
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Copyright (c) 2011 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email
to pubs-permissions@ieee.org.


Abstract — In this paper, a scheme for the design of a

high-speed pipeline VLSI architecture for the computation of the
2-D discrete wavelet transform (DWT) is proposed. The main
focus in the development of the architecture is on providing a high
operating frequency and a small number of clock cycles along
with an efficient hardware utilization by maximizing the
inter-stage and intra-stage computational parallelism for the
pipeline. The inter-stage parallelism is enhanced by optimally
mapping the computational task of multi decomposition levels to
the stages of the pipeline and synchronizing their operations. The
intra-stage parallelism is enhanced by dividing the 2-D filtering
operation into four subtasks that can be performed independently
in parallel and minimizing the delay of the critical path of bit-wise
adder networks for performing the filtering operation. To
validate the proposed scheme, a circuit is designed, simulated, and
implemented in FPGA for the 2-D DWT computation. The results
of the implementation show that the circuit is capable of operating
with a maximum clock frequency of 134 MHz and processing 1022
frames of size 512×512 per second with this operating frequency.
It is shown that the performance in terms of the processing speed
of the architecture designed based on the proposed scheme is
superior to those of the architectures designed using other existing
schemes, and it has similar or lower hardware consumption.

Index Terms — Discrete wavelet transform, FPGA
implementation, image processing, parallel architecture, pipeline
architecture, real-time processing, VLSI architecture,
multi-resolution filtering, non-separable approach, computational
parallelism.

I. INTRODUCTION

HE 2-D discrete wavelet transforms (DWT) have been
widely used in many engineering applications because of

their multi-resolution decomposition capability [1]. However,
processing large volumes of data of various decomposition
levels of the transform makes their computation
computationally very intensive. In the past, many architectures

Manuscript received January 16, 2011, revised July 12, 2011. This work was

supported in part by the Natural Sciences and Engineering Research Council
(NSERC) of Canada and in part by the Regroupement Stratégique en
Microélectronique du Québec (ReSMiQ).

The authors are with the Center for Signal Processing and Communications,
Department of Electrical and Computer Engineering, Concordia University,
Montréal, QC, H3G 1M8 Canada (e-mail: z_chengj@ece.concordia.ca;
chunyan@ece.concordia.ca; omair@ece.concordia.ca).

have been proposed aimed at providing high-speed 2-D DWT
computation with the requirement of utilizing a reasonable
amount of hardware resources. These architectures can be
broadly classified into separable [2]−[16] and non-separable
architectures [17]−[27]. In a separable architecture, a 2-D
filtering operation is divided into two 1-D filtering operations,
one for processing the data row-wise and the other
column-wise. Vishwanath et al. [2] have proposed a
low-storage short-latency separable architecture in which the
row-wise operations are performed by systolic filters and the
column-wise operations by parallel filters. This architecture
requires complex control units to facilitate the interleaved
operations of the output samples of different decomposition
levels by employing a recursive pyramid algorithm (RPA) [28].
Liao et al. [3] have introduced an architecture in which each of
the row- and column-wise filtering operations are decomposed
using the so called lifting operations [29] into a cascade of
sub-filtering operations. The scheme leads to a low-complexity
architecture with a large latency. The separable architectures, in
which a 1-D filtering structure is used to perform the 2-D DWT,
have an additional requirement of transposing the intermediate
data between the two 1-D filtering processes. This increases the
memory size as well as the latency of the architectures. The
non-separable architectures do not have this problem, since in
these architectures, the 2-D transforms are computed directly
by using 2-D filters. Chakrabarti et al. [17] have proposed two
non-separable architectures, one using parallel 2-D filters and
the other an SIMD 2-D array, both based on a modified RPA. In
the former architecture, a high degree of computational
parallelism is achieved at the expense of less efficient hardware
utilization, whereas the latter architecture requires a
reconfigured organization of the array as the processing moves
on to higher decomposition levels. Cheng et al. [18] have
proposed an architecture in which a number of parallel FIR
filters with a polyphase structure are used to improve the
processing speed at the expense of increased hardware. Hung et
al. [19], in an effort to provide a reduced count of multipliers
and to facilitate the processing of the boundary data, have
proposed an architecture that is a pipeline of one stage of
parallel multipliers and two stages of accumulators to perform
the accumulation tasks of the filters in each of the two
directions. But the processing speed of this architecture is low

A Pipeline VLSI Architecture for Fast
Computation of the 2-D Discrete Wavelet

Transform

Chengjun Zhang, Chunyan Wang, Senior Member, IEEE, and M. Omair Ahmad, Fellow, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

in view of the fact that the same architecture is utilized
recursively to perform the tasks of successive decomposition
levels. Marino [21] has proposed a two-stage pipeline
architecture in which the first stage performs the task of the first
decomposition level and the second one that of all the
remaining levels, and has aimed at providing a short
computation time. As the processing units employed in this
architecture differ from one another, the complexity of the
hardware resources is high and the design of the architecture is
complicated. Most existing non-separable architectures aim at
providing fast computation of the DWT by using pipeline
structures and a large number of parallel filters. However, these
existing architectures have not exploited the computational
parallelism inherent in the DWT operation to the extent
possible in order to provide a high speed.

In this paper, a non-separable pipeline architecture for fast
computation of the 2-D DWT with a reasonable low cost for the
hardware resources is proposed. The high-speed computation is
achieved by efficiently distributing the task of the computations
of multiple decomposition levels among the stages of the
pipeline, and by optimally configuring the data and
synchronizing the operations of pipeline so as to maximize the
inter-stage and intra-stage computational parallelism. The
paper is organized as follows. In Section II, a mathematical
formulation of the 2-D DWT computation necessary for the
development of the proposed architecture is presented. In
Section III, a study is conducted to determine the number of
stages of a pipeline necessary for optimally mapping the task of
the DWT computation onto the stages of the pipeline. Based on
this study, in Section IV, a three-stage pipeline architecture is
developed with an efficient structure of the 2-D input data and
an optimal organization of the processing units in each of the
stages. In Section V, the performance of the proposed
architecture is assessed and compared with that of other
existing architectures and validated by an FPGA
implementation. Section VI summarizes the work of this paper
by highlighting the salient features of the proposed
architecture.

II. FORMULATIONS FOR THE COMPUTATION OF THE 2-D DWT

The 2-D DWT is an operation through which a 2-D signal is
successively decomposed in a spatial multiresolution domain
by lowpass and highpass FIR filters along each of the two
dimensions. The four FIR filters, denoted as highpass-highpass
(HH), highpass-lowpass (HL), lowpass-highpass (LH) and
lowpass-lowpass (LL) filters, produce, respectively, the HH,
HL, LH and LL subband data of the decomposed signal at a
given resolution level. The samples of the four subbands of the
decomposed signal at each level are decimated by a factor of
two in each of the two dimensions. For the operation at the first
level of decomposition, the given 2-D signal is used as input,
whereas for the operations of the succeeding levels of
decomposition, the decimated LL subband signal from the
previous decomposition level is used as input.

A. Formulation for the 2-D DWT Computation

Let a 2-D signal be represented by an N0×N0 matrix S(0), with
its (m,n)th element denoted by S(0)(m,n) (0m ,nN0−1), where
N0 is chosen to be 2J, J being an integer. Let the coefficients of
a 2-D FIR filter P (P=HH, HL, LH, LL) be represented by an
L×M matrix H(P). The (k,i)th coefficient of the filter P is
denoted by H(P)(k,i) (0kL−1, 0 iM−1). The
decomposition at a given level j=1, 2, ···, J can be expressed as










 
1

0

1

0

)1()HH()()2,2(),(),(
L

k

M

i

jj inkmSikHnmA , (1a)










 
1

0

1

0

)1()HL()()2,2(),(),(
L

k

M

i

jj inkmSikHnmB , (1b)










 
1

0

1

0

)1()LH()()2,2(),(),(
L

k

M

i

jj inkmSikHnmC , (1c)










 
1

0

1

0

)1()LL()()2,2(),(),(
L

k

M

i

jj inkmSikHnmS , (1d)

where A(j)(m,n), B(j)(m,n), C(j)(m,n) and S(j)(m,n) (0m,nNj−1)
denote the (m,n)th elements of the four Nj×Nj (Nj=N0/2

j)
matrices, A(j), B(j), C(j) and S(j), respectively, representing the
HH, HL, LH and LL subbands of the 2-D input signal at the j th
level. It is seen from (1) that the four decomposed subbands at a
level are obtained by performing four 2-D convolutions. Each
2-D convolution can be seen as a sum of the products of the
L×M filter coefficients and the elements contained in an L×M
window sliding on a 2-D data. The decimation by a factor of
two in both the horizontal and vertical dimensions can be
accomplished by sliding the L×M window by two positions
horizontally and vertically for the computation of two
successive samples. Only the LL subband data of
decomposition are used as input for the decomposition at the
next level. After J iterations, the 2-D signal S(0) is transformed
into J resolution levels, with HH, HL and LH subbands from
each of the first J−1 levels and HH, HL, LH and LL subbands
from the last (Jth) level. Since Nj=N0/2

j, the number of samples
that need to be processed at each level j is one quarter of that at
the preceding level.

B. Formulation for a Four-channel Filtering Operation

In order to facilitate parallel processing for the 2–D DWT
computation, the L×M filtering operation needs to be divided
into multi-channel operations, each channel processing one
part of the 2-D data. It is seen from (1) that the even and odd
indexed elements are always operated on the even and odd
indexed filter coefficients, respectively. The matrix S(j)
representing the LL subband at the jth level can, therefore, be
divided into four (Nj /2+L/2)×(Nj /2+M/2) sub-matrices,

)()()(,, j
eo

j
oe

j
ee SSS and)(j

ooS , whose (m,n)th (0mNj/2+L/2−1,

0nNj/2+M/2−1) elements are given by

)12,12(),(

)12,2(),(

)2,12(),(

)2,2(),(

)()(

)()(

)()(

)()(









nmSnmS

nmSnmS

nmSnmS

nmSnmS

jj
oo

jj
eo

jj
oe

jj
ee

 (2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

taking into consideration the periodic padding samples at the
boundary [30]. It is seen from (2) that the data at any
decomposition level are divided into four channels for
processing by first separating the even and odd indexed rows of
S(j), and then separating the even and odd indexed columns of
the resulting two sub-matrices. The data in each channel can
then be computed by an (L/2×M/2)-tap filtering operation. In
order to facilitate such a 4-channel filtering operation, the filter
coefficients, as used in (1), need to be decomposed
appropriately. Accordingly, the matrix H(P) needs to be
decomposed into four (L/2×M/2) sub-matrices,

)P()P()P(,, eooeee HHH and)P(
ooH , whose (k,i)th (0kL/2−1,

0 iM/2−1) elements are given by

)12,12(),(

)12,2(),(

)2,12(),(

)2,2(),(

)P()P(

)P()P(

)P()P(

)P()P(









ikHikH

ikHikH

ikHikH

ikHikH

oo

eo

oe

ee

 (3)

respectively. By using (2) and (3) in (1), any of the four
subband signals, A(j), B(j), C(j) and S(j), at the jth decomposition
level, can be computed as a sum of four convolutions using
(L/2×M/2)-tap filters. For example, the LL subband given by
(1d) can now be expressed as

 

 

 

 

















































12/

0

12/

0

)1()LL(

12/

0

12/

0

)1()LL(

12/

0

12/

0

)1()LL(

12/

0

12/

0

)1()LL()(

),(),(

),(),(

),(),(

),(),(),(

L

k

M

i

j
oooo

L

k

M

i

j
eoeo

L

k

M

i

j
oeoe

L

k

M

i

j
eeee

j

inkmSikH

inkmSikH

inkmSikH

inkmSikHnmS

 (4)

At any decomposition level, the separation of the subband
processing corresponding to even and odd indexed data as
given by (4) is consistent with the requirement of decimation of
the data in each dimension by a factor of two in the DWT
computation. It is also seen from (4) that the filtering operations
in the four channels are independent and identical, which can
be exploited in the design of an efficient pipeline architecture
for the 2-D DWT computation.

III. PIPELINE FOR THE 2-D DWT COMPUTATION

In a pipeline structure for the DWT computation, multiple
stages are used to carry out the computations of the various
decomposition levels of the transform [31]. The computation
corresponding to each decomposition level needs to be mapped
to a stage or stages of the pipeline. It is seen from the
formulation in Section II that the task of computing the j th
decomposition level in a J-level DWT computation consists of
computing N0

2/4 j−1 samples, where N0=2J. The computation of
each sample actually performs an (L×M)-tap HH, HL, LH or
LL FIR filtering operation that comprises the operations of
(L×M) multiplications followed by (L×M) accumulations.
Assuming that these operations for the computation of one
sample are carried out by a unit of filter processor, the overall

task of the DWT computation would require a certain number
of such filter units. In order to design a pipeline structure
capable of performing a fast computation of the DWT with low
expense on hardware resources and low design complexity, an
optimal mapping of the overall task of the DWT computation to
the various stages of the pipeline needs to be determined. Any
distribution of the overall task of the DWT computation to
stages must consider the inherent nature of the sequential
computations of the decomposition levels that limit the
computational parallelism of the pipeline stages, and
consequently the latency of the pipeline. The key factors in the
distribution of the task to the stages are the maximization of the
inter-stage and intra-stage computational parallelism and the
synchronization of the stages within the constraint of the
sequential nature of the computation of the decomposition
levels. The feature of identical operations associated with the
computations of all the output samples irrespective of the
decomposition levels in a DWT computation can be exploited
to maximize the intra-stage parallelism of the pipeline. Further,
in order to minimize the expense on the hardware resources of
the pipeline, the number of filter units used by each stage ought
to be minimum and proportional to the amount of the task
assigned to the stage.

A straightforward mapping of the overall task of the DWT
computation to a pipeline is one-level to one-stage mapping, in
which the tasks of J decomposition levels are distributed to J
stages of the pipeline. In this mapping, the amount of hardware
resources used by a stage should be one-quarter of that used by
the preceding stage. Thus, the ratio λ of the hardware resource
used by the last stage to that used by the first stage has a value
of 1/4J−1. For images of typical size, this parameter would
assume a very small value. Hence, for a structure of the pipeline
that uses identical filter units, the number of these filter units
would be very large. Further, since the number of such filter
units employed by the stages would decrease exponentially
from one stage to the next in pipeline, it will make their
synchronization very difficult. The solution to such a difficult
synchronization problem, in general, requires more control
units, multiplexers and registers, which results in a higher
complexity of the hardware resources. A reasonably large value
of λ<1 would be more attractive for synchronization. In this
respect, the parameter λ can be seen as a measure of difficulty
in that a smaller value of this parameter implies a greater design
effort and more hardware resources for the pipeline.

The parameter λ can be increased from its value of 1/4J−1 in
the one-level to one-stage pipeline structure by dividing the
large-size stages into a number of smaller stages or merging the
small-size stages into larger ones. However, dividing a stage of
the one-level to one-stage pipeline into multiple stages would
require a division of the task associated with the corresponding
decomposition level into sub-tasks, which in turn, would call
for a solution of even a more complex problem of
synchronization of the sub-tasks associated with divided stages.
On the other hand, merging multiple small-size stages of the
pipeline into one stage would not create any additional
synchronization problem. As a matter of fact, such a merger

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

could be used to reduce the overall number of filter units of the
pipeline.

In view of the above discussion, the synchronization
parameter λ can be increased by merging a number of stages at
tail end of the pipeline. Fig. 1 shows the structure of a pipeline
in which the stages I to J of the one-level to one-stage pipeline
have been merged. In this structure, the tasks of the
decomposition level from j=1 to j= I−1 are mapped to stage 1
to I−1, respectively, whereas those of the decomposition levels
j= I, ···, J, are mapped all together to the I th stage. Note that the
total amount of computations performed by stage I is less than
one-half of that performed by stage I−1. Considering the fact
that the number of filter units employed by each stage of the
pipeline is an integer, it is reasonable to have the ratio of the
numbers of filter units used by the last two stages (i.e., stages
I−1 and I) to be 2:1. The value of the parameter λ is now
increased from 1/4J−1 to 1/4I−1.5. However, now the resources
employed by stage I would not be fully utilized, which would
lower the efficiency of the hardware utilization of the pipeline
of Fig. 1. Assume that the parameter η represents the hardware
utilization efficiency defined as the ratio of the resources used
to that employed by the pipeline. The hardware utilization
efficiency η of the pipeline in Fig. 1 can be shown to be equal to
(1−4−J)/(1+4−I+0.5). Since for images of typical size, 4−J is
negligibly small compared to one, the expression for η can be
simplified as 1/(1+4−I+0.5). As the number of stages I employed
by the pipeline increases, the hardware utilization efficiency
increases with the parameter η approaching unity for a
maximum efficiency. On the other hand, the difficulty in
synchronizing the stages gets worse as the parameter λ
decreases with increasing value of I. A variation in the value of
I results in the values of λ and η that are in conflict from the
point of view of stage synchronization and hardware utilization
efficiency. Therefore, a value of I needs to be determined that
optimizes the values of λ and η jointly.

Input
of N0N0

samples

· · ·

Level 1 Level 2
Levels
I to J

Stage 1 Stage 2 Stage
I

Fig. 1. Pipeline structure with I stages for J-level computation.

Considering an example of an image of size 28×28, in which
case J=8. Table I gives the values of the parameters λ and η for
the pipeline structures with I=2, 3 and 4. It is seen from this
table that the 2-stage and 3-stage pipelines have acceptable
values of λ, whereas the synchronization of the 4-stage pipeline
would be very difficult because of its very low value of λ=1/32.
On the other hand, the 3-stage and 4-stage pipelines have more
desirable values of η in comparison to that for the 2-stage
pipeline. Therefore, a 3-stage pipeline with an acceptable value
for the synchronization parameter and high hardware
utilization efficiency would be the best choice of a pipeline.
Note that the size of the images used in typical applications
would have little bearing on the conclusion thus reached
regarding the number of stages employed in the pipeline. Also,

note that a 3-stage pipeline can perform the DWT computation
for a variable number of decomposition levels from 3 to J. With
three as the optimal choice of the number of stages in a pipeline,
one can now choose the minimum numbers of filter units as 8, 2
and 1 for the stages 1, 2 and 3 in order to perform the tasks
associated with the decomposition levels 1, 2 and 3 to J
together, respectively. The next section is concerned
specifically with a detailed design of the 3-stage pipeline
structure.

TABLE I

VALUES OF THE PARAMETERS λ AND η FOR A PIPELINE WITH NUMBER OF

STAGES AS TWO, THREE AND FOUR (J =8)

Parameter I=2 I=3 I=4
λ 1/2 1/8 1/32
η 89% 96% 99%

IV. DESIGN OF THE ARCHITECTURE

In the previous section, we advocated a three-stage pipeline
structure for the computation of the 2-D DWT to realize an
optimal combination of the parameters for the hardware
utilization and pipeline synchronization. In this three-stage
structure, like in any pipeline architecture, the operations in a
given stage depend on the data produced by the preceding stage.
However, because of the way that the computational load of the
various decomposition levels of the 2-D DWT computation has
been distributed among the three stages, the operations in the
first and second stages of the pipeline do not depend on the data
produced by themselves, whereas that in stage 3 does depend
on the data produced by itself. The operations of the three
stages need to be synchronized in a manner so that the three
stages perform the computation of multiple decomposition
levels within a minimum possible time period while using the
available hardware resources maximally. In this section, we
present the design of the proposed 3-stage pipeline architecture,
starting with the synchronization of the operations of the stages,
and then focusing on the details of the intra-stage design so as
to provide an optimal performance.

A. Synchronization of Stages

Recall from Section III that the distribution of the
computational load among the three stages, and the hardware
resources made available to them are in the ratio 8:2:1.
Accordingly, the synchronization of the operations between the
stages needs to be carried out under this constraint of the
distribution of the computational load and hardware resources.
According to the nature of the DWT, the computation of a
decomposition level j depends on the data computed at its
previous level j–1, in which the number of computations is
four times of that at the decomposition level j. Therefore, the
stages of pipeline need to be synchronized in such a way that
each stage starts the operation at an earliest possible time when
the required data become available for its operation. Once the
operation of a stage is started, it must continue until the task
assigned to it is fully completed.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

Consider the timing diagram given in Fig. 2 for the
operations of the three stages, where t1, t2 and t3 are the times
taken individually by stages 1, 2 and 3, respectively, to
complete their assigned tasks, and ta and tb are the times elapsed
between the starting points of the tasks by stages 1 and 2, and
that by stages 2 and 3, respectively. Note that the lengths of the
times t1, t2 and t3 to complete the tasks by individual stages are
approximately the same, since the ratios of the tasks assigned
and the resources made available to the three stages are the
same. The average times to compute one output sample by
stages 1, 2 and 3 are in the ratio 1:4:8. In Fig. 2, the relative
widths of the slots in the three stages are shown to reflect this
ratio. Our objective is to minimize the total computation time
ta+tb+t3 by minimizing ta, tb and t3 individually.

Stage 3

Stage 2

Stage 1

ta

tb
t3

t1

t2

· · ·

· · ·

· · ·

Fig. 2. Timing diagram for the operations of three stages.

Assume that 2-D output samples for a decomposition level

are computed row-by-row starting from the upper-left corner
sample. Since the operations in stage 1 are independent of those
in the other two stages, it can operate continuously to compute
all the samples of level 1. The value of t1 is equal to TsN1

2,
where Ts is the average time taken by stage 1 to compute one
output sample. Since the operations of stages 2 and 3 require
the output data computed by stages 1 and 2, respectively, their
operations must be delayed by certain amount of times so that
they can operate continuously with the data required by them
becoming available. We now give the lowest bound on ta and tb
so that once stages 2 and 3 start their operations they could
continue their operations uninterruptedly. Since the operation
of stage 2 starts at time ta, the (i,k)th output sample of level 2,
denoted by S(2)(i,k), will be computed starting at the time instant
tx=ta+4Ts (i·N2+k), where 4Ts is the average time taken by stage
2 to compute one output sample. Using (1), among the level-1
samples required for the computation of S(2)(i,k), the (2i+L−1,
2k+M−1)th level-1 sample, denoted by S(1)(2i+L−1, 2k+M−1),
is the latest output sample computed at the time instant
ty=Ts[N1(2i+L−1)+2k+M−1]+Ts. Now, if at the time of starting
the calculation of the output sample S(2)(i,k), i.e. tx, the sample
S(1)(2i+L−1,2k+M−1) has already been calculated by stage 1,
all the leve-1 samples necessary to calculate this level-2 output
sample would be available. This requires us to impose the
constraint tx>ty, for all i and k, i.e. 0≤ i , k≤N2−1. This condition
implies that

)2(11 kMNLNTt sa  (5)
The minimum value of ta is given by

])1([1min MLNTt sa  (6)

Assume that stage 3 computes all the output samples of all
remaining levels (i.e. level 3 to level J) in a sequential manner.
We only need to consider the requirement of the data

availability for the computation of level-3, which uses the
level-2 samples computed by stage 2. Then, in a way similar to
that obtaining ta min, by imposing the condition that at the time
instant of starting the calculation of a level-3 output sample by
stage 3, all the samples in the window of the level-2 output
samples are available, it can be shown that the minimum value
of tb is given by

])22/([4 22min MLNNTt sb  (7)

Based on the above discussion, the operations of the three
stages can be arranged in the following manner:

Step 1. Stage 1 operates continuously on the input signal to
compute the level-1 output samples sequentially.

Step 2. Stage 2 starts its operation immediately following the
computation of the (L−1, M)th level-1 output sample,
S(1)(L−1,M), and then continues its operation of all other level-2
output samples in a sequential manner.

Step 3. Stage 3 starts its operation for the computation of
level-3 samples immediately after stage 2 completes the
computation of the (N2/2+L−2, M−1)th level-2 output sample,
S(2)(N2/2+L−2, M−1), and then continues the computation of
other level-3 output samples sequentially. Computations of the
output samples of levels 4 to J are carried out sequentially by
the stage 3 following the computation of level-3 output
samples.

B. Design of Stages

As discussed in Section III, in the proposed three-stage
architecture, stages 1 and 2 perform the computations of levels
1 and 2, respectively, and stage 3 that of all the remaining levels.
Since the basic operation of computing each output sample,
regardless of the decomposition level or the subband, is the
same, the computation blocks in the three stages can differ only
in the number of identical processing units employed by them
depending on the amount of the computations assigned to the
stages. As seen from (4), an (LM)-tap filtering operation is
decomposed into four independent (L/2M/2)-tap filtering
operations, each operating on the 2-D L/2M/2 data resulting
from the even or odd numbered rows and even or odd
numbered columns of an LM window of an LL-subband data.
A unit consisting of L/2M/2 MAC cells can now be regarded
as the basic processing unit to carry out an (L/2M/2)-tap
filtering operation. An LM window of the raw 2-D input data
or that of an LL-subband data must be decomposed into four
distinct L/2M/2 sub-windows in accordance with the four
decomposed terms given by the right side of (4). This
decomposition of the data in an LM window can be
accomplished by designing for each stage an appropriate data
scanning unit (DSU) based on the way the raw input or the
LL-subband data is scanned. The stages would also require
memory space (buffer) to store the raw input data or the
LL-subband data prior to scanning. Since stages 1 and 2 need to
store only part of a few rows of raw input or LL-subband data at
a time, they require a buffer of size of O(N), whereas since
stage 3 needs to store the entire LL-subband data of a single

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

decomposition level, it has a buffer of size of O(N2). Fig. 3
gives the block diagram of the pipeline showing all the
components required by the three stages. Note that the data
flow shown in this figure comprises only the LL-subband data
necessary for the operations of the stages. The HH, HL and LH
subband data are outputted directly to an external memory.
Now, we give details on the structure of the data scanning unit
to scan the 2-D data and establish four distinct L/2M/2
sub-windows, as well as on the distribution of the filtering
operations to the processing units in each stage.

Si
(1)

Stage 2

Buffer2

Stage 1

Control
Block 1

Control
Block 2

Si
(0)

Control
Block 3

Buffer3

Stage 3

Si
(j)

Si
(2)

DSU1 DSU2 DSU3

··· PU8 PU10PU9 PU11PU1

Computation
Block 1

Computation
Block 2

Computation
Block 3

Buffer1

Fig. 3. Block diagram of the three-stage architecture.

1) Structure of the Data Scanning Unit

In accordance with (4), an LM window of the raw 2-D input
data stored in Buffer1 or an LL-subband data stored in Buffer2
or Buffer3 must be partitioned into four L/2M/2 sub-windows,
and stored into the DSU of the corresponding stage. Further,
this same equation also dictates that a 2-D input data must be
scanned in a sequential manner shown in Fig. 4(a). According
to this sequence of scanning, the samples in a set of data
comprising L rows of a 2-D input data are scanned starting from
the top-left corner. Once the scanning of all the samples of L
rows is completed, the process is repeated for another L rows
after shifting down by two row positions. The objective is then
to design a structure for a DSU so that samples scanned with
this sequential mode get partitioned into the four sub-windows
(Fig. 4(b)).

Sub-
window 1

Sub-
window 2

Sub-
window 3

Sub-
window 4

Partitioned
L/2×M/2 data

L×M
window

(a) (b)

L

Fig. 4. (a) Scanning of an Nj×Nj 2-D data. (b) Partitioning of an LM window
into four L/2M/2 sub-windows. The solid and empty circles represent the
samples in even-indexed and odd-indexed rows, respectively, whereas the
black and grey circles represent the samples in even-indexed and odd-indexed
columns, respectively.

In order to partition an LM window into four L/2M/2
sub-windows, the structure of the DSU must first partition the
samples of the window into two parts depending on whether a
sample belongs to an even-indexed or odd-indexed row; then
the samples in each part must be partitioned further into two

parts depending on whether a sample belongs to an
even-indexed or odd-indexed column. The first partition can be
achieved by directing scanned samples alternatively to two sets
of L/2 shift registers. The second partition can be achieved by
reorganizing the samples stored in the shift registers of the two
sets depending on whether a sample belongs to even-indexed or
odd-indexed column by employing demultiplexers. Finally, the
samples of the four sub-windows can be stored, respectively,
into four units of L/2M/2 parallel registers. Fig. 5 shows a
structure of the DSU to accomplish this task. This data
scanning scheme automatically incorporates the downsampling
operations by two in the vertical and horizontal directions (as
required by the transform), and thus no additional peripheral
circuits and registers are required for the downsampling
operations by the architecture. As a result, the data scanning
scheme, in comparison to the other schemes [32], requires less
hardware resources for the control units and fewer registers for
the stages.

···

Demux

L/2 parallel
registersScanned

sample

Even-indexed
row

Odd-
indexed

row

···

···

···

···

···

Sub-
window 1

Sub-
window 2

Sub-
window 3

Sub-
window 4

Even-
indexed
column

Odd-
indexed
column

Odd-indexed
column

Even-indexed
column

M/2

L/2 shift
registers

Fig. 5. Structure of the data scanning unit (DSU).

2) Distribution of filtering operations among the processing
units employed by stages

In accordance with (1) and (4)), decomposing input data into
four subbands requires four LM filtering operations, and each
of the four filtering operations requires four (L/2M/2)-tap
filtering operations. Thus, a total of 16 (L/2M/2)-tap filtering
operations are involved for the computation of the samples for
the four subbands using an LM window of the input data. Now,
for each stage, these 16 types of filtering operations must be
assigned to the processing units available to the stage using
four sub-windows of data from its DSU. Given the available
resources of the stages, the objective here is to process the 16
types of filtering operations with maximized computational
parallelism and with priority given to the computation of the
samples of LL subband.

In stage 1, since eight processing units are available, the
processing task can be distributed among them so that one
processing unit carries out the subtask of (L/2M/2)-tap
filtering operations corresponding to a pair of subbands from
the LL, LH, HL and HH using the data of one sub-window. One
such distribution of the task is shown in Fig. 6, from which it is
seen that each of the processing units PU1 to PU4 carries out the
LL and LH filtering operations sequentially using the
sub-windows 1 to 4, respectively, whereas each of the
processing units PU5 to PU8 carries out the HH and HL filtering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

operations using the same sub-windows. In stage 1, the LL and
HH subband samples are produced in parallel in one clock
cycle, whereas the LH and HL subband samples are produced
in parallel in the next.

Output sample 2

Adder

Sub-
window 1

Sub-
window 2

Sub-
window 3

Sub-
window 4

Sub-
window 1

Sub-
window 2

Sub-
window 3

Sub-
window 4

Output sample 1

Register
PU5

(HH, HL)

PU6

(HH, HL)

PU7

(HH, HL)

PU8

(HH, HL)

PU1

(LL, LH)

PU2

(LL, LH)

PU3

(LL, LH)

PU4

(LL, LH)

Fig. 6. The structure of eight processing units employed by stage 1.

Since stage 2 employs two processing units, each must
perform the task of all the four subbands using two
sub-windows. As the data of the four sub-windows, 1 to 4,
become available in a sequential manner, sub-windows 1 and 3
are sequentially assigned to PU9, whereas sub-windows 2 and 4
in a similar manner are assigned to PU10. This distribution of
the task for stage 2 is shown in Fig. 7, from which it is seen that
each of the processing units, PU9 and PU10, carries out the
(L/2M/2)-tap filtering operations. In stage 2, PU9 and PU10
operating in parallel produce the LL, LH, HH and HL subband
samples sequentially in eight consecutive clock cycles.

Register

PU10

PU9

Sub-
window 1
Sub-
window 3

Sub-
window 2
Sub-
window 4

(LL, LH,
HH, HL)

(LL, LH,
HH, HL)

Output sampleMux

Adder

Fig. 7. The structure of two processing units employed by stage 2.

Since only one processing unit, PU11, is employed by stage 3,
it has to carry out all the filtering operations for each of the four
sub-windows, as shown in Fig. 8. In this figure, the four
sub-windows, 1 to 4, are chosen successively, as input to PU11.
For each sub-window, the processing unit PU11 then carries out
the (L/2M/2)-tap filtering operations. In this stage, PU11
produces sequentially the LL, LH, HH and HL subband
samples in 16 consecutive clock cycles.

RegistersMuxSub-
window 1
Sub-
window 2

Adder
(LL, LH,
HH, HL)Sub-

window 3

Output sample

PU11Sub-
window 4

Fig. 8. The structure of one processing unit employed by stage 3.

Note that one processing unit at a time processes the samples
of only one sub-window corresponding to one of the four
subbands. Assume that such a processing time by a processing
unit to be one time unit. Now, since stages 1, 2 and 3 have 8, 2
and 1 processing units, respectively, they can process

sub-windows at the rates of 2, 1/2 and 1/4 sub-windows per
unit time. This coupled with the fact that the processing loads
(i.e. the number of sub-windows) assigned to the three stages
are in the ratio 8:2:1, lets us to conclude that the operations of
the three stages are mutually synchronized.

C. Design of the Processing Unit

In each stage, a processing unit carries out an (L/2M/2)-tap
filtering operation using the samples of an L/2M/2
sub-window at a time to produce the corresponding output.
Since the sub-windows cannot be fed into a processing unit at a
rate faster than the rate at which these sub-windows are
processed by the processing unit, the processing time to process
a sub-window (one time unit) is critical in determining the
maximum clock frequency at which the processing units can
operate. Each physical link from a given bit of the input to an
output bit of the processing unit gives rise to a data path having
a delay that depends on the number and the types of operations
being carried out along that path. Therefore, it is crucial to aim
at achieving the shortest possible delay for the critical path
when designing a processing unit for our architecture
[33]−[36].

The filtering operation carried out by a processing unit, as
described above, can be seen as L/2M/2 parallel
multiplications followed by an accumulation of the L/2M/2
products. If the input samples and the filter coefficients have
the wordlengths of A and B bits, respectively, then the
processing unit produces an array of (B*L*M/4)A bits
simultaneously in one clock cycle.

In order to obtain the output sample corresponding to a given
sub-window, the bits of the partial products must be
accumulated vertically downward and from right to left by
taking the propagation of the carry bits into consideration. The
task of this accumulation can be divided into a sequence of
layers. The shortest critical data path can be achieved by
minimizing the number of layers and the delay of the layers. In
each layer, a number of bits consisting of the partial product
bits and/or the carry bits from different rows need to be added.
This can be done by employing in parallel as many bit-wise
adders as needed in each layer. The idea behind using bit-wise
adder is to produce to the extent possible the number of output
bits from a layer is smaller than the number of input bits to that
layer. This can be done by using full adders and specifically
designed double adders, in which the full adder consumes 3 bits
and produces 2 bits (one sum and one carry bits) whereas the
double adder consumes two pairs of bits (2×2) from
neighbouring columns and produces 3 bits (one sum and two
carry bits/two sum and one carry bits). The two types of adders
have equal delay, and are efficient in generating carry bits and
compressing the number of partial products [36]. With this
structure of the layers, the number of layers becomes minimum
possible and the delay of a layer is equal to that of a full adder
or equivalently to that of a double adder, thereby providing the
shortest critical path for the accumulation network.

Since the two rows of bits produced by the accumulation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

network still remain unaccumulated, they finally need to be
added to produce one row of output bits in the final phase of the
task of a processing unit by using a carry propagation adder.
Note that tasks of the accumulation network and the carry
propagation adder can be made to have some partial overlap,
since the latter can start its processing as soon as the rightmost
pairs of bits becomes available from the former. Fig. 9 depicts a
block diagram of a processing unit based on the above
discussion.

Partial products generator

Bit-wise accumulation
network

Carry propagation adder

A sub-windowCoefficients

Output of the processing unit

Processing unit

An array of partial
product bits

Two rows of bits

Fig. 9. Block diagram of a processing unit.

V. PERFORMANCE RESULTS AND COMPARISONS

A. Performance of the Proposed Architecture

In order to evaluate the performance of a computational
architecture, one needs to make use of certain metrics that
characterize the architecture in terms of the hardware resources
used and the computation time. In this paper, the hardware
resources used for the filtering operation are measured by the
number of multipliers (NMUL) and the number of adders (NADD),
and that used for the storage of data and filter coefficients are
measured by the number of registers (NREG). The computation
time, in general, is technology dependent. However, a metric
that is technology independent and can be used to determine the
computation time T is the number of clock cycles (NCLK)
elapsed between the first and the last samples inputted to the
architecture. Assuming that one clock period is Tc , the total
computation time can then be obtained as T=NCLKTc.

For a J-level 2-D DWT computation of an NN image using
(LL)-tap filters, the expressions for the metrics mentioned
above for the proposed 3-stage architecture are given in Table
II. It is seen from this table that the numbers of multipliers,
adders and registers in the DSUs employed by the architecture
depend only on the filter length, whereas the number of the
registers of the buffers depends also on the image size.

In order to evaluate the performance of the proposed
architecture in terms of Tc , we consider an example of
designing a circuit for the DWT computation of an image of

size N=512. For this purpose, we use 2-D filters of size L=M=4,
wordlength for the filter coefficients as 8-bit, and the number of
decomposition levels J=6. The input samples are encoded by
using a radix-4 booth encoder and used as one of the two
operands for the multiplication operation. All the carry
propagation adders of the architecture have a 16-bit wordlength
and use a structure that combines the carry-skip and
carry-select adders [36]. The circuit is synthesized in RTL by
using Synopsys with 0.18-µm CMOS technology. The
synthesized results show that the circuit can operate with a
minimum clock period of 6.5 ns (i.e. at a maximum clock
frequency of 153 MHz). The circuit has a core area of
4.95×3.84 mm2, and consists of 850K logic gates and a
24.5K-RAM. The power consumed by the circuit is obtained as
214 mW at 100 MHz clock frequency.

In order to validate the circuit design based on the proposed
architecture, the circuit is implemented on a typical FPGA
board, Virtex-II Pro XC2VP30-7. The board is capable of
operating with a clock frequency of up to 400 MHz at a core
voltage of VDD=1.5 V. The resources utilized by the FPGA
implementation in terms of the numbers of configuration logic
block (CLB) slices, flip-flop slices, 4-input look-up tables
(LUTs), input/output blocks (IOBs) and block RAMs (BRAMs)
are given in Table III. The circuit implemented is found to
perform well with a clock period as short as 7.4 ns (i.e. a
maximum clock frequency of 134 MHz). The time for the
DWT computation of an image of size 512×512 is 0.97 ms. In
other words, the circuit is able to process motion pictures with a
speed of 1022 frames per second (FPS). The power
consumption of the FPGA device on which the circuit is
implemented is measured to be 303 mW at 100 MHz clock
frequency. This measured value for the power consumption
compares reasonably well with the simulated value of 214 mW,
considering that the measured value also includes the power
dissipated by the unused slices within the FPGA device.

In order to validate the proposed architecture further, various
circuits, which are designed based on the proposed architecture
for the values of N=128, 256, 512, 1024, 2048 and J=3, 6, are
implemented on the same type of FPGA board as used above.
The implementation results for the various circuits are shown in
Fig. 10. It is seen from this figure that the number of CLB slices
(NCLB) changes very slightly with the image size N or the
number of decomposition levels J (Fig. 10(a)), while the
number of BRAMs (NBRAM) increases rapidly (Fig. 10(b)).
These results are consistent with the performance evaluation
results provided in Table II, and also demonstrate that the

TABLE II
EXPRESSIONS FOR METRICS OF THE PROPOSED ARCHITECTURE

NCLK NMUL NADD NREG
DSUs Buffers

N 2/2 11L2/4 11Log2(L
2/2)+9 3L2+3L 3NL/4+3N 2/128

TABLE III
RESOURCES UTILIZED IN FPGA DEVICE FOR THE CIRCUIT

IMPLEMENTATION FOR THE DWT COMPUTATION WHEN N =512, L =M = 4

AND J = 6

Resource Number used Percentage used

CLB Slices 2842 20%
Flip-flop Slices 1059 3%
4-input LUTs 4989 18%
Bonded IOBs 130 23%
BRAMs 8 5%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

circuits for the DWT computation of images of different size
and with different number of decomposition levels can be
implemented essentially by varying the size of the buffer used.
The performance of only a slight decrease in the maximum
clock frequency (fmax) and that of a logarithmic decrease in the
number of frames per second (NFPS), as the image size increases
(Fig. 10(c) and (d)), are in conformity with the normal
expectation.

B. Comparisons of Various Architectures

In order to compare the hardware utilization and
computation time of the proposed and other architectures,
expressions for the relevant performance metrics for a J-level
DWT computation of an NN image using (LL)-tap filters for
the various architectures are given in Table IV. It is seen from
this table that the architecture of Prop. 4 in [18] and that of [21],
require, respectively, N2/12 and N 2/4 clock cycles, which are
smaller than N2/2 clock cycles required by the proposed
architecture. This performance of [21] is achieved by utilizing
the hardware resources of adders and multipliers that is more
than twice of that required by the proposed architecture. Also, it
is to be noted that in [18] the amount of the hardware resources
(adders, multipliers and delay units) is larger than that required
by the proposed architecture. Indeed, a smaller value of NCLK
does not necessarily mean a smaller computation time T, since
the clock period Tc may significantly differ from one

architecture to another. It is also seen from Table IV that the
hardware utilization of the proposed architecture is higher than
that of the pipeline architectures in [3], [9], [21] and [22], and it
is only slightly lower than that of [18], in which 100%
hardware utilization is achieved by using a much larger number
of adders. Furthermore, the proposed architecture provides a
shorter latency compared with the architectures in [3] and
[8]-[10] that use 1-D type filters. On the other hand, the
architectures in [18] and [21] provide smaller latencies, but
employ proportionally larger hardware resources.

The performance of the proposed architecture is now
compared with various other architectures in terms of the
FPGA implementation results available in the literature. The
FPGA implementation results for the architectures presented in
[3], [8]−[11], [20] and [22] are listed in Table V. It is seen from
this table that the implemented circuit for the proposed
architecture requires a time of 0.97 ms to compute a 6-level
DWT of an image of size 512×512, which is about one-half and
one-third of the closest computation times offered by the
implementations of the architectures of [20] and [10],
respectively. In comparison to the architecture of [10], the
proposed architecture provides this 3 times increase in the
speed of computation at the expense only about 67% increase
in the hardware. In comparison to the architecture of [20], the
proposed architecture provides an improvement of 50% in the
speed of computation while at the same times consumes about
35% less hardware resources. In order to have a fair

 (a) (b)

 (c) (d)

Fig. 10. Results of various FPGA implementations with N=128, 256, 512, 1024, 2048, and J=3, 6. (a) The numbers of CLB slices vs. N, (b) the numbers of BRAMs
vs. N, (c) the maximum clock frequencies vs. N, and (d) the numbers of frames per second vs. N.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

comparison with the non-separable architecture of [20], whose
computation time is next best to that of the proposed
architecture, we have implemented the latter also on Virtex
2000E. The implementation of the proposed architecture on
this device results in a computation time of 1.4 ms and in 3430
used CLB slices. Thus, with the architecture of [20] and the
proposed architecture implemented on the same FPGA device,
the latter gives a 17% gain in the computational speed and 21%
reduction in the hardware resources. Overall, the area-time
product of the proposed architecture has a value that is at least
33% smaller than that of the other architectures.

VI. CONCLUSION

In this paper, a 3-stage pipeline architecture for a real-time
computation of the 2-D DWT has been proposed. The objective
has been to achieve a short computation time by maximizing

the operational clock frequency (1/Tc) and minimizing the
number of clock cycles (NCLK) required for the DWT
computation by developing a scheme for enhanced inter-stage
and intra-stage computational parallelism for the pipeline
architecture.

To enhance the inter-stage parallelism, a study has been
undertaken that suggests that, in view of the nature of the DWT
computation, it is most efficient to map the overall task of the
DWT computation to only three pipeline stages for performing
the computation tasks corresponding to the decomposition
level 1, level 2, and all the remaining levels, respectively. Two
parameters, one specifying the synchronization of the
operations of the stages and the other representing the
utilization of the hardware resources of the pipeline, have been
defined. It has been shown that the best combination for the
value of these parameters is achieved when the pipeline is
chosen to have three stages. In order to enhance the intra-stage

TABLE IV
EXPRESSIONS FOR METRICS OF VARIOUS ARCHITECTURES

Architecture No. of
multipliers

No. of adders Storage size Filter type No. of clock cycles Hardware
utilization

Latency

Recursive architecture [3] 12 16 4N 1-D (9/7) N 2 + N 50%-70% T c N 2

Generic folded [8] 6J (L/2) 6J(1+log2(L/2)) 4(L−1)N/3 1-D N 2 N/A* T c N 2

Symmetrically extended [9] L/2+L/4+L/8 2(L/2+L/4+L/8) (L+0.5)N 1-D 1.5 N 2 87.5% 1.5 T c N 2

Parallel FDWT [10] 12 16 3N/2 1-D (9/7) N 2 N/A T c N 2

Line-based [11] N/A N/A N/A N/A N/A N/A N/A

Parallel Prop. 4 [18] 96 240
[4N+32J +256] (on chip delay

units)
[8N+128(J−1)] (off chip buffer)

2-D (L=4) N 2 / 12 100% T c N 2 /12

Arch2D-II [20] L2/2 L2/2+L N/A 2-D 2 N 2 / 3 N/A 2 T c N 2 /3

Pipeline [21] 6L2 6L2 2NL 2-D N 2 / 4 66.7% T c N 2 / 4

Parallel structure [22] 48 24 6N/2+6N/4 (J=3) 2-D (4×4) L2 N 2/16+L2N/8 5.6% N/A

Proposed 11L2/4 11log2(L
2/2)+9

3L+3L2 (on chip delay units)
3NL/4+3N 2 /128 (off chip buffer) 2-D N 2 / 2 96% T c N 2 / 2

*Not available

TABLE V
COMPARISON OF VARIOUS FPGA IMPLEMENTATIONS

Architecture Image size (N) No. of CLB slices RAM size (bits) fmax (MHz) Time (ms) Area×Time* Device

Recursive architecture [3] 512 879 10N 50 5.3 4659 XC2V250

Generic folded [8] 256 4720 10×(4K) 75 0.874 4125 Virtex 600E-8

Symmetrically extended [9] 512 2559 17×(18K) 44.1 9 23031 XC2V500

Parallel FDWT [10] 512 (J =5) 1700 3N/2 171.8 3.1 5270 Virtex 2

Line-based [11] 512 (J =6) 2950 4×(18K) 113.6 5.2 15340 XC4VLX15

Parallel Prob. 4 [18] Implementation results not available

Arch2D-II [20] 512 4348 24×(18K) 105 1.7 7392 Virtex 2000E

Pipeline [21] Implementation results not available

Parallel structure [22] 512 3580 2304 45 5.9 21122 XCV600E

Proposed 512 (J =6) 2842 8×(18K) 135 0.97 2757 XC2VP30

*The value of area in the calculation of area-time product is replaced by the No. of CLB slices since the former is proportional to the latter.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

parallelism, two main ideas have been employed for the
internal design of each stage. The first idea is to divide the 2-D
filtering operation into four subtasks that perform
independently and simultaneously on the elements of even or
odd indexed rows and columns of the 2-D input data. This idea
stems from the fact that for each consecutive decomposition
level, the input data are decimated by a factor of two along the
rows and columns of the 2-D data. Each subtask of the filtering
operation is performed by a processing unit. The second idea
employed is in organization of the array of bit-wise adders,
which is the core of the processing unit, in a way so as to
minimize the delay of the critical path from a partial product
input bit to a bit of an output sample through this array. In this
paper, this has been accomplished by minimizing the number of
layers of the array while at the same time minimizing the delay
of each layer.

In order to validate the proposed scheme, a circuit for the
DWT computation has been designed, simulated and
implemented in FPGA. The circuit is designed for a filter
length L=M=4 and simulated for the number of the
decomposition levels J=6 and data size N×N=512×512. The
simulation results have shown that the circuit designed based
on the proposed scheme is able to operate at a maximum clock
frequency fmax=153 MHz. The results of the FPGA
implementation have shown that the circuit can process a
512×512 image in 0.97 ms, which is at least two times faster
than that of the other FPGA implementations, and in some
instances, even with less hardware utilization. Finally, it is
worth noting that the architecture designed in this paper is
scalable in that its processing speed can be adjusted upward or
downward by changing the number of MAC cells in each of the
processing units by a factor equal to that of the reduction
required in the processing speed.

REFERENCES
[1] S. Mallat, “A theory for multiresolution signal decomposition: the

wavelet representation,” IEEE Trans. Pattern Analysis and Machine
Intell., vol. 11, no. 7, pp. 674−693, Jul. 1989.

[2] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI architectures for the
discrete wavelet transform,” IEEE Trans. Circuits Syst. II, vol. 42, no. 5,
pp. 305−316, May 1995.

[3] H. Y. Liao, M. K. Mandal, and B. F. Cockburn, “Efficient architectures
for 1-D and 2-D lifting-based wavelet transforms,” IEEE Trans. Signal
Process., vol. 52, no. 5, pp. 1315–1326, May 2004.

[4] P. Wu and L. Chen, “An efficient architecture for two-dimensional
discrete wavelet transform,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 11, no. 4, pp. 536–545, Apr. 2001.

[5] S. Masud and J.V. McCanny, “Reusable silicon IP cores for discrete
wavelet transform applications,” IEEE Trans. Circuits Syst. I, vol. 51, no.
6, pp. 1114−1124, Jun. 2004.

[6] T. Huang, P. C. Tseng, and L. G. Chen, “Generic RAM-based
architectures for two-dimensional discrete wavelet transform with
line-based method,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,
no. 7, pp. 910–920, Jul. 2005.

[7] P. K. Meher, B. K. Mohanty, and J. Chandra Patra, “Hardware-efficient
systolic-like modular design for two-dimensional discrete wavelet
transform,” IEEE Trans. Circuits Syst. II, vol. 55, no. 2, pp. 151–155, Feb.
2008.

[8] A. Benkrid, D. Crookes, and K. Benkrid, “Design and implementation of
a generic 2-D orthogonal discrete wavelet transform on an FPGA,” in

Proc. IEEE 9th Symp. Field-programming Custom Computing Machines
(FCCM), Apr. 2001, pp. 190−198.

[9] P. McCanny, S. Masud, and J. McCanny, “Design and implementation of
the symmetrically extended 2-D wavelet transform,” in Proc. IEEE Int.
Conf. Acoustic, Speech, Signal Process. (ICASSP), 2002, vol. 3, pp.
3108–3111.

[10] S. Raghunath and S. M. Aziz, “High speed area efficient multi-resolution
2-D 9/7 filter DWT processor,” in Proc. Int. Conf. Very Large Scale
Integration (IFIP), Oct. 2006, vol. 16−18, pp. 210–215.

[11] M. Angelopoulou, K. Masselos, P. Cheung, and Y. Andreopoulos, “A
comparison of 2-D discrete wavelet transform computation schedules on
FPGAs,” in Proc. IEEE Int. Conf. Field Programmable Technology
(FPT), Bangkok, Tailand, Dec. 2006, pp. 181–188.

[12] C. Chrysytis and A. Ortega, “Line-based, reduced memory, wavelet image
compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 3,
pp. 378–389, Mar. 2000.

[13] M. Ravasi, L. Tenze, and M. Mattavelli, “A scalable and programmable
architecture for 2-D DWT decoding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 8, pp. 671-677, Aug. 2002.

[14] K. G. Oweiss, A. Mason, Y. Suhail, A. M. Kamboh, and K. E. Thomson,
“A scalable wavelet transform VLSI architecture for real-time signal
processing in high-density intra-cortical implants,” IEEE Trans. Circuits
Syst. I, vol. 54, no. 6, pp. 1266−1278, Jun. 2007.

[15] G. Shi, W. Liu, L. Zhang, and F. Li, “An efficient folded architecture for
lifting-based discrete wavelet transform,” IEEE Trans. Circuits Syst. II:
Express Briefs, vol. 56, no. 4, pp. 290−294, Apr. 2009.

[16] M. Alam, W. Badawy, V. Dimitrov, and G. Jullien, “An efficient
architecture for a lifted 2D biorthogonal DWT”, Journal of VLSI Signal
Processing, vol. 40, pp. 333−342, 2005.

[17] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete
and continuous wavelet transforms: from single chip impelmentations to
mapping on SIMD array computers,” IEEE Trans. Signal Process., vol.
43, no. 3, pp. 759−771, Mar. 1995.

[18] C. Cheng and K.K. Parhi, “High-speed VLSI implementation of 2-D
discrete wavelet transform,” IEEE Trans. Signal Process., vol. 56, no. 1,
pp. 393−403, Jan. 2008.

[19] K. C. Hung, Y. S. Hung, and Y. J. Huang, “A nonseparable VLSI
architecture for two-dimensional discrete periodized wavelet transform,”
IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 9, no. 5,
pp. 565–576, Oct. 2001.

[20] I. S. Uzun and A. Amira, “Rapid prototyping -- framework for
FPGA-based discrete biorthogonal wavelet transforms implementation,”
IEE Vision, Image and Signal Processing, vol. 153, no. 6, pp. 721–734,
Dec. 2006.

[21] F. Marino, “Efficient high-speed low-power pipelined architecture for the
direct 2-D discrete wavelet transform,” IEEE Trans. Circuits Syst. II, vol.
47, no. 12, pp. 1476–1491, Dec. 2000.

[22] R. J. C. Palero, R. G. Gironez, and A. S. Cortes, “A novel FPGA
architecture of a 2-D wavelet transform”, Journal of VLSI Signal
Processing, vol. 42, pp. 273−284, 2006.

[23] Q. Dai, X. Chen, and C. Lin, “A novel VLSI architecture for
multidimensional discrete wavelet transform,” IEEE Trans. Circuits Syst.
Video Technol., vol. 14, no. 8, pp. 1105–1110, Aug. 2004.

[24] M. H. Sheu, M. D. Shieh, and S. W. Liu, “A low cost VLSI architecture
design for nonseparable 2-D discrete wavelet transform,” in Proc. 40th
Midwest Symp. Circuits Syst., vol. 2, 1997, pp. 1217–1220.

[25] C. Y. Chen, Z. L. Yang, T. C. Wamg, and L. G. Chen, “A programmable
VLSI architecture for 2-D discrete wavelet transform,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS), Geneva, Switzerland, May 28−31,
2000, vol. 1, pp. 619−622.

[26] B. K. Mohanty and P. K. Meher, “Bit-serial systolic architecture for 2-D
non-separable dircrete wavelet transform,” in Proc. Int. Conf. Intelligent
& Advanced Systems (ICIAS), Kualalampur, Malaysia, Nov. 2007,
pp.1355−1358.

[27] C. Yu and S.-J. Chen, “VLSI implementation of 2-D discrete wavelet
transform for real-time video signal processing,” IEEE Trans. Consumer
Electronics, vol. 43, no.4, pp. 1270−79, Nov. 1997.

[28] M. Vishwanath, “The recursive pyramid algorithm for the discrete
wavelet transforms,” IEEE Trans. Signal Process., vol. 42, no. 3, pp.
673–677, 1994.

[29] K. A. Kotteri, S. Barua, A. E. Bell, and J. E. Carletta, “A comparison of
hardware implementations of the biorthogonal 9/7 DWT: convolution

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 12

versus lifting,” IEEE Trans. Circuits Syst. II, vol. 52, no. 5, pp. 256−260,
May 2006.

[30] M. Ferretti and D. Rizzo, “Handling borders in systolic architectures for
the 1-D discrete wavelet transform for perfect reconstruction,” IEEE
Trans. Signal Process., vol. 48, no. 5, pp. 1365−1378, May 2000.

[31] D. Guevorkian, P. Liuha, A. Launiainen and V. Lappalainen, U.S. Patent
6976046, Architectures for discrete wavelet transforms, December 13,
2005.

[32] J. Song and I. Park, “Pipelined discrete wavelet transform architecture
scanning dual lines,” IEEE Trans. Circuits Syst. II: Express Briefs, vol.
56, no. 12, pp. 916−920, Dec. 2009.

[33] C. Zhang, C. Wang, and M. O. Ahmad, “A VLSI architecture for a fast
computation of the 2-D discrete wavelet transform,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS), May 2007, pp. 3980−3983.

[34] C. Zhang, C. Wang, and M. O. Ahmad, “An efficient buffer-based
architecture for on-line computation of 1-D discrete wavelet transform,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process. (ICASSP),
May 2004, vol. 5, pp. 201−204.

[35] C. Zhang, C. Wang, and M. O. Ahmad, “A VLSI architecture for a
high-speed computation of the 1D discrete wavelet transform,” in Proc.
IEEE Int. Symp. Circuits and Systems (ISCAS), May 2005, vol. 2, pp.
1461−1464.

[36] C. Zhang, C. Wang, and M. O. Ahmad, “A pipeline VLSI architecture for
high-speed computation of the 1-D discrete wavelet transform,” IEEE
Trans. Circuits Syst. I, vol. 57, no. 10, pp. 2729−2740, Oct. 2010.

Chengjun Zhang received the B.S degree and M.S.
degree in Physics from Nanjing University, Nanjing,
Jiangsu, China, in 1994 and 1997, respectively. He is
working toward the Ph.D. degree in the Department of
Electrical and Computer Engineering at Concordia
University, Montreal, QC, Canada.
 His research interests include signal processing,
architecture design, and VLSI implementation of
digital systems.

Chunyan Wang received the B. Eng. degree in
electronics from JiaoTong University, Shanghai,
China, and the M. Eng. and Ph.D. degrees from
Universite´ Paris Sud, Paris, France.
 She joined Concordia University, Montreal, QC,
Canada, in 1997, as an Assistant Professor, where she
is presently an Associate Professor of Electrical and
Computer Engineering.
 Her current research areas are low-power analog-
and mixed-signal VLSI design, CMOS sensor
integration, and VLSI implementation of digital

signal processing systems.

M. Omair Ahmad (S’69-M’78-SM’83-F’01)
received the B.Eng. degree from Sir George Williams
University, Montreal, QC, Canada, and the Ph.D.
degree from Concordia University, Montreal, QC,
Canada, both in electrical engineering.
From 1978 to 1979, he was a member of the Faculty
of the New York University College, Buffalo. In
September 1979, he joined the Faculty of Concordia
University as Assistant Professor of Computer
Science. Subsequently, he joined the Department of
Electrical and Computer Engineering, Concordia

University, where he was the Chair of the department from June 2002 to May
2005 and is presently a Professor. He holds the Concordia University Research
Chair (Tier I) in Multimedia Signal Processing. He has published extensively in
the area of signal processing and holds four patents. His current research
interests include the areas of multidimensional filter design, speech, image and
video processing, nonlinear signal processing, communication DSP, artificial
neural networks, and VLSI circuits for signal processing. He was a Founding

Researcher at Micronet from its inception in 1990 as a Canadian Network of
Centers of Excellence until its expiration in 2004. Previously, he was an
Examiner of the Order of Engineers of Quebec.
Dr. Ahmad was an Associate Editor of the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS PART I: FUNDAMENTAL THEORY AND
APPLICATIONS from June 1999 to December 2001. He was the Local
Arrangements Chairman of the 1984 IEEE International Symposium on
Circuits and Systems. During 1988, he was a member of the Admission and
Advancement Committee of the IEEE. He has also served as the Program
Co-Chair for the 1995 IEEE International Conference on Neural Networks and
Signal Processing, the 2003 IEEE International Conference on Neural
Networks and Signal Processing, and the 2004 IEEE International Midwest
Symposium on Circuits and Systems. He was General Co-Chair for the 2008
IEEE International Conference on Neural Networks and Signal Processing.
Presently, he is the Chair of the Montreal Chapter IEEE Circuits and Systems
Society. He is recipient of numerous honors and awards, including the Wighton
Fellowship from the Sandford Fleming Foundation, an induction to Provost's
Circle of Distinction for career achievements, and the award of Excellence in
Doctoral Supervision from the Faculty of Engineering and Computer Science of
Concordia University.

