 2-D simulation has been performed using 

NextNano simulator [118]. 

 
Figure 4.6 Body cross sections of the investigated AlGaN/GaN HFETs with top gate (a) and triple-gate 

(b) structures. 

 
 

Figure 4.5 Schematic of a cross-sectional view of two islands of the 14-island-, inverted-fin, comb-

isolated, and ladder-isolated AlGaN/GaN HFETs. Schematic is not drawn in scale. 
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The epitaxial structure defined in the simulator was composed of an undoped 20 nm 

Al0.3Ga0.7N barrier and a 450 nm unintentionally doped GaN channel layer. The material 

parameters needed for the simulations are obtained from [16]. Two different structures, one with 

top gate and one with triple-gate (i.e., top and side-wall gating effect) were simulated to study 

the improved gate control due to the presence of two sidewall gates in addition to the top gate in 

triple-gate structure. Figure 4.6 presents cross-sectional view of the simulated devices. To be 

able to study the reduced piezoelectric polarization due to strain relaxation in the AlGaN barrier 

of narrow width structures, simulations were also performed for devices with two different 

device widths (i.e., 75 nm and 500 nm). These simulations were performed for both top gate and 

triple-gate structures. The results shown in Figure 4.7 clearly demonstrate that for a given gate 

voltage, the 2DEG sheet concentration rapidly decreases for shrinking body widths. Results also 

indicate that for a device without the presence of sidewall gates 2DEG sheet concentration is 

higher in comparison with triple-gate structure with the same device dimensions. For devices 

with narrower body structures this difference is more pronounced (i.e., 75 nm width device).  

 

Figure 4.7 Effect of body width reduction and the gate structure on the electron distribution in the 2DEG 

of the structures from Figure 4.6 for zero applied gate voltage. Shown are the electron concentrations at 

width/2 where for each structure the maximum electron concentration occurs. 
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It can also be observed from Figure 4.7 that for triple-gate structure and due the gate 

sidewall effect, gate has more control over the channel which results in lower 2DEG sheet 

concentration. Development of peel forces around the boundaries of the smaller mesas (i.e., 75 

nm width device) and reduction in piezoelectric polarization in narrower body structures also 

results in lower carrier concentration in 2DEG. Simulation results confirm that triple-gate effect 

and strain relaxation are both responsible for lower 2DEG concentration and as a result less 

negative pinch-off voltages in island-isolated devices with smaller island width.   

4.4 Conclusion 

Through implementation of six different geometries for isolation-features of polar AlGaN/GaN 

HFETs, it was shown that the correlation between the isolation-feature geometry and the 

observed shift in the pinch-off voltage is not fully explicable in terms of a multiple-gate effect. 

The reported observations of this study suggest a link between the increase in the perimeter-to-

area ratio of the cross-section of the isolation-feature, and an improved positive-shift in the 

pinch-off voltage. It has been illustrated that the 2DEG sheet concentration depends strongly on 

the device width and the gate structure.  
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Chapter 5 

 

 

Reliability studies of AlGaN/GaN HFETs of 

alternative isolation-feature geometry 

 

5.1 Introduction  

As indicated earlier in chapter 2, one of the important concerns on the marketability of 

AlGaN/GaN HFETs is their long-term reliability. Along with reliability assessment, studies of 

issues such as gate/drain lag, and frequency dispersion of the output resistance and gate 

transconductance occupy a pivotal position in evaluating any technological variant to the 

traditional HFETs.  This is especially true if the technological variant is exposing the active 

region of the transistor to a different setting of surface states. Since the technological variants 

presented in the previous two chapters, which employ different isolation-feature geometries, 

impose different levels of involvement of etched surfaces (hence, surface states) on the vicinity 

of the active region of the transistor, these technological variants require a careful assessment 

from the aforementioned points of view. In this chapter, results of the gate-lag and frequency-

dispersion studies over a wide range of temperatures are presented alongside the long term 

reliability assessment of AlGaN/GaN HFETs which are designed according to these novel 

isolation-feature geometries.  
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5.2 Device structures  

Since the layer structure and the dimensions of the transistors used in these studies are already 

presented in the previous two chapters, for the sake of brevity the reader is referred to section 3.2 

for the information on the structures of these devices. 

5.3 Experimental results and analysis 

5.3.1 Gate-lag 

As mentioned previously in chapter 2, charge trapping within the epilayer and at the exposed 

surfaces has been reported to be a cause for the usually observed delay between the drain current 

and the pulsed gate (or, drain) voltage [119]. This delayed response often presents a 

characteristic such as the one illustrated in Figure 5.1(a).  

 As illustrated in Figure 5.1(a), this form of temporal response indicates an original jump 

in the value of the drain current, when the gate potential is elevated to values larger than the 

pinch-off voltage (i.e., VP). However, it is observed that drain current originally jumps only to 

values short of the DC drain current expected when VGS is equal to the high-value of the gate 

pulse. Nonetheless, especially for long enough gate pulses it is observed that either in terms of a 

single saturating exponential, or exponentials with multiple time-constants, the drain current 

increases and eventually saturates. The saturation level reached even for long gate pulses can still 

remain short of the value of the DC drain current.  

 The snapshots presented in Figure 5.1(b) for each of the three temporal behaviors (i.e., 

the original almost-instantaneous response, incremental increase, and saturation), attempt to 

illustrate the role of negative charging of the surface states (if of acceptor type) or neutralization 

(if the states of donor type are contributors to the polar 2DEG formation at the AlGaN/GaN 

heterointerface), towards developing a different value of 2DEG concentration and drain current 

under each regime. It is often believed that it is the trapping of electrons originating from the 

surface component of the gate current, or the hot carriers migrating from the 2DEG, that yield 

the partial depletion of the polar 2DEG concentration in the area of the channel located beneath 

the charge-trapped surface. Since the drain edge of the gate observes the highest electric-field, 

the surface of this region is deemed most relevant to this problem. The reason for the time 
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dependence of this behavior and observation of one or multiple time-constants under the regime 

of incremental increase is the presence of a chance for removal (i.e., detrapping) of the carriers 

transferred to the trapping sites (i.e., upon pulsing the gate voltage). However, the possibility of 

detrapping is a function of trap energy level (i.e., deep or shallow) and existence of a sufficient 

source of kinetic energy. Accordingly, study of the aforementioned time constants involved in 

the drain current recovery as a function of lattice temperature is expected to have clues into the 

energy level of the traps involved in these processes. This is since in presence of a dominant trap, 

the detrapping time-constant follows an Arrhenius characteristic, given by [120] - [121], 

 𝜏 =  
𝜏0

𝑇2 𝑒𝑥𝑝 (
𝐸𝐴

𝐾𝐵𝑇
)          (5.1)  

where, T is the temperature in Kelvin, EA is the energy level of the responsible trap-site, KB is 

the Boltzmann constant, and τ0 is a proportionality constant. 

According to (5.1), based on the values of trapping/de-trapping time constants (i.e., τ1 

and τ2) acquired at two different temperatures (i.e., T1 and T2, respectively), the energy level of 

the responsible trap-site can be calculated as:  

𝐸𝐴 =  
𝐾𝐵

(
1

𝑇1
−

1

𝑇2
)

ln (
𝜏1/𝜏2

(𝑇2/𝑇1)2)         (5.2) 

 
 

Figure 5.1 (a) Typically observed delay between the drain current and the pulsed gate voltage. (b) 

Depiction of the occupation status of surface states in the drain-access region of the transistor provided 

progressively as snapshots immediately after pulsing the gate (instant I), briefly after the gate turn-on 

pulse (instant II), and upon saturation of the pulsed drain current (instant III). It is often suggested that the 

occupied surface states forming a negatively biased virtual gate partially deplete the 2DEG of electrons 

and cause the gate-lag behavior (virtual gate model). 

(b) (a) 
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Figure 5.2 illustrates the measurement setup for the gate-lag studies. The temperature-

controlled chamber of a MMR-LTMP4 low temperature micro-probe station was used to perform 

the measurements. This probe station has an operation temperature range of 80-500 K. During 

measurements, the chamber of the probe station was operated under low pressure and the 

temperature was controlled and monitored by the MMR-K20 temperature controller. To prevent 

the unwanted noise, coaxial cables were used. In the gate-lag measurements, for generating the 

gate pulse, HP 8116A 50 MHz pulse/function generator was used. Tektronix DP04054 digital 

oscilloscope was also employed for recording the temporal variation of V1 and V2. 

Measurements were conducted in the order of 80, 150, 220, 300, 350, and 400 K. Fresh devices 

showing a typical behavior in the DC sweeping mode characteristics, such as the one presented 

in Figure 3.8, were used in performing all the measurements. After each gate-lag measurement, 

the DC gate and drain characteristics were verified versus the previously recorded sweeping 

mode characteristics to make sure that no significant device degradation has taken place. 

In the gate-lag measurements, a voltage step is applied to the gate terminal, while 

maintaining a fixed drain bias of VD-DC=7 V.  This gate-pulse drives the transistors from the 

initial pinch-off to an open channel condition with low and high values of VGS equal to -10 V 

and 0 V, respectively. Gate pulses have a nanosecond rise-time, 20 µs on-time, and duty cycle of 

20%. The low-state of the gate pulse is chosen well below the pinch-off voltage to ensure an 

effectively negligible drain-current. Potentials V1 and V2 versus time were recorded using the 

digital oscilloscope. In this study, according to Figure 5.2, the drain-current (i.e., ID) is evaluated 

as: 

𝐼𝐷 =
𝛥(𝑉1−𝑉2)

𝑅2
               (5.3)  
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Figure 5.2 Gate-lag measurement setup. R1 and R2 are both 51 Ω. 

A gate-lag pattern not unlike the one indicated in Figure 5.1 is observed among all of the 

devices of isolation-feature geometries presented in Figure 3.1, at all of the indicated 

measurement temperatures and among  devices of both 0.5 and 1 µm gate-length. As an 

example, Figure 5.3 depicts the gate-lag patterns observed in a typical 14-island island-isolated 

HFETs of 1 µm gate-length at all measurement temperatures. Figure 5.4 presents the results of 

gate-lag measurement at different measurement temperatures for a transistor fabricated on 

traditionally sized mesa of dimensions 70 × 100 μm
2
 using the same epilayer structure, while 

gate-length and the length of drain and source access regions are the same as the other 

categories.  

As typically observed among Figures 5.3 and 5.4, all of the explored devices exhibit gate-

lag patterns indicated by a single time constant incremental increase in the drain current of 

region II at all measurement temperatures.   

Figure 5.5 shows room-temperature values of the pulsed-mode drain current during one 

gate pulse for one device from each of the aforementioned transistor varieties as a percentage of 

the maximum pulsed-mode drain current level of each device. While interpolation to a single 

time-constant saturating exponential seems applicable to all these measurements, Figure 5.6 

presents the scope of variability of this time constant among a large number of seemingly 
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identical devices and over a wide range of lattice temperatures. As mentioned earlier, existence 

of a single time-constant exponential gives evidence on the relevance of a dominant trap level in 

each device.  

Figure 5.3 Pulsed-mode drain-current data for a typical 14-island island-isolated device at 80, 150, 220, 

300, 350, and 400 K in (a), (b), (c), (d), (e), and (f), respectively. Dashed lines represent the gate voltage 

pulses and solid lines represent the drain-current pulses. 

(b) 

(c) (d) 

(e) (f) 

(a) 
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Figure 5.4 Pulsed-mode drain-current data for a mesa-isolated device at 80, 150, 220, 300, 350, and 400 

K in (a), (b), (c), (d), (e), and (f), respectively. Dashed lines represent the gate voltage pulses and solid 

lines represent the drain-current pulses. 

(b) 

(c) (d) 

(e) (f) 

(a) 
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Figure 5.5 Pulsed-mode drain-current as a percentage of the maximum value of the drain-current reached 

at the end of the gate pulse for different types of devices tested at lattice temperature of at 300 K. 

 

Figure 5.6 Calculated time constants of drain current recovery at 80, 150, 220, 300, 350, and 400 K for all 

types of devices explored in this study. In each case a number of seemingly identical devices are 

explored. 

The data presented in Figure 5.6 illustrate that the relative variability among the time 

constants observed on macro-structurally identical devices masks any meaningful difference 

among the time constants of devices of different isolation feature geometry. As a result, this 

observation suggests a common phenomenon as the root cause for the gate-lag among the studied 

device varieties. 
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According to (5.2) and taking the average value of the time constants presented in Figure 

5.6 at each measured temperature, the trap energy level for all of the studied device varieties is 

approximately evaluated to be equal to 60 meV. This trap energy level is indicative of the 

existence of a shallow trap level among these device types.  

The fact that gate-lag is observed among all of the device varieties explored in this study 

is an indication of the presence of shallow trapping/detrapping centers among all these device 

types. For AlGaN/GaN epilayers an exhaustive number of trap levels of different varieties (i.e., 

deep or shallow, acceptor or donor) has been already reported in literature [122] - [124]. These 

traps are either induced by the growth conditions of the heterostructure or they are products of 

process damage. One of the processes which causes surface-damage and contributes to 

introduction of trap levels is the dry-etching used in the formation of the isolation-feature. The 

link between dry-etching of III-nitrides and formation of trap-states has been reported in a 

number of studies [125] - [128].  

Since all of the explored device types were fabricated side by side one another (i.e., on 

the same epilayer), the typically observed differences presented in Figure 5.5 (i.e. in terms of the 

percentage of change in the pulsed-mode drain current during the gate-pulse) and the almost 

identical mean time constant of the detrapping process identify the involvement of a different 

number of traps of almost identical energy level responsible for the aforementioned gate-lag 

behaviors. As shown in Figure 5.5, mesa- and fin-isolated devices exhibit the lowest percentages 

of change in the pulsed-mode drain-current during the on-time of the gate pulse, while the 

highest changes were observed in island-, inverted-fin fin-, comb-, and ladder-isolated devices. 

Since throughout the processing of the devices studied in this chapter the only distinction among 

the device types is in term of the isolation-feature geometry, the damage of this processing step 

is deemed responsible for any difference observed among the gate-lag behaviors of these device 

types. As shown in Fig. 5.5, the device types with larger interfaces of the gate electrode with dry-

etched sidewalls and GaN floors in between the isolation features (hence, those in which the gate 

is in the proximity of a larger number of trap sites) produce a larger percentage of change in the 

pulsed-mode drain current in comparison with mesa- and fin-isolated devices. The 

aforementioned differences in the exposure of gate to etched surfaces have been already 

highlighted in Figure 4.1.  
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According to these observations, trap levels introduced by the dry-etching process are 

deemed to be the origin of the observed gate-lag in the transistors explored in this study. Surface 

passivation after isolation step, for compensating the traps associated with plasma etch damage, 

seems to be the most promising solution to reduce the gate-lag in these device types. 

5.3.2 RDS-dispersion 

As previously indicated in chapter 2, despite showing promising results as high-power 

amplifiers, the frequency-dispersion of the output resistance, which is commonly observed 

among AlGaN/GaN HFETs, is a cause for concern. Not unlike the gate-lag, degradation of the 

output resistance with the frequency of the excitation is a manifestation of the presence of 

electron trapping/detrapping at trap sites existing at different interfaces in the structure, buffer 

layer, or the surface. Depending on the time constants of these processes, traps fail to respond to 

the excitation frequency if it is higher than the counterpart identified by the inverse of this time 

constant.  

Figure 5.7 illustrates the setup used in RDS-dispersion measurements. Using the probe 

station, signal generator, and the oscilloscope identified in section 5.3.1, measurements were 

conducted at different temperatures starting from 80 K and following to 150, 220, 300, 350, and 

400 K. In these measurements, the small-signal frequency of the AC signal generator was varied 

from 20 Hz to 20 MHz, while maintaining a quiescent gate bias of -1 V and drain bias of 10 V. 

The amplitude of the AC small-signal was 0.1 V. After each RDS-dispersion measurement, the 

DC characteristics were verified versus the previously recorded characteristics to make sure that 

no significant degradation has taken place. According to Figure 5.7, RDS is calculated using the 

following expression:  

𝑅𝐷𝑆 =
𝛥(𝑉2).𝑅2

𝛥(𝑉1−𝑉2)
           (5.4) 



64 
 

 

Figure 5.7 RDS dispersion measurement setup. R1 and R2 are both 51 Ω. 

All device types exhibited an RDS-dispersion at all measurement temperatures. As a few 

examples, these dispersion characteristics for the case of 1 µm gate transistors of all of the 

aforementioned devices varieties tested at 80 K are presented in Figure 5.8. A resembling 

behavior is observed among devices of 0.5 µm gate-length.  

Whereas the isolation technology among the studied devices differs in terms of the 

isolation-feature geometry, the almost identical presence of mean RDS-dispersion among these 

devices indicates a common cause for this observation. Hence, RDS dispersion is seemingly 

prompted by the presence of defects common among the device types. This common cause could 

be the pre-existing defects within the buffer. While in the epilayer structure used in the 

fabrication of the devices reported in this study the buffer layer is carbon-doped, this 

characteristic can be the common cause for the observed RDS-dispersion. Although carbon-doped 

GaN buffer layers enjoy a higher resistance (hence, a smaller substrate leakage), they have been 

reported to suffer from the presence of doping-induced traps. Formation of very deep traps 

related to carbon-doping of GaN buffer layer was reported by Klein et al. [129] - [130]. AlGaN 

interlayer between GaN buffer and AlN nucleation layer is suggested to avoid negative results of 

the Carbon-doping of the GaN buffer layer [131]. 
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Figure 5.8 Variation of small-signal output-resistance versus frequency for 14-island island-isolated, 7-

island island-isolated, inverted-fin fin-isolated, ladder-isolated, comb-isolated, fin-isolated, and mesa-

isolated devices at 80 K. 

5.3.3 Long term stability of drain current drive  

As indicated earlier, the gradual slump in the drain current drive of AlGaN/GaN HFETs upon 

long hours of operation is another major concern in commercialization of this technology. In 

order to assess the long term stability of the drain current drive of the transistors employing 

different isolation-feature geometries, each of these transistors was kept under DC bias in the on-

state for more than 72 hours, while its current level was regularly monitored and recorded. DC 

stress tests were performed at room temperature and at two different values of drain bias of 10 

and 15 V, while a constant gate bias of 0 V kept the channel open.  

 The percentage of change in the drain-current as a function of stress time, for devices 

presented in section 3.2 and the traditionally-sized mesa with gate-length of 1 µm, is presented in 

Figure 5.9. As observed in this figure, under these DC conditions the drain current had an almost 

instantaneous drop of 3 to 7 percent within the first few minutes of stress, while after this a 

slowly falling drain current was observed among all devices. In this regime, the devices that 

were stressed at higher drain voltages degraded with a smaller time constant. Since a higher drain 

voltage indicates a higher maximum electric-field in the drain access region, this can be an 
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indication of the role of hot carriers in inducing the degradation in the drain current. As shown in 

Figure 5.9, the drain current degradation takes on a saturating characteristic as the stress time 

prolongs. The level at which this saturation happens is different between the two cases of drain 

bias. This can be explained in terms of higher electric-field at the drain-edge of the gate and 

defect formation in the AlGaN barrier. At this saturating level the drain current showed a 

decrease of 5, 6, 6.5, 7.2, 9, 10, and 10.8% among mesa-isolated, fin-isolated, comb-isolated, 

ladder-isolated, inverted-fin fin-isolated, 7-island island-isolated, and 14-island island-isolated 

devices, respectively. The 14-island island-isolated device exhibits the highest degradation in 

drain-current while mesa-isolated device has the least drop in the drain-current. DC 

characteristics of the devices were measured after 24 hours and while the devices were kept at 

room temperature. Upon this de-stressing period, the drain-current was observed to have 

recovered for all device types, which indicates that no permanent damage such as crack 

formation under the gate electrode has happened during the experiments.   

 In agreement with the results from section 5.3.1, in Figure 5.9 it is observed that in device 

types with more dry-etched sidewalls and GaN floors in between the isolation features (which 

impose a higher number of traps on the gate-electrode), highest degradation in the DC drain 

current occurs. 
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(a) 

 

(b) 

 

(c) 
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(e) 

 

(f) 
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(g) 

Figure 5.9 Degradation of drain-current as a function of stress time at 300 K for drain-voltage of 10 V 

(dashed line) and 15 V (solid line) for (a) mesa-isolated, (b)  fin-isolated, (c)  comb-isolated, (d) ladder-

isolated, (e) inverted-fin fin-isolated, (f) 7-island island-isolated, and (g) 14-island island-isolated devices. 

5.4 Conclusion 

Gate-lag, RDS-dispersion, and long term stability of the drain current among traditional and the 

newly proposed AlGaN/GaN HFETs of alternative isolation-feature geometry were 

experimentally investigated. All devices exhibited gate-lag with a time constant identified by the 

modified Arrhenius characteristics. Process damages (i.e., exposure of electrodes to additionally 

dry-etched sidewalls and dry-etched GaN floors in between the isolation features in island-, 

inverted-fin fin-, comb-, and ladder-isolated devices) are believed to be responsible for the 

observed gate-lag. Surface passivation is suggested to reduce gate-lag in the newly developed 

device types. RDS-dispersion with frequency was also observed in all device types. Doping-

induced trap-centers in the buffer layer are deemed responsible for this observation. 

Conventional mesa-isolation exhibited the best long-term stability among all of the explored 

isolation-feature geometries, which is speculated to be due to having the least amount of dry-

etching caused damage to the heterostructure. The observed gate-lag, RDS-dispersion, and 

degradation of the drain-current under the on-state condition provided an important link between 

the fabrication technology of these new device types and reliability concerns. 
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Chapter 6 

 

 

Microfabrication of AlGaN/GaN HFETs and 

AlN/GaN MISFETs 

 

6.1 Introduction 

In this chapter, the process recipe developed for microfabrication of AlGaN/GaN HFETs and 

AlN/GaN MISFETs is presented. Far from being a routine microfabrication process, prompted 

by the variation of the operating conditions of different existing equipment and lack of process 

recipes developed by the manufacturers, any microfabrication facility is in need of developing its 

own combination of cleaning/etching/metallization recipes to realize III-nitride transistors. 

Variations in the composition and thickness of the cap layer, barrier, and also the channel layer, 

evidently demand re-tuning the parameters of this process recipe. This work was the first effort 

in the area of III-nitride processing at cleanroom facilities of McGill University. As a result, 

fabrication processes needed to be developed from the earliest stages. In section 6.2, process 

recipe development for microfabrication of AlGaN/GaN HFETs is described. Process recipe 

development for microfabrication of AlN/GaN MISFETs is presented in section 6.3. Conclusion 

is presented in section 6.4. 
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6.2 Process recipe development for microfabrication of 

AlGaN/GaN HFETs  

In spite of the advantages of the application of wide bandgap III-nitrides to HFETs, which were 

previously outlined in chapter 2, difficulties in etching and obtaining Ohmic characteristics 

across the wide bandgap semiconductor, in addition to sensitivity of the polar 2DEG 

concentration to surface conditions (i.e., charge-status of surface states) have rendered the 

realization of III-nitride HFETs specially challenging.  

The process recipe presented in this chapter has been developed for AlGaN/GaN HFET 

epilayers grown on sapphire, which have been purchased from Cree Inc. The choice of sapphire 

as the substrate (and not the more thermally conductive SiC substrate), is of economical reasons. 

A set of clear field photomasks, with different designs in terms of gate-width and gate length of 2 

μm, was employed in defining the device features. An EVG620 mask aligner system with a 365 

nm Hg i-line source was used for this purpose.  

6.2.1 Sample preparation 

The high sensitivity to surface conditions among III-nitrides aggravates the problems associated 

with cross-contamination. Over the past two decades a number of surface 

preparation/passivation-, etching-, and Ohmic contact-recipes have been proposed to solve these 

important challenges. It has been recognized that the exposed AlGaN surface plays a key role in 

the quality of Ohmic and Schottky contacts formed on AlGaN/GaN heterostructures [132] - 

[133]. Cleanliness of the surface is important not only to photoresist adhesion but also to proper 

device operation in terms of realization of etching profiles and metal-semiconductor contacts. 

The contamination layer, which is normally covering the AlGaN barrier, consists both of organic 

and inorganic contaminants including native oxide. The organic contaminants can be removed 

through bathing the sample in methanol, acetone, and propanol, and also through employing 

oxygen plasma descum (i.e., in a plasma asher). Native oxide and the other inorganic 

contaminants can be removed through HCl and HF bathing. HCl-based solutions have been 

shown to be more effective in removing oxides, while leaving less oxygen residue, whereas HF 

is more effective in removing carbon-based contaminants [134].  
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In this microfabrication process, in preparation of the wafers in smaller pieces for 

processing, wafers were covered by a protective photoresist layer before dicing in order to 

prevent deposition of the particles onto the samples. Dicing was done using ESEC 8003 dicing 

saw. To clean the samples after dicing, samples were submerged in acetone with ultrasonic 

agitation for at least 2 minutes followed by a 2 minutes isopropyl alcohol dip. After this step the 

samples were rinsed in DI water and then dried using a nitrogen gun. Following this step, these 

samples were optically inspected under microscope to ensure that both the photoresist and any 

particle created by the dicing process have been removed. This preparation procedure ensures 

that the surface is free of any debris from the wafer dicing or any other type of contaminants. 

As the need for cleaning was outlined earlier in this section, dicing was followed by a 

more or less standard two step surface treatment procedure. This initial sample cleaning 

procedure includes [134]:  

1) Organic contaminant removal using methanol, acetone, and propanol bath. 

2) Inorganic contamination and native oxide removal using HCl:DI water (1:1) bath.  

Succeeding the cleanings step, the samples were placed in a DI water bath for a few 

seconds, after which they were rinsed in streaming DI water and dried using a nitrogen gun. 

Once the sample surface is cleaned and dried, a dehydration bake was performed at about 150-

200
o
C for about 2 minutes to remove water from the sample surface. This dehydration bake 

should be performed after each cleaning step.  

After dehydration bake, the sample was allowed to briefly cool before swiftly proceeding to 

spin coating with photoresist. The swift move to spin coating would greatly reduce the risks of 

rehydration or contamination of the samples and the growth of native oxide. After coating with 

photoresist, the samples underwent a soft-bake to remove the resist solvent and to increase the 

adhesion to the wafer. 

6.2.2 Mesa isolation 

Definition of the active device area, and realization of isolation between neighboring devices, is 

the next step in microfabrication of AlGaN/GaN HFETs.  Often times, in this step through 

etching the epilayer (and essentially removing the 2DEG) in the passive areas of the wafer, 

electrical insulation between neighboring active areas (i.e., transistors) is established. The 
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electrical insulation between neighboring transistors can be achieved either through employing 

this so-called mesa-etching recipe (i.e., physical removal of the semiconductor between the 

neighboring transistors), or through amorphization of the AlGaN/GaN heterointerface in the 

passive area of the chip through ion implantation [135]. Due to unavailability of ion implanters 

in many of the III-V microfabrication facilities, the first solution is more main-stream.  

 Caused by the large bond-strength of most III-nitrides (i.e., in comparison to other 

compound semiconductors) physical etching of these materials, especially in absence of Al, has 

been proven challenging. A number of dry etching methods have been so far developed for 

etching GaN and its alloys [136] - [139]. In addition to the problems of dry etching, due to the 

exceptional bond strength and chemical stability of GaN, only a very limited indication of 

successful wet etching of GaN exists. These limited experiments rely on using KOH and NaOH 

aqueous at temperatures above 250 ºC [140]. Since these etching schemes are observed to offer 

etch sensitivity in the presence of defects (hence, capability of producing a grassy surface upon 

etching a material containing defects), wet etching of GaN in NaOH and molten KOH have been 

also employed in tallying the micro-defects such as dislocations and nano-pipes [29].  

 As a result of the aforementioned challenges in etching III-nitrides, a significant effort 

has been devoted to developing various dry etching techniques [141] - [145]. Dry-etching 

techniques used in III-nitride processing mostly rely on the chlorine-based ion bombardment 

etching. In order to achieve an acceptable etch rate, and a high-resolution anisotropic etch-

profile, highly energized chlorine ions are required in these processes.  

However, in light of the aforementioned sensitivity of the operation of polar AlGaN/GaN 

HFETs to surface conditions, the surface damage resulting from this physical etch is a 

considerable reliability concern. These concerns limit the applicable etching systems to electron 

cyclotron resonance (ECR), inductively coupled plasma (ICP), and magnetron reactive ion 

etching (MRIE), which through offering a higher plasma density relieve the energy requirement 

(and as a result the inflicted surface damage). 

In the present work, after lithography, mesa etching was performed by using Cl2/Ar 

plasma in an Applied-Materials P5000 magnetically-enhanced reactive ion etching (MERIE) 

system. Different recipes were explored on AlGaN/GaN epilayers to study the effect of process 

parameters on etch rate and surface morphology. These parameters include Cl2 and Ar flow rate, 

chamber pressure, DC bias on the platen, and RF power. The most critical parameter affecting 
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the etch rate was found to be the RF power. Figure 6.1 shows the improvement of the etch rate 

with RF power. However, the improved etch rate at higher RF powers is accompanied by a larger 

surface damage. This is a factor that has been known to contribute to inter-mesa leakage, poor 

isolation, and ineffective gate action. It was also observed that the etch rate increases linearly 

with the flow rates of Ar. In developing the recipe for etching, samples were inspected under 

optical microscope and mesa height was measured using Ambios XP200 profiler.  

 
Figure 6.1 Etch rate versus RF power for MRIE process.  

Figure 6.2 attempts to show the impact of different RF power levels on the surface 

morphology of the etched samples. Lower RF power seems to provide the best surface 

morphology and the least amount of defect seen as dark spots among these figures. However, the 

prolonged time required to perform the etching at low RF power level demands a thicker 

photoresist mask, which is in turn limiting to the etched feature’s resolution. Considering this 

requirement, balancing between the two requirements, the RF power level of 120 W was deemed 

well suited for this process. The etch step-height and uniformity across the sample were 

characterized by means of an Ambios XP200 stylus profiler. Upon etching for 110 sec under 

these conditions, a mesa-height of 240 nm was achieved at an etch rate of 2 nm/sec. 

 

 

 

 

 

 

 

Figure 6.2  Micrographs of alignment marks etched into AlGaN/GaN heterostructure using (a) 170 W, (b) 

150 W (c) 120 W RF power in an MRIE chamber.  

 
(a) 

 

2 µm

 
(b) 

 

8 µm

 
(c) 

 

3 µm
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6.2.3 Ohmic Contacts 

In order to take full advantage of the properties of AlGaN/GaN HFETs and to achieve high 

current densities, high extrinsic gain, and low Joule heating loss (i.e. to allow high temperature 

operation), it is essential to realize low resistance source and drain Ohmic contacts to the 2DEG. 

These contacts are expected to offer high thermal and chemical stability. Due to the wide 

bandgap of the AlGaN barrier, realization of these types of Ohmic contacts in the AlGaN/GaN 

system has been found to be challenging. However, as a result of an intensive research, over the 

past two decades alloyed Ohmic contacts of acceptable quality have become a reality in this 

material system.  

 In this metallization scheme, annealing the contact at high temperatures causes melting 

and mixing of the metal with the AlGaN barrier. This alloy formation process, however, 

produces a rough surface morphology, which in addition to limiting the line-edge definition, and 

as a result the minimum feature size, produces an unacceptable surface for interconnect 

formation. Consequently, in order to avoid these difficulties, Ohmic contacts formed to 

AlGaN/GaN heterostructures instead of using one metal layer, often take advantage of the 

presence of a stack of metals. Among the elements of this stack, only the layer touching the 

AlGaN barrier is envisioned to form an alloy with the semiconductor. This is while the other 

layers are there to protect this metal against oxidation, and to improve the overall surface 

morphology [146] - [147].  

The metallization schemes used for making Ohmic contacts on AlGaN/GaN 

heterostructures are originally taken from the adjusted Ohmic contact processing implemented 

on n-type GaN. According to Schottky’s theory and the experimental observations, in this 

situation best results are achieved using metals with relatively low work-function (qΦM) as the 

first layer of Ohmic contact, whose nitride alloys are conductive and stable. Such properties are 

often optimally found in Titanium (i.e. with qΦM=4.3 eV). Several metallization schemes 

(including Ti/Al/Ti/Au, Ti/Al/Pt/Au, Ti/Al/Ni/Au, Ti/Al/Cu/Au, where gold is the topmost layer) 

have been reported to form acceptable Ohmic contacts to AlGaN/GaN HFETs [134], [148] - 

[152]. Among these combinations, the Ohmic contact formation is based on the extraction of N 

from the AlGaN layer by Ti, throughout the high-temperature rapid thermal annealing process 

[153]. Upon formation of TiN, N-vacancies of the barrier act as n-type dopants in inducing a 

highly doped region near the metal interface. Pinning of the Fermi level at the energy level of the 
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N-vacancies, results in a tunneling-Ohmic behavior [154] - [155]. Creation of the TiN interfacial 

layer has been also reported to offer a thermally stable and low-resistive contact to the 2DEG 

[154] - [155].  

The use of a Ti/Al layers, instead of a single Ti layer, is more commonly adapted. Al 

layer in this metallization scheme is known to react with Ti to form an Al3Ti layer that prevents 

oxidation of the underlying Ti [156] and helps in contact formation [157]. Al has been also 

observed to react with the semiconductor to form AlN, resulting in N vacancies, which yield a 

heavily doped interface underneath the contact (hence, enabling electrons to tunnel easily to the 

2DEG) [158]. As the topmost layer, Au is used to prevent oxidation of the Ti/Al bilayer, to 

improve the Ohmic contact’s conductivity [159], and to guarantee long-term device stability. A 

blocking layer (such as Ni or Ti) is also needed to prevent high-temperature mixing of Au and Al 

(which produces a highly resistive alloy). This metal layer also plays an important role in 

forming a good surface morphology for the Ohmic contacts after annealing at high temperature 

[160].  

Through optimizing the thickness of the metal layers and annealing conditions (i.e. 

maximum anneal temperature and duration of the exposure to this temperature), specific contact 

resistances (i.e. ρc) as low as 7.3×10
-7

 and 4.7×10
-7

 Ω-cm
2
 have been achieved using Ti/Al/Ni/Au 

and Ti/Al/Mo/Au multi-layers, respectively [161] - [162]. 

Transmission line method (TLM) test patterns, which are illustrated in Figure 6.3, are 

commonly used in evaluating the electrical properties of Ohmic contacts. In addition to the 

specific contact resistance, TLM-based measurements produce insight into other electrical 

parameters such as the sheet resistance (i.e. Rs). This method was proposed by Reeves and 

Harrison in 1982 [163]. For the accuracy of TLM measurements, the rectangular TLM test 

patterns should sit on the mesa-isolated structure. This is because the mesa structure confines the 

current flow within one mesa and the current direction perpendicular to the edge of the metal 

contacts. 



77 
 

 

Figure 6.3 Typical TLM patterns. 

As illustrated in Figure 6.4, according to theory of TLM, by applying a potential 

difference between the neighboring contact pads of variable distance (and recording the total 

resistance via measuring the current flowing across these contacts) the value of contact resistance 

(i.e., R0) can be extracted. Table 6.1 presents the method for calculating the sheet resistance, 

transfer resistance, and specific contact resistance based on TLM measurements. 

 

 
Figure 6.4 Resistance versus contact separation characteristic of the TLM measurement.  
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Table 6.1 

Sheet resistance, transfer resistance, and specific contact resistance calculation based on TLM 

measurements. 

Parameter Unit Derivation 

Sheet Resistance (Rs)  Ω /□ Slope × W 

Transfer Resistance (Rt)  Ω.mm R0 × W 

Specific Contact Resistance (ρc)  Ω.cm
2
 (Rt)

2
/Rs 

 

In the present work, through studying the effects of different metal 

combinations/thicknesses, and maximum annealing-temperature/time, Ohmic contact formation 

process to AlGaN/GaN HFETs of the previously indicated layer structure was adjusted.  

Ohmic contacts were patterned through the lift-off process developed for a clear field-

mask using the image reversal photoresist AZ5214. Developing this recipe for use on 

AlGaN/GaN epilayers grown on the transparent sapphire substrate was one of the early 

challenges of this microfabrication endeavor. This recipe has been developed for the first time at 

McGill’s microfabrication facilities. Negatively sloped sidewall profile achieved in this step 

ideally suits the lift-off process. Perfecting this process required painstaking trial and error, and 

substantial modification to the manufacturer’s standard recipe. Standard recipe for image 

reversal process of AZ5214 photoresist on Silicon substrate (which is provided by the 

manufacture), and the adjusted recipe for AlGaN/GaN HFET structures on sapphire substrate are 

summarized in Table 6.2.  

Table 6.2 

Standard and adjusted image reversal recipe parameters for AZ5214 photoresist. 

Step  Standard  Image Reversal Recipe Adjusted Image Reversal Recipe 

Soft Bake 50 sec at 110 ºC 55 sec at 90 ºC 

Exposure 34 mJ/cm
2
 2.5 mJ/cm

2 

Reversal Bake 120 sec at 120 ºC 120 sec at 105 ºC 

Flood Exposure 200 mJ/cm
2
 250 mJ/cm

2
 

Develope MF726 developer for 25 sec MF726 developer for 25 sec 

Post Bake 50 sec at 120 ºC N/A 

 

Figure 6.5 presents the processing steps of the image reversal recipe. Figure 6.6 illustrates 

the improvement in the lift-off metallization process achieved through optimization of the image 

reversal recipe. As shown in Figure 6.6(a), results show that performing the standard recipe of 
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AZ5214 for image reversal process creates crosslinking problems (i.e., the area covered by mask 

is also exposed so not being developed), which result in total failure of lift-off. In order to 

adjusted the image reversal recipe, first exposure dose was adjusted and then post bake 

temperature was adjusted for final recipe. Figures 6.6(b) presents the results after optimization of 

the exposure time. Figure 6.6(c) shows the results for the final recipe with the full set of adjusted 

values listed in Table 6.2. Development of all the fine features of the alignment marks is a 

testimony to the perfection of this recipe.  Post baking of the samples made the lift off process 

difficult. As a result this step was eliminated. 

 

Figure 6.5 Process steps for image reversal recipe for AZ5214 photoresist: (a) coat and softbake (90 °C), 

(b) exposure, (c) post bake (105 °C) and flood exposure (250 mJ/cm
2
), (d) develop.  

     

 

 

 

 

 

Figure 6.6 Micrographs of the samples after lift-off process using (a) image reversal standard recipe, (b) 

adjusted exposure time recipe, (c) final adjusted recipe. 

After the aforementioned patterning step of photoresist, electron-beam deposition of a 

four layer stack of Ti/Al/Ti/Au was used in this process. The succeeding lift-off process proceeds 

to removing the metal stack from the places that the metal is deposited on the photoresist. 

 
(b) 

10 µm

 
(a) 

 

10 µm

 
(c) 

10 µm
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Adjusted thickness of each metal layer, Ti:Al ratio and rapid thermal annealing temperature and 

duration, were determined through trial and error on a large number of AlGaN/GaN epilayers, 

and studying the Ohmic behavior using TLM patterns at room temperature. 

Prior to the Ohmic contact deposition, the native oxide was removed by dipping the 

samples in HCl:H2O (1:1) solution for 30 seconds. The samples were then rinsed in DI water, 

dried with nitrogen gun, and immediately transferred into the chamber of a NEXDEP E-beam 

evaporator. To investigate the role of the Ti/Al ratio, the Al thickness was varied while the 

thicknesses of the first and the second Ti-layer, and the Au layer were set to 250, 100 and 500 Å. 

This selection is biased by the published data of other laboratories [164]. As shown in Figure 6.7, 

a Ti:Al thickness ratio of 1:6 was found to provide the best Ohmic contact performance among 

all the examined samples using the epilayer structure identified earlier in this chapter. Overall, it 

was observed that the lowest specific contact resistivity and Ohmic contact resistance can be 

obtained by evaporating respective thicknesses of 250/1500/100/500 Å for Ti/Al/Ti/Au. 

 

 

Figure 6.7 Transfer resistance versus Al:Ti ratio. Samples were annealed at 850°C for 30 seconds under 

N2 ambient. 

As previously mentioned, in addition to the thickness of each metal layer, annealing is a 

critical step in the formation of Ohmic contacts. Since annealing the Ohmic contact at the 

required temperatures higher than 800ºC introduces several reliability problems in the device 

performance (such as lateral overflow and rough surface morphology), annealing conditions 

required a thorough examination. Annealing temperature, slope of the ramp, and duration were 

adjusted to form low resistance Ohmic contacts with excellent surface morphology. Better 

surface morphology was observed for a slower ramp. Figure 6.8 illustrates the adjusted process 
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recipe for RTA in which the samples were annealed in JetFirst200 rapid thermal annealing 

(RTA) system at 850°C for 30 seconds under N2 ambient with the flow rate of 4000 sccm/min. 

In order to prevent temperature overshoot a two-step ramp up process was defined in the recipe. 

 

Figure 6.8 Adjusted recipe for RTA using JetFirst200 rapid thermal annealing system.  

Figure 6.9 shows micrographs of the TLM patterns for different annealing conditions. In 

this work, the Ohmic contact resistance was measured on the linear TLM test structures using 

Keithley 4200-SCS Semiconductor Characterization System at room temperature. Figure 6.10 

illustrates the resistance plotted against TLM contact spacing.  

 

Figure 6.9 Micrographs of TLM patterns after (a) 30 sec at 900 ºC (b) 30 sec at 870 ºC, (c) 30 sec at 850 

ºC of rapid thermal annealing. 
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Figure 6.10 Resistance plotted versus TLM contact spacing. Transfer resistance is 0.75 Ω.mm

 
and sheet 

resistance is 1310 Ω /□.  

6.2.4 Schottky contact  

The need for a low-leakage gate contact, capable of maintaining electrostatic integrity of the 

gate, is determinant to the choice of a large work-function metal as the gate electrode of 

AlGaN/GaN HFETs. This requirement is also further boosted by the need to modify the highly 

populated polar channel of AlGaN/GaN HFETs to ideally reduce the standby power to zero. As 

expressed earlier, although the polar-nature of AlGaN/GaN HFETs produces a D-mode HFET 

characteristic, the need for reducing the power consumption is pushing for modifying this 

character at least in parts of the III-nitride chip to an enhancement-mode (or E-mode) character. 

In this regard, one of the explored avenues is defined in terms of the use of a large work-function 

gate metal, and extension of gate’s depletion region throughout the 2DEG channel. Some of the 

typical values of Schottky barrier height achieved to AlGaN barriers of different Al-

compositions are: 1.1 eV for Pt [165], 1.15 eV for Au [166], 0.6 eV for Ti [167], 0.94 eV for Pd 

[168], and 0.99 eV for Ni [169]. Table 6.3 presents metal work-functions of different metals 

explored in GaN technology [170]. 
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Table 6.3 

Contact characteristics of a number of explored metals in processing of n-Type GaN along with their 

metal work-function [170]. 

     Metal Metal Work Function (eV) Contact Behaviour 

Sc 3.50 Ohmic 

Hf 3.90 Ohmic 

Zr 4.05 Ohmic 

Al 4.28 Ohmic 

V 4.30 Ohmic 

Nb 4.30 Slightly rectifying 

Ti 4.33 Slightly rectifying 

Cr 4.50 Slightly rectifying 

W 4.55 Slightly rectifying 

Mo 4.60 Slightly rectifying 

Ag 4.26 Schottky 

Cu 4.65 Schottky 

Co 5.00 Schottky 

Au 5.10 Schottky 

Pd 5.12 Schottky 

Ni 5.15 Schottky 

Pt 5.65 Schottky 

 

Whereas large work-function metals such as Pt and Ni are the suitable candidates for the 

first gate metal layer, not unlike the Ohmic contacts, this high work function metal is usually 

covered by the high-conductivity/low-reactivity over-layer of Au.  In III-nitride processing, 

despite having a lower metal work function, Ni has been employed more often than Pt. One 

major reason for using Ni over Pt is the stronger adhesion of Ni to AlGaN.  

In this work, 500/500 Å of Ni/Au was evaporated using NEXDEP e-beam evaporator as 

the gate contact. Same lift-off process as Ohmic contact was used for patterning. Figure 6.11 

presents the micrograph of the patterned gate-fingers for a number of multiple-gate-finger 

transistors. Using the adjusted lift-off process, the fine 2 μm gates were quite acceptably realized 

across the sample (Figure 6.9(c)). 
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Figure 6.11 Micrographs of the gate fingers on the samples after lift-off process using (a) image reversal 

standard recipe, (b) adjusted exposure time recipe, and (c) final adjusted recipe.  

6.2.5 Interconnect contacts and device characteristics  

For on-chip characterization of the microfabricated AlGaN/GaN HFETs contact pads had to be 

evaporated on these devices. Since the pads are to withstand the wear and tear of probing, 

especially for high temperature stability testing, they have to be mechanical stable with ability to 

perform at high temperatures. In this project, 500 Å of Ti and Au was evaporated using the e-

beam evaporator to make the pads. This was follow by the same lift-off process as the previous 

two metallization steps. Figure 6.12 presents micrographs of a variety of 2- and multi-finger 

AlGaN/GaN HFETs fabricated at McGill’s microfabrication facilities. Figure 6.13 illustrated a 

typically observed DC drain and gate current-voltage (I–V) characteristics. Devices demonstrate 

a pinch-off voltage slightly smaller than -4 V, and a superb saturation and knee voltage 

characteristics. A maximum drain current of 0.6 A/mm was observed for LG=2 µm. Figure 6.14 

presents a typically observed extrinsic gate-transconductance characteristics of the device with 

the variation of the gate–source voltage. 

 

 

 

 

 

 

 

 

 
(a) 

 

5µm

 
(b) 

 

5µm

 
(c) 

 

5µm
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Figure 6.12 Micrographs of a number of microfabricated devices. 

 

  

Figure 6.13 Typically observed drain and gate current density versus drain-source voltage of the 

fabricated AlGaN/GaN HFETs. VGS varies from −5 to 0 V, with a step of 1 V.  Gate-length is 2 μm. 



86 
 

 
Figure 6.14 Typically observed extrinsic gate-transconductance versus gate-source voltage characteristic 

of the fabricated AlGaN/GaN HFETs. Gate-length is 2 μm and drain–source voltage is 7 V. 

Table 6.4 presents the details of the developed AlGaN/GaN HFET microfabrication 

process recipe. Challenges and solutions are also detailed in this table. A full disclosure of all the 

details of processing is presented in Appendix A. 
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Table 6.4 

Process steps of device microfabrication along with the challenges and solution in each step. 

Process step Challenges Solutions 

Wafer dicing 1) Dicing residue 1) Photoresist protective layer has 

been used before dicing. 

2) Ultrasonic agitation performed. 

3) Optical inspection under 

microscope performed. 

Sample cleaning 1) Organic contamination 

2) Inorganic contamination 

3) Native oxide layer 

1) A two-step cleaning process 

performed. 

Mask cleaning 1) Photoresist residues  1) Optical inspection under 

microscope after cleaning 

process performed. 

Mesa isolation 1) Standard recipe of photoresist does 

not work due to transparent 

substrate( i.e. Sapphire) 

2) Recipe for GaN etch not included in 

predefined recipes of MERIE 

1) AZ5214 photoresist recipe 

developed. 

2) GaN etch recipe developed and 

adjusted. 

Ohmic contacts 

formation 

1) Clear-field mask set needs either 

negative photoresist or image 

reversal process 

2) Negative photoresist makes the lift-

off process tough due to positive 

slope of the features 

3) Recipe  for RTA process is not 

included in predefined recipes of the 

equipment  

4) Samples need to be immediately 

transferred into the vacuum system 

for metal deposition to prevent native 

oxide formation 

1) Image reversal recipe developed 

and adjusted. 

2) RTA recipe developed and 

adjusted. 

3) Thin Silicon wafer used in order 

to reach 850 °C. 

Schottky gate 

contact formation 

1) Sensitivity of the image reversal 

recipe to the  post bake temperature 

2) Due to small features of the mask 

cross-linking happened 

1) Site coater’s hotplate used for 

accurate post bake temperature 

2) Exposure time has been adjusted.  

Interconnect 

contact formation 

  

 

6.3 Process recipe development for microfabrication of 

AlN/GaN MISETs 

Formation of a good Ohmic contact to the 2DEG of AlN/GaN epilayers is more difficult than 

achieving Ohmic contact across the AlGaN/GaN epilayers. This is due to the wider bandgap of 

AlN (i.e. 6.2 eV). This issue has been one of the major challenges in fabricating high 
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performance AlN/GaN MISFETs, and is yet to be overcome. Contact resistances as low as 0.36 

Ω.mm was reported by Xing et al. on an AlN/GaN sample with a 3 nm thick AlN barrier. In the 

same study, it has also been shown that Ohmic contact formation on AlN/GaN heterostructures 

mostly depends on the sheet resistance of the channel [171].  

In the present study we attempted fabricating AlN/GaN samples of thicker barriers in the 

order of 10 nm. The thicker barrier, although making the Ohmic contact formation more 

challenging, is expected to yield higher polar 2DEG concentration, less gate-leakage, and better 

drain current drive. While up until recently the growth challenges have inhibited the 

pseudomorphic growth of a thick tensile-strained AlN barrier on GaN, lately promising results 

on the growth of these structures have been made available [172].  

Since the number of the AlN/GaN samples of these characteristics which were made 

available to the present study was limited to two, it was decided to apply the same recipe 

developed for AlGaN/GaN HFETs for the microfabrication of AlN/GaN MISFETs. Following 

this recipe, after the cleaning process, the samples were etched to realize mesa isolation. The etch 

rate was found to be 1.9 nm/sec, based on which a 228 nm mesa height was realized. The optical 

observations demonstrated the etch steps to be uniform across the samples with very low surface 

damage. As for the next step, the same Ohmic metal stack of Ti/Al/Ti/Au of corresponding 

thicknesses 250/1500/100/500 Å was evaporated and annealed with the same condition as 

indicated in section 6.2.3. Figure 6.15 illustrates the resistance plotted against TLM contact 

spacing. As can be seen in this figure the AlN/GaN samples suffer from very high sheet 

resistance of 2080 Ω/□. This can be due to the problems during the growth stage, or high 

sensitivity of the surface to the chemicals used during the process. Next, 500/500 Å of Ni/Au 

was evaporated using NEXDEP e-beam evaporator as the gate contact. Same lift-off process as 

Ohmic contact was used for patterning. Finally, 500/500 Å of Ti/Au was evaporated using the e-

beam evaporator to make the pads. This was follow by the same lift-off process as the previous 

two metallization steps. 
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Figure 6.15 Resistance plotted versus TLM contact spacing. Transfer resistance is 1.5 Ω.mm

 
and sheet 

resistance is 2080 Ω /□. 

Figure 6.16 illustrates a typically observed DC drain and gate current-voltage (I–V) 

characteristics. Devices demonstrate a pinch-off voltage slightly smaller than -6 V, and a superb 

saturation and knee voltage characteristic. A maximum drain current of 0.11 mA/mm was 

observed for device with gate-length of 2 µm. Figure 6.17 presents a typically observed extrinsic 

gate-transconductance versus gate-source voltage characteristic of device. Due to much higher 

Ohmic contact and sheet resistance of fabricated AlN/GaN MISFET compared to the fabricated 

AlGaN/GaN HFET, this device is showing a much lower current density. Due to limited number 

of AlN/GaN MISFET samples, Ohmic contact optimization could not be further studied.  

  

Figure 6.16 Typically observed drain and gate current density versus drain-source voltage of the 

fabricated AlN/GaN MISFETs. VGS varies from −5 to 0 V, with a step of 1 V. Gate-length is 2 μm.  
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Figure 6.17 Typically observed extrinsic gate-transconductance versus gate-source voltage characteristic 

of the fabricated AlN/GaN MISFETs. Gate-length is 2 μm and drain–source voltage is 7 V. 

6.4 Conclusion 

Process recipes were developed for microfabrication of AlGaN/GaN HFETs and AlN/GaN 

MISFETs at cleanroom facilities of McGill University. The fabricated AlGaN/GaN HFET with 

gate length of 2 µm demonstrated maximum drain current density of 0.6 mA/mm and 

transconductance of 0.22 S/mm. The fabricated AlN/GaN MISFET with gate length of 2 µm 

demonstrated maximum drain current density of 0.11 mA/mm and transconductance of 0.1 

S/mm. 
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Chapter 7  

 

 

Concluding remarks, contributions, and 

future work suggestions 

 

The research work of this thesis is focused on microfabrication and characterization of 

AlGaN/GaN HFETs with alternative isolation features and microfabrication and characterization 

of AlN/GaN MISFETS. 

7.1 Concluding remarks 

In chapter 3, a new approach for reducing self-heating in AlGaN/GaN HFETs was presented. 

According to FEA and electrical measurement of average channel temperature of AlGaN/GaN 

HFETs of different isolation features, an improved heat-dissipation was observed in devices 

enjoying a more distributed nature of the 2DEG channel. Observations also indicate a more 

distinct gain in thermal management for devices with shorter gate-length. Results suggest that 

self-heating in island-isolated AlGaN/GaN HFETs can be completely ruled out by reducing the 

island-width beyond a threshold value. 

In chapter 4, it was shown that the correlation between the isolation-feature geometry and 

the observed shift in the pinch-off voltage is not fully explicable in terms of a tri-gate effect. The 

reported observations of this study suggest a link between the increase in the perimeter-to-area 

ratio of the cross-section of the isolation-feature, and an improved positive-shift in the pinch-off 

voltage. It has turned out that the 2DEG sheet concentration depends strongly on the device 

width and the gate structure.  



92 
 

In chapter 5, Gate-lag, RDS-dispersion, and degradation characteristics of newly proposed 

AlGaN/GaN HFETs were experimentally investigated. All devices exhibited gate-lag and RDS-

dispersion with frequency. Exposure of electrodes to additionally dry-etched sidewalls and dry-

etched GaN surfaces in between the isolation features of the new device types, presence of 

trapping centers induced by growth conditions of the structure, pre-existing defects in the 

epilayer, and carbon doping-related defects in the buffer layer are believed to be responsible for 

gate-lag and RDS-dispersion in these devices. Degradation of the drain-current of these newly 

proposed devices under on-state condition is also studied. In this regard, conventional mesa-

isolation exhibits the highest performance among all isolation technologies, which is speculated 

to be due to imposing the lowest amount of dry-etched damage. 

In chapter 6, the process recipe developed for microfabrication of AlGaN/GaN HFETs 

and AlN/GaN MISFETs is presented. Fabricated devices exhibit acceptable drain current density 

and extrinsic gate-transconductance. 

7.2 Contributions 

Chapter 3:  

The contributions of this work include the followings, 

- A new approach for reducing self-heating in AlGaN/GaN HFETs was presented for the first 

time. 

- Correlation between the geometry of the isolation feature and average channel temperature of 

AlGaN/GaN HFETs is investigated 

- Correlation between gate-length and the surface area of the isolation pattern and self-heating 

is investigated. 

Chapter 4: 

The main contributions of this work are as follows, 

- Correlation between the isolation-feature geometry and the DC current-voltage 

characteristics of AlGaN/GaN HFETs is investigated. 
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- Through implementation of six different geometries for isolation-features of polar 

AlGaN/GaN HFETs, the correlation between the isolation-feature geometry and the observed 

shift in pinch-off voltage was investigated. 

- The average 2DEG sheet concentration and tri-gate effect was simulated for devices with 

different body widths. 

Chapter 5: 

The contributions of this work include the followings, 

- Gate-lag, RDS-dispersion, and degradation characteristics of newly proposed AlGaN/GaN 

HFETs are experimentally investigated. 

Chapter 6: 

The main contributions of this work are as follows, 

- Process recipe for microfabrication of AlGaN/GaN HFETs and AlN/GaN MISFETs was 

developed and adjusted at McGill University’s microfabrication facilities. 

- DC characteristics of in-house microfabricated AlGaN/GaN HFETs and AlN/GaN MISFETs 

is investigated. 

7.3 Future work suggestions 

The following future works are suggested for the continuing study of III-nitride HFETs, 

1. Study of island-isolated AlGaN/GaN HFETs of smaller island sizes 

The high-power dissipation in AlGaN/GaN HFETs induces a self-heating in the active layers. 

Self-heating does not only limit the electron transport by enhancing the phonon scattering which 

results in decreasing the carrier mobility and electron saturation velocity but also damages the 

gate. Results from chapter 3 suggest that the self-heating issues in island-isolated AlGaN/GaN 

can be effectively ruled out by reducing the island-width beyond a threshold value. In this study, 

the minimum dimensions were limited by the foundry’s constraints. Such an experimental 

investigation of island-isolated AlGaN/GaN HFET with island-width of 12.5 nm or lower using 

E-beam lithography can be considered as a complementary study of self-heating in this type of 

devices.  



94 
 

2. Polarization-engineered AlGaN/GaN HFETs 

As mentioned earlier in chapter 4, III-nitride based devices normally operate in depletion-mode. 

Reduction of the carrier-concentration of the 2DEG is necessary in order to realize enhancement-

mode devices in this technology. This can be achieved through appropriate design with more 

distributed 2DEG channel and larger perimeter-to-area ratio which were also pointed out in 

chapter 4. Such an experimental investigation can be considered as a complementary study. 
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Appendix A: Summary of the Process Steps 

WAFER NUMBER  SAMPLE NUMBER  

1 MASK 1 CLEANING 

ACCETONE 10 min 

IPA 10 min 

DI WATER 3 cycles 

NITROGEN GUN  

COMMENTS:  

 Optical inspection under microscope. 

2 SAMPLE CLEANING 

HF:DI WATER  (1:1) 1 min 

HCl:DI WATER (1:1) 1 min 

METHANOL 1 min 

ACCETONE (50 °C) 3 min 

IPA 1 min 

DI WATER 3 cycles 

NITOGEN GUN  

COMMENTS: 

3 DEHYDRATION BAKE 

TEMPERATURE 200 °C TIME 120 sec 

COMMENTS:  

 After cool down spin coat as soon as possible. 

4 PHOTORESIST 1 

TYPE SHPLEY1318  

EQUIPMENT LAURELL PROGRAM C 

 

PARAMETERS 

SPREAD 500 rpm, 5 sec, 1305 rpm/s 

SPIN 4000 rpm, 30 sec, 1305 rpm/s 

DECELERATION 0 rpm, 5 sec, 1044 rpm/s 

COMMENTS:  

 Check the program parameters before starting the process! 

5 SOFT BAKE 1 

TEMPERATURE 115 °C TIME 60 sec 

COMMENTS:  

 Edge bid removal after softbake if needed. 

6 EXPOSURE 1 

EQUIPMENT EVG620 FILE GaN 

TYPE DOSAGE CONS DOSAGE 60 mJ/cm2 

COMMENTS:  

 Check UV lamp before starting the process. 

7 DEVELOPE 1 

DEVELOPER MF319 TIME 60 sec 

COMMENTS:  
 Optical inspection under microscope to check the alignment. Redo this step if development not complete. 

8 HARD BAKE 1 

TEMPERATURE 90 °C TIME 90 sec 

COMMENTS: 

9 ETCH (MESA) 

EQUIPMENT P5000 FILE GaN 

 

PARAMETERS 

Cl2 20 Ar 10 70 G 0 100 mtorr 30 sec 

Cl2 20 Ar 10 70 G 120 W 100 mtorr 110 sec 

Cl2 0 Ar 60 0 G 50 W 0 mtorr 10 sec 

COMMENTS:  

 Use Silicon wafer, polished side, as career wafer. Not oxide wafer!  1 sample at a time. 

10 PHOTORESIST REMOVAL 

TEMPERATURE 20 °C ULTRASONIC POWER 1 TIME 9 min 

COMMENTS:  

 Optical inspection under microscope to check if all the resist has been removed.  

 Redo this step if the photoresist removal is not complete. 

11 PROFILOMETER 

ETCH HEIGHT 240 ETCH RATE 2 nm/sec 

COMMENTS:  

 Use 0.1 mm/sec for scan speed and 5 mg for stylus force. 
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12 MASK 2 CLEANING 

ACCETONE 10 min 

IPA 10 min 

DI WATER 3 cycles 

NITROGEN GUN  

COMMENTS:  

 Optical inspection under microscope. 

13 SAMPLE CLEANING 

METHANOL 1 min 

ACCETONE (50 °C) 3 min 

IPA 1 min 

DI WATER 3 cycles 

NITOGEN GUN  

COMMENTS: 

14 DEHYDRATION BAKE 

TEMPERATURE 200 °C TIME 120 sec 

COMMENTS:  

 After cool down spin coat as soon as possible. 

15 PHOTORESIST 2 (IMAGE REVERSAL) 

TYPE AZ5214  

EQUIPMENT LAURELL PROGRAM B 

 

PARAMETERS 

SPREAD 500 rpm, 5 sec, 1305 rpm/s 

SPIN 3000 rpm, 30 sec, 1305 rpm/s 

DECELERATION 0 rpm, 5 sec, 1044 rpm/s 

COMMENTS:  

 Check the program parameters before starting the process! 

16 SOFT BAKE 

TEMPERATURE 90 °C TIME 55 sec 

COMMENTS:  

 Edge bid removal if needed 

17 EXPOSURE 2 

EQUIPMENT EVG620 FILE Image_Reversal 

TYPE TIME CONS TIME 0.6 sec 

COMMENTS:  

 Check UV lamp before starting the process. 

18 POST BAKE 

TEMPERATURE 105 °C TIME 120 sec 

COMMENTS:  

 Use Site Coater hotplate. Has to be exactly 105°C. 

19 FLOOD EXPOSURE 

EQUIPMENT EVG620 FILE Flood_Exposure 

TYPE DOSAGE CONS DOSAGE 250 mJ/cm2 

COMMENTS: 

20 DEVELOPE 2  

DEVELOPER MF 726 TIME 24 sec 

COMMENTS:  

 Optical inspection under microscope to check the alignment.  

 Redo if development not complete.  

 No hardbake needed! 

21 METALIZATION (OHMIC CONTACTS)  

EQUIPMENT NEXDEP 

1 Ti 250 Å 2 Al 1500 Å 3 Ti 100 Å 4 Au 500 Å 

COMMENTS: 

22 LIFT OFF  

TEMPERATURE 20 °C ULTRASONIC POWER 1 TIME 7 min 

COMMENTS:  

 Optical inspection under microscope to check if the lift off is complete.  

 Redo if lift off is not finished. 

23 RTA  

EQUIPMENT JESTFIRST200 FILE 850_Fast 

STEP TYPE T/R TEMP N2 SEN 

1 DLY 30 s  ON TC 

2 RAMP1 150 °C/s  800 ON TC 

3 RAMP2 150 °C/s  850 ON TC 

4 SS 25 s 850 ON TC 
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5 DLY 200 s  ON TC 

SHEET RESISTANCE (Rs) Ω/□ 

TRANSFER RESISTANCE (RT) Ω-mm 

SPECEPIC CONTACT RESISTANCE (Rc) Ω/cm2 

COMMENTS:  

 Use thin Silicon wafer as career wafer.  

 Make sure the parameters have been change to proper ones.  

 TLM measurements have to be performed after RTA.  

 Redo the recipe if the Ohmic contact is not acceptable. 

24 MASK 3 CLEANING 

ACCETONE 10 min 

IPA 10 min 

DI WATER 3 cycles 

NITROGEN GUN  

COMMENTS:  

 Optical inspection under microscope. 

25 SAMPLE CLEANING 

METHANOL 1 min 

ACCETONE (50 °C) 3 min 

IPA 1 min 

DI WATER 3 cycles 

NITOGEN GUN  

COMMENTS: 

26 DEHYDRATION BAKE 

TEMPERATURE 200 °C TIME 120 sec 

COMMENTS:  

 After cool down spin coat as soon as possible. 

27 PHOTORESIST 3 (IMAGE REVERSAL) 

TYPE AZ5214  

EQUIPMENT LAURELL PROGRAM B 

 

PARAMETERS 

SPREAD 500 rpm, 5 sec, 1305 rpm/s 

SPIN 3000 rpm, 30 sec, 1305 rpm/s 

DECELERATION 0 rpm, 5 sec, 1044 rpm/s 

COMMENTS:  

 Check the program parameters before starting the process! 

28 SOFT BAKE 

TEMPERATURE 90 °C TIME 55 sec 

COMMENTS:  

 Edge bid removal if needed 

29 EXPOSURE  

EQUIPMENT EVG620 FILE Image_Reversal 

TYPE TIME CONS TIME 0.6 sec 

COMMENTS:  

 Check UV lamp before starting the process. 

30 POST BAKE 

TEMPERATURE 105 °C TIME 120 sec 

COMMENTS:  

 Use Site Coater hotplate. Has to be exactly 105°C 

31 FLOOD EXPOSURE 

EQUIPMENT EVG620 FILE Flood_Exposure 

TYPE DOSAGE CONS DOSAGE 250 mJ/cm2 

COMMENTS: 

32 DEVELOPE 3  

DEVELOPER MF 726 TIME 24 sec 

COMMENTS:  

 Optical inspection under microscope to check the alignment.  

 Redo if development not complete.  

 No hardbake needed! 

33 METALIZATION (SCHOTTKY GATE CONTACT)  

EQUIPMENT NEXDEP 

1 Ni 250 Å 2 Au 500 Å 

COMMENTS: 

34 LIFT OFF  

TEMPERATURE 20 °C ULTRASONIC POWER 1 TIME 7 min 

COMMENTS:  
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 Optical inspection under microscope to check if the lift off is complete.  

 Redo if lift off is not finished. 

35 MASK 4 CLEANING 

ACCETONE 10 min 

IPA 10 min 

DI WATER 3 cycles 

NITROGEN GUN  

COMMENTS:  

 Optical inspection under microscope. 

36 SAMPLE CLEANING 

METHANOL 1 min 

ACCETONE (50 °C) 3 min 

IPA 1 min 

DI WATER 3 cycles 

NITOGEN GUN  

COMMENTS: 

37 DEHYDRATION BAKE 

TEMPERATURE 200 °C TIME 120 sec 

COMMENTS:  

 After cool down spin coat as soon as possible. 

38 PHOTORESIST 4 (IMAGE REVERSAL) 

TYPE AZ5214  

EQUIPMENT LAURELL PROGRAM B 

 

PARAMETERS 

SPREAD 500 rpm, 5 sec, 1305 rpm/s 

SPIN 3000 rpm, 30 sec, 1305 rpm/s 

DECELERATION 0 rpm, 5 sec, 1044 rpm/s 

COMMENTS:  

 Check the program parameters before starting the process! 

39 SOFT BAKE 

TEMPERATURE 90 °C TIME 55 sec 

COMMENTS:  

 Edge bid removal if needed 

40 EXPOSURE 4 

EQUIPMENT EVG620 FILE Image_Reversal 

TYPE TIME CONS TIME 0.6 sec 

COMMENTS:  

 Check UV lamp before starting the process. 

41 POST BAKE 

TEMPERATURE 105 °C TIME 120 sec 

COMMENTS:  

 Use Site Coater hotplate.  

 Temperature has to be exactly 105°C 

42 FLOOD EXPOSURE 

EQUIPMENT EVG620 FILE Flood_Exposure 

TYPE DOSAGE CONS DOSAGE 250 mJ/cm2 

COMMENTS: 

43 DEVELOPE 4 

DEVELOPER MF 726 TIME 24 sec 

COMMENTS:  

 Optical inspection under microscope to check the alignment.  

 Redo if development not complete.  

 No hardbake needed! 

44 METALIZATION (PAD CONTACTS)  

EQUIPMENT NEXDEP 

1 Ti 500 Å 2 Au 500 Å 

COMMENTS: 

45 LIFT OFF  

TEMPERATURE 20 °C ULTRASONIC POWER 1 TIME 7 min 

COMMENTS:  

 Optical inspection under microscope to check if the lift off is complete.  

 Redo if lift off is not finished. 

 


