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ABSTRACT

Fault-tolerant Synchronization of Autonomous Underwater Vehicles

Faegheh Amirarfaei

The main objective of this thesis is to develop a fault-tolerant and reconfigurable synchro-
nization scheme based on model-based control protocols for stern and sail hydroplanes that are
employed as actuators in the attitude control subsystem (ACS) of an autonomous underwater ve-
hicle (AUV). In this thesis two control approaches are considered for synchronization, namely i)
state feedback synchronization, and ii) output feedback synchronization. Both problems are tack-
led by proposing a passive control approach as well as an active reconfiguration (re-designing the
control gains).

For the ”state feedback” synchronization scheme, to achieve consensus the relative/absolute
measurements of the AUV’s states (position and attitude) are available. The states of a longitudi-
nal model of an AUV are mainly heave, pitch, and their associated rates. For the state feedback
problem we employ a static protocol, and it is shown that the multi-agent system will synchronize
in the stochastic mean square sense in the presence of measurement noise. However, the resulting
performance index defined as the accumulated sum of variations of control inputs and synchroniza-
tion errors is high. To deal with this problem, Kalman filtering is used for states estimation that
are used in synchronization protocol. Moreover, the effects of parameter uncertainty of the agent’s
dynamics are also investigated through simulation results. By employing the static protocol it is
demonstrated that when a loss of effectiveness (LOE) or float fault occurs the synchronization can
still be achieved under some conditions. Finally, one of the main problems that is tackled in the
state feedback scenario is our proposed proportional-integral (PI) control methodology to deal with
the lock in place (LIP) fault. It is shown that if the LIP fault occurs, by employing a PI protocol
the synchronization could still be achieved. Finally, our proposed dynamic synchronization proto-
col methodology is applied given that the fault (LOE/float) severity is known. Since after a fault
occurrence the agents become heterogeneous, employing the dynamic scheme makes the task of
reconfiguration (redesigning the gains) more effective.

For the ”output feedback” synchronization approach, to achieve consensus relative/absolute
measurements of the AUV’s states except the pitch rate are available. For the output feedback
problem a dynamic protocol through a Luenberger observer is first employed for state estimation
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and the synchronization achievement is demonstrated. Then, a system under state and measure-
ment noise is considered, and it is shown that by employing a Kalman filter for the state estimation;
the multi-agent system will synchronize in the stochastic mean square sense. Furthermore, by em-
ploying the static protocol, it is shown that when a LOE/float fault occurs the synchronization is
still achieved under certain conditions. Finally, one of the main problems that is tackled in the
output feedback scenario is our proposed dynamic controller methodology. The results of this
scheme are compared with another approach that exploits both dynamic controller and dynamic
observer. The former approach has less computational effort and results in more a robust control
with respect to the actuator fault. The reason is that the later method employs an observer that uses
the control input matrix information. When fault occurs, this information will not be correct any
more. However, if there is a need to redesign the synchronization gains under faulty scenario, the
later methodology is preferred. The reason is that the former approach becomes complicated when
there is a fault even though its severity is known.

In this thesis, fault-tolerant synchronization of autonomous underwater vehicles is considered.
In the first chapter a brief introduction on the motivation, problem definition, objectives and the
methodologies that are used in the dissertation are discussed. A literature review on research
dedicated to synchronization, fault diagnosis, and fault-tolerant control is provided. In Chapter
2, a through literature review on unmanned underwater vehicles is covered. It also comprises a
comprehensive background information and definitions including algebraic graph theory, matrix
theory, and fault modeling. In the problem statement, the two main problems in this thesis, namely
state feedback synchronization and output feedback synchronization are discussed. Chapters 3 and
4 will cover these two problems, their solutions, and the corresponding simulation results that are
provided. Finally, Chapter 5 includes a discussion of conclusions and future work.
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Chapter 1

Introduction

1.1 Motivation

As oil and gas operators have moved into deeper waters (below 600 feet), the need for an eco-
nomical access to the deep ocean has emerged in the industry. High quality and reliable pipeline
inspection methods are now required to verify the integrity of subsea structure. The necessity of
ocean access is not confined to offshore petroleum industry. Scientific and industrial applications
include under ice studies, air crash investigations, large scale ocean structure survey, and pollution
monitoring.

Historically, manned submersibles and remotely operated vehicles (ROVs) have been used to
suit this purpose. As compared to manned submersibles, ROV’s cost is lower and it significantly
reduces the human risk. However, since ROV still relies on towing method, the process of moving
the robot and the surface ship limits the effectiveness and the efficiency of the ROV’s survey.
In addition, the cables can become tangled, altering the surveys and affecting accuracy. These
methods have constraints on payload size, power consumption and data transmission rate. They
also suffer from the inherent drag of the tether and for deep-water use, they require a large operating
vessel.

As opposed to manned submersibles and ROVs, the autonomous underwater vehicles (AUVs)
provide an economical access to the ocean by lacking a tether and having a small vessel size.
Powered mainly by fuel cell battery, the AUVs can operate for up to two days. The vehicles
can also work in deeper waters than the traditional towing methods. A hybrid platform of an
autonomous underwater vehicle and a remotely operated vehicle (ROV) are also used in industry
to stay underwater for lengthy periods of time.

The autonomous underwater vehicles were introduced to the oil and gas industry initially for

1



the use in making detailed maps of the seafloor prior to constructing subsea infrastructure. Their
use also makes it possible to survey post-lay pipes including spans, cathode erosion, leaks, move-
ment, and damage monitoring. As another offshore application of AUVs, the environmental effect
monitoring (EEM) is an important tool in environmental risk assessment (ERA) which has been
conducted worldwide in offshore petroleum industry.

All the above tasks are complex, so that it is super beneficial if underwater vehicles work in
parallel and in a collaborative platform. This highly helps the efficiency and quality of results
through data redundancy and increased robustness. It also makes it feasible to carry out missions
that are impossible or really hard to be performed by one vehicle. This encourages the use of
multi-agent platform of autonomous underwater vehicles for underwater exploration, mapping,
and threat tackling.

The broad applications of collaborative autonomous underwater vehicles motivate us to address
their cooperative control. Within the last decade, a significant research has been devoted to inves-
tigate the AUVs and different aspects of consensus problems and cooperative control. However,
AUVs in multi-agent platform has been barely covered in the literature. The problem also becomes
more challenging in the presence of uncertainty, noise, and sensor or actuator fault. Hence, this
thesis addresses the synchronization problem of unmanned underwater vehicles subject to all these
imperfect conditions and faults.

1.2 Problem Definition

In this thesis, the main objective is to tackle various faulty scenarios of consensus achievement of
unmanned underwater vehicles. The main idea in consensus achievement is that the agents aim to
synchronize to a common value. The problem of fault-tolerant and reconfigurable synchronization
in multi-agent systems has not been broadly addressed in the literature. This motivates us to tackle
this problem. The faults considered here are actuator faults. However, similar approaches could be
applicable to sensor faults, as well.

The problem formulation throughout the thesis is general where we deal with a marginally
stable linear system. However, the simulation results focus on the decoupled model of AUV’s
heave and pitch motions.

The problem definition starts with considering healthy scenario as in the literature, and in-
vestigates the effects of noise and uncertainty on consensus achievement. The noise models the
measurement noise and disturbances that are applied to the system. The type of environmental
disturbances that are applied to a deeply submersed AUV are ocean currents which are modeled
as random walks. Moreover, the uncertainty of the model parameters is due to the fact that it is

2



a challenging task to be identified. These uncertainties are modeled by variation of parameters in
the state-space dynamic matrix. In addition, as one of the main imperfect conditions addressed in
the thesis, faults of loss of effectiveness (LOE), float and lock in place (LIP) types are considered.

The network topology and structure considered throughout the thesis is fixed. Moreover, the
achieved consensus is determined based on the network’s Laplacian matrix and the initial states
of agents, and not a predefined trajectory or one generated by an exogenous system. Finally, all
scenarios and problems defined in this thesis are classified under the two main category, namely
state feedback and output feedback synchronization.

1.3 Objective

The main objective of this dissertation is to propose control schemes for fault-tolerant synchroniza-
tion of autonomous underwater vehicles subject to actuator faults. In order to fulfill this objective,
the longitudinal model of the AUVs is considered where the states are the heave and the pitch, and
their associated rates. The AUVs are equipped with stern and sail (bow) hydroplanes. The bow
control surface is chosen as the one subject to fault in order to verify the protocols that are used in
the synchronization mission.

The research presented in this thesis attempts to keep consensus achievement of an underwater
vehicle (AUV). The problem becomes challenging in the presence of uncertainties, noise, and ac-
tuator faults. Hence, this research addresses the synchronization problem of unmanned underwater
vehicles subject to all these imperfect conditions specially the presence of actuator faults.

1.4 Methodology

The synchronization problem methodologies in this thesis are based on state feedback and output
feedback synchronization where the objective is to keep and maintain the synchronization even
subject to any fault occurrence.

For the ”state feedback” synchronization scheme, to achieve consensus the relative measure-
ments of the AUV’s states (position and attitude) are available. The states of a longitudinal model
of an AUV are mainly heave, pitch, and their associated rates. For the state feedback problem
we employ a static protocol and it is shown that the multi-agent system will synchronize in the
stochastic mean square sense in the presence of measurement noise. However, the resulting perfor-
mance index defined as the accumulated sum of variations of control inputs and synchronization
errors is high. To deal with this problem, Kalman filtering is used for states estimation that are
used in synchronization protocol. Moreover, the effects of parameter uncertainty of the agent’s
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dynamics are also investigated through simulation results. By employing the static protocol it is
demonstrated that when a loss of effectiveness (LOE) or float fault occurs under some conditions
the synchronization can still be achieved. Finally, one of the main problems that is tackled in the
state feedback scenario is our proposed PI control methodology to deal with the lock in place (LIP)
fault. It is shown that if the LIP fault occurs, by employing a PI protocol the synchronization could
still be achieved. Finally, our proposed dynamic synchronization protocol methodology is applied
given that the fault (LOE/float) severity is known. Since after a fault occurrence the agents become
heterogeneous, employing the dynamic scheme makes the task of reconfiguration (redesigning the
gains) more effective.

For the ”output feedback” synchronization approach, to achieve consensus absolute measure-
ments of the AUV’s states except the pitch rate are available. For the output feedback problem
a dynamic protocol through a Luenberger observer is first employed for state estimation and the
synchronization achievement is demonstrated. Then, a system under state measurement noise is
considered, and it is shown that by employing a Kalman filter for the state estimation; the multi-
agent system will synchronize in the stochastic mean square sense. Furthermore, by employing
the static protocol, it is shown that when a LOE/float fault occurs under certain conditions the
synchronization is still achieved. Finally, one of the main problems that is tackled in the output
feedback scenario is our proposed dynamic controller methodology. The results of this scheme are
compared with another approach that exploits both dynamic controller and dynamic observer. The
former approach has less computational effort and results in more robustness. The reason is that
the later method employs an observer that uses the control input matrix information. When fault
occurs, this information will not be correct any more. However, if there is a need to redesign the
synchronization gains under faulty scenario, the later methodology is preferred. The reason is that
the former approach becomes complicated when there is a fault even though its severity is known.

1.5 Literature Review

The main concern of the consensus problems is to analyze whether consensus is achieved, or not.
The value that the agents synchronize to is called the consensus value which is reached by using
relative states information. Consensus problems can be divided into leaderless and leader-follower
configurations. In the leaderless platform, a consensus value is through an average consensus or
resulting from an exogenous system and it is not specified in advance. In average consensus, the
consensus value is weighted average of initial states and the associated weights are determined ac-
cording to the network’s topology. As opposed to leaderless configuration, in the leader-follower
multi-agent systems, the consensus trajectory is known to the leader. Hence, the consensus prob-
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lem can be formulated as a distributed tracking one.
In the upcoming sections, first a comprehensive literature review on multi-agent systems is

provided. This literature review is divided into two main categories corresponding to the complex-
ities of the agent’s underlying network and the complexities of the agents’ dynamics. In the final
section, a through literature review on fault detection and isolation as well as fault-tolerant and
reconfigurable synchronization methods is introduced.

1.5.1 Synchronization versus Network Topology and Agents’ Dynamics Com-

plexities

Since the formal presentation of the consensus problem in the field of management science and
statistics back in 1970’s (see [3] and references therein), it has been investigated by many re-
searchers from a variety of fields. Researchers from multi-disciplinary domains including man-
agement, statistics, social science [4, 5], biology [6–9], physics [10, 11], power systems [12, 13],
robotics and unmanned vehicles have worked on the consensus problem.

In the field of robotics and vehicle systems which is the focus of this thesis, many researchers
have worked on cooperative control of unmanned vehicles partly due to its broad application on
autonomous underwater vehicles (AUV), unmanned aerial vehicles (UAV), unmanned ground ve-
hicles (UGV), automated highway systems and mobile robots. The concept of cooperative control
and consensus have also been applied to different problems including formation control [14–17],
flocking [11, 18, 19], distributed sensor networks [20] and congestion control in communication
networks [21].

One main motivation for the extensive use of multi-agent systems in unmanned vehicles is their
capability in performing tasks which are impossible or really hard to achieve by only one agent.
Other interesting applications are being utilized in places which are hazardous to humans. Due to
these problems, many researches have been devoted to investigate different aspects of consensus
problem and cooperative control.

In the field of cooperative control, Borkar and Varaiya [22] and Tsitsiklis and Athans [23]
were the pioneers who dealt with the consensus problem. In their works, they have considered the
asynchronous consensus problem. Later in [11], Vicsek et al. proposed a simple but interesting
discrete-time model for multi-agent systems and they conducted a number of simulations using the
nearest neighbor rule in a distributed manner. Vicsek model is a special version of the Reynolds
model introduced in [18] which performs flocking in a distributed manner. Both these papers are
behavioral and simulation based. It could be said that the paper by Jadbabaei et al. [24] and Olfati
and Murry [25] are among the first papers that investigate the consensus problem in a theoreti-
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cal framework. In [25], linear and nonlinear consensus protocols are proposed for continues-time
agents in a network of multi-agent systems, and then the proposed protocol is applied to the con-
sensus problem of multi-agent systems with switching topology and communication delay. Both
these works ( [24] and [25]) are studying the consensus achievement of single integrators and con-
sider the switching topology as well. In [26], Ren and Atkins extended [25] by introducing the
second order consensus problem.

The research in the domain of multi-agent system and their use for a variety of applications
is on progress. Recently, collision avoidance consensus achievement of unmanned aerial vehicles
(UAVs) is considered in [27] and [28]. The consensus of multi-agent systems with binary-valued
communication on an undirected graph network with a fixed topology is studied in [29]. Ren et

al. at [30] investigate the distributed consensus problem of multiple UAV systems with nonlinear
uncertainty and bounded disturbance under a directed graph.

The main idea in consensus achievement is that the agents aim to synchronize to a common
value. It should be noted that consensus, coordination and synchronization are different terminolo-
gies that have been used interchangeably in the literature. However, in consensus, the communi-
cation graph’s topology and constraints are more emphasized than the agents’ dynamics. Some
of these constraints and issues are as switching topology, time delay, imperfect communication
channel, noise contaminated measurement data, among others. In contrast to consensus, in syn-
chronization more emphasis is on the individual dynamics rather than on the communication con-
straints. Therefore, different complexities associated with agent’s dynamics are considered, and
the goal is to reach a common solution of the synchronization dynamics. In this thesis, we use
them interchangeably.

For synchronization of general linear time-invariant systems which is the focus of this thesis,
there are two approaches in the literature; namely the state feedback synchronization protocol and
the output feedback synchronization protocol. When all states are available, the state feedback
synchronization approach can be applied through static or dynamic controllers [31–33]. As in the
state feedback case, output feedback algorithms have been introduced in the literature to reach
synchronization as static [34–36] and dynamic [31], [36] protocols.

The cooperative control problems are categorized as either formation control with application
to unmanned vehicles or non-formation problems in cooperative traffic control, role assignment,
and timing assignment. Using formation of multiple vehicles to accomplish an objective has sev-
eral advantages. It not only increases the probability of success, e.g. in a search mission, it could
also improve the cost saving and energy efficiency as in the deep space micro-spacecraft applica-
tion for interferometry application. In this thesis consensus which is subject to formation-based
cooperative problem is considered. Although history of consensus problems goes back to computer
science, our focus will be on their applications to cooperative control of multi-agent systems.
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Since the emergence of the consensus problem, different issues associated with the network
topology have been considered. They could be stated as switching topology, switching over a ran-
dom network, time delay, noise contaminated measurement data, disturbance, fault, among other
issues. Each of the above mentioned issues may have its own considerations; for example, switch-
ing in a network topology could be state dependent or not, time delay could be synchronous [37]
or asynchronous [38] and homogeneous or heterogeneous.

Although consensus problems are simplified by considering time-invariant information ex-
change topology, in reality they may change. The communication links are subject to change
due to disturbances and/or communication link limitations. Motivated by [11], extensive research
activities have been conducted in this regard. One approach to tackle switching topologies is to
use the algebraic graph theory. Also, nonlinear tools have been used to study consensus of time-
varying structures.

As previously mentioned, Jadbabaei and et al. in [24] considered a discrete-time model for
first-order systems, and solved the consensus problem. In that paper, they took into account the
possible changes in the nearest neighbors in time and applied the convergence results of infinite
products of certain types of nonnegative matrices (for infinite matrix products, the reader can
refer to [39, 40]). Furthermore, they showed that consensus can be achieved if the union of the
interaction graphs for the team are connected frequently enough as the system evolves. However,
the methodology proposed in that paper was for bidirectional information exchanges. In [25], the
consensus achievement of single integrators was considered. In that paper, first balanced digraphs
in fixed topology were considered and then the switching topology but still in the framework of
balanced digraphs.

Moreau in [41] showed that the consensus is achieved exponentially for first order integrators
if the union of the directed interaction graphs have a spanning tree frequently enough as the system
evolves. Later Ren and Atkins in [26] extended [25] and [24] by introducing the second order
consensus problem and solved the switching topology problem under less restrictive constraints.
In that paper in the context of both continuous-time and discrete-time systems, they showed that
consensus can be achieved asymptotically by assuming the same conditions in [41] for interaction
graphs.

Later in [36], Scardovi et al. solved the synchronization problem for LTI systems under
a possibly time-varying and directed network topology. The main contribution of that paper is
to employ dynamic output feedback to synchronize marginally stable systems under a uniformly
connected interaction topology. They solved the same problem using static output feedback under
some more restrictive conditions.

In [42], the authors considered the consensus achievement of single-integrators over random
graphs in which communications between agents is unidirectional and the existence of each edge is
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independent from all other agents at current and previous time steps. They considered undirected
networks with a common time delay on all the information exchange links. Later in [43], the au-
thors generalized the work in [42] to random weighted directed graphs where each communication
link has a different probability to exist. These two works considered almost surely consensus prob-
lem over a Bernoulli network. Moreover, authors in [44] studied the mean square consentability
problem for a network of double-integrator agents with stochastic switching topology. In [45],
given the same assumptions in [43] the local synchronization of chaotic oscillators was considered
but by using state feedback information.

As previously mentioned, time delay is another issue which should be considered in consensus
achievement of networked systems. Time delays in networks may arise due to various causes as
queuing delays and packet losses because of radio interfere, network congestion and other com-
munication failures.

Due to the fact that time delays are caused by different factors, their values generally vary.
Thus, it is important to consider multi-agent systems with heterogeneous time delays. In networked
delayed systems, the consensus achievement and the final consensus value depend not only on
the network structures, but also on the values of the time delays. It means that time delay and
specifically heterogeneous time delays may disturb average consensus achievement.

In [25], Olfati and Murray studied consensus problem of single integrators with undirected
and delayed interconnections. Later in [46], the authors extended the results to directed networks
with non-uniform delays. Moreover, in [47], the leader-follower consensus problem for multi-
agents with directed and time-delayed coupling have been considered. In that paper, the authors
have employed Lyapunov Razumikhin functions to deal with the convergence and the stability
of consensus problem. In [48], authors have investigated the distributed consensus control of
second order integrators under a delay-dependent switching topologies. In [49], the sampled-data
consensus based on the delayed-input approach was studied. A sampled-data multi-agent system
is converted to an equivalent nonlinear system with a time-varying delay. Zhang and Tian in [50]
studied the consensus of a group of linear dynamic agents with a uniform communication delay
for both fixed and switching topology and investigated an allowable delay bound.

As stated above, consensus and synchronization problems could be investigated from different
aspects. One may consider the complexity of the underlying network or the complexity of the
agents’ dynamics. Therefore, in the subsequent section the complexity associated with agents’
dynamics that is casted as heterogeneous systems will be studied.
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1.5.2 Heterogeneous Systems and Synchronization

In a real world scenario, two agents are not identical. Therefore, we deal with non-identical (het-
erogeneous) systems. To deal with this issue, a few methodologies have been developed in the
literature. The first method to deal with this problem was based on internal model principle which
need an absolute output measurement [51], [52]. In contrast to these two papers, [53] and [54]
used only local information. The proposed method in these works was based on tracking a fea-
sible synchronization trajectory which agents agree on. However, it requires a leader-follower
communication structure condition. To be more specific, [53] decomposed the problem into three
sub-problems: (i) synchronization of identical exo-systems which provides the synchronization
trajectory, (ii) a decentralized observer for estimating the absolute state based on the local mea-
surement, and finally (iii) a control law which uses the information of the state estimation to follow
the synchronization trajectory.

In [55], the cooperative output regulation of linear multi-agent systems have been considered,
and it is assumed that either the agents have access to the exogenous signal or not. Therefore, the
problem cannot be solved in a decentralized manner. However, by using a distributed observer, the
problem can be solved.

In all of the above papers, it is assumed that all agents’ actuators are able to apply the command
signal and all sensors’ measurements are correct. However, in real applications it is always possible
that one/some agents fail to produce the requested command signal or the control unit does not have
the correct measurements due to potential sensor faults. This motivates us to study the fault-tolerant
control and fault detection and diagnosis approaches in the literature.

1.5.3 Fault-Tolerant Control and Fault Detection and Diagnosis

Fault-tolerant control and fault detection and diagnosis (FDD) problem of single agent systems has
been studied extensively in the literature and different methods have been proposed to deal with
it. A control system that can accommodate faults among system components automatically while
maintaining the system stability along with a desired level of overall performance is considered
as a fault-tolerant control system (FTCS). The fault-tolerant controller design approach and the
availability of redundancies in the control system determine the performance achieved in control
system. From a practical point of view, the aircraft flight control system was the original motivation
behind the fault-tolerant control systems. However, recently due to safety and reliability demands,
FTCS has drawn more attention in wider range of industries.

Generally speaking, FTCS can be divided into two categories: passive (PFTCS) and active
(AFTCS). In PFTCS, controllers are designed in a way to be robust against a class of presumed
faults. Although this approach does not need any FDI block, it has limited fault-tolerant capabil-
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ities. In contrast to the PFTCS, in the AFTCS the controller is reconfigured (or only the gains
are redesigned) in a way to maintain the overall system stability and acceptable performance. In
order to choose between PFTCS and AFTCS, first the effects of presumed faults on the system
performance should be investigated. The AFTCS can be divided into four sub-systems as

• A reconfigurable controller

• A FDD scheme

• A controller reconfiguration mechanism

• A command/reference governor

The reconfigurable control design methods are classified into: linear quadratic (LQ) [56],
pseudo-inverse (PI) [57], gain scheduling (GS)/linear parameter varying (LPV) [58, 59], model
following (MF) [60, 61], adaptive control (AC) [62, 63], multiple model (MM) [64], eigenstruc-
ture assignment (EA) [65], feedback linearization (FL)/dynamic inversion (DI) [66], H∞ and other
robust control methods [67], model predictive control (MPC) [68], quantitative feedback theory
(QFT) [69], linear matrix inequality (LMI) [70], variable structure control (VSC)/ sliding mode
control (SMC) [71] and generalized internal model control (GIMC) [72].

Among the above methods, LQ, PI, MF, EA, MM, MPC, QFT, and GIMC are only applied to
linear systems, while GS/LPV, MM, FL/DI, LMI, and VSC/SMC are applied to nonlinear systems
as well. From the point of view of controller restructuring or redesign, the above mathematical
design tools can be classified as in Figure 1.1. Figure 1.2 categorizes these control approaches
according to the control algorithms classifications.

Control Structures

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Adaptive
{

Indirect
Direct

Switching

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
GS/LPV
MM
SMC

Model Following
{

Explicit
Implicit

Figure 1.1: Control structures classifications.

As already stated, fault detection and diagnosis (FDD) is one of the key subsystems of AFTCS.
Fault diagnosis algorithms are generally categorized into two broad classes: model-based methods
and data-driven methods. The data-driven approaches include computationally intelligent methods.
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Control Algorithms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Optimization

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

LQ
H∞
LMI
MPC

Matching
{
EA

Inversion
{

PI
DI

Figure 1.2: Control algorithms classifications.

However, model-based methods are classified into quantitative and qualitative techniques. Figure
1.3 summarizes the model-based FDD approaches with emphasis on quantitative methods.

There are some key features of FDD approaches. Dependent on how a method addresses these
features, the FDD approach is opted for a system. These features are:

• Applicability to sensor fault

• Applicability to actuator fault

• Speed of detection

• Isolability

• Identifiability

• Suitability for fault-tolerant control

• Multiple fault identifiability

Model based FDD approaches

Quantitative Methods

State
Estimation

Observer-
based

Kalman filter
based

Parameter
Estimation

LS/
RLS

Regression
Analysis

Simultaneous
State/Parameter

Estimation

Augmented
estimation
(AE) [73]

Two-stage
Kalman

filter(TSKF)
[74–76]

Parity
Space
[77]

State-space
based

Input-output
based

Qualitative Methods

Causal
Models

Abstraction
Hierarchy

Figure 1.3: Classification of model-based FDD methods.
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• Applicability to nonlinear systems

• Robustness

• Computational complexity

Moreover, there are some concerns for AFTCS design beyond the ones in a conventional con-
trol system. These challenges are as follows:

• Redundancy as a decision between hardware and analytical redundancy

• Stability, robustness and performance degradation analysis (both transient and steady-state)

• FDD uncertainties and reconfiguration delay

• FDD and FTCS integration

• Real-time issues and networked control system applications

• Safety, reliability and reconfigurability analysis and assessment

• Practical considerations in applications of FTCS

For a complete review of FTCS, an interested reader could refer to the review papers [78]
and [79] and the references therein.

1.5.4 Fault-Tolerant Control of Multi-agent Systems

Most of the papers in the literature of consensus achievement in multi-agent systems do not con-
sider the case where the agents are subject to input constraints and faults. However, almost in every
physical application the actuator output is bounded and failure can happen in sensors and actuators.
Thus, due to the significant importance of safety in vehicle systems, the fault occurrence and its
subsequent effect on the system’s synchronization and overall performance should be investigated.

Although not fully addressed as single agent systems, there are few works that consider FDD
problem for multi-agent systems [80–82]. In [80] and [81], the FDI problem in a team of unmanned
vehicles with relative measurements was studied. In these papers three different architectures as
centralized, decentralized and semi-decentralized are considered, and the solvability conditions for
the FDI problem in these architectures are driven. In [82], a hybrid methodology for fault detection,
isolation and recovery (FDIR) of a team of unmanned vehicles was presented. Their suggested
methodology has two levels; a low level approach which is based on the classical control methods,
and a high level paradigm which is based on discrete-event systems.
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In the context of multi-agent systems, references [83–86] are among the first few papers that
investigate the effect of potential faults on synchronization. All these three works considered a
leader-follower strategy. Semsar and Khorasani in [83] and [84] studied the effects of actuator
faults on a team of mobile agents with a modified leader-follower topology based on a semi-
decentralized optimal control consensus protocol proposed in [87]. In [85], the effects of agent
dynamics faults are compensated by adjusting certain weights of the cooperative protocol. Authors
in [86] considered a two-level (low-level and formation level) fault recovery scheme for satellites
formation flying. In the low level recovery mechanism, asymptomatic closed loop stability is
guaranteed. However, for a biased fault estimation, faulty satellites are partially recovered. This
leads to deteriorated formation tracking errors. Therefore, formation level control mechanism is
employed to reduce tracking error bound. This means that other satellites allocate more control
efforts to compensate for the effect of partially recovered agent.

More recently, the consensus protocol subject to the actuator faults have been investigated
in [49] and [88–93]. In [49], the distributed consensus tracking problem of linear higher-order
multi-agent systems with occasionally missing control inputs was investigated. The authors in [88]
studied the distributed consensus problem of multi-agent systems in the presence of non-identical
unknown nonlinear dynamics and undetectable actuation failures and solved the problem with a
robust adaptive fault-tolerant control scheme based upon the local agent state information.

In [89], a reconfigurable synchronization protocol was employed such that the control gain is
redesigned after fault occurrence to guarantee the consensus achievement with minimum cost in
the presence of actuator faults and FDI uncertainty. Using the linear matrix inequality approach,
sufficient conditions are derived to show the existence of such a reconfigurable controller.

The authors in [90] proposed a distributed control protocol to guarantee the consensus in the
presence of actuator faults and saturations and environmental disturbances. The post-fault con-
troller is redesigned based on the inaccurate information that the fault detection and identification
(FDI) module has provided.

In [91], authors employed a virtual actuator technique to compensate the effect of actuator
faults. They formulate the consensus problem as a tracking control problem. Moreover, faults are
estimated using a sliding mode observer and sufficient conditions are derived for bounded tracking
error of all followers. It is to be noted that the tracking errors of healthy individuals converge to
zero. However, for faulty agents once accurate fault estimates are available, the tracking errors
remain bounded.

Authors in [92] developed a decentralized fault tolerant formation controller for UAVs in
leader-follower structure. The proposed solution only needs the FTC mechanism for faulty agent
rather than the entire team. As actuator faults occur, a compensation term is added to nominal
controller to remove the effect of such permanent faults. Moreover, switching systems approach is
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used to analyze the effects of intermittent faults.
Authors in [93] considered the distributed control strategies for the attitude synchronization

and set-point tracking control of multiple heterogeneous spacecraft in a formation flying mission.
In that paper, the heterogeneous systems synchronization, which may model the faulty scenario, is
casted into a tracking problem.

Generally, when a fault occurs in a team of multi-agent systems with identical dynamics, the
agents’ dynamics become heterogeneous and therefore the conventional approaches for synchro-
nization of homogeneous systems may not be valid any more. However, the methodologies intro-
duced in the class of heterogeneous multi-agents systems might be adjusted and used.

As stated above, consensus and synchronization problems could be investigated from differ-
ent aspects. One may consider the complexity of the underlying network or the complexity of the
agents’ dynamics. In addition, fault detection and identification (FDI), and fault-tolerant and recon-
figurable synchronization protocols are among the topics that have not been investigated broadly.
This motivates us enough to study the consensus problem of multi-agent systems in the presence
of faults.

1.6 Contributions

The main objective of this thesis is to investigate the synchronization protocols in networked multi-
vehicle systems of autonomous underwater vehicles. As mentioned, fault detection and isola-
tion and fault-tolerant control of multi-agent systems have not been already addressed extensively.
Therefore, in this thesis we will focus on fault-tolerant control of AUVs. The limited papers in the
literature of faulty scenarios cover the integrator systems, or leader-follower architectures. How-
ever, this thesis and specifically the following contributions deal with a general marginally stable
linear systems and in a leaderless platform which has not been addressed in the literature.

In this thesis, the problems will be addressed in two main categories: (i) state feedback synchro-
nization (ii) output feedback synchronization. The main contributions in these two methodologies
could be mentioned as follows:

• In Chapter 3 for state feedback problem, a static approach in the presence of measurement
noise is employed where consensus achievement in a stochastic mean square sense (MSS) is
developed. Moreover, a dynamic control protocol is employed where the control gains are
redesigned after the fault occurrence.

• In Chapter 3 for state feedback problem, a PI controller is proposed to keep consensus in
the presence of LIP fault. It is shown that by defining the synchronization states as the error
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between the faulty agent and the rest of the agents, the effects of LIP fault is presented as
a constant disturbance applied to the new state-space model. Therefore, by employing a PI
controller, and based on the internal model principle, the effects of the disturbance could be
rejected.

• In Chapter 4 for output feedback problem, a static as well as two different dynamic protocols
have been developed. The first dynamic methodology exploits a dynamic observer as well as
a dynamic controller; however, the second approach only employs a dynamic controller. The
latter methodology is more robust in the presence of faults; and therefore, it is well suited to
be used as a passive approach. However, when accurate fault information is available, the
former approach is preferred due to the convenience of the controller gain redesign.

1.7 Summary

This chapter is an preliminary introduction to fault-tolerant synchronization of autonomous under-
water vehicle systems. First, motivation, problem definition, objective, and the methodologies of
the main problems solved in the thesis have been discussed. Following that, the literature review on
multi-agent systems and synchronization, and fault detection and isolation as well as fault-tolerant
control have been introduced. Finally, the outline of main contributions that are achieved in this
thesis are provided.
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Chapter 2

Background Information and Definitions

This chapter includes the background information on the AUV modeling, algebraic graph theory,
matrix theory, and fault modeling. It also contains an introduction of the notations that are used
in the thesis. The literature review on AUV modeling starts by providing the equations of motion
of a rigid body. Then, the effect of hydrodynamic damping, gravitational and buoyant forces
and environmental disturbances are added. Finally, it ends by introducing the AUV’s sensors and
actuators as well as its propulsion system. The second part of the background information provides
a review of the mathematics and the definitions that are used through out the thesis. This includes
algebraic graph theory, matrix theory, and fault modeling.

2.1 Unmanned Underwater Vehicles

The underwater vehicles are in general classified into two main categories: manned submersibles
and unmanned underwater vehicles. All types of underwater robots that are operated without or
with minimal human interaction are called unmanned underwater vehicles. It is generally used to
describe the remotely operated vehicles (ROV) or autonomous underwater vehicles.

As opposed to ROVs, AUVs operate without constant human monitoring and operation. Due
to the fact that AUVs do not have the limitation of umbilical cables in ROVs, they are extensively
used for certain types of missions such as long-range oceanographic data collection [94]. AUVs
are classified into four main categories: survey AUVs, gliders, micro AUVs, and inspection or
hybrid AUVs.

In order to accomplish an exploration task by AUVs (especially in the oil and gas industries),
a reasonable approach is to coordinate the vehicles to form a particular configuration or to accom-
plish a common task. In this case, the most important aim is to move the group of vehicles while
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keeping the formation or reaching consensus on a common goal.
There are a couple of challenges in the design of the AUVs control system. The most important

ones are as follows:

• Inherent nonlinearity of the underwater vehicle

• Uncertainty of the hydrodynamic parameters

• Limited operational underwater navigation sensors

• Under-actuated systems

Since the only practical way for underwater communication is via acoustic channels, the trans-
mitted data is subject to noise, packet loss, time delays, and the fading power of signals.

Due to all the aforementioned issues, designing a stabilizing feedback controller for an under-
actuated system is a challenge in practice and may not be addressed by a smooth static state feed-
back law [95].

2.1.1 AUV Modeling

AUV modeling includes the study of its dynamics and statics. Statics consider the equilibrium of
the body at rest or moving with constant velocity whereas the dynamics are concerned with the
accelerated motions of the body. It is common to study the dynamics divided as kinematics and
kinetics. Kinematics deals with the geometrical aspects of motion, and kinetics analyzes the forces
causing the motion. The dynamical behavior of an AUV can be described by using a 6-degrees of
freedom (DOF) nonlinear equation of a rigid body.

2.1.2 AUV Nonlinear Equations of motion

The AUV’s nonlinear equations of motion can be represented both in the body-fixed and the earth-
fixed reference frames. The body fixed vectorial representation of the 6-DOF rigid body is as [96]

MRBv̇ +CRB(v)v = τRB, η̇1 = J1(η2)v1, η̇2 = J2(η2)v2 (2.1)

where η = [ηT
1 , η

T
2 ]T with η1 = [x, y, z]T and η2 = [φ, θ, ψ]T is the vector of positions and orientations

in the earth-fixed frame, v = [vT1 , v
T
2 ]T with v1 = [u, v, w]T and v2 = [p, q, r]T is the vector of linear

velocities and angular rates in the body-fixed frame, MRB ∈ R6×6 is the inertia matrix, CRB ∈ R6×6 is
the Coriolis and centripetal matrix, and τRB = [X,Y,Z,K,M,N]T is a generalized vector of external
forces and moments.
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The inertia and Coriolis matrices of MRB and CRB are obtained as

MRB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Iyx Iy −Iyz

−myG mxG 0 −Izx −Izy Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

CRB ==

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 m(yGq + zGr)
0 0 0 −m(yG p + w)
0 0 0 −m(zG p − v)

−m(yGq + zGr) m(yG p + w) m(zG p − v) 0
m(xGq − w) −m(zGr + xG p) m(zGq + u) Iyzq + Ixz p − Izr

m(xGr + v) m(yGr − u) −m(xG p + yGq) −Iyzr − Ixyp + Iyq

−m(xGq − w) −m(xGr + v)
m(zGr + xG p) −m(yGr − u)
−m(zGq + u) m(xG p + yGq)
−Iyzq − Ixz p + Izr Iyzr + Ixyp − Iyq

0 −Ixzr − Ixyq + Ix p

Ixzr + Ixyq − Ix p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where MRB = MT
RB > 0, ṀRB = 0 and CRB(v) = −CT

RB(v) ∀ v ∈ R6.

Here, m, rG = [xG, yG, zG]T, and I0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ix −Ixy −Ixz

−Iyx Iy −Iyz
−Izx −Izy Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ are the vehicle’s mass, center of gravity

and body’s inertia tensor, respectively.
The transformation matrices of the kinematics equation are:

J1(η2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)s(θ)c(φ)
s(ψ)c(θ) c(ψ)c(φ) + s(ψ)s(θ)s(φ) −c(ψ)s(φ) + s(ψ)s(θ)c(φ)
−s(φ) c(θ)s(φ) c(θ)c(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.2)
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J2(η2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)/c(θ) c(φ)/c(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.3)

where s(.) = sin(.), c(.) = cos(.) and t(.) = tan(.).
The rigid body dynamics can be written in compact form as:

m[u̇ − vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = X

m[v̇ − wp + ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp + ṙ)] = Y

m[ẇ − uq + vp − zG(p2 + q2) + xG(rp − q̇) + yG(rq + ṗ)] = Z

Ix ṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy + m[yG(ẇ − uq + vp) − zG(v̇ − wp + ur)]

= K

Iyq̇ + (Ix − Iz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx + (qp − ṙ)Iyz + m[zG(u̇ − vr + wq) − xG(ẇ − uq + vp)]

= M

Izṙ + (Iy − Ix)rp − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx + m[xG(v̇ − wp + ur) − yG(u̇ − vr + wq)]

= N

The equation (2.1) can be described as linear and rotational motions as following:
Linear Motion

• Surge: a linear longitudinal (front/back) motion.

• Sway: a linear lateral (side-to-side) motion.

• Heave: a linear vertical (up/down) motion.

Rotation Axes

• Roll: a rotation about longitudinal (front/back) axis.

• Pitch: a rotation about transverse (side-to-side) axis.

• Yaw: a rotation about vertical (up/down) axis.
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Figure 2.1: Inertial reference and body-fixed frames [1].

Table 2.1 contains a complete list of all notations used in the AUV modeling.

Table 2.1: AUV model notations.

DOF Motion
Force and
Moment

Linear and
Angular Velocity

Linear and
Angular Position

1 Motion in x-direction (surge) X u x
2 Motion in y-direction (sway) Y v y
3 Motion in z-direction (heave) Z w z
4 Rotation about x-axes (roll) K p φ

5 Rotation about y-axes (pitch) M q θ

6 Rotation about z-axes (yaw) N r ψ
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6-DOF Simplified Rigid-Body Equations of Motion

The equation (2.1) can be simplified by choosing the origin of the body-fixed coordinate system as

• Origin O of body-fixed coordinate coincides with the principal axes of inertia and therefore
the center of gravity becomes rG = [0 0 0]T.

• Origin O and the body-fixed frames are chosen such that I0 is diagonal.

2.1.3 Hydrodynamic Forces and Moments

By considering the added mass and inertia terms, the 6-DOF equations of motion become

Mv̇ +C(v)v + D(v)v + g(η) = τ + τE, (2.4)

where M � MRB + MA, C(v) � CRB(v) + CA(v) and D(v), g(η) and τE are used to describe the
hydrodynamic damping, restoring and environmental forces and moments acting on the vehicle,
respectively. For AUVs, the constant zero frequency added mass terms are:

MA = MT
A = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CA(υ) = −CA(υ)T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)
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where
a1 = Xu̇u + Xv̇v + Xẇw + Xṗ p + Xq̇q + Xṙr

a2 = Yu̇u + Yv̇v + Yẇw + Yṗ p + Yq̇q + Yṙr

a3 = Zu̇u + Zv̇v + Zẇw + Zṗ p + Zq̇q + Zṙr

b1 = Ku̇u + Kv̇v + Kẇw + Kṗ p + Kq̇q + Kṙr

b2 = Mu̇u + Mv̇v + Mẇw + Mṗ p + Mq̇q + Mṙr

b3 = Nu̇u + Nv̇v + Nẇw + Nṗ p + Nq̇q + Nṙr

For a rigid body at rest (U ≈ 0), under the assumptions of an ideal fluid (no sea current,
no incident waves, and frequency independent), the added inertia matrix MA and Coriolis and
centripetal matrix CA satisfy the following properties:

MA = MT
A > 0

CA = −CT
A

Thus, assuming a 6-DOF motion at high speed, the underwater vehicle will have a highly
nonlinear and coupled behavior. However, in many applications it moves at a very low speed.
If the vehicle also has three planes of symmetry, the contribution of off-diagonal elements in the
added mass matrix could be neglected. Therefore, MA and CA are:

MA = −diag{Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ}

CA(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −Zẇw −Yv̇v

0 0 0 −Zẇw 0 −Xu̇u

0 0 0 −Yv̇v −Xu̇u 0
0 −Zẇw −Yv̇v 0 −Nṙr −Mq̇q

−Zẇw 0 −Xu̇u −Nṙr 0 −Kṗ p

−Yv̇v −Xu̇u 0 −Mq̇q −Kṗ p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For instance, the hydrodynamic added mass force YA along the y-axis due to an acceleration v̇ in
the y-direction is written as

YA = Yv̇v̇ and Yv̇ �
∂Y
∂v̇
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2.1.4 Hydrodynamic Damping

The hydrodynamic damping for ocean vehicles is mainly caused by:
DP(v)= radiation induced potential damping due to forced body oscillations.
DS (v)= linear skin friction due to laminar boundary layers and quadratic skin friction due to turbu-
lent boundary layers.
DW(v)=Wave drift damping.
DM(v)= damping due to vortex shedding.
The total hydrodynamic damping matrix can be written as a sum of these components as

D(v) � DP(v) + DS (v) + DW(v) + DM(v)

For a rigid body moving through an ideal fluid, the hydrodynamic damping matrix can be written
as sum of a linear damping term D and a nonlinear damping term Dn(υ) such that

D(υ) = D + Dn(υ)

where

D = DT = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

Assuming a 6-DOF motion at high speed, the underwater vehicle will have a highly nonlinear
and coupled behavior. However, assuming that the vehicle is performing a non-coupled motion
and has three planes of symmetry, the higher than second order terms are negligible. Therefore,
the hydrodynamic damping D(v) is:

D(v) = −diag{Xu,Yv,Zw,Kp,Mq,Nr}
− diag{Xu|u||u|,Yv|v||v|,Zw|w||w|,Kp|p||p|,Mq|q||q|,Nr|r||r|}

2.1.5 Restoring Forces and Moments

The gravitational and buoyant forces are called restoring forces. The gravitational force W = mg

and buoyant force B = ρgΔ are acting on the center of gravity rG = [xG yG zG]T and the center of
buoyancy rB = [xB, yB, zB]T, respectively. The parameters m, g, ρ and Δ are defined as
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• m: The vehicle’s mass including water in free floating spaces

• Δ: The volume of fluid displaced by the vehicle

• ρ: The fluid density

• g: The acceleration of gravity

By transforming the weight and buoyancy forces on to the body-fixed coordinate system, we have

fG(η2) = J-1
1 ((η2))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fB(η2) = −J-1
1 ((η2))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore, the vector of restoring forces and momentums in the body-fixed coordinate system

are

g(η) = −
⎡⎢⎢⎢⎢⎢⎣ fG(η) + fB(η)
rG × fG(η) + rB fB(η)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W − B)sθ

−(W − B)cθsφ
−(W − B)cθsφ

−(yGW − yBB)cθcφ + (zGW − zBB)cθsφ
−(zGW − zBB)sθ + (xGW − xBB)cθcφ
−(xGW − xBB)cθsφ + (yGW − yBB)sθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For a neutrally buoyant underwater vehicle, we will have W = B. Therefore, the vector of

restoring forces and momentums are simplified as

g(η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−(yG − yB)Wcθcφ + (zG − zB)Wcθsφ

−(zG − zB)Wsθ + (xG − xB)Wcθcφ

−(xG − xB)Wcθsφ + (yG − yB)Wsθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.1.6 AUV’s Model Uncertainties

The dynamics of an underwater vehicle is described by highly nonlinear high-order systems with
uncertain models and disturbances that are difficult to model and measure. AUV does not pos-
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sess hydrodynamically shaped profiles and the hydrodynamic forces are uncertain and difficult to
predict. This leads to high uncertainty in the AUV model. There is an extensive research in the
literature that addresses the control of AUVs with uncertain dynamics (and in general uncertain
systems). To list some, adaptive and robust control approaches could be mentioned.

2.1.7 Environmental Disturbances and Stochastic Differential Equation Model

In general, three kinds of disturbances that could be considered for a marine vehicle are:

• Waves (wind generated)

• Wind

• Ocean Currents

These disturbances could have an affect on the dynamics of motion in an additive or multiplicative
manner. However, in this thesis we will assume that it is additive. This is a valid assumption for
most marine control applications.

Wave-induced disturbances can usually be neglected for a deeply submerged vessel. Hence, the
only environmental disturbance will be ocean currents. These ocean currents are horizontal and
vertical circulating systems of ocean waters as a result of gravity, wind friction and water density
variation in different parts of the ocean.

Let the earth-fixed ocean current velocity vector be denoted by [uE
c , v

E
c , w

E
c ]. Then, the body-

fixed current velocity vector is

vc1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uc

vc

wc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = JT
1 (η2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uE

c

vEc

wE
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore, considering the environmental disturbances, the nonlinear equations of motion are

Mv̇r +C(vr)vr + D(vr)vr + g(η) = τ

η̇ = J(η)v
(2.7)

where, vr = v − vc, and vc = [vc1, 0, 0, 0]T.
The earth-fixed fluid velocity components (uE

c , v
E
c , w

E
c ) can be related to the average current

velocity Vc by defining two angles of α (angle of attack) and β (sideslip angle). In other words,
the current speed Vc is defined in the earth-fixed referencing frame using flow axes as [Vc, 0, 0]T.
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Therefore, 3-dimensional current velocities are found by performing two principal rotations as

uE
c = Vc cosα cosβ

vEc = Vc sinβ

wE
c = Vc sinα cosβ

For computer simulation purpose, the average current velocity is mostly generated by using a
first-order Gauss-Markov process as

V̇c(t) + μ0Vc(t) = w(t) (2.8)

where w(t) is a zero-mean white Gaussian noise, and μ0 > 0. When μ0 = 0, Vc(t) corresponds to a
random walk which is a time integration of white noise.

Finally, using Equations (2.7) and (2.8), the lump sum effect of disturbance could be modeled
as

Mv̇ +C(v)v + D(v)v + g(η) = τ + wc(t)

η̇ = J(η)v
(2.9)

where wc(t) is a white noise vector.

2.1.8 Linear Time-Varying ROV Equations of Motion

The linear equations of motion are obtained by linearization of (2.4) about a time-varying reference
trajectory or an equilibrium point. In other words, by defining the new state and input variables as

Δυ(t) = υ(t) − υ0(t)

Δη(t) = η(t) − η0(t)

Δτ(t) = τ(t) − τ0(t)

where

υ0(t) = [u0(t), v0(t), w0(t), p0(t), q0(t), r0(t)]T

η0(t) = [x0(t), y0(t), z0(t), φ0(t), θ0(t), ψ0(t)]T
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and defining fc(υ) = C(υ)υ and fd(υ) = D(υ)υ, the linearized equations could be obtained as,

Mẋ1 +C(t)x1 + D(t)x1 +G(t)x2 = Δτ

ẋ2 = J(t)x1 + J∗(t)x2

where
C(t) = ∂ fc(υ)

∂υ

∣∣∣∣∣
υ0(t)

D(t) = ∂ fd(υ)
∂υ

∣∣∣∣∣
υ0(t)

G(t) = ∂g(η)
∂η

∣∣∣∣∣
η0(t)

J(t) = J(η0(t)) J∗(t) = ∂J(η)
∂η

∣∣∣∣∣
η0(t)
υ0(t) = J∗(υ0(t), η0(t))

and x1 = 
υ, x2 = 
η, J(η) =

⎡⎢⎢⎢⎢⎢⎣J1(η2) 0
0 J2(η2)

⎤⎥⎥⎥⎥⎥⎦ and J1(η2) and J2(η2) are defined in (2.2) and (2.3),

respectively.
Finally, defining x = [xT

1 , xT
2 ]T and u = Δτ, we have

⎡⎢⎢⎢⎢⎢⎣ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣−M-1[C(t) + D(t)] −M-1G(t)

J(t) J*(t)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣x1

x2

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣M

-1

0

⎤⎥⎥⎥⎥⎥⎦ u (2.10)

In many applications including the one in this thesis, it is valid to assume the AUV has non-zero
velocities along x and z axes (non-zero u0 and w0). Moreover, in steady-state the other linear and
angular velocities will be v0 = p0 = q0 = r0 = 0, and the equilibrium point is defined by φ = θ = 0.
Therefore, the time-varying matrices in (2.10) simplify to constant matrices.

2.1.9 Reduced-order Model of AUV

As most marine crafts do not have motions along or rotations around all their axes, the reduced-
order models are often used to design a feedback control system. The most commonly used
reduced-order models in the literature [96] are as:

1DOF
These models are used to design a forward speed controller (surge control).

3DOF
3-DOF models are usually as

• Horizontal plane models (surge, sway and yaw control) .

• Longitudinal (Vertical) plane models (surge, heave and pitch control) for forward speed,
diving and pitch control.
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• Lateral models (sway, roll and yaw control) for turning and heading control.

4DOF
This is obtained by adding the roll equation to 3-DOF horizontal plane model (surge, sway, yaw
and roll).

Longitudinal Model of AUV

In many applications the 6-DOF equations of motion can be divided into two non-interacting (or
lightly interacting) models as

• Longitudinal subsystem: with states as u, w, q and x, z, θ

• Lateral subsystem: with states as v, p, r and y, φ, ψ

This is a valid assumption for slender submarine systems with large length over width ratio [97].
It is a common assumption for a submarine.

In this thesis, we will design a control system for the decoupled model of pitch and heave
motions. The design will be conducted using a linearized model of AUV [97] as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m − Xu̇ −Xẇ mzg − Xq̇ 0 0
−Xẇ m − Zẇ mxg − Zq̇ 0 0

mzg − Xq̇ mxg − Zq̇ Iy − Mq̇ 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇

ẇ

q̇

θ̇

ż

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xu −Xw −Xq 0 0
−Zu −Zw mu0 − Zq 0 0
−Mu −Mw mxGu0 − Mq (zG − zB)W 0

0 0 −1 0 0
sθ0 −cθ0 0 sθ0w0 + cθ0u0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

w

q

θ

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Z

M

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

A further reduction of the model order could be achieved by assuming zero pitch angle (θ0 = 0)
and constant surge speed (u0=constant) at steady state. Therefore, we have
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m − Zẇ mxg − Zq̇ 0 0
mxg − Zq̇ Iy − Mq̇ 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẇ

q̇

θ̇

ż

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Zw mu0 − Zq 0 0
−Mw mxGu0 − Mq (zG − zB)W 0

0 −1 0 0
−1 0 u0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

q

θ

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z

M

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.12)

2.1.10 Sensors and Actuators in an Unmanned Underwater Vehicle

Autonomous underwater vehicles are used for deep-water ocean applications where accurate con-
trol of vehicle position (mainly depth) and attitude is needed. This accurate control requires precise
measurement of AUV’s position and attitude.

The states of a longitudinal model of an AUV are mainly heave, pitch, and their associated
rates. However, in practice it is always impossible or too costly to measure the full-state vector of
AUV. In the case of the INFANTE AUV, which is used in this thesis for simulation scenarios, it is
difficult to measure the heave rate, the angle of side-slip and the angle of attack in the horizontal and
vertical planes, respectively. However, it is crucial to achieve stabilization along all directions and
about all rotations. This motivates to use algorithms that employ only output variables. Throughout
the thesis, when referring to the partial state measurements, the measurement matrix C is denoted
by

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.13)

The water level of ballast tank is manually adjusted for neutral buoyancy before each mission
while the vehicle is on the surface. Once it is submerged, it would be very difficult to continuously
control the desired depth and trajectory by taking air in and out of the ballast tanks. As a result,
AUVs are equipped with hydroplanes. Dependant on the mission, different hydroplanes may be
used to meet the control objective. The most commonly used ones are stern and sail (bow) planes,
and a rudder.

The propeller thrust is the force applied to a submarine which enables the vehicle’s forward
speed and lift. This thrust is produced due to the forces created by the propeller wings. The blades
of propellers can be configured as two blades, three blades and four blades. Propellers produce
the forward speed by pushing the fluid back. The speed of rotation of propellers and their pitch
angle determine the amount of displaced fluid, and consequently the vehicle forward speed. The
operating power in the AUV comes mainly from a fuel cell battery.
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By distributing the heavier weights at the bottom of AUV, it keeps the right side up. Moreover,
the submarines balance is kept by the stern and bow planes. The servo motors as control surfaces’
drivers and a DC motor as propeller’s driver are contained inside a water-tight container (WTC).
The location of WTC is shown in Fig. 2.4.

The propeller and the control surfaces of an AUV have been shown in detail in Figures 2.2 and
2.3. Rudder and stern (bow) planes enable the submarine to control yaw and pitch motions, re-
spectively. Rotation of stern planes changes the angle of the entire submarine that directly enables
the depth control. It is clear when there is no vehicle forward velocity, the control surfaces will not
have any effect.

It is assumed that INFANTE AUV, which is used for the simulations in this thesis, is controlled
to have a constant forward speed using the propeller controller. Hence, the vehicle’s forward speed
will not be a control variable. This vehicle also uses only stern and sail(bow) hydroplanes which
control vehicle pitch angle and consequently its depth.

Fault could occur at any component of the above INFANTE AUV system including the thruster
that may result in a non-constant forward speed. The main reasons for thruster faults are thruster
blocking and flooded thruster. Thruster blocking is the result of a solid body between propellers.
While flooded thruster is because of flooded water which may result in the force higher than the
desired one. In this thesis, no propeller fault is assumed.

Figure 2.2: Submarine actuators [2].
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Figure 2.3: Submarine rudder and sterns [2].

Figure 2.4: WTC location and weight distribution [2].
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As mentioned earlier, in this thesis the synchronization of AUVs for offshore oil application
will be studied. Hence, the synchronization of multi-agent systems and the mathematics behind
should be profoundly investigated. In this regard, the following section includes a brief introduc-
tion to the graph theory.
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2.2 Algebraic Graph Theory Background

In order to model the interaction of a team of agents, a directed or an undirected graph may be used.
This interaction can be through a communication or sensing network or a combination of both. Let
G = {V,E} be a weighted graph (digraph) of order N with nodes’ set of V = {v1, v2, · · · , vN}, and
edges’ set of E ⊆ V × V. A directed edge of G is denoted by ei j = (vi, v j). For a digraph, ei j ∈ E

does not mean e ji ∈ E. The neighboring set of node i is the set of all nodes that communicate with
node i. The neighboring set is denoted by Ni = {v j ∈ V : (v j, vi) ∈ E}. For edge ei j, i is the parent
node and j is the child node. The union of a collection of graphs is a graph whose node and edge
sets are the unions of the node and edge sets of the graphs in the collection.

A graph (digraph) can be used to model the interaction topology among a group of agents,
where every node corresponds to an agent and an edge ei j represents the information exchange
link from vi (parent) to v j (child). Since the information exchange among the agents may vary
dynamically, generally the interaction graph is time-dependent. The set of possible interaction
graphs defined for a group of agents is a finite set.

Definition 2.1. A directed path in graph G is a sequence of edges ei1i2 , ei2i3 , ei3i4 · · · in that graph.

Definition 2.2. A graph G is called strongly connected if there is a directed path from vi to v j and

v j to vi between any pair of distinct vertices vi and v j [98]. In addition, G is strongly connected if

and only if the Laplacian matrix L is irreducible [99].

Definition 2.3. A tree is a graph in which every pair of nodes is connected by exactly one undi-

rected path.

Definition 2.4. A directed tree is a directed graph where every node except the root has exactly

one parent.

Definition 2.5. A spanning tree of a directed graph is a tree formed by graph edges that connect

all the vertices of the graph.

Definition 2.6. A directed tree is a directed graph, where every node except the root has exactly

one parent. A spanning tree of a directed graph is a directed tree formed by graph edges that

connect all the nodes of the graph [100].

The weighted adjacency matrix A = [ai j] of a directed graph G = {V,E} is defined such that
ai j is positive if ei j ∈ E, and ai j = 0, otherwise. A weighted graph associates a weight with
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every edge in the graph. The in-degree and out-degree of node i are defined as
N∑

j=1

ai j and
N∑

j=1

aji,

respectively. A node i is balanced if its in-degree and out-degree are the same. The graph is

balanced if
N∑

j=1

ai j =

N∑
j=1

aji. Therefore, every undirected graph is symmetric.

The Laplacian matrix of a graph L = [li j] is a zero row sum matrix, with lii =
∑
j∈Ni

ai j, and li j =

−ai j for i � j. Note that L can be defined as L = D− A, where D is a diagonal matrix composed of
in-degrees of the nodes. The eigenvalues of L (λi’s) are set in an ascending order for i = 1, 2, · · · ,N
for a connected graph where, except for λ1 which is zero, all the other eigenvalues have positive
real parts. Since L has zero row sums, 0 is an eigenvalues of L with an associated eigenvector of 1N .
Moreover, according to Gershgorin disk theorem, since L is diagonally dominant with nonnegative
diagonal entries, all nonzero eigenvalues of L are in a closed right half-plane. Therefore, for
an undirected graph, which has a symmetric Laplacian matrix, all nonzero eigenvalues of L are
positive. In addition, L1N = 0 and there exists a nonnegative vector p ∈ RN such that pTL = 0 and
pT1N = 1.

Lemma 2.1. The Laplacian matrix of a graph has a single zero eigenvalue if and only if the graph

has a spanning tree.

Proof. See the proof of Theorem 2 in [101]. �

Definition 2.7. The graph G(t) is said to be uniformly connected if there exists a time horizon

T > 0 and an index k such that for all t, all the nodes v j( j � k) are connected to node vk across

[t, t + T ].

Lemma 2.2. Consider the linear system,

ẋi = Axi + ui i = 1, · · · ,N (2.14)

where all eigenvalues of A belong to the imaginary axis. Assume that the communication graph

is uniformly connected and the corresponding Laplacian matrix L(t) is piecewise continuous and

bounded. Then, the control law of equation (2.15) uniformly exponentially synchronizes all the

solutions of (2.14) to a solution of the system ẋ0 = Ax0.

ui =
∑
j∈Ni

ai j(t)(x j − xi) i = 1, · · · ,N (2.15)
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Proof. Refer to Lemma 1 of [36]. As in the proof of this Lemma, the result is still valid if some

of the eigenvalues of A have negative real parts. This means that exponentially stable modes

synchronize to zero. �

2.3 Algebra and Matrix Theory Background

In this section, the following definitions and lemmas from the literature in algebra and matrix
theory are introduced.

Definition 2.8. Matrix B ∈ Rn×n is said to be similar to matrix A ∈ Rn×n if there exist a nonsingular

matrix S ∈ Rn×n such that

B = S -1AS (2.16)

Theorem 2.1. Let A, B ∈ Rn×n. If B is similar to A then the characteristic polynomial of B is the

same as A. Therefore, A and B have the same eigenvalues.

The Kronecker product of two arbitrary matrices A ∈ Rm×n and B ∈ Rp×q is defined as

A ⊗ B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which satisfies the following properties for any A, B, C and D with appropriate dimensions [102],

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

A ⊗ B + A ⊗C = A ⊗ (B +C)

exp(A ⊗ B) = exp(A) ⊗ exp(B)

For a square block matrix, one can obtain an equivalent expression for its inverse as

⎡⎢⎢⎢⎢⎢⎣A B

C D

⎤⎥⎥⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎣K L

M N

⎤⎥⎥⎥⎥⎥⎦ (2.17)
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where

K = (A − BD−1C)−1

L = −(A − BD−1C)−1BD−1

M = −D−1C(A − BD−1C)−1

N = (D −CA−1B)−1

(2.18)

Quadratic Stabilizability

Consider the following LTI system

ẋ(t) = Ax(t) + Bu(t)

u(t) = Kx(t)
(2.19)

where A, B, and K are of appropriate dimensions. This system is said to be quadratically stabi-

lizable (via linear state-feedback) if there exists a control gain K such that the closed loop system
(2.19) is quadratically stable. Therefore, the above LTI system is stable (quadratically stable) iff
there exists P > 0 such that

(A + BK)TP + P(A + BK) ≺ 0 (2.20)

This equation can be easily used for analysis purposes. However, in order to design the control
gain K, its equivalent expression can be used as

Q(A + BK)T + (A + BK)Q ≺ 0 (2.21)

Neither of the above conditions is jointly convex in terms of K and P or Q. However, by defining
a new variable as Y = KQ, the LMI condition of (2.21) can be rewritten as

AQ + QAT + BY + YTBT ≺ 0 (2.22)

which is convex in terms of both Q and K. Therefore, the system of (2.19) is stable if there exist
matrices Q � 0 and K such that LMI (2.22) holds. Finally, gain K is obtained as K = YQ-1.

Remark 2.1. In the following sections, depending on the controller design method, one of the

above mentioned LMI conditions may be applied.
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2.4 Fault Modeling

The focus of this thesis will be on the fault-tolerant control of the actuator fault in AUV sys-
tems. This may seem to make the topic relatively narrow. However, in many applications (such
as aerospace) it is well known that most sensor faults are handled via hardware redundancy and
voting strategies [103], and plant faults are relatively rare. Moreover, as extensively in literature, a
sensor fault could be modeled as an actuator fault. Thus, the actuator faults deserve great attention
for a safe and reliable operation of the system.

Let us now investigate how an actuator fault is demonstrated. As originally stated in [104], an
actuator fault could be modeled as

uf
k = γkuk + γk0β

f
k (2.23)

where uf
k and uk are the control input signals after and before fault occurrence and m is the number

of control inputs. β f
k is also a bounded disturbance applied to the system through the control input,

and γk and γk0 satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ γ

k
≤ γk ≤ γ̄k, k = 1, · · · ,m

0 ≤ γk0 ≤ γ̄k0, k = 1, · · · ,m

γ = diag[γ1, γ2, · · · , γm]

γo = diag[γ1o, γ2o, · · · , γmo]

γ̄o = diag[γ̄1o, γ̄2o, · · · , γ̄mo]

γ̄ = diag[γ̄1, γ̄2, · · · , γ̄m]

γ = diag[γ
1
, γ

2
, · · · , γ

m
]

β f = [β f
1 , β

f
2 , · · · , β f

m]T

(2.24)

Three types of actuator faults that are investigated in this thesis are: loss of effectiveness (LOE),
lock in place (LIP), and float fault [105]. Depending on the type of a fault, the parameters γk and
γk0 that are introduced in (2.23) are:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γk � 0, γk0 = 0 LOE

γk = 0, γk0 = 0 float fault

γk = 0, γk0 � 0 LIP

(2.25)

Moreover, there is another type of fault called hard-over-failure, which is modeled as actuator
saturation.
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2.5 Summary

This chapter is a preliminary introduction to the background information and definitions. First,
a detailed literature review on AUV modeling including the equations of motion of a rigid body,
hydrodynamic damping, gravitational and buoyant forces, environmental disturbances, and AUV’s
sensors and actuators as well as its propulsion system is provided. Following that, a review of
the mathematics and the definitions that are used throughout the thesis is presented. This review
includes the algebraic graph theory, the matrix theory, and the fault modeling.
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Chapter 3

State Feedback Synchronization

In the previous chapter, besides the introduction of the AUV’s equations of motion, three rele-
vant points were underlined. Firstly, environmental disturbances, particularly ocean currents, were
discussed. As previously mentioned, the effects of ocean currents could be modeled as a white
Gaussian noise. Secondly, the uncertainty of the AUV’s model parameters as a significant prac-
tical issue was investigated. Finally, the actuator faults, which are among the main real world
problems, were studied. This chapter will focus on the state feedback synchronization of AUVs by
addressing all three parts above.

3.1 Network Structure and Model Dynamics Equation

The network structure that is considered throughout the thesis is a constant topology (fixed) net-
work. Moreover, the consensus strategy is an average consensus approach, which is determined
based on the network’s Laplacian matrix and the initial states of the agents. For simulations pur-
poses, a network of five agents is considered as in Figure 3.1.

The Laplacian matrix for this graph is:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1
−1 3 −1 0 −1
−1 −1 4 −1 −1
0 0 0 1 −1
−1 −1 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

Throughout the thesis, a longitudinal plane model of the autonomous underwater vehicle (AUV)
is considered. The longitudinal model is composed of the heave, the pitch and their associated rates
and the vehicle’s forward speed. However, given that the vehicle’s forward speed is kept constant
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Figure 3.1: Network topology.

through a separate control loop, the model will be reduced to four states (heave, heave rate, pitch
and pitch rate).

The longitudinal plane model (2.12) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m − Zẇ mxg − Zq̇ 0 0
mxg − Zq̇ Iy − Mq̇ 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẇ

q̇

ż

θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Zw mu0 − Zq 0 0
−Mw mxGu0 − Mq 0 (zG − zB)W
−1 0 0 u0

0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

q

z

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z

M

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

This can be written in a conventional state-space form as

ẋi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0.0 a14

a21 a22 0.0 a24

1.0 0 0 a34

0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi + Bui (3.3)

where xi =
[
w q z θ

]T
, ui ∈ Rm×4 and A ∈ R4×4, and B ∈ R4×m for i = 1, · · · ,N are the

state vector, control input, state-space dynamic matrix, and control input matrix, respectively. m
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represents the number of control inputs which varies between 1 and 2 in different scenarios. The
AUV model (3.2) has two degrees of freedom.

As previously mentioned, the INFANTE AUV [106] has a constant forward speed, which is
achieved by using the propeller controller. Hence, in this thesis, the forward speed will not be
considered as a control variable. This vehicle is also equipped with the stern and sail (bow) hy-
droplanes, which control the vehicle’s pitch angle and consequently, its depth. For hydrodynamic
coefficients of this INFANTE AUV, one can refer to [106].

Remark 3.1. There is no concern about the collision avoidance as the consensus is defined only

on z direction, and not on the agents’ position.

3.2 State Feedback Consensus under Healthy Scenario

Consider a group of N homogeneous multi-agent systems as

ẋi(t) = Axi(t) + Bui(t), i = 1, 2, · · · ,N
zoi(t) = xi(t)

(3.4)

where xi ∈ Rn and zoi ∈ Rn are the ith vehicle state and measurement, respectively. A ∈ Rn×n is a
marginally stable matrix, B ∈ Rn×m and the pair (A, B) is stabilizable.

Remark 3.2. This section and the entire chapter cover both single-input and multi-input systems.

However, depending on the simulation scenario, either the single-input or the multi-input model

may be used.

For system (3.4), synchronization is achieved if for all i = 2, · · · ,N

‖ zo1(t) − zoi(t) ‖=‖ x1(t) − xi(t) ‖→ 0, t → ∞ (3.5)

Now, let us define σi(t) = x1(t) − xi(t), i = 2, 3, · · · ,N. The synchronization achievement is
guaranteed if σi(t)→ 0, t → ∞, i = 2, 3, · · · ,N.

To reach an agreement under the network topology G, a common methodology as in the litera-
ture [31], [32], and [33] is to apply a static protocol:

ui(t) = −K
∑
j∈Ni

ai j(xi(t) − x j(t)) (3.6)
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where ai j’s are the entries of the adjacency matrix, and K ∈ Rm×n is the control gain matrix.
Using the results from [34], by applying the protocol of (3.6), the augmented state-space rep-

resentation of σi(t) could be written as

σ̇(t) = (IN−1 ⊗ A − (Lr + 1N−1.α
T) ⊗ BK)σ(t)

z(t) = σ(t)
(3.7)

where σ(t) = [σT
2 (t), σT

3 (t), · · · , σT
N(t)]T is the augmented state-space, z(t) is the measurement in

transformed coordinates, and α and Lr are

α = (a12, a13, · · · , a1N)T

Lr =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

degin(2) −a23 · · · −a2N

−a32 degin(3) · · · −a3N

· · · · · ·
−aN2 −aN3 · · · degin(N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.8)

where degin(i) represents the in-degree of node i.

Similar to [34], by using the similarity transformation of S =

⎛⎜⎜⎜⎜⎜⎝ 1 0
1N−1 IN−1

⎞⎟⎟⎟⎟⎟⎠ one can show

S -1LS =

⎛⎜⎜⎜⎜⎜⎝ 0 −αT

0 Lr + 1N−1.α
T

⎞⎟⎟⎟⎟⎟⎠ (3.9)

where L = [li j] is the Laplacian matrix of the original system with lii =
∑
j∈Ni

ai j, and li j = −ai j for

i � j.
As in literature, for a connected graph G, except for λ1, which is zero, all other eigenvalues of L

(λi = σi + jwi i = 2, · · · ,N) have positive real parts. Then, by using the properties of a similarity
transformation and from (3.9), the eigenvalues of Lr + 1N−1.α

T are λ2, λ3, · · · , λN .

Lemma 3.1. For a group of agents with dynamics (3.4) and a graph of directed spanning tree,

protocol (3.6) solves the consensus problem if and only if

A − λiBK ≺ 0 i = 2, · · · ,N (3.10)
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Proof. See the proof of Lemma 2 in [34]. �

In order to obtain the control gain K in a way that guarantees the Hurwitzness of A− λiBK, the
problem can be described as an LMI problem:

(A − λiBK)TP + P(A − λiBK) ≺ 0 i = 2, · · · ,N
P 
 0

(3.11)

or equivalently,

(A − λiBK)Q + Q(A − λiBK)T ≺ 0 i = 2, · · · ,N
Q 
 0

(3.12)

3.2.1 Simulation Results

In this section, a single input model (with stern as input) is employed. The linearized model about
the equilibrium point, x0 = [wo, qo, zo, θo]′ = [0, 0, 0, 0]′ and uo = σs = 0, and at a forward velocity
of 2.0 m/s is:

ẋi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.400 2.763 0.0 0.078
2.108 −5.419 0.0 −0.312
1.0 0 0 −2.0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.201
−0.809

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
σs (3.13)

The state-space model of (3.13) is controllable. Moreover, this linearized model is an under-
actuated system because it has two controlled variables (2-DOF) and only one control effector.

In model (3.13), the state-space dynamic matrix A has one stable second-order mode with
natural frequency of 0.121 rad/s, a real stable mode at −6.5 rad/s, and a zero mode. Regardless of
the forward velocity value, the dynamic matrix always has a mode at zero.

Remark 3.3. In all the simulations in this section and throughout the thesis, the origin of the z axis

is defined undersea (as a representative of the deployment depth). Therefore, in simulation results,

positive values of depth could be observed.

Remark 3.4. In all the simulations in this section and throughout the thesis, the control inputs

provided by the stern and bow actuators are limited to the range [−60 60] deg, which is the

maximum angle of control surface.

Remark 3.5. The model (3.13) is employed for the single-input model simulation in this thesis.
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By employing the approach in Section 3.2, the LMI control gain K of equation (3.6) is designed
as

K =
[
−0.3812 −0.1793 0.3063 −1.5953

]
(3.14)

The simulation results for this case are shown in Figures 3.2 - 3.6. As in the Figure 3.2, the
control inputs are limited between [−60 60]. Figures 3.3 - 3.6 show that consensus is achieved on
all states.

Figure 3.2: Control input signals u(t) for static state feedback protocol under healthy scenario.
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Figure 3.3: Synchronization of state 1 for static state feedback protocol under healthy scenario.

Figure 3.4: Synchronization of state 2 for static state feedback protocol under healthy scenario.
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Figure 3.5: Synchronization of state 3 for static state feedback protocol under healthy scenario.

Figure 3.6: Synchronization of state 4 for static state feedback protocol under healthy scenario.
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3.3 State Feedback Consensus Subject to the Process and Mea-

surement Noises

In this section, as in a real-world scenario, th effect of noise on the agents’ dynamics and measure-
ments is considered. Therefore, as in section 2.1.7, the linear stochastic differential equation of the
system will be

dxi(t) = Axi(t)dt + Bui(t)dt + Bdwi(t), i = 1, 2, · · · ,N
dzi(t) = dxi(t) + dvi(t)

(3.15)

where dwi ∈ Rn, dvi ∈ Rn are Wiener processes with known statistics.
The statistics of the states’ initial conditions are

E[xi(0)] = x̂i0 i = 1, 2, · · · ,N
E{[xi(0) − x̂i0][xi(0) − x̂i0]T} = Pi0

(3.16)

The term wi(t), which accounts for the environmental disturbances, is modeled as a zero mean
Gaussian white noise process (it is the derivative of the Winner process dwi(t)):

E[wi(t)] = 0 i = 1, 2, · · · ,N
E{wi(t)wi(τ)T} = Qi(t)δ(t − τ)

(3.17)

which is specified by its spectral density matrix Qi(t). The measurement noise, which is modeled
as a zero mean Gaussian white noise process (it is the derivative of the Winner process dvi(t)), is

E[vi(t)] = 0 i = 1, 2, · · · ,N
E{vi(t)vi(τ)T} = Ri(t)δ(t − τ)

(3.18)

where the measurement uncertainty is expressed by its spectral density matrix Ri(t). It is also
assumed that the states and measurement noises are uncorrelated.

Remark 3.6. The Wiener process is used to represent the integral of a white noise Gaussian pro-

cess.

Lemma 3.2. Under the control protocol of (3.6), system (3.15) will synchronize in the stochastic

mean-square sense.

47



Proof. In order to prove Lemma 3.2, the problem is casted into a stochastic framework. Partic-

ularly, it will be shown that the expected values of the states will converge. In this regard, the

protocol of (3.6) is applied to (3.15) and the new state-space variable σi(t) = x1(t) − xi(t) for

i = 2, · · · ,N is defined. For the sake of simplicity, only the process noise is considered. However,

in a similar manner it could be extended to the system with measurement noise. Then, the new

differential equations become

dσi(t) = dx1(t) − dxi(t) =

Ax1(t)dt + Bu1(t)dt + Bdw1(t) − (Axi(t)dt + Bui(t)dt + Bdwi(t)) =

Aσi(t)dt − BK[
∑
j∈N1

a1 j(z1(t) − z j(t)) −
∑
j∈Ni

ai j(zi(t) − z j(t))]dt + dw1i(t) =

Aσi(t)dt − BK[
∑
j∈N1

a1 j(x1(t) − x j(t)) −
∑
j∈Ni

ai j(xi(t) − x j(t))]dt + dw1i(t) =

Aσi(t)dt − BK[
∑
j∈N1

a1 jσ j(t) −
∑
j∈Ni

ai j(σ j(t) − σi(t))]dt + dw1i(t)

zi(t) = σi(t) i = 2, 3, · · · ,N

(3.19)

where dw1i(t) = B(dw1(t) − dwi(t)) is a Wiener process.

Similar to (3.7), the augmented state-space equation of (3.19) could be written as

dσ(t) = (IN−1 ⊗ A − (Lr + 1N−1.α
T) ⊗ BK)σ(t)dt + dW1(t)

z(t) = σ(t)
(3.20)

where dW1(t) is defined as dW1(t) = [dw12(t), · · · , dw1N(t)]T.

Using the results from [107], if dW1(t) has a bounded variation, the solution of (3.20) can be

written as

σ(t) = Φ(t, t0)σ(t0) +
∫ t

t0
Φ(t, s)dW1(s) (3.21)

where Φ(t, t0) satisfies the differential equation

dΦ(t, t0)
dt

= (IN−1 ⊗ A − (Lr + 1N−1.α
T) ⊗ BK)Φ(t, t0) (3.22)

Since σ is a linear function of a normal process, it is also normal, and can be completely charac-
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terized by its mean and covariance. Then, its expected value will be

E{σ(t)} = Φ(t, t0)E{σ(t0)} + E{
∫ t

t0
Φ(t; s)dW1(s)} (3.23)

Using the property that the operations of mathematical expectation and integration in the sense

of Ito can be interchanged [107], we will have

E{σ(t)} = Φ(t, t0)E{σ(t0)} +
∫ t

t0
Φ(t; s)E{dW1(s)} (3.24)

It can be easily seen that the second term on the right hand side of the above equation disap-

pears. This results in

E{σ(t)} = Φ(t, t0)E{σ(t0)} (3.25)

From linear system theory and using the state transition matrix dynamics (3.22), the solution of

the expected value of σ(t) is governed by (3.25). It can be observed that Φ(t, t0) has the same

dynamics as (3.7). Hence, if the control gain K is chosen such that the equation (3.10) holds, the

matrix Φ(t, t0) will also stabilize, and therefore the solution of E{σ(t)} will go to zero. This means

consensus is achieved in the stochastic mean-square sense. �

In order to have a measure of how severe the noise affects the system’s overall stability and
performance, the following performance indices are defined:

• Control input performance index

PIu = E{ 1
T − T1

∫ T

T1

u2
i (t)dt} (3.26)

• State performance index

PIx = E{ 1
T − T1

∫ T

T1

x2
i (t)dt} (3.27)

• Total performance index

PIxu = E{ 1
T − T1

∫ T

T1

(u2
i (t) + x2

i (t)) dt} (3.28)
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where T1 stands for the time that the signal reaches its steady state and T → ∞. For faulty
scenarios, T1 is considered as the start of simulation time.

The above notion of performance indices are used for a single agent. The network performance
indices are defined as the average of the agents’ performance indices.

3.3.1 Simulation Results

In this section, the Monte-Carlo simulation results of equation (3.15) by employing a single-input
model (3.13) are presented. For the simulations purposes, the spectral density matrix of the process
and measurement noises are considered as Q = I(m×m) and R = 0.5× I(n×n), respectively. The control
gain K is selected as

K =
[
0.2790 −0.6279 1.0000 −4.0064

]
(3.29)

This control gain K is selected different from the one in Equation (3.14), as the Equation (3.10)
in Lemma 3.1 does not have a unique solution of K.

The results for one of the 50 runs under Monte-Carlo simulations are shown in Figures 3.7 -
3.14.

Figure 3.7: Control input signal of agent 1 for static state feedback protocol subject to noise - gain
set 1.
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Figure 3.8: Control input signal of agent 2 for static state feedback protocol subject to noise - gain
set 1.

Figure 3.9: Control input signal of agent 3 for static state feedback protocol subject to noise - gain
set 1.
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Figure 3.10: Control input signal of agent 4 for static state feedback protocol subject to noise -
gain set 1.

Figure 3.11: Synchronization of state 1 for static state feedback protocol subject to noise - gain set
1.
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Figure 3.12: Synchronization of state 2 for static state feedback protocol subject to noise - gain set
1.

Figure 3.13: Synchronization of state 3 for static state feedback protocol subject to noise - gain set
1.
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Figure 3.14: Synchronization of state 4 for static state feedback protocol subject to noise - gain set
1.

As it can be seen in Figures 3.7 - 3.10, the control inputs have high variations, which is not
practical in a real application. It can be seen from Figures 3.11 - 3.14 that all states synchronize in
a stochastic sense.

Table 3.1 summarizes the performance indices of 50 Monte-Carlo simulations as defined in
equations (3.26) - (3.28).

Table 3.1: Monte-Carlo simulation results for performance indices of the single agents and network
in the presence of noise and by employing the first set of gains. The Network refers to the averaging
of the entire team performance.

PIx PIu PIxu

Agent 1 25 505 530
Agent 2 30 900 930
Agent 3 23 1330 1353
Agent 4 14 170 184
Agent 5 19 520 539
Network 21 705 726

In order to investigate the effect of controller gain on the performance indices, another set of
gain is applied. The results for one of the runs under Monte-Carlo simulations are summarized in
Figures 3.15 - 3.22. Compared to the first gain, the second gain is selected such that the contribution
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of the control input performance index in the total performance index is decreased.

Figure 3.15: Control input signal of agent 1 for static state feedback protocol subject to noise -
gain set 2.
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Figure 3.16: Control input signal of agent 2 for static state feedback protocol subject to noise -
gain set 2.

Figure 3.17: Control input signal of agent 3 for static state feedback protocol subject to noise -
gain set 2.
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Figure 3.18: Control input signal of agent 4 for static state feedback protocol subject to noise -
gain set 2.

Figure 3.19: Synchronization of state 1 for static state feedback protocol subject to noise - gain set
2.
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Figure 3.20: Synchronization of state 2 for static state feedback protocol subject to noise - gain set
2.

Figure 3.21: Synchronization of state 3 for static state feedback protocol subject to noise - gain set
2.
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Figure 3.22: Synchronization of state 4 for static state feedback protocol subject to noise - gain set
2.

Figures 3.15 - 3.18 show that the control inputs still have high variation of amplitude and rate.
From Figures 3.19 - 3.22, it can be seen that all states synchronize in a stochastic sense.

The Monte-Carlo simulation results of performance indices for 50 runs are summarized in
Table 3.2.

Table 3.2: Monte-Carlo simulation results for performance indices of the single agents and network
in the presence of noise and by employing the second set of gains.

PIx PIu PIxu

Agent 1 9 40 49
Agent 2 15 75 90
Agent 3 11 105 116
Agent 4 17 12 29
Agent 5 6 35 41
Network 10 50 60

The comparison of Tables 3.1 and 3.2 demonstrates that if the control gain is selected such that
the contribution of the control input performance index in the total performance index with respect
to the states performance index is decreased, it lowers the total performance index. This is expected
as the measurement noise is fed back to the system through control input. By this selection of gain,
even though compared to the previous case there is a significant change in the total performance
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index, it is still high. Particularly, without filtering out the noise, it is not possible to achieve an
acceptable result.

3.4 State Feedback Consensus and Kalman Filtering

As in the previous section, the process and measurement noises lead to a large covariance error of
the control input and consequently, the states. To deal with this problem, one solution could be a
linear quadratic Gaussian (LQG) approach, which is a generalization of LQR methodology. The
LQG approach is employed when the states are not sensed directly. In this method, the controller
is in the form of a feedback controller that uses the estimated states. Both the controller and the
estimator gains are optimal in a sense that LQG cost function is minimized.

In this section, to deal with this problem, Kalman filtering is used for state estimation that are
used in synchronization protocol. The state estimation protocol in this dissertation is not consensus
based. In other words, each agent only uses its own measurement data to estimate the local states.
However, there is an extensive amount of research in the literature for the consensus-based state
estimation and sensor network ( [108] and [109]). The employed Kalman-Bucy filter is

˙̂xi(t) = Ax̂i(t) + Bui(t) + Hi(t)(zi(t) − ẑi(t)), i = 1, 2, · · · ,N
ẑi(t) = x̂i(t)

(3.30)

where
Hi(t) = Pi(t)R-1

i (t), i = 1, 2, · · · ,N (3.31)

and

Ṗi(t) = APi(t) + Pi(t)AT + BQi(t)BT − Hi(t)Pi(t) =

APi(t) + Pi(t)AT + BQi(t)BT − Pi(t)R-1
i (t)Pi(t), i = 1, 2, · · · ,N

(3.32)

It is clear that Hi(t) cannot exist if Ri(t) is singular. Also, for a stable filter estimation, Ri(t) must
be positive-definite. As in equation (3.31), Hi(t) will result in a minimum-error states’ covariance
matrix. Moreover, the equation (3.32) leads to a common Kalman gain H(t) for all i = 1, 2, · · · ,N,
since the agents are homogeneous.
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3.4.1 Simulation Results

In this section, the Monte-Carlo simulation results of equation (3.30) by employing a single-input
model (3.13) are shown. Firstly, the results of state estimation are presented. Then, the consen-
sus achievement of the entire states will be shown. For simulation purposes, the spectral density
matrix of the process and measurement noises are considered as Q = I(m×m) and R = 0.5 × I(n×n),
respectively. Furthermore, equation (3.32) has been solved in steady state. In other words, it is
obtained by solving an algebraic Riccati equation. The Kalman-Bucy gain H obtained out of this
equation is still optimum in steady state. Equations (3.33) and (3.34) represent the controller and
the Kalman filter gains.

K =
[
0.2790 −0.6279 1.0000 −4.0064

]
(3.33)

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0869 −0.1784 0.0041 −0.0106
−0.1784 0.3767 −0.0248 0.0506
0.0041 −0.0248 1.0212 −0.2782
−0.0106 0.0506 −0.2782 0.1452

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.34)

The results for one of the runs under Monte-Carlo simulations are shown in Figures 3.23 - 3.31.

Figure 3.23: State estimation of state 1 for static state feedback protocol subject to noise and by
employing Kalman filter.
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Figure 3.24: State estimation of state 2 for static state feedback protocol subject to noise and by
employing Kalman filter.
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Figure 3.25: State estimation of state 3 for static state feedback protocol subject to noise and by
employing Kalman filter.

Figure 3.26: State estimation of state 4 for static state feedback protocol subject to noise and by
employing Kalman filter.
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Figure 3.27: Control input signals u(t) for static state feedback protocol subject to noise and by
employing Kalman filter.

Figure 3.28: Synchronization of state 1 for static state feedback protocol subject to noise and by
employing Kalman filter.
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Figure 3.29: Synchronization of state 2 for static state feedback protocol subject to noise and by
employing Kalman filter.

Figure 3.30: Synchronization of state 3 for static state feedback protocol subject to noise and by
employing Kalman filter.
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Figure 3.31: Synchronization of state 4 for static state feedback protocol subject to noise and by
employing Kalman filter.

The Monte-Carlo simulation results of the performance indices for 50 runs are summarized in
Table 3.3.

Table 3.3: Monte-Carlo simulation results for performance indices of the single agents and network
in presence of noise and by employing Kalman filtering.

PIx PIu PIxu

Agent 1 1.5 20.5 21.0
Agent 2 2.0 60.0 62.0
Agent 3 3.0 15.0 18.0
Agent 4 2.0 7.0 9.0
Agent 5 2.5 12.0 14.5
Network 2.5 27.0 29.5

Comparison of the performance indices in Table 3.3 and the ones in Tables 3.1 and 3.2 shows
how much the control input and the states variances at steady state are improved by employing a
Kalman filter.

In addition to its steady state performance improvement, Kalman filtering considerably im-
proves the variance of the control input and the states in transient as in Figure 3.27 - 3.31.
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3.5 State Feedback Consensus Subject to the Agents Dynamics

Uncertainty

In this section, the effect of agents’ dynamics uncertainty on the consensus achievement will be
studied. As previously discussed, the dynamics of the underwater vehicles are subject to the model
uncertainties. These uncertainties could be due to the added mass terms, the hydrodynamic forces
and the environmental disturbances, which are uncertain and difficult to predict. This leads to a
high uncertainty in AUV model parameters.

Here, it is assumed that the uncertainty happens only in the hydrodynamic parameters of model
(3.2). In a similar manner, the effect of uncertainty of the added mass terms could be analyzed.
The hydrodynamic terms are modeled through Zw, Zq, Mw, and Mq. Considering the contribution
of these model uncertainties, equation (3.3) becomes:

ẋi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

au
11 au

12 0.0 a14

au
21 au

22 0.0 a24

1.0 0 0 a34

0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi + Bui (3.35)

In order to investigate the simulation-based sensitivity analysis of the entire control system,
different levels of uncertainty are applied. This could be modeled as

au
i j = ai j + Δai j (3.36)

where Δ may vary between 0% − 100%, and au
i j denotes the i jth entry of the state-space dynamics

matrix A subject to the uncertainty. In each simulation scenario, the uncertainty exists only on one
entry of the matrix A of agent 1. The simulation results are summarized in Figures 3.32 - 3.43.

Similar indices to (3.26)-(3.28) are also used throughout the thesis to measure the performance
of the system subject to faults and dynamic uncertainties as

• Control input performance index

PIu =
1

T − T1

∫ T

T1

u2
i (t)dt (3.37)

• State performance index

PIx =
1

T − T1

∫ T

T1

x2
i (t)dt (3.38)
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• Total performance index

PIxu =
1

T − T1

∫ T

T1

(u2
i (t) + x2

i (t)) dt (3.39)

Figure 3.32: State performance index for static state feedback protocol subject to uncertainty on
A(1,1).
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Figure 3.33: Control input performance index for static state feedback protocol subject to uncer-
tainty on A(1,1).

Figure 3.34: Total performance index for static state feedback protocol subject to uncertainty on
A(1,1).

69



Figure 3.35: State performance index for static state feedback protocol subject to uncertainty on
A(1,2).

Figure 3.36: Control input performance index for static state feedback protocol subject to uncer-
tainty on A(1,2).
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Figure 3.37: Total performance index for static state feedback protocol subject to uncertainty on
A(1,2).

Figure 3.38: State performance index for static state feedback protocol subject to uncertainty on
A(2,1).
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Figure 3.39: Control input performance index for static state feedback protocol subject to uncer-
tainty on A(2,1).

Figure 3.40: Total performance index for static state feedback protocol subject to uncertainty on
A(2,1).
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Figure 3.41: State performance index for static state feedback protocol subject to uncertainty on
A(2,2).

Figure 3.42: Control input performance index for static state feedback protocol subject to uncer-
tainty on A(2,2).
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Figure 3.43: Total performance index for static state feedback protocol subject to uncertainty on
A(2,2).

The simulation results in Figures 3.32 - 3.34 and 3.41 - 3.43 illustrate that the consensus is
not sensitive to the changes in A(1, 1) and A(2, 2). However, Figures 3.35 - 3.37 and 3.38 - 3.40
demonstrate the sensitivity of the system’s overall stability and performance to the uncertainties on
A(1, 2) and A(2, 1). This shows that when these uncertainties go beyond certain values, the entire
system becomes unstable.

3.6 Fault-Tolerant Static State Feedback Synchronization Pro-

tocol Subject to the LOE Fault

In this section, the effects of actuator LOE fault in a team of multi-agent systems with marginally
stable linear time-invariant dynamics, and under a fixed network topology, are addressed. It is
assumed that agents are equipped with a single actuator. It is shown that by applying the static
protocol of equation (3.6) and selecting a robust control gain K, the synchronization can still be
met. Without loss of generality, it is assumed that the fault occurs in agent 1. From equations
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(2.23) and (2.25), one knows that when there is a LOE fault, its effect can be modeled as

u
f
1(t) = −K

∑
j∈N1

γ1a1 j(x1(t) − x j(t)) (3.40)

where γ1 represents the actual effectiveness factor of the faulty actuator.
From equation (3.40) it follows that the change in the effectiveness factor of the actuator in

agent 1 can be modeled as a multiplication of the associated row of the original Laplacian matrix
(L) by γ1. Therefore, the augmented state-space representation of the faulty system becomes

σ̇(t) = (IN−1 ⊗ A − (Lr + 1.αT
f ) ⊗ BK)σ(t) (3.41)

where α f = γ1α.
Since the matrix A is marginally stable, one knows that there exists a matrix P = PT 
 0 such

that
ATP + PA � 0 (3.42)

Knowing this, one possible selection for K is to choose it as

K = BTP (3.43)

where P is a possible solution of equation (3.42) and K is the agents’ control gain matrix.
It will be shown that with this selection of K, even if there is an actuator LOE fault, which is

modeled as a change in the Laplacian matrix (L), the synchronization can still be met.

Remark 3.7. The control gain matrix K is robust such that it does not change after fault occur-

rence. It is also common for all agents.

The effect of a LOE fault in an agent’s actuator is modeled by multiplying the associated row of
the Laplacian matrix by a constant that represents the effectiveness of the faulty actuator. Hence,
L
′
= [l

′
i j] is still a zero row sum matrix, with l

′
ii =
∑
j∈Ni

a
′
i j, and l

′
i j = −a

′
i j for i � j. Therefore, the

graph associated with L
′
, which is interpreted as the Laplacian matrix after fault occurrence, has a

spanning tree. Using the results from Lemma 2.1, L
′

has a single zero eigenvalue and the rest of
its eigenvalues have positive real parts.

Theorem 3.1. The loss of effectiveness (LOE) fault in a team of marginally stable linear multi-

agent systems, as described by equation (3.4), but with a single input channel, under a fixed
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connected interaction graph G, and by using the control protocol of (3.6) does not change the

synchronization achievement, if matrix P = PT 
 0 in equation (3.43) is chosen such that

1. It satisfies ATP + PA � 0.

2. For those values of y ∈ Rn which makes yT(ATP + PA)y = 0, yT(PB(PB)T)y � 0.

Proof. By applying the results obtained in Section 3.2, the system described by equation (3.41)

(where α f reflects the adjusted row of Laplacian due to the effects of the fault modeling) will

stabilize if A− λ′i BK is Hurwitz for all λ
′
i = σ

′
i + jw

′
i (i = 2, · · · ,N), where λ

′
i’s are the eigenvalues

of Lr + 1.αT
f . Using the similarity transformation properties between Lr + 1.αT

f and L
′
as in Section

3.2, all eigenvalues of Lr + 1.αT
f have positive real parts.

Specifically, it can be shown from equation (3.10) that

((A − (σ
′
i + jw

′
i)BK)HP + P(A − (σ

′
i + jw

′
i)BK)) =

((A − (σ
′
i + jw

′
i)BBTP)HP + P(A − (σ

′
i + jw

′
i)BBTP)) =

((A − (σ
′
i − jw

′
i)BBTP)TP + P(A − (σ

′
i + jw

′
i)BBTP)) =

(ATP + PA) − 2σ
′
i((PB)(PB)T) ≺ 0

(3.44)

Since it is assumed that the underlying graph is connected, σ
′
i = Re{λ′i} will be positive for all

i = 2, · · · ,N. Moreover, given that condition 2 is satisfied, the second term on the right hand side

of equation (3.44) will be negative definite. Therefore, one may easily conclude that even if there

is a change in the Laplacian matrix, regardless of the value of σ
′
i (as long as it is positive, which

means as long as the graph is connected), equation (3.44) holds for all i = 2, · · · ,N. Therefore,

using the observations described above, if the control gain K of the healthy system is chosen as

K = BTP where P satisfies (3.42), it is guaranteed that regardless of the effectiveness of the fault

and the values of λ
′
i, the faulty system represented by the augmented states-space representation of

(3.41) will still be stable. �

Remark 3.8. It should be noted that the protocol proposed in this section does not necessarily need

to be applied to undirected networks. In other words, Laplacian matrix could be either symmetric

or non-symmetric.
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Remark 3.9. By applying the proposed protocol even if more than one agent has LOE fault, syn-

chronization can still be achieved. This can simply be illustrated by modeling the effect of LOE

faults as multiplying the associated rows of Laplacian matrix by the effectiveness factor of faulty

actuators. Then, similar to one agent’s actuator fault, it can easily be shown that (3.44) still holds

even though two of the agents with single actuator are faulty.

If any of the conditions in Theorem 3.1 are not satisfied, the above fault-tolerant protocol may
not be valid any more. In this case, a good alternative is to redesign the control gain K after fault
occurrence. To this end, an FDD block is required to detect the fault and estimate its severity. The
question is how accurate the estimated severity is. In the following section, it is assumed that there
is a perfect FDD block that detects the fault and estimates its severity. Thus, using the information
that is obtained through the FDD block, a reconfigurable protocol is proposed.

3.7 Fault-Tolerant Static State Feedback Synchronization Pro-

tocol Subject to the Float Fault

In this section, it will be shown that when there is an actuator float fault, by applying the static
protocol in equation (3.6) and selecting a robust control gain K how the synchronization could still
be met. From equations (2.23) and (2.25), one knows that when there is a float fault in the actuator
of agent 1, the effect of this fault can be modeled as

u
f
1(t) = 0 (3.45)

Thus, it follows that the float fault in agent 1 can be modeled as a zero row of the original Laplacian
matrix (L). Therefore, its effect on (3.7) will be

α = 0 (3.46)

which makes the augmented state-space representation of the faulty system to reduce to

σ̇(t) = (IN−1 ⊗ A − Lr ⊗ BK)σ(t) (3.47)

Since the matrix A is marginally stable, one knows that there exists a matrix P = PT 
 0 such
that

ATP + PA � 0 (3.48)
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Knowing this, one possible selection for K is to choose it as

K = BTP (3.49)

where P is one possible solution of (3.48).

Theorem 3.2. The float fault in an agent of a team of marginally-stable linear multi-agent systems,

as described by equation (3.4), but with a single input, under a fixed interaction graph G, and by

using the protocol (3.6) with control gain (3.49) does not change the synchronization achievement

if

1. The matrix P = PT 
 0 is chosen such that it satisfies ATP + PA � 0.

2. For those values of y ∈ Rn which makes yT(ATP + PA)y = 0, yT(PB(PB)T)y � 0.

3. There is a spanning tree in interaction graph rooted from faulty agent.

Proof. From (3.10), one knows that the system represented by (3.47) is asymptotically stable if

((A − (σr
i + jwr

i )BK)HP + P(A − (σr
i + jwr

i )BK)) =

(ATP + PA) − 2σr
i ((PB)(PB)T) < 0

(3.50)

where λr
i = σ

r
i + jwr

i (i = 1, · · · ,N − 1) are the eigenvalues of Lr.

From (3.50), it can be seen that if the non-equality is held for the Laplacian eigenvalue with

smallest real part, it will also be valid for the remaining Laplacian eigenvalues. Therefore, to

achieve synchronization, only the validity of (3.50) for the smallest eigenvalue will be considered.

Since there is a spanning tree rooted in the faulty agent, at least one of the row sum of matrix

Lr in (3.8) is nonzero. Therefore, using the Gersgorin disk theorem one may easily conclude that

the possible locations of the eigenvalues of Lr will be on the open right-half plan (σr
i = Re{λr

i } >
0, i = 2. · · · ,N). Thus, knowing ATP + PA � 0, and given that condition 2 is satisfied, one may

conclude that the faulty system represented by (3.47) will still be asymptotically stable. Hence,

synchronization will be achieved. �

Remark 3.10. It is clear that if more than one agent is subject to the float fault, synchronization

cannot be achieved.
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Remark 3.11. It should be noted that the proposed protocol in this section does not necessarily

need to be applied to an undirected network. In other words, the Laplacian matrix could be either

symmetric or non-symmetric. For a non-symmetric Laplacian matrix, the eigenvalues in equation

(3.50) are complex values (σr
i + jwr

i ).

When a P matrix does not exist that also satisfies equation (3.48), this methodology cannot be
applied. In this case, an alternative approach is to redesign K such that equation (3.47) is stable.
From (3.8), one knows that Lr is a positive definite matrix with all known elements. Therefore, its
eigenvalues could easily be obtained, and the simultaneous LMI of (3.12) is applied to redesign
the control gain K.

Remark 3.12. It is worth nothing that if the original Laplacian matrix L is symmetric, Lr will be

symmetric as well.

Remark 3.13. The matrix Lr stands for the Laplacian matrix of the network by removing the

incoming link of the faulty agent. For each faulty scenario (the float fault in different agents),

the control gain matrix K could be calculated off-line. The advantage of using the similarity

transformation and consequently defining Lr as (3.8) is that the effect of fault on Laplacian matrix

L can be isolated as a change in α. In this way, Lr is not affected.

Remark 3.14. In this section, the control gain matrix K is common for all agents. The control

structure is robust such that its gain does not change after fault occurrence.

When a float fault happens in agent 1, its control effort becomes zero. Therefore, its final value
can be obtained as

lim
t→∞ x1(t) = (lim

t→∞ exp−At)x1(t f ) (3.51)

where t f represents the fault occurrence time.
Finally, if K is designed such that (3.47) is stable, the consensus will be reached and we will

have

lim
t→∞ xi(t) = lim

t→∞ x j(t) = lim
t→∞ x1(t) = (lim

t→∞ exp−At)x1(t f ) (3.52)

Note that A has a zero eigenvalue which means limt→∞ exp−At � 0.
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3.8 Simulation Results for the Float and LOE Faults

In this section, the simulation results of Sections 3.6 and 3.7 for a change of the effectiveness factor
of the actuator between 0 and 1 will be shown.

3.8.1 AUV with single-input channel

For simulation purposes, the model (3.13) and the control gain designed in (3.14) are used. In this
case, the change in the effectiveness factor of the single actuator could be modeled as a change
in the row of the Laplacian matrix associated with the faulty agent. As it can be seen, there is no
pattern for the change of the Laplacian matrix eigenvalues.

Table 3.4: Variation of the real part of Laplacian eigenvalues with change of the actuator effective-
ness in agent 1.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ1 0.737 0.845 0.927 0.985 1.025 1.054 1.075 1.091 1.103 1.113 1.121
σ2 1.484 1.577 1.697 1.840 2.000 2.171 2.349 2.530 2.708 2.872 3.000
σ3 3.183 3.184 3.186 3.189 3.192 3.197 3.203 3.214 3.232 3.269 3.347
σ4 4.596 4.593 4.590 4.587 4.583 4.578 4.572 4.565 4.557 4.546 4.532
Consensus YES YES YES YES YES YES YES YES YES YES YES

Table 3.5: Variation of the real part of Laplacian eigenvalues with change of the actuator effective-
ness in agent 2.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ1 1.000 1.144 1.160 1.137 1.130 1.127 1.125 1.123 1.122 1.121 1.121
σ2 1.000 1.144 1.413 1.717 2.000 2.273 2.533 2.778 3.000 3.000 3.000
σ3 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.192 3.347
σ4 4.000 4.012 4.027 4.046 4.070 4.101 4.142 4.199 4.278 4.387 4.532
Consensus YES YES YES YES YES YES YES YES YES YES YES

Table 3.6: Variation of the real part of Laplacian eigenvalues with change of the actuator effective-
ness in agent 3.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ1 0.268 0.829 1.023 1.215 1.262 1.177 1.152 1.138 1.130 1.125 1.121
σ2 1.000 0.829 1.023 1.215 1.546 2.000 2.378 2.716 3.000 3.000 3.000
σ3 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.211 3.347
σ4 3.732 3.742 3.754 3.770 3.792 3.823 3.870 3.946 4.070 4.264 4.532
Consensus YES YES YES YES YES YES YES YES YES YES YES
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Table 3.7: Variation of the real part of Laplacian eigenvalues with change of the actuator effective-
ness in agent 4.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ1 0.065 0.168 0.272 0.376 0.481 0.586 0.691 0.798 0.904 1.012 1.121
σ2 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
σ3 3.463 3.454 3.445 3.435 3.425 3.414 3.403 3.390 3.377 3.363 3.347
σ4 4.473 4.478 4.483 4.489 4.494 4.500 4.506 4.512 4.519 4.525 4.532
Consensus YES YES YES YES YES YES YES YES YES YES YES

Table 3.8: Variation of the real part of Laplacian eigenvalues with change of the actuator effective-
ness in agent 5.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ1 1.000 1.121 1.121 1.121 1.121 1.121 1.121 1.121 1.121 1.121 1.121
σ2 1.121 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000
σ3 3.347 3.347 3.347 3.347 3.347 3.347 3.347 3.347 3.347 3.347 3.347
σ4 4.532 4.532 4.532 4.532 4.532 4.532 4.532 4.532 4.532 4.532 4.532
Consensus YES YES YES YES YES YES YES YES YES YES YES

As an initial conjecture, by decreasing the effectiveness factor of the single actuator of an agent,
and modeling it as a change of the associated row of the Laplacian matrix, the smallest real part of
none-zero eigenvalue of Laplacian matrix will become smaller. However, this is not the case as it
can be seen from the Tables 3.4 - 3.8.

Tables 3.4 - 3.8 show that the controller structure and its gain is robust with respect to LOE and
the float faults.

3.8.2 AUV with Multi-input Channel

In this section, a multi-input model (with stern and bow as inputs) is employed. The linearized
model about the equilibrium point, x0 = [wo, qo, zo, θo]′ = [0, 0, 0, 0]′ and uo = σs = 0, and at a
forward velocity of 2.0 m/s is

ẋi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.400 2.763 0.0 0.078
2.108 −5.419 0.0 −0.312
1.0 0 0 −2.0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.797 −0.201
1.588 −0.809

0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣σb

σs

⎤⎥⎥⎥⎥⎥⎦ (3.53)

The state-space model of (3.13) is controllable. Moreover, this linearized model is neither
under-actuated nor over-actuated because it has two controlled variables (2-DOF) and two control
effectors.
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In model (3.13), the state-space dynamic matrix A has one stable second-order mode with
natural frequency of 0.121 rad/s, a real stable mode at −6.5 rad/s, and a zero mode. Regardless of
the forward velocity value, the dynamic matrix always has a mode at zero.

Remark 3.15. The model (3.53) is employed for the multi-input model simulation in the thesis.

It is assumed that fault occurs in stern actuator. By employing the approach in Section 3.2,
three different sets of control gain K in equation (3.6) are designed.

1. In this case, the control gain is selected such that the contribution of the states in total per-
formance index is small.

K =

⎡⎢⎢⎢⎢⎢⎣0.3320 −0.5650 1.0000 −3.7872
0.7908 0.6427 0.0061 1.1843

⎤⎥⎥⎥⎥⎥⎦ (3.54)

Here, the results for selected gain (3.54) are shown in Figures 3.44 - 3.46.

Figure 3.44: State performance index for static state feedback protocol without fault recovery -
gain set 1.
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Figure 3.45: Control input performance index for static state feedback protocol without fault re-
covery - gain set 1.

Figure 3.46: Total performance index for static state feedback protocol without fault recovery -
gain set 1.
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2. In this case, the control gain is selected such that compared to the previous case, the contri-
bution of states in the total performance index is increased.

K =

⎡⎢⎢⎢⎢⎢⎣−0.1299 −0.3506 0.2971 −1.6673
0.4171 0.4044 −0.1084 1.1199

⎤⎥⎥⎥⎥⎥⎦ (3.55)

Here, the results for the selected gain (3.55) are shown in Figures 3.47 - 3.49.

Figure 3.47: State performance index for static state feedback protocol without fault recovery -
gain set 2.
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Figure 3.48: Control input performance index for static state feedback protocol without fault re-
covery - gain set 2.

Figure 3.49: Total performance index for static state feedback protocol without fault recovery -
gain set 2.
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3. In this case, the control gain is selected such that the contribution of the states in the total
performance index is the highest among these three cases.

K =

⎡⎢⎢⎢⎢⎢⎣−0.1741 −0.1922 0.0770 −0.6129
0.3189 0.2800 −0.0638 0.6867

⎤⎥⎥⎥⎥⎥⎦ (3.56)

Here the results for the selected gain (3.56) are shown in Figures 3.50 - 3.52.

Figure 3.50: State performance index for static state feedback protocol without fault recovery -
gain set 3.
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Figure 3.51: Control input performance index for static state feedback protocol without fault re-
covery - gain set 3.

Figure 3.52: Total performance index for static state feedback protocol without fault recovery -
gain set 3.
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It is worth mentioning that the control input signal in Figures 3.44 - 3.52 is the control signal
applied to the system and not the one calculated by the controller and therefore the effect of fault
is compensated. This makes a difference in faulty case where these two signals are not identical.

Figures 3.44 - 3.52 demonstrate that as in the design of the control gain less weight is assigned
to the states than the control input, the input performance index becomes more sensitive with
respect to the fault.

Remark 3.16. In the simulations conducted in this section for LOE and float faults, there is no

change in control structure or control gain after fault occurrence. In other words, the control gain

that is designed for the healthy system is used for the post fault, as well.

The main conclusion of these simulations results is that the static approach is robust with
respect to the fault. However, this is a limited approach and as in Section 3.3, the results will be
degraded in the presence of noise.

3.9 Fault-Tolerant Static State Feedback Synchronization Pro-

tocol of Integrator Systems Subject to the LOE/Float Fault

In this section, integrator systems, as a special class of multi-agent systems with single input
channel, are considered and the effects of LOE faults are investigated. Using the Gersgorin disk
theorem [99], the analysis shows that loss of effectiveness fault in actuator(s) of single and dou-
ble integrator systems does not affect consensus. Therefore, consensus achievement of integrator
systems is fault-tolerant and there is no need for a fault detection and identification module to be
utilized.

3.9.1 Single Integrator Systems

Consider a team of single integrators as

ẋi(t) = ui(t) i = 1, · · · ,N

where xi ∈ R and ui ∈ R.
Now, assume that some agent(s) fail to produce the team control command. Specifically, due
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to a loss of effectiveness fault in the actuator of agent 1, its input signal is changed to

u
f
1(t) = −

∑
j∈N1

γ1a1 j(x1(t) − x j(t)) (3.57)

where 0 < γ1 < 1 represents the actual effectiveness factor of the faulty actuator.
Therefore, the augmented state-space equation of the entire multi-agent system becomes

Ẋ(t) = −L
′
X(t) (3.58)

where X(t) = [x1(t), x2(t), · · · , xN(t)]T, and L
′

is the same as L except for the row associated with
the faulty agent, which becomes

l
′
1 j = γ1l1 j j = 1, · · · ,N

Lemma 3.3. The LOE fault in actuators of a team of single integrator systems, under the linear

first order consensus protocol (3.57) and with a connected network topology, does not change the

consensus achievement.

Proof. The effect of a LOE fault in an agent’s actuator is modeled by multiplying the associated

row of the Laplacian matrix by a constant that represents the effectiveness of the faulty actuator.

L
′
= [l

′
i j] is still a zero row sum matrix, with l

′
ii =
∑
j∈Ni

a
′
i j, and l

′
i j = −a

′
i j for i � j. Therefore, the

graph associated with L
′
, which is interpreted as the Laplacian matrix after fault occurrence, has a

spanning tree. Using the results from Lemma 2.1, L
′
has a single zero eigenvalue and the rest of its

eigenvalues have positive real parts. Hence, the agents dynamics will remain stable and consensus

will still be reached. �

Lemma 3.4. A float fault in one of the actuators of a team of single integrator systems, under

the linear first order consensus protocol (3.57) and with a connected network topology, does not

change the consensus achievement, if by removing the incoming links of the faulty agent, the graph

associated with L
′

still has a spanning tree.

Proof. See the proof of Lemma 3.3. �

89



3.9.2 Double Integrator System

Consider a team of second-order integrator multi-agent systems as

ẋi(t) = vi(t)

v̇i(t) = ui(t) i = 1, · · · ,N

where xi ∈ R, vi ∈ R and ui ∈ R.
Let us assume that agent 1 fails to produce the team control command and instead generates

u
f
1(t) = −

∑
j∈N1

γ1a1 j[x1(t) − x j(t) + η(v1(t) − v j(t))] (3.59)

where 0 < γ1 < 1 represents the actual effectiveness factor of the faulty actuator. Similar to the
single integrator case, it is assumed that the fault occurs in one agent; however, it can easily be
shown that the same analysis holds even if the fault happens in more than one agent.

Therefore, the augmented state-space equation of the entire multi-agent team is given by

Ẋ(t) =

⎡⎢⎢⎢⎢⎢⎣0(N×N) IN

−L
′ −ηL′

⎤⎥⎥⎥⎥⎥⎦X(t) = Γ
′
X(t) (3.60)

where X(t) = [xT
1 (t), xT

2 (t), · · · , xT
N(t)]T, and L

′
is defined in (3.58).

Lemma 3.5. The LOE fault in actuators of a team of double integrator systems with consensus

protocol (3.59) and a connected network topology does not change the consensus achievement.

Proof. From [110] one knows that the eigenvalues of Γ
′

are obtained as

det(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λIN −IN

L
′
λIN + ηL

′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦) = det[λ2IN + (1 + ηλ)L
′
] (3.61)

Knowing that det(λIN + L
′
) =
∏N

i=1(λ − μi) where μi is the ith eigenvalue of −L
′
, the solutions of

(3.61) will be

±λi =
ημi ±

√
η2μ2

i + 4μi

2
(3.62)

From Equation (3.62), it can be seen that for a L
′

with positive eigenvalues and a single zero

eigenvalue, the Γ
′

will have two zero eigenvalues and the rest of its eigenvalues will be negative.
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This concludes the proof. �

Lemma 3.6. A float fault in one of the actuators of a team of double integrator systems, under

the linear first order consensus protocol (3.59) and with a connected network topology, does not

change the consensus achievement, if by removing the incoming links of the faulty agent, the graph

associated with L
′

still has a spanning tree.

Proof. The proof is similar to Lemma 3.5 and therefore is omitted. �

3.10 Reconfigurable State Feedback Synchronization Protocol

Subject to the LIP Fault

In this section, it will be shown how applying a PI control protocol affects the synchronization in
the presence of actuator LIP fault. Without a loss of generality, it is assumed that the fault occurs
in agent 1. From (2.23) and (2.25), one knows that when there is a LIP fault in the actuator of
agent 1, the effect of this fault in faulty actuator can be modeled as

u
f
1(t) = γ1oβ

f
1 (3.63)

where 0 ≤ γ1o ≤ 1, and β f
1 is the actuator maximum capacity.

Therefore, the state-space representation of agent 1 will be

ẋ1(t) = Ax1(t) + Bu
f
1(t)

u
f
1(t) = γ1oβ

f
1

(3.64)

Lemma 3.7. If LIP fault occurs in the actuator of one of the agents in a group of multi-agent

systems, synchronization could still be achieved by employing a PI protocol.

Proof. Let us define new state variables as σi(t) = x1(t) − xi(t), for i = 2, 3, · · · ,N. This leads to

the state-space representation as follows:

σ̇i(t) = Aσi(t) + B(u f
1(t) − ui(t)), i = 2, 3, · · · ,N

zi(t) = σi(t)
(3.65)
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As it is clear from (3.63) and (3.65), the effect of LIP fault shows itself as a constant disturbance

in the new state-space equation of σi. Therefore, from internal model principle, in order to have

steady state disturbance rejection the following two conditions should be satisfied.

1. Closed loop system must be stable.

2. C(s)G(s) must include the unstable modes of u
f
1(s), when G(s) = (sIn − A)-1B and C(s) =

(KP +
KI

s
) represent the transfer functions of agent’s dynamics and controller dynamics,

respectively.

The effect of LIP fault is modeled as a step disturbance on σi dynamics. Step disturbance has

an unstable mode at s = 0. Therefore, to satisfy condition 2 the transfer function C(s)G(s) must

have a pole at s = 0. This means, one needs to design a PI controller as

ui(t) = −Kp

∑
j∈Ni

ai j(xi(t) − x j(t)) − KI

∫ ∑
j∈Ni

ai j(xi(t) − x j(t))dt (3.66)

where KP and KI are both matrices of dimension 1 × n.

Now, it will be shown that by applying the control protocol of (3.66), the dynamics of σi will

be stable and therefore consensus is achieved.

σ̇i(t) = ẋ1(t) − ẋi(t) =

Ax1(t) + Bγ1oβ
f
1 − (Axi(t) + Bui) =

A(x1 − xi) − Bui + Bγ1oβ
f
1 =

Aσi(t) − B[−Kp

∑
j∈Ni

ai j(xi(t) − x j(t)) − KI

∫ ∑
j∈Ni

ai j(xi(t) − x j(t))dt] + Bγ1oβ
f
1 =

Aσi(t) − BKp

∑
j∈Ni

ai j(σi(t) − σ j(t)) − BKI

∫ ∑
j∈Ni

ai j(σi(t) − σ j(t))dt + Bγ1oβ
f
1

zi(t) = σi(t) i = 2, 3, · · · ,N

(3.67)

Then, the augmented dynamic equation of the entire agents will be

σ̇(t) = (IN−1 ⊗ A − Lr ⊗ BKp)σ(t) − (Lr ⊗ BKI)
∫
σ(t)dt + (IN−1 ⊗ B)w(t)

z(t) = σ(t)
(3.68)
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where w(t) = 1N−1 ⊗ γ1oβ
f
1 s(t) (s(t) is the step function), and the rest of the variables are defined

in (3.7).

It follows that LIP fault in agent 1 can be modeled by setting α = 0, and adding a constant

disturbance to the augmented state-space model. From (3.68), the synchronization of multi-agents

with single input channel under LIP fault is formulated as a simultaneous stabilization problem

subject to a constant disturbance. For the sake of simplicity, it has been assumed that fault occurs

at time zero.

For any network topology, one knows that there exist an orthogonal matrix T such that J =

T TLrT is a triangular matrix, whose principal diagonal elements consist of λi, i = 2, 3, · · · ,N [34].

Knowing this and by applying the change of variables as ε = (T T ⊗ In)σ, one may have

ε̇(t) = (IN−1 ⊗ A − J ⊗ BKP)ε(t) − (J ⊗ BKI)
∫
ε(t)dt + w

′
(t)

z′(t) = (T T ⊗ In)σ(t) = ε(t)
(3.69)

where w
′
(t) = (T T ⊗ In)(IN−1 ⊗ B)w(t).

Remark 3.17. Knowing that matrix (T T ⊗ In) is non-singular the zero solution of ε(t) will lead to

σ(t) = 0.

In order to check the second condition of the internal model principle, we will transform the

closed loop equations into s-domain, which is more convenient. Thus, by taking the Laplace

transform of equation (3.69), we will have

sε(s) = (IN−1 ⊗ A − J ⊗ BKP)ε(s) − 1
s

(J ⊗ BKI)ε(s) + w
′
(s)

z′(s) = (T T ⊗ In)σ(s) = ε(s)
(3.70)

where by defining w
′
(t) = (T T ⊗ In)(IN−1 ⊗ B)(1N−1 ⊗ γ1oβ

f
1)s(t), and taking the Laplace transform,

we will have w
′
(s) = 1

s (T T ⊗ In)(IN−1 ⊗ B)(1N−1 ⊗ γ1oβ
f
1) = 1

s W
′
. It can be seen that (T T ⊗ In)(IN−1 ⊗

B)(1N−1 ⊗ γ1oβ
f
1) is defined as W

′
, which is a constant vector of size n × (N − 1).

Therefore, the output vector z′(s) will be

z′(s) = [(s2I(N−1)×n − s(IN−1 ⊗ A − J ⊗ BKP) + (J ⊗ BKI))]-1W
′

(3.71)
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By using matrix inverse properties for triangular matrices in (2.17) and (2.18) and knowing that

the eigenvalues of Lr appear as diagonal elements of J, one may write (3.71) as follows:

z′(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s2In − s(A − λ2BKP) + λ2BKI) ×
. . .

0 (s2In − s(A − λN BKP) + λN BKI)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

-1

W
′

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s2In − s(A − λ2BKP) + λ2BKI)-1 ×
. . .

0 (s2In − s(A − λN BKP) + λN BKI)-1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
W
′

(3.72)

In the above equation, the notation ×means that we do not care about the upper diagonal elements.

Remark 3.18. For a diagonalizable Laplacian matrix (e. g. networks with two-way communica-

tion links), (3.72) will reduce to a diagonal matrix.

The system of (3.72) is comprised of N − 1 subsystems. In order to simplify the stability

analysis of z
′
(s), only its last subsystem is taken into account and analyzed. This can simply be

extended to the rest of the subsystems.

In this regard, the vector z
′
(s) has been split as z

′
= [z

′
1, z

′
2, ..., z

′
N−1]. Therefore, the last subsys-

tem of (3.72) will be

z
′
N−1(s) = (s2In − s(A − λN BKP) + λN BKI)-1W

′
N−1 =

(s(sIn − (A − λN BKP)) + λN BKI)-1W
′
N−1 =

s-1((sIn − (A − λN BKP)) +
λN BKI

s
)-1W

′
N−1 =

s-1((sIn − A) + λN B(KP +
KI

s
))-1W

′
N−1 =

s-1((sIn − A) + λN(sIn − A)(sIn − A)-1B(KP +
KI

s
))-1W

′
N−1 =

s-1((sIn − A) + λN(sIn − A)G(s)C(s))-1W
′
N−1 =

s-1(In + λNG(s)C(s))−1(sIn − A)-1W
′
N−1

(3.73)
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Using,

W
′
= (T T ⊗ In)(IN−1 ⊗ B)(1N−1 ⊗ γ1oβ

f
1) = γ1oβ

f
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11B · · · t1(N−1)B
...

. . .
...

t(N−1)1B · · · t(N−1)(N−1)B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.74)

W
′
N−1 could be written as

W
′
N−1 = γ1oβ

f
1 t
′
N−1B (3.75)

where t
′
N−1 = t(N−1)1 + · · · + t(N−1)(N−1) and ti j s are the elements of T T.

Finally, z′N−1(s) could be written as follows:

z′N−1(s) = (γ1oβ
f
1 t
′
N−1)s-1(In + λNG(s)C(s))−1(sIn − A)−1B =

(γ1oβ
f
1 t
′
N−1)s−1(In + λNG(s)C(s))−1G(s)

(3.76)

Here, it will be shown that for a marginally stable system regardless of the location of poles on

imaginary axis (a single pole at s = 0, or complex conjugated poles on the imaginary axis), the

states described by (3.76) will converge to zero. In this regard, from the final value theorem, one

knows that limt→∞ z′N−1(t) = lims→0 sz′N−1(s) if

1. All roots in the denominator of z′N−1(s) have negative real parts.

2. z′N−1(s) does not have more than one pole at the origin.

As in condition 1 of final value theorem, Kp and KI must be designed in a way that z′N−1(s) has

no eigenvalues with positive real parts. Since many control design approaches have been developed

in time domain, the closed loop equations of the system will be transformed back to time domain.

Thus, time-domain equivalent of (3.76) is obtained as follows:

ż′N−1(t) = Az′N−1(t) + λN BuN−1(t) + BwN−1(t)

wN−1(t) = (γ1oβ
f
1 t
′
N−1)

(3.77)
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By applying Laplace transform to equation (3.77), we will have

sz′N−1(s) = Az′N−1(s) + λN BC(s)z′N−1(s) + B(γ1oβ
f
1 t
′
N−1)s−1 =⇒

(sIn − A)z′N−1(s) = λN BC(s)z′N−1(s) + (γ1oβ
f
1 t
′
N−1)s−1B =⇒

z′N−1(s) =λN(sIn − A)−1BC(s)z′N−1(s) + (sIn − A)−1Bw(s) =

λNG(s)C(s)z′N−1(s) +G(s)(γ1oβ
f
1 t
′
N−1)s−1 =⇒

z′N−1(s) = (γ1oβ
f
1 t
′
N−1)s−1(In − λNG(s)C(s))−1G(s) (3.78)

which is the same as (3.76). Therefore, one can use any conventional or modern control approach

either in time domain or Laplace domain to design KP and KI .

Now, given that KP and KI are selected such that condition 1 of the final value theorem is

satisfied, the second condition will be investigated. Knowing that C(s) is a PI controller and

regardless of whether G(s) has a pole at s = 0 or not, the condition 2 is also met, and we will have

lim
t→∞ z′N−1(t) = lim

s→0
s(γ1oβ

f
1 t
′
N−1)s−1(In + λNG(s)C(s))−1G(s) = 0 (3.79)

In order to explain more how the equation (3.79) is satisfied, in the following, two possible

cases for the location of poles in a nth order system (system with single input and n output) are

considered. In case 1, it is assumed that only the first input-output (state) transfer function has

a pole at s = 0. In a similar way, it can be extended to the case where more than one of the

input-output transfer functions have a pole at s = 0.

• G(s) has one pole at s = 0. For the sake of simplicity, the nth order transfer function G(s) and

C(s) have been split as G(s) = [g11s−1, g21, . . . , gn1] and C(s) = [c11s−1, c21s−1, . . . , cn1s−1],

respectively. It is to be noted that gts and cts for t, s = 1, · · · , n are functions of s (with non-

zero values at s = 0); however, for the sake of simplicity it has not been shown. Knowing

96



these, (3.79) could be written as

lim
t→∞ z′N−1(t) =

(γ1oβ
f
1 t
′
N−1) lim

s→0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + g11c11s−2 g11c12s−2 · · · g11c1ns−2

g21c11s−1 1 + g21c12s−1 · · · g21c1ns−1

...
...

. . .
...

gn1c11s−1 gn1c12s−1 · · · 1 + gn1c1ns−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

-1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g11s−1

g21
...

gn1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

lim
s→0

s4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + gc11s−2 gc12s−3 · · · gc1ns−3

gc21s−2 1 + gc22s−3 · · · gc2ns−3

...
...

. . .
...

gcn1s−2 gcn2s−3 · · · 1 + gcnns−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s−1

1
...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

lim
s→0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

s
...

s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.80)

Note that gtkcks is defined as a new function as gcts for t, s = 1, . . . , n.

• G(s) does not have any pole at s = 0. In this case, G(s) = [g11, g21, . . . , gn1] and C(s) =

[c11s−1, c21s−1, . . . , cn1s−1]. Therefore, we will have

lim
t→∞ z′′N−1(t) =

(γ1oβ
f
1 t
′
N−1) lim

s→0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + g11c11s−1 g11c12s−1 · · · g11c1ns−1

g21c11s−1 1 + g21c12s−1 · · · g21c1ns−1

...
...

. . .
...

gn1c11s−1 gn1c12s−1 · · · 1 + gn1c1ns−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

-1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g11

g21
...

gn1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
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lim
s→0

s3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + gc11s−2 gc12s−2 · · · gc1ns−2

gc21s−2 1 + gc22s−2 · · · gc2ns−2

...
...

. . .
...

gcn1s−2 gcn2s−2 · · · 1 + gcnns−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

lim
s→0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

s
...

s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.81)

This means that condition 2 of the final value theorem is satisfied. This along with condition 1

shows that closed loop system is stable. �

When consensus is reached, we will have

lim
t→∞ xi(t) = lim

t→∞ x j(t) = lim
t→∞ x1(t) =

lim
s→0

sx1(s) = lim
s→0

s(sIn − A)−1x1(t f ) + (γ1oβ
f
1)s(sIn − A)−1Bs−1 =

lim
s→0

s(sIn − A)−1x1(t f ) + (γ1oβ
f
1)G(s)

(3.82)

where t f represents the fault occurrence time.
The final consensus value in (3.82) can be either of the followings:

1. G(s) has a pole at s = 0: In this case, regardless of the initial value, the final value of states
goes to∞. Therefore, for AUV system, which is marginally stable, the final values of states
goes to∞.

2. G(s) has no pole at origin: In this case, regardless of the initial value, the final value of states
goes to G(0)(γ1oβ

f
1).

Remark 3.19. Given that there is a spanning tree rooted from the faulty agent, neither the states’

value at fault occurrence time (xi(t f )), nor network structure affect the final consensus value.

Remark 3.20. In the case of finite consensus value, this value is proportional to the severity of

LIP fault.

Remark 3.21. In the case of LIP fault, the controller is restructured from a simple proportional

controller to a proportional-integral one.
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3.11 Reconfigurable State Feedback Dynamic Synchronization

Protocol Subject to the LOE/Float Fault

In this section a team of N multi-agent systems with m input channels are considered as

ẋi(t) = Axi(t) + Bui(t) i = 1, 2, · · · ,N (3.83)

where A ∈ Rn×n is a marginally stable matrix, B ∈ Rn×m, xi ∈ Rn,ui ∈ Rm×1, and the pair (A, B) is
stabilizable.

Let us assume that there is a fault in the first actuator of agent 1. Therefore, after fault occur-
rence, the control input matrix becomes

B1 = BΓ1, Γ1 = diag
(
γ1

1, 1, · · · , 1
)

B2 = B3 = · · · = BN = B
(3.84)

where 0 ≤ γ1
1 < 1 indicates the effectiveness factor of the faulty actuator of agent 1.

By applying the static consensus protocol (3.6) and equations (3.84) to (3.83), due to the fact
that the agents are not identical any longer (B1 = BΓ1), the augmented state-space representation
of (3.7) is no longer valid. Particularly, the Kronecker product notation cannot be employed any
longer. Therefore, the static protocol methodology proposed in Section 3.6 cannot guarantee the
post-fault recovery.

Given that the accurate fault information are available through a fault detection and identifica-
tion module, a dynamic protocol is proposed. However, this methodology can be used as a passive
approach, without control gain redesign, if post-fault results meet the stability and performance
criteria.

Lemma 3.8. The dynamic protocol

ζ̇i(t) = (A + B
′
iK

′
i )ζi(t) +

∑
j∈Ni

(ζ j(t) − ζi(t) + xi(t) − x j(t))

ui(t) = K
′
i ζi(t) i = 1, · · · ,N

(3.85)

will synchronize the system (3.83) and (3.84) when the accurate fault information is available.

where ζi ∈ Rn, B
′
i ∈ Rn×m and K

′
i ∈ Rm×n are respectively the controller state, estimated control

input matrix, and reselected control gain associated with the agent i. Note that assuming the
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exact fault estimation information are available, we will have B
′
1 = B1 = BΓ1, B

′
i = Bi = B for

i = 2, · · · ,N and K
′
i = Ki = K for i = 2, · · · ,N.

Proof. In order to prove that the control protocol of (3.85) leads to consensus, the synchronization

state variables are defined as si(t) = xi(t) − ζi(t). In other words, synchronization state is defined

as difference between the controller state and the plant state. At steady state, when the controller

state goes to zero (ζi(t) → 0 ∀i) if si = s j for ∀i, j, then synchronization will be achieved (xi = x j

for ∀i, j).

Thus, si dynamics will be as

ṡi(t) = ẋi(t) − ζ̇i(t) =
Axi(t) + B

′
iK

′
i ζi(t) − ((A + B

′
iK

′
i )ζi(t) +

∑
j∈Ni

(ζ j(t) − ζi(t) + xi(t) − x j(t))) =

Asi(t) −
∑
j∈Ni

(si(t) − s j(t)) i = 1, 2, · · · ,N
(3.86)

Therefore, the augmented state-space system (including the control state and the synchroniza-

tion state variables) will become

ζ̇(t) = (ÃN + B
′
dK

′
d)ζ(t) + Ls(t) (3.87a)

ṡ(t) = ÃN s(t) − Ls(t) (3.87b)

where L = [li j] is the Laplacian matrix of the network with lii =
∑
j∈Ni

ai j and li j = −ai j for i � j,

ÃN = IN ⊗A, B
′
d = block diag(B

′
1, B, · · · , B), K

′
d = block diag(K

′
1,K, · · · ,K), ζ = [ζT

1 , ζ
T
2 , · · · , ζT

N]T,

s = [sT
1 , s

T
2 , · · · , sT

N]T, and K
′
1 is the control gain matrix of the faulty agent 1.

From equation (3.87b), it can be seen that the consensus dynamics does not depend on the

dynamics of the controller. Therefore, using the result from Lemma 2.2, it is guaranteed that si(t)

in (3.87b) will reach consensus asymptotically and the consensus trajectory will be governed by

ṡc(t) = Asc(t). This is obtained by using the fact that the Laplacian is a zero row sum matrix.

The assumption that A is a marginally stable matrix does not violate the generality of the
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lemma. This is a common assumption in synchronization problems. However, the eigenvalues

with negative real parts can be ignored as their effect will diminish in steady state.

Hence, when the consensus trajectory of (3.87b) reaches its steady state (and therefore Ls(t)

reaches zero), the augmented dynamics of the controller in equation (3.87a) will reduce to

ζ̇(t) = (ÃN + B
′
dK

′
d)ζ(t) (3.88)

This implies if the control gain K
′
d is redesigned to make ÃN + B

′
dK

′
d Hurwitz, the dynamics of

(3.87a) will be exponentially stable and will reach zero asymptotically. The control gain K
′
d can be

designed using any conventional control approach.

Finally, xi(t) is obtained by xi(t) = si(t) + ζi(t) and will converge to si(t). Therefore, one can

conclude that all agents will reach to a common solution of ṡc(t) = Asc(t). �

Remark 3.22. In this section, the communication graph is assumed to be connected. This means it

is uniformly connected as well. The time dependence of ai j(t) in Lemma 2.2 shows that this lemma

is valid even though the graph changes with time.

Remark 3.23. The proposed dynamic protocol (3.85) is adopted from [36]. In that paper, the

authors consider a group of homogeneous agents. However, the problem in this section models the

post-fault system as a group of heterogeneous agents which try to synchronize.

Remark 3.24. It is worth mentioning that as in equation (3.87b), the fault does not change the

consensus dynamics.

Remark 3.25. It is worth noting that after fault occurrence only the control gain of the faulty agent

1 (K
′
1) changes, and the control gains for the rest of the agents remain the same as the fault-free

case.

3.11.1 Simulation Results

In this section, a multi-input model of AUV (with stern and bow as inputs) as in equation (3.53)
and by having access to full state-space information is considered.

It is assumed that LOE/float fault occurs in stern actuator at time 2 Sec. By employing the
approach in Section 3.11 in a passive manner, without control gain redesign, three different sets of
control gain K of equation (3.85) are applied.
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1. In this case, the control gain is selected such that the contribution of the states in total per-
formance index is small.

K =

⎡⎢⎢⎢⎢⎢⎣0.3320 −0.5650 1.0000 −3.7872
0.7908 0.6427 0.0061 1.1843

⎤⎥⎥⎥⎥⎥⎦ (3.89)

The simulation results for the selected gain (3.89) are shown in Figures 3.53 - 3.55.

Figure 3.53: State performance index for dynamic state feedback protocol without fault recovery -
gain set 1.
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Figure 3.54: Control input performance index for dynamic state feedback protocol without fault
recovery - gain set 1.

Figure 3.55: Total performance index for dynamic state feedback protocol without fault recovery -
gain set 1.
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2. In this case, the control gain is selected such that compared to the previous case, the contri-
bution of states in the total performance index is increased.

K =

⎡⎢⎢⎢⎢⎢⎣−0.1299 −0.3506 0.2971 −1.6673
0.4171 0.4044 −0.1084 1.1199

⎤⎥⎥⎥⎥⎥⎦ (3.90)

The simulation results for the selected gain (3.90) are shown in Figures 3.56 - 3.58.

Figure 3.56: State performance index for dynamic state feedback protocol without fault recovery -
gain set 2.
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Figure 3.57: Control input performance index for dynamic state feedback protocol without fault
recovery - gain set 2.

Figure 3.58: Total performance index for dynamic state feedback protocol without fault recovery -
gain set 2.
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3. In this case, the control gain is selected such that the contribution of the states in the total
performance index is the highest among these three cases.

K =

⎡⎢⎢⎢⎢⎢⎣−0.1741 −0.1922 0.0770 −0.6129
0.3189 0.2800 −0.0638 0.6867

⎤⎥⎥⎥⎥⎥⎦ (3.91)

The simulation results for the selected gain (3.91) are shown in Figures 3.59 - 3.61.

Figure 3.59: States performance index for dynamic state feedback protocol without fault recovery
- gain set 3.
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Figure 3.60: Control inputs performance index for dynamic state feedback protocol without fault
recovery - gain set 3.

Figure 3.61: Total performance index for dynamic state feedback protocol without fault recovery -
gain set 3.
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In the above simulations, the contribution of the control input in the performance index is cal-
culated using the control signal applied to the system and not the one calculated by the controller.
This makes a difference in faulty case, where these two signals are not the same.

From Figures 3.53 - 3.61, it can be seen that as the control gain is selected such that the con-
tribution of the states in the performance index decreases, the states performance index becomes
less sensitive with respect to the fault. However, the less sensitivity of the performance index costs
more control input.

Remark 3.26. In the simulation results, the methodology of Section 3.11 is applied as a non-

reconfigurable method, since for this system even after fault occurrence the performance indexes

do not change drastically. However, if there is a significant change in the performance indexes, the

approach should be applied in an active manner.

3.12 Summary

In the first part of this chapter, which deals with healthy case, the synchronization of multi-agent
systems under the following scenarios have been considered:

• Consensus subject to noise in Sections 3.3

• Consensus by employing a Kalman filter for state estimation in Section 3.4

• Consensus subject to model parameters uncertainties in Section 3.5

Among these, consensus subject to noise is one of the main contributions, where the consensus
achievement in a stochastic mean square sense (MSS) has been shown. In the second part, multiple
faulty scenarios as LIP, float and LOE faults have been considered. These scenarios are as follows:

• Consensus subject to LOE and float faults in Sections 3.6, 3.7, and 3.8

• Consensus subject to LIP fault by employing PI controller in Section 3.10

• Consensus achievement of integrator systems subject to LOE and float faults in Sections 3.9

• Reconfigurable dynamic synchronization protocol for a multi-input model subject to LOE
and float faults in Section 3.11

Among these, the reconfigurable synchronization protocol subject to LIP fault and the recon-
figurable dynamic synchronization protocol for a multi-input model subject LOE/float faults are
among the main contributions.
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Chapter 4

Output Feedback Synchronization

In this chapter, the problem of output feedback synchronization will be considered. Specifically,
it is assumed that state information are not available anymore, and we only have access to partial
state information. Similar to the previous chapter, the output feedback synchronization problem
will be tackled subject to the both healthy and faulty scenarios.

First, the healthy scenario is considered under a perfect communication network. Then, the
effect of noise on consensus achievement will be addressed. The analysis of the effect of uncer-
tainty is skipped, due to its excessive similarity to state feedback. Then, the faulty scenarios will be
studied where a static as well as two different dynamic protocols are developed. The first dynamic
methodology exploits a dynamic observer as well as a dynamic controller; however, the second
approach only employs a dynamic controller.

4.1 Output Feedback Synchronization and Luenberger Observer

Consider a group of N homogeneous multi-agent systems as

ẋi(t) = Axi(t) + Bui(t)

yi(t) = Cxi(t) i = 1, 2, · · · ,N
(4.1)

where A ∈ Rn×n is a marginally stable matrix, B ∈ Rn×m, C ∈ Rp×n and system (A, B,C) is stabiliz-
able using a static output feedback.

Remark 4.1. Since the system (A, B,C) is stabilizable using static output feedback, one may con-

clude that the pair (A, B) is stabilizable and (A,C) is detectable [111].
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Remark 4.2. The formulation of this section is general, and it covers both single-input and multi-

input systems.

Here to deal with synchronization problem, a dynamic protocol is employed in Lemma 4.1.
This method is adopted from the literature [36] with required modifications.

Lemma 4.1. Under the following dynamic controller

ζ̇i(t) = (A + BK)ζi(t) +
∑
j∈Ni

ai j(ζ j(t) − ζi(t) + x̂i(t) − x̂ j(t))

˙̂xi = Ax̂i + Bui + H(ŷi − yi)

ui(t) = Kζi(t) i = 1, · · · ,N

(4.2)

the system (4.1) will synchronize.

where ζi ∈ Rn, B ∈ Rn×m and K ∈ Rm×n are respectively the controller state, control input

matrix, and the control gain associated with the agent i.

Proof. By defining the new state variables as si(t) = x̂i(t) − ζi(t) and ei(t) = xi(t) − x̂i(t), the

augmented state-space system is

ζ̇i(t) = (ÃN + B̃N K̃N)ζi(t) + Ls(t) (4.3a)

ṡ(t) = ÃN s(t) − Ls(t) + H̃C̃e(t) (4.3b)

ė(t) = (ÃN + H̃C̃)e(t) (4.3c)

This could be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ̇(t)

ṡ(t)

ė(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ÃN + B̃N K̃N) L 0

0 ÃN − L H̃C̃

0 0 (ÃN + H̃C̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ(t)

s(t)

e(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.4)

where L = [li j] is the Laplacian matrix of the system, with lii =
∑
j∈Ni

ai j and li j = −ai j for i � j,

ÃN = IN ⊗ A, C̃N = IN ⊗ C, H̃N = IN ⊗ H, B̃N = IN ⊗ B, K̃N = IN ⊗ K, ζ = [ζT
1 , ζ

T
2 , · · · , ζT

N]T,

s = [sT
1 , s

T
2 , · · · , sT

N]T, e = [eT
1 , e

T
2 , · · · , eT

N]T.
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Knowing that the pair (A,C) is observable, there exists a matrix H that makes the equation

(4.3c) stabilize. Moreover, using the result of Lemma 2.2, it is guaranteed that si(t) in equation

(4.3b) asymptotically synchronizes and the synchronization trajectory will be governed by ṡc(t) =

Asc(t). This is concluded by using the fact that Laplacian is a zero row sum matrix.

Hence, when the synchronization trajectory (4.3b) reaches its steady state and therefore Ls(t)

reaches zero, the augmented dynamics of the controller (4.3a) reduces to

ζ̇ = (ÃN + B̃N K̃N)ζ (4.5)

This implies when the control gain K̃N is designed to make ÃN + B̃N K̃N Hurwitz, the dynamics

of (4.3) will be exponentially stable and will asymptotically reach zero.

Finally, xi(t), which is obtained by xi(t) = ei(t) + si(t) + ζi(t), converges to si(t). Therefore, one

can conclude that the state of all agents will reach to a common solution of ṡc(t) = Asc(t). �

4.1.1 Simulation Results

In this section, the synchronization of autonomous underwater vehicles (AUVs) in the longitudinal
plane by having partial state information, using the measurement matrix in (2.13), is investigated.
For the sake of simulation, the single-input model (3.13) is considered.

For simulations purposes, the control gain K and the Luenberger observer gain H are designed
as

K =
[
−0.3812 −0.1793 0.3063 −1.5953

]

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.1046 0.2406 0.0780
−2.0866 0.5573 −0.3120
0.4008 2.7676 −2.0000
1.0000 0 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.6)

In the following, first the convergence of state estimation to states are presented in Figures 4.1
- 4.4. Then, as it can be seen in Figures 4.5 - 4.14, the controllers’ as well as the agents’ states
reach consensus. Finally, Figures 4.9 - 4.10 show that control input is limited between [−60 60].
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Figure 4.1: State estimation of state 1 for dynamic output feedback protocol under healthy scenario.

Figure 4.2: State estimation of state 2 for dynamic output feedback protocol under healthy scenario.
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Figure 4.3: State estimation of state 3 for dynamic output feedback protocol under healthy scenario.

Figure 4.4: State estimation of state 4 for dynamic output feedback protocol under healthy scenario.
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Figure 4.5: Controller state 1 for dynamic output feedback protocol under healthy scenario.

Figure 4.6: Controller state 2 for dynamic output feedback protocol under healthy scenario.
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Figure 4.7: Controller state 3 for dynamic output feedback protocol under healthy scenario.

Figure 4.8: Controller state 4 for dynamic output feedback protocol under healthy scenario.
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Figure 4.9: Control Input signal u1(t) for dynamic output feedback protocol under healthy scenario.

Figure 4.10: Control input signal u2(t) for dynamic output feedback protocol under healthy sce-
nario.
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Figure 4.11: Synchronization of state 1 for dynamic output feedback protocol under healthy sce-
nario.

Figure 4.12: Synchronization of state 2 for dynamic output feedback protocol under healthy sce-
nario.
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Figure 4.13: Synchronization of state 3 for dynamic output feedback protocol under healthy sce-
nario.

Figure 4.14: Synchronization of state 4 for dynamic output feedback protocol under healthy sce-
nario.
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4.2 Output Feedback Synchronization and Kalman Filtering

As in the previous chapter, the presence of noise on the states and measurement leads to a large
covariance error on states. In order to fix this problem, Kalman filtering is employed for states
estimation that are used in synchronization protocol.

Now, assume that there is an added noise on the agents’ dynamics and their measurements as

ẋi(t) = Axi(t) + Bui(t) + Bwi(t), i = 1, 2, · · · ,N
yi(t) = Cxi(t) + vi(t)

(4.7)

where wi ∈ Rn, vi ∈ Rn, and the statistics of the states initial condition, disturbance and measure-
ment noises are assumed to be known. The statistics of the states’ initial conditions are

E[xi(0)] = x̂i0 i = 1, 2, · · · ,N
E{[xi(0) − x̂i0][xi(0) − x̂i0]T} = Pi0

(4.8)

The term wi(t) accounts for the environmental disturbances and could be modeled as a zero mean
Gaussian white noise process as

E[wi(t)] = 0 i = 1, 2, · · · ,N
E{wi(t)wi(τ)T} = Qi(t)δ(t − τ)

(4.9)

which is specified by its spectral density matrix Qi(t). The measurement noise is a zero mean
Gaussian white noise process as

E[vi(t)] = 0 i = 1, 2, · · · ,N
E{vi(t)vi(τ)T} = Ri(t)δ(t − τ)

(4.10)

where the measurement uncertainty is expressed by its spectral density matrix Ri(t), which is a
p × p matrix.

It is also assumed that the states and measurement noises are uncorrelated. For the sake of
simplicity, the matrices Ri and Qi are to be constant.

Lemma 4.2. Under the following dynamic controller
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ζ̇i(t) = (A + BK)ζi(t) +
∑
j∈Ni

ai j(ζ j(t) − ζi(t) + x̂i(t) − x̂ j(t))

˙̂xi(t) = Ax̂i(t) + Bui(t) + Hi(ŷi(t) − yi(t))

ui(t) = Kζi(t) i = 1, · · · ,N

(4.11)

the system in (4.7) will synchronize in a mean square sense.

where ζi(t) ∈ Rn, B ∈ Rn×m, K ∈ Rm×n, and Hi are respectively controller state, control input

matrix, and the controller and observer gains associated with agent i. The index dependence of

Hi(t) shows that it does not necessarily needs to be identical for all agents.

Proof. By defining the new state-space variables as si(t) = x̂i(t) − ζi(t) and ei(t) = xi(t) − x̂i(t), the

augmented state-space representations of their expected values become

ζ̇(t) = (ÃN + B̃N K̃N)ζ(t) + Ls(t) (4.12a)

ṡ(t) = ÃN s(t) − Ls(t) + H̃C̃e(t) (4.12b)

ė(t) = (ÃN + H̃C̃)e(t) (4.12c)

Equation (4.12) could be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ̇(t)

ṡ(t)

ė(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ÃN + B̃N K̃N) L 0

0 ÃN − L H̃C̃

0 0 (ÃN + H̃C̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ(t)

s(t)

e(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.13)

where L = [li j] is the Laplacian matrix of the system, with lii =
∑
j∈Ni

ai j and li j = −ai j for i � j, ÃN =

IN ⊗A, C̃N = IN ⊗C, H̃N = diag(H1,H2, · · · ,HN), B̃N = IN ⊗B, K̃N = IN ⊗K, ζ = [ζ
T
1 , ζ

T
2 , · · · , ζ

T
N]T,

s = [sT
1 , s

T
2 , · · · , sT

N]T, e = [eT
1 , e

T
2 , · · · , eT

N]T, and E{ei(t)} = ei(t), E{si(t)} = si(t) and E{ζi(t)} = ζ i(t)

for i = 1, 2, · · · ,N. For the sake of simplicity, time-dependence of the variables is omitted.

First, it will be shown that the expected values of ei(t)s (and consequently e(t) in (4.13)) go to

zero. To do so, a Kalman-Bucy filter is employed to estimate the entire state vector based upon the
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observed data as

˙̂xi(t) = Ax̂i(t) + Bui(t) + Hi(yi(t) − ŷi(t)), i = 1, 2, · · · ,N
ŷi(t) = Cx̂i(t)

(4.14)

where Hi will be the steady state solution for

Hi = limt−>∞Pi(t)CT R−1
i i = 1, 2, · · · ,N (4.15)

where Pi(t) is the solution to

Ṗi(t) = APi(t) + Pi(t)AT + BQiBT − Hi(t)CPi(t) =

APi(t) + Pi(t)AT + BQiBT − Pi(t)CTR-1
i CPi(t), i = 1, 2, · · · ,N

(4.16)

It is clear that Hi cannot exist if Ri is singular. Also, for a stable estimation filter, Ri must be

positive-definite. For the sake of simplicity, equation (4.16) has been solved in steady state. In

other words, Pi, which is obtained by solving an algebraic Riccati equation, is a fixed matrix.

Therefore, the Kalman-Bucy gain Hi obtained out of equation (4.15) is fixed and still optimum in

steady state.

By defining the new state variable as ei(t) = xi(t) − x̂i(t), the state estimation error dynamics

becomes

ėi(t) = Aei(t) + Bwi(t) − Hi(yi(t) − ŷi(t)) =

(A − HiC)ei(t) + Bwi(t) + Hivi(t), i = 1, 2, · · · ,N
yi(t) = Cei(t)

(4.17)

Similar to Lemma , it can be shown that if the Kalman filter gain Hi is chosen such that A −
HiC < 0, and knowing that wi(t) and vi(t) are zero mean white Gaussian noises, the expected

value of state estimation error E[ei(t)] goes to zero. Moreover, if the Kalman gain Hi also satisfies

(4.15), where Pi is obtained as the steady state solution of (4.16), the state’s error covariance will

be minimum.

When E[ei(t)] goes to zero, equation (4.12) reduces to equation (3.87). Therefore, the rest of
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proof becomes identical to Lemma 3.8. �

4.2.1 Simulation Results

In this section, the synchronization of the AUVs’ longitudinal plane model (3.13), by having partial
state information with measurement matrix (2.13), is considered. For simulation purposes, the
spectral density matrix of the state and measurement noises are considered to be identical for all
agents as Q = I(m×m) and R = 0.5 × I(n×n), respectively.

For simulations purposes, the control gain K and Kalman-Bucy filter gain H are designed as

K =
[
−0.3812 −0.1793 0.3063 −1.5953

]

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1795 0.0041 −0.0107
0.3790 −0.0251 0.0511
−0.0251 1.0237 −0.2797
0.0511 −0.2797 0.1463

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.18)

In the following figures, results for the state estimation are first presented in Figures 4.15 - 4.18.
Then, the average consensus of the controllers’ states as well as the agents’ states will be shown in
Figures 4.19 - 4.28.
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Figure 4.15: State estimation of state 1 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

Figure 4.16: State estimation of state 2 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

123



Figure 4.17: State estimation of state 3 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

Figure 4.18: State estimation of state 4 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

124



Figure 4.19: Controller state 1 for dynamic output feedback protocol subject to noise and by
employing Kalman filter.

Figure 4.20: Controller state 2 for dynamic output feedback protocol subject to noise and by
employing Kalman filter.
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Figure 4.21: Controller state 3 for dynamic output feedback protocol subject to noise and by
employing Kalman filter.

Figure 4.22: Controller state 4 for dynamic output feedback protocol subject to noise and by
employing Kalman filter.
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Figure 4.23: Control input signal u1(t) for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

Figure 4.24: Control input signal u2(t) for dynamic output feedback protocol subject to noise and
by employing Kalman filter.
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Figure 4.25: Synchronization of state 1 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

Figure 4.26: Synchronization of state 2 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.
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Figure 4.27: Synchronization of state 3 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.

Figure 4.28: Synchronization of state 4 for dynamic output feedback protocol subject to noise and
by employing Kalman filter.
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4.3 Output Feedback Synchronization Subject to Faults

In the following sections, three different methodologies of the output feedback synchronization is
proposed. These three approaches are as follows:

• Static output feedback controller

• Dynamic output feedback controller

• Dynamic output feedback observer and controller

4.4 Fault-Tolerant Static Output Feedback Synchronization Pro-

tocol with Single-input Channel Subject to the LOE Fault

In this section, a static output feedback (SOF) protocol is applied to synchronize marginally-stable
linear multi-agent systems with single-input channel, and under a fixed and connected network
topology. It will be shown that by applying the proposed static protocol the synchronization can
be met even in the presence of fault.

Consider a group of N homogeneous multi-agent systems as

ẋi(t) = Axi(t) + Bui(t)

yi(t) = Cxi(t) i = 1, 2, · · · ,N
(4.19)

where A ∈ Rn×n is a marginally stable matrix, B ∈ Rn×1, C ∈ Rp×n and system (A, B,C) is stabiliz-
able using static output feedback.

To reach an agreement under the network topology G, an static output feedback synchronization
protocol is applied as

ui(t) = −K
∑
j∈Ni

ai j(yi(t) − y j(t)) i = 1, 2, · · · ,N (4.20)

where aii = 0 and for i � j, ai j = 1 if the information flows from agent j to agent i and 0 otherwise,
and K ∈ R1×m is the control gain matrix.

Knowing that agents are homogeneous, the augmented state-space representation of the system
described in equation (4.19) can be written as

Ẋ(t) = (IN ⊗ A − L ⊗ BKC)X(t) (4.21)
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where X(t) = [xT
1 (t), xT

2 (t), · · · , xT
N(t)]T is the augmented state of all agents, and L[li j] is the Lapla-

cian matrix of the system with lii =
∑
j∈Ni

ai j, and li j = −ai j for i � j. The eigenvalues of L (λi’s) for

i = 1, 2, · · · ,N have positive real parts except for λ1, which is zero.
Using the results from [34], and knowing that the network topology G has a spanning tree, by

applying protocol (4.20) the system (4.19) synchronizes when

A − λiBKC ≺ 0 i = 2, · · · ,N (4.22)

This is a static output feedback problem that has a non-convex solution set. Therefore, it is a
non-trivial computational and analytical task to find its solutions. One possible approach is to
apply iterative LMI, which is a numerical methodology to find a solution for K. This requires high
amount of computations. As opposed to this approach, another method is to choose K as a solution
of KC = BTP whose existence is guaranteed if [34]

Rank(C) = Rank[

⎡⎢⎢⎢⎢⎢⎣ C

BTP

⎤⎥⎥⎥⎥⎥⎦] (4.23)

where P is one possible solution of (4.24),

ATP + PA � 0 (4.24)

It will be shown how the synchronization is affected when there is a change in the Laplacian
matrix. For the team of agents described by (4.19), under the network topology G, and by designing
the matrix K to satisfy KC = BTP the following observations can be made. Specifically, from
(4.22), one knows that

((A − (σi + jwi)BKC)HP + P(A − (σi + jwi)BKC)) =

((A − (σi + jwi)BBTP)HP + P(A − (σi + jwi)BBTP)) =

((A − (σi − jwi)BBTP)TP + P(A − (σi + jwi)BBTP)) =

(ATP + PA) − 2σi((PB)(PB)T) < 0

(4.25)

Knowing that the underlying graph is connected, σi = Re{λi} will be positive for all i =

2. · · · ,N, and consequently the second term on the right hand side of (4.25) will be negative defi-
nite. Therefore, from (4.24), one may easily conclude even if there is a change in Laplacian matrix,
regardless of the σi value (as long as it is a positive real value, which means as long as the graph is
connected), (4.25) holds for all i = 2, · · · ,N.
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Let us now assume that there is a LOE fault in the actuator of agent 1. The effect of this fault
can be modeled as

u
f
1(t) = −K

∑
j∈Ni

γ1a1 j(y1(t) − y j(t)) (4.26)

where γ1 represents the actual effectiveness factor of the faulty actuator.
From (4.26) it follows that the change in the effectiveness factor of the actuator in agent 1 can

be modeled as a multiplication of associated row of the Laplacian matrix by γ1. Therefore, the
augmented state-space representation of the faulty system becomes

Ẋ(t) = (IN ⊗ A − L
′ ⊗ BK

′
C)X(t) (4.27)

where all rows and columns of L
′

are the same as the ones in L in equation (4.21) except for the
row associated with the faulty agent k, which is now changed to

l
′
1 j = γ1l1 j j = 1, · · · ,N (4.28)

L
′
= [l

′
i j] is still a zero row sum matrix, with l

′
ii =
∑
j∈Ni

a
′
i j, and l

′
i j = −a

′
i j for i � j. Therefore, the

graph associated with L
′
, which is interpreted as the Laplacian matrix after fault occurrence, has a

spanning tree. Using the results from Lemma 2.1, L
′

has a single zero eigenvalue and the rest of
its eigenvalues, λ

′
i = σ

′
i + jw

′
i (i = 2, · · · ,N), have positive real parts.

Remark 4.3. The first row of the Laplacian matrix is changed according to equation (4.28) to

model the LOE fault in agent 1.

Lemma 4.3. The loss of effectiveness (LOE) fault in a team of linear multi-agent systems in (4.19),

under the interaction network G, and by using the protocol (4.26) does not change synchronization

achievement, if

1. There exist a matrix P = PT 
 0 such that it satisfies ATP + PA � 0.

2. There exist a control gain matrix K as solution of KC = BTP.

3. For those values of y ∈ Rn that makes yT(ATP + PA)y = 0, yT(PB(PB)T)y � 0.

Proof. By applying the results obtained for the synchronization in healthy case, the system de-

scribed by equation (4.27) (where L
′

reflects the adjusted Laplacian to model the fault) will syn-

chronize if A − λ′i BK
′
C is Hurwitz for all λ

′
i (i = 2, · · · ,N) where λ

′
i’s are the eigenvalues of L

′

132



arranged in an ascending order with λ
′
1 = 0, and the rest of them have positive real parts. However,

using the observations described at the beginning of this section, if the control gain K of the healthy

system is the solution of KC = BTP where P satisfies (4.24), it is guaranteed that regardless of the

effectiveness of fault and consequently the value of λ
′
i the faulty system represented by augmented

states’ dynamics as (4.27) will still synchronize. �

In the case of multi-input channel similar to single input scenario, it is assumed that the fault
occurs in agent 1. Therefore, the state-space equation of the agents becomes

ẋ1(t) = Ax1(t) + Bu
f
1

ẋi(t) = Axi(t) + Bui

(4.29)

From (2.23) and (2.25) one knows when there is a LOE fault in the actuator of agent 1, by employ-
ing the static protocol of (4.20) the effect of this fault can be modeled as

ẋi(t) = Axi(t) − BK
∑
j∈Ni

ai j(yi(t) − y j(t))

ẋ1(t) = Ax1(t) − BK
∑
j∈N1

a1 j(y1(t) − y j(t)) − B(Γ − I)K
∑
j∈N1

a1 j(y1(t) − y j(t))
(4.30)

where K ∈ Rm×n is the control gain matrix.
By applying a change of variables as σi = x1 − xi, i = 2, 3, · · · ,N, state-space representation

of σi becomes

σ̇i(t) =Ax1(t) − BK
∑
j∈N1

a1 j(y1(t) − y j(t)) − B(Γ − I)K
∑
j∈N1

a1 j(y1(t) − y j(t))

− Axi(t) + BK
∑
j∈Ni

ai j(yi(t) − y j(t)) =

Ax1(t) − BKC
∑
j∈N1

a1 j(x1(t) − x j(t)) − B(Γ − I)KC
∑
j∈N1

a1 j(x1(t) − x j(t))

− Axi(t) + BKC
∑
j∈Ni

ai j(xi(t) − x j(t)) =

Aσi(t) − BKC(
∑
j∈N1

a1 jσ j(t) −
∑
j∈Ni

ai j(σ j(t) − σi(t))) − B(Γ − I)KC
∑
j∈N1

a1 jσ j(t)

(4.31)

Therefore, the augmented state-space representation is as follows:

σ̇(t) = (IN−1 ⊗ A − (Lr + 1.αT) ⊗ BKC)σ(t) − (1.αT) ⊗ B(Γ − I)KCσ(t) (4.32)
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where the variables are defined as in (3.7).

Remark 4.4. It is worth mentioning that the appearance of xi(t) in (4.31) does not mean that it is

been used by control protocol. It has been appeared by rewriting yi(t) as Cxi(t), which is only for

the analysis purpose.

When there is no fault (Γ = I), the second term of the augmented state-space representation of
(4.32) will be zero and therefore the problem will reduce to (4.21). When there is a fault even if Γ
is available the second term will not disappear. In such a case, it is not straight forward to design a
control gain K. Furthermore, even under healthy scenario it is not easy to come up with a control
gain K that satisfies (4.22) either by solving (4.23) or using the iterative LMI approach.

Therefore, in order to deal with the effect of fault and also a more straight-forward approach to
design a controller under healthy scenario, dynamic output feedback protocols are proposed in the
following section.

4.5 Observer-based Dynamic Output Feedback Synchroniza-

tion Protocol Subject to the LOE/Float Fault

In this section, a dynamic output feedback protocol that also employs an observer is applied to
synchronize marginally-stable multi-agent systems with multi-input channel and under a fixed and
connected network topology. It will be shown when there is an actuator fault by applying the
proposed protocol and by re-designing only the control gain of the faulty agent, the synchronization
can still be achieved.

Consider a team of N homogeneous multi-agent systems as

ẋi(t) = Axi(t) + Bui(t)

yi(t) = Cxi(t) i = 1, 2, · · · ,N
(4.33)

where A ∈ Rn×n is a marginally stable matrix, B ∈ Rn×m,C ∈ Rp×n, xi ∈ Rn,ui ∈ Rm×1, and the
system (A, B,C) is stabilizable and detectable.

Let us assume that a fault occurs in the first actuator of agent 1, and therefore the control input
matrix becomes

B1 = BΓ1, Γ1 = diag
(
γ1

1, 1, · · · , 1
)

B2 = B3 = · · · = BN = B
(4.34)
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where 0 < γ1
1 < 1 indicates the effectiveness factor of the faulty actuator.

When a LOE/float fault occurs in a multi-input system, the control input matrices of agents
are not identical any longer. Therefore, we are dealing with heterogeneous agents. The follow-
ing methodology is adopted from the literature [36] with required modifications. In that paper,
they consider a group of homogeneous agents. However, the problem in this section deals with
after fault occurrence that the agents are not identical anymore. Particularly, there is a group of
heterogeneous agents that try to synchronize.

Lemma 4.4. The dynamic protocol

ζ̇i(t) = (A + B
′
iK

′
i )ζi(t) +

∑
j∈Ni

ai j(ζ j(t) − ζi(t) + x̂i(t) − x̂ j(t))

˙̂xi = Ax̂i + B
′
iui + H(ŷi − yi)

ui(t) = K
′
i ζi(t) i = 1, · · · ,N

(4.35)

will synchronize the system (4.33) when the exact fault information is available.

where ζi ∈ Rn, B
′
i ∈ Rn×m and K

′
i ∈ Rm×n are respectively the controller state, estimated control

input matrix, and redesigned control gain associated with the agent i. Moreover, since the exact

fault estimation information is available, we will have B
′
1 = BΓ1, B

′
i = Bi = B for i = 2, · · · ,N,

and K
′
i = Ki = K for i = 2, · · · ,N.

Proof. Defining the new state variables as si(t) = x̂i(t)−ζi(t) and ei(t) = xi(t)− x̂i(t), the augmented

state-space system is as follows:

ζ̇i(t) = (ÃN + BdKd)ζi(t) + Ls(t) (4.36a)

ṡ(t) = ÃN s(t) − Ls(t) + H̃C̃e(t) (4.36b)

ė(t) = (ÃN + H̃C̃)e(t) (4.36c)
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Equation (4.36) could be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ̇(t)

ṡ(t)

ė(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ÃN + BdKd) L 0

0 ÃN − L H̃C̃

0 0 (ÃN + H̃C̃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ(t)

s(t)

e(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.37)

where L = [li j] is the Laplacian matrix of the system with lii =
∑
j∈Ni

ai j and li j = −ai j for i � j, ÃN =

IN ⊗ A, C̃N = IN ⊗C, H̃N = IN ⊗H, Bd = block diag(B
′
1, B, · · · , B), Kd = block diag(K

′
1,K, · · · ,K),

ζ = [ζT
1 , ζ

T
2 , · · · , ζT

N]T, s = [sT
1 , s

T
2 , · · · , sT

N]T, e = [eT
1 , e

T
2 , · · · , eT

N]T, and B
′
1 ∈ Rn×m and K

′
1 are the

post-fault control input and control gain matrices of the faulty agent 1, respectively.

From equation (4.36), it can be seen that neither the observer error dynamics (4.36c) nor the

synchronization dynamics (4.36b) depend on the state dynamics or the augmented control input

matrix Bd. Therefore, knowing that the pair (A,C) is observable, there exists a matrix H which

will still make the equation (4.36c) to stabilize. Moreover, using the result of Lemma 2.2 it is

guaranteed that si(t) in equation (4.36b) will asymptotically synchronize and the synchronization

trajectory will be governed by ṡc(t) = Asc(t). This is concluded by using the fact that Laplacian is

a zero row sum matrix.

Hence, when the synchronization trajectory (4.36b) reaches its steady state and therefore Ls(t)

reaches zero, the augmented dynamics of the controller (4.36a) reduces to

ζ̇ = (ÃN + BdKd)ζ (4.38)

This implies when the control gain Kd is designed to make ÃN + BdKd Hurwitz, the dynamics

of (4.38) will be exponentially stable and will asymptotically reach zero.

Finally, xi(t), which is obtained by xi(t) = ei(t) + si(t) + ζi(t), converges to si(t). Therefore, one

can conclude that the state of all agents will reach to a common solution of ṡc(t) = Asc(t). �

Remark 4.5. It is worth noting that the LOE fault does not change the stabilizablity of the faulty

agent. Therefore, one is still able to design K
′
1 to make the faulty agent, and consequently the

equation (4.38) stable. K
′
1 can be designed using any conventional control approach.

Remark 4.6. It should be noted that the fault changes neither the synchronization nor the observer
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dynamics.

Remark 4.7. It is worth mentioning that after the fault occurrence, only the control gain of the

faulty agent K
′
1 is redesigned to still keep the matrix A + B

′
1K

′
1 Hurwitz. The control gains for the

rest of the agents as well as the observer gain remain the same as fault-free case.

4.5.1 Simulation Results

In this section, the synchronization of autonomous underwater vehicles (AUVs) in the longitudinal
plane by having partial state information, using the measurement matrix in (2.13), is investigated.
For the sake of simulation, the multi-input model (3.53) is considered.

For simulations purposes, the control gain K and the observer gain H of equation (4.35) are
designed according to (4.39).

K =

⎡⎢⎢⎢⎢⎢⎣0.3320 −0.5650 1.0000 −3.7872
0.7908 0.6427 0.0061 1.1843

⎤⎥⎥⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.1046 0.2406 0.0780
−2.0866 0.5573 −0.3120
0.4008 2.7676 −2.0000
1.0000 0 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.39)

The results for the passive simulation scenario of the float and LOE faults occurred at t = 2 S ec

are shown in Figures 4.29 - 4.31. It is assumed that there is no fault detection and recovery module
and therefore the control gain K

′
1 of faulty agent is the same as the one in healthy agents K.
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Figure 4.29: State performance index for dynamic output feedback protocol without fault recovery.

Figure 4.30: Control input performance index for dynamic output feedback protocol without fault
recovery.
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Figure 4.31: Total performance index for dynamic output feedback protocol without fault recovery.

As in Figures 4.29 - 4.31, when severity of fault increases, the performance indices worsen.
Therefore, in order to have a better idea of the effect of fault, the detailed results for the worst case
scenario (float fault) are shown in Figures 4.32 - 4.45.
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Figure 4.32: State estimation of state 1 for dynamic output feedback protocol without fault recov-
ery (float fault).

Figure 4.33: State estimation of state 2 for dynamic output feedback protocol without fault recov-
ery (float fault).

140



Figure 4.34: State estimation of state 3 for dynamic output feedback protocol without fault recov-
ery (float fault).

Figure 4.35: State estimation of state 4 for dynamic output feedback protocol without fault recov-
ery (float fault).
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Figure 4.36: Controller state 1 for dynamic output feedback protocol without fault recovery (float
fault).

Figure 4.37: Controller state 2 for dynamic output feedback protocol without fault recovery (float
fault).
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Figure 4.38: Controller state 3 for dynamic output feedback protocol without fault recovery (float
fault).

Figure 4.39: Controller state 4 for dynamic output feedback protocol without fault recovery (float
fault).
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Figure 4.40: Control input signal u1(t) for dynamic output feedback protocol without fault recovery
(float fault).

Figure 4.41: Control input signal u2(t) for dynamic output feedback protocol without fault recovery
(float fault).
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Figure 4.42: Consensus achievement of state 1 for dynamic output feedback protocol without fault
recovery (float fault).

Figure 4.43: Consensus achievement of state 2 for dynamic output feedback protocol without fault
recovery (float fault).
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Figure 4.44: Consensus achievement of state 3 for dynamic output feedback protocol without fault
recovery (float fault).

Figure 4.45: Consensus achievement of state 4 for dynamic output feedback protocol without fault
recovery (float fault).

146



As it can be seen in Figures 4.32 - 4.45, when float fault occurs, the synchronization is not
achieved any more and therefore the controller gain should be redesigned. The divergence of the
state’s and controller’s states is due to the use of state estimation results. The states estimation
diverges as the nominal control input matrix does not hold after fault occurrence.

Assuming that the effectiveness factor of the faulty agent 1 is available, its post-fault control
gain is designed as

K
′
1 =

⎡⎢⎢⎢⎢⎢⎣ 0 0 0 0
5.7773 −5.7613 −4.8690 22.9602

⎤⎥⎥⎥⎥⎥⎦ (4.40)

The simulation results with fault recovery are presented in Figures 4.46 - 4.59. Simulations
results show that by redesigning the control gain after fault occurrence the synchronization could
still be achieved.

Figure 4.46: State estimation of state 1 for dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.47: State estimation of state 2 for dynamic output feedback protocol with fault recovery
(float fault).

Figure 4.48: State estimation of state 3 for dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.49: State estimation of state 4 for dynamic output feedback protocol with fault recovery
(float fault).

Figure 4.50: Controller state 1 for dynamic output feedback protocol with fault recovery (float
fault).
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Figure 4.51: Controller state 2 for dynamic output feedback protocol with fault recovery (float
fault).

Figure 4.52: Controller state 3 for dynamic output feedback protocol with fault recovery (float
fault).
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Figure 4.53: Controller state 4 for dynamic output feedback protocol with fault recovery (float
fault).

Figure 4.54: Control input signal u1(t) for dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.55: Control input signal u2(t) for dynamic output feedback protocol with fault recovery
(float fault).

Figure 4.56: Synchronization of state 1 for dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.57: Synchronization of state 2 for dynamic output feedback protocol with fault recovery
(float fault).

Figure 4.58: Synchronization of state 3 for dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.59: Synchronization of state 4 for dynamic output feedback protocol with fault recovery
(float fault).

4.6 Dynamic Output Feedback Synchronization Protocol Sub-

ject to the LOE/Float Fault

In this section, to achieve synchronization in presence of fault, a fully novel control approach is
proposed where it only employs a dynamic controller and no observer. It will be shown when there
is a LOE fault in the actuator, by applying this protocol, how the synchronization is affected.

Lemma 4.5. The dynamic protocol

ξ̇i(t) = (A + BK)ξi(t) + F
∑
j∈Ni

ai j(C(ξi(t) − ξ j(t)) − (yi(t) − y j(t)))

ui(t) = Kξi(t)

(4.41)

will synchronize the system (4.29) when the exact fault information is available.

where F ∈ Rn×n, and K ∈ Rn×n are designed such that IN−1 ⊗ A − (Lr + 1N−1.α
T) ⊗ FC and

A + BK are Hurwitz, and ξi(t) ∈ Rn is the controller’s state vector of the ith agent.
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Proof. The method proposed in this section employs only a dynamic controller. When a LOE fault

occurs in agent 1, the state-space representation of the controller changes to

ξ̇1(t) = (A + BK)ξ1(t) + F
∑
j∈N1

a1 j(C(ξ1(t) − ξ j(t)) − (y1(t) − y j(t))) =

(A + BK)ξ1(t) + FC
∑
j∈N1

a1 j((ξ1(t) − ξ j(t)) − (x1(t) − x j(t)))

u
f
1(t) = ΓKξ1(t)

(4.42)

where Γ represents the actuator effectiveness.

Let us define the new state variables of si = xi−ξi, which leads to the state-space representation

as follows:

ṡ1(t) = As1(t) + FC
∑
j∈N1

a1 j(s1(t) − s j(t)) + B(Γ − I)Kξ1

ṡi(t) = Asi(t) + FC
∑
j∈Ni

ai j(si(t) − s j(t))
(4.43)

By applying another change of variables as σi = s1 − si, we have

σ̇i(t) = ṡ1(t) − ṡi(t) =

Aσi(t) + FC
∑
j∈N1

a1 jσ j(t) + FC
∑
j∈Ni

ai j(σ j(t) − σi(t)) + B(Γ − I)Kξ1
(4.44)

Using the new state variables, the dynamics of the controller of the faulty agent 1 and the healthy

agents becomes

ξ̇1(t) = (A + BK)ξ1(t) − FC
∑
j∈N1

a1 j(σ j(t))

ξ̇i(t) = (A + BK)ξi(t) − FC
∑
j∈Ni

ai j(σ j(t) − σi(t))
(4.45)
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Moreover, by defining new state variables for controller’s states as νi = ξ1 − ξi we have

ν̇i(t) = ξ̇1(t) − ξ̇i(t) = (A + BK)(ξ1(t) − ξi(t)) − FC
∑
j∈N1

a1 j(s1(t) − s j(t))

+ FC
∑
j∈Ni

ai j(si(t) − s j(t)) =

(A + BK)νi(t) − FC
∑
j∈N1

a1 jσ j(t) + FC
∑
j∈Ni

ai j(σ j(t) − σi(t))

(4.46)

Finally, the augmented state-space representation of the entire system becomes as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̇(t)

ν̇(t)

ξ̇1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN−1 ⊗ A + (Lr + 1N−1.α
T) ⊗ FC 0 1N−1 ⊗ (Γ − I)K

−(Lr + 1N−1.α
T) ⊗ FC IN−1 ⊗ (A + BK) 0

−αT ⊗ FC 0 (A + BK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ(t)

ν(t)

ξ1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.47)

As we see, the synchronization of a group of agents under LOE fault is formulated as a stabi-

lization problem.

However, when there is no fault, (4.47) is reduced to a lower triangular matrix as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̇(t)

ν̇(t)

ξ̇1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN−1 ⊗ A − (Lr + 1N−1.α
T) ⊗ FC 0 0

(Lr + 1N−1.α
T) ⊗ FC IN−1 ⊗ (A + BK) 0

αT ⊗ FC 0 (A + BK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ(t)

ν(t)

ξ1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.48)

Equation (4.48) is a cascade of three subsystems with state variables as σ, ν, and ξ1. The first

subsystem is

σ̇(t) = (IN−1 ⊗ A − (Lr + 1N−1.α
T) ⊗ FC)σ(t) (4.49)

where F is designed in a way to make σ asymptotically stable. This equation is analogous to (3.7)

and therefore a similar methodology could be applied to make (4.49) stable. Under the fact that

σ(t) asymptotically goes to zero, the next two subsystems reduces to

ν̇(t) = (IN−1 ⊗ (A + BK))ν(t)

ξ̇1(t) = (A + BK)ξ1(t)
(4.50)

When K is designed such that A+BK is Hurwitz, both subsystems in (4.50) will be asymptotically
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stable. Finally, using the asymptotic stability results for ξ1, νi = ξ1 − ξi and σi = s1 − si, one can

easily show that ξ1 = ξi = ξ j = 0 and s1 = si = s j for all i, j ∈ N. Therefore, knowing si = xi − ξi,
it can be concluded that x1 = xi = x j for all i, j ∈ N. �

4.6.1 Simulation Results

In this section, the synchronization of autonomous underwater vehicles (AUVs) in the longitudinal
plane by having partial state information, using the measurement matrix (2.13), is investigated. For
the sake of simulation, the single-input model (3.53) is considered.

For simulations purposes, the control gain K and the observer gain F of equation (4.41) are
designed according to (4.51).

K =

⎡⎢⎢⎢⎢⎢⎣0.3320 −0.5650 1.0000 −3.7872
0.7908 0.6427 0.0061 1.1843

⎤⎥⎥⎥⎥⎥⎦

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3544 0.2186 0.3389
0.2176 0.1111 0.1051
0.1111 1.8092 −0.5332
0.1051 −0.5332 0.9565

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.51)

The simulation results of healthy scenario are shown in Figures 4.60 - 4.69.
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Figure 4.60: Controller state 1 for proposed dynamic output feedback protocol under healthy sce-
nario.

Figure 4.61: Controller state 2 for proposed dynamic output feedback protocol under healthy sce-
nario.
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Figure 4.62: Controller state 3 for proposed dynamic output feedback protocol under healthy sce-
nario.

Figure 4.63: Controller state 4 for proposed dynamic output feedback protocol under healthy sce-
nario.
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Figure 4.64: Control input signal u1(t) for proposed dynamic output feedback protocol under
healthy scenario.

Figure 4.65: Control input signal u2(t) for proposed dynamic output feedback protocol under
healthy scenario.

160



Figure 4.66: Synchronization of state 1 for proposed dynamic output feedback protocol under
healthy scenario.

Figure 4.67: Synchronization of state 2 for proposed dynamic output feedback protocol under
healthy scenario.
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Figure 4.68: Synchronization of state 3 for proposed dynamic output feedback protocol under
healthy scenario.

Figure 4.69: Synchronization of state 4 for proposed dynamic output feedback protocol under
healthy scenario.
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In Figures 4.70 - 4.72, the simulation results of the system subject to float and LOE faults are
shown. It is assumed that there is no fault detection and recovery module.

Figure 4.70: State performance index for proposed dynamic output feedback protocol without fault
recovery.
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Figure 4.71: Control input performance index for proposed dynamic output feedback protocol
without fault recovery.

Figure 4.72: Total performance index for proposed dynamic output feedback protocol without fault
recovery.
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As in Figures 4.70 - 4.72, when the severity of fault increases the performance indices worsen.
In order to know how sever the effect of fault is, detailed results for worst case scenario (float fault)
are shown in Figures 4.73 - 4.82.

Figure 4.73: Controller state 1 for proposed dynamic output feedback protocol without fault re-
covery (float fault).
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Figure 4.74: Controller state 2 for proposed dynamic output feedback protocol without fault re-
covery (float fault).

Figure 4.75: Controller state 3 for proposed dynamic output feedback protocol without fault re-
covery (float fault).
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Figure 4.76: Controller state 4 for proposed dynamic output feedback protocol without fault re-
covery (float fault).

Figure 4.77: Control input signal u1(t) for proposed dynamic output feedback protocol without
fault recovery (float fault).
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Figure 4.78: Control input signal u2(t) for proposed dynamic output feedback protocol without
fault recovery (float fault).

Figure 4.79: Synchronization of state 1 for proposed dynamic output feedback protocol without
fault recovery (float fault).
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Figure 4.80: Synchronization of state 2 for proposed dynamic output feedback protocol without
fault recovery (float fault).

Figure 4.81: Synchronization of state 3 for proposed dynamic output feedback protocol without
fault recovery (float fault).
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Figure 4.82: Synchronization of state 4 for proposed dynamic output feedback protocol without
fault recovery (float fault).

From equation (4.47), which covers the system subject to the LOE/float fault, it can be seen
that σ and ξ1 are independent from ν. Therefore, casting them together and designing K and F

such that the augmented system is stable, the entire system of (4.47) will stabilize as well.
As opposed to the faulty scenario, which requires K and F to be designed simultaneously,

under healthy conditions, K and F in equation (4.48) are designed separately. The simultaneous
design of K and F may make the design procedure more challenging.

As in the above simulation results, even after fault occurrence synchronization is achieved.
This shows that this method has a high robustness. However, the performance indices increase.
Therefore, to have a better performance, control gain redesign is required. In the following, the
simulation results for float fault and by redesigning the controller gain after fault occurrence have
been presented.

Simulation Results for a Reconfigured System

In order to have a better performance, redesign of the control gain is required. Therefore, the
control gain of the faulty agent (agent 1) after fault occurrence is obtained as
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Kf =

⎡⎢⎢⎢⎢⎢⎣ 0 0 0 0
0.8654 1.5632 −1.0000 6.6600

⎤⎥⎥⎥⎥⎥⎦ (4.52)

The simulation results for this case are presented in Figures 4.83 - 4.92 and the performance
indices are summarized in Tables 4.1 - 4.3.

Figure 4.83: Controller state 1 for proposed dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.84: Controller state 2 for proposed dynamic output feedback protocol with fault recovery
(float fault).

Figure 4.85: Controller state 3 for proposed dynamic output feedback protocol with fault recovery
(float fault).
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Figure 4.86: Controller state 4 for proposed dynamic output feedback protocol with fault recovery
(float fault).

Figure 4.87: Control input signal u1(t) for proposed dynamic output feedback protocol with fault
recovery (float fault).
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Figure 4.88: Control input signal u2(t) for proposed dynamic output feedback protocol with fault
recovery (float fault).

Figure 4.89: Synchronization of state 1 for proposed dynamic output feedback protocol with fault
recovery (float fault).
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Figure 4.90: Synchronization of state 2 for proposed dynamic output feedback protocol with fault
recovery (float fault).

Figure 4.91: Synchronization of state 3 for proposed dynamic output feedback protocol with fault
recovery (float fault).
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Figure 4.92: Synchronization of state 4 for proposed dynamic output feedback protocol with fault
recovery (float fault).

Table 4.1: Comparison of state performance indices between healthy case and the one subject to
the float fault.

PI X Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Network

No fault 23 32 11 9 12 17
No Recovery 49 39 17 15 17 27
With Recovery 6 47 5 3 33 21
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Table 4.2: Comparison of control input performance indices between healthy case and the one
subject to the float fault.

PI U Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Network

No fault 6 46 4 3 33 19
No Recovery 5 48 5 4 34 19
With Recovery 6 46 5 3 33 19

Table 4.3: Comparison of performance indices between healthy case and the one subject to the
float fault.

PI XU Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Network

No fault 29 78 15 12 46 36
No Recovery 54 88 22 19 52 47
With Recovery 38 82 17 14 47 40

As it can be seen that by recovering the fault, the states performance indices become more close
to the healthy case. However, the control input performance indices are almost the same as no-
fault and without fault-recovery scenarios. This is due to the fact that the control input performance
index is based on the signal fed to the system and not the one calculated by the controller.

4.7 Summary and Comparison of Three Output Feedback Syn-

chronization Methods

In the first part of this chapter, the output feedback synchronization by devising a dynamic control
protocol, and under healthy scenario has been addressed. The problem has been considered both
in absence and presence of noise as follows:

• Output feedback synchronization by devising a dynamic control protocol and Luenberger
observer in Section 4.1

• Output feedback synchronization by devising a dynamic control protocol and Kalman filter-
ing in Section 4.2

The second part of chapter covers faulty scenarios. First, in Section 4.4, a static protocol is applied
whose control gain matrix could be designed either by the approach of Section 4.4 or an iterative
LMI method [112]. The methodology of Section 4.4 under specific restrictive conditions has a
solution that may not always be satisfied. As opposed to this approach, to reach a solution, iterative
LMI method requires less conditions. However, it suffers from a heavy computational burden to
obtain a solution.
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Comparisons of equation (4.37) with equation (4.47), and in general the methodology of Sec-
tions 4.5 with the one in Section 4.6 show that the method described in Section 4.6 has less com-
putational effort. Particularly, the approach in Section 4.6 acquires only a dynamic controller and
not an observer. However, the one in Section 4.5 requires both dynamic controller and observer.
This significantly increases the order of the system, and consequently the computation’s burden.

As in simulation results of Section 4.6, which are summarized in Tables 4.1 - 4.3, our proposed
methodology is robust even with respect to the float fault (worst case scenario); however, the
method in Section 4.5 is not. The results of Section 4.5 when subject to a fault have been shown
in Figures 4.32 - 4.45. This shows that the protocol in equation (4.35) of Section 4.5, which is
adopted from the literature [36], is not robust. The reason is that the control protocol in equation
(4.35) employs the estimated states of an observer that uses the control input matrix information.
When a fault occurs, this information is not valid any more and therefore it leads to the states
estimation divergence. However, the protocol (4.41) of Section 4.6 is directly based on the output
information and therefore no faulty information is fed back to the controller.

However, when there is a need to redesign the controller gain and the fault information is
available, the methodology of Section 4.5 is preferred to the one in Section 4.6. The reason is that
the approach in Section 4.6 becomes complicated when there is a fault even with a known severity.
Particularly, when fault occurs the dynamics of σ and ζ1 in (4.47) are not independent any more.
Therefore, one should design K and F simultaneously to make both dynamics stable. However,
the methodology of Section 4.5 breaks the design procedure to two separate steps of designing the
observer gain H and the controller gain K (or Kd in faulty case).
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Chapter 5

Conclusions and Future Work

The main objective of this thesis is to investigate the synchronization protocols in networked multi-
vehicle systems of autonomous underwater vehicles. Fault-tolerant control of multi-agent systems
have barely been addressed in the literature and therefore the thesis focuses on it. The limited
papers in the literature of faulty scenarios cover the integrator systems, or leader-follower architec-
ture. However, this thesis and specifically the following contributions cover the marginally stable
linear systems in a leaderless platform, which has not been addressed in the literature.

In this thesis, fault-tolerant synchronization of autonomous underwater vehicles is addressed
under two main categories: (i) State feedback synchronization, and (ii) Output feedback synchro-
nization.

In the ”state feedback” synchronization scheme, in order to achieve consensus, the absolute
measurements of the AUV’s states are available. For the state feedback problem and by employing
a static protocol, it has been proven that the multi-agent system will synchronize in a stochastic
mean square sense in the presence of noise. In order to decrease the high variation of control input
and the synchronization error, a Kalman filter estimates the states to be used in synchronization. It
has also been shown that the state feedback synchronization is achieved under certain conditions,
even when a LOE/float fault occurs, which is demonstrated in the employment of static protocol.
As one of the main contributions, our proposed methodology of PI controller is employed to syn-
chronize the team subject to the LIP fault. This is a fully novel approach that models the LIP
fault as a disturbance applied to the faulty system, and consequently to the augmented model of
the team. Finally, given that the fault (LOE/float) severity is known, our proposed methodology of
dynamic state feedback synchronization protocol has been applied.

In the ”output feedback” synchronization approach, first a dynamic control protocol has been
employed where it uses a Luenberger observer for the state estimation. Next, a Kalman filter
has been replaced the Luenberger observer for the state estimation when there is a noise, and the
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synchronization achievement in a stochastic mean-square sense has been proven. For LOE/float
fault, it has been proven that the static output feedback protocol under some specified conditions
can synchronize the system. Finally, two dynamic control methodologies are proposed. The first
approach, which is adopted from the literature, exploits both a dynamic controller and a dynamic
observer. However, our proposed methodology employs only a dynamic controller which has less
computational effort and is more robust subject to the fault.

To name a few future works, fault-tolerant synchronization subject to imperfect diagnosis could
be a challenging topic. This could happen in any stage of fault diagnosis including detection,
isolation, and identification. The imperfect diagnosis can show itself as no fault detection, delayed
fault detection, wrong fault isolation, delayed parameter identification convergence, bias and high
covariance of parameter estimation. The integration of FDD with synchronization algorithms is an
open research direction. In Appendix B, a preliminary formulation of this problem is discussed.

An alternative approach to deal with synchronization protocol when subject to LOE fault and
inexact FDD information is to formulate it as a trajectory following problem. In this method, using
a simple consensus protocol the agents agree on a trajectory that is the output of an exogenous
system whose dynamics is predetermined.

Another research directions is to investigate the complexities associated with the network topol-
ogy. The commonly used method for underwater communication is the acoustic channels which
is a practical method for a typical water clarity and long ranges. Regarding speed of sound in
underwater (approximately 1500 m/s), which is very low, there exist a large propagation delay and
a large motion Doppler effect. Therefore, the first step in this direction is to investigate which
type of time delays and for which class of linear systems, the synchronization problem has been
considered in literature. This could be extended to the synchronization of AUVs.

Finally, an interesting topic in the domain is to investigate the high bit-error probability in
underwater networks, and see how it should be modeled in state-space. One common way to
consider the bit-error probability is to model it as a random network.
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Appendix A

Fault Diagnosis

In this appendix, a detection observer in combination with a diagnosis observer is employed to
identify the fault severity. This approach could be used along with synchronization approaches to
keep the consensus of the network subject to fault.

• Detection Observer

The detection observer generates an alarm signal when a fault occurs in an agent. For this
propose, the following observer is constructed

˙̂xi(t) = Ax̂i(t) + Bx̂i(t) + L(ŷi(t) − yi(t)) (A.1)

Let us define ei(t) = x̂i(t) − xi(t) and therefore

ėi(t) = ˆ̇xi(t) − ẋi(t) =

Ax̂i(t) + Bui(t) + L(ŷi(t) − yi(t)) − Axi(t) − γBu(t) =

(A + LC)ei(t) + (1 − γ)Bu(t)

(A.2)

Assuming that the pair (A,C) is detectable, the matrix L could be designed in a way that
A+ LC is Hurwitz. Therefore, when there is no fault ei(t) will go to zero. However, in a case
of faulty system, ei(t) will be non zero. It is to be noted that this is a local observer. In other
words, it only uses the local agent’s information.

• Diagnosis Observer
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In order to identify the fault after its detection, a diagnosis observer can be used as

ẋmi(t) = Axmi(t) + γ̂Bui(t) + L(ymi(t) − yi(t))

= Axmi(t) + γ̂Bui(t) + LC(xmi(t) − xi(t))
(A.3)

Defining emi(t) = xmi(t) − xi(t), we will have

ėmi(t) = ẋmi(t) − ẋi(t) =

Axmi(t) + γ̂Bui(t) + LCemi(t) − Axi(t) − γBui(t) =

Aemi(t) + (γ̂ − γ)Bui(t) + LCemi(t) =

(A + LC)emi(t) + γ̃Bui(t)

(A.4)

and therefore,

εmi(t) = Cemi(s) = C(S I − A − LC)−1γ̃Bui(t) =

γ̃w1(s)u(t)
(A.5)

Equation (A.5) is in the standard format of the error equations widely used in adaptive control.
Therefore, the adaptive updating laws used in adaptive control can be directly applied to tune γ̃ as

˙̃γ = −� εmi(t)ς(t)
1 + ς(t)′ς(t)

(A.6)

when ς(t) = w1(s)u(t) is stable, the above tuning rule realizes a bounded γ̃, and ˙̃γ ∈ L2. � > 0
is a pre-specified gain that defines the tuning rate. It is well known that a persistently exciting
signal u(t) can improve the accuracy of the estimation and therefore we may need to modify it.
However, this may not be feasible or it may cause a problem in practical systems. In this case, an
exponentially decaying persistent signal should be used to improve the accuracy of the adaptive
diagnosis algorithm. Finally, when γ̂ → γ, one can redesign the controller gain.
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