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 
Abstract — In this paper, a scheme for the design of a 

high-speed pipeline VLSI architecture for the computation of the 
2-D discrete wavelet transform (DWT) is proposed. The main 
focus in the development of the architecture is on providing a high 
operating frequency and a small number of clock cycles along 
with an efficient hardware utilization by maximizing the 
inter-stage and intra-stage computational parallelism for the 
pipeline. The inter-stage parallelism is enhanced by optimally 
mapping the computational task of multi decomposition levels to 
the stages of the pipeline and synchronizing their operations. The 
intra-stage parallelism is enhanced by dividing the 2-D filtering 
operation into four subtasks that can be performed independently 
in parallel and minimizing the delay of the critical path of bit-wise 
adder networks for performing the filtering operation. To 
validate the proposed scheme, a circuit is designed, simulated, and 
implemented in FPGA for the 2-D DWT computation. The results 
of the implementation show that the circuit is capable of operating 
with a maximum clock frequency of 134 MHz and processing 1022 
frames of size 512×512 per second with this operating frequency. 
It is shown that the performance in terms of the processing speed 
of the architecture designed based on the proposed scheme is 
superior to those of the architectures designed using other existing 
schemes, and it has similar or lower hardware consumption. 
 

Index Terms — Discrete  wavelet  transform,  FPGA 
implementation, image processing, parallel architecture, pipeline 
architecture, real-time processing, VLSI architecture, 
multi-resolution filtering, non-separable approach, computational 
parallelism. 
 

I. INTRODUCTION 

HE 2-D discrete wavelet transforms (DWT) have been 
widely used in many engineering applications because of 

their multi-resolution decomposition capability [1]. However, 
processing large volumes of data of various decomposition 
levels of the transform makes their computation 
computationally very intensive. In the past, many architectures  
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have been proposed aimed at providing high-speed 2-D DWT 
computation with the requirement of utilizing a reasonable 
amount of hardware resources. These architectures can be 
broadly classified into separable [2]−[16] and non-separable 
architectures [17]−[27]. In a separable architecture, a 2-D 
filtering operation is divided into two 1-D filtering operations, 
one for processing the data row-wise and the other 
column-wise. Vishwanath et al. [2] have proposed a 
low-storage short-latency separable architecture in which the 
row-wise operations are performed by systolic filters and the 
column-wise operations by parallel filters. This architecture 
requires complex control units to facilitate the interleaved 
operations of the output samples of different decomposition 
levels by employing a recursive pyramid algorithm (RPA) [28]. 
Liao et al. [3] have introduced an architecture in which each of 
the row- and column-wise filtering operations are decomposed 
using the so called lifting operations [29] into a cascade of 
sub-filtering operations. The scheme leads to a low-complexity 
architecture with a large latency. The separable architectures, in 
which a 1-D filtering structure is used to perform the 2-D DWT, 
have an additional requirement of transposing the intermediate 
data between the two 1-D filtering processes. This increases the 
memory size as well as the latency of the architectures. The 
non-separable architectures do not have this problem, since in 
these architectures, the 2-D transforms are computed directly 
by using 2-D filters. Chakrabarti et al. [17] have proposed two 
non-separable architectures, one using parallel 2-D filters and 
the other an SIMD 2-D array, both based on a modified RPA. In 
the former architecture, a high degree of computational 
parallelism is achieved at the expense of less efficient hardware 
utilization, whereas the latter architecture requires a 
reconfigured organization of the array as the processing moves 
on to higher decomposition levels. Cheng et al. [18] have 
proposed an architecture in which a number of parallel FIR 
filters with a polyphase structure are used to improve the 
processing speed at the expense of increased hardware. Hung et 
al. [19], in an effort to provide a reduced count of multipliers 
and to facilitate the processing of the boundary data, have 
proposed an architecture that is a pipeline of one stage of 
parallel multipliers and two stages of accumulators to perform 
the accumulation tasks of the filters in each of the two 
directions. But the processing speed of this architecture is low 
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in view of the fact that the same architecture is utilized 
recursively to perform the tasks of successive decomposition 
levels. Marino [21] has proposed a two-stage pipeline 
architecture in which the first stage performs the task of the first 
decomposition level and the second one that of all the 
remaining levels, and has aimed at providing a short 
computation time. As the processing units employed in this 
architecture differ from one another, the complexity of the 
hardware resources is high and the design of the architecture is 
complicated. Most existing non-separable architectures aim at 
providing fast computation of the DWT by using pipeline 
structures and a large number of parallel filters. However, these 
existing architectures have not exploited the computational 
parallelism inherent in the DWT operation to the extent 
possible in order to provide a high speed. 

In this paper, a non-separable pipeline architecture for fast 
computation of the 2-D DWT with a reasonable low cost for the 
hardware resources is proposed. The high-speed computation is 
achieved by efficiently distributing the task of the computations 
of multiple decomposition levels among the stages of the 
pipeline, and by optimally configuring the data and 
synchronizing the operations of pipeline so as to maximize the 
inter-stage and intra-stage computational parallelism. The 
paper is organized as follows. In Section II, a mathematical 
formulation of the 2-D DWT computation necessary for the 
development of the proposed architecture is presented. In 
Section III, a study is conducted to determine the number of 
stages of a pipeline necessary for optimally mapping the task of 
the DWT computation onto the stages of the pipeline. Based on 
this study, in Section IV, a three-stage pipeline architecture is 
developed with an efficient structure of the 2-D input data and 
an optimal organization of the processing units in each of the 
stages. In Section V, the performance of the proposed 
architecture is assessed and compared with that of other 
existing architectures and validated by an FPGA 
implementation. Section VI summarizes the work of this paper 
by highlighting the salient features of the proposed 
architecture. 

 

II. FORMULATIONS FOR THE COMPUTATION OF THE 2-D DWT 

The 2-D DWT is an operation through which a 2-D signal is 
successively decomposed in a spatial multiresolution domain 
by lowpass and highpass FIR filters along each of the two 
dimensions. The four FIR filters, denoted as highpass-highpass 
(HH), highpass-lowpass (HL), lowpass-highpass (LH) and 
lowpass-lowpass (LL) filters, produce, respectively, the HH, 
HL, LH and LL subband data of the decomposed signal at a 
given resolution level. The samples of the four subbands of the 
decomposed signal at each level are decimated by a factor of 
two in each of the two dimensions. For the operation at the first 
level of decomposition, the given 2-D signal is used as input, 
whereas for the operations of the succeeding levels of 
decomposition, the decimated LL subband signal from the 
previous decomposition level is used as input. 

A. Formulation for the 2-D DWT Computation 

Let a 2-D signal be represented by an N0×N0 matrix S(0), with 
its (m,n)th element denoted by S(0)(m,n) (0m ,nN0−1), where 
N0 is chosen to be 2J, J being an integer. Let the coefficients of 
a 2-D FIR filter P (P=HH, HL, LH, LL) be represented by an 
L×M matrix H(P). The (k,i)th coefficient of the filter P is 
denoted by H(P)(k,i) (0kL−1, 0 iM−1). The 
decomposition at a given level j=1, 2, ···, J can be expressed as 
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where A(j)(m,n), B(j)(m,n), C(j)(m,n) and S(j)(m,n) (0m,nNj−1) 
denote the (m,n)th elements of the four Nj×Nj (Nj=N0/2

j ) 
matrices, A(j), B(j), C(j) and S(j), respectively, representing the 
HH, HL, LH and LL subbands of the 2-D input signal at the j th 
level. It is seen from (1) that the four decomposed subbands at a 
level are obtained by performing four 2-D convolutions. Each 
2-D convolution can be seen as a sum of the products of the 
L×M filter coefficients and the elements contained in an L×M 
window sliding on a 2-D data. The decimation by a factor of 
two in both the horizontal and vertical dimensions can be 
accomplished by sliding the L×M window by two positions 
horizontally and vertically for the computation of two 
successive samples. Only the LL subband data of 
decomposition are used as input for the decomposition at the 
next level. After J iterations, the 2-D signal S(0) is transformed 
into J resolution levels, with HH, HL and LH subbands from 
each of the first J−1 levels and HH, HL, LH and LL subbands 
from the last (Jth) level. Since Nj=N0/2

j, the number of samples 
that need to be processed at each level j is one quarter of that at 
the preceding level. 

 

B. Formulation for a Four-channel Filtering Operation 

In order to facilitate parallel processing for the 2–D DWT 
computation, the L×M filtering operation needs to be divided 
into multi-channel operations, each channel processing one 
part of the 2-D data. It is seen from (1) that the even and odd 
indexed elements are always operated on the even and odd 
indexed filter coefficients, respectively. The matrix S(j) 
representing the LL subband at the jth level can, therefore, be 
divided into four (Nj /2+L/2)×(Nj /2+M/2) sub-matrices, 
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taking into consideration the periodic padding samples at the 
boundary [30]. It is seen from (2) that the data at any 
decomposition level are divided into four channels for 
processing by first separating the even and odd indexed rows of 
S(j), and then separating the even and odd indexed columns of 
the resulting two sub-matrices. The data in each channel can 
then be computed by an (L/2×M/2)-tap filtering operation. In 
order to facilitate such a 4-channel filtering operation, the filter 
coefficients, as used in (1), need to be decomposed 
appropriately. Accordingly, the matrix H(P) needs to be 
decomposed into four (L/2×M/2) sub-matrices, 
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respectively. By using (2) and (3) in (1), any of the four 
subband signals, A(j), B(j), C(j) and S(j), at the jth decomposition 
level, can be computed as a sum of four convolutions using 
(L/2×M/2)-tap filters. For example, the LL subband given by 
(1d) can now be expressed as 
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At any decomposition level, the separation of the subband 
processing corresponding to even and odd indexed data as 
given by (4) is consistent with the requirement of decimation of 
the data in each dimension by a factor of two in the DWT 
computation. It is also seen from (4) that the filtering operations 
in the four channels are independent and identical, which can 
be exploited in the design of an efficient pipeline architecture 
for the 2-D DWT computation. 

 

III. PIPELINE FOR THE 2-D DWT COMPUTATION 

In a pipeline structure for the DWT computation, multiple 
stages are used to carry out the computations of the various 
decomposition levels of the transform [31]. The computation 
corresponding to each decomposition level needs to be mapped 
to a stage or stages of the pipeline. It is seen from the 
formulation in Section II that the task of computing the j th 
decomposition level in a J-level DWT computation consists of 
computing N0

2/4 j−1 samples, where N0=2J. The computation of 
each sample actually performs an (L×M)-tap HH, HL, LH or 
LL FIR filtering operation that comprises the operations of 
(L×M) multiplications followed by (L×M) accumulations. 
Assuming that these operations for the computation of one 
sample are carried out by a unit of filter processor, the overall 

task of the DWT computation would require a certain number 
of such filter units. In order to design a pipeline structure 
capable of performing a fast computation of the DWT with low 
expense on hardware resources and low design complexity, an 
optimal mapping of the overall task of the DWT computation to 
the various stages of the pipeline needs to be determined. Any 
distribution of the overall task of the DWT computation to 
stages must consider the inherent nature of the sequential 
computations of the decomposition levels that limit the 
computational parallelism of the pipeline stages, and 
consequently the latency of the pipeline. The key factors in the 
distribution of the task to the stages are the maximization of the 
inter-stage and intra-stage computational parallelism and the 
synchronization of the stages within the constraint of the 
sequential nature of the computation of the decomposition 
levels. The feature of identical operations associated with the 
computations of all the output samples irrespective of the 
decomposition levels in a DWT computation can be exploited 
to maximize the intra-stage parallelism of the pipeline. Further, 
in order to minimize the expense on the hardware resources of 
the pipeline, the number of filter units used by each stage ought 
to be minimum and proportional to the amount of the task 
assigned to the stage. 

A straightforward mapping of the overall task of the DWT 
computation to a pipeline is one-level to one-stage mapping, in 
which the tasks of J decomposition levels are distributed to J 
stages of the pipeline. In this mapping, the amount of hardware 
resources used by a stage should be one-quarter of that used by 
the preceding stage. Thus, the ratio λ of the hardware resource 
used by the last stage to that used by the first stage has a value 
of 1/4J−1. For images of typical size, this parameter would 
assume a very small value. Hence, for a structure of the pipeline 
that uses identical filter units, the number of these filter units 
would be very large. Further, since the number of such filter 
units employed by the stages would decrease exponentially 
from one stage to the next in pipeline, it will make their 
synchronization very difficult. The solution to such a difficult 
synchronization problem, in general, requires more control 
units, multiplexers and registers, which results in a higher 
complexity of the hardware resources. A reasonably large value 
of λ<1 would be more attractive for synchronization. In this 
respect, the parameter λ can be seen as a measure of difficulty 
in that a smaller value of this parameter implies a greater design 
effort and more hardware resources for the pipeline. 

The parameter λ can be increased from its value of 1/4J−1 in 
the one-level to one-stage pipeline structure by dividing the 
large-size stages into a number of smaller stages or merging the 
small-size stages into larger ones. However, dividing a stage of 
the one-level to one-stage pipeline into multiple stages would 
require a division of the task associated with the corresponding 
decomposition level into sub-tasks, which in turn, would call 
for a solution of even a more complex problem of 
synchronization of the sub-tasks associated with divided stages. 
On the other hand, merging multiple small-size stages of the 
pipeline into one stage would not create any additional 
synchronization problem. As a matter of fact, such a merger 
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could be used to reduce the overall number of filter units of the 
pipeline. 

In view of the above discussion, the synchronization 
parameter λ can be increased by merging a number of stages at 
tail end of the pipeline. Fig. 1 shows the structure of a pipeline 
in which the stages I to J of the one-level to one-stage pipeline 
have been merged. In this structure, the tasks of the 
decomposition level from j=1 to j= I−1 are mapped to stage 1 
to I−1, respectively, whereas those of the decomposition levels 
j= I, ···, J, are mapped all together to the I th stage. Note that the 
total amount of computations performed by stage I is less than 
one-half of that performed by stage I−1. Considering the fact 
that the number of filter units employed by each stage of the 
pipeline is an integer, it is reasonable to have the ratio of the 
numbers of filter units used by the last two stages (i.e., stages 
I−1 and I) to be 2:1. The value of the parameter λ is now 
increased from 1/4J−1 to 1/4I−1.5. However, now the resources 
employed by stage I would not be fully utilized, which would 
lower the efficiency of the hardware utilization of the pipeline 
of Fig. 1. Assume that the parameter η represents the hardware 
utilization efficiency defined as the ratio of the resources used 
to that employed by the pipeline. The hardware utilization 
efficiency η of the pipeline in Fig. 1 can be shown to be equal to 
(1−4−J)/(1+4−I+0.5). Since for images of typical size, 4−J is 
negligibly small compared to one, the expression for η can be 
simplified as 1/(1+4−I+0.5). As the number of stages I employed 
by the pipeline increases, the hardware utilization efficiency 
increases with the parameter η approaching unity for a 
maximum efficiency. On the other hand, the difficulty in 
synchronizing the stages gets worse as the parameter λ 
decreases with increasing value of I. A variation in the value of 
I results in the values of λ and η that are in conflict from the 
point of view of stage synchronization and hardware utilization 
efficiency. Therefore, a value of I needs to be determined that 
optimizes the values of λ and η jointly. 

Input
of N0N0

samples

· · ·  

Level 1 Level 2
Levels
I to J

Stage 1 Stage 2 Stage
I

 
Fig. 1.  Pipeline structure with I stages for J-level computation. 
 

Considering an example of an image of size 28×28, in which 
case J=8. Table I gives the values of the parameters λ and η for 
the pipeline structures with I=2, 3 and 4. It is seen from this 
table that the 2-stage and 3-stage pipelines have acceptable 
values of λ, whereas the synchronization of the 4-stage pipeline 
would be very difficult because of its very low value of λ=1/32. 
On the other hand, the 3-stage and 4-stage pipelines have more 
desirable values of η in comparison to that for the 2-stage 
pipeline. Therefore, a 3-stage pipeline with an acceptable value 
for the synchronization parameter and high hardware 
utilization efficiency would be the best choice of a pipeline. 
Note that the size of the images used in typical applications 
would have little bearing on the conclusion thus reached 
regarding the number of stages employed in the pipeline. Also, 

note that a 3-stage pipeline can perform the DWT computation 
for a variable number of decomposition levels from 3 to J. With 
three as the optimal choice of the number of stages in a pipeline, 
one can now choose the minimum numbers of filter units as 8, 2 
and 1 for the stages 1, 2 and 3 in order to perform the tasks 
associated with the decomposition levels 1, 2 and 3 to J 
together, respectively. The next section is concerned 
specifically with a detailed design of the 3-stage pipeline 
structure. 

 
TABLE I 

VALUES OF THE PARAMETERS λ AND η FOR A PIPELINE WITH NUMBER OF 

STAGES AS TWO, THREE AND FOUR (J =8) 

Parameter I=2 I=3 I=4 
λ 1/2 1/8 1/32 
η 89% 96% 99% 

 

IV. DESIGN OF THE ARCHITECTURE 

In the previous section, we advocated a three-stage pipeline 
structure for the computation of the 2-D DWT to realize an 
optimal combination of the parameters for the hardware 
utilization and pipeline synchronization. In this three-stage 
structure, like in any pipeline architecture, the operations in a 
given stage depend on the data produced by the preceding stage. 
However, because of the way that the computational load of the 
various decomposition levels of the 2-D DWT computation has 
been distributed among the three stages, the operations in the 
first and second stages of the pipeline do not depend on the data 
produced by themselves, whereas that in stage 3 does depend 
on the data produced by itself. The operations of the three 
stages need to be synchronized in a manner so that the three 
stages perform the computation of multiple decomposition 
levels within a minimum possible time period while using the 
available hardware resources maximally. In this section, we 
present the design of the proposed 3-stage pipeline architecture, 
starting with the synchronization of the operations of the stages, 
and then focusing on the details of the intra-stage design so as 
to provide an optimal performance. 

 

A. Synchronization of Stages 

Recall from Section III that the distribution of the 
computational load among the three stages, and the hardware 
resources made available to them are in the ratio 8:2:1. 
Accordingly, the synchronization of the operations between the 
stages needs to be carried out under this constraint of the 
distribution of the computational load and hardware resources. 
According to the nature of the DWT, the computation of a 
decomposition level j depends on the data computed at its 
previous level j–1, in which the number of computations is 
four times of that at the decomposition level j. Therefore, the 
stages of pipeline need to be synchronized in such a way that 
each stage starts the operation at an earliest possible time when 
the required data become available for its operation. Once the 
operation of a stage is started, it must continue until the task 
assigned to it is fully completed. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <           5 
 

 

Consider the timing diagram given in Fig. 2 for the 
operations of the three stages, where t1, t2 and t3 are the times 
taken individually by stages 1, 2 and 3, respectively, to 
complete their assigned tasks, and ta and tb are the times elapsed 
between the starting points of the tasks by stages 1 and 2, and 
that by stages 2 and 3, respectively. Note that the lengths of the 
times t1, t2 and t3 to complete the tasks by individual stages are 
approximately the same, since the ratios of the tasks assigned 
and the resources made available to the three stages are the 
same. The average times to compute one output sample by 
stages 1, 2 and 3 are in the ratio 1:4:8. In Fig. 2, the relative 
widths of the slots in the three stages are shown to reflect this 
ratio. Our objective is to minimize the total computation time 
ta+tb+t3 by minimizing ta, tb and t3 individually. 

Stage 3

Stage 2

Stage 1

ta

tb
t3

t1

t2

·  ·  ·

·  ·  ·

·  ·  ·

 
Fig. 2.  Timing diagram for the operations of three stages. 

 
Assume that 2-D output samples for a decomposition level 

are computed row-by-row starting from the upper-left corner 
sample. Since the operations in stage 1 are independent of those 
in the other two stages, it can operate continuously to compute 
all the samples of level 1. The value of t1 is equal to TsN1

2, 
where Ts is the average time taken by stage 1 to compute one 
output sample. Since the operations of stages 2 and 3 require 
the output data computed by stages 1 and 2, respectively, their 
operations must be delayed by certain amount of times so that 
they can operate continuously with the data required by them 
becoming available. We now give the lowest bound on ta and tb 
so that once stages 2 and 3 start their operations they could 
continue their operations uninterruptedly. Since the operation 
of stage 2 starts at time ta, the (i,k)th output sample of level 2, 
denoted by S(2)(i,k), will be computed starting at the time instant 
tx=ta+4Ts (i·N2+k), where 4Ts is the average time taken by stage 
2 to compute one output sample. Using (1), among the level-1 
samples required for the computation of S(2)(i,k), the (2i+L−1, 
2k+M−1)th level-1 sample, denoted by S(1)(2i+L−1, 2k+M−1), 
is the latest output sample computed at the time instant 
ty=Ts[N1(2i+L−1)+2k+M−1]+Ts. Now, if at the time of starting 
the calculation of the output sample S(2)(i,k), i.e. tx, the sample 
S(1)(2i+L−1,2k+M−1) has already been calculated by stage 1, 
all the leve-1 samples necessary to calculate this level-2 output 
sample would be available. This requires us to impose the 
constraint tx>ty, for all i and k, i.e. 0≤ i ,  k≤N2−1. This condition 
implies that 

)2( 11 kMNLNTt sa   (5) 
The minimum value of ta is given by  

])1([ 1min MLNTt sa   (6) 

Assume that stage 3 computes all the output samples of all 
remaining levels (i.e. level 3 to level J) in a sequential manner. 
We only need to consider the requirement of the data 

availability for the computation of level-3, which uses the 
level-2 samples computed by stage 2. Then, in a way similar to 
that obtaining ta min, by imposing the condition that at the time 
instant of starting the calculation of a level-3 output sample by 
stage 3, all the samples in the window of the level-2 output 
samples are available, it can be shown that the minimum value 
of tb is given by 

])22/([4 22min MLNNTt sb   (7) 

Based on the above discussion, the operations of the three 
stages can be arranged in the following manner: 

Step 1. Stage 1 operates continuously on the input signal to 
compute the level-1 output samples sequentially. 

Step 2. Stage 2 starts its operation immediately following the 
computation of the (L−1, M)th level-1 output sample, 
S(1)(L−1,M), and then continues its operation of all other level-2 
output samples in a sequential manner. 

Step 3. Stage 3 starts its operation for the computation of 
level-3 samples immediately after stage 2 completes the 
computation of the (N2/2+L−2, M−1)th level-2 output sample, 
S(2)(N2/2+L−2, M−1), and then continues the computation of 
other level-3 output samples sequentially. Computations of the 
output samples of levels 4 to J are carried out sequentially by 
the stage 3 following the computation of level-3 output 
samples. 

 

B. Design of Stages 

As discussed in Section III, in the proposed three-stage 
architecture, stages 1 and 2 perform the computations of levels 
1 and 2, respectively, and stage 3 that of all the remaining levels. 
Since the basic operation of computing each output sample, 
regardless of the decomposition level or the subband, is the 
same, the computation blocks in the three stages can differ only 
in the number of identical processing units employed by them 
depending on the amount of the computations assigned to the 
stages. As seen from (4), an (LM)-tap filtering operation is 
decomposed into four independent (L/2M/2)-tap filtering 
operations, each operating on the 2-D L/2M/2 data resulting 
from the even or odd numbered rows and even or odd 
numbered columns of an LM window of an LL-subband data. 
A unit consisting of L/2M/2 MAC cells can now be regarded 
as the basic processing unit to carry out an (L/2M/2)-tap 
filtering operation. An LM window of the raw 2-D input data 
or that of an LL-subband data must be decomposed into four 
distinct L/2M/2 sub-windows in accordance with the four 
decomposed terms given by the right side of (4). This 
decomposition of the data in an LM window can be 
accomplished by designing for each stage an appropriate data 
scanning unit (DSU) based on the way the raw input or the 
LL-subband data is scanned. The stages would also require 
memory space (buffer) to store the raw input data or the 
LL-subband data prior to scanning. Since stages 1 and 2 need to 
store only part of a few rows of raw input or LL-subband data at 
a time, they require a buffer of size of O(N), whereas since 
stage 3 needs to store the entire LL-subband data of a single 
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decomposition level, it has a buffer of size of O(N2). Fig. 3 
gives the block diagram of the pipeline showing all the 
components required by the three stages. Note that the data 
flow shown in this figure comprises only the LL-subband data 
necessary for the operations of the stages. The HH, HL and LH 
subband data are outputted directly to an external memory. 
Now, we give details on the structure of the data scanning unit 
to scan the 2-D data and establish four distinct L/2M/2 
sub-windows, as well as on the distribution of the filtering 
operations to the processing units in each stage. 
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Buffer2
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Fig. 3.  Block diagram of the three-stage architecture. 

 
1) Structure of the Data Scanning Unit 

In accordance with (4), an LM window of the raw 2-D input 
data stored in Buffer1 or an LL-subband data stored in Buffer2 
or Buffer3 must be partitioned into four L/2M/2 sub-windows, 
and stored into the DSU of the corresponding stage. Further, 
this same equation also dictates that a 2-D input data must be 
scanned in a sequential manner shown in Fig. 4(a). According 
to this sequence of scanning, the samples in a set of data 
comprising L rows of a 2-D input data are scanned starting from 
the top-left corner. Once the scanning of all the samples of L 
rows is completed, the process is repeated for another L rows 
after shifting down by two row positions. The objective is then 
to design a structure for a DSU so that samples scanned with 
this sequential mode get partitioned into the four sub-windows 
(Fig. 4(b)). 

Sub-
window 1

Sub-
window 2

Sub-
window 3

Sub-
window 4

Partitioned
L/2×M/2 data

L×M
window

(a) (b)

L

 
Fig. 4.  (a) Scanning of an Nj×Nj 2-D data. (b) Partitioning of an LM window 
into four L/2M/2 sub-windows. The solid and empty circles represent the 
samples in even-indexed and odd-indexed rows, respectively, whereas the 
black and grey circles represent the samples in even-indexed and odd-indexed 
columns, respectively. 
 

In order to partition an LM window into four L/2M/2 
sub-windows, the structure of the DSU must first partition the 
samples of the window into two parts depending on whether a 
sample belongs to an even-indexed or odd-indexed row; then 
the samples in each part must be partitioned further into two 

parts depending on whether a sample belongs to an 
even-indexed or odd-indexed column. The first partition can be 
achieved by directing scanned samples alternatively to two sets 
of L/2 shift registers. The second partition can be achieved by 
reorganizing the samples stored in the shift registers of the two 
sets depending on whether a sample belongs to even-indexed or 
odd-indexed column by employing demultiplexers. Finally, the 
samples of the four sub-windows can be stored, respectively, 
into four units of L/2M/2 parallel registers. Fig. 5 shows a 
structure of the DSU to accomplish this task. This data 
scanning scheme automatically incorporates the downsampling 
operations by two in the vertical and horizontal directions (as 
required by the transform), and thus no additional peripheral 
circuits and registers are required for the downsampling 
operations by the architecture. As a result, the data scanning 
scheme, in comparison to the other schemes [32], requires less 
hardware resources for the control units and fewer registers for 
the stages. 
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Fig. 5.  Structure of the data scanning unit (DSU). 
 

2) Distribution of filtering operations among the processing 
units employed by stages 

In accordance with (1) and (4)), decomposing input data into 
four subbands requires four LM filtering operations, and each 
of the four filtering operations requires four (L/2M/2)-tap 
filtering operations. Thus, a total of 16 (L/2M/2)-tap filtering 
operations are involved for the computation of the samples for 
the four subbands using an LM window of the input data. Now, 
for each stage, these 16 types of filtering operations must be 
assigned to the processing units available to the stage using 
four sub-windows of data from its DSU. Given the available 
resources of the stages, the objective here is to process the 16 
types of filtering operations with maximized computational 
parallelism and with priority given to the computation of the 
samples of LL subband. 

In stage 1, since eight processing units are available, the 
processing task can be distributed among them so that one 
processing unit carries out the subtask of (L/2M/2)-tap 
filtering operations corresponding to a pair of subbands from 
the LL, LH, HL and HH using the data of one sub-window. One 
such distribution of the task is shown in Fig. 6, from which it is 
seen that each of the processing units PU1 to PU4 carries out the 
LL and LH filtering operations sequentially using the 
sub-windows 1 to 4, respectively, whereas each of the 
processing units PU5 to PU8 carries out the HH and HL filtering 
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operations using the same sub-windows. In stage 1, the LL and 
HH subband samples are produced in parallel in one clock 
cycle, whereas the LH and HL subband samples are produced 
in parallel in the next. 

Output sample 2
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Fig. 6.  The structure of eight processing units employed by stage 1. 
 

Since stage 2 employs two processing units, each must 
perform the task of all the four subbands using two 
sub-windows. As the data of the four sub-windows, 1 to 4, 
become available in a sequential manner, sub-windows 1 and 3 
are sequentially assigned to PU9, whereas sub-windows 2 and 4 
in a similar manner are assigned to PU10. This distribution of 
the task for stage 2 is shown in Fig. 7, from which it is seen that 
each of the processing units, PU9 and PU10, carries out the 
(L/2M/2)-tap filtering operations. In stage 2, PU9 and PU10 
operating in parallel produce the LL, LH, HH and HL subband 
samples sequentially in eight consecutive clock cycles. 
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Sub-
window 3
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window 2
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Fig. 7.  The structure of two processing units employed by stage 2. 
 

Since only one processing unit, PU11, is employed by stage 3, 
it has to carry out all the filtering operations for each of the four 
sub-windows, as shown in Fig. 8. In this figure, the four 
sub-windows, 1 to 4, are chosen successively, as input to PU11. 
For each sub-window, the processing unit PU11 then carries out 
the (L/2M/2)-tap filtering operations. In this stage, PU11 
produces sequentially the LL, LH, HH and HL subband 
samples in 16 consecutive clock cycles. 

RegistersMuxSub-
window 1
Sub-
window 2

Adder
(LL, LH, 
HH, HL)Sub-

window 3

Output sample

PU11Sub-
window 4

 
Fig. 8.  The structure of one processing unit employed by stage 3. 

Note that one processing unit at a time processes the samples 
of only one sub-window corresponding to one of the four 
subbands. Assume that such a processing time by a processing 
unit to be one time unit. Now, since stages 1, 2 and 3 have 8, 2 
and 1 processing units, respectively, they can process 

sub-windows at the rates of 2, 1/2 and 1/4 sub-windows per 
unit time. This coupled with the fact that the processing loads 
(i.e. the number of sub-windows) assigned to the three stages 
are in the ratio 8:2:1, lets us to conclude that the operations of 
the three stages are mutually synchronized. 

 

C. Design of the Processing Unit 

In each stage, a processing unit carries out an (L/2M/2)-tap 
filtering operation using the samples of an L/2M/2 
sub-window at a time to produce the corresponding output. 
Since the sub-windows cannot be fed into a processing unit at a 
rate faster than the rate at which these sub-windows are 
processed by the processing unit, the processing time to process 
a sub-window (one time unit) is critical in determining the 
maximum clock frequency at which the processing units can 
operate. Each physical link from a given bit of the input to an 
output bit of the processing unit gives rise to a data path having 
a delay that depends on the number and the types of operations 
being carried out along that path. Therefore, it is crucial to aim 
at achieving the shortest possible delay for the critical path 
when designing a processing unit for our architecture 
[33]−[36]. 

The filtering operation carried out by a processing unit, as 
described above, can be seen as L/2M/2 parallel 
multiplications followed by an accumulation of the L/2M/2 
products. If the input samples and the filter coefficients have 
the wordlengths of A and B bits, respectively, then the 
processing unit produces an array of (B*L*M/4)A bits 
simultaneously in one clock cycle.  

In order to obtain the output sample corresponding to a given 
sub-window, the bits of the partial products must be 
accumulated vertically downward and from right to left by 
taking the propagation of the carry bits into consideration. The 
task of this accumulation can be divided into a sequence of 
layers. The shortest critical data path can be achieved by 
minimizing the number of layers and the delay of the layers. In 
each layer, a number of bits consisting of the partial product 
bits and/or the carry bits from different rows need to be added. 
This can be done by employing in parallel as many bit-wise 
adders as needed in each layer. The idea behind using bit-wise 
adder is to produce to the extent possible the number of output 
bits from a layer is smaller than the number of input bits to that 
layer. This can be done by using full adders and specifically 
designed double adders, in which the full adder consumes 3 bits 
and produces 2 bits (one sum and one carry bits) whereas the 
double adder consumes two pairs of bits (2×2) from 
neighbouring columns and produces 3 bits (one sum and two 
carry bits/two sum and one carry bits). The two types of adders 
have equal delay, and are efficient in generating carry bits and 
compressing the number of partial products [36]. With this 
structure of the layers, the number of layers becomes minimum 
possible and the delay of a layer is equal to that of a full adder 
or equivalently to that of a double adder, thereby providing the 
shortest critical path for the accumulation network. 

Since the two rows of bits produced by the accumulation 
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network still remain unaccumulated, they finally need to be 
added to produce one row of output bits in the final phase of the 
task of a processing unit by using a carry propagation adder. 
Note that tasks of the accumulation network and the carry 
propagation adder can be made to have some partial overlap, 
since the latter can start its processing as soon as the rightmost 
pairs of bits becomes available from the former. Fig. 9 depicts a 
block diagram of a processing unit based on the above 
discussion. 

Partial products generator

Bit-wise accumulation
network

Carry propagation adder

A sub-windowCoefficients

Output of  the processing unit

Processing unit

An array of  partial 
product bits

Two rows of bits

 

Fig. 9.  Block diagram of a processing unit. 

 

V. PERFORMANCE RESULTS AND COMPARISONS 

A. Performance of the Proposed Architecture 

In order to evaluate the performance of a computational 
architecture, one needs to make use of certain metrics that 
characterize the architecture in terms of the hardware resources 
used and the computation time. In this paper, the hardware 
resources used for the filtering operation are measured by the 
number of multipliers (NMUL) and the number of adders (NADD), 
and that used for the storage of data and filter coefficients are 
measured by the number of registers (NREG). The computation 
time, in general, is technology dependent. However, a metric 
that is technology independent and can be used to determine the 
computation time T is the number of clock cycles (NCLK) 
elapsed between the first and the last samples inputted to the 
architecture. Assuming that one clock period is Tc , the total 
computation time can then be obtained as T=NCLKTc. 

For a J-level 2-D DWT computation of an NN image using 
(LL)-tap filters, the expressions for the metrics mentioned 
above for the proposed 3-stage architecture are given in Table 
II. It is seen from this table that the numbers of multipliers, 
adders and registers in the DSUs employed by the architecture 
depend only on the filter length, whereas the number of the 
registers of the buffers depends also on the image size. 

In order to evaluate the performance of the proposed 
architecture in terms of Tc , we consider an example of 
designing a circuit for the DWT computation of an image of 

size N=512. For this purpose, we use 2-D filters of size L=M=4, 
wordlength for the filter coefficients as 8-bit, and the number of 
decomposition levels J=6. The input samples are encoded by 
using a radix-4 booth encoder and used as one of the two 
operands for the multiplication operation. All the carry 
propagation adders of the architecture have a 16-bit wordlength 
and use a structure that combines the carry-skip and 
carry-select adders [36]. The circuit is synthesized in RTL by 
using Synopsys with 0.18-µm CMOS technology. The 
synthesized results show that the circuit can operate with a 
minimum clock period of 6.5 ns (i.e. at a maximum clock 
frequency of 153 MHz). The circuit has a core area of 
4.95×3.84 mm2, and consists of 850K logic gates and a 
24.5K-RAM. The power consumed by the circuit is obtained as 
214 mW at 100 MHz clock frequency. 

In order to validate the circuit design based on the proposed 
architecture, the circuit is implemented on a typical FPGA 
board, Virtex-II Pro XC2VP30-7. The board is capable of 
operating with a clock frequency of up to 400 MHz at a core 
voltage of VDD=1.5 V. The resources utilized by the FPGA 
implementation in terms of the numbers of configuration logic 
block (CLB) slices, flip-flop slices, 4-input look-up tables 
(LUTs), input/output blocks (IOBs) and block RAMs (BRAMs) 
are given in Table III. The circuit implemented is found to 
perform well with a clock period as short as 7.4 ns (i.e. a 
maximum clock frequency of 134 MHz). The time for the 
DWT computation of an image of size 512×512 is 0.97 ms. In 
other words, the circuit is able to process motion pictures with a 
speed of 1022 frames per second (FPS). The power 
consumption of the FPGA device on which the circuit is 
implemented is measured to be 303 mW at 100 MHz clock 
frequency. This measured value for the power consumption 
compares reasonably well with the simulated value of 214 mW, 
considering that the measured value also includes the power 
dissipated by the unused slices within the FPGA device. 

In order to validate the proposed architecture further, various 
circuits, which are designed based on the proposed architecture 
for the values of N=128, 256, 512, 1024, 2048 and J=3, 6, are 
implemented on the same type of FPGA board as used above. 
The implementation results for the various circuits are shown in 
Fig. 10. It is seen from this figure that the number of CLB slices 
(NCLB) changes very slightly with the image size N or the 
number of decomposition levels J (Fig. 10(a)), while the 
number of BRAMs (NBRAM) increases rapidly (Fig. 10(b)). 
These results are consistent with the performance evaluation 
results provided in Table II, and also demonstrate that the 

TABLE II 
EXPRESSIONS FOR METRICS  OF THE PROPOSED ARCHITECTURE 

NCLK NMUL NADD NREG 
DSUs Buffers 

N 2/2 11L2/4 11Log2(L
2/2)+9 3L2+3L 3NL/4+3N 2/128 

 

TABLE III 
RESOURCES UTILIZED IN FPGA DEVICE FOR THE CIRCUIT 

IMPLEMENTATION FOR THE DWT COMPUTATION WHEN N =512, L =M = 4 

AND J = 6 

Resource Number used Percentage used 

CLB Slices 2842 20% 
Flip-flop Slices 1059 3% 
4-input LUTs 4989 18% 
Bonded IOBs 130 23% 
BRAMs 8 5% 
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circuits for the DWT computation of images of different size 
and with different number of decomposition levels can be 
implemented essentially by varying the size of the buffer used. 
The performance of only a slight decrease in the maximum 
clock frequency (fmax) and that of a logarithmic decrease in the 
number of frames per second (NFPS), as the image size increases 
(Fig. 10(c) and (d)), are in conformity with the normal 
expectation. 

 

B. Comparisons of Various Architectures 

In order to compare the hardware utilization and 
computation time of the proposed and other architectures, 
expressions for the relevant performance metrics for a J-level 
DWT computation of an NN image using (LL)-tap filters for 
the various architectures are given in Table IV. It is seen from 
this table that the architecture of Prop. 4 in [18] and that of [21], 
require, respectively, N2/12 and N 2/4 clock cycles, which are 
smaller than N2/2 clock cycles required by the proposed 
architecture. This performance of [21] is achieved by utilizing 
the hardware resources of adders and multipliers that is more 
than twice of that required by the proposed architecture. Also, it 
is to be noted that in [18] the amount of the hardware resources 
(adders, multipliers and delay units) is larger than that required 
by the proposed architecture. Indeed, a smaller value of NCLK 
does not necessarily mean a smaller computation time T, since 
the clock period Tc may significantly differ from one 

architecture to another. It is also seen from Table IV that the 
hardware utilization of the proposed architecture is higher than 
that of the pipeline architectures in [3], [9], [21] and [22], and it 
is only slightly lower than that of [18], in which 100% 
hardware utilization is achieved by using a much larger number 
of adders. Furthermore, the proposed architecture provides a 
shorter latency compared with the architectures in [3] and 
[8]-[10] that use 1-D type filters. On the other hand, the 
architectures in [18] and [21] provide smaller latencies, but 
employ proportionally larger hardware resources. 

The performance of the proposed architecture is now 
compared with various other architectures in terms of the 
FPGA implementation results available in the literature. The 
FPGA implementation results for the architectures presented in 
[3], [8]−[11], [20] and [22] are listed in Table V. It is seen from 
this table that the implemented circuit for the proposed 
architecture requires a time of 0.97 ms to compute a 6-level 
DWT of an image of size 512×512, which is about one-half and 
one-third of the closest computation times offered by the 
implementations of the architectures of [20] and [10], 
respectively. In comparison to the architecture of [10], the 
proposed architecture provides this 3 times increase in the 
speed of computation at the expense only about 67% increase 
in the hardware. In comparison to the architecture of [20], the 
proposed architecture provides an improvement of 50% in the 
speed of computation while at the same times consumes about 
35% less hardware resources. In order to have a fair 

      
            (a)                        (b) 
 

      
            (c)                        (d) 

Fig. 10.  Results of various FPGA implementations with N=128, 256, 512, 1024, 2048, and J=3, 6. (a) The numbers of CLB slices vs. N, (b) the numbers of BRAMs 
vs. N, (c) the maximum clock frequencies vs. N, and (d) the numbers of frames per second vs. N. 
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comparison with the non-separable architecture of [20], whose 
computation time is next best to that of the proposed 
architecture, we have implemented the latter also on Virtex 
2000E. The implementation of the proposed architecture on 
this device results in a computation time of 1.4 ms and in 3430 
used CLB slices. Thus, with the architecture of [20] and the 
proposed architecture implemented on the same FPGA device, 
the latter gives a 17% gain in the computational speed and 21% 
reduction in the hardware resources. Overall, the area-time 
product of the proposed architecture has a value that is at least 
33% smaller than that of the other architectures. 

 

VI. CONCLUSION 

In this paper, a 3-stage pipeline architecture for a real-time 
computation of the 2-D DWT has been proposed. The objective 
has been to achieve a short computation time by maximizing 

the operational clock frequency (1/Tc) and minimizing the 
number of clock cycles (NCLK) required for the DWT 
computation by developing a scheme for enhanced inter-stage 
and intra-stage computational parallelism for the pipeline 
architecture. 

To enhance the inter-stage parallelism, a study has been 
undertaken that suggests that, in view of the nature of the DWT 
computation, it is most efficient to map the overall task of the 
DWT computation to only three pipeline stages for performing 
the computation tasks corresponding to the decomposition 
level 1, level 2, and all the remaining levels, respectively. Two 
parameters, one specifying the synchronization of the 
operations of the stages and the other representing the 
utilization of the hardware resources of the pipeline, have been 
defined. It has been shown that the best combination for the 
value of these parameters is achieved when the pipeline is 
chosen to have three stages. In order to enhance the intra-stage 

TABLE IV 
EXPRESSIONS FOR METRICS OF VARIOUS ARCHITECTURES 

Architecture No. of 
multipliers 

No. of adders Storage size Filter type No. of clock cycles Hardware 
utilization 

Latency 

Recursive architecture [3] 12 16 4N 1-D (9/7) N 2 + N  50%-70% T c N 2  

Generic folded [8] 6J (L/2) 6J(1+log2(L/2)) 4(L−1)N/3 1-D N 2  N/A* T c N 2  

Symmetrically extended [9] L/2+L/4+L/8 2(L/2+L/4+L/8) (L+0.5)N 1-D 1.5 N 2  87.5% 1.5 T c N 2  

Parallel FDWT [10] 12 16 3N/2 1-D (9/7) N 2  N/A T c N 2  

Line-based [11] N/A N/A N/A N/A N/A N/A N/A 

Parallel Prop. 4 [18] 96 240 
[4N+32J +256] (on chip delay 

units) 
[8N+128(J−1)] (off chip buffer) 

2-D (L=4) N 2 / 12 100% T c N 2 /12 

Arch2D-II [20] L2/2 L2/2+L N/A 2-D 2 N 2 / 3  N/A 2 T c N 2 /3 

Pipeline [21] 6L2 6L2 2NL 2-D N 2 / 4  66.7% T c N 2 / 4  

Parallel structure [22] 48 24 6N/2+6N/4 (J=3) 2-D (4×4) L2 N 2/16+L2N/8   5.6% N/A 

Proposed 11L2/4 11log2(L
2/2)+9 

3L+3L2 (on chip delay units) 
3NL/4+3N 2 /128 (off chip buffer) 2-D N 2 / 2  96% T c N 2 / 2  

*Not available 

TABLE V 
COMPARISON OF VARIOUS FPGA IMPLEMENTATIONS 

Architecture Image size (N) No. of CLB slices RAM size (bits) fmax (MHz) Time (ms) Area×Time* Device 

Recursive architecture [3] 512 879 10N 50 5.3 4659 XC2V250 

Generic folded [8]  256 4720 10×(4K) 75 0.874 4125 Virtex 600E-8 

Symmetrically extended [9]  512 2559 17×(18K) 44.1 9 23031 XC2V500 

Parallel FDWT [10] 512 (J =5) 1700 3N/2 171.8 3.1 5270 Virtex 2 

Line-based [11] 512 (J =6) 2950 4×(18K) 113.6 5.2 15340 XC4VLX15 

Parallel Prob. 4 [18] Implementation results not available 

Arch2D-II [20]  512 4348 24×(18K) 105 1.7 7392 Virtex 2000E 

Pipeline [21] Implementation results not available 

Parallel structure [22] 512 3580 2304 45 5.9 21122 XCV600E 

Proposed 512 (J =6) 2842 8×(18K) 135 0.97 2757 XC2VP30 

*The value of area in the calculation of area-time product is replaced by the No. of CLB slices since the former is proportional to the latter. 
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parallelism, two main ideas have been employed for the 
internal design of each stage. The first idea is to divide the 2-D 
filtering operation into four subtasks that perform 
independently and simultaneously on the elements of even or 
odd indexed rows and columns of the 2-D input data. This idea 
stems from the fact that for each consecutive decomposition 
level, the input data are decimated by a factor of two along the 
rows and columns of the 2-D data. Each subtask of the filtering 
operation is performed by a processing unit. The second idea 
employed is in organization of the array of bit-wise adders, 
which is the core of the processing unit, in a way so as to 
minimize the delay of the critical path from a partial product 
input bit to a bit of an output sample through this array. In this 
paper, this has been accomplished by minimizing the number of 
layers of the array while at the same time minimizing the delay 
of each layer. 

In order to validate the proposed scheme, a circuit for the 
DWT computation has been designed, simulated and 
implemented in FPGA. The circuit is designed for a filter 
length L=M=4 and simulated for the number of the 
decomposition levels J=6 and data size N×N=512×512. The 
simulation results have shown that the circuit designed based 
on the proposed scheme is able to operate at a maximum clock 
frequency fmax=153 MHz. The results of the FPGA 
implementation have shown that the circuit can process a 
512×512 image in 0.97 ms, which is at least two times faster 
than that of the other FPGA implementations, and in some 
instances, even with less hardware utilization. Finally, it is 
worth noting that the architecture designed in this paper is 
scalable in that its processing speed can be adjusted upward or 
downward by changing the number of MAC cells in each of the 
processing units by a factor equal to that of the reduction 
required in the processing speed. 
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