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ABSTRACT 

Hub Location Problems (HLPs), belonging to the field of location theory, have been 

area of much research over the past two decades. This is due, in large measure, to 

the applications of hub and spoke networks in practice. Among the most classical 

versions of HLPs are 𝑝-hub location problems (𝑝-HLPs), p-hub location problems 

are one of the most well studied variants of hub location literature. The primary goal 

of these models is to allocate 𝑝 hub facilities in a hub and spoke network so as to 

concentrate flows (demands) to benefit from economies of scale in cost of 

transportation. The application of p-hub networks extends beyond the field of 

telecommunication and includes air freight systems, postal delivery systems and 

airline industries and several transportation related systems. 𝑝-HLPs constitute a 

challenging class of HLPs and are known to be NP-hard. Several solution 

approaches have been developed from exact solutions using integer programming 

techniques to the development of metaheuristics. Even though metaheuristic 

algorithms cannot guarantee optimality, given complexity of large scale HLPs, they 

are being used for solving these problems. In this thesis, we focus on the multiple 

allocation uncapacitated p-hub location problem. Four solution algorithms will be 

proposed to this problem for solving the Australian Postal (AP) data instances. We 

start with a very simple algorithm and continue with more complicated one in order 

to present an efficient high quality feasible solution and to assess the impact of the 

quality of initial feasible solution on local improvement phase.  Computational 

results from the different algorithms were compared to exact solutions to track the 

efficiency of the proposed algorithms.  
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CHAPTER 1: Introduction 

The problem of locating facilities in a manner so that they effectively serve a set of 

clients has been the subject of much research. The study of location theory formally 

began in early 1920’s when Alfred Weber considered how to position a single 

warehouse so as to minimize the total distance between it and several customers 

(Kuhn, 1955). Following this initial investigation, location theory was driven by a 

few applications which inspired researchers from a range of fields. Location theory 

gained a renewed interest in 1964 with a publication by Hakimi (1964), who sought 

to locate switching centers in a communication network and police stations in a 

highway system. To do so, Hakimi (1964) considered the more general problem of 

locating one or more facilities on a network so as to minimize the total distance 

between customers and their closest facility or to minimize the maximum distance. 

Facility location is a critical aspect of strategic planning for a broad spectrum of 

public and private firms.  

Hub location research became an important area of location theory over the past 

two decades. This is because of the frequent employment of hub and spoke 

networks in modern transportation and telecommunication systems. These 

systems serve demand for travel or communication between many origins and 

many destinations, where economies of scale exist in the cost for such travel or 

communications (Campbell et al. 1996). The key feature of these systems is in the 

way demand is routed; rather than routing every demand with a direct link from its 

origin and destination points, demand is routed via specific subset of links namely 

called hub and spoke network (as shown in Figure 1). 
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Figure 1.Routed Network with hub (right) and without hub (left) 

The use of fewer links concentrates flows and allows economies of scale to be 

exploited. Given this, hub location problems involve locating hub facilities and 

designing hub networks (Campbell et al., 2002). The locations of the hubs as well 

as the paths for sending the flows between the origin-destination pairs are the 

most important decisions to this problem. Once designed, such a network allows a 

large set of origins and destinations to be connected with a relatively few links, via 

central hub facilities. In short, HLPs consist of locating hubs on a network so as to 

minimize the total flow cost (Contreras et al., 2011a). 

Transportation applications of hub location models include air passenger travel, 

air freight travel, express shipments, large trucking systems, postal operations and 

rapid transit systems (Campbell & O’Kelly, 2012). Due to their multiple applications, 

beginning with the pioneering work of O’Kelly (1986), these problems have 

received an increasing attention in literature. Solution methods have been 

developed for several variants of HLPs, such as uncapacitated hub location, 𝑝-hub 

location, 𝑝-hub center, and hub covering (Campbell & O’Kelly, 2012). For each of 

these classes of problems, there exist several variants arising from various 

assumptions, such as hub capacities or a specific topological structure to the hub-
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and-spoke network. The reader is referred to Campbell and O’Kelly (2012) and 

Alumur and Kara (2008) and a recent survey on HLPs by Zanjirani Farahani et al. 

(2014) and Contreras (2015). 

Among all these classes of HLPs, the 𝑝-hub median problem and its variants have 

been comprehensively studied and addressed in recent research on HLPs. The 𝑝-

hub median problem is a fundamental discrete hub facility location and hub 

network design problem analogous to the 𝑝-median problem (Campbell 1996). The 

solution of 𝑝-hub median problems is a (connected) network in which 𝑝(𝑝 − 1)/2 

(undirected) hub arcs connect all hub pairs, and the remaining access arcs connect 

nodes to hubs. A growing body of research has addressed both single allocation 

hub median problems, in which each non-hub node is incident with exactly one 

access arc, and multiple allocation hub median problems, in which non-hub nodes 

may be incident with more than one access arc(as shown in Figure 2). 

 

 

Figure 2.A schematic comparison of Multiple Allocation and Single Allocation Hub Networks. Single Allocation Hub-and-
spoke Network (Left), Multiple Allocation Hub-and-spoke Network(right). 

 

Several variants of 𝑝-Hub Location Problems (𝑝-HLPs) have been studied in 

literature. The difference comes from single and multiple allocations of non-hub 



- 4 - 
 

nodes to hubs and also the capacity of hub nodes if considered. One of the 

assumptions in hub location problems is to encourage concentration of flows 

between all hubs by providing a discounted unit flow cost; the discount factor 𝛼, 

0 <  𝛼 <  1 that has been applied to the transportation cost of the flows between 

any pair of hubs.  

HLPs are among challenging classes of NP-Hard combinatorial optimization 

problems combining decisions on location and network design. This is a difficult 

class of problems in operation research and many people have developed different 

formulations and solution algorithms. 

Sohn and Park (1998) prove that the single allocation problem is NP-hard for 

three or more hubs. As even the most basic hub location problems are NP-hard, it 

is hardly surprising that many of the solution techniques suggested for the various 

models are heuristics. This includes several metaheuristics such as Greedy 

heuristics, Tabu Search, Simulated Annealing, Genetic Algorithm and GRASP 

(Greedy Randomized Adaptive Search Procedures). The effectiveness of these 

methods depends on their ability to avoid entrapment at local optimality, and 

exploit the basic structure of the problem, such as a network or a natural ordering 

among its components. Building on these notions, various heuristic search 

techniques have been developed that have demonstrably improved our ability to 

obtain good solutions to difficult combinatorial optimization problems. 

Consequently, these problems are challenging and many people have been 

focusing on the development of an efficient formulation both exact and 

approximate solution methodology. In this thesis we will focus and study the 

multiple allocation uncapacitated 𝑝-hub location problem. 
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The contribution of this thesis is in the development of a GRASP metaheuristic 

for finding good quality feasible solutions for this specific problem. In addition, we 

compare different constructive algorithms that can be later embedded into local 

improvement methods and report the computational result. Meaning that, we 

compare the results on the performance of each constructive heuristic algorithm 

in order to measure the efficiency of the proposed Greedy function. 

 We have four constructive algorithms; they differentiate the fact that some of 

them have preprocessing steps which are removing some candidate nodes that 

seem not beneficial. Eventually, the computational results prove the efficiency of 

the algorithm and reach optimal solutions for most of the instances. Given this, the 

prime focus is to obtain an optimal solution to all considered instances (up to 250 

nodes or more) within reasonable CPU times. 

This thesis is organized as follows. In Chapter 2, a literature review of HLPs is 

presented. In Chapter 3, we define and describe the problem of this thesis and 

present a mathematical formulation and assumptions considered for multiple 

allocation uncapacitated 𝑝-hub location problem. In Chapter 4, solution algorithms 

for this problem are presented. We introduce a local improvement technique for 

our heuristic algorithms, and we next present our GRASP metaheuristic. The results 

of computational experiments and an analysis of the proposed GRASP 

metaheuristic are presented in Chapter 5. Finally, in Chapter 6, concluding remarks 

and future research avenues are provided. 
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CHAPTER 2: Preliminaries 

The HLPs consist of locating a set of hubs and assigning a of the origins-destinations 

pairs to the selected hubs. HLPs were originally introduced by O'Kelly (1986a) 

together with real life examples. These systems serve demand for travel or 

communication between many origins and destinations, where economies of scale 

exist in the cost for such travel or communications (Campbell et al. 2002). Hub and 

spoke networks rather than routing every demand with a direct link from its origin 

to destination points, use a set of fewer links to route these demands. The use of 

fewer links concentrates flows and allows economies of scale to be exploited.  

A vast literature has focused on developing good formulations for these classes 

of HLPs. To represent a wide range of HLPs, operations research practitioners have 

developed a number of mathematical programming formulations and models. 

Different objective functions have been proposed to make such models amenable 

to numerous applications. The first integer programming formulation proposed for 

HLPs is a quadratic model (O’Kelly, 1987). Quite a while, the literature focused on 

the linearization of the quadratic model proposed (Aykin, 1995; Campbell, 1996; 

Ernst and Krishnamoorthy 1996; O’Kelly et al. 1996b; Skorin-Kapov et al. 1996). In 

addition to the integer programming formulation, two heuristic approaches are 

presented in O’Kelly (1987). The first one, which is also called as ‘nearest hub 

allocation rule’, basically investigates allocating each node to the nearest hub while 

the later investigates the idea of assigning each non-hub node to either its first or 

second nearest hub. These heuristics are generally quite effective in providing good 

upper bounds during complete enumeration of hub locations.  
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We next review some relevant literature on hub location problems classified 

into four groups: hub location problem with fixed costs, 𝑝-hub center problem, hub 

covering problem and 𝑝-hub median problem.  

2.1. p-Hub Median Problem 

The p-hub Location problem is a fundamental discrete hub facility location and hub 

network design problem (Campbell 1996). The selection of p hub nodes and 

assigning the remaining origin/destination nodes to these hubs are the most 

challenging decisions in p-hub median problems where the objective to 𝑝-hub 

median problems is to minimize the total transportation cost of routing 

commodities through the network. Several variants of the 𝑝-HLPs arise from single 

and multiple allocations and capacity constraints. The solution of a p-hub median 

problem is a (connected) network in which 𝑝(𝑝 − 1)/2 (undirected) hub arcs 

connect all hub pairs, and the remaining access arcs connect nodes to hubs. A 

growing body of research has addressed both single allocation hub median 

problems, in which each non-hub node is incident with exactly one access arc, and 

multiple allocation hub median problems in which non-hub nodes may be incident 

with more than one access arc (Campbell et al., 2002).  

Campbell (1994b) provides the first linear integer programming formulation for 

the p-hub median problem together with mathematical formulations for the hub 

location problem with fixed costs, the p-hub center and the hub covering problem. 

O'Kelly (1986b) provides the first quadratic integer programming formulation for 

the p-hub median problems. Skorin-Kapov et al. (1996) present new formulations 

for both single and multiple allocation p-hub median problems with tighter LP 

relaxations. Similar to all classes of hub location problems, one of the assumptions 
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in p-hub location problems is also to encourage concentration of flows between all 

hubs by providing a discounted unit flow cost; the discount factor 𝛼, 0 <  𝛼 <  1  

that has been applied to the transportation cost of the flows between any pair of 

hubs. 

Several efficient solution methodologies have been proposed for both single 

and multiple allocation 𝑝-hub location problems. The first approximate algorithm 

for the p-hub median problem was proposed by O'Kelly (1986b). He develops an 

enumerative based heuristic that searches all possibilities of p hub selection and 

uses nearest hub for assignment of non-hubs to hub nodes. Klincewicz (1991) 

develops exchange heuristics for the single allocation 𝑝-hub median problem. 

These heuristics are compared with a clustering heuristic and heuristics developed 

in O’Kelly (1986b).  

There are also several other heuristics such as tabu search and for single and 

multiple allocation 𝑝-HLPs that outperform the earlier heuristics Klincewicz (1992). 

Skorin-Kapov and Skorin-Kapov (1994) propose another tabu search that 

outperforms the previous heuristics in terms of the incumbent value but is weaker 

in terms of computational time. Several other heuristics have also been developed 

to obtain good quality solutions to larger instances of p-hub median problems. 

Ernst and Krishnamoorthy (1996) develop a simulated annealing metaheuristic for 

𝑝-HLPs that outperforms the tabu search presented in Skorin-Kapov and Skorin-

Kapov (1994). This work is one of the earliest successful attempts in obtaining good 

quality solutions to 𝑝-hub median problems. Later, Pirkul and Schilling (1998) use 

Lagrangian relaxation for obtaining better lower bounds to 𝑝-hub median 

problems. They present a subgradient algorithm to obtain lower bounds and good 

quality feasible solutions. 
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Note that in multiple allocation classical HLPs, the allocation decisions are trivial 

once the location of hubs are fixed. That is, each pair of nodes sends flows via the 

shortest path in the given hub network. This idea was first presented and employed 

in Ernst and Krishnamoorthy (1998a).  Sasaki et al. (1999) consider the 1-stop 

multiple allocation p-hub median problem which is a special case of the p-HLPs 

where they allow using at most one hub in routing flows from origin to destination 

points. They formulate the model as a p-hub median problem and propose two 

solution algorithms, a branch and bound and a greedy type algorithm.  Milanovic 

(2010) propose a new evolutionary based algorithm for uncapacitated multiple 

allocation 𝑝-HLPs. In another work, Garcia et al. (2012) propose new formulations 

and a branch and cut algorithm for this problem. Kratica (2013) develops an 

electromagnetism-like metaheuristic for the uncapacitated multiple allocation 𝑝-

HLP. Some other authors also study the allocation strategies in HLPs (Yaman, 2011). 

Peiro et al. (2014) study r-allocation 𝑝-HLPs where the number of hub nodes to be 

assigned to each nonhub does not exceed 𝑟 in routing of commodities. 

2.2. Hub Location Problem with Fixed Costs 

The 𝑝-hub median problem aims to minimize only the transportation costs and 

does not take fixed cost of opening hub facilities into consideration. However, 

these fixed setup costs might be included in the objective function by defining a 

decision variable that represents the decision of opening hub facilities. In 𝑝-hub 

median problems, the number of hubs to open is fixed and given. In the hub 

location problems with fixed costs, however, the number of hubs to be established 

is not specified in advance and is a decision to the model. Therefore, the model will 

decide the number of hubs to open, which nodes to choose as hubs, and the 
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allocation of the non-hub nodes to the selected hubs such that the total 

transportation and setup cost is minimized. O’Kelly (1992) introduces the single 

allocation version of this problem to the literature and develops a quadratic integer 

programming formulation. As previously mentioned, Campbell (1994b) provides 

the first linear programming formulations for both single and multiple allocation 

types of the problem as well as capacitated and uncapacitated versions. In the 

capacitated version of this problem, the capacity restrictions are on the inbounding 

flow carried by each hub. 

2.3. p-Hub Center Problem 

The p-hub center problem is modeled as minimax optimization problem and its 

objective might be either minimizing the maximum cost or the maximum travelling 

time between any origin destination pair. The center problems have important 

applications such as locating emergency service facilities and vehicles. When the 

objective of the 𝑝-hub center problem might be to minimize the maximum 

travelling time between each origin destination pair, the decisions of the problem 

are the locations of 𝑝 hubs and the assignment of other nodes to these hubs so that 

the maximum travelling time between origin-destination pairs is minimized. The 

first formulation for the 𝑝-hub center problem is proposed by Campbell (1994b). 

Although the original formulation is quadratic, a linearization of this model is also 

presented in the paper. Kara and Tansel (2000) study the 𝑝-hub center problem 

and provide three different linearization of the formulation in Campbell (1994b). 

They include a new formulation for the p-hub center problem and the linearization 

of this formulation outperforms all the linearization of the previous model of 

Campbell (1994b). 
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There are only a few exact and approximate algorithms for 𝑝-hub center problem 

among which are tabu search for the single case Pamuk and Sipil (2001) together 

with a demonstrative computational experiment. In a subsequent work, Ernst et al. 

(2009) present mixed integer programming formulations for problems with single 

and multiple allocation variants and propose a branch-and-bound approach for 

solving the multiple allocation case. Kara and Tansel (2001) analyze an interesting 

aspect of 𝑝-hub center problem by considering some operational-level constraints, 

in a plane scheduling set, where planes cannot leave until all planes arriving at the 

hub have arrived and call it latest arrival hub location problem. This work was later 

questioned by Wagner (2004) where he shows this "new" model is the same as the 

classical model that ignores the transient times (or waiting times). Later, Yaman et 

al. (2007) extend the latest arrival hub location problem by allowing stopovers 

between non-hubs and hubs meaning a route from a non-hub to a hub may include 

a visit to another non-hub node. Campbell et al. (2007) considers the single and 

multiple allocation of 𝑝-hub center problem and illustrates that several special 

cases of these problems can be solve in polynomial time.  

2.4. Hub Covering Problem 

In covering problems, some cost or time parameters are restricted to a specified 

value due to the resource limitations or for customer satisfaction (Campbell et al., 

2002). Some variations of the hub covering problem might be minimizing the total 

cost under the restriction of the travelling time for any origin-destination pair, or 

minimizing the number of facilities opened by restricting the travelling cost of each 

origin-destination pair. The objective of the hub covering problem might be to 

minimize the number of hubs to open so that the total transportation cost is within 
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a specific value. Then the model needs to decide the number and location of the 

hubs together with the allocation of non-hub nodes to these selected hubs. 

Moreover, the objective of the hub covering problem might also be to minimize the 

total cost as well. When we consider the cargo delivery systems, the firms might 

want to establish a network structure that will enable service for each origin-

destination pair in certain time period, say 24 hours, with minimum total cost (cost 

of transportation and operating hubs).The first Mixed Integer Linear Programming 

formulation (MIP) for the hub covering problem is developed by Campbell (1994b), 

which mainly studies the hub set-covering problem and the maximal hub-covering 

problem.  

Campbell (1994b) defines coverage based on several criteria. Let 𝑖 and 𝑗 to be 

origin-destination points and 𝑘 and 𝑚 to be hubs. By his proposal, origin-

destination pair is covered if (i) the cost of routing a commodity from 𝑖 to 𝑗 through 

𝑘 and 𝑚 does not exceed a pre-specified value, (ii) the cost of each link in the 

described path does not exceed a pre-specified value, and (iii) each access links 

(𝑖, 𝑘)  and (𝑚, 𝑗) are less than a separate specific values. After presentation of hub 

set and hub maximal covering problem with single and multiple allocation by 

Campbell (1994b), Kara and Tansel (2003) and Wagner (2008) provide MIP 

formulation to 𝑝-hub covering problem.   

 The first category of hub covering problems is hub set covering problem. This 

problem is very similar to the well-known set covering problem but only differs in 

terms of the hub network topology. This problem is formulated like 𝑝-hub median 

problems while the number of hubs to be located is not known in advance. In fact, 

the hub set-covering problem tries to locate hubs to cover all demand such that the 

set-up cost of hub facilities is minimized. The maximal hub-covering problem, 
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however, maximizes the demand covered with a given number of hubs to locate.  

That is, it strives to locate a given number of facilities to best meet the (weighted) 

demands. Unlike first version of hub covering problems, the number of hubs to be 

located is known to maximal hub-covering model and the objective is again to 

maximize transportation demand covered.  Note also that, in the hub set covering 

formulation, because all of the demands must be met (covered) regardless, the 

relative weight of the demands generated by the existing facilities are 

inconsequential, whereas in the maximal hub covering objective some existing 

demands may be left unmet (uncovered), meaning   the designed network might 

not be, and most often is not, able to provide service to all demand points. This 

could be one of the weaknesses of this model and might also be one of the reasons 

this model have not attracted a significant attention in literature. 

 

2.5. Metaheuristic Algorithms 

Most of the discrete optimization problems cannot be solved to optimality for 

realistically sized instances. In computer science, metaheuristic designates a 

computational method that optimizes a problem by iteratively trying to improve a 

candidate solution with respect to a given measure of quality namely the objective 

function value. Metaheuristics do not guarantee to find an optimal solution. The 

effectiveness of these methods depends upon their ability to adapt to a particular 

realization, avoid entrapment at local optima, and exploit the basic structure of the 

problem, such as a network or a natural ordering among its components. Building 

on these notions, various heuristic search techniques have been developed that 

have demonstrably improved our ability to obtain good solutions to difficult 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
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combinatorial optimization problems.  Among the most promising and successful 

algorithms are Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), 

Scatter Search (SS), Path Relinking (PR), and Greedy Randomized Adaptive Search 

Procedure (GRASP). 

 A Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start 

process in which each iteration includes two phases, (i) a greedy randomized 

construction phase and (ii) a local search procedure. During the construction, a 

feasible solution is generated, and in the local search procedure provides a local 

optimum for the neighborhood of the constructed solution (Feo and Resende, 

1995). Finally, at each iteration, the best overall solution (incumbent solution) will 

be kept if it improves objective function (as shown in following pseudo code). 

 

 

Algorithm 1. Grasp   
𝒘𝒉𝒊𝒍𝒆 ( 𝑘 ≤ 𝑚𝑎𝑥𝑖𝑡𝑟 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑){ 

Construct a feasible solution 

Improve the obtained solution 

}𝒆𝒏𝒅𝒘𝒉𝒊𝒍𝒆 

 

 

This procedure is repeated for maxitr times (maxitr is large enough). Repeated 

applications of a construction procedure yield diverse starting solutions for the 

local search. In the construction phase, a feasible solution is iteratively constructed, 

by adding one element at a time. The basic GRASP construction phase is similar to 

the semi-greedy heuristic proposed independently by Hart and Shogan (1987). 

The choice of the next element to be added, at each construction phase, is 

determined by ordering all candidate elements in a candidate list 𝐶 with respect to 

a greedy function 𝑔: 𝐶 → 𝑅. The greedy function 𝑔 measures the benefit of 
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selecting that particular element. The GRASP heuristic is called adaptive for the 

benefits associated with every element that is updated at each iteration of the 

construction phase to reflect the changes brought on by the selection of the 

previous element. One of the main drawbacks of the deterministic greedy 

procedure is that it suffers from lack of diversity at construction phase as its tends 

to construct feasible solutions that yield one local optimal. To avoid this local 

optimality, a random element has been added to enable larger area of feasible 

region to be explored. 

The probabilistic component of a GRASP is characterized by randomly choosing 

one of the best candidates in the list that is not necessarily the top candidate. The 

list of best candidates is called the Restricted Candidate List (RCL). The RCL is chosen 

based on the value of 𝜔 at each iteration. This selection technique allows different 

solutions to be obtained at each iteration of GRASP algorithm. The parameter 

𝜔 controls the amount of greediness and randomness in the algorithm where 𝜔 =

0 corresponds to deterministic greedy construction procedure, while 𝜔 = 1 

produces random construction. 
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CHAPTER 3: Uncapacitated Multiple Allocation p-Hub Location Problem 

In this chapter we will provide the formal definition of the problem. Moreover, we 

provide the mathematical formulation for the problem. 

3.1. Problem definition 

Let 𝐺 = (𝑁, 𝐴) to be an undirected graph where 𝑁 = {1,2, … , 𝑛} corresponds to 

set of nodes and 𝐴 = {1, 2, … , 𝑎}  represents the set of arcs in the network. 

Considering the general setup of the hub location problems, n points (origins and 

destinations), the flow 𝑊𝑖𝑗  and the per unit transportation cost 𝑑𝑖𝑗  from origin 𝑖 to 

destination 𝑗, and the discount factor α for hub-to-hub transportation are given. 

The unit transportation cost from origin 𝑖 to destination 𝑗 via hubs 𝑘 and 𝑙 is 

denoted by (𝑑𝑖𝑘 + 𝛼𝑑𝑘𝑚 + 𝑑𝑚𝑗). Then the total transportation cost from origin 𝑖 

to destination 𝑗 via hubs 𝑘 and 𝑚 is: 

 

𝐹𝑖𝑗𝑘𝑚 = 𝑊𝑖𝑗 × (𝑑𝑖𝑘 + 𝛼𝑑𝑘𝑚 + 𝑑𝑗𝑚).  

 

The multiple allocation 𝑝-hub median problem consists of locating 𝑝 hubs. In 

this problem, the hub level network is complete and that no non-hub nodes cannot 

be connected directly.  

3.2. MIP Formulation 

We next present a MIP formulation for the multiple allocation uncapacitated 𝑝-hub 

problem.  We introduce our first set of binary routing variables 𝑋𝑖𝑗𝑘𝑚 to be 1 if and 

only if flow from node 𝑖 to node 𝑗 is routed by hubs 𝑘 and 𝑚 and the second binary 

location variables 𝑍𝑘 to be 1 if and only if node 𝑘 ∈  N is a hub node. Using these 
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binary decision variables, the Multiple Allocation 𝑝-Hub Location Problem can be 

formulated as (Campbell, 1994b): 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆                    ∑ ∑ ∑ ∑ 𝐹𝑖𝑗𝑘𝑚𝑋𝑖𝑗𝑘𝑚

𝑚𝜖𝑁𝑘𝜖𝑁𝑗𝜖𝑁 𝑖𝜖𝑁

                                                    (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   ∑ 𝑍𝑘

𝑘𝜖𝑁

= 𝑝                                                                                            (2) 

∑ ∑ 𝑋𝑖𝑗𝑘𝑚

𝑚𝜖𝑁𝑘𝜖𝑁

= 1     ∀    𝑖, 𝑗 ∈ 𝑁                                                   (3) 

∑ 𝑋𝑖𝑗𝑘𝑚

𝑚𝜖𝑁

≤ 𝑍𝑘         ∀    𝑖, 𝑗, 𝑘 ∈ 𝑁                                               (4) 

∑ 𝑋𝑖𝑗𝑘𝑚

𝑘𝜖𝑁

≤ 𝑍𝑚         ∀    𝑖, 𝑗, 𝑚 ∈ 𝑁                                             (5) 

𝑋𝑖𝑗𝑘𝑚 ≥ 0                    ∀    𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁                                         (6) 

𝑍𝑘 ∈ {0,1}                    ∀   𝑘 ∈ 𝑁                                                      (7) 

The objective (1) is to minimize the total cost of routing flows between origins and 

destinations via hub nodes and/or hub arcs. Constraints (2) imposes that there are 

𝑝 hub nodes allowed to be established in the network. Constraint (3) is to 

guarantee a path through at least one or at most two hubs. Constraint (4) and (5) 

are making sure that no flow is routed via non hub nodes and non-hub arcs. Finally, 

constraints (6) and (7) are non-negativity and binary constraints. The 𝑋𝑖𝑗𝑘𝑚 

variables, even though have a binary interpretation, can be defined as nonnegative 

continuous variables and the formulation will enforce them to take a binary value. 

This is a consequence of the fact that there are no capacity constraints on the hubs. 
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𝑝-Hub median problems belong to the class of NP-Hard combinatorial 

optimization problems combining location and network design decisions. The 

computational hurdle imposed by complex hub location formulations has limited 

most research in this area to small to medium size problems. As even the most 

basic hub median problems are NP-hard, many of the solution techniques 

suggested for HLPs are heuristics.  
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CHAPTER 4: Solution Algorithms for MApHLP 

4.1 Constructive Heuristics  

In this chapter we present 4 different constructive heuristic algorithms that will 

provide an initial feasible solution for this problem that later would be improved 

by using local improvement technics. Each of these algorithms is based on different 

procedure.  One of these solutions is deterministic, two of them are randomized 

and one of them is adaptive randomized. 

4.1.1 Fully Randomized 

In this algorithm we observe the results by choosing candidates in fully randomized 

form. To do so, all hub candidates were chosen completely random. Meaning 

𝑝 nodes are chosen randomly and they assigned as hubs. At this stage for every 𝑖 

as an origin node and 𝑗 as a destination node, we have to find the best routing. The 

rout from 𝑖 has to pass either one hub or maximum two hubs and then links to 𝑗. 

The reason that the rout has to pass maximum two nodes is based on the triangular 

inequality that would be satisfied by having our rout passing maximum two hub 

nodes. Figure 3 illustrates the above fact where 𝑖, 𝑗 are origin and destination 

nodes, and 𝑘, 𝑙, 𝑚 are hub nodes. 

lk

i

m

j  

lk

i

m

j  

Figure 3. Straight vs. triangle connection  
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 Consequently, connections are made and the shortest path is chosen for every 

𝑖 and 𝑗. Finally, the objective function is calculated.  

Let Hs represent the set of open hubs, Esdenote the set of open hub-arcs and 

S = (Hs, Es). We define 𝑉 as the set of nodes that is equal to 𝑁 and updates 

according to the algorithm criteria in every iteration. Using these notations we 

present the pseudo code for fully randomized algorithm as follow: 

 

Algorithm 2. Construction phase of Fully Randomized heuristic to MApHLP 

Initialization 

𝑯𝒔 =  ∅, 𝑅𝐶𝐿 = ∅, UB=0, V=N; 

while(|𝐻𝑠| ≠ 𝑝 ) do 

𝑅𝐶𝐿 = 𝑉  
Select randomly 𝑘 ∈ 𝑅𝐶𝐿 

𝐻𝑠 = 𝐻𝑠  ∪ {𝑘} 

𝑉 = 𝑉 − {𝑘}  

end while 

if (|𝐻𝑠| = 𝑝) 

Construct 𝐸𝑠 

Solve routing sub problem 

end if 

Evaluate objective function value𝑈𝐵 
` 

4.1.2 Greedy Deterministic 

In order to proceed with Greedy Deterministic algorithm, we should define our 

greedy function. The greedy function is based on the amount of flow that can be 

concentrated at every potential hub node which is originated (or with destination) 

from a set of nodes that are within a predetermined radius from the hub node. 

Campbell et al. (2005) address the importance of the demand pattern and spatial 

distribution of the hub nodes in the design of hub-and-spoke network obtained 

from 𝑝-hub median problems. Given this, one can realize that the spatial 

distribution of nodes in a hub and spoke network should be of major consideration. 
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We employ the standard deviation with respect to the distance of direct 

connections between all nodes. In short, given direct connection distances 

between each pair of nodes we calculate the associated standard deviation and use 

its value as the radius of our circular sector. In other words, each node 𝑖 is a center 

of a circle. The radius of the circle is equal to STD and the area created by the circle 

is called circular sector.  

Let  𝐷 = {𝑑𝑖𝑗| 𝑖, 𝑗 𝜖 𝑁, 𝑖 < 𝑗} represent the set of distance values between each 

pair of nodes where |𝐷| =
|𝑁|(|𝑁|−1)

2
. Let 𝑆𝑇𝐷 denote the standard deviation of the 

distance parameters in set 𝐷. Following shows how the standard deviation, 𝑆𝑇𝐷, 

is calculated: 

 

𝑑𝑖𝑗  = disdtance between node 𝑖 and node 𝑗. 

�̅� = 
2 ∑ 𝑑𝑖𝑗𝑖<𝑗

𝑛(𝑛−1)
  𝑓𝑜𝑟 𝑖 𝑎𝑛𝑑 𝑗 ∈ 𝑁, 𝑖 < 𝑗 

STD = √
∑ (𝑑𝑖𝑗𝑖<𝑗  − �̅�)2

𝑛−1
   𝑓𝑜𝑟 𝑖 𝑎𝑛𝑑 𝑗 ∈ 𝑁, 𝑖 < 𝑗 

 

Let 𝐶𝑖 to be the set of nodes that are within a distance of 𝑖 ∈ 𝑁, 𝐶𝑖 =

{𝑗 ∈ 𝑁|𝑑𝑖𝑗 ≤ 𝑆𝑇𝐷} and 𝑔(𝑖)to be greedy function the total amount of flow 

originated from or arrived to some nodes  𝑗 ∈ 𝐶𝑖. If we consider ∑ 𝑊𝑖𝑗as total flow 

amount for node 𝑖, then we define greedy function as follow: 

 𝑔(𝑖) = ∑ 𝑊𝑖𝑗    𝑓𝑜𝑟 𝑗 ∈ 𝐶𝑖  

Through the construction phase of Greedy Deterministic, for each node 𝑖 𝜖 𝑁, 

we calculate the total flow in a particular circle with radius of 𝑆𝑇𝐷. A schematic 

illustration of the above described is shown in Figure 4. Density of nodes& flow 

accumulation in the section is the main idea to look for a potential hub 
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STD

 

Figure 4. Density of nodes& flow accumulation in the section is the main idea to look for a potential hub 

  

Algorithm 3 describes the pseudo code for Greedy Deterministic  algorithm: 

Algorithm 3. Construction phase of Greedy Deterministic heuristic to MApHLP 

Initialization 

𝑯𝒔 =  ∅, 𝑅𝐶𝐿 = ∅, UB=0, V=N; 

while(|𝐻𝑠| ≠ 𝑝 ) do 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑔(𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑉  
𝑅𝐶𝐿 = {𝑖 ∈ 𝑉| 𝑔(𝑖) = 𝑔𝑚𝑎𝑥 } 

Select 𝑘 ∈ 𝑅𝐶𝐿 

𝐻𝑠 = 𝐻𝑠  ∪ {𝑘} 

𝑉 = 𝑉 − {𝑘}  

end while 

if (|𝐻𝑠| = 𝑝) 

Construct 𝐸𝑠 

Solve routing sub problem 

end if 

Evaluate objective function value𝑈𝐵 

 

Where gmax = max{g(i)| i ∈ V }. 
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4.1.3 Greedy Randomized 

In this part we provide Greedy Randomized algorithm. In this algorithm we choose 

the hub node randomly and we apply the greedy function to it. It is apparent to the 

first introduced algorithm, fully randomize, with the difference of removing some 

candidate nodes that seem not beneficial. Here, greedy function is responsible for 

removing those candidates. Meaning a hub candidate is chosen completely 

random. For this particular candidate 𝑖, we evaluate 𝑔(𝑖) in order to identify 𝐶𝑖 that 

are associated nodes in the circular sector. We continue this process until 𝑝 nodes 

are chosen. Like previous algorithms, when the 𝑝-hubs are defined, connections 

would be made and the objective function is calculated. 

There is one more thing in this algorithm that we should take into account. In 

some cases, it could be possible that the cardinality of the complementary of the 

set 𝐶𝑖  is a null set while we have not reach the quantity of the 𝑝. Meaning we need 

to choose another non-hub node and make it as a hub node but there isn’t any 

available node to choose from. To prevent happening this scenario, we verify at 

every iteration if the remaining non hub node in 𝑉 are equal or greater than 𝑝 −

|𝐻𝑠|. If this case happened, we have to stop removing associated node in the 

circular sector and denote the remaining node as a candidate.  

Algorithm 4. Construction phase of Greedy Randomized  to MApHLP 

Initialization 

𝑯𝒔 =  ∅, 𝑅𝐶𝐿 = ∅, UB=0, V=N; 

while(|𝐻𝑠| ≠ 𝑝 𝑜𝑟 𝑉 ≠ ∅ ) do 

𝑅𝐶𝐿 = 𝑉  
Select randomly 𝑘 ∈ 𝑅𝐶𝐿 

𝐻𝑠 = 𝐻𝑠  ∪ {𝑘} 

𝑉 = 𝑉 − 𝐶𝑘 

end while 

if (|𝐻𝑠| = 𝑝) 

Construct 𝐸𝑠 

Solve routing sub problem 
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end if 

Evaluate objective function value𝑈𝐵 

 

4.1.4 Greedy Randomized adaptive Search 

We now present our Greedy Randomized Adaptive Search heuristics for the 

Uncapacitated Multiple Allocation p-Hub Location Problem. We have already 

defined a greedy function based on the amount of flow in the circular sector.  

Let gmin = min {g(i)| i ∈ V }, the restricted candidate list can then be stated 

as following: 

 

RCL = {i ∈ V|g(i) ≥  gmin +  ω(gmax − gmin) } 

 

where ω ∈ [0,1] is the probabilistic parameter that controls the level of 

greediness of randomness used during the constructive phase. 

After sorting related flow amounts belonging the nodes in the sector, the 

restricted candidate list will be generated based on greedy randomness parameter, 

𝜔 ∈ [0,1], and then we randomly select one node from the defined candidate list. 

In next step, we remove all the nodes in the circular sector associated with the 

selected hub node and then calculate the greedy function for the remained nodes. 

This process will be repeated for 𝑝 times until 𝑝 hub nodes are selected (as shown 

in  

Figure 5-Figure 7). Similar to what we had in the section 4.1.3 for each iteration, 

it should be verified that the remaining nodes are equal or greater than 𝑝 − |𝐻𝑠|. 
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Figure 5. Elimination of associated nodes and assigning a new hub 

 

 

 

 

Figure 6. Assigning new hub 

 

 

 

 
Figure 7. Iterations continue for 𝒑  times 
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The final step in the construction phase will be assignment of each non-hub 

node based on the objective function. That is to find the best route originated from 

every single nun hub node to all distant node passing at most two hub nodes. The 

pseudo code of our construction phase is presented in Algorithm 5. 

 

Algorithm 5. Construction phase of Greedy Randomized adaptive Search heuristic 
to MApHLP 

Initialization 

𝑯𝒔 =  ∅, 𝑅𝐶𝐿 = ∅, UB=0, V=N; 

while(|𝐻𝑠| ≠ 𝑝 𝑜𝑟 𝑉 ≠ ∅ ) do 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑔(𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑉 

𝑅𝐶𝐿 = {𝑖 ∈ 𝑉| 𝑔(𝑖) ≥ 𝑔𝑚𝑖𝑛 + 𝜔(𝑔𝑚𝑎𝑥-𝑔𝑚𝑖𝑛)} 

Select randomly 𝑘 ∈ 𝑅𝐶𝐿 

𝐻𝑠 = 𝐻𝑠  ∪ {𝑘} 

𝑉 = 𝑉 − 𝐶𝑘 

end while 

if (|𝐻𝑠| = 𝑝) 

Construct 𝐸𝑠 

Solve routing sub problem 

end if 

Evaluate objective function value𝑈𝐵 

 

4.2 Local Improvement Method  

The local search phase tries to improve an initial feasible solution by means of 

opening and closing new hubs and reassigning non-hub nodes to the hub facilities. 

This means that after the construction phase, we close an open hub node and 

replace it by a closed hub node. We then reassign some non-hub nodes to the new 

hub to construct a feasible solution. If one solution improves the network 

transportation cost, it would be updated as the best solution found and the 

algorithm continues to further find better solution in the next iterations. Once this 

procedure is examined, given all possible substitutions, the greedy parameters will 

change and the construction phase will find another starting feasible solution.  
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Our node-shift neighborhood search closes an open hub node i ∈ Hs and its 

joint hub arcs Ai = {e|e ∈ Es, i ∈ e} and opens a new non-hub node j ∈ N\Hs and 

the hub arc setAj = {e = (e1, e2)|e ∈ E\Es, j ∈ e, |{e1, e2} ∩ Hs| = 1}. 

Our node-shift neighborhood can be described as: 

Nnode−shift(S) = {S′ = (H′
s, E′

s)|H′s = Hs ∪ {j}\{i},  i ∈ Hs,  j ∉ Hs}. 

We explore these neighborhoods by using first improvement strategy that arbitrary 

selecting a current hub node and closing it, and selecting an open hub node and 

closing it.  

The neighborhood search algorithm is presented in Algorithm 6. Local Search  

 

Algorithm 6. Local Search  

Initialization 

terminate = false 

while(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑓𝑎𝑙𝑠𝑒) do 

explore 𝑁𝑛𝑜𝑑𝑒−𝑠ℎ𝑖𝑓𝑡 

if(solution not improved in 𝑁𝑛𝑜𝑑𝑒−𝑠ℎ𝑖𝑓𝑡) do 

terminate = true 

end if 
end while 

 

In chapter 5 we present the computational results of our constructive 

algorithms with the local search.  

4.3 GRASP 

Our GRASP metaheuristic is a multi-start algorithm. We start with setting the 

value of ω = 0 and iteratively increasing its value by 0.05. The value of ω  is set to 

0 when it reaches its highest value. This procedure stops after 100 iterations. The 

overall scheme for our Grasp Algorithm is presented in Algorithm 7. 
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Algorithm 7. GRASP metaheuristic to MApHLP 

Initialization 

𝜔 = 0, 𝑡 = 0 

while(𝑡 ≤ 𝑚𝑎𝑥𝑖𝑡𝑟) do 

Call Construction phase 

Call Local search 

𝜔 = 𝜔 + 0.05 

if (𝜔 = 1) do 

𝜔 = 0 
𝒆𝒏𝒅 𝒊𝒇 

end while 
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CHAPTER 5: Computational Results 

In this chapter, we detail our computational results. We firstly present our data, 

software and hardware details and then provide a computational experiments to 

demonstrate the efficiency of our GRASP metaheuristic. 

The data set used in this study is driven from Australian postal data 

 that is available at the OR library which can be downloaded at 

mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html. This data set is frequently used in 

hub location literature and consists of the Euclidean distances 𝑑𝑖𝑗  and positive flow 

𝑤𝑖𝑗  between each pair of nodes (𝑖, 𝑗) ∈ 𝐴 in the network. The algorithms were 

coded in C + +, and run on PC with a Pentium® Dual-Core CPU E5500 processor 

running at a 2.80 GHz with 4 GB of RAM under Windows 7 environment.  

We run a series of computational experiments on a benchmark instances 

ranging from 20 to 200 nodes. The data set consists of six sets of instances each of 

size |𝑁| =  20, 50, 75, 100, 150 and 200. The value of 𝑝 is set to 3, 5 and 8. The 

discount factor 𝛼 is also chosen as 𝛼 = 0.2, 0.5  and  0.8. The number of different 

combinations results in a total of 54 instances.  

The remaining of this chapter is organized as follows. We first, for comparison 

purposes, detail the computational results from an adaptation Benders 

decomposition proposed for p-Hub median problem in literature (Contreras et al. 

2011c) and then detail the performance of fully randomized, greedy deterministic 

and greedy randomized, and finally the computational performance of our GRASP 

metaheuristic. The percentage deviation of obtained upperbound from optimal 

solution obtained by Benders decomposition algorithm is calculated as following:  

 

100(𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 − 𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑)/𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 
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To verify the efficiency of proposed algorithms, the global optimal results to 𝑝-

median problem obtained with a Benders decomposition algorithm are shown in 

Tables 1 to 3. These results are later discussed in Section 5.2, together with some 

comparisons on our GRASP metaheuristic results. Through the presentation of our 

computational results, second, third and fourth columns in tables represent 

number of nodes in the network, number of hubs and the value of discount factor 

𝛼 respectivly. The fifth column represents the value of optimal solution to these 

instances in Table 1-3. And finally the last column reports the CPU time taken to 

solve these instances to optimality.  

 

Table 1.  Global optimal solutios to MApHLP (small size instances) 

# N P α Global Optimal (BD) Time 

1 20 3 0.2 57142.47 0.34 

2 20 3 0.5 64754.02 0.17 

3 20 3 0.8 68857.72 0.25 

4 20 5 0.2 44506.65 1.19 

5 20 5 0.5 55097.16 1.04 

6 20 5 0.8 61936.78 0.55 

7 20 8 0.2 32740.84 4.48 

8 20 8 0.5 45400.03 2.54 

9 20 8 0.8 55675.66 1.33 

10 50 3 0.2 60920.18 1.65 

11 50 3 0.5 67767.86 1.09 

12 50 3 0.8 71770.74 0.86 

13 50 5 0.2 49576.2 4.98 

14 50 5 0.5 58625.15 4.04 

15 50 5 0.8 65049.65 4.55 

16 50 8 0.2 40946.25 362.5 

17 50 8 0.5 52083.52 253.66 

18 50 8 0.8 60572.55 115.13 
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Table 2.  Global optimal solutios to MApHLP (medium size instances) 

# N P α Global Optimal (BD) Time 

19 75 3 0.2 61863.71 5.27 

20 75 3 0.5 68682.21 3.88 

21 75 3 0.8 72533.67 3.07 

22 75 5 0.2 50696.2 17.15 

23 75 5 0.5 59714.46 15.24 

24 75 5 0.8 65809.72 13.9 

25 75 8 0.2 42425.19 448.89 

26 75 8 0.5 53477.88 391.08 

27 75 8 0.8 61641.59 370.32 

28 100 3 0.2 61818.58 14.51 

29 100 3 0.5 68562.71 10.52 

30 100 3 0.8 72518.02 8.63 

31 100 5 0.2 51157.74 58.58 

32 100 5 0.5 60185.38 53.04 

33 100 5 0.8 66177.81 38.8 

34 100 8 0.2 42775.18 1540.6 

35 100 8 0.5 53859.01 732.4 

36 100 8 0.8 61961.79 537.19 
 

Table 3.  Global optimal solutios to MApHLP (large size instances) 

# N P α Global Optimal (BD) Time 

37 150 3 0.2 61962.82 92.54 

38 150 3 0.5 68854.63 52.43 

39 150 3 0.8 72779.86 34.38 

40 150 5 0.2 51444.08 650.49 

41 150 5 0.5 60472.72 448.85 

42 150 5 0.8 66407.3 188.51 

43 150 8 0.2 43212.87 73755.4 

44 150 8 0.5 54213.92 32312.68 

45 150 8 0.8 62180.31 3414.24 

46 200 3 0.2 62515.21 715.03 

47 200 3 0.5 69334.46 281.89 

48 200 3 0.8 73198.94 138.69 

*49 200 5 0.2 52365.93 74041.89 

*50 200 5 0.5 61353.77 72699.55 

51 200 5 0.8 67015.23 3441.95 

*52 200 8 0.2 43771.78 72346.23 

*53 200 8 0.5 55069.05 73317.53 

*54 200 8 0.8 62865.93 72136.69 
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(*: results for the instances marked with * are not proven global optimal)  

5.2 A Comparison for Several Constructive Algorithms 

In this section we compare the results obtained in algorithms presented in Chapter 

4 with the optimal solutions from a Benders decomposition in terms of 

computational time in obtaining upper bounds with heuristics and how far their 

value functions are from the global optimal results. We use %DEV that would give 

us the gap from the global optimal from Benders decomposition algorithm in 

section 5.1.1. The %DEV is calculated as follows: 

%DEV =
(𝑈𝐵 − 𝑂𝑃𝑇)

𝑂𝑃𝑇
 × 100 

In order to have the name of solution algorithms in brief, we make S1, S2, S3 and 

S4. These names are associated as follows: 

S1:  “fully randomized” 

S2:  “greedy deterministic” 

S3:  “greedy randomized” 

S4:  “greedy randomized adaptive”  

First we present the results from the constructive phase for each algorithm 

including CPU time of calculation and in next section we show the results that are 

given by the solutions with local search. This way we have good perspective of how 

effective are the constructive phases and assess the impact of the described 

neighborhood search. 
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Table 4. Algorithms Comparison (small size instances) 

Instances % DEV CPU Time 

Number N P α S1 S2 S3 S4 S1 S2 S3 S4 

1 20 3 0.2 3.91% 12.40% 3.91% 3.91% 0.39 0.01 0.38 0.43 

2 20 3 0.5 8.07% 10.13% 3.66% 4.07% 0.4 0 0.4 0.37 

3 20 3 0.8 3.61% 9.30% 3.32% 3.32% 0.53 0 0.39 0.39 

4 20 5 0.2 13.42% 20.86% 8.34% 8.01% 0.43 0.01 0.44 0.82 

5 20 5 0.5 7.39% 15.75% 7.29% 6.62% 0.47 0.01 0.42 0.44 

6 20 5 0.8 5.62% 13.29% 5.28% 7.15% 0.41 0 0.45 0.42 

7 20 8 0.2 41.74% 41.74% 41.74% 41.74% 0.58 0.01 0.53 0.51 

8 20 8 0.5 29.13% 29.13% 29.13% 29.13% 0.54 0.01 0.52 0.56 

9 20 8 0.8 20.09% 20.09% 20.09% 20.09% 0.57 0.02 0.65 0.64 

10 50 3 0.2 9.22% 25.28% 4.53% 4.53% 1.18 0.02 1.18 1.08 

11 50 3 0.5 8.85% 21.69% 5.61% 6.48% 1.35 0.02 1.13 1.3 

12 50 3 0.8 8.62% 18.85% 5.33% 5.27% 1.12 0.01 1.3 1.28 

13 50 5 0.2 20.85% 33.37% 18.36% 15.13% 1.38 0.01 1.22 1.23 

14 50 5 0.5 15.28% 28.65% 12.33% 14.93% 1.61 0.03 1.31 1.21 

15 50 5 0.8 8.25% 23.79% 9.89% 6.76% 1.49 0.01 1.53 1.19 

16 50 8 0.2 43.91% 43.91% 43.91% 43.91% 1.76 0.05 1.62 1.62 

17 50 8 0.5 35.18% 35.18% 35.18% 35.18% 1.71 0.05 1.67 1.7 

18 50 8 0.8 27.84% 27.84% 27.84% 27.84% 1.72 0.03 1.65 1.9 

Average: 17.28% 23.96% 15.88% 15.78% 0.98 0.02 0.93 0.95 

 

In Table 4, column S1 reports the performance of fully randomized algorithm for 

some small size instances. The smallest gap obtained is equal to 3.61% for N=20 at 

α=0.2 and p=8, while the largest gap that is 43.91% corresponds to N=50, p=8 and 

α = 0.2. Clear enough, this results are not promising even for small instances. 

S2 details the performance of greedy deterministic randomized algorithm for our 

small size instances. The smallest gap obtained is equal to 9.30% for N=20 at p=3 

and α=0.8 while the largest gap corresponds to 𝑁 = 50, p=8 and α = 0.2.  

S3 shows the performance of greedy deterministic algorithm for our small size 

instances. The smallest gap obtained is equal to 3.32% for N=20 at α=0.8 and p=3, 
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while the largest gap 43.91% corresponds to N=50, p=8 and α = 0.2. The largest 

time is also 108.94 (sec) for N=50 for p=8. 

S4 reports the performance of GRASP constructive algorithm for small size 

instances. The smallest gap is 3.32% for N=20 at α=0.8 and p=3, and the largest gap 

is equal to 43.91% at N=50, p=8 and α = 0.2 where the average of %Dev shows 

0.10% improvement compared with best result driven from the other greedy 

algorithms.  

 

Table 5. Algorithms Comparison (medium size instances) 

Instances % DEV CPU Time 

Number N P α S1 S2 S3 S4 S1 S2 S3 S4 

19 75 3 0.2 12.39% 22.75% 9.12% 9.12% 2.55 0.02 2.36 2.16 

20 75 3 0.5 7.80% 18.36% 2.49% 7.38% 2.46 0.02 2.19 2.79 

21 75 3 0.8 8.55% 16.20% 4.04% 2.41% 2.26 0.03 2.19 2.61 

22 75 5 0.2 12.60% 31.79% 12.14% 13.32% 2.73 0.02 2.42 2.37 

23 75 5 0.5 15.64% 25.56% 9.82% 11.94% 2.61 0.02 2.41 2.57 

24 75 5 0.8 9.71% 21.66% 8.62% 10.78% 2.66 0.02 2.43 2.86 

25 75 8 0.2 20.44% 41.66% 41.66% 41.66% 2.94 0.06 2.98 3.27 

26 75 8 0.5 20.53% 32.87% 32.87% 32.87% 3.67 0.07 3 3.36 

27 75 8 0.8 14.32% 26.55% 26.55% 26.55% 3.02 0.06 3.01 3.32 

28 100 3 0.2 6.79% 24.95% 2.37% 3.43% 4.28 0.05 3.77 3.64 

29 100 3 0.5 8.08% 21.35% 5.58% 4.42% 4.37 0.04 3.77 3.67 

30 100 3 0.8 6.78% 18.71% 3.64% 2.90% 3.99 0.05 3.79 4.15 

31 100 5 0.2 18.96% 32.81% 11.23% 12.44% 4.32 0.04 4.18 4.59 

32 100 5 0.5 18.20% 27.88% 10.33% 15.68% 4.41 0.06 4.18 4.91 

33 100 5 0.8 12.85% 23.87% 7.01% 8.52% 4.28 0.04 4.72 4.49 

34 100 8 0.2 20.56% 41.56% 19.87% 14.95% 5.14 0.06 4.96 5.29 

35 100 8 0.5 17.07% 34.12% 17.16% 16.33% 5.43 0.07 5.06 6.01 

36 100 8 0.8 5.53% 28.04% 3.38% 4.01% 5.75 0.05 4.91 5.44 

Average: 13.16% 26.05% 12.66% 13.26% 3.72 0.04 3.46 3.75 

 

Table 5, column S1 details the performance of fully randomized algorithm for our 

medium size instances. The smallest gap obtained is equal to 5.53% for N=100 at 
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α=0.8 and p=8, while the largest gap corresponds to N=100, p=8 and α = 0.2. Note 

that, these results again, demonstrate the fully randomness trait in the behavior of 

algorithm as the quality of solution is not improved. The largest time is also 5.75 

seconds for N=100 given 100 iterations of randomly selecting p=8 hubs. 

The results presented in column S2 details the performance of greedy deterministic 

algorithm for our medium size instances. The smallest gap obtained is equal to 

16.20% for N=75 at α=0.8 and p=3, while the largest gap 41.66% is obtained at 

N=75, p=8 and α = 0.2. 

Column S3 reports the performance of greedy randomized algorithm for medium 

size instances. The smallest gap obtained is equal to 2.37% for N=100 at α=0.2 and 

p=3, while the largest gap 41.66% corresponds to N=75, p=8 and α = 0.2.  

The performance of GRASP algorithm for medium size instances is shown in S4. The 

smallest gap is 2.41% for 𝑁 = 75 at 𝛼 = 0.8 and 𝑝 = 3, and the largest gap is equal 

to 41.66% at 𝑁 = 75, 𝑝 = 8 and 𝛼 =  0.2.  
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Table 6. Algorithms Comparison (large size instances) 

Instances % DEV CPU Time 

Number N P α S1 S2 S3 S4 S1 S2 S3 S4 

37 150 3 0.2 10.04% 22.85% 7.31% 3.92% 9.15 0.08 8.74 9.1 

38 150 3 0.5 10.72% 18.06% 2.65% 5.20% 10.72 0.08 8.47 9.35 

39 150 3 0.8 6.28% 15.62% 2.64% 2.36% 9.18 0.11 9.13 8.13 

40 150 5 0.2 16.70% 28.21% 11.73% 0.76% 11.21 0.08 9.87 9.23 

41 150 5 0.5 15.19% 22.85% 10.99% 9.27% 11.57 0.09 9.5 9.47 

42 150 5 0.8 9.79% 19.20% 8.02% 10.64% 10.39 0.1 9.63 9.72 

43 150 8 0.2 25.57% 35.62% 21.46% 17.81% 12.82 0.1 11.9 11.2 

44 150 8 0.5 21.87% 28.21% 13.84% 14.20% 13.21 0.1 11.65 12.48 

45 150 8 0.8 15.53% 22.98% 10.87% 12.94% 11.96 0.1 14.85 11.72 

46 200 3 0.2 14.89% 18.89% 3.18% 4.84% 19.86 0.14 16.65 16.51 

47 200 3 0.5 10.73% 15.85% 3.70% 4.25% 20.16 0.16 18.5 15.47 

48 200 3 0.8 8.74% 13.59% 5.15% 5.80% 17.47 0.15 16.85 16.03 

49 200 5 0.2 16.84% 24.96% 13.92% 12.77% 21.43 0.2 19.83 17.16 

50 200 5 0.5 14.25% 21.06% 11.21% 13.37% 20.13 0.18 18.68 18.91 

51 200 5 0.8 12.93% 17.78% 7.65% 7.35% 20.05 0.16 18.45 17.02 

52 200 8 0.2 21.78% 34.77% 18.64% 16.75% 23.83 0.2 21.51 20.52 

53 200 8 0.5 19.24% 27.43% 16.02% 15.15% 24.55 0.19 21.26 22.17 

54 200 8 0.8 15.00% 22.01% 12.00% 11.17% 23.35 0.22 21.54 19.84 

Average: 14.78% 22.77% 10.05% 9.36% 16.17 0.14 14.83 14.11 

 

Table 6 reports the performance of fully randomized algorithm for our large size 

instances.  

For fully randomized algorithm that is S1, the smallest gap obtained is equal to 

6.28% for 𝑁 = 150 at α=0.8 and p=3, while the largest gap that is 25.57% 

corresponds to N=150, p=8 and α = 0.2.  

The performance of greedy deterministic algorithm for our large size instances is 

written in S2. The smallest gap obtained is equal to 13.59 % for N=200 at α=0.8 and 

p=3, while the largest gap 34.77% corresponds to N=200, p=8 and α = 0.2. The 

largest time is also 271.22 (sec) for N=200 given 100 iterations of randomly 

selecting p=8 hubs. 
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The smallest gap for greedy randomized is equal to 2.64% and corresponds to 

N=150 at α=0.8 and p=3, while the largest gap 18.64% corresponds to N=200, p=8 

and α = 0.2. The largest time is also 8904.21 (sec) for N=200 at p=8. 

The results presented in column S4 details the performance of the GRASP 

algorithm for our large size instances. The smallest gap obtained is equal to 0.76% 

for N=150 at α=0.2 and p=5, while the largest gap 17.81% is obtained at N=150, p=8 

and α = 0.2. 

Observe that the quality of solutions obtained at construction phase is 

significantly improved in greedy randomized and GRASP. This shows that the 

greedy function in our study, namely consideration of standard deviation and the 

evaluation of candidate list based on the GRASP scheme can hold promise to better 

quality solutions.  

5.3 A Comparison for Several Constructive with Local Search Algorithms 

We now evaluate the performance of each algorithm when our neighborhood 

search is added to the search procedure of construction phases of each algorithm 

over the instances presented in section 5.2.  Following 3 tables are the results in 

small, medium and large size instances. 
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Table 7. Algorithms Comparison with Local Search (small size instances) 

Instances % DEV CPU Time 

Number N P α S1L S2L S3L S4L S1L S2L S3L S4L 

1 20 3 0.2 0.00% 0.00% 0.00% 0.00% 0.97 0.07 0.99 0.93 

2 20 3 0.5 0.00% 0.00% 0.00% 0.00% 1.03 0.06 0.97 1.05 

3 20 3 0.8 0.00% 0.00% 0.00% 0.00% 1.08 0.03 0.97 1.11 

4 20 5 0.2 0.00% 0.00% 0.00% 0.00% 2.42 0.07 2.65 2.95 

5 20 5 0.5 0.00% 0.06% 0.00% 0.00% 2.52 0.11 3.22 2.37 

6 20 5 0.8 0.00% 0.57% 0.00% 0.00% 2.66 0.08 2.4 2.78 

7 20 8 0.2 0.00% 0.00% 0.00% 0.00% 7.59 0.23 7.06 7.56 

8 20 8 0.5 0.00% 0.00% 0.00% 0.00% 8.56 0.24 8.89 7.55 

9 20 8 0.8 0.00% 0.00% 0.00% 0.00% 8.1 0.24 7.61 7.49 

10 50 3 0.2 0.00% 0.00% 0.00% 0.00% 8.3 0.3 11.54 8.2 

11 50 3 0.5 0.00% 0.00% 0.00% 0.00% 10.3 0.26 11.45 8.35 

12 50 3 0.8 0.00% 0.00% 0.00% 0.00% 9.06 0.23 9.39 8.2 

13 50 5 0.2 0.00% 0.10% 0.00% 0.00% 32.17 0.84 35.02 29.77 

14 50 5 0.5 0.00% 0.00% 0.00% 0.00% 45.7 0.84 31.38 29.3 

15 50 5 0.8 0.00% 0.00% 0.00% 0.00% 32.45 0.83 34.96 32.29 

16 50 8 0.2 0.00% 0.00% 0.00% 0.00% 107.54 3.17 108.94 108.04 

17 50 8 0.5 0.00% 0.00% 0.00% 0.00% 107.59 3.19 106.88 137.17 

18 50 8 0.8 0.00% 0.00% 0.00% 0.00% 106.91 3.12 106.77 120.78 

Average: 0.00% 0.04% 0.00% 0.00% 22.50 0.77 27.28 28.66 

 

Table 7 reports the performance of GRASP metaheuristic algorithm for small size 

instances. The results presented in this table are good in our opinion. The S1L, S3L 

and S4L algorithms find the optimal solution of instances where the S2L is unable 

to find the optimal solution for all instances. 
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Table 8. Algorithms Comparison with Local Search (medium size instances) 

Instances % DEV CPU Time 

Number N P α S1L S2L S3L S4L S1L S2L S3L S4L 

19 75 3 0.2 0.00% 0.00% 0.00% 0.00% 27.67 0.78 28.84 30.43 

20 75 3 0.5 0.00% 0.00% 0.00% 0.00% 26.86 0.74 27.98 27.36 

21 75 3 0.8 0.00% 0.00% 0.00% 0.00% 26.35 0.75 29.36 25.17 

22 75 5 0.2 0.00% 0.92% 0.00% 0.00% 98.79 2.78 119.03 94.71 

23 75 5 0.5 0.00% 0.74% 0.00% 0.00% 120.84 2.81 121.14 94.36 

24 75 5 0.8 0.00% 0.46% 0.00% 0.00% 96.61 3.65 107.76 117.07 

25 75 8 0.2 0.00% 0.00% 0.00% 0.00% 371.54 13.36 360.27 356.73 

26 75 8 0.5 0.00% 0.00% 0.00% 0.00% 470.2 13.89 379.88 354.84 

27 75 8 0.8 0.03% 0.00% 0.00% 0.00% 405.13 10.59 356.49 354.46 

28 100 3 0.2 0.00% 1.15% 0.00% 0.00% 57.25 2.13 88.06 58.95 

29 100 3 0.5 0.00% 0.76% 0.00% 0.00% 71.67 1.71 63.91 58.56 

30 100 3 0.8 0.00% 0.15% 0.00% 0.00% 65.15 1.69 66.98 58.03 

31 100 5 0.2 0.00% 0.91% 0.00% 0.00% 221.55 6.48 234.99 221.31 

32 100 5 0.5 0.00% 0.31% 0.01% 0.00% 219.43 8.05 226.81 272.54 

33 100 5 0.8 0.00% 0.34% 0.00% 0.00% 218.43 6.31 223.22 215.4 

34 100 8 0.2 0.17% 1.83% 0.85% 0.00% 1067.42 24.85 850.88 1026.36 

35 100 8 0.5 0.13% 1.34% 0.51% 0.00% 1066.06 24.83 957.77 895.76 

36 100 8 0.8 0.01% 0.82% 0.34% 0.00% 901.05 24.48 867.89 855.64 

Average: 0.02% 0.54% 0.10% 0.00% 307.33 8.33 283.96 284.32 

 

Table 8 presents the performance of GRASP metaheuristic algorithm for medium 

size instances. The results presented in this table are good in our opinion. The S4L 

algorithm reaches the optimal solution of instances for all medium size instances. 

The other algorithms, however, fail to find the optimal solution to some of 

instances. The performance of GRASP algorithm for medium size instances again 

proves its efficiency in obtaining optimal solutions where our deviation is 0.00%. 
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Table 9. Algorithms Comparison with Local Search (large size instances) 

Instances % DEV CPU Time 

Number N P α S1L S2L S3L S4L S1L S2L S3L S4L 

37 150 3 0.2 0.00% 3.66% 0.00% 0.00% 191.22 5.62 207.15 189.72 

38 150 3 0.5 0.00% 2.05% 0.00% 0.00% 235.92 5.6 213.16 188.3 

39 150 3 0.8 0.00% 1.01% 0.00% 0.00% 241.78 6.31 192.48 187.74 

40 150 5 0.2 0.00% 0.76% 0.08% 0.00% 847.79 22.1 942.29 730.79 

41 150 5 0.5 0.00% 0.11% 0.00% 0.00% 790 22.37 789.49 737.06 

42 150 5 0.8 0.00% 0.35% 0.00% 0.00% 912.59 21.47 1023.21 726.81 

43 150 8 0.2 0.09% 1.12% 0.05% 0.00% 3552.09 83.97 2974.89 3168.07 

44 150 8 0.5 0.06% 0.75% 0.00% 0.00% 2870.95 84.61 3240.38 3502.63 

45 150 8 0.8 0.00% 0.69% 0.00% 0.00% 3096.1 83.31 3047.79 2967.18 

46 200 3 0.2 0.00% 0.00% 0.00% 0.00% 457.08 17.09 493.02 441.43 

47 200 3 0.5 0.00% 0.00% 0.00% 0.00% 532.88 13.07 517.26 460.53 

48 200 3 0.8 0.00% 0.00% 0.00% 0.00% 473.56 13.79 507.35 462.47 

49 200 5 0.2 -0.01% -0.01% -0.01% -0.01% 1954.99 58.29 1960.99 1795.94 

50 200 5 0.5 0.00% 0.17% 0.00% 0.00% 1964.38 53.56 1748.07 1788.88 

51 200 5 0.8 0.00% 0.32% 0.00% 0.00% 1922.98 64.52 1752.54 1696.7 

52 200 8 0.2 0.00% 1.70% 0.68% 0.00% 6818.31 254.52 7167.32 6715.59 

53 200 8 0.5 0.14% 0.86% 0.10% 0.00% 7111.83 206.3 7238.41 6833.39 

54 200 8 0.8 0.00% 0.63% 0.03% 0.00% 7053.67 271.22 8904.21 7183.48 

Average: 0.02% 0.79% 0.05% 0.00% 2279.34 71.54 2384.45 2209.82 

 

Table 9 presents the performance of algorithms coupled with a neighborhood 

search procedure for large size instances. The results presented in this table are 

very good, in our opinion. The S4L algorithm finds the optimal solution to instances 

where the other three algorithms are unable to find the optimal solution to most 

of instances. That is, the gap between our incumbent and the optimal solution 

obtained by Bender algorithm is equal to 0.00%.  

5.4 Computational summary 

In this section we briefly describe the results presented in Tables 4 to 9. Clear 

enough, the results on the average DEV% explains that in fully random algorithm 
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without any neighborhood search procedure, the average gap is 15.07%.  Note that 

the average gaps obtained from Greedy deterministic is 24.66% that is worse than 

average since the there is no randomness in searching other feasible regions. The 

performance of greedy randomize is, however, better as it benefits from our greedy 

function. The performance of our GRASP metaheuristic is significantly better than 

that of other heuristics. The key idea in GRASP is that it expands its neighborhood 

search as it benefits from a greedy function that selects potential hub location and, 

finally, the neighborhood search always obtains the optimal solution of the 

instances. 

To have a slightly different point of view, the following two tables showing the 

results that categorized based of quantity of instances that we had done our test 

(20, 50, 75, 100, 150 and 200). Table 10 is the result of constructive phase and table 

11 shows the result of constructive phase with the local search.   

Table 10. % DEV for initial solutions and CPU Time 

N 

% DEV for initial solutions CPU Time 

S1 S2 S3 S4 S1 S2 S3 S4 

20 14.78% 19.19% 13.64% 13.78% 0.48 0.01 0.46 0.51 

50 19.78% 28.73% 18.11% 17.78% 1.48 0.03 1.40 1.39 

75 13.55% 26.38% 16.37% 17.34% 2.77 0.04 2.55 2.81 

100 12.76% 28.14% 8.95% 9.19% 4.66 0.05 4.37 4.69 

150 14.63% 23.73% 9.95% 8.57% 11.13 0.09 10.42 10.04 

200 14.93% 21.82% 10.16% 10.16% 21.20 0.18 19.25 18.18 

AVG. 15.07% 24.66% 12.86% 12.86% 6.95 0.07 6.41 6.27 
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Table 11. % DEV for initial solutions with the local search and CPU Time 

N 

% DEV for initial solutions + local search CPU Time 

S1 S2 S3 S4 S1 S2 S3 S4 

20 0.00% 0.07% 0.00% 0.00% 3.88 0.13 3.86 3.75 

50 0.00% 0.01% 0.00% 0.00% 51.11 1.42 50.70 53.57 

75 0.00% 0.24% 0.00% 0.00% 182.67 5.48 170.08 161.68 

100 0.03% 0.85% 0.19% 0.00% 432.00 11.17 397.83 406.95 

150 0.02% 1.17% 0.02% 0.00% 1415.38 37.26 1403.43 1377.59 

200 0.02% 0.41% 0.09% 0.00% 3143.30 105.82 3365.46 3042.05 

AVG. 0.01% 0.46% 0.05% 0.00% 871.39 26.88 898.56 840.93 

 

Table 11 describes the effect of local search procedure on the incumbent 

solution and the computational times of each algorithm. The average %Dev for our 

GRASP metaheuristic is again Zero where other algorithms fail to reach optimal 

solution. This demonstrates the impact of our greedy function in providing diverse 

and good feasible solutions at construction phase of the GRASP algorithm.  

The following table gives us a summary of view of the results that shows it 

consolidate. Basically the numbers are the same one written in the last row of table 

10 and 11. That gives another view for the result throughout of all algorithms that 

were worked in this thesis.  

  

Table 12. result  

Algorithm  %DEV  
CPU 
Time 

 %DEV & LS 
CPU 
Time 

Fully Randomize 15.07% 6.95 0.01% 871.39 

Greedy Deterministic 24.66% 0.07 0.46% 26.88 

Greedy Randomize 12.86% 6.41 0.05% 898.56 

GRASP 12.80% 6.27 0.00% 840.93 
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CHAPTER 6: Conclusion and Future Research Directions 

In this thesis, we developed a GRASP metaheuristic for Multiple Allocation p-Hub 

Location Problems. We run a series of experiments on a set of benchmark instances 

with up to 200 nodes to evaluate the effectiveness of the proposed algorithm. We 

compared the solutions obtained from our algorithm to that of a Benders 

decomposition known to literature that further demonstrates the capability of our 

algorithm in finding good quality solutions within a reasonable computational time. 

An observation from our research highlights the effectiveness of our greedy 

function on constructive phase of the GRASP algorithm. In addition, future work on 

metaheuristic solution methods should be considered to efficiently obtain better 

feasible solutions for larger instances. 

Future studies might consider studying the capacitated version of the problem 

for efficiently obtaining good quality solutions for larger instances. A modification 

in the construction process of selecting hubs where the standard deviation of 

distances is updated for the remaining nodes after each selecting a hub node could 

be of another future work.  
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